WO2021068981A1 - 超声设备及超声*** - Google Patents

超声设备及超声*** Download PDF

Info

Publication number
WO2021068981A1
WO2021068981A1 PCT/CN2020/123478 CN2020123478W WO2021068981A1 WO 2021068981 A1 WO2021068981 A1 WO 2021068981A1 CN 2020123478 W CN2020123478 W CN 2020123478W WO 2021068981 A1 WO2021068981 A1 WO 2021068981A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
module
signal
ultrasound
output terminal
Prior art date
Application number
PCT/CN2020/123478
Other languages
English (en)
French (fr)
Inventor
杨业
向永嘉
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2021068981A1 publication Critical patent/WO2021068981A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device

Definitions

  • the present invention relates to the technical field of ultrasonic diagnosis, in particular to an ultrasonic equipment and an ultrasonic system.
  • Sound power is a physical quantity related to the total energy of the sound field. Because ultrasonic equipment is used for device detection of the human body, the regulations stipulate that the single sound power and cumulative sound power of the ultrasonic equipment must be controlled within the acceptable range of the human body. Therefore, the ultrasonic system The sound power test is an essential test.
  • the ultrasonic equipment is connected with the test equipment, and the tester controls the ultrasonic equipment to select a certain working mode, then the corresponding sound power test signal (hereinafter collectively referred to as APM_Trig) interface outputs the Trig signal in this mode, and the sound power test According to the moment when the APM_Trig signal is received, the device starts to collect the energy of the sound field and conduct a sound power test.
  • APM_Trig sound power test signal
  • the purpose of the present invention is to provide an ultrasonic equipment and an ultrasonic system.
  • an embodiment of the present invention provides an ultrasound device, which is characterized in that: the device includes a power module, a coupling circuit, an acoustic power test signal module, a power interface, and an ultrasound hardware module;
  • One end of the power module is connected to the ultrasound hardware module, and the other end is connected to the power interface;
  • One end of the coupling circuit is connected to the sound power test signal module, and the other end is connected to the power supply interface.
  • the coupling circuit includes a field effect tube and an RC oscillation circuit
  • the sound power test signal module is connected to the gate of the field effect tube, and the source of the field effect tube Grounding, and the drain is connected to the power interface through the RC oscillating circuit in series.
  • a grounded filter capacitor is connected in parallel between the end of the power module connected to the power interface and the end of the coupling circuit connected to the power interface.
  • the ultrasound hardware module includes an ultrasound front-end signal acquisition module, a high-voltage switch, and a transceiver switch.
  • an embodiment of the present invention provides an ultrasound system, which is characterized in that: the system includes an ultrasound device and a power connector;
  • the ultrasound equipment includes a power module, a coupling circuit, a sound power test signal module, and a power interface; one end of the power module is connected to the power interface; one end of the coupling circuit is connected to the sound power test signal module , The other end is connected to the power interface;
  • the power connector includes a voltage output terminal and a signal output terminal. After the voltage output terminal is connected to the power interface of the ultrasonic device, it can provide input voltage to the ultrasonic device.
  • the signal output terminal is connected to the voltage output terminal. Phase connection.
  • the power connector further includes a signal restoration circuit, one end of the signal restoration circuit is connected to the voltage output terminal, and the other end is connected to the signal output terminal.
  • the coupling circuit includes a field effect tube and an RC oscillation circuit
  • the sound power test signal module is connected to the gate of the field effect tube, and the source of the field effect tube Grounded, and the drain is connected to the power interface through the RC oscillating circuit in series;
  • the signal restoration circuit includes an amplifier, a coupling capacitor, and a comparator, the voltage output terminal is connected to the inverting input terminal of the amplifier, one end of the coupling capacitor is connected to the output terminal of the amplifier, and the other end is connected to the comparator
  • the negative terminal of the comparator is connected to a fixed voltage, and the output terminal of the comparison amplifier is connected to the signal output terminal.
  • a grounded filter capacitor is connected in parallel between one end of the power module of the ultrasound device connected to the power interface and one end of the coupling circuit connected to the power interface.
  • the ultrasound equipment further includes an ultrasound hardware module, the ultrasound hardware module is connected to the power supply module, and the ultrasound hardware module includes an ultrasound front-end signal acquisition module, a high voltage switch, and a transceiver switch .
  • the system further includes a signal restoration device, and the signal output end of the power connector can be connected to the signal restoration device.
  • the ultrasonic device of the present invention leads the APM_Trig signal through the power interface by adding a coupling circuit, so that no additional interface is required for the device, which simplifies the design of the device.
  • Figure 1 is a schematic diagram of the scanning sequence of a typical ultrasound device.
  • Figure 2 is a schematic diagram of the connection frame of the ultrasonic equipment and the sound power test equipment.
  • Fig. 3 is a circuit diagram of the ultrasound system of the present invention.
  • Figure 4 is a waveform comparison diagram of the APM_Trig signal and the Pulse couple signal.
  • Fig. 5 is a waveform diagram of the output of the amplifier N of the present invention.
  • Fig. 6 is a waveform diagram of the input terminal and the output terminal of the comparator LOCMP of the present invention.
  • Ultrasonic equipment 11. Power module; 12. Coupling circuit; 13. Sound power test signal module; 14. Power interface; 15. Ultrasonic hardware module; 2. Power connector; 21. Voltage output terminal; 22. Signal output terminal; 23. Signal restoration module.
  • Ultrasonic equipment is a detection device for the human body, so the single sound power and cumulative sound power of the ultrasonic equipment must be controlled within the acceptable range of the human body.
  • the Freeze signal is high to indicate the freezing phase, and low to indicate that the ultrasound equipment is in the scanning phase.
  • a Trig signal cycle represents the scanning of one line of data, and the combination of N line signals becomes an ultrasound image.
  • each line has its own configuration information parameter.
  • the configuration information parameter is sent to the corresponding hardware during the high level period of the Trig signal cycle.
  • the configuration information parameter is sent to the corresponding hardware.
  • the low level period is divided into a transmitting period and a receiving period.
  • the transmitting module of the ultrasonic equipment generates the corresponding transmitting electric pulse, and the electric signal is converted into a sound field signal through the transducer.
  • the Trig signal is used as an auxiliary signal at the moment when the transmitted pulse is generated, and it must be led out through the interface and connected to the sound power test equipment, as shown in Figure 2. It is used to output the Trig signal in the set working mode. For the convenience of discussion in this article, this signal is called APM_Trig signal.
  • the present invention provides an ultrasonic device 1, which includes a power supply module 11, a coupling circuit 12, and a sound power test signal module 13. Power interface 14 and ultrasound hardware module 15.
  • One end of the power module 11 is connected to the ultrasonic hardware module 15 to provide the required voltage or current for the ultrasonic hardware module 15, and the other end of the power module 15 is connected to the power interface 14, and the external power source passes through the power interface. 14 supplies power to the power module 15, so the power interface can also be referred to as an input voltage terminal.
  • One end of the coupling circuit 12 is connected to the sound power test signal module 13, and the other end is connected to the power interface 14.
  • the sound power test signal module 13 outputs the APM_Trig signal, and the coupling circuit 12 couples the APM_Trig signal to the power interface. In this way, the APM_Trig signal is led out through the multiplexed power interface, so there is no need to add an additional interface to the ultrasound device, which simplifies the design of the device.
  • the coupling circuit 12 includes a field effect tube N and an RC oscillation circuit
  • the sound power test signal module 13 is connected to the grid G of the field effect tube N
  • the field effect tube The source S of N is grounded
  • the drain D is connected to the power interface 14 through the RC oscillating circuit in series.
  • the gate G of the field effect transistor N is low, and the field effect transistor N is in an off state.
  • the power interface charges the RC oscillating circuit through the external power supply, so that the voltage across the capacitor of the RC oscillating circuit is equal to the input voltage of the external power supply.
  • FIG. 4 is a waveform comparison diagram of the APM_Trig signal APM_Trig input output by the sound power test signal module 13 and the Pulse couple signal coupled to the power interface 14.
  • the APM_Trig signal is a square wave signal
  • the Pulse couple signal is a downward glitch signal.
  • This glitch signal is coupled to the power interface 14 (input power supply).
  • one end of the power module 11 connected to the power interface 14 and the coupling circuit 12 are connected to the power interface
  • a grounded filter capacitor C1 is connected in parallel between one end of 14.
  • the ultrasound hardware module includes an ultrasound front-end signal acquisition module, a high-voltage switch, a transceiver switch, etc., and the power supply module 11 is used to provide suitable and stable power for these ultrasound hardware modules.
  • the present invention also provides an ultrasound system, which includes an ultrasound device 1 and a power connector 2.
  • the ultrasound device includes a power module 11, a coupling circuit 12, a sound power test signal module 13, and a power interface 14.
  • One end of the power module 11 is connected to the power interface 14; one end of the coupling circuit 12 is connected to the The sound power test signal module 13 is connected, and the other end is connected to the power interface 14.
  • the sound power test signal module 13 outputs the APM_Trig signal, and the coupling circuit 12 couples the APM_Trig signal to the power interface. In this way, the APM_Trig signal is led out through the multiplexed power interface, so there is no need to add an additional interface to the ultrasound device, which simplifies the design of the device.
  • the power connector 2 includes a voltage output terminal 21 and a signal output terminal 22. After the voltage output terminal 22 is connected to the power interface 14 of the ultrasound device, it can provide an input voltage to the ultrasound device 1.
  • the signal output terminal 22 is connected to the voltage output terminal 21, so that the coupled APM_Trig signal can be output from the signal output terminal.
  • the APM_Trig signal of the ultrasonic device is led out to the power connector through the power interface, so that the ultrasonic device can be tested for sound power without adding an additional interface to the ultrasonic device, which simplifies the design of the ultrasonic device.
  • the power connector 2 further includes a signal restoration circuit 23, one end of the signal restoration circuit 23 is connected to the voltage output terminal 21, the other end is connected to the signal output terminal 22, and the signal output The terminal 22 is connected to the voltage output terminal 21 through the signal restoration circuit 23.
  • the coupling circuit 12 includes a field effect tube VT and an RC oscillation circuit
  • the sound power test signal module 13 is connected to the gate G of the field effect tube VT
  • the source S of the field effect tube VT is Grounded
  • the drain D is connected to the power interface 14 through the RC oscillating circuit in series.
  • the square wave signal (APM_Trig signal) is coupled into a downward glitch signal (Pulse couple signal) to the power interface.
  • the signal restoration circuit 23 includes an amplifier N, a coupling capacitor C2, and a comparator LOCMP.
  • the voltage output terminal 21 is connected to the inverting input terminal of the amplifier N, and one end of the coupling capacitor C2 is connected to the output terminal of the amplifier N.
  • the other terminal is connected to the positive terminal of the comparator LOCMP, the negative terminal of the comparator is connected to a fixed voltage, and the output terminal of the comparator amplifier LOCMP is connected to the signal output terminal 22.
  • the pulse couple signal passes through the voltage input terminal 21 and then enters the inverting input terminal of the amplifier N.
  • the output signal waveform is shown in Figure 5, and then this signal is coupled to the positive terminal of the comparator LOCMP through the capacitor C2.
  • the negative terminal is connected to a fixed voltage, and the potential of the fixed voltage is close to the low level of the waveform diagram in FIG. 5. Then the pulse waveform in Figure 5 outputs high level after the comparator LOCMP, and outputs low level at other moments, so that the APM_Trig signal can be restored and output. Finally, the restored output signal is sent to the sound power test equipment to meet the test needs. Please refer to Figure 6 for the waveform diagrams of the input and output terminals of the specific comparator LOCMP.
  • the APM_Trig signal is a square wave signal
  • the Pulse couple signal is a downward glitch signal.
  • This glitch signal is coupled to the power interface 14 (input power supply).
  • one end of the power module 11 connected to the power interface 14 and the coupling circuit 12 are connected to the power interface
  • a grounded filter capacitor C1 is connected in parallel between one end of 14.
  • the ultrasound hardware module includes an ultrasound front-end signal acquisition module, a high-voltage switch, a transceiver switch, etc., and the power supply module 11 is used to provide suitable and stable power for these ultrasound hardware modules.
  • the power connector may not be provided with a signal restoration circuit.
  • the system further includes a signal restoration device, and the signal output end of the power connector can be connected to the signal restoration device, so as to be coupled
  • the APM_Trig signal is restored by the signal restoration device.
  • the signal restoration device For the specific circuit of the signal restoration device, reference may be made to the aforementioned signal restoration circuit 23.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声设备(1)和超声***,该设备(1)包括电源模块(11)、耦合电路(12)、声功率测试信号模块(13)、电源接口(14)和超声硬件模块(15);电源模块(11)的一端连接超声硬件模块(15),另一端与电源接口(14)相连接;耦合电路(12)的一端与声功率测试信号模块(13)相连接,另一端与电源接口(14)相连接。与现有技术相比,该超声设备(1)通过增加耦合电路(12),将APM_Trig信号通过电源接口(14)引出,从而不需要设备增加额外接口,简化了设备的设计。

Description

超声设备及超声*** 技术领域
本发明涉及超声诊断技术领域,尤其涉及一种超声设备及超声***。
背景技术
声功率是声场总能量关系的一个物理量,由于超声设备用于人体的器件检测,所以法规规定超声设备的单次声功率和累计声功率必须控制在人体可接受的范围之内,因此超声***中的声功率测试是必不可少的测试。
在测试时,超声设备与测试设备连接,测试人员控制超声设备选定某种工作模式,那么相应的声功率测试信号(后续统称为APM_Trig)接口就输出这种模式下的Trig信号,声功率测试设备根据接收到APM_Trig信号的时刻,开始采集声场的能量并进行声功率测试。
因此,进行声功率测试时,需要从超声设备中引出这样一个输出APM_Trig信号的接口。对于大型超声设备来说,多引出一个信号接口对整机设计本身并无太大的影响。但是对于便携式或者掌上超声来说,多引出一个接口,就会对设备的防水、散热和外观等带来影响。
发明内容
本发明的目的在于提供一种超声设备及超声***。
为实现上述发明目的之一,本发明一实施方式提供一种超声设备,其特征在于:所述设备包括电源模块、耦合电路、声功率测试信号模块、电源接口和超声硬件模块;
所述电源模块的一端连接所述超声硬件模块,另一端与所述电源接口相连接;
所述耦合电路的一端与所述声功率测试信号模块相连接,另一端与所述电 源接口相连接。
作为本发明一实施方式的进一步改进,所述耦合电路包括场效应管和RC震荡电路,所述声功率测试信号模块与所述场效应管的栅极相连接,所述场效应管的源极接地,漏极通过串接所述RC震荡电路,与所述电源接口相连接。
作为本发明一实施方式的进一步改进,所述电源模块连接所述电源接口的一端和所述耦合电路连接所述电源接口的一端之间并联有接地的滤波电容。
作为本发明一实施方式的进一步改进,所述超声硬件模块包括超声前端信号采集模块、高压开关和收发转换开关。
为实现上述发明目的之一,本发明一实施方式提供一种超声***,其特征在于:所述***包括超声设备和电源连接器;
所述超声设备包括电源模块、耦合电路、声功率测试信号模块和电源接口;所述电源模块的一端与所述电源接口相连接;所述耦合电路的一端与所述声功率测试信号模块相连接,另一端与所述电源接口相连接;
所述电源连接器包括电压输出端和信号输出端,所述电压输出端与所述超声设备的电源接口连接后能够给所述超声设备提供输入电压,所述信号输出端与所述电压输出端相连接。
作为本发明一实施方式的进一步改进,所述电源连接器还包括信号还原电路,所述信号还原电路的一端连接所述电压输出端,另一端连接所述信号输出端。
作为本发明一实施方式的进一步改进,所述耦合电路包括场效应管和RC震荡电路,所述声功率测试信号模块与所述场效应管的栅极相连接,所述场效应管的源极接地,漏极通过串接所述RC震荡电路,与所述电源接口相连接;
所述信号还原电路包括放大器、耦合电容和比较器,所述电压输出端连接所述放大器的反向输入端,所述耦合电容的一端连接所述放大器的输出端,另一端连接所述比较器的正端,所述比较器的负端连接固定电压,所述比较放大器的输出端连接所述信号输出端。
作为本发明一实施方式的进一步改进,所述超声设备的电源模块连接所述 电源接口的一端和所述耦合电路连接所述电源接口的一端之间并联有接地的滤波电容。
作为本发明一实施方式的进一步改进,所述超声设备还包括超声硬件模块,所述超声硬件模块与所述电源模块连接,所述超声硬件模块包括超声前端信号采集模块、高压开关和收发转换开关。
作为本发明一实施方式的进一步改进,所述***还包括信号还原设备,所述电源连接器的信号输出端能够与所述信号还原设备连接。
与现有技术相比,本发明的超声设备通过增加耦合电路,将APM_Trig信号通过电源接口引出,从而不需要设备增加额外接口,简化了设备的设计。
附图说明
图1是典型的超声设备的扫查时序示意图。
图2是超声设备和声功率测试设备的连接框架示意图。
图3是本发明的超声***的电路图。
图4是APM_Trig信号和Pulse couple信号的波形对比图。
图5是本发明的放大器N输出的波形图。
图6是本发明的比较器LOCMP的输入端和输出端的波形图。
其中,1、超声设备;11、电源模块;12、耦合电路;13、声功率测试信号模块;14、电源接口;15、超声硬件模块;2、电源连接器;21、电压输出端;22、信号输出端;23、信号还原模块。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
超声设备是用于人体的检测器件,因此超声设备的单次声功率和累计声功率必须控制在人体可接受的范围之内。
超声设备的工作时序如图1所示。Freeze信号为高表示冻结阶段,为低表示超声设备处于扫查阶段,一个Trig信号的周期表示一根线数据的扫查,N根线信号组合起来就成为了一幅超声图像。一般来说,每一根线都有自己的配置信息参数,所述配置信息参数在Trig信号周期的高电平期间被发送到相应的硬件中,在Trig信号周期的低电平期间,所述低电平期间分为发射时段和接收时段。在发射时段,超声设备的发射模块产生相应发射电脉冲,通过换能器,将电信号转化为声场信号,声功率测试设备就需要采集这个声场信号。所以,在声功率测试的过程中,Trig信号作为发射脉冲产生时刻的辅助信号,必须要通过接口引出并接在声功率测试设备上,如图2所示。而用于输出在设定工作模式下的Trig信号,本文为了论述方便,将该信号称之为APM_Trig信号。
为了不在超声设备上增加额外的接口就能将APM_Trig信号引出,如图3所示,本发明提供一种超声设备1,所述设备包括电源模块11、耦合电路12、声功率测试信号模块13、电源接口14和超声硬件模块15。
所述电源模块11的一端连接所述超声硬件模块15,用于为超声硬件模块15提供所需要的电压或者电流,电源模块15的另一端与所述电源接口14相连接,外部电源通过电源接口14为电源模块15供电,因此电源接口也可以称为输入电压端。
所述耦合电路12的一端与所述声功率测试信号模块13相连接,另一端与所述电源接口14相连接。声功率测试信号模块13输出APM_Trig信号,耦合电路12将所述APM_Trig信号耦合到电源接口。如此,APM_Trig信号通过复用电源接口而被引出,从而不需要超声设备增加额外接口,简化了设备的设计。
在一个优选的实施例中,所述耦合电路12包括场效应管N和RC震荡电路,所述声功率测试信号模块13与所述场效应管N的栅极G相连接,所述场效应管N的源极S接地,漏极D通过串接所述RC震荡电路,与所述电源接口14相连接。当没有APM_Trig信号输出(即APM_Trig信号输出低电 平)时,场效应管N的栅极G为低电平,场效应管N处于截止状态。此时电源接口通过外部电源对RC震荡电路进行充电,使得RC震荡电路的电容两端的电压等于外部电源的输入电压。
当有APM_Trig信号输入到场效应管N的栅极G时,该信号的高电平使场效应管N导通,从而漏极D的电压就会被瞬间拉低。由于RC电路的存在,RC电路的电容会在这个时刻放电,当APM_Trig信号的高电平结束时,场效应管N又恢复截止,电源接口通过外部电源继续对RC震荡电路进行充电。当下一个APM_Trig信号的高电平再次到来时,重复上述动作。图4为声功率测试信号模块13输出的APM_Trig信号APM_Trig input和被耦合到电源接口14的Pulse couple信号的波形对比图。
APM_Trig信号为方波信号,而Pulse couple信号为一个向下的毛刺信号。此毛刺信号耦合在电源接口14(输入电源)上,为了不让此毛刺信号影响电源模块11,在所述电源模块11连接所述电源接口14的一端和所述耦合电路12连接所述电源接口14的一端之间并联有接地的滤波电容C1。
优选的,所述超声硬件模块包括超声前端信号采集模块、高压开关和收发转换开关等,电源模块11用于为这些超声硬件模块提供合适稳定的电源。
如图3所示,本发明还提供了一种超声***,所述***包括超声设备1和电源连接器2。所述超声设备包括电源模块11、耦合电路12、声功率测试信号模块13和电源接口14;所述电源模块11的一端与所述电源接口14相连接;所述耦合电路12的一端与所述声功率测试信号模块13相连接,另一端与所述电源接口14相连接。声功率测试信号模块13输出APM_Trig信号,耦合电路12将所述APM_Trig信号耦合到电源接口。如此,APM_Trig信号通过复用电源接口而被引出,从而不需要超声设备增加额外接口,简化了设备的设计。
所述电源连接器2包括电压输出端21和信号输出端22,所述电压输出端22与所述超声设备的电源接口14连接后能够给所述超声设备1提供输入电压,所述信号输出端22与所述电压输出端21相连接,从而被耦合的 APM_Trig信号能够从所述信号输出端输出。
本发明的超声***,超声设备的APM_Trig信号通过电源接口,被引出到电源连接器上,从而不需要超声设备增加额外接口就可以对超声设备进行声功率测试,简化了超声设备的设计。
在一个优选实施方式中,所述电源连接器2还包括信号还原电路23,所述信号还原电路23的一端连接所述电压输出端21,另一端连接所述信号输出端22,所述信号输出端22与所述电压输出端21通过所述信号还原电路23相连接。如此,通过所述信号还原电路23,被耦合的APM_Trig信号被还原。具体的,所述耦合电路12包括场效应管VT和RC震荡电路,所述声功率测试信号模块13与所述场效应管VT的栅极G相连接,所述场效应管VT的源极S接地,漏极D通过串接所述RC震荡电路,与所述电源接口14相连接。具体的电路原理可以参考前文,此处不再赘述。此时方波信号(APM_Trig信号)被耦合成向下的毛刺信号(Pulse couple信号)到电源接口。
所述信号还原电路23包括放大器N、耦合电容C2和比较器LOCMP,所述电压输出端21连接所述放大器N的反向输入端,所述耦合电容C2的一端连接所述放大器N的输出端,另一端连接所述比较器LOCMP的正端,所述比较器的负端连接固定电压,所述比较放大器LOCMP的输出端连接所述信号输出端22。所述Pulse couple信号经过电压输入端21后输入放大器N的反向输入端,输出的信号波形如图5所示,然后将这个信号通过电容C2耦合到比较器LOCMP的正端,比较器LOCMP的负端接一个固定电压,所述固定电压的电位接近图5中的波形图的低电平。那么图5中的脉冲波形经过比较器LOCMP后输出高电平,其他时刻输出低电平,这样就能够把APM_Trig信号还原输出了。最后将这个被还原的输出信号送入声功率测试设备就可以满足测试需要。具体比较器LOCMP的输入端和输出端的波形图请参考图6所示。
APM_Trig信号为方波信号,而Pulse couple信号为一个向下的毛刺信号。此毛刺信号耦合在电源接口14(输入电源)上,为了不让此毛刺信号影响电 源模块11,在所述电源模块11连接所述电源接口14的一端和所述耦合电路12连接所述电源接口14的一端之间并联有接地的滤波电容C1。
优选的,所述超声硬件模块包括超声前端信号采集模块、高压开关和收发转换开关等,电源模块11用于为这些超声硬件模块提供合适稳定的电源。
需要说明的是,电源连接器也可以不设置信号还原电路,此时,所述***还包括信号还原设备,所述电源连接器的信号输出端能够与所述信号还原设备连接,从而将被耦合的APM_Trig信号通过所述信号还原设备还原。具体的信号还原设备的电路可以参考前述的信号还原电路23。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超声设备,其特征在于:所述设备包括电源模块、耦合电路、声功率测试信号模块、电源接口和超声硬件模块;
    所述电源模块的一端连接所述超声硬件模块,另一端与所述电源接口相连接;
    所述耦合电路的一端与所述声功率测试信号模块相连接,另一端与所述电源接口相连接。
  2. 根据权利要求1所述的超声设备,其特征在于:
    所述耦合电路包括场效应管和RC震荡电路,所述声功率测试信号模块与所述场效应管的栅极相连接,所述场效应管的源极接地,漏极通过串接所述RC震荡电路,与所述电源接口相连接。
  3. 根据权利要求1所述的超声设备,其特征在于:
    所述电源模块连接所述电源接口的一端和所述耦合电路连接所述电源接口的一端之间并联有接地的滤波电容。
  4. 根据权利要求1所述的超声设备,其特征在于:
    所述超声硬件模块包括超声前端信号采集模块、高压开关和收发转换开关。
  5. 一种超声***,其特征在于:所述***包括超声设备和电源连接器;
    所述超声设备包括电源模块、耦合电路、声功率测试信号模块和电源接口;所述电源模块的一端与所述电源接口相连接;所述耦合电路的一端与所述声功率测试信号模块相连接,另一端与所述电源接口相连接;
    所述电源连接器包括电压输出端和信号输出端,所述电压输出端与所述超声设备的电源接口连接后能够给所述超声设备提供输入电压,所述信号输出端与所述电压输出端相连接。
  6. 根据权利要求5所述的超声***,其特征在于:
    所述电源连接器还包括信号还原电路,所述信号还原电路的一端连接所述电压输出端,另一端连接所述信号输出端。
  7. 根据权利要求6所述的超声***,其特征在于:
    所述耦合电路包括场效应管和RC震荡电路,所述声功率测试信号模块与所述场效应管的栅极相连接,所述场效应管的源极接地,漏极通过串接所述RC震荡电路,与所述电源接口相连接;
    所述信号还原电路包括放大器、耦合电容和比较器,所述电压输出端连接所述放大器的反向输入端,所述耦合电容的一端连接所述放大器的输出端,另一端连接所述比较器的正端,所述比较器的负端连接固定电压,所述比较放大器的输出端连接所述信号输出端。
  8. 根据权利要求5所述的超声***,其特征在于:
    所述超声设备的电源模块连接所述电源接口的一端和所述耦合电路连接所述电源接口的一端之间并联有接地的滤波电容。
  9. 根据权利要求5所述的超声***,其特征在于:
    所述超声设备还包括超声硬件模块,所述超声硬件模块与所述电源模块连接,所述超声硬件模块包括超声前端信号采集模块、高压开关和收发转换开关。
  10. 根据权利要求5所述的超声***,其特征在于:
    所述***还包括信号还原设备,所述电源连接器的信号输出端能够与所述信号还原设备连接。
PCT/CN2020/123478 2019-10-11 2020-10-24 超声设备及超声*** WO2021068981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910964770.0 2019-10-11
CN201910964770.0A CN110652314B (zh) 2019-10-11 2019-10-11 超声设备及超声***

Publications (1)

Publication Number Publication Date
WO2021068981A1 true WO2021068981A1 (zh) 2021-04-15

Family

ID=69040594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123478 WO2021068981A1 (zh) 2019-10-11 2020-10-24 超声设备及超声***

Country Status (2)

Country Link
CN (1) CN110652314B (zh)
WO (1) WO2021068981A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110652314B (zh) * 2019-10-11 2022-01-07 飞依诺科技(苏州)有限公司 超声设备及超声***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224326A (zh) * 2007-12-25 2008-07-23 吴晓歌 医用超声水垫
CN101324649A (zh) * 2008-07-14 2008-12-17 瑞声声学科技(常州)有限公司 超声换能器功率测试仪及测试方法
US20130301383A1 (en) * 2012-05-14 2013-11-14 Oleg A. Sapozhnikov Portable acoustic holography systems for therapeutic ultrasound sources and associated devices and methods
CN205251572U (zh) * 2015-11-12 2016-05-25 朗昇科技(苏州)有限公司 一种智能移动超声波检测终端设备
CN110584706A (zh) * 2019-10-11 2019-12-20 飞依诺科技(苏州)有限公司 超声***和超声设备
CN110652314A (zh) * 2019-10-11 2020-01-07 飞依诺科技(苏州)有限公司 超声设备及超声***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2750584Y (zh) * 2004-12-02 2006-01-04 上海贝豪通讯电子有限公司 一种实现耳机、串口、充电功能三合一的手机接口
US7748901B2 (en) * 2007-04-06 2010-07-06 Unisyn Medical Technologies, Inc. Universal x-ray test bed
EP3128923B1 (en) * 2014-04-11 2018-06-13 Koninklijke Philips N.V. Apparatus for obtaining trigger signals from ultrasound systems
DE102015215141A1 (de) * 2015-08-07 2017-02-09 Siemens Healthcare Gmbh Synchronisationseinrichtung und Verfahren zur Synchronisierung einer Bildgebungsvorrichtung
CN106025742A (zh) * 2016-07-29 2016-10-12 深圳市和昶科技有限公司 应用于Type-C接口智能终端的转接器及转接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224326A (zh) * 2007-12-25 2008-07-23 吴晓歌 医用超声水垫
CN101324649A (zh) * 2008-07-14 2008-12-17 瑞声声学科技(常州)有限公司 超声换能器功率测试仪及测试方法
US20130301383A1 (en) * 2012-05-14 2013-11-14 Oleg A. Sapozhnikov Portable acoustic holography systems for therapeutic ultrasound sources and associated devices and methods
CN205251572U (zh) * 2015-11-12 2016-05-25 朗昇科技(苏州)有限公司 一种智能移动超声波检测终端设备
CN110584706A (zh) * 2019-10-11 2019-12-20 飞依诺科技(苏州)有限公司 超声***和超声设备
CN110652314A (zh) * 2019-10-11 2020-01-07 飞依诺科技(苏州)有限公司 超声设备及超声***

Also Published As

Publication number Publication date
CN110652314A (zh) 2020-01-07
CN110652314B (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2021068981A1 (zh) 超声设备及超声***
WO2019001210A1 (zh) 一种新型潜标数据采集***
CN103698756A (zh) 一种便携式超声***的前端装置
CN110584706B (zh) 超声***和超声设备
Lawry et al. A high-temperature acoustic-electric system for power delivery and data communication through thick metallic barriers
TW201440067A (zh) 記憶體的電壓測試裝置及方法
CN103731166A (zh) 一种频率可调的超声波发射驱动装置
CN207936934U (zh) 一种超声波测厚采集装置
CN204479706U (zh) 数字化宽频局部放电测试***
CN103353566B (zh) 用于模拟电路设备的电池在位检测电路
CN107064938A (zh) 一种低功耗声纳高度计
CN116493726A (zh) 一种超声波信号发生电路及焊接设备
CN103823174B (zh) 运载火箭电爆电路的检测***
CN107918069A (zh) 一种掉电测试***和方法
CN204142685U (zh) 一种绝缘子损伤检测仪
CN114069375A (zh) 可寻址激光驱动电路和可寻址激光仪
CN209513928U (zh) 便携式高压设备故障定位装置
CN111398697A (zh) 周期性脉冲电场下空间电荷测试***及测试方法
CN203688622U (zh) 功率半导体器件端电压光纤隔离取样电路
CN203405445U (zh) 微型超声波气泡探测器控制电路
CN201290692Y (zh) 一种有源发射接收模式转换开关
CN211086188U (zh) 一种用于断路器储能弹簧无损检测的超声导波装置
CN203965612U (zh) 一种tev检测用校准仪
CN103616547B (zh) 功率半导体器件端电压光纤隔离取样电路及方法
CN108614136A (zh) 一种基于mems传感器的数字电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875059

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20875059

Country of ref document: EP

Kind code of ref document: A1