WO2021072681A1 - 掩模板及其制作方法、显示基板的制作方法 - Google Patents

掩模板及其制作方法、显示基板的制作方法 Download PDF

Info

Publication number
WO2021072681A1
WO2021072681A1 PCT/CN2019/111495 CN2019111495W WO2021072681A1 WO 2021072681 A1 WO2021072681 A1 WO 2021072681A1 CN 2019111495 W CN2019111495 W CN 2019111495W WO 2021072681 A1 WO2021072681 A1 WO 2021072681A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
mask
mesh area
sub
manufacturing
Prior art date
Application number
PCT/CN2019/111495
Other languages
English (en)
French (fr)
Inventor
罗昶
嵇凤丽
吴建鹏
杨忠英
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/963,673 priority Critical patent/US11885005B2/en
Priority to CN201980001980.8A priority patent/CN112996944B/zh
Priority to PCT/CN2019/111495 priority patent/WO2021072681A1/zh
Publication of WO2021072681A1 publication Critical patent/WO2021072681A1/zh
Priority to US18/530,369 priority patent/US20240191338A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the embodiments of the present disclosure relate to a mask plate, a manufacturing method thereof, and a manufacturing method of a display substrate.
  • OLED display devices have a series of advantages such as self-luminescence, high contrast, high definition, wide viewing angle, low power consumption, fast response speed, and low manufacturing cost. They have become a new generation of display devices. One of the key development directions of China, so it has received more and more attention.
  • Functional layers such as organic light-emitting materials of OLED display devices are usually prepared by evaporation and other methods using high-precision metal masks (FMM). Therefore, the fineness of the FMM determines the formation accuracy of the above-mentioned organic light-emitting materials and other functional layers.
  • FMM high-precision metal masks
  • At least one embodiment of the present disclosure provides a mask plate.
  • the mask plate includes a first clamping area and a second clamping area opposite to each other in a first direction, and a mask located between the first clamping area and the second clamping area.
  • the first shape includes: a first side and a second side that extend substantially along the first direction and are arranged opposite to each other, and are connected to the first side and The third side and the fourth side between the second side; the first side and the second side protrude away from the center of the first shape, and the third side and the fourth side approach The direction of the center of the first shape is recessed.
  • the first side includes a first end, a second end, and a first midpoint between the first end and the second end.
  • the two sides include a third end, a fourth end, and a second midpoint between the third end and the fourth end.
  • the line connecting the first midpoint and the second midpoint is the first connection Line
  • the first line is perpendicular to the first direction
  • the length of the first line is greater than the length of the line between the first end and the third end
  • the length of the first line It is also greater than the length of the line connecting the second end and the fourth end
  • the third side connects the first end and the third end
  • the fourth side connects the second end and the At the fourth end
  • the line connecting the midpoint of the third side and the midpoint of the fourth side is a second line
  • the length of the second line is less than the length of the first end and the second end.
  • the length of the connection line, and the length of the second connection line is smaller than the length of the connection line between the third end and the fourth end, and the second connection line passes through the midpoint of the first connection line
  • the target shape of the mesh area is a rectangle.
  • the mesh area includes a plurality of first sub-openings, and when the mesh area is in the target shape, the plurality of first sub-openings are arranged It is in the form of a regular array.
  • the mask provided by at least one embodiment of the present disclosure further includes a first dummy mesh area and a second dummy mesh area, and the first dummy mesh area is disposed in the first clamping area and the mesh area. Between the areas, the second dummy mesh area is arranged between the second clamping area and the mesh area.
  • At least one embodiment of the present disclosure provides a method for manufacturing a mask.
  • the manufacturing method includes: providing a test mask.
  • the test mask includes a first clamping area and a second clamping area opposite to each other in a first direction. , Further comprising at least one mesh area located between the first clamping area and the second clamping area, the at least one mesh area is in a target shape; the acquisition of the mesh area in the test mask According to the deformation state information of the template in the state of being stretched along the first direction, the reverse compensation information for the mesh area is obtained according to the deformation state information, and the reverse compensation information is obtained based on the reverse compensation information.
  • the target initial state information of the mesh area, and a mask is manufactured according to the target initial state information, and at least one mesh area of the manufactured mask is in the first shape.
  • the deformation state information is acquired through simulation.
  • the deformation state information includes the deformation mode and/or the deformation amount of the mesh area at multiple positions.
  • the manufacturing method provided by at least one embodiment of the present disclosure further includes: fitting a deformation curve of the mesh area in the first direction and the second direction according to the deformation state information, wherein the second The direction is substantially perpendicular to the first direction.
  • the obtaining the reverse compensation information for the mesh area includes: obtaining the reverse compensation information according to the deformation curve.
  • the reverse compensation information includes deformation compensation values of the mesh area at multiple positions or the mesh area in the first direction and the second direction. Deformation compensation curve in two directions.
  • the mesh area includes a plurality of first sub-openings arranged in an array
  • the manufacturing method further includes: according to the reflection for the mesh area To obtain compensation information, the reverse compensation information of each of the first sub-openings is obtained.
  • the mesh area includes a plurality of first sub-openings arranged in an array, and the plurality of first sub-openings are divided into M ⁇ N regions, and each region It includes at least one first sub-opening, and M and N are positive integers greater than or equal to 2.
  • the manufacturing method further includes: obtaining the first sub-opening of each area according to the reverse compensation information for the mesh area. Reverse compensation information for a sub-opening.
  • the test mask is stretched along the first direction through the first clamping area and the second clamping area.
  • the target initial state information of the mesh area includes target initial shape and target initial size information of the mesh area.
  • the production method provided by at least one embodiment of the present disclosure further includes: recording the target initial state information of the mesh area in the form of a table or a graph.
  • the mesh area includes a plurality of first sub-openings arranged in an array
  • recording the target initial state information of the mesh area in the form of a table includes: A rectangular coordinate system is established, and the coordinates and sizes of the plurality of first sub-openings in the rectangular coordinate system are recorded in a table.
  • the mesh area includes a plurality of first sub-openings arranged in an array, and the plurality of first sub-openings are divided into M ⁇ N regions, and each region It includes at least one first sub-opening, and M and N are positive integers greater than or equal to 2.
  • the recording of the target initial state information of the mesh area in the form of a table includes: establishing a rectangular coordinate system, and recording each The coordinates and size of the first sub-opening of each area in the Cartesian coordinate system.
  • the recording of the target initial state information of the mesh area in the form of graphics includes: drawing a curve of the deformation of the mask with respect to the test mask .
  • At least one embodiment of the present disclosure further provides a manufacturing method of a display substrate, the manufacturing method comprising: using any one of the above-mentioned mask plates to obtain a mask device, and using the mask device to form at least a portion of the display substrate A functional layer.
  • Figure 1A is a schematic diagram of a mask
  • FIG. 1B is a schematic diagram of the size compensation design of the mask shown in FIG. 1A;
  • FIG. 2 is a schematic diagram of the mesh area of the mask plate shown in FIG. 1A;
  • 3A-3D are schematic diagrams of a mask device during the manufacturing process
  • 4A is a schematic diagram of the deformation trend of the mesh area of the mask plate shown in FIG. 1A after being stretched;
  • 4B is a schematic diagram of the deformation trend of multiple sub-openings in the mesh area of the mask plate shown in FIG. 1A after being stretched;
  • 5A is a flowchart of a method for manufacturing a mask provided by at least one embodiment of the present disclosure
  • 5B is a schematic diagram of a test mask provided by at least one embodiment of the present disclosure.
  • 5C is a schematic diagram of the mesh area of the test mask provided by at least one embodiment of the present disclosure.
  • 6A is a deformation simulation test diagram of the test mask provided by at least one embodiment of the present disclosure in the first direction;
  • 6B is a deformation simulation curve of the test mask provided by at least one embodiment of the present disclosure in the first direction;
  • 6C is a deformation fitting curve of the test mask provided by at least one embodiment of the present disclosure in the first direction;
  • 6D is a measured curve of deformation of the test mask provided by at least one embodiment of the present disclosure in the first direction;
  • 7A is a deformation simulation test diagram of the test mask provided by at least one embodiment of the present disclosure in the second direction;
  • 7B is a deformation simulation curve of the test mask provided by at least one embodiment of the present disclosure in the second direction;
  • 7C is a deformation fitting curve of the test mask provided by at least one embodiment of the present disclosure in the second direction;
  • 7D is a measured curve of deformation of the test mask provided by at least one embodiment of the present disclosure in the second direction;
  • FIG. 8A is a schematic diagram of a mask provided by at least one embodiment of the present disclosure.
  • 8B is a schematic diagram of the mesh area of the mask provided by at least one embodiment of the present disclosure.
  • 9A is a schematic diagram of the mesh area of the mask provided by at least one embodiment of the present disclosure in a rectangular coordinate system
  • 9B is another schematic diagram of the mesh area of the mask provided by at least one embodiment of the present disclosure in a rectangular coordinate system
  • FIG. 10 is a schematic diagram of a drawing method of a mask provided by at least one embodiment of the present disclosure.
  • a mask device such as a high-precision metal mask (Fine Metal Mask, FMM) usually includes a mask plate and a mask frame, and the mask plate is tensioned and fixed on the mask frame through its two ends.
  • the material of the mask is usually metal, such as metal with high thermal stability and low coefficient of thermal expansion, such as Invar alloy, stainless steel, and the like.
  • FIG. 1A shows a schematic diagram of the structure of a mask, which can be used to manufacture, for example, a display substrate of an organic light-emitting display device.
  • the mask plate has a long strip shape, and includes a display opening area 11, a dummy opening area 12, a welding area 13, a cutting area 14 and a clamping area 15 formed on the substrate 10 and arranged in the length direction.
  • the display opening area 11 may include multiple sub-openings respectively corresponding to multiple pixel units of one display substrate. In this case, the multiple sub-openings are evenly distributed in the display opening area 11.
  • FIG. 2 shows the above-mentioned situation regarding the display opening area 11.
  • the display opening area 11 includes a plurality of sub-openings 11A, and the plurality of sub-openings 11A are evenly distributed in the display opening area 11.
  • the display opening area 11 may include multiple sub-openings respectively corresponding to multiple pixel units of the multiple display substrates.
  • the multiple sub-openings are distributed in groups in the display opening area 11, and each group Corresponding to a partial area of a display substrate, and in each group, a plurality of sub-openings are evenly distributed.
  • the display opening area 11 is the main functional area of the display substrate (display area) prepared by the mask, so in the design and production process of the mask, the display opening area 11 is the main research object.
  • the dummy opening area 12 is located at the end of the display opening area 11 to eliminate possible unevenness in the position of the end portion, and to disperse the stress that the display opening area 11 receives during, for example, the stretching process, but it is not used for making the display substrate. Pixel structure for display.
  • the display opening area 11 includes a plurality of sub-openings corresponding to a plurality of pixel units of a display substrate as an example for description, but this does not constitute a limitation of the present disclosure.
  • FIGS. 3A to 3D show a manufacturing process of a mask device, which includes one or more mask plates as shown in FIG. 1A.
  • a mask frame 20 is provided first, and the mask frame 20 is rectangular as a whole.
  • a manipulator is used to stretch the mask plate along the side parallel to the mask frame 20 (that is, the length direction of the mask plate, the vertical direction in the figure) through the clamping area 15
  • the multiple sub-openings 11A located in the display opening area 11 are at the target position.
  • the welding areas 13 at both ends of the mask plate correspond to the two sides of the mask frame 20.
  • the mask as shown in FIG. 1A cannot maintain the shape and size before stretching during the stretching process.
  • the length of the mask in the stretching direction will become longer and the width will become narrower. Therefore, the mask
  • the shape and size will change before and after stretching, for example, the change trend shown in Figure 4A occurs.
  • the left side of the figure is a schematic diagram of the non-deformation of the mask before stretching, and the right side of the figure is the mask being stretched. Schematic diagram of post-deformation.
  • the shapes and sizes of the multiple sub-openings 11A located in the display opening area 11 of the mask may also change accordingly, for example, the change trend shown in FIG. 4B occurs.
  • the left side of the figure shows the mask before being stretched.
  • Non-deformed schematic diagram the right side of the figure is a schematic diagram of the mask deformed after stretching.
  • the size of the mask before stretching can be compensated to obtain a compensated mask.
  • FIG. 1B is a new mask obtained by performing size compensation on the mask shown in FIG. 1A.
  • the compensated mask is designed to be stretched and fixed to the mask frame 20, and it is expected It has the shape and size of the mask plate shown in FIG. 1A.
  • the size compensation operation may include: shortening the length of the mask in the stretching direction and widening the width of the mask.
  • the sizes of the multiple sub-openings 11A in the display opening area 11 are also adjusted accordingly, so that the mask is After being stretched, it shows that the shapes and sizes of the multiple sub-openings 11A in the opening area 11 are closer to the target state.
  • the mask since the mask includes multiple areas, such as display opening area 11, dummy opening area 12, welding area 13, cutting area 14, and clamping area 15, these areas have different structures and therefore have different physical properties. For example, the Young's modulus, shear modulus, Poisson's ratio, etc. of these regions are different in each direction.
  • the display opening area 11 receives different stresses at different positions, resulting in the display opening area 11 The amount of deformation is different at different positions.
  • the positions of the multiple sub-openings 11A in the display opening area 11 will also be shifted, and the shifting amounts of the sub-openings 11A at different positions are also different.
  • the manufacturing accuracy requirement of the mask cannot be achieved through the size compensation as shown in FIG. 1B.
  • the positions of the multiple sub-openings 11A in the opening area 11 may not be able to reach the target position by adjusting the pulling force, thus prolonging the adjustment process and even stagnating the production process , Affecting production efficiency and product yield.
  • the finally obtained mask device cannot meet the accuracy requirements.
  • At least one embodiment of the present disclosure provides a mask plate and a manufacturing method thereof, a manufacturing method of a mask device, and a manufacturing method of a display substrate.
  • the mask includes: a first clamping area, a second clamping area opposite to each other in a first direction, and at least one mesh area located between the first clamping area and the second clamping area.
  • the mesh area is in a first shape.
  • the mesh area is in a target shape.
  • the target shape is different from the first shape, and the target shape is a polygon, a circle, or an ellipse.
  • the manufacturing method of the mask includes: providing a test mask.
  • the test mask includes a first clamping area, a second clamping area, and a first clamping area and a second clamping area that are opposite to each other in a first direction.
  • At least one mesh area between the mesh area, the at least one mesh area is in the target shape; the deformation state information of the mesh area in the state where the test mask is stretched in the first direction is obtained, and the information used for obtaining the mesh area is obtained according to the deformation state information.
  • the reverse compensation information of the mesh area, and the target initial state information of the mesh area is obtained based on the reverse compensation information, and the mask is made according to the target initial state information, and at least one mesh area of the manufactured mask is in the first shape .
  • the mask plate produced by the above-mentioned mask plate manufacturing method can have the target shape in the mesh area after being stretched and fixed on the mask frame, and the multiple openings in the mesh area are at the target position and have the target shape and size. Therefore, the accuracy of the mask device formed by the mask plate is relatively high.
  • the mask device is used to prepare a display substrate, the prepared display substrate has higher precision, so that defects such as dark spots and cross-color of the display substrate can be avoided.
  • FIG. 5A shows a flowchart of the manufacturing method.
  • the manufacturing method includes step S101-step S104.
  • Step S101 Provide a test mask.
  • the test mask includes a first clamping area and a second clamping area that are opposite to each other in a first direction, and also includes a first clamping area and a second clamping area located between the first clamping area and the second clamping area. At least one mesh area.
  • FIG. 5B shows a schematic diagram of a test mask.
  • the test mask includes a first clamping area 25A, a second clamping area 25B, and a first clamping area 25A that are opposite to each other in a first direction (the vertical direction is shown in the figure).
  • At least one mesh area 21 (shown as one in the figure) between the second clamping area 25B and the second clamping area 25B, for example, the at least one mesh area has a target shape, and the target shape may be, for example, a polygon, a circle, or an ellipse.
  • the mesh area 21 includes a plurality of first sub-openings 21A arranged in an array.
  • the first clamping area 25A and the second clamping area 25B can be clamped by a manipulator and a pulling force is applied to realize the stretching of the test mask.
  • the test mask has the shape of the target mask to be designed, and includes various areas of the target mask to be designed. For example, in addition to the above-mentioned areas, it may also include some other areas, such as the dummy mesh area 22,
  • the welding area 23 and the cutting area 24 are not limited in the embodiment of the present disclosure.
  • test mask may also have multiple mesh areas for manufacturing multiple display substrates.
  • the embodiment of the present disclosure does not limit the number of mesh areas.
  • Step S102 Obtain the deformation state information of the mesh area in the state where the test mask is stretched along the first direction.
  • the first clamping area 25A and the second clamping area 25B are clamped by a manipulator and a tensile force is applied along the length direction of the test mask, thereby stretching the test mask.
  • the test mask is deformed due to the force, for example, a deformation tendency as shown in FIG. 4A is generated, and the mesh area 21 is also deformed accordingly, for example, a deformation tendency as shown in FIG. 4B is generated.
  • the stretched state along the first direction is the stretched state when the mask is stretched and fixed on the mask frame to form the mask device.
  • the test mask can be provided and stretched by means of simulation or actual operation, and the deformation state information of the mesh area can be obtained by means of simulation or actual measurement.
  • the simulation method can be performed by a computer.
  • the simulation simulation process includes providing a dummy test mask, and then performing a dummy stretching operation on the dummy test mask to obtain information about the deformation state of the test mask. This method is simple and fast, and the required data can be obtained in a short time.
  • the actual measurement process includes providing a real measurement mask, and then performing a stretching operation on the measurement mask, and then obtaining the deformation state information of the test mask through actual measurement.
  • the deformation state information includes the deformation mode and/or the deformation amount of the mesh area at multiple positions.
  • the deformation state information includes the deformation mode (for example, stretched or compressed) of the outer contour of the mesh area at multiple positions and the amount of deformation (for example, the amount of stretching or the amount of compression) in the deformation mode, so that it can be Obtain the deformed state of the mesh area, such as the deformed shape and the deformed size.
  • 1/4 of the test mask can be taken as the target for deformation research, and the deformation state of the rest can be based on
  • the 1/4 part is obtained by simple symmetric transformation (including axisymmetric transformation and centrosymmetric transformation).
  • the 1/4 part is the part enclosed by the dashed frame in FIG. 5B, and is referred to as the test part below.
  • the deformation study includes the study of the deformation mode and the amount of deformation of the test part in different directions.
  • FIG. 6A shows a deformation simulation test diagram of the test portion of the test mask in the first direction
  • FIG. 7A shows a deformation simulation test diagram of the test portion of the test mask in the second direction.
  • the different colors in the deformation simulation test graph indicate different deformation modes and deformation amounts, so the deformation state of the mesh area at multiple positions can be obtained from the graph.
  • the manufacturing method further includes: fitting the deformation curves of the mesh area in the first direction and the second direction according to the above-mentioned deformation state information, and the second direction is perpendicular to the first direction.
  • the first direction is the vertical direction (length direction) shown in Fig. 5B
  • the second direction is the horizontal direction (width direction) in the figure.
  • FIG. 6B is a deformation simulation curve of the test part of the test mask obtained according to FIG. 6A in the first direction
  • FIG. 6C is a deformation fitting curve of the test part of the test mask obtained according to FIG. 6B in the first direction
  • the X axis and Y axis in 6B correspond to the X axis and Y axis in FIG. 6A, respectively, and y represents the position of the edge of the mesh area after deformation at different x positions.
  • FIG. 6C also shows the aforementioned deformation simulation curve, so there are two curves in the figure. It can be seen from Figure 6C that the deformation simulation curve and the deformation fitting curve basically overlap.
  • the fitting curve can be divided into two parts, which are separated by the dotted line in the figure, where the curve fitting formula on the left part is:
  • FIG. 6D is a measured deformation curve of the test part of the test mask in the first direction.
  • the measured deformation curve is obtained by stretching the real test mask and measuring the deformation state of the stretched test mask.
  • Fig. 6D shows three actual deformation curves, which are obtained through three deformation tests. It can be seen from the comparison that the deformation simulation curve is basically the same as the deformation measurement curve. Therefore, the test mask can be tested by simulation to avoid complicated actual operation process.
  • FIG. 7B is the deformation simulation curve of the test part of the test mask obtained according to FIG. 7A in the second direction
  • FIG. 7C is the deformation fitting curve of the test part of the test mask obtained according to FIG. 7B in the second direction.
  • the X-axis and Y-axis in 7B correspond to the X-axis and Y-axis in FIG. 7A, respectively, and y represents the position of the edge of the mesh area after deformation at different x positions.
  • FIG. 7C also shows the aforementioned deformation simulation curve, so there are two curves in the figure. It can be seen from Fig. 7C that the deformation simulation curve and the deformation fitting curve basically overlap.
  • the fitting formula of the fitting curve is:
  • Fig. 7D shows the actual deformation curves of the test part of the test mask in the second direction
  • Fig. 7D shows three actual deformation curves which are obtained through three deformation tests.
  • the deformation simulation curve is basically the same as the actual deformation curve.
  • Step S103 Obtain reverse compensation information for the mesh area according to the deformation state information, and obtain target initial state information of the mesh area based on the reverse compensation information.
  • the reverse compensation information for the mesh area can be obtained according to the deformation curve.
  • the reverse compensation information includes the deformation compensation values of the mesh area at multiple positions or the deformation compensation curves of the mesh area in the first direction and the second direction.
  • the deformation compensation curve of the mesh area can be obtained from the aforementioned deformation compensation value fitting curve, or the deformation compensation curve of the mesh area can also be obtained by symmetrical processing through the deformation curve.
  • the aforementioned deformation compensation value or deformation compensation curve is superimposed with the initial state (for example, initial size information) of the test mask, so that the target initial state information of the mesh area can be obtained.
  • the target initial state information of the mesh area finally obtained based on the foregoing reverse compensation information includes the target initial shape and target initial size information of the mesh area.
  • FIG. 8A shows a mask (a mask in an unstretched state) designed based on the initial state information of the test mask target obtained by the reverse compensation information, and the mask is being tensioned and fixed on the mask. After the frame, the desired regular mesh area (or display opening area) can be obtained. It can be seen that the mask in the unstretched state has a substantially opposite deformed state compared to the mask obtained by stretching and deforming the initial mask of FIG. 1B shown in FIG. 3.
  • the mesh area of the mask plate Since the mesh area of the mask plate is reversely compensated, it can have a target shape after being stretched, and the target shape corresponds to, for example, the shape of the display area of the display substrate to be manufactured.
  • the target shape is a regular rectangle or the like.
  • the mesh area 21 includes a plurality of first sub-openings 21A arranged in an array.
  • the manufacturing method of the mask further includes: obtaining each sub-opening according to the reverse compensation information for the mesh area.
  • the reverse compensation information of the first sub-opening is obtained from the manufacturing method of the mask.
  • each of the corresponding positions in the mesh area 21 can be proportionally compared.
  • the first sub-openings 21A are compensated to obtain the reverse compensation information of each first sub-opening 21A.
  • the compensation information includes, for example, the position offset compensation amount of the first sub-opening 21A at each position of the mesh area.
  • the position offset compensation amount of the first sub-opening 21A at each position is different, and the position offset compensation amount of the first sub-opening 21A closer to the edge of the mesh area is greater.
  • the arrangement of the multiple first sub-openings 21A of the mesh area 21 obtained according to the above method is shown in FIG. 8B.
  • the multiple first sub-openings 21A of the mesh area 21 can be It has a target shape and a target arrangement.
  • each first sub-opening 21A is formed into a rectangle, and all the first sub-openings 21A in the mesh area are arranged in a regular matrix, for example, in the arrangement shown in FIG. 5C.
  • the plurality of first sub-openings in the mesh area may be divided into multiple areas, because there are multiple areas in each area.
  • the positions of the first sub-openings are similar, so their deformation modes and deformation amounts are also similar, so that multiple first sub-openings can be compensated by region.
  • the multiple first sub-openings in each area perform the same compensation, so the amount of data processing in the design process can be reduced.
  • the mesh area includes a plurality of first sub-openings arranged in an array, and the plurality of first sub-openings are divided into M ⁇ N regions (M and N are positive integers greater than or equal to 2), and each region includes at least one first sub-opening.
  • a sub-opening for example, includes 2, 4, 6 or 8 first sub-openings.
  • the manufacturing method of the mask plate further includes: obtaining the information of each area according to the reverse compensation information for the mesh area.
  • the reverse compensation information of the first sub-opening For example, when each area includes 2 first sub-openings, the amount of compensation data processing for multiple openings can be reduced by half. When each area includes 4 first sub-openings, the amount of compensation data processing for multiple openings can be reduced by half. It can be reduced to 1/4 of the original, so compensation in different areas can reduce workload and improve work efficiency.
  • the manufacturing method of the mask further includes: recording the target initial state information of the mesh area in the form of a table or a graph.
  • the mesh area includes a plurality of first sub-openings arranged in an array
  • recording the target initial state information of the mesh area in the form of a table includes: establishing a rectangular coordinate system, and recording a plurality of first sub-openings in the table. The coordinates and size of the sub-opening in the Cartesian coordinate system.
  • FIG. 9A shows the target initial state of the mesh area.
  • the center of the first sub-opening in the lower left corner of the mesh area can be taken as the origin of the rectangular coordinate system (x0, y0), and the first sub-opening of m rows and n columns can be recorded in the rectangular coordinate system.
  • the coordinates for recording position information of each first sub-opening include x-coordinates and y-coordinates
  • the size information includes a size w in the x direction and a size h in the y direction.
  • each first sub-opening represent the position of a vertex or center of the first sub-opening in the rectangular coordinate system
  • the dimension w along the x direction and the dimension h along the y direction respectively represent the The distance extending along the x direction and the distance extending along the y direction of the first sub-opening can obtain the position, shape, and size information of each first sub-opening.
  • the mesh area includes a plurality of first sub-openings arranged in an array, and the plurality of first sub-openings are divided into M ⁇ N regions (M and N are positive integers greater than or equal to 2), each The area includes at least one first sub-opening; at this time, recording the target initial state information of the mesh area in the form of a table includes: establishing a rectangular coordinate system, and recording the first sub-opening of each area in the table in the rectangular coordinate system Coordinates and dimensions.
  • each area includes 4 first sub-openings
  • the center of the area at the lower left corner of the mesh area can be used as the origin of the rectangular coordinate system (x0, y0), in the table
  • Table 2 records the coordinates and sizes of the multiple first sub-openings of each area in the rectangular coordinate system.
  • the coordinates used to record position information include x and y coordinates.
  • the x coordinate of the starting area is x 11
  • the y coordinate is y 11.
  • the x coordinate of the area in the mth row and n column (m is less than or equal to M, n is less than or equal to N) is x nm
  • the y coordinate is y nm
  • the size information includes the group distance Px of the area along the x direction (that is, the distance from the start coordinate of an area in the x direction to the start coordinate of the adjacent area) and the group distance Py along the y direction (that is, a distance along the y direction). The distance from the start coordinate of the area to the start coordinate of the adjacent area).
  • the size information also includes the width w (that is, the size in the x direction) and the length h (that is, the size in the y direction) of the first sub-opening in the area.
  • the width of the first sub-opening in the starting area is w 11 and length h 11
  • the width of the first sub-opening in the n-th row and m-column region is w nm
  • the length is h nm .
  • the table also records the total number of rows n x and the total number of columns n y of the first sub-openings included in each area, as well as the expansion and contraction rate Tn in the x direction and the expansion and contraction rate Tm in the y direction of each area.
  • the expansion ratio Tn and expansion ratio Tm of each area can be calculated from the reverse compensation data of the corresponding position.
  • the expansion and contraction rate Tn of an area in the x direction is equal to the ratio of the area's deformed size in the x direction to the initial size of the area in the x direction
  • the expansion and contraction rate Tm of an area in the y direction is equal to the area's The ratio of the deformed size along the y direction to the initial size of the area along the y direction.
  • the deformed size of a region along the x-direction or the y-direction can be obtained by substituting the coordinates of the region in the above-mentioned deformation fitting formula and calculating it.
  • the x-coordinate x nm and the y-coordinate y nm of the area in the mth column and n row can be calculated from the expansion and contraction ratios Tn, Tm, the pitch Px, Py, and the coordinates x 11 and y coordinates y 11 of the starting area.
  • the width w nm and the length h nm of the first sub-opening in the area of the mth column and n rows can be calculated from the expansion and contraction rates Tn, Tm, and the width w 11 and length h 11 of the starting area, respectively.
  • the specific calculation formula is shown in Table 2. Shown.
  • each area and the coordinates and size of the first sub-opening in each area can be obtained.
  • the coordinates (x, y) of each area represent the coordinates of a vertex or center of the area in a rectangular coordinate system, as long as the position of the area can be characterized, which is not limited in the embodiment of the present disclosure.
  • the table can be sent to the manufacturer, and the meaning of the data in the table can be explained with the manufacturer, so that the manufacturer can accurately obtain Manufacturing information of the mesh area of the mask.
  • the form is lost or leaked, it will be difficult for the picker to understand the information conveyed by the form, thus reducing the risk of leakage.
  • recording the target initial state information of the mesh area in the form of graphics includes: drawing a curve of the deformation of the mask with respect to the test mask.
  • the offset position can be read from the coordinate system, and the offset along the x direction is calculated by x1 and x2.
  • the offset along the x direction is equal to the absolute value of the difference between x1 and x2
  • the offset in the y direction is calculated from y1 and y2, for example, the offset in the y direction is equal to the absolute value of the difference between y1 and y2.
  • the above-mentioned indirect method of drawing the mask drawing does not directly express the specific shape and size information of the target mask.
  • the manufacturer can explain the content of the drawing to enable the manufacturer to accurately obtain the mask. Production information of the mesh area. At this time, if the drawing is lost or leaked, it will be difficult for the picker to understand the information conveyed by the drawing, thus reducing the risk of leakage.
  • recording the target initial state information of the mesh area in the form of graphics includes: directly drawing a drawing of the target mask designed by the above method, such as shown in FIG. 8A, and can be marked in the drawing The size of each line of the mask at each position, etc. (not shown in the figure).
  • the position and size of each first sub-opening in the mesh area of the mask can also be directly drawn, as shown in FIG. 8B. Therefore, the manufacturer can directly produce according to the drawings.
  • Step S104 Making a mask according to the initial state information of the target.
  • At least one mesh area of the mask plate produced is in the first shape.
  • the mask when the initial state information of the target is recorded in the above-mentioned chart, the mask can be made by machining (such as cutting, stamping) and other processes according to the information recorded in the chart, for example, the mask shown in FIGS. 8A and 8B can be made.
  • the mesh area of the mask plate is easier to align successfully during the process of stretching to form the mask device, so that Improve the production efficiency of the mask device and make the production process go smoothly.
  • the mask device manufactured by using the mask plate has higher precision.
  • the mesh area of the mask plate can have a target shape corresponding to the display area of the display substrate, such as a regular rectangle, a mesh
  • the plurality of first sub-openings in the hole area may have a target shape corresponding to the plurality of pixel units in the display area and a regular array distribution, so that the display substrate manufactured by the mask device has higher precision without darkening. Defects such as dots and cross colors.
  • At least one embodiment of the present disclosure provides a method for manufacturing a mask device, including: providing a mask plate, which is obtained by the above-mentioned manufacturing method, stretching the mask plate in a first direction, and fixing the mask plate on the mask by welding or the like. On the mask frame, the mask device is thus prepared.
  • the mask device includes a mask plate and a mask frame.
  • a mask frame may include a plurality of mask plates and be used to make a mother plate including a plurality of display substrates, which is not limited in the embodiment of the present disclosure.
  • the mask includes a first clamping area 35A, a second clamping area 35B opposite to each other in a first direction, and a first clamping area located in the first clamping area.
  • the target shape may be a polygon (for example, a rectangle), a circle, or an ellipse.
  • the mask can be used to make a display substrate. In this case, the target shape corresponds to the shape of the display area of the display substrate.
  • the first shape includes: a first side and a second side that extend substantially in a first direction and are arranged opposite to each other, and a third side and a fourth side connected between the first side and the second side; the first side and the The second side protrudes away from the center of the first shape, and the third side and the fourth side are recessed toward the center of the first shape.
  • the target shape is a regular polygon, such as a regular polygon, such as a rectangle.
  • the first shape of the mesh area before stretching is a polygon as shown in FIG. 8A.
  • the first shape of the mesh area 31 before stretching includes: a first side 311 and a second side that are at least partially extended in the first direction and are arranged opposite to each other.
  • the first side 311 includes a first end 311A, a second end 311B, and a first midpoint 311C between the first end 311A and the second end 311B
  • the second side 312 includes a third end 312A, a fourth end 312B, and The second midpoint 312C between the third end 312A and the fourth end 312B, the line connecting the first midpoint 311C and the second midpoint 312C is the first line 315, and the first line 315 is perpendicular to the first direction
  • the first end 311A, the second end 311B, the third end 312A, and the fourth end 312B respectively approach the inside of the first shape, so that the length of the first connection line 315 is greater than that of the connection line between the
  • the length (that is, the linear distance between the first end 311A and the third end 312A), and the length of the first connection 315 is also greater than the length of the connection between the second end 311B and the fourth end 312B (that is, the second end 311B and the fourth end 312B). Straight-line distance from end 312B).
  • the first shape also includes a third side 313 connecting the first end 211A and the third end 312A, and a fourth side 314 connecting the second end 311B and the fourth end 312B.
  • the line connecting point 314A is the second line 316.
  • the midpoint 313A of the third side and the midpoint 314A of the fourth side approach the inside of the first shape respectively, so that the length of the second line 316 is less than the length of the first end 311A and 311A.
  • the length of the line connecting the second end 311B (that is, the linear distance between the first end 311A and the second end 311B), and the length of the second line 316 is also less than the length of the line connecting the third end 312A and the fourth end 312B ( That is, the linear distance between the third end 312A and the fourth end 312B), the second line 316 passes through the midpoint O of the first line 315.
  • the midpoint O is also the center of the first shape.
  • the total length of the mask is about 1000 mm to 1400 mm, such as 1200 mm, and the total width of the mask is about 50 mm to 500 mm, such as 100 mm or 300 mm.
  • the length of the mesh area 31 is approximately 600 mm to 900 mm, such as 800 mm, and the width of the mesh area 31 is approximately 20 mm to 500 mm, such as 100 mm.
  • the first shape can be divided into multiple parts, and the parallel part of the first side 311 and the second side 312 is called the middle part (similar to the rectangular part in the figure), and the upper part of the middle part (similar to the figure)
  • the regular trapezoid part is the first part
  • the next part of the middle part is the second part.
  • the ratio of the height (length along the first direction) of the first part, the middle part, and the second part is about 1:15:1 to 1:25:1, for example, 1:20:1.
  • the length of the target rectangle is A and the width is B.
  • the distance (linear distance) between the first end 311A and the third end 312B is, for example, approximately (1+0.005%) ⁇ A ⁇ (1+0.025%) ⁇ A.
  • the distance (linear distance) between the second end 311B and the fourth end 312B is, for example, approximately (1+0.005%) ⁇ A ⁇ (1+0.025%) ⁇ A, the first The distance between the end 311A and the third end 312B and the distance between the second end 311B and the fourth end 312B may be the same or different.
  • the length of the first line 315 is, for example, approximately (1+0.0075%) ⁇ A to (1+0.125%) ⁇ A.
  • X in the brackets 1+X is the first compensation value ratio.
  • the first end 311A and the third The ratio of the first compensation value ratio of the distance between the end 312B (or the first compensation value ratio of the distance between the second end 311B and the fourth end 312B) to the first compensation value ratio of the length of the first connection line 315 is approximately 1: 1.5 ⁇ 1:5.
  • the distance (linear distance) between the first end 311A and the second end 311B is, for example, approximately (1-0.007%) ⁇ B to (1-0.04975%) ⁇ B.
  • the third end 312A and the fourth end 312B The distance (linear distance) is, for example, about (1-0.007%) ⁇ B ⁇ (1-0.04975%) ⁇ B, the distance between the first end 311A and the second end 311B and the second end 311B, the third end 312A, and the The distance between the four ends 312B may be the same or different.
  • the length of the second line 316 is, for example, approximately (1-0.01%) ⁇ B to (1-0.05%) ⁇ B.
  • the Y in the brackets 1-Y (X in the above expression is 0.007%, 0.04975%, etc.) is the second compensation value ratio.
  • the length of the second wire 316 The ratio of the second compensation value ratio to the second compensation value ratio of the distance between the first end 311A and the second end 311B (or the second compensation value ratio of the distance between the third end 312A and the fourth end 312B) is about 1. :0.7 ⁇ 1:0.995.
  • the parameters of the mask can also be adaptively designed.
  • the parameters are not specifically limited.
  • the mesh area includes a plurality of first sub-openings, and when the mesh area has a target shape, the plurality of first sub-openings included in the mesh area are arranged in a regular array, as shown in FIG.
  • the plurality of first sub-openings included in the mesh area 31 are used to form a display substrate, and in other embodiments, the plurality of first sub-openings included in the mesh area 31 are used to form a plurality of The display substrate, at this time, these sub-openings can be divided into multiple groups, and each group is used to form a display substrate.
  • the embodiment of the present disclosure does not limit the specific form of the multiple first sub-openings in the mesh area 31.
  • the mask further includes a first dummy mesh area 32A and a second dummy mesh area 32B, and the first dummy mesh area 32A is disposed between the first clamping area 35A and the mesh area 31 , The second dummy mesh area 32B is disposed between the second clamping area 35B and the mesh area 31.
  • the first dummy mesh area 32A and the second dummy mesh area 32B can, for example, alleviate the force received by the mesh area 31 during stretching, and prevent the mesh area from being excessively deformed.
  • the mask plate may also include areas such as the welding area 33 and the cutting area 34, which are not limited in the embodiment of the present disclosure.
  • the mesh area of the mask is easier to align successfully during the process of stretching to form the mask device, thereby improving the mask.
  • the production efficiency of the device makes the production process go smoothly.
  • the mask device manufactured by using the mask plate has higher precision.
  • the mesh area of the mask plate can have a target shape corresponding to the display area of the display substrate, such as a regular rectangle, a mesh
  • the plurality of first sub-openings in the hole area may have a target shape corresponding to the plurality of pixel units in the display area and a regular array distribution, so that the display substrate manufactured by the mask device has higher precision without darkening. Defects such as dots and cross colors.
  • At least one embodiment of the present disclosure further provides a manufacturing method of a display substrate, the manufacturing method comprising: forming at least one functional layer of the display substrate by using the mask device obtained by the foregoing manufacturing method.
  • the functional layer includes, for example, any functional layer with a certain pattern, such as a light-emitting layer in a light-emitting device of a display substrate.
  • the display substrate manufactured by the manufacturing method has higher precision, and does not appear defects such as dark spots and cross-color.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种掩模板及其制作方法以及显示基板的制作方法。该掩模板包括:在第一方向上彼此相对的第一夹持区(35A)、第二夹持区(35B),以及位于第一夹持区(35A)和第二夹持区(35B)之间的至少一个网孔区(31),网孔区(31)呈第一形状,在掩模板受到沿第一方向的拉力时,网孔区(31)呈目标形状,目标形状与第一形状不同,该目标形状为多边形、圆形或者椭圆形。该掩模板在拉伸后具有目标形状,因此该掩模板形成的掩模装置具有较高的精度。

Description

掩模板及其制作方法、显示基板的制作方法 技术领域
本公开的实施例涉及一种掩模板及其制作方法以及显示基板的制作方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示装置具有自发光、对比度高、清晰度高、视角宽、功耗低、响应速度快、以及制造成本低等一系列优势,已经成为新一代显示装置的重点发展方向之一,因此受到越来越多的关注。
OLED显示装置的有机发光材料等功能层通常利用高精度金属掩模板(Fine Metal Mask,FMM)通过蒸镀等方式制备,因此,FMM的精细程度决定了上述有机发光材料等功能层的形成精度。
发明内容
本公开至少一实施例提供一种掩模板,该掩模板包括:在第一方向上彼此相对的第一夹持区、第二夹持区,以及位于所述第一夹持区和所述第二夹持区之间的至少一个网孔区,其中,所述网孔区呈第一形状,在所述掩模板受到沿所述第一方向的拉力时,所述网孔区呈目标形状,所述目标形状与所述第一形状不同,所述目标形状为多边形、圆形或者椭圆形。
例如,本公开至少一实施例提供的掩模板中,所述第一形状包括:大致沿所述第一方向延伸且相对设置的第一边和第二边,以及连接在所述第一边和所述第二边之间的第三边和第四边;所述第一边和第二边向远离所述第一形状的中心的方向凸出,所述第三边和第四边向靠近所述第一形状的中心的方向凹陷。
例如,本公开至少一实施例提供的掩模板中,所述第一边包括第一端、第二端以及所述第一端和所述第二端之间的第一中点,所述第二边包括第三端、第四端以及所述第三端和所述第四端之间的第二中点,所述第一中点和所述第二中点的连线为第一连线,所述第一连线垂直于所述第一方向, 所述第一连线的长度大于所述第一端和所述第三端的连线的长度,并且所述第一连线的长度还大于所述第二端与所述第四端的连线的长度;所述第三边连接所述第一端和所述第三端,所述第四边连接所述第二端与所述第四端,所述第三边的中点与所述第四边的中点的连线为第二连线,所述第二连线的长度小于所述第一端和所述第二端的连线的长度,并且所述第二连线的长度还小于所述第三端和所述第四端的连线的长度,所述第二连线穿过所述第一连线的中点;所述网孔区的目标形状为矩形。
例如,本公开至少一实施例提供的掩模板中,所述网孔区包括多个第一子开口,当所述网孔区呈所述目标形状时,所述多个第一子开口排布为规则阵列形式。
例如,本公开至少一实施例提供的掩模板还包括第一虚设网孔区和第二虚设网孔区,所述第一虚设网孔区设置在所述第一夹持区和所述网孔区之间,所述第二虚设网孔区设置在所述第二夹持区和所述网孔区之间。
本公开至少一实施例提供一种掩模板的制作方法,该制作方法包括:提供测试掩模板,所述测试掩模板包括在第一方向上彼此相对的第一夹持区、第二夹持区,还包括位于所述第一夹持区和所述第二夹持区之间的至少一个网孔区,所述至少一个网孔区呈目标形状;获取所述网孔区在所述测试掩模板在沿所述第一方向被拉伸状态下的变形状态信息,根据所述变形状态信息,获取用于所述网孔区的反向补偿信息,并且基于所述反向补偿信息获得所述网孔区的目标初始状态信息,以及根据所述目标初始状态信息制作掩模板,制作得到的所述掩模板的至少一个网孔区呈第一形状。
例如,本公开至少一实施例提供的制作方法中,通过仿真模拟的方式获取所述变形状态信息。
例如,本公开至少一实施例提供的制作方法中,所述变形状态信息包括所述网孔区在多个位置的变形方式和/或变形量。
例如,本公开至少一实施例提供的制作方法还包括:根据所述变形状态信息,拟合所述网孔区在所述第一方向和第二方向上的变形曲线,其中,所述第二方向大致垂直于所述第一方向。
例如,本公开至少一实施例提供的制作方法中,所述获取用于所述网孔区的反向补偿信息,包括:根据所述变形曲线获得所述反向补偿信息。
例如,本公开至少一实施例提供的制作方法中,所述反向补偿信息包括所述网孔区在多个位置的变形补偿值或者所述网孔区在所述第一方向和 所述第二方向上的变形补偿曲线。
例如,本公开至少一实施例提供的制作方法中,所述网孔区包括阵列排布的多个第一子开口,所述制作方法还包括:根据用于所述网孔区的所述反向补偿信息,获取每个所述第一子开口的反向补偿信息。
例如,本公开至少一实施例提供的制作方法中,所述网孔区包括阵列排布的多个第一子开口,所述多个第一子开口分为M×N个区域,每个区域包括至少一个第一子开口,M和N为大于等于2的正整数,所述制作方法还包括:根据用于所述网孔区的所述反向补偿信息,获取所述每个区域的第一子开口的反向补偿信息。
例如,本公开至少一实施例提供的制作方法中,通过所述第一夹持区和所述第二夹持区对所述测试掩模板沿所述第一方向进行拉伸。
例如,本公开至少一实施例提供的制作方法中,所述网孔区的目标初始状态信息包括所述网孔区的目标初始形状和目标初始尺寸信息。
例如,本公开至少一实施例提供的制作方法还包括:以表格或者图形的形式记录所述网孔区的目标初始状态信息。
例如,本公开至少一实施例提供的制作方法中,所述网孔区包括阵列排布的多个第一子开口,所述以表格的形式记录所述网孔区的目标初始状态信息包括:建立直角坐标系,在表格中记录所述多个第一子开口在所述直角坐标系中的坐标以及尺寸。
例如,本公开至少一实施例提供的制作方法中,所述网孔区包括阵列排布的多个第一子开口,所述多个第一子开口分为M×N个区域,每个区域包括至少一个第一子开口,M和N为大于等于2的正整数;所述以表格的形式记录所述网孔区的目标初始状态信息包括:建立直角坐标系,在表格中记录所述每个区域的第一子开口在所述直角坐标系中的坐标以及尺寸。
例如,本公开至少一实施例提供的制作方法中,所述以图形的形式记录所述网孔区的目标初始状态信息包括:绘制出所述掩模板相对所述测试掩模板的变形量的曲线。
本公开至少一实施例还提供一种显示基板的制作方法,该制作方法包括:采用上述任一所述的掩模板制作得到掩模装置,并使用所述掩模装置形成所述显示基板的至少一个功能层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种掩模板的示意图;
图1B为图1A所示的掩模板的尺寸补偿设计示意图;
图2为图1A所示的掩模板的网孔区的示意图;
图3A-图3D为一种掩模装置在制备过程中的示意图;
图4A为图1A所示的掩模板在拉伸后其网孔区的变形趋势的示意图;
图4B为图1A所示的掩模板在拉伸后其网孔区的多个子开口的变形趋势示意图;
图5A为本公开至少一实施例提供的掩模板的制作方法的流程图;
图5B为本公开至少一实施例提供的测试掩模板的示意图;
图5C为本公开至少一实施例提供的测试掩模板的网孔区的示意图;
图6A为本公开至少一实施例提供的测试掩模板在第一方向的变形仿真测试图;
图6B为本公开至少一实施例提供的测试掩模板在第一方向的变形仿真曲线;
图6C为本公开至少一实施例提供的测试掩模板在第一方向的变形拟合曲线;
图6D为本公开至少一实施例提供的测试掩模板在第一方向的变形实测曲线;
图7A为本公开至少一实施例提供的测试掩模板在第二方向的变形仿真测试图;
图7B为本公开至少一实施例提供的测试掩模板在第二方向的变形仿真曲线;
图7C为本公开至少一实施例提供的测试掩模板在第二方向的变形拟合曲线;
图7D为本公开至少一实施例提供的测试掩模板在第二方向的变形实测曲线;
图8A为本公开至少一实施例提供的掩模板的示意图;
图8B为本公开至少一实施例提供的掩模板的网孔区的示意图;
图9A为本公开至少一实施例提供的掩模板的网孔区在直角坐标系中的示意图;
图9B为本公开至少一实施例提供的掩模板的网孔区在直角坐标系中的另一示意图;
图10为本公开至少一实施例提供的掩模板的绘制方式示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
掩模装置,例如高精度金属掩模板(Fine Metal Mask,FMM),通常包括掩模板和掩模框架,掩模板被张紧且通过其两端固定在掩模框架上。掩模板的材料通常为金属,例如热稳定性高、热膨胀系数小的金属,例如因瓦(Invar)合金、不锈钢等。
例如,图1A示出了一种掩模板的结构示意图,该掩模板可以用于制作例如有机发光显示装置的显示基板。如图1A所示,该掩模板为长条形状,包括在基板10上形成的在长度方向上排列的显示开口区11、虚设开口区12、焊接区13、切割区14以及夹持区15。
例如,显示开口区11可以包括分别对应于一个显示基板的多个像素单元的多个子开口,此时,多个子开口在显示开口区11中均匀分布。例如,图2示出了上述关于显示开口区11的情形。如图2所示,显示开口区11包括多个子开口11A,该多个子开口11A在显示开口区11中均匀分布。或者,在一些示例中,显示开口区11可以包括分别对应于多个显示基板的多个像素单元的多个子开口,此时,该多个子开口在显示开口区11中呈组分布,每一组对应于一个显示基板的部分区域,并且在每一组中,多个子开口均匀分布。显示开口区11为利用掩模板制备显示基板(显示区)的主要功能区域,因此在掩模板的设计与制作过程中,显示开口区11为主要研究的对象。例如,虚设开口区12位于显示开口区11的端部以消除端部位置可能出现的不均匀性,并且可以分散显示开口区11在例如拉伸过程中受到的应力,但是不用于制作显示基板的用于显示的像素结构。
下面,以显示开口区11包括分别对应于一个显示基板的多个像素单元的多个子开口为例进行说明,但这并不构成对本公开的限制。
例如,图3A-图3D示出了一种掩模装置的制备过程,该掩模装置包括一个或多个如图1A所示的掩模板。如图3A所示,首先提供掩模框架20,该掩模框架20整体上为矩形。固定掩模框架20,然后,如图3B所示,例如采用机械手通过夹持区15沿平行于掩模框架20的边(即掩模板的长度方向,图中的竖直方向)拉伸掩模板,通过对拉力大小的调节,使得位于显示开口区11中的多个子开口11A处于目标位置,此时,掩模板两端的焊接区13对应于掩模框架20的两个侧边。如图3C所示,当显示开口区11中的多个子开口11A处于目标位置后,例如采用激光焊接的方式将掩模板的焊接区13与掩模框架20焊接,从而将掩模板固定在掩模框架20上。如图3D所示,焊接完成后,沿切割区14进行切割,以去除夹持区15,形成掩模装置。
但是,实际上,如图1A所示的掩模板在拉伸的过程中不能保持拉伸前的形状和尺寸,掩模板沿拉伸方向的长度会变长,宽度会变窄,因此,掩模板在拉伸前后的形状和尺寸均会发生改变,例如产生如图4A所示的变化趋势,图中左侧为掩模板在拉伸前非变形的示意图,图中右侧为掩模板在拉伸后变形的示意图。此时,位于掩模板的显示开口区11中的多个子开口11A的形状和尺寸也或发生相应地改变,例如产生如图4B所示的变化趋势,图中左侧为掩模板在拉伸前非变形的示意图,图中右侧为掩模板在拉伸后变形 的示意图。为了使掩模板在拉伸后,其显示开口区11中的多个子开口11A的形状和尺寸达到目标状态,可以对拉伸前的掩模板进行尺寸补偿,由此得到补偿后的掩模板。
例如,如图1B所示为对图1A所示的掩模板进行尺寸补偿后得到的新的掩模板,该补偿后的掩模板被设计来,在被拉伸固定在掩模框架20之后,期望具有与图1A所示的掩模板的形状和尺寸。进行尺寸补偿的操作可以包括:缩短掩模板沿拉伸方向的长度,加宽掩模板的宽度,此时,显示开口区11中的多个子开口11A的尺寸也进行相应地调节,从而使掩模板在拉伸后,其显示开口区11中的多个子开口11A的形状和尺寸更接近于目标状态。
但是,由于掩模板包括多个区域,例如显示开口区11、虚设开口区12、焊接区13、切割区14以及夹持区15等,这些区域具有不同的结构,因此也具有不同的物理性质。例如,这些区域沿各个方向的杨氏模量、剪切模量和泊松比等均不相同。当通过掩模板的夹持区15对掩模板施加拉力时,拉力沿夹持区15通过各个区域传输到显示开口区11时,显示开口区11在不同位置受到的应力不同,从而导致显示开口区11在不同位置的变形量不同。相应地,显示开口区11中多个子开口11A的位置也会发生偏移,并且位于不同位置的子开口11A的偏移量也不同。此时,通过如图1B的尺寸补偿不能达到掩模板的制作精度需求。例如,在掩模板的制作过程中,在对掩模板进行拉伸时,开口区11中多个子开口11A的位置可能无法通过调节拉力来达到目标位置,因此使调节过程延长,甚至使制作过程停滞,影响生产效率和产品良率。并且,即使人为控制使得制作过程继续,最终获得的掩模装置也达不到精度需求。因此,该方法在用于制作显示基板时,达不到显示基板的制作精度需求,例如,有机发光材料不能通过掩模板形成在目标位置,从而造成显示基板发生暗点、串色等不良。
本公开的至少一实施例提供一种掩模板及其制作方法、掩模装置的制作方法以及显示基板的制作方法。该掩模板包括:在第一方向上彼此相对的第一夹持区、第二夹持区,以及位于第一夹持区和第二夹持区之间的至少一个网孔区。该网孔区呈第一形状,在掩模板受到沿第一方向的拉力时,网孔区呈目标形状,目标形状与第一形状不同,该目标形状为多边形、圆形或者椭圆形。
该掩模板的制作方法包括:提供测试掩模板,该测试掩模板包括在第一 方向上彼此相对的第一夹持区、第二夹持区以及位于第一夹持区和第二夹持区之间的至少一个网孔区,该至少一个网孔区呈目标形状;获取网孔区在测试掩模板在沿第一方向被拉伸状态下的变形状态信息,根据变形状态信息,获取用于网孔区的反向补偿信息,并且基于反向补偿信息获得网孔区的目标初始状态信息,以及根据目标初始状态信息制作掩模板,制作得到的掩模板的至少一个网孔区呈第一形状。
通过上述掩模板的制作方法制作出的掩模板可以在拉伸并固定在掩模框架后其网孔区还具有目标形状,并且网孔区中的多个开口处于目标位置并具有目标形状和尺寸,从而该掩模板形成的掩模装置精度较高。该掩模装置用于制备显示基板时,所制备的显示基板具有更高的精度,从而可以避免显示基板发生暗点、串色等不良。
下面,通过几个具体的实施例对本公开实施例提供的掩模板及其制作方法、掩模装置的制作方法以及显示基板的制作方法进行详细介绍。
本公开至少一实施例提供一种掩模板的制作方法,图5A示出了该制作方法的流程图。如图5A所示,该制作方法包括步骤S101-步骤S104。
步骤S101:提供测试掩模板,该测试掩模板包括在第一方向上彼此相对的第一夹持区、第二夹持区,还包括位于第一夹持区和第二夹持区之间的至少一个网孔区。
例如,图5B示出了一种测试掩模板的示意图。如图5B所示,该测试掩模板包括在第一方向(图中示出为竖直方向)上彼此相对的第一夹持区25A、第二夹持区25B以及位于第一夹持区25A和第二夹持区25B之间的至少一个网孔区21(图中示出为一个),例如,该至少一个网孔区呈目标形状,该目标形状例如可以为多边形、圆形或者椭圆形等。如图5C所示,网孔区21包括呈阵列排布的多个第一子开口21A。在对测试掩模板进行拉伸的过程中,可以通过机械手夹持第一夹持区25A和第二夹持区25B并施加拉力来实现对测试掩模板的拉伸。
例如,该测试掩模板具有所要设计的目标掩模板所具有的形状,并且包括所要设计的目标掩模板所具有各个区域,例如除了上述区域外还可以包括一些其他区域,例如虚设网孔区22、焊接区23和切割区24等,该本公开的实施例对此不做限定。
需要注意的是,在其他实施例中,测试掩模板也可以具有多个网孔区,以用于制作多个显示基板,本公开的实施例对网孔区的数量不做限定。
步骤S102:获取网孔区在测试掩模板在沿第一方向被拉伸状态下的变形状态信息。
例如,通过机械手夹持第一夹持区25A和第二夹持区25B并沿测试掩模板的长度方向施加拉力,从而对测试掩模板进行拉伸。此时,测试掩模板由于受力而产生变形,例如产生如图4A所示的变形趋势,并且网孔区21也随之产生变形,例如产生如图4B所示的变形趋势。例如,该沿第一方向的拉伸状态为掩模板被拉伸并固定在掩模板框架上以形成掩模装置时的拉伸状态。
例如,可以通过仿真模拟或者实际操作的方式提供测试掩模板并对掩模板进行拉伸,并且,可以通过仿真模拟或者实际测量的方式获取网孔区的变形状态信息。仿真模拟的方式可以利用计算机进行,例如,仿真模拟过程包括提供一个虚设的测试掩模板,然后对该虚设的测试掩模板进行虚设拉伸操作,进而获得测试掩模板的变形状态信息等。该方式简单、快速,可在短时间内获得所需的数据。实际测量过程包括提供一个真实的测量掩模板,然后对测量掩模板进行拉伸操作,进而通过实际测量的方式获得该测试掩模板的变形状态信息等。
例如,该变形状态信息包括网孔区在多个位置的变形方式和/或变形量。例如,该变形状态信息包括网孔区的外轮廓在多个位置的变形方式(例如被拉伸或者被压缩)以及在该变形方式下的变形量(例如拉伸量或者压缩量),从而可获得网孔区的变形状态,例如变形形状与变形尺寸。
例如,在通过仿真模拟的方式获取网孔区的变形状态信息时,由于测试掩模板具有对称性,因此可以取测试掩模板的1/4为目标进行变形研究,而其余部分的变形状态可根据该1/4部分通过简单的对称变换(包括轴对称变换和中心对称变换)获得。例如,该1/4部分为图5B中虚线框圈出的部分,以下称为测试部分,变形研究包括对该测试部分在不同方向的变形方式以及变形量的研究。
例如,在一个示例中,图6A示出了测试掩模板的测试部分在第一方向的变形仿真测试图,图7A示出了测试掩模板的测试部分在第二方向的变形仿真测试图。变形仿真测试图中不同的颜色表示不同的变形方式与变形量,因此可以从图中获得网孔区在多个位置的变形状态。
例如,在一些实施例中,制作方法还包括:根据上述变形状态信息,拟合网孔区在第一方向和第二方向上的变形曲线,第二方向垂直于第一方向。例如,在第一方向为图5B中示出的竖直方向(长度方向)时,第二方 向即为图中的水平方向(宽度方向)。
例如,图6B为根据图6A获得的测试掩模板的测试部分在第一方向的变形仿真曲线,图6C为根据图6B获得的测试掩模板的测试部分在第一方向的变形拟合曲线,图6B中的X轴与Y轴分别与图6A中的X轴与Y轴对应,y表示在不同x处网孔区在变形后其边缘的位置。并且图6C中也示出了上述变形仿真曲线,因此图中具有两条曲线。由图6C可以看出,变形仿真曲线和变形拟合曲线基本重合。例如,该拟合曲线分可以为两部分,该两部分由图中的虚线分隔开,其中,左边部分的曲线拟合公式为:
f(y)=8×10 -7y 2-7×10 -5y-0.0027,(0≤y≤56)
右边部分的曲线拟合公式为:
f(y)=9×10 -08y-0.0043,(y>56)
因此,可以通过该公式,获得测试掩模板在多个位置沿第一方向的变形状态。
例如,图6D为测试掩模板的测试部分在第一方向的变形实测曲线,该变形实测曲线通过对真实的测试掩模板进行拉伸并对拉伸后的测试掩模板的变形状态进行测量而得到。图6D中示出了三条变形实测曲线,该三条变形实测曲线分别是通过三次变形测试得出的。通过对比可以看出,变形仿真曲线与变形实测曲线基本相同,因此,可以通过仿真模拟的方式对测试掩模板进行检测,以免去复杂的实际操作过程。
例如,图7B为根据图7A获得的测试掩模板的测试部分在第二方向的变形仿真曲线,图7C为根据图7B获得的测试掩模板的测试部分在第二方向的变形拟合曲线,图7B中的X轴与Y轴分别与图7A中的X轴与Y轴对应,y表示在不同x处网孔区在变形后其边缘的位置。并且图7C中也示出了上述变形仿真曲线,因此图中具有两条曲线。由图7C可以看出,变形仿真曲线和变形拟合曲线基本重合。该拟合曲线的拟合公式为:
f(x)=-8×10 -7x 2+7×10 -6x+0.1009
因此,可以通过该公式,获得测试掩模板在多个位置沿第二方向的变形状态。
例如,图7D为测试掩模板的测试部分在第二方向的变形实测曲线,图7D中示出了三条变形实测曲线,该三条变形实测曲线分别是 通过三次变形测试得出的。通过对比可以看出,变形仿真曲线与变形实测曲线基本相同。
步骤S103:根据变形状态信息,获取用于网孔区的反向补偿信息,并且基于反向补偿信息获得网孔区的目标初始状态信息。
例如,通过上述方式获得变形状态信息,例如变形曲线后,可以根据该变形曲线获得用于网孔区的反向补偿信息。例如,反向补偿信息包括网孔区在多个位置的变形补偿值或者网孔区在第一方向和第二方向上的变形补偿曲线。
例如,设定网孔区由于拉伸而在某一方向延长的数值为正值(+),由于压缩而在某一方向缩短的数值为负值(-),此时,当测试掩模板的网孔区在某一位置的变形量为+A时(A为任意正数),则网孔区在该位置的变形补偿值为-A;当测试掩模板的网孔区在某一位置的变形量为-B时(B为任意正数),则网孔区在该位置的变形补偿值为+B。由此,可以获得网孔区在各个位置的变形补偿值。例如,网孔区的变形补偿曲线可以由上述变形补偿值拟合曲线而得到,或者,网孔区的变形补偿曲线也可以通过变形曲线通过对称处理而得到。最后,将上述变形补偿值或者变形补偿曲线与测试掩模板的初始状态(例如初始尺寸信息)相叠加,从而可以获得网孔区的目标初始状态信息。
例如,基于上述反向补偿信息最终获得的网孔区的目标初始状态信息包括网孔区的目标初始形状和目标初始尺寸信息。例如,如图8A示出了根据反向补偿信息获得的测试掩模板目标初始状态信息而设计的掩模板(处于未拉伸状态的掩模板),该掩模板在被张紧并固定在掩模框架之后可以得到所希望的规则的网孔区(或显示开口区)。可见,该处于未拉伸状态的掩模板相比于图3所示的将图1B的初始掩模板拉伸变形得到的掩模板来说,具有基本相反的变形状态。该掩模板的网孔区由于进行了反向补偿,因此在拉伸后可以具有目标形状,该目标形状例如对应于所要制作的显示基板的显示区的形状。例如,该目标形状为规则的矩形等。
例如,如图5C所示,网孔区21包括阵列排布的多个第一子开口21A,此时,掩模板的制作方法还包括:根据用于网孔区的反向补偿信息,获取每个第一子开口的反向补偿信息。
例如,当网孔区的反向补偿信息确定时,可根据网孔区的反向补偿信息,例如网孔区在各个位置的反向补偿信息,按比例对网孔区21内相应位置的每个第一子开口21A进行补偿,以获取每个第一子开口21A的反向补 偿信息,该补偿信息例如包括在网孔区各个位置的第一子开口21A的位置偏移补偿量。例如,各个位置的第一子开口21A的位置偏移补偿量是不同的,越接近网孔区边缘的第一子开口21A的位置偏移补偿量越大。例如,根据上述方法获得的网孔区21的多个第一子开口21A的排布方式如图8B所示,在掩模板被拉伸后,网孔区21的多个第一子开口21A可以具有目标形状并具有目标排列方式,例如每个第一子开口21A形成为矩形,网孔区内的所有第一子开口21A呈规则的矩阵排列,例如呈图5C示出的排列方式。
例如,在一些实施例中,当网孔区内的第一子开口的数量较多时,可以将网孔区内的多个第一子开口分为多个区域,由于每个区域内的多个第一子开口的位置相近,因此其变形方式以及变形量也相近,因此可以按区域对多个第一子开口进行补偿。此时,每个区域内的多个第一子开口进行相同的补偿,因此可以减小设计过程的数据处理量。
例如,网孔区包括阵列排布的多个第一子开口,多个第一子开口分为M×N个区域(M和N为大于等于2的正整数),每个区域包括至少一个第一子开口,例如包括2个、4个、6个或者8个第一子开口,此时,掩模板的制作方法还包括:根据用于网孔区的反向补偿信息,获取每个区域的第一子开口的反向补偿信息。例如,当每个区域包括2个第一子开口时,对多个开口的补偿数据处理量可以减少一半,当每个区域包括4个第一子开口时,对多个开口的补偿数据处理量可以减少为原来的1/4,因此分区域进行补偿可以减小工作量,提高工作效率。
例如,在一些实施例中,在获得了网孔区的目标初始状态信息后,掩模板的制作方法还包括:以表格或者图形的形式记录网孔区的目标初始状态信息。
例如,在一些示例中,网孔区包括阵列排布的多个第一子开口,以表格的形式记录网孔区的目标初始状态信息包括:建立直角坐标系,在表格中记录多个第一子开口在直角坐标系中的坐标以及尺寸。
例如,图9A示出了网孔区的目标初始状态。如图9A所示,可以以网孔区左下角的第一子开口的中心作为直角坐标系的原点(x0,y0),在表格中记录m行n列的第一子开口在直角坐标系中的坐标以及尺寸。如表1所示,每个第一子开口的用于记录位置信息的坐标包括x坐标和y坐标,尺寸信息包括沿x方向的尺寸w和沿y方向的尺寸h。例如,每个第一子开口的坐标(x,y)表示该第一子开口的一个顶点或者中心在直角坐标系中的位置, 沿x方向的尺寸w和沿y方向的尺寸h分别表示该第一子开口沿x方向延伸的距离和沿y方向延伸的距离,由此可以获得每个第一子开口的位置以及形状、尺寸信息。
表1
Figure PCTCN2019111495-appb-000001
例如,在一些示例中,网孔区包括阵列排布的多个第一子开口,多个第一子开口划分为M×N个区域(M和N为大于等于2的正整数),每个区域包括至少一个第一子开口;此时,以表格的形式记录网孔区的目标初始状态信息包括:建立直角坐标系,在表格中记录每个区域的第一子开口在直角坐标系中的坐标以及尺寸。
例如,如图9B所示,在该示例中,每个区域包括4个第一子开口,可以以网孔区左下角的区域的中心作为直角坐标系的原点(x0,y0),在表格中记录M行N列区域的第一子开口在直角坐标系中的坐标以及尺寸。例如,表2记录了各个区域的多个第一子开口在直角坐标系中的坐标以及尺寸。例如以图9B中的左下角的区域为起始区域,如表2所示,用于记录位置信息的坐标包括x坐标和y坐标,例如起始区域的x坐标为x 11,y坐标为y 11,第m行n列(m小于等于M,n小于等于N)的区域的x坐标为x nm,y坐标为y nm。尺寸信息包括该区域沿x方向的组距Px(即沿x方向上一个区域的起始坐标到相邻区域的起始坐标的距离)和沿y方向的组距Py(即沿y方向上一个区域的起始坐标到相邻区域的起始坐标的距离)。例如,尺寸信息还包括该区域中第一子开口的宽度w(即在x方向上的尺寸)和长度h (即在y方向上的尺寸),例如起始区域中第一子开口的宽度为w 11和长度h 11,第n行m列的区域中第一子开口的宽度为w nm,长度为h nm
例如,表格中还记录每个区域包括的第一子开口的总行数n x和总列数n y以及每个区域的沿x方向的伸缩率Tn以及沿y方向的伸缩率Tm。例如,每个区域的伸缩率Tn和伸缩率Tm可以由相应位置的反向补偿数据计算得出。例如,一个区域的沿x方向的伸缩率Tn等于该区域的沿x方向的变形后的尺寸与该区域沿x方向的初始尺寸的比值,一个区域的沿y方向的伸缩率Tm等于该区域的沿y方向的变形后的尺寸与该区域沿y方向的初始尺寸的比值。例如,一个区域的沿x方向或者y方向的变形后的尺寸可以通过在上述变形拟合公式中代入该区域的坐标,并通过计算得出。
例如,第m列n行的区域的x坐标x nm和y坐标y nm可以分别由伸缩率Tn、Tm、组距Px、Py以及起始区域的坐标x 11和y坐标y 11计算得出,第m列n行的区域中第一子开口的宽度w nm和长度h nm可以分别由伸缩率Tn、Tm以及起始区域的宽度w 11和长度h 11计算得出,具体计算公式如表2所示。
由此,每个区域以及每个区域内第一子开口的坐标以及尺寸均可得出。例如,每个区域的坐标(x,y)表示该区域的一个顶点或者中心在直角坐标系中的坐标,只要能表征该区域的位置即可,本公开的实施例对此不做限定。
表2
Figure PCTCN2019111495-appb-000002
在获得网孔区的目标初始状态信息并以表格的方式记录网孔区的目标 初始状态信息时,可以将该表格发送给制作厂商,并与厂商解释表格中的数据含义,以使厂商准确获得掩模板的网孔区的制作信息。此时,若该表格遗失或泄露,拾取者也难以理解表格所传达的信息,因此减小了泄密的风险。
例如,在一些实施例中,以图形的形式记录网孔区的目标初始状态信息包括:绘制出掩模板相对测试掩模板的变形量的曲线。
例如,如图10所示,首先绘制出测试掩模板的图纸,然后在测试掩模板的图纸的一侧绘制出设计得到的目标掩模版的网孔区相对于测试掩模板网孔区在各个位置的补偿数据,例如偏移方向以及偏移量。例如在图10中,偏移位置可以由坐标系读出,沿x方向的偏移量由x1和x2计算得出,例如,沿x方向的偏移量等于x1和x2的差的绝对值,沿y方向的偏移量由y1和y2计算得出,例如,沿y方向的偏移量等于y1和y2的差的绝对值。
上述间接绘制掩模板图纸的方式没有直接表达出目标掩模板的具体形状与尺寸信息,在将该图纸发送给制作厂商时,可向厂商解释图纸所表达的内容,以使厂商准确获得掩模板的网孔区的制作信息。此时,若该图纸遗失或泄露,拾取者也难以理解图纸所传达的信息,因此减小了泄密的风险。
例如,在一些实施例中,以图形的形式记录网孔区的目标初始状态信息包括:直接绘制通过上述方法设计得到的目标掩模板的图纸,例如图8A所示,并且可以在图纸中标注出掩模板在各个位置的各个线条的尺寸等(图中未示出)。另外,还可以直接绘制出掩模板的网孔区中各个第一子开口的位置以及尺寸等,如图8B所示。因此,生产厂家可以直接按照图纸进行生产制作。
步骤S104:根据目标初始状态信息制作掩模板。
例如,制作得到的掩模板的至少一个网孔区呈第一形状。
例如,在采用上述图表的方式记录目标初始状态信息时,可根据图表中记录的信息采用机械加工(例如切割、冲压)等工艺制作掩模板,例如制作出图8A和8B所示的掩模板。
通过本公开至少一实施例提供的制作方法制作出的掩模板由于进行了变形补偿,因此该掩模板在拉伸以形成掩模装置的过程中,其网孔区更容易对位成功,从而可以提高掩模装置的制作效率,使制作过程顺利进行。并且,利用该掩模板制作的掩模装置精度更高,在掩模装置用于制备显示基板时,掩模板的网孔区可以具有对应于显示基板显示区的目标形状,例 如规则的矩形,网孔区内的多个第一子开口可以具有对应于显示区多个像素单元的目标形状以及规则的阵列分布,从而利用该掩模装置制作的显示基板具有更高的精度,而不会出现暗点、串色等不良。
本公开至少一实施例提供一种掩模装置的制作方法,包括:提供掩模板,该掩模板通过上述制作方法得到,沿第一方向拉伸掩模板,并将掩模板通过焊接等方式固定在掩模框架上,由此制备出掩模装置,例如可参见图3A-图3D示出的制作过程。该掩模装置包括掩模板和掩模框架。例如,一个掩模框架上可包括多个掩模板,并用于制作包括多个显示基板的母板,本公开的实施例对此不做限定。
本公开至少一实施例还提供一种掩模板,参见图8A,该掩模板包括在第一方向上彼此相对的第一夹持区35A、第二夹持区35B,以及位于第一夹持区35A和第二夹持区35B之间的至少一个网孔区31,网孔区31呈第一形状,在掩模板受到沿第一方向的拉力时,网孔区31呈目标形状,目标形状与第一形状不同,例如,目标形状可以为多边形(例如矩形)、圆形或者椭圆形等。例如,该掩模板可以用于制作显示基板,此时,目标形状对应于显示基板的显示区的形状。
例如,第一形状包括:大致沿第一方向延伸且相对设置的第一边和第二边,以及连接在第一边和第二边之间的第三边和第四边;第一边和第二边向远离第一形状的中心的方向凸出,第三边和第四边向靠近第一形状的中心的方向凹陷。
例如,在一些实施例中,目标形状为规则多边形,例如正多边形,例如矩形等。例如,在一个示例中,当目标形状为矩形时,网孔区在拉伸前的第一形状呈图8A示出的多边形。
例如,如图8A所示,当目标形状为矩形时,网孔区31在拉伸前的第一形状包括:至少部分沿所述第一方向延伸且相对设置的第一边311和第二边312,第一边311包括第一端311A、第二端311B以及第一端311A和第二端311B之间的第一中点311C,第二边312包括第三端312A、第四端312B以及第三端312A和第四端312B之间的第二中点312C,第一中点311C和第二中点312C的连线为第一连线315,第一连线315垂直于第一方向,第一端311A、第二端311B、第三端312A和第四端312B分别向第一形状的内部靠近,从而第一连线315的长度大于第一端311A和第三端312A的连线的长度(即第一端311A和第三端312A的直线距离),并且第一连线315的长 度还大于第二端311B与第四端312B的连线的长度(即第二端311B与第四端312B的直线距离)。
第一形状还包括连接第一端211A和第三端312A的第三边313以及连接第二端311B与第四端312B的第四边314,第三边的中点313A与第四边的中点314A的连线为第二连线316,第三边的中点313A与第四边的中点314A分别向第一形状的内部靠近,从而第二连线316的长度小于第一端311A和第二端311B的连线的长度(即第一端311A和第二端311B的直线距离),并且第二连线316的长度还小于第三端312A和第四端312B的连线的长度(即第三端312A和第四端312B的直线距离),第二连线316穿过第一连线315的中点O。在一些实施例中,中点O也是第一形状的中心。
例如,在一些实施例中,掩模板的总长度约为1000mm~1400mm,例如1200mm,掩模版的总宽度约为50mm~500mm,例如100mm或者300mm等。例如,网孔区31的长度约为600mm~900mm,例如800mm,网孔区31的宽度约为20mm~500mm,例如100mm。
由于第一端311A、第二端311B、第三端312A和第四端312B分别向第一形状的内部凹陷,使得第一边311和第二边312的边缘部分向内倾斜。据此,可将第一形状划分为多个部分,称第一边311和第二边312的彼此平行的部分为中间部分(图中类似于矩形部分),中间部分的上一部分(图中类似于正梯形部分)为第一部分、中间部分的下一部分(图中类似于倒梯形部分)为第二部分。例如,第一部分、中间部分以及第二部分的高度(沿第一方向的长度)的比例约为1:15:1~1:25:1,例如1:20:1。
例如,目标形状为矩形时,该目标矩形的长为A,宽为B,此时,第一端311A和第三端312B的距离(直线距离)例如约为(1+0.005%)×A~(1+0.025%)×A,类似地,第二端311B与第四端312B的距离(直线距离)例如约为(1+0.005%)×A~(1+0.025%)×A,第一端311A和第三端312B的距离与第二端311B与第四端312B的距离可以相同也可以不同。此时,第一连线315的长度例如约为(1+0.0075%)×A~(1+0.125%)×A。在上述表达式中,括号内1+X(上述表达式中X取0.005%、0.025%等)中的X为第一补偿值比例,例如,在同一掩模板中,第一端311A和第三端312B的距离的第一补偿值比例(或者第二端311B与第四端312B的距离的第一补偿值比例)与第一连线315的长度的第一补偿值比例的比值约为1:1.5~1:5。例如, 第一端311A和第二端311B的距离(直线距离)例如约为(1-0.007%)×B~(1-0.04975%)×B,类似地,第三端312A与第四端312B的距离(直线距离)例如约为(1-0.007%)×B~(1-0.04975%)×B,第一端311A和第二端311B的距离与第二端311B与第三端312A与第四端312B的距离可以相同也可以不同。此时,第二连线316的长度例如约为(1-0.01%)×B~(1-0.05%)×B。在上述表达式中,括号内1-Y(上述表达式中X取0.007%、0.04975%等)中的Y为第二补偿值比例,例如,在同一掩模板中,第二连线316的长度的第二补偿值比例与第一端311A和第二端311B的距离的第二补偿值比例(或者第三端312A与第四端312B的距离的第二补偿值比例)与的比值约为1:0.7~1:0.995。
例如,根据掩模板的应用的不同,例如用于制备不同尺寸的显示基板时,掩模板的各参数,例如网孔区的各参数,也可以进行适应性设计,本公开的实施例对掩模板的各参数不做具体限定。
例如,在一些实施例中,网孔区包括多个第一子开口,当网孔区呈目标形状时,该网孔区所包括的多个第一子开口排布为规则阵列形式,例如图5C所示的规则阵列形式。由此,当该掩模板用于制作显示基板时,网孔区的多个第一子开口可以更准确地对应于显示基板的显示区中呈阵列排布的多个像素单元。
例如,在一些示例中,网孔区31包括的多个第一子开口用于形成一个显示基板,在另一些实施例中,网孔区31包括的多个第一子开口用于形成多个显示基板,此时,这些子开口可分为多组,每一组用于形成一个显示基板,本公开的实施例对网孔区31中多个第一子开口的具体形式不做限定。
例如,在一些实施例中,掩模板还包括第一虚设网孔区32A和第二虚设网孔区32B,第一虚设网孔区32A设置在第一夹持区35A和网孔区31之间,第二虚设网孔区32B设置在第二夹持区35B和网孔区31之间。第一虚设网孔区32A和第二虚设网孔区32B例如可以缓解网孔区31在拉伸时受到的力,防止网孔区过度变形。
例如,掩模板还可以包括焊接区33、切割区34等区域,本公开的实施例对此不做限定。
本公开至少一实施例提供的掩模板由于在拉伸后具有目标形状,因此该掩模板在拉伸以形成掩模装置的过程中,其网孔区更容易对位成功,从而可以提高掩模装置的制作效率,使制作过程顺利进行。并且,利用该掩模板制 作的掩模装置精度更高,在掩模装置用于制备显示基板时,掩模板的网孔区可以具有对应于显示基板显示区的目标形状,例如规则的矩形,网孔区内的多个第一子开口可以具有对应于显示区多个像素单元的目标形状以及规则的阵列分布,从而利用该掩模装置制作的显示基板具有更高的精度,而不会出现暗点、串色等不良。
本公开至少一实施例还提供一种显示基板的制作方法,该制作方法包括:采用由上述制作方法得到的掩模装置形成显示基板的至少一个功能层。该功能层例如包括显示基板的发光器件中的发光层等任一具有一定图案的功能层。该制作方法制作的显示基板具有更高的精度,不会出现暗点、串色等不良。
还有以下几点需要说明:
(1)本公开实施例的附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种掩模板,包括:
    在第一方向上彼此相对的第一夹持区、第二夹持区,以及
    位于所述第一夹持区和所述第二夹持区之间的至少一个网孔区,
    其中,所述网孔区呈第一形状,
    在所述掩模板受到沿所述第一方向的拉力时,所述网孔区呈目标形状,所述目标形状与所述第一形状不同,所述目标形状为多边形、圆形或者椭圆形。
  2. 根据权利要求1所述的掩模板,其中,所述第一形状包括:大致沿所述第一方向延伸且相对设置的第一边和第二边,以及连接在所述第一边和所述第二边之间的第三边和第四边;
    所述第一边和第二边向远离所述第一形状的中心的方向凸出,所述第三边和第四边向靠近所述第一形状的中心的方向凹陷。
  3. 根据权利要求2所述的掩模板,其中,所述第一边包括第一端、第二端以及所述第一端和所述第二端之间的第一中点,所述第二边包括第三端、第四端以及所述第三端和所述第四端之间的第二中点,所述第一中点和所述第二中点的连线为第一连线,所述第一连线垂直于所述第一方向,所述第一连线的长度大于所述第一端和所述第三端的连线的长度,并且所述第一连线的长度还大于所述第二端与所述第四端的连线的长度;
    所述第三边连接所述第一端和所述第三端,所述第四边连接所述第二端与所述第四端,所述第三边的中点与所述第四边的中点的连线为第二连线,所述第二连线的长度小于所述第一端和所述第二端的连线的长度,并且所述第二连线的长度还小于所述第三端和所述第四端的连线的长度,所述第二连线穿过所述第一连线的中点;
    所述网孔区的目标形状为矩形。
  4. 根据权利要求1-3任一所述的掩模板,其中,所述网孔区包括多个第一子开口,当所述网孔区呈所述目标形状时,所述多个第一子开口排布为规则阵列形式。
  5. 根据权利要求1-4任一所述的掩模板,还包括第一虚设网孔区和第二虚设网孔区,
    所述第一虚设网孔区设置在所述第一夹持区和所述网孔区之间,所述第二虚设网孔区设置在所述第二夹持区和所述网孔区之间。
  6. 一种掩模板的制作方法,包括:
    提供测试掩模板,所述测试掩模板包括在第一方向上彼此相对的第一夹持区、第二夹持区,还包括位于所述第一夹持区和所述第二夹持区之间的至少一个网孔区,所述至少一个网孔区呈目标形状,
    获取所述网孔区在所述测试掩模板在沿所述第一方向被拉伸状态下的变形状态信息,
    根据所述变形状态信息,获取用于所述网孔区的反向补偿信息,并且基于所述反向补偿信息获得所述网孔区的目标初始状态信息,以及
    根据所述目标初始状态信息制作掩模板,制作得到的所述掩模板的至少一个网孔区呈第一形状。
  7. 根据权利要求6所述的制作方法,其中,通过仿真模拟的方式获取所述变形状态信息。
  8. 根据权利要求6或7所述的制作方法,其中,所述变形状态信息包括所述网孔区在多个位置的变形方式和/或变形量。
  9. 根据权利要求8所述的制作方法,还包括:根据所述变形状态信息,拟合所述网孔区在所述第一方向和第二方向上的变形曲线,其中,所述第二方向大致垂直于所述第一方向。
  10. 根据权利要求9所述的制作方法,其中,所述获取用于所述网孔区的反向补偿信息,包括:
    根据所述变形曲线获得所述反向补偿信息。
  11. 根据权利要求10所述的制作方法,其中,所述反向补偿信息包括所述网孔区在多个位置的变形补偿值或者所述网孔区在所述第一方向和所述第二方向上的变形补偿曲线。
  12. 根据权利要求10或11所述的制作方法,其中,所述网孔区包括阵列排布的多个第一子开口,所述制作方法还包括:
    根据用于所述网孔区的所述反向补偿信息,获取每个所述第一子开口的反向补偿信息。
  13. 根据权利要求10或11所述的制作方法,其中,所述网孔区包括阵列排布的多个第一子开口,所述多个第一子开口分为M×N个区域,每个 区域包括至少一个第一子开口,M和N为大于等于2的正整数,
    所述制作方法还包括:
    根据用于所述网孔区的所述反向补偿信息,获取所述每个区域的第一子开口的反向补偿信息。
  14. 根据权利要求6-13任一所述的制作方法,其中,通过所述第一夹持区和所述第二夹持区对所述测试掩模板沿所述第一方向进行拉伸。
  15. 根据权利要求6-14任一所述的制作方法,其中,所述网孔区的目标初始状态信息包括所述网孔区的目标初始形状和目标初始尺寸信息。
  16. 根据权利要求6-15任一所述的制作方法,还包括:以表格或者图形的形式记录所述网孔区的目标初始状态信息。
  17. 根据权利要求16所述的制作方法,其中,所述网孔区包括阵列排布的多个第一子开口,所述以表格的形式记录所述网孔区的目标初始状态信息包括:
    建立直角坐标系,在表格中记录所述多个第一子开口在所述直角坐标系中的坐标以及尺寸。
  18. 根据权利要求17所述的制作方法,其中,所述网孔区包括阵列排布的多个第一子开口,所述多个第一子开口分为M×N个区域,每个区域包括至少一个第一子开口,M和N为大于等于2的正整数;所述以表格的形式记录所述网孔区的目标初始状态信息包括:
    建立直角坐标系,在表格中记录所述每个区域的第一子开口在所述直角坐标系中的坐标以及尺寸。
  19. 根据权利要求16所述的制作方法,其中,所述以图形的形式记录所述网孔区的目标初始状态信息包括:
    绘制出所述掩模板相对所述测试掩模板的变形量的曲线。
  20. 一种显示基板的制作方法,包括:采用权利要求1-5任一所述的掩模板制作得到掩模装置,并使用所述掩模装置形成所述显示基板的至少一个功能层。
PCT/CN2019/111495 2019-10-16 2019-10-16 掩模板及其制作方法、显示基板的制作方法 WO2021072681A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/963,673 US11885005B2 (en) 2019-10-16 2019-10-16 Mask and manufacturing method therefor, and manufacturing method for display substrate
CN201980001980.8A CN112996944B (zh) 2019-10-16 2019-10-16 掩模板及其制作方法、显示基板的制作方法
PCT/CN2019/111495 WO2021072681A1 (zh) 2019-10-16 2019-10-16 掩模板及其制作方法、显示基板的制作方法
US18/530,369 US20240191338A1 (en) 2019-10-16 2023-12-06 Mask and manufacturing method therefor, and manufacturing method for display substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111495 WO2021072681A1 (zh) 2019-10-16 2019-10-16 掩模板及其制作方法、显示基板的制作方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/963,673 A-371-Of-International US11885005B2 (en) 2019-10-16 2019-10-16 Mask and manufacturing method therefor, and manufacturing method for display substrate
US18/530,369 Division US20240191338A1 (en) 2019-10-16 2023-12-06 Mask and manufacturing method therefor, and manufacturing method for display substrate

Publications (1)

Publication Number Publication Date
WO2021072681A1 true WO2021072681A1 (zh) 2021-04-22

Family

ID=75538213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111495 WO2021072681A1 (zh) 2019-10-16 2019-10-16 掩模板及其制作方法、显示基板的制作方法

Country Status (3)

Country Link
US (2) US11885005B2 (zh)
CN (1) CN112996944B (zh)
WO (1) WO2021072681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226187A1 (zh) * 2022-05-23 2023-11-30 昆山国显光电有限公司 掩膜板及其制作方法、掩膜组件及其制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394692B (zh) * 2020-05-09 2022-05-13 京东方科技集团股份有限公司 掩膜版
CN111575648B (zh) * 2020-06-23 2022-07-15 京东方科技集团股份有限公司 掩膜板组件及其制造方法
KR20220027353A (ko) * 2020-08-26 2022-03-08 삼성디스플레이 주식회사 마스크 및 마스크 제조방법
KR20220078007A (ko) * 2020-12-02 2022-06-10 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141106A (zh) * 2013-05-10 2014-11-12 三星显示有限公司 掩模
CN107142450A (zh) * 2017-04-28 2017-09-08 上海天马有机发光显示技术有限公司 一种掩膜板及其张网装置、方法
CN107994136A (zh) * 2017-12-08 2018-05-04 信利(惠州)智能显示有限公司 掩膜板及其制作方法
CN108281575A (zh) * 2018-01-26 2018-07-13 京东方科技集团股份有限公司 掩膜板及其制作方法
CN108796435A (zh) * 2018-05-28 2018-11-13 昆山国显光电有限公司 掩模版及其制作方法
CN109002623A (zh) * 2018-07-26 2018-12-14 京东方科技集团股份有限公司 金属掩膜板的仿真方法和装置
CN109402558A (zh) * 2018-11-01 2019-03-01 上海精骊电子技术有限公司 精细金属掩膜版张网的对位控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948468A (en) * 1997-05-01 1999-09-07 Sandia Corporation Method for correcting imperfections on a surface
KR100700838B1 (ko) * 2005-01-05 2007-03-27 삼성에스디아이 주식회사 섀도우마스크 패턴 형성방법
KR20150002614A (ko) * 2012-04-05 2015-01-07 소니 주식회사 마스크 조정 유닛, 마스크 장치 및 마스크의 제조 장치 및 제조 방법
CN104561893B (zh) * 2014-12-25 2018-02-23 信利(惠州)智能显示有限公司 掩膜板制造方法
CN109207918A (zh) * 2017-06-30 2019-01-15 上海微电子装备(集团)股份有限公司 一种掩模网张网装置、蒸镀装置、张网方法及蒸镀方法
CN109136838A (zh) * 2018-11-21 2019-01-04 京东方科技集团股份有限公司 一种掩模板的制作方法、掩模板及蒸镀设备
CN110257767B (zh) * 2019-05-06 2021-05-07 京东方科技集团股份有限公司 掩模条材料属性的获取方法、装置和掩模板的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141106A (zh) * 2013-05-10 2014-11-12 三星显示有限公司 掩模
CN107142450A (zh) * 2017-04-28 2017-09-08 上海天马有机发光显示技术有限公司 一种掩膜板及其张网装置、方法
CN107994136A (zh) * 2017-12-08 2018-05-04 信利(惠州)智能显示有限公司 掩膜板及其制作方法
CN108281575A (zh) * 2018-01-26 2018-07-13 京东方科技集团股份有限公司 掩膜板及其制作方法
CN108796435A (zh) * 2018-05-28 2018-11-13 昆山国显光电有限公司 掩模版及其制作方法
CN109002623A (zh) * 2018-07-26 2018-12-14 京东方科技集团股份有限公司 金属掩膜板的仿真方法和装置
CN109402558A (zh) * 2018-11-01 2019-03-01 上海精骊电子技术有限公司 精细金属掩膜版张网的对位控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226187A1 (zh) * 2022-05-23 2023-11-30 昆山国显光电有限公司 掩膜板及其制作方法、掩膜组件及其制作方法

Also Published As

Publication number Publication date
US20240191338A1 (en) 2024-06-13
CN112996944B (zh) 2022-08-09
US20220002859A1 (en) 2022-01-06
US11885005B2 (en) 2024-01-30
CN112996944A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2021072681A1 (zh) 掩模板及其制作方法、显示基板的制作方法
KR101319730B1 (ko) 포토마스크의 제조 방법, 묘화 장치, 포토마스크의 검사 방법 및 포토마스크의 검사 장치
CN109504938B (zh) 一种掩膜单元及其制作方法、掩膜版
KR100768491B1 (ko) 액정표시장치의 제조 방법
JP4820392B2 (ja) パターン生成装置及びパターン書き込み方法
US20190003033A1 (en) Mask plate and method for manufacturing the same
CN104423140B (zh) 光掩模的制造方法、显示装置的制造方法以及描绘装置
US10274762B2 (en) Display substrate motherboard, manufacturing and detecting methods thereof and display panel motherboard
US11066738B2 (en) Mask plates and display panels
CN108351510A (zh) 用于高分辨率电子图案化的无缝线直接成像
CN106980212A (zh) 液晶面板及其制备方法
CN104778904A (zh) 一种显示面板母板及其制备方法
US20240124966A1 (en) Mask and method for manufacturing the same, and mask assembly and method for manufacturing the same
CN113618310A (zh) 一种提高普通金属掩模版张网位置精度的方法
US20210371966A1 (en) Mask, Mask Device and Mask Design Method
CN105759513A (zh) 曲面显示面板及显示模组
TW201526131A (zh) 影像關鍵尺寸量測校正方法及系統
JP6838393B2 (ja) ガラス基板の検査方法および製造方法
US20220013753A1 (en) Mask, method for fabricating mask and drive-backplane motherboard
US10261365B2 (en) Liquid crystal display panel and manufacturing method thereof
CN110423983B (zh) 掩膜版
TW202218007A (zh) 對齊晶圓的方法
TWI838063B (zh) 金屬遮罩補正方法
CN107092145A (zh) 低温多晶硅阵列基板的制造方法
CN104914599B (zh) 一种液晶阵列基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949281

Country of ref document: EP

Kind code of ref document: A1