WO2021065657A1 - 光コンバイナ及びレーザ装置 - Google Patents

光コンバイナ及びレーザ装置 Download PDF

Info

Publication number
WO2021065657A1
WO2021065657A1 PCT/JP2020/035961 JP2020035961W WO2021065657A1 WO 2021065657 A1 WO2021065657 A1 WO 2021065657A1 JP 2020035961 W JP2020035961 W JP 2020035961W WO 2021065657 A1 WO2021065657 A1 WO 2021065657A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
optical
output
laser
Prior art date
Application number
PCT/JP2020/035961
Other languages
English (en)
French (fr)
Inventor
智之 藤田
松本 亮吉
山口 裕
拓矢 小林
鈴木 究
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US17/631,750 priority Critical patent/US11955777B2/en
Priority to EP20872318.9A priority patent/EP4039401A4/en
Priority to CN202080057354.3A priority patent/CN114270235B/zh
Priority to JP2021550674A priority patent/JP7257540B2/ja
Publication of WO2021065657A1 publication Critical patent/WO2021065657A1/ja
Priority to JP2023021941A priority patent/JP2023058673A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present invention relates to an optical combiner and a laser apparatus, and particularly relates to an optical combiner that combines laser light from a plurality of input optical fibers and outputs the laser light from an output optical fiber.
  • a beam of laser light radiated to an object to be processed is formed by forming a plurality of optical waveguides on an optical fiber on the output side and controlling the laser light introduced into each of these optical waveguides. Techniques have also been developed to transform the profile into the desired form.
  • Patent Document 1 as an optical combiner for introducing laser light into an output optical fiber having a central core as an optical waveguide and an outer core located around the central core, the center corresponds to the central core of the output optical fiber. Disclosure is that a plurality of optical fibers (center side optical fibers) are arranged on the side, and a plurality of optical fibers (outer optical fibers) are arranged in an annular shape around the center side optical fiber corresponding to the outer core of the output optical fiber. (See FIGS. 8a and 8b). In the conventional configuration disclosed in Patent Document 1, the diameter of the central optical fiber must be smaller than the diameter of the outer optical fiber in order to avoid increasing the diameter of the output optical fiber.
  • the present invention has been made in view of the problems of the prior art, and is an easy-to-manufacture light capable of introducing laser light into the first optical waveguide and the second optical waveguide of the output optical fiber, respectively.
  • the primary purpose is to provide a combiner.
  • a second object of the present invention is to provide a laser apparatus capable of outputting a laser beam having a desired beam profile.
  • an easy-to-manufacture optical combiner capable of introducing laser light into the first optical waveguide and the second optical waveguide of the output optical fiber.
  • the optical combiner includes a plurality of first input optical fibers including a core, a bridge entrance surface connected to the cores of the plurality of first input optical fibers, and the bridge entrance surface along the optical axis direction.
  • a bridge fiber having a reduced diameter portion whose diameter gradually decreases as the distance from the bridge increases, a bridge exit surface opposite to the bridge entrance surface in the optical axis direction, and a core connected to the bridge exit surface of the bridge fiber.
  • An intermediate optical fiber including, at least one second input optical fiber including a core, a first optical waveguide connected to the core of the intermediate optical fiber, and at least one second input optical fiber. It includes an output optical fiber including a second optical waveguide connected to the core.
  • a laser apparatus capable of outputting a laser beam having a desired beam profile.
  • This laser apparatus includes at least one first laser light source that generates a first laser beam, at least one second laser light source that generates a second laser beam, and the above-mentioned optical combiner. At least one of the plurality of first input optical fibers of the optical combiner is connected to the at least one first laser light source. The at least one second input optical fiber of the optical combiner is connected to the at least one second laser light source.
  • FIG. 1 is a schematic block diagram showing a configuration of a laser device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an optical combiner in the laser device of FIG.
  • FIG. 3 is an exploded perspective view of the optical combiner of FIG.
  • FIG. 4 is a diagram showing a cross section of the output optical fiber of the optical combiner of FIG. 3 together with a refractive index distribution along the radial direction.
  • FIG. 5 is a schematic view showing the connection relationship between the intermediate optical fiber of the optical combiner of FIG. 3 and the second input optical fiber and the output optical fiber.
  • FIG. 6 is a perspective view showing an optical combiner according to another embodiment of the present invention.
  • FIG. 1 is a schematic block diagram showing a configuration of a laser device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an optical combiner in the laser device of FIG.
  • FIG. 3 is an exploded perspective view of the optical combiner of FIG.
  • FIG. 4 is a
  • FIG. 7 is a schematic block diagram showing a configuration of a laser device according to another embodiment of the present invention.
  • FIG. 8 is a diagram showing a cross section of an output optical fiber according to another embodiment of the present invention together with a refractive index distribution along the radial direction.
  • FIGS. 1 to 8 the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 1 to 8, the scale and dimensions of each component may be exaggerated or some components may be omitted. In the following description, unless otherwise noted, terms such as “first” and “second” are only used to distinguish the components from each other and represent a particular order or order. It's not a thing.
  • FIG. 1 is a schematic block diagram showing a configuration of a laser device 1 according to an embodiment of the present invention.
  • the first laser light source 2A and the second laser light source 2B that generate the laser light, and the laser light from the respective laser light sources 2A and 2B are input.
  • the optical combiner 3 is provided with a laser emitting unit 4 provided at an end portion on the downstream side of the optical combiner 3, and a control unit 5 for controlling the laser light sources 2A and 2B.
  • the laser light sources 2A and 2B and the optical combiner 3 are connected to each other by an optical fiber 6, and the optical combiner 3 and the laser emitting unit 4 are connected to each other by an optical fiber 7.
  • the laser light sources 2A and 2B for example, a fiber laser or a semiconductor laser can be used.
  • the laser apparatus 1 in the present embodiment includes three laser light sources 2A and six laser light sources 2B, but the number of laser light sources 2A and 2B is not limited to this.
  • the direction in which the laser light propagates from the laser light sources 2A and 2B toward the laser emitting portion 4 is referred to as "downstream side", and the direction opposite to that is referred to as "upstream”. It is called "side”.
  • the first laser beam generated by the first laser light source 2A and the second laser beam generated by the second laser light source 2B propagate through the optical fiber 6 and emit light.
  • combiner 3 laser light from a plurality of laser light sources 2A and 2B is combined and output to the optical fiber 7.
  • the high-power laser beam L output to the optical fiber 7 is emitted from the laser emitting unit 4 toward, for example, a work piece.
  • FIG. 2 is a perspective view showing the optical combiner 3, and FIG. 3 is an exploded perspective view.
  • the optical combiner 3 in the present embodiment includes a plurality of first input optical fibers 10 each composed of at least a part of an optical fiber 6 extending from the first laser light source 2A. It is composed of at least a part of a bridge fiber 20 connected to the first input optical fiber 10, an intermediate optical fiber 30 connected to the bridge fiber 20, and an optical fiber 6 extending from the second laser light source 2B, respectively.
  • a plurality of second input optical fibers 40 and an output optical fiber 50 composed of at least a part of the above-mentioned optical fiber 7 are included.
  • the three first input optical fibers 10 are connected to the bridge fiber 20 in a state of being in contact with each other.
  • Each first input optical fiber 10 has a core 11 and a clad 12 that covers the periphery of the core 11.
  • the refractive index of the clad 12 is lower than that of the core 11, and an optical waveguide in which the first laser beam from the first laser light source 2A propagates is formed inside the core 11.
  • the first input optical fiber 10 propagates the first laser light from the first laser light source 2A into the inside of the core 11 and emits the first laser light from the exit end portion 10A (see FIG. 3). It is configured.
  • the first input optical fiber 10 has a coating layer (not shown) that covers the outer peripheral surface of the clad 12 at a position away from the bridge fiber 20.
  • the bridge fiber 20 has a core 21 and a clad 22 that covers the periphery of the core 21.
  • the refractive index of the clad 22 is lower than that of the core 21, and an optical waveguide through which the first laser beam propagates is formed inside the core 21.
  • the bridge fiber 20 having such a core-clad structure inside has a first cylindrical portion 23 extending with a constant outer diameter along the optical axis, and a first cylindrical portion 23 gradually having an outer diameter along the optical axis. It includes a reduced diameter portion 24 having a smaller diameter and a second cylindrical portion 25 extending from the reduced diameter portion 24 along the optical axis direction with a constant outer diameter.
  • the end surface of the first cylindrical portion 23 is a bridge incident surface 26 to which the exit end portions 10A of the respective first input optical fibers 10 are fused and connected.
  • the end surface of the second cylindrical portion 25 located on the side opposite to the bridge incident surface 26 in the optical axis direction is the bridge exit surface 27 to which the incident end portion 30A (see FIG. 3) of the intermediate optical fiber 30 is fused and connected. It has become.
  • the size of the core 21 on the bridge entrance surface 26 of the bridge fiber 20 is such that the core 11 of all the first input optical fibers 10 can be contained therein, and the first input optical fiber 10 and the bridge.
  • the fiber 20 is fused and connected so that the cores 11 of all the first input optical fibers 10 are located within the region of the core 21 on the bridge entrance surface 26 of the bridge fiber 20.
  • the bridge fiber 20 propagates the first laser beam emitted from the emission end portion 10A of the first input optical fiber 10 into the core 21 and reduces the beam diameter by the reduced diameter portion 24. It is configured to do.
  • the refractive index of the core 21 of the bridge fiber 20 is set to the first. It is preferable that the refractive index of the core 11 of the input optical fiber 10 is substantially the same.
  • the intermediate optical fiber 30 has a core 31 and a clad 32 that covers the periphery of the core 31.
  • the refractive index of the clad 32 is lower than that of the core 31, and an optical waveguide through which the first laser beam propagates is formed inside the core 31.
  • the size of the core 31 of the intermediate optical fiber 30 is equal to or larger than the size of the core 21 on the bridge exit surface 27 of the bridge fiber 20, and the bridge fiber 20 and the intermediate optical fiber 30 are the bridge fibers on the bridge exit surface 27.
  • the core 21 of the 20 is fused and connected so as to be located in the region of the core 31 of the intermediate optical fiber 30.
  • the intermediate optical fiber 30 is configured to propagate the first laser beam propagating from the bridge fiber 20 into the core 31 thereof.
  • the refractive index of the core 31 of the intermediate optical fiber 30 is set to the core of the bridge fiber 20. It is preferable that the refractive index is substantially the same as that of 21.
  • each second input optical fiber 40 has a core 41 and a clad 42 that covers the periphery of the core 41.
  • the refractive index of the clad 42 is lower than that of the core 41, and an optical waveguide in which the second laser beam from the second laser light source 2B propagates is formed inside the core 41.
  • the second input optical fiber 40 propagates the second laser light from the second laser light source 2B into the core 41 and emits the second laser light from the exit end 40A (see FIG. 3). It is configured.
  • a second input optical fiber 40 an optical fiber of the same type as the above-mentioned first input optical fiber 10 can be used.
  • the second input optical fiber 40 has a coating layer (not shown) that covers the outer peripheral surface of the clad 42 at a position away from the output optical fiber 50.
  • FIG. 4 is a diagram showing a cross section of the output optical fiber 50 together with a refractive index distribution along the radial direction.
  • the output optical fiber 50 includes a center core 51, an inner clad 52 that covers the periphery of the center core 51, a ring core 53 that covers the periphery of the inner clad 52, and an outer clad 54 that covers the periphery of the ring core 53.
  • the refractive index of the inner clad 52 is lower than that of the center core 51 and the ring core 53
  • the refractive index of the outer clad 54 is lower than that of the ring core 53.
  • a first optical waveguide in which the laser beam propagates is formed inside the center core 51
  • a second optical waveguide in which the laser beam propagates is formed inside the ring core 53.
  • an outer clad 54 is formed around the ring core 53 as a low refractive index medium having a refractive index lower than that of the ring core 53.
  • a low refractive index medium is the outer clad 54.
  • an air layer may be formed around the ring core 53, and this air layer may be used as a low refractive index medium.
  • the output optical fiber 50 has a coating layer (not shown) that covers the outer peripheral surface of the outer clad 54 at a position away from the intermediate optical fiber 30 and the second input optical fiber 40.
  • FIG. 5 is a schematic view showing the connection relationship between the intermediate optical fiber 30 and the second input optical fiber 40 and the output optical fiber 50.
  • the size of the center core 51 of the output optical fiber 50 is larger than that of the core 31 of the intermediate optical fiber 30, and as shown in FIG. 5, the intermediate optical fiber 30 and the output optical fiber 50 are The core 31 of the intermediate optical fiber 30 is fused and connected so as to be located in the region (inner shaded region) of the center core 51 of the output optical fiber 50.
  • the size of the ring core 53 of the output optical fiber 50 is such that all the cores 41 of the second input optical fiber 40 can be included inside, and as shown in FIG. 5, the second input The optical fiber 40 and the output optical fiber 50 are fused and connected so that the core 41 of all the second input optical fibers 40 is located in the region (outer shaded region) of the ring core 53 of the output optical fiber 50.
  • the first laser beam generated by the first laser light source 2A propagates through the core 11 of the first input optical fiber 10 and travels from the bridge incident surface 26 of the bridge fiber 20 to the bridge fiber 20. It is incident on the core 21.
  • the laser beam incident on the core 21 of the bridge fiber 20 propagates through the core 21 of the bridge fiber 20 while being reflected at the interface between the core 21 and the clad 22, and the bridge is in a state where the beam diameter is reduced by the reduced diameter portion 24. It is incident on the core 31 of the intermediate optical fiber 30 from the exit surface 27.
  • the laser light incident on the core 31 of the intermediate optical fiber 30 propagates inside the core 31 and enters the center core 51 of the output optical fiber 50, propagates inside the center core 51 which is the first optical waveguide, and emits the laser. It is emitted from the part 4 (see FIG. 1).
  • the second laser light generated by the second laser light source 2B propagates through the core 41 of the second input optical fiber 40 and is incident on the ring core 53 of the output optical fiber 50.
  • the laser light incident on the ring core 53 of the output optical fiber 50 propagates inside the ring core 53, which is the second optical waveguide, and is emitted from the laser emitting unit 4 (see FIG. 1).
  • the laser light propagating through the core 11 of the first input optical fiber 10 and the core 41 of the second input optical fiber 40 is introduced into the center core 51 and the ring core 53 of the output optical fiber 50, respectively.
  • the first input optical fiber 10 since the light propagating through the core 11 of the first input optical fiber 10 is introduced into the center core 51 of the output optical fiber 50 after the beam diameter is reduced by the bridge fiber 20, the first input optical fiber 10 The first input optical fiber 10 can be connected to the bridge fiber 20 without reducing the diameter. Therefore, since the mechanical strength of the first input optical fiber 10 can be maintained, the optical combiner 3 can be easily manufactured.
  • the number of the first input optical fibers 10 can be increased without reducing the diameter of the first input optical fiber 10, the power of the laser light introduced into the center core 51 of the output optical fiber 50 can be increased. It also becomes easy to adjust the output balance of the laser light propagating in the center core 51 and the laser light propagating in the ring core 53. This makes it possible to output a laser beam having a desired beam profile from the laser emitting unit 4 of the laser apparatus 1.
  • the output of the first laser beam generated by the first laser light source 2A is adjusted by controlling the first laser light source 2A (for example, the current supplied to the first laser light source 2A) by the control unit 5. It is also possible to adjust the output of the second laser beam generated by the second laser light source 2B by controlling the second laser light source 2B (for example, the current supplied to the second laser light source 2B). be able to. Therefore, the control unit 5 can control the first laser light source 2A and the second laser light source 2B to change the ratio of the intensity of the first laser light and the second laser light, and the output optical fiber 50 can be changed. The ratio of the first laser beam introduced into the center core 51 and the second laser beam introduced into the ring core 53 can be adjusted. In this way, the profile of the laser beam output from the laser emitting unit 4 of the laser apparatus 1 can be easily formed into a desired shape.
  • the control unit 5 can control the first laser light source 2A and the second laser light source 2B to change the ratio of the intensity of the first laser light and the second laser light,
  • the core 31 of the intermediate optical fiber 30 is located in the region of the center core 51 of the output optical fiber 50, the laser light propagating through the core 31 of the intermediate optical fiber 30 is efficiently output as the output optical fiber. It can be introduced into 50 center cores 51.
  • the cores 41 of all the second input optical fibers 40 are located in the region of the ring core 53 of the output optical fiber 50, the cores of the second input optical fiber 40 The laser light propagating in 41 can be efficiently introduced into the ring core 53 of the output optical fiber 50.
  • not all the cores 41 of the second input optical fiber 40, but the core 41 of a part of the second input optical fiber 40 is located in the region of the ring core 53 of the output optical fiber 50. May be good.
  • the outer peripheral edge of the clad 32 of the intermediate optical fiber 30 is within the region of the inner clad 52 of the output optical fiber 50 (the region between the inner shaded region and the outer shaded region). It is preferably located.
  • any of the second input optical fibers 40 located outside the intermediate optical fiber 30 Is located in the region outside the center core 51 of the output optical fiber 50, so that the laser beam propagating through the core 41 of the second input optical fiber 40 is emitted from the core 31 of the intermediate optical fiber 30 to the output optical fiber 50. It is possible to suppress mixing with the laser beam incident on the center core 51 of the above.
  • At least a part of the outer peripheral edge of the second input optical fiber 40 is between the region of the inner clad 52 of the output optical fiber 50 (between the inner shaded region and the outer shaded region). It is preferably located within the region).
  • the reflected light returns from the laser emitting unit 4, it is conceivable that the reflected light leaks inside the optical combiner 3.
  • a conventional optical combiner as described in Patent Document 1 since the central optical fiber and the outer optical fiber are connected to the same surface of the output optical fiber, reflection propagating through the central core of the output optical fiber. Light and reflected light propagating in the outer core may leak from one surface of the output optical fiber, resulting in increased local heat generation.
  • the first input optical fiber 10 is connected to the bridge incident surface 26 of the bridge fiber 20, and the second input optical fiber 40 is connected to the output optical fiber 50, so that the output is output.
  • the reflected light propagating through the center core 51 of the optical fiber 50 leaks from the bridge incident surface 26 of the bridge fiber 20, and the reflected light propagating through the ring core 53 leaks from the end surface of the output optical fiber 50.
  • the reflected light is dispersed to generate local heat. Can be reduced. Therefore, the risk of failure of the optical combiner 3 is also reduced.
  • a small-diameter circular beam having a high optical power density on the center side of the laser beam L may be used.
  • An annular beam may be used.
  • Such a large-diameter ring-shaped beam has an advantage that the optical power density at the beam waist portion can be increased as compared with a circular beam even if the beam diameter and the beam output are the same. Suitable for cutting.
  • the emission angle of the laser light emitted from the ring core 53 of the output optical fiber 50 in the laser emission section 4 is larger than the emission angle of the laser light emitted from the center core 51, it is suitable for cutting a thick plate.
  • the superiority of the ring-shaped beam is reduced. This is because as the light emission angle increases, the decrease in power density increases as the distance from the focal position increases. Therefore, when the object to be processed becomes thicker, the power density required for cutting cannot be obtained in the thickness direction. Because.
  • the optical combiner 3 may be configured so that the emission angle of the laser light emitted from the ring core 53 of the output optical fiber 50 is smaller than the emission angle of the laser light emitted from the center core 51.
  • the NA of the light emitted from the second input optical fiber 40 to the ring core 53 of the output optical fiber 50 is set from the first input optical fiber 10. It may be lower than the NA of the light emitted to the center core 51 of the output optical fiber 50 through the bridge fiber 20 and the intermediate optical fiber 30.
  • "equivalent performance" in a laser light source means performance in a range in which manufacturing variation is allowed, for example, a beam parameter product (BPP) in the range of ⁇ 20%. Can be mentioned.
  • the second input optical fiber 40 is connected to the ring core 53 of the output optical fiber 50.
  • a reduced diameter portion may be formed in the second input optical fiber 40 so that the diameter of the optical fiber is the smallest.
  • the core of the non-reduced portion of the second input optical fiber 40 with respect to the diameter of the core 41 at the end face of the reduced diameter portion of the second input optical fiber 40 connected to the ring core 53 of the output optical fiber 50.
  • the diameter reduction ratio of the reduced diameter portion of the second input optical fiber 40 is the center core 51 of the output optical fiber 50. It is necessary to output a laser beam L suitable for cutting a thick plate if it is smaller than the ratio of the diameter of the core 21 on the bridge incident surface 26 of the bridge fiber 20 to the diameter of the core 31 of the connected intermediate optical fiber 30. preferable.
  • an optical adjusting member 60 having a function of reducing the emission angle of the laser light propagating inside may be provided between the second input optical fiber 40 and the output optical fiber 50. ..
  • an optical adjusting member 60 for example, a GRIN (Graded Index or Gradient Index) lens member whose refractive index gradually decreases from the central axis toward the outer side in the radial direction can be used.
  • a laser beam for processing the object W to be processed it is possible to suppress fluctuations in the beam diameter and the optical power density on the front surface, the inside, and the back surface of the object W to be processed.
  • a thick metal plate can be formed. It is possible to irradiate the object W to be processed with a laser beam L suitable for processing.
  • the focusing optical system The laser light from the ring core 53 and the laser light from the center core 51 may overlap at the defocus position deviated from the focal position, which may lead to deterioration of processing performance.
  • an optical adjusting member having a function of increasing the emission angle of the second laser beam propagating inside may be used.
  • the optical adjusting member 60 includes, for example, an optical fiber having a mode field diameter larger than the mode field diameter of the second input optical fiber 40, and a refractive index gradually increasing from the central portion toward the outer peripheral edge portion in the radial direction.
  • a columnar lens member having an increasing refractive index distribution, a tapered member whose diameter gradually decreases along the optical axis direction from the second input optical fiber 40, and a combination of two GRIN lens members can be considered.
  • clad mode light that leaks from the core and propagates through the clad may be generated. It is considered that such clad mode light causes heat generation in the output optical fiber 50 on the downstream side of the optical combiner 3, and the clad mode light is irradiated from the laser emitting portion 4 to an unintended region for laser processing. It is also possible to reduce the quality of the laser.
  • the output optical fiber 50 includes a plurality of cores 51 and 53 as in the above-described embodiment
  • the clad mode light generated when the laser light is incident on the respective cores 51 and 53 is the same. Since the clads 52 and 54 of the output optical fiber 50 are propagated, the amount of clad mode light propagating in the output optical fiber 50 tends to increase as compared with the case where the output optical fiber 50 is composed of a single core optical fiber. It is in.
  • a clad mode light removing portion is provided in the middle of the output optical fiber 50 in order to remove such clad mode light, the amount of heat generated by the clad mode light removing portion increases, so that the clad mode light is sufficiently provided. It is possible that it cannot be completely removed.
  • a first clad mode light removing unit 210 for removing clad mode light leaking from the core 31 of the intermediate optical fiber 30 to the clad 32 is provided in the middle of the intermediate optical fiber 30, and the output light is output.
  • a second clad mode light removing unit 220 that removes clad mode light leaking from the ring core 53 of the output optical fiber 50 to the outer clad 54 may be provided in the middle of the fiber 50.
  • the clad mode light leaked to the clad 32 of the intermediate optical fiber 30 is removed by the first clad mode light removing unit 210 before being incident on the output optical fiber 50, so that the second clad mode light
  • the amount of heat generated in the removing unit 220 can be reduced.
  • known clad mode light removing structures can be used as these clad mode light removing units 210 and 220.
  • a first optical control unit 230 for controlling the NA of light propagating in the core 31 of the intermediate optical fiber 30 by controlling the load applied to the intermediate optical fiber 30 is provided in the middle of the optical fiber 30, and the output optical fiber 50 is provided.
  • a second optical control unit 240 may be provided in the middle of the process to control the NA of the light propagating through the center core 51 and the ring core 53 of the output optical fiber 50 by controlling the load applied to the output optical fiber 50.
  • optical control units 230 and 240 include those that apply a load to an optical fiber by heating or forming a temperature distribution, those that bend an optical fiber, and those that apply a lateral pressure to an optical fiber.
  • the load applied to the output optical fiber 50 by the second optical control unit 240 mainly affects the light propagating through the ring core 53 located on the outside, and the light propagating through the center core 51 on the central side is not so affected.
  • the light emitted from the intermediate optical fiber 30 to the center core 51 of the output optical fiber 50 is affected by the load applied to the intermediate optical fiber 30 by the first optical control unit 230. Therefore, the emission angle of the laser light emitted from the center core 51 of the output optical fiber 50 can be controlled mainly by the first optical control unit 230, and the emission angle of the laser light emitted from the ring core 53 is mainly the first. It can be controlled by the optical control unit 240 of 2.
  • both the clad mode light removing units 210 and 220 and the optical control units 230 and 240 may be provided, or only one of them may be provided.
  • clad mode light may be generated due to the application of a load by the optical control units 230 and 240.
  • the first clad mode light removing unit 210 is provided on the downstream side of the first optical control unit 230, and the second clad mode light removing unit 220 is provided. It is preferable to provide it on the downstream side of the optical control unit 240 of 2.
  • the output optical fiber 50 described above is not limited to the structure shown in FIG.
  • the output optical fiber 150 as shown in FIG. 8 can be used.
  • the output optical fiber 150 shown in FIG. 8 has a core 151, an inner clad 152 that covers the periphery of the core 151, and an outer clad 153 that covers the periphery of the inner clad 152.
  • the refractive index of the inner clad 152 is lower than that of the core 151
  • the refractive index of the outer clad 153 is lower than that of the inner clad 152.
  • a first optical waveguide in which the laser light propagates is formed inside the core 151
  • a second optical waveguide in which the laser light propagates is formed inside the inner clad 152 and the core 151.
  • the core 31 of the intermediate optical fiber 30 is fusion-bonded to the core 151 of the output optical fiber 150
  • the core 41 of the second input optical fiber 40 is fusion-bonded to the inner clad 152.
  • the output optical fiber 150 has a coating layer (not shown) that covers the outer peripheral surface of the outer clad 153 at a position away from the intermediate optical fiber 30 and the second input optical fiber 40.
  • the laser light propagating through the core 11 of the first input optical fiber 10 is incident on the core 21 of the bridge fiber 20 from the bridge incident surface 26 of the bridge fiber 20, and the beam thereof is formed by the reduced diameter portion 24.
  • the light is incident on the core 31 of the intermediate optical fiber 30 from the bridge exit surface 27 in a state where the diameter is reduced.
  • the laser light incident on the core 31 of the intermediate optical fiber 30 propagates through the core 31 and enters the core 151 of the output optical fiber 150, propagates inside the core 151 which is the first optical waveguide, and the laser emitting portion 4 (See FIG. 1).
  • the laser light propagating through the core 41 of the second input optical fiber 40 enters the inner clad 152 of the output optical fiber 150 and propagates inside the inner clad 152 and the core 151 which are the second optical waveguides. Is emitted from the laser emitting unit 4 (see FIG. 1).
  • an outer clad 153 is formed around the inner clad 152 as a low refractive index medium having a refractive index lower than that of the inner clad 152.
  • the rate medium is not limited to the coating layer such as the outer clad 153, and for example, an air layer may be formed around the inner clad 152, and this air layer may be used as the low refractive index medium.
  • the input optical fiber 40 connected to the second optical waveguide of the output optical fibers 50 and 150
  • the number may be one, and the number of the laser light sources 2B connected to the input optical fiber 40 may also be one.
  • the example in which the laser light source 2A is connected to each of the plurality of input optical fibers 10 is described, but it is necessary to connect the laser light source 2A to all of the plurality of input optical fibers 10. Instead, the laser light source 2A may be connected to one or more input optical fibers 10.
  • an easy-to-manufacture optical combiner capable of introducing laser light into the first optical waveguide and the second optical waveguide of the output optical fiber, respectively.
  • the optical combiner includes a plurality of first input optical fibers including a core, a bridge entrance surface connected to the cores of the plurality of first input optical fibers, and the bridge entrance surface along the optical axis direction.
  • a bridge fiber having a reduced diameter portion whose diameter gradually decreases as the distance from the bridge increases, a bridge exit surface opposite to the bridge entrance surface in the optical axis direction, and a core connected to the bridge exit surface of the bridge fiber.
  • An intermediate optical fiber including, at least one second input optical fiber including a core, a first optical waveguide connected to the core of the intermediate optical fiber, and at least one second input optical fiber. It includes an output optical fiber including a second optical waveguide connected to the core.
  • the light propagating through the cores of the plurality of first input optical fibers is introduced into the first optical waveguide of the output optical fiber after the beam diameter is reduced by the bridge fiber.
  • the first input optical fiber can be connected to the bridge fiber without reducing the diameter of the input optical fiber. Therefore, since the mechanical strength of the first input optical fiber can be maintained, it is easy to manufacture an optical combiner. Further, since the number of the first input optical fibers can be increased without reducing the diameter of the first input optical fiber, the power of light introduced into the first optical waveguide of the output optical fiber can be increased. This facilitates the output balance of the light propagating through the first optical waveguide and the light propagating through the second optical waveguide.
  • the output optical fiber has a refractive index lower than that of the center core and the center core, and has a refractive index higher than that of the inner clad that covers the periphery of the center core and the inner clad. It may have a ring core that covers the periphery of the clad and a low refractive index medium that has a refractive index lower than the refractive index of the ring core and covers the periphery of the ring core.
  • the center core constitutes the first optical waveguide
  • the ring core constitutes the second optical waveguide.
  • the outer peripheral edge of the intermediate optical fiber is preferably located in the inner clad region of the output optical fiber.
  • the second input optical fiber located on the radial outer side of the intermediate optical fiber is located in the region outside the center core of the output optical fiber, it propagates through the core of the second input optical fiber. It is possible to prevent the laser light from being mixed with the laser light incident on the center core of the output optical fiber from the core of the intermediate optical fiber.
  • the core of the intermediate optical fiber is preferably located within the region of the center core of the output optical fiber. In this case, the laser light propagating in the core of the intermediate optical fiber can be efficiently introduced into the center core of the output optical fiber.
  • the intermediate optical fiber located inside the second input optical fiber in the radial direction is likely to be located in the region inside the ring core of the output optical fiber, so that the laser beam propagating through the core of the intermediate optical fiber is emitted. , It is possible to suppress mixing with the laser light incident on the ring core of the output optical fiber from the core of the second input optical fiber.
  • the core of the at least one second input optical fiber is located within the region of the ring core of the output optical fiber. In this case, the laser light propagating in the core of the second input optical fiber can be efficiently introduced into the ring core of the output optical fiber.
  • the output optical fiber has a core, a refractive index lower than the refractive index of the core, an inner clad that covers the periphery of the core, and a refractive index lower than that of the inner clad, and has a refractive index lower than that of the inner clad. It may have a low refractive index medium that covers the periphery of the clad.
  • the core constitutes the first optical waveguide, and the core and the inner cladding form the second optical waveguide.
  • the at least one second input optical fiber may have a reduced diameter portion having the smallest diameter in a portion of the output optical fiber connected to the second optical waveguide.
  • the diameter reduction ratio of the reduced diameter portion of the at least one second input optical fiber is relative to the diameter of the core of the intermediate optical fiber connected to the first optical waveguide of the output optical fiber. It may be smaller than the ratio of the diameters of the cores of the bridge fiber to the bridge incident surface.
  • a laser apparatus capable of outputting a laser beam having a desired beam profile.
  • This laser apparatus includes at least one first laser light source that generates a first laser beam, at least one second laser light source that generates a second laser beam, and the above-mentioned optical combiner. At least one of the plurality of first input optical fibers of the optical combiner is connected to the at least one first laser light source. The at least one second input optical fiber of the optical combiner is connected to the at least one second laser light source.
  • the optical combiner also makes it easy to adjust the output balance of the laser light propagating in the first optical waveguide of the output optical fiber and the laser light propagating in the second optical waveguide, a desired beam from the laser apparatus can be adjusted. It is possible to output a laser beam having a profile.
  • the laser apparatus controls the at least one first laser light source and the at least one second laser light source, so that the first laser light generated by the at least one first laser light source is generated. It is preferable to further include a control unit that adjusts the output of the second laser beam and the output of the second laser beam generated by the at least one second laser light source.
  • a control unit that adjusts the output of the second laser beam and the output of the second laser beam generated by the at least one second laser light source.
  • the at least one first laser light source and the at least one second laser light source have equivalent performance, the at least one connected to the at least one second laser light source.
  • the emission angle of the second laser beam output from the second optical waveguide of the output optical fiber through the second input optical fiber is connected to the at least one first laser light source. It may be smaller than the emission angle of the first laser beam output from the first optical waveguide of the output optical fiber through at least one of the plurality of first input optical fibers.
  • the laser device removes the first clad mode light removing unit that removes the clad mode light leaking from the core of the intermediate optical fiber and the clad mode light leaking from the second optical waveguide of the output optical fiber.
  • a second clad mode light removing unit may be further provided. According to such a configuration, the clad mode light leaked from the core of the intermediate optical fiber is removed by the first clad mode light removing unit before being incident on the output optical fiber, so that the second clad mode light removing unit is used. It is possible to reduce the amount of heat generated in.
  • the laser apparatus includes a first optical control unit that controls a load applied to the intermediate optical fiber to control an emission angle of the first laser beam propagating through the core of the intermediate optical fiber, and an output light.
  • a second optical control unit that controls the load applied to the fiber and at least controls the emission angle of the second laser beam propagating through the second optical waveguide of the output optical fiber may be provided.
  • the emission angle of the first laser beam emitted from the first optical waveguide of the output optical fiber can be controlled mainly by the first optical control unit, and the first optical fiber of the output optical fiber can be controlled.
  • the emission angle of the second laser beam emitted from the optical waveguide 2 can be controlled mainly by the second optical control unit.
  • the present invention is suitably used for an optical combiner that combines laser light from a plurality of input optical fibers and outputs the laser light from the output optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

出力光ファイバの第1の光導波路と第2の光導波路とにそれぞれレーザ光を導入することができる製造容易な光コンバイナを提供する。光コンバイナ3は、それぞれコア11を含む複数の第1の入力光ファイバ10と、第1の入力光ファイバ10のコア11に接続されるブリッジ入射面26と、光軸方向に沿ってブリッジ入射面26から離れるにつれて次第に径が小さくなる縮径部24と、光軸方向においてブリッジ入射面26とは反対側のブリッジ出射面27とを有するブリッジファイバ20と、ブリッジファイバ20のブリッジ出射面27に接続されるコア31を含む中間光ファイバ30と、それぞれコア41を含む複数の第2の入力光ファイバ40と、中間光ファイバ30のコア31に接続されるセンタコア51と、第2の入力光ファイバ40のコア41に接続されるリングコア53とを含む出力光ファイバ50とを備える。

Description

光コンバイナ及びレーザ装置
 本発明は、光コンバイナ及びレーザ装置に係り、特に複数の入力光ファイバからのレーザ光を結合して出力光ファイバから出力する光コンバイナに関するものである。
 レーザ加工の分野では、加工速度や加工品質などの加工性能を向上する上で、加工対象物に照射するレーザ光のビームプロファイルを加工対象物の材料や厚みに合わせて変更することが重要である。近年、このような観点から、出力側の光ファイバに複数の光導波路を形成し、これらの光導波路のそれぞれに導入するレーザ光を制御することによって、加工対象物に照射されるレーザ光のビームプロファイルを所望の形態に変化させる技術も開発されている。
 例えば、特許文献1には、光導波路として中心コアとその周囲に位置する外側コアとを有する出力光ファイバにレーザ光を導入するための光コンバイナとして、出力光ファイバの中心コアに対応して中心側に複数の光ファイバ(中心側光ファイバ)を配置し、出力光ファイバの外側コアに対応して中心側光ファイバの周囲に複数の光ファイバ(外側光ファイバ)を環状に配置したものが開示されている(図8a及び図8b参照)。この特許文献1に開示されている従来の構成においては、出力光ファイバの径が大きくなることを避けるために、中心側光ファイバの径を外側光ファイバの径よりも小さくせざるを得ない。このように、中心側光ファイバの径が小さいと、中心側光ファイバの機械的強度が低くなり、中心側光ファイバが折れたり、切れたりするなどの問題が生じやすく、またその製造も難しくなる。このような問題があるため、中心側光ファイバの数を増やすことが難しく、これにより中心側光ファイバが接続される出力光ファイバの中心コアに導入されるレーザ光のパワーを高めることが難しくなる。このため、出力光中心コアを伝搬するレーザ光と外側コアを伝搬するレーザ光の出力バランスを調整することも難しくなる。
特開2009-145888号公報
 本発明は、このような従来技術の問題点に鑑みてなされたもので、出力光ファイバの第1の光導波路と第2の光導波路とにそれぞれレーザ光を導入することができる製造容易な光コンバイナを提供することを第1の目的とする。
 また、本発明は、所望のビームプロファイルを有するレーザ光を出力することができるレーザ装置を提供することを第2の目的とする。
 本発明の第1の態様によれば、出力光ファイバの第1の光導波路と第2の光導波路とにそれぞれレーザ光を導入することができる製造容易な光コンバイナが提供される。この光コンバイナは、それぞれコアを含む複数の第1の入力光ファイバと、上記複数の第1の入力光ファイバの上記コアに接続されるブリッジ入射面と、光軸方向に沿って上記ブリッジ入射面から離れるにつれて次第に径が小さくなる縮径部と、上記光軸方向において上記ブリッジ入射面とは反対側のブリッジ出射面とを有するブリッジファイバと、上記ブリッジファイバの上記ブリッジ出射面に接続されるコアを含む中間光ファイバと、コアを含む少なくとも1つの第2の入力光ファイバと、上記中間光ファイバの上記コアに接続される第1の光導波路と、上記少なくとも1つの第2の入力光ファイバの上記コアに接続される第2の光導波路とを含む出力光ファイバとを備える。
 本発明の第2の態様によれば、所望のビームプロファイルを有するレーザ光を出力することができるレーザ装置が提供される。このレーザ装置は、第1のレーザ光を生成する少なくとも1つの第1のレーザ光源と、第2のレーザ光を生成する少なくとも1つの第2のレーザ光源と、上述した光コンバイナとを備える。上記光コンバイナの上記複数の第1の入力光ファイバのうち少なくとも1つは、上記少なくとも1つの第1のレーザ光源に接続される。上記光コンバイナの上記少なくとも1つの第2の入力光ファイバは、上記少なくとも1つの第2のレーザ光源に接続される。
図1は、本発明の一実施形態におけるレーザ装置の構成を示す模式的ブロック図である。 図2は、図1のレーザ装置における光コンバイナを示す斜視図である。 図3は、図2の光コンバイナの分解斜視図である。 図4は、図3の光コンバイナの出力光ファイバの断面を半径方向に沿った屈折率分布とともに示す図である。 図5は、図3の光コンバイナの中間光ファイバ及び第2の入力光ファイバと出力光ファイバとの接続関係を示す模式図である。 図6は、本発明の他の実施形態における光コンバイナを示す斜視図である。 図7は、本発明の他の実施形態におけるレーザ装置の構成を示す模式的ブロック図である。 図8は、本発明の他の実施形態における出力光ファイバの断面を半径方向に沿った屈折率分布とともに示す図である。
 以下、本発明に係る光コンバイナ及びこれを備えたレーザ装置の実施形態について図1から図8を参照して詳細に説明する。図1から図8において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図8においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。以下の説明では、特に言及がない場合には、「第1」や「第2」などの用語は、構成要素を互いに区別するために使用されているだけであり、特定の順位や順番を表すものではない。
 図1は、本発明の一実施形態におけるレーザ装置1の構成を示す模式的ブロック図である。図1に示すように、本実施形態におけるレーザ装置1は、レーザ光を生成する第1のレーザ光源2A及び第2のレーザ光源2Bと、それぞれのレーザ光源2A,2Bからのレーザ光が入力される光コンバイナ3と、光コンバイナ3の下流側の端部に設けられたレーザ出射部4と、レーザ光源2A,2Bを制御する制御部5とを備えている。それぞれのレーザ光源2A,2Bと光コンバイナ3とは光ファイバ6により互いに接続されており、光コンバイナ3とレーザ出射部4とは光ファイバ7により互いに接続されている。レーザ光源2A,2Bとしては例えばファイバレーザや半導体レーザを用いることができる。本実施形態におけるレーザ装置1は、3つのレーザ光源2Aと6つのレーザ光源2Bを含んでいるが、レーザ光源2A,2Bの数はこれに限られるものではない。なお、本明細書では、特に言及がない場合には、レーザ光源2A,2Bからレーザ出射部4に向かってレーザ光が伝搬する方向を「下流側」といい、それとは逆の方向を「上流側」ということとする。
 このようなレーザ装置1においては、第1のレーザ光源2Aにおいて生成された第1のレーザ光と第2のレーザ光源2Bにおいて生成された第2のレーザ光がそれぞれ光ファイバ6を伝搬して光コンバイナ3に導入される。この光コンバイナ3では、複数のレーザ光源2A,2Bからのレーザ光が結合されて光ファイバ7に出力される。光ファイバ7に出力された高出力のレーザ光Lはレーザ出射部4から例えば被加工物に向けて出射される。
 図2は光コンバイナ3を示す斜視図、図3は分解斜視図である。図2及び図3に示すように、本実施形態における光コンバイナ3は、第1のレーザ光源2Aから延びる光ファイバ6の少なくとも一部によりそれぞれ構成される複数の第1の入力光ファイバ10と、これらの第1の入力光ファイバ10に接続されるブリッジファイバ20と、ブリッジファイバ20に接続される中間光ファイバ30と、第2のレーザ光源2Bから延びる光ファイバ6の少なくとも一部によりそれぞれ構成される複数の第2の入力光ファイバ40と、上述した光ファイバ7の少なくとも一部により構成される出力光ファイバ50とを含んでいる。
 図2及び図3に示すように、本実施形態においては、3本の第1の入力光ファイバ10が互いに接した状態でブリッジファイバ20に接続されている。それぞれの第1の入力光ファイバ10は、コア11と、コア11の周囲を覆うクラッド12とを有している。クラッド12の屈折率はコア11の屈折率よりも低くなっており、コア11の内部には、第1のレーザ光源2Aからの第1のレーザ光が伝搬する光導波路が形成されている。このように、第1の入力光ファイバ10は、第1のレーザ光源2Aからの第1のレーザ光をそのコア11の内部に伝搬させて出射端部10A(図3参照)から出射するように構成されている。なお、第1の入力光ファイバ10は、ブリッジファイバ20から離れた位置でクラッド12の外周面を覆う被覆層(図示せず)を有している。
 ブリッジファイバ20は、コア21と、コア21の周囲を覆うクラッド22とを有している。クラッド22の屈折率はコア21の屈折率よりも低くなっており、コア21の内部には第1のレーザ光が伝搬する光導波路が形成されている。このようなコア-クラッド構造を内部に有するブリッジファイバ20は、光軸に沿って一定の外径で延びる第1の円筒部23と、第1の円筒部23から光軸に沿って次第に外径が小さくなる縮径部24と、縮径部24から光軸方向に沿って一定の外径で延びる第2の円筒部25とを含んでいる。第1の円筒部23の端面は、それぞれの第1の入力光ファイバ10の出射端部10Aが融着接続されるブリッジ入射面26となっている。光軸方向においてブリッジ入射面26とは反対側に位置する第2の円筒部25の端面は、中間光ファイバ30の入射端部30A(図3参照)が融着接続されるブリッジ出射面27となっている。ブリッジファイバ20のブリッジ入射面26におけるコア21の大きさは、すべての第1の入力光ファイバ10のコア11を内部に包含できるような大きさとなっており、第1の入力光ファイバ10とブリッジファイバ20とは、すべての第1の入力光ファイバ10のコア11がブリッジファイバ20のブリッジ入射面26におけるコア21の領域内に位置するように融着接続される。このように、ブリッジファイバ20は、第1の入力光ファイバ10の出射端部10Aから出射された第1のレーザ光をそのコア21の内部に伝搬させ、縮径部24によってそのビーム径を小さくするように構成されている。なお、第1の入力光ファイバ10のコア11からブリッジファイバ20のコア21に第1のレーザ光が入射する際の反射を抑えるために、ブリッジファイバ20のコア21の屈折率は、第1の入力光ファイバ10のコア11の屈折率と略同一であることが好ましい。
 中間光ファイバ30は、コア31と、コア31の周囲を覆うクラッド32とを有している。クラッド32の屈折率はコア31の屈折率よりも低くなっており、コア31の内部には、第1のレーザ光が伝搬する光導波路が形成されている。中間光ファイバ30のコア31の大きさは、ブリッジファイバ20のブリッジ出射面27におけるコア21の大きさ以上となっており、ブリッジファイバ20と中間光ファイバ30とは、ブリッジ出射面27におけるブリッジファイバ20のコア21が中間光ファイバ30のコア31の領域内に位置するように融着接続される。このように、中間光ファイバ30は、ブリッジファイバ20から伝搬してきた第1のレーザ光をそのコア31の内部に伝搬させるように構成されている。なお、ブリッジファイバ20のコア21から中間光ファイバ30のコア31に第1のレーザ光が入射する際の反射を抑えるために、中間光ファイバ30のコア31の屈折率は、ブリッジファイバ20のコア21の屈折率と略同一であることが好ましい。
 本実施形態では、6本の第2の入力光ファイバ40がこの中間光ファイバ30を取り囲んでその外周面に接するように配置されており、隣り合う第2の入力光ファイバ40は互いに接した状態となっている。それぞれの第2の入力光ファイバ40は、コア41と、コア41の周囲を覆うクラッド42とを有している。クラッド42の屈折率はコア41の屈折率よりも低くなっており、コア41の内部には、第2のレーザ光源2Bからの第2のレーザ光が伝搬する光導波路が形成されている。このように、第2の入力光ファイバ40は、第2のレーザ光源2Bからの第2のレーザ光をそのコア41の内部に伝搬させて出射端部40A(図3参照)から出射するように構成されている。このような第2の入力光ファイバ40としては、上述した第1の入力光ファイバ10と同種の光ファイバを用いることができる。なお、第2の入力光ファイバ40は、出力光ファイバ50から離れた位置でクラッド42の外周面を覆う被覆層(図示せず)を有している。
 図4は、出力光ファイバ50の断面を半径方向に沿った屈折率分布とともに示す図である。図4に示すように、出力光ファイバ50は、センタコア51と、センタコア51の周囲を覆う内側クラッド52と、内側クラッド52の周囲を覆うリングコア53と、リングコア53の周囲を覆う外側クラッド54とを有している。内側クラッド52の屈折率はセンタコア51及びリングコア53の屈折率よりも低くなっており、外側クラッド54の屈折率はリングコア53の屈折率よりも低くなっている。これにより、センタコア51の内部にレーザ光が伝搬する第1の光導波路が形成され、リングコア53の内部にレーザ光が伝搬する第2の光導波路が形成される。本実施形態では、リングコア53の屈折率よりも低い屈折率を有する低屈折率媒質として、リングコア53の周囲に外側クラッド54が形成されているが、このような低屈折率媒質は、外側クラッド54のような被覆層に限られるものではなく、例えばリングコア53の周囲に空気の層を形成し、この空気の層を低屈折率媒質として用いてもよい。なお、出力光ファイバ50は、中間光ファイバ30及び第2の入力光ファイバ40から離れた位置で外側クラッド54の外周面を覆う被覆層(図示せず)を有している。
 中間光ファイバ30の出射端部と第2の入力光ファイバ40の出射端部40Aとはそれぞれ出力光ファイバ50に融着接続されている。図5は、中間光ファイバ30及び第2の入力光ファイバ40と出力光ファイバ50との接続関係を示す模式図である。本実施形態では、出力光ファイバ50のセンタコア51の大きさは、中間光ファイバ30のコア31よりも大きくなっており、図5に示すように、中間光ファイバ30と出力光ファイバ50とは、中間光ファイバ30のコア31が出力光ファイバ50のセンタコア51の領域(内側の網掛け領域)内に位置するように融着接続される。また、出力光ファイバ50のリングコア53の大きさは、第2の入力光ファイバ40のすべてのコア41を内部に包含できるような大きさとなっており、図5に示すように、第2の入力光ファイバ40と出力光ファイバ50とは、すべての第2の入力光ファイバ40のコア41が出力光ファイバ50のリングコア53の領域(外側の網掛け領域)内に位置するように融着接続される。
 このような構成において、第1のレーザ光源2Aで生成された第1のレーザ光は、第1の入力光ファイバ10のコア11を伝搬し、ブリッジファイバ20のブリッジ入射面26からブリッジファイバ20のコア21に入射する。ブリッジファイバ20のコア21に入射したレーザ光は、コア21とクラッド22との界面で反射しながらブリッジファイバ20のコア21を伝搬し、縮径部24によってそのビーム径が小さくなった状態でブリッジ出射面27から中間光ファイバ30のコア31に入射する。中間光ファイバ30のコア31に入射したレーザ光は、コア31の内部を伝搬して出力光ファイバ50のセンタコア51に入射し、第1の光導波路であるセンタコア51の内部を伝搬してレーザ出射部4(図1参照)から出射される。また、第2のレーザ光源2Bで生成された第2のレーザ光は、第2の入力光ファイバ40のコア41を伝搬し、出力光ファイバ50のリングコア53に入射する。出力光ファイバ50のリングコア53に入射したレーザ光は、第2の光導波路であるリングコア53の内部を伝搬してレーザ出射部4(図1参照)から出射される。
 このように、本実施形態では、第1の入力光ファイバ10のコア11及び第2の入力光ファイバ40のコア41を伝搬するレーザ光をそれぞれ出力光ファイバ50のセンタコア51とリングコア53に導入する際に、第1の入力光ファイバ10のコア11を伝搬する光をブリッジファイバ20でビーム径を小さくした後に出力光ファイバ50のセンタコア51に導入しているため、第1の入力光ファイバ10の径を小さくすることなく第1の入力光ファイバ10をブリッジファイバ20に接続することができる。したがって、第1の入力光ファイバ10の機械的強度を維持することができるため、光コンバイナ3の製造も容易である。また、第1の入力光ファイバ10の径を小さくすることなく、第1の入力光ファイバ10の数を増やすことができるため、出力光ファイバ50のセンタコア51に導入するレーザ光のパワーを高めることも容易となり、センタコア51を伝搬するレーザ光とリングコア53を伝搬するレーザ光の出力バランスを調整することも容易となる。これにより、レーザ装置1のレーザ出射部4から所望のビームプロファイルを有するレーザ光を出力することが可能となる。
 また、制御部5によって第1のレーザ光源2A(例えば第1のレーザ光源2Aに供給する電流)を制御することによって第1のレーザ光源2Aによって生成される第1のレーザ光の出力を調整することができ、また、第2のレーザ光源2B(例えば第2のレーザ光源2Bに供給する電流)を制御することによって第2のレーザ光源2Bによって生成される第2のレーザ光の出力を調整することができる。したがって、制御部5によって第1のレーザ光源2A及び第2のレーザ光源2Bを制御して第1のレーザ光と第2のレーザ光の強度の割合を変化させることができ、出力光ファイバ50のセンタコア51に導入される第1のレーザ光とリングコア53に導入される第2のレーザ光の割合を調整することができる。このようにして、レーザ装置1のレーザ出射部4から出力されるレーザ光のプロファイルを容易に所望の形状にすることができる。
 本実施形態では、中間光ファイバ30のコア31は、出力光ファイバ50のセンタコア51の領域内に位置しているため、中間光ファイバ30のコア31を伝搬するレーザ光を効率的に出力光ファイバ50のセンタコア51に導入することができる。また、同様に、本実施形態では、すべての第2の入力光ファイバ40のコア41が、出力光ファイバ50のリングコア53の領域内に位置しているため、第2の入力光ファイバ40のコア41を伝搬するレーザ光を効率的に出力光ファイバ50のリングコア53に導入することができる。なお、この場合において、すべての第2の入力光ファイバ40のコア41ではなく、一部の第2の入力光ファイバ40のコア41が出力光ファイバ50のリングコア53の領域内に位置していてもよい。
 また、図5に示すように、中間光ファイバ30のクラッド32の外周縁が出力光ファイバ50の内側クラッド52の領域(内側の網掛け領域と外側の網掛け領域との間の領域)内に位置していることが好ましい。中間光ファイバ30のクラッド32の外周縁が出力光ファイバ50の内側クラッド52の領域内に位置している場合には、中間光ファイバ30の外側に位置する第2の入力光ファイバ40のいずれもが、出力光ファイバ50のセンタコア51の外側の領域に位置することとなるため、第2の入力光ファイバ40のコア41を伝搬するレーザ光が、中間光ファイバ30のコア31から出力光ファイバ50のセンタコア51に入射するレーザ光に混ざってしまうことを抑制することができる。
 さらに、図5に示すように、第2の入力光ファイバ40の外周縁の少なくとも一部が出力光ファイバ50の内側クラッド52の領域(内側の網掛け領域と外側の網掛け領域との間の領域)内に位置していることが好ましい。第2の入力光ファイバ40の外周縁の少なくとも一部が出力光ファイバ50の内側クラッド52の領域内に位置している場合には、第2の入力光ファイバ40の内側に位置する中間光ファイバ30が、出力光ファイバ50のリングコア53の内側の領域に位置しやすくなるため、中間光ファイバ30のコア31を伝搬するレーザ光が、第2の入力光ファイバ40のコア41から出力光ファイバ50のリングコア53に入射するレーザ光に混ざってしまうことを抑制することができる。
 例えばレーザ出射部4から反射光が戻ってくると、この反射光が光コンバイナ3の内部で漏れ出すことが考えられる。特許文献1に記載されているような従来の光コンバイナにおいては、中心側光ファイバと外側光ファイバとが出力光ファイバの同一面に接続されているため、出力光ファイバの中心コアを伝搬する反射光と外側コアを伝搬する反射光とが出力光ファイバの1つの面から漏れ出して局所的な発熱量が多くなる可能性がある。これに対して、本実施形態では、第1の入力光ファイバ10がブリッジファイバ20のブリッジ入射面26に接続され、第2の入力光ファイバ40が出力光ファイバ50に接続されているため、出力光ファイバ50のセンタコア51を伝搬する反射光はブリッジファイバ20のブリッジ入射面26から漏れ出し、リングコア53を伝搬する反射光は出力光ファイバ50の端面から漏れ出すこととなる。このように、本実施形態では、センタコア51を伝搬する反射光が漏れ出す面とリングコア53を伝搬する反射光が漏れ出す面とが異なっているため、反射光が分散されて局所的な発熱を低減することができる。このため、光コンバイナ3が故障するリスクも低減する。
 例えば、本実施形態におけるレーザ装置1により薄い金属板である加工対象物を切断する場合には、レーザ光Lの中心側の光パワー密度が高い小径の円形形状のビームを使用してもよく、厚い金属板である加工対象物を切断する場合には、ビームウェスト部からレーザ伝搬方向(加工対象物の厚さ方向)にずれた位置でのスポット径や光パワー密度の変化率が小さい大径円環形状のビームを使用してもよい。このような大径円環形状のビームは、ビーム径及びビーム出力が同じであっても、円形形状のビームに比べてビームウェスト部での光パワー密度を大きくできるという利点があり、厚板を切断するのに適している。
 しかしながら、レーザ出射部4において出力光ファイバ50のリングコア53から出射されるレーザ光の出射角度がセンタコア51から出射されるレーザ光の出射角度よりも大きいと、厚板を切断するのに適した大径円環形状のビームの優位性が低減してしまう。これは、光の出射角が大きくなると、パワー密度の低下が焦点位置から離れるに従って大きくなるので、加工対象物が厚くなると、切断に必要なパワー密度を厚さ方向に対して得られなくなってしまうからである。
 このような観点から、出力光ファイバ50のリングコア53から出射されるレーザ光の出射角度がセンタコア51から出射されるレーザ光の出射角度よりも小さくなるように光コンバイナ3を構成してもよい。例えば、レーザ光源2A,2Bとして同等の性能の光源を用いた場合に、第2の入力光ファイバ40から出力光ファイバ50のリングコア53に出射される光のNAを第1の入力光ファイバ10からブリッジファイバ20及び中間光ファイバ30を通って出力光ファイバ50のセンタコア51に出射される光のNAよりも低くしてもよい。ここでいう光のNAとは、ビームが伝搬するコアの屈折率をn、そのビームの伝搬角をθとすると、NA=nsinθにより定義される量を意味している。また、本明細書においては、レーザ光源における「同等の性能」は、製造上のばらつきが許容される範囲の性能を意味し、例えばビームパラメータ積(BPP)が±20%の範囲に入るものが挙げられる。
 第2の入力光ファイバ40から出力光ファイバ50のリングコア53に出射される光のNAを低くするために、例えば、出力光ファイバ50のリングコア53に接続される部分で第2の入力光ファイバ40の径が最も小さくなるように第2の入力光ファイバ40に縮径部を形成してもよい。この場合において、出力光ファイバ50のリングコア53に接続される第2の入力光ファイバ40の縮径部の端面におけるコア41の径に対する第2の入力光ファイバ40の縮径されていない部分のコア41の径の比を第2の入力光ファイバ40の縮径部の縮経率と定義すると、第2の入力光ファイバ40の縮径部の縮径率は、出力光ファイバ50のセンタコア51に接続される中間光ファイバ30のコア31の径に対するブリッジファイバ20のブリッジ入射面26におけるコア21の径の比よりも小さいことが厚板を切断するのに適したレーザ光Lを出力する上で好ましい。
 あるいは、図6に示すように、第2の入力光ファイバ40と出力光ファイバ50との間に、内部を伝搬するレーザ光の出射角度を小さくする機能を有する光調整部材60を設けてもよい。このような光調整部材60としては、例えば中心軸から半径方向外側に向かって次第に屈折率が低くなったGRIN(Graded Index又はGradient Index)レンズ部材を用いることができる。このような光調整部材60により、第2の入力光ファイバ40のコア41を伝搬するレーザ光の出射角度を小さくしてから出力光ファイバ50のリングコア53に導入することで、レーザ出射部4のリングコア53から出力されるレーザ光のNAを低下させることができる。したがって、このようなレーザ光を加工対象物Wの加工に用いることで、加工対象物Wの表面や内部、裏面でのビーム径及び光パワー密度の変動を抑えることができ、例えば厚い金属板を加工するのに適したレーザ光Lを加工対象物Wに照射することが可能である。
 一方で、レーザ出射部4において出力光ファイバ50のリングコア53から出射されるレーザ光の出射角度とセンタコア51から出射されるレーザ光の出射角度との間に差があると、集光光学系の焦点位置からずれたデフォーカス位置でリングコア53からのレーザ光とセンタコア51からのレーザ光とが重なってしまい、加工性能の低下を招くおそれがある。この観点から、図6に示す光調整部材60に代えて、内部を伝搬する第2のレーザ光の出射角度を増加させる機能を有する光調整部材を用いてもよい。このような光調整部材60としては、例えば、第2の入力光ファイバ40のモードフィールド径よりも大きなモードフィールド径を有する光ファイバ、中心部から半径方向外側の周縁部に向かって次第に屈折率が上昇する屈折率分布を有する円柱状のレンズ部材、第2の入力光ファイバ40から光軸方向に沿って次第に径が小さくなったテーパ部材、2つのGRINレンズ部材を組み合わせたものなどが考えられる。
 ところで、レーザ光が上述した光コンバイナ3を伝搬する間にコアから漏れ出してクラッドを伝搬するクラッドモード光が発生することがある。このようなクラッドモード光は、光コンバイナ3の下流側の出力光ファイバ50において発熱の原因となることが考えられ、また、レーザ出射部4からクラッドモード光が意図しない領域に照射されてレーザ加工の品質を低下させることも考えられる。
 特に、上述した実施形態のように、出力光ファイバ50が複数のコア51,53を含んでいる場合には、それぞれのコア51,53にレーザ光を入射する際に発生するクラッドモード光が同一の出力光ファイバ50のクラッド52,54を伝搬することになるため、出力光ファイバ50をシングルコア光ファイバにより構成した場合と比較して、出力光ファイバ50を伝搬するクラッドモード光が多くなる傾向にある。このようなクラッドモード光を除去するために、出力光ファイバ50の途中にクラッドモード光除去部を設けた場合には、クラッドモード光除去部での発熱量が増大するため、クラッドモード光を十分に除去しきれないことも考えられる。
 したがって、図7に示すように、中間光ファイバ30の途中に、中間光ファイバ30のコア31からクラッド32に漏洩するクラッドモード光を除去する第1のクラッドモード光除去部210を設け、出力光ファイバ50の途中に、出力光ファイバ50のリングコア53から外側クラッド54に漏洩するクラッドモード光を除去する第2のクラッドモード光除去部220を設けてもよい。このような構成により、中間光ファイバ30のクラッド32に漏洩したクラッドモード光が出力光ファイバ50に入射する前に第1のクラッドモード光除去部210において除去されるので、第2のクラッドモード光除去部220における発熱量を低減することができる。これらのクラッドモード光除去部210,220としては公知のクラッドモード光除去構造を用いることができる。
 光ファイバに負荷を加えると、光ファイバから出射される光の出射角度が大きくなることが知られている。したがって、レーザ出射部4において出力光ファイバ50のセンタコア51から出射されるレーザ光の出射角度とリングコア53から出射されるレーザ光の出射角度とを制御するために、図7に示すように、中間光ファイバ30の途中に、中間光ファイバ30に印加する負荷を制御することで中間光ファイバ30のコア31を伝搬する光のNAを制御する第1の光制御部230を設け、出力光ファイバ50の途中に、出力光ファイバ50に印加する負荷を制御することで出力光ファイバ50のセンタコア51及びリングコア53を伝搬する光のNAを制御する第2の光制御部240を設けてもよい。例えば、このような光制御部230,240としては、加熱や温度分布の形成により光ファイバに負荷を印加するもの、光ファイバに曲げを与えるもの、光ファイバに側圧を印加するものなどがある。
 第2の光制御部240により出力光ファイバ50に印加された負荷は主として外側に位置するリングコア53を伝搬する光に影響を与え、中心側のセンタコア51を伝搬する光はそれほど影響を受けない。一方、中間光ファイバ30から出力光ファイバ50のセンタコア51に出射される光は、第1の光制御部230により中間光ファイバ30に印加された負荷の影響を受ける。したがって、出力光ファイバ50のセンタコア51から出射されるレーザ光の出射角度を主に第1の光制御部230によって制御することができ、リングコア53から出射されるレーザ光の出射角度を主に第2の光制御部240によって制御することが可能となる。
 図7に示すように、クラッドモード光除去部210,220と光制御部230,240の両方を設けてもよいし、どちらか一方のみを設けてもよい。クラッドモード光除去部210,220と光制御部230,240の両方を設ける場合には、光制御部230,240による負荷の印加によりクラッドモード光が発生することがあるため、発生したクラッドモード光を効率的に除去するために、図7に示すように、第1のクラッドモード光除去部210を第1の光制御部230の下流側に設け、第2のクラッドモード光除去部220を第2の光制御部240の下流側に設けることが好ましい。
 上述した出力光ファイバ50は、図4に示される構造のものに限られるわけではない。例えば、上述した出力光ファイバ50に代えて、図8に示すような出力光ファイバ150を用いることもできる。図8に示す出力光ファイバ150は、コア151と、コア151の周囲を覆う内側クラッド152と、内側クラッド152の周囲を覆う外側クラッド153とを有している。内側クラッド152の屈折率はコア151の屈折率よりも低くなっており、外側クラッド153の屈折率は内側クラッド152の屈折率よりも低くなっている。これにより、コア151の内部にレーザ光が伝搬する第1の光導波路が形成され、内側クラッド152とコア151の内部にレーザ光が伝搬する第2の光導波路が形成される。このような出力光ファイバ150のコア151に中間光ファイバ30のコア31が融着接続され、内側クラッド152に第2の入力光ファイバ40のコア41が融着接続される。なお、出力光ファイバ150は、中間光ファイバ30及び第2の入力光ファイバ40から離れた位置で外側クラッド153の外周面を覆う被覆層(図示せず)を有している。
 このような構成において、第1の入力光ファイバ10のコア11を伝搬してきたレーザ光は、ブリッジファイバ20のブリッジ入射面26からブリッジファイバ20のコア21に入射し、縮径部24によってそのビーム径が小さくなった状態でブリッジ出射面27から中間光ファイバ30のコア31に入射する。中間光ファイバ30のコア31に入射したレーザ光は、コア31を伝搬して出力光ファイバ150のコア151に入射し、第1の光導波路であるコア151の内部を伝搬してレーザ出射部4(図1参照)から出射される。また、第2の入力光ファイバ40のコア41を伝搬してきたレーザ光は、出力光ファイバ150の内側クラッド152に入射し、第2の光導波路である内側クラッド152及びコア151の内部を伝搬してレーザ出射部4(図1参照)から出射される。
 図8に示す出力光ファイバ150では、内側クラッド152の屈折率よりも低い屈折率を有する低屈折率媒質として、内側クラッド152の周囲に外側クラッド153が形成されているが、このような低屈折率媒質は、外側クラッド153のような被覆層に限られるものではなく、例えば内側クラッド152の周囲に空気の層を形成し、この空気の層を低屈折率媒質として用いてもよい。
 上述した実施形態では、複数のレーザ光源2Bと複数の入力光ファイバ40を設けた例を説明しているが、出力光ファイバ50,150の第2の光導波路に接続される入力光ファイバ40の数は1つであってもよく、この入力光ファイバ40に接続されるレーザ光源2Bの数も1つであってもよい。また、上述した実施形態では、複数の入力光ファイバ10のそれぞれにレーザ光源2Aが接続されている例を説明しているが、レーザ光源2Aを複数の入力光ファイバ10のすべてに接続する必要はなく、1つ以上の入力光ファイバ10にレーザ光源2Aを接続してもよい。
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 以上述べたように、本発明の第1の態様によれば、出力光ファイバの第1の光導波路と第2の光導波路とにそれぞれレーザ光を導入することができる製造容易な光コンバイナが提供される。この光コンバイナは、それぞれコアを含む複数の第1の入力光ファイバと、上記複数の第1の入力光ファイバの上記コアに接続されるブリッジ入射面と、光軸方向に沿って上記ブリッジ入射面から離れるにつれて次第に径が小さくなる縮径部と、上記光軸方向において上記ブリッジ入射面とは反対側のブリッジ出射面とを有するブリッジファイバと、上記ブリッジファイバの上記ブリッジ出射面に接続されるコアを含む中間光ファイバと、コアを含む少なくとも1つの第2の入力光ファイバと、上記中間光ファイバの上記コアに接続される第1の光導波路と、上記少なくとも1つの第2の入力光ファイバの上記コアに接続される第2の光導波路とを含む出力光ファイバとを備える。
 このような構成によれば、複数の第1の入力光ファイバのコアを伝搬する光をブリッジファイバでビーム径を小さくした後に出力光ファイバの第1の光導波路に導入しているため、第1の入力光ファイバの径を小さくすることなく第1の入力光ファイバをブリッジファイバに接続することができる。したがって、第1の入力光ファイバの機械的強度を維持することができるため、光コンバイナの製造も容易である。また、第1の入力光ファイバの径を小さくすることなく、第1の入力光ファイバの数を増やすことができるため、出力光ファイバの第1の光導波路に導入する光のパワーを高めることも容易となり、第1の光導波路を伝搬する光と第2の光導波路を伝搬する光の出力バランスを調整することも容易となる。
 上記出力光ファイバは、センタコアと、上記センタコアの屈折率よりも低い屈折率を有し、上記センタコアの周囲を覆う内側クラッドと、上記内側クラッドの屈折率よりも高い屈折率を有し、上記内側クラッドの周囲を覆うリングコアと、上記リングコアの屈折率よりも低い屈折率を有し、上記リングコアの周囲を覆う低屈折率媒質とを有していてもよい。この場合において、上記センタコアは、上記第1の光導波路を構成し、上記リングコアは、上記第2の光導波路を構成する。
 上記中間光ファイバの外周縁は、上記出力光ファイバの上記内側クラッドの領域に位置していることが好ましい。この場合には、中間光ファイバの径方向外側に位置する第2の入力光ファイバが、出力光ファイバのセンタコアの外側の領域に位置することとなるため、第2の入力光ファイバのコアを伝搬するレーザ光が、中間光ファイバのコアから出力光ファイバのセンタコアに入射するレーザ光に混ざってしまうことを抑制することができる。
 上記中間光ファイバの上記コアは、上記出力光ファイバの上記センタコアの領域内に位置していることが好ましい。この場合には、中間光ファイバのコアを伝搬するレーザ光を効率的に出力光ファイバのセンタコアに導入することができる。
 上記少なくとも1つの第2の入力光ファイバの外周縁の少なくとも一部は、上記出力光ファイバの上記内側クラッドの領域に位置していることが好ましい。この場合には、第2の入力光ファイバの径方向内側に位置する中間光ファイバが、出力光ファイバのリングコアの内側の領域に位置しやすくなるため、中間光ファイバのコアを伝搬するレーザ光が、第2の入力光ファイバのコアから出力光ファイバのリングコアに入射するレーザ光に混ざってしまうことを抑制することができる。
 上記少なくとも1つの第2の入力光ファイバの上記コアは、上記出力光ファイバの上記リングコアの領域内に位置していることが好ましい。この場合には、第2の入力光ファイバのコアを伝搬するレーザ光を効率的に出力光ファイバのリングコアに導入することができる。
 上記出力光ファイバは、コアと、上記コアの屈折率よりも低い屈折率を有し、上記コアの周囲を覆う内側クラッドと、上記内側クラッドの屈折率よりも低い屈折率を有し、上記内側クラッドの周囲を覆う低屈折率媒質とを有していてもよい。この場合において、上記コアは、上記第1の光導波路を構成し、上記コア及び上記内側クラッドは、上記第2の光導波路を構成する。
 上記少なくとも1つの第2の入力光ファイバは、上記出力光ファイバの上記第2の光導波路に接続される部分で最も径が小さくなる縮径部を有していてもよい。この場合において、上記少なくとも1つの第2の入力光ファイバの上記縮径部の縮径率は、上記出力光ファイバの上記第1の光導波路に接続される上記中間光ファイバの上記コアの径に対する上記ブリッジファイバの上記ブリッジ入射面におけるコアの径の比よりも小さくてもよい。
 本発明の第2の態様によれば、所望のビームプロファイルを有するレーザ光を出力することができるレーザ装置が提供される。このレーザ装置は、第1のレーザ光を生成する少なくとも1つの第1のレーザ光源と、第2のレーザ光を生成する少なくとも1つの第2のレーザ光源と、上述した光コンバイナとを備える。上記光コンバイナの上記複数の第1の入力光ファイバのうち少なくとも1つは、上記少なくとも1つの第1のレーザ光源に接続される。上記光コンバイナの上記少なくとも1つの第2の入力光ファイバは、上記少なくとも1つの第2のレーザ光源に接続される。
 上述の光コンバイナにより、出力光ファイバの第1の光導波路を伝搬するレーザ光と第2の光導波路を伝搬するレーザ光の出力バランスを調整することも容易となるため、レーザ装置から所望のビームプロファイルを有するレーザ光を出力することが可能となる。
 また、上記レーザ装置は、上記少なくとも1つの第1のレーザ光源及び上記少なくとも1つの第2のレーザ光源を制御することにより、上記少なくとも1つの第1のレーザ光源により生成される第1のレーザ光の出力及び上記少なくとも1つの第2のレーザ光源により生成される第2のレーザ光の出力を調整する制御部をさらに備えることが好ましい。このような制御部によって第1のレーザ光源によって生成される第1のレーザ光の出力と第2のレーザ光源によって生成される第2のレーザ光の出力の割合を変化させることで、出力光ファイバの第1の光導波路に導入される第1のレーザ光と第2の光導波路に導入される第2のレーザ光の割合を調整することができる。したがって、レーザ装置から出力されるレーザ光のプロファイルを容易に所望の形状にすることができる。
 上記少なくとも1つの第1のレーザ光源と上記少なくとも1つの第2のレーザ光源とが、同等の性能を有している場合には、上記少なくとも1つの第2のレーザ光源に接続された上記少なくとも1つの第2の入力光ファイバを通って上記出力光ファイバの上記第2の光導波路から出力される上記第2のレーザ光の出射角度は、上記少なくとも1つの第1のレーザ光源に接続された上記複数の第1の入力光ファイバのうち少なくとも1つを通って上記出力光ファイバの上記第1の光導波路から出力される第1のレーザ光の出射角度よりも小さくてもよい。
 上記レーザ装置は、上記中間光ファイバの上記コアから漏洩するクラッドモード光を除去する第1のクラッドモード光除去部と、上記出力光ファイバの上記第2の光導波路から漏洩するクラッドモード光を除去する第2のクラッドモード光除去部とをさらに備えていてもよい。このような構成によれば、中間光ファイバのコアから漏洩したクラッドモード光が出力光ファイバに入射する前に第1のクラッドモード光除去部において除去されるので、第2のクラッドモード光除去部における発熱量を低減することができる。
 上記レーザ装置は、上記中間光ファイバに印加する負荷を制御して上記中間光ファイバの上記コアを伝搬する上記第1のレーザ光の出射角度を制御する第1の光制御部と、上記出力光ファイバに印加する負荷を制御して少なくとも上記出力光ファイバの上記第2の光導波路を伝搬する第2のレーザ光の出射角度を制御する第2の光制御部とをさらに備えていてもよい。このような構成によれば、出力光ファイバの第1の光導波路から出射される第1のレーザ光の出射角度を主に第1の光制御部によって制御することができ、出力光ファイバの第2の光導波路から出射される第2のレーザ光の出射角度を主に第2の光制御部によって制御することが可能となる。
 本出願は、2019年9月30日に提出された日本国特許出願特願2019-178605号及び2019年9月30日に提出された日本国特許出願特願2019-178523号に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。
 本発明は、複数の入力光ファイバからのレーザ光を結合して出力光ファイバから出力する光コンバイナに好適に用いられる。
  1   レーザ装置
  2A  第1のレーザ光源
  2B  第2のレーザ光源
  3   光コンバイナ
  4   レーザ出射部
  5   制御部
  6,7   光ファイバ
 10   第1の入力光ファイバ
 11   コア
 12   クラッド
 20   ブリッジファイバ
 21   コア
 22   クラッド
 23   第1の円筒部
 24   縮径部
 25   第2の円筒部
 26   ブリッジ入射面
 27   ブリッジ出射面
 30   中間光ファイバ
 31   コア
 32   クラッド
 40   第2の入力光ファイバ
 41   コア
 42   クラッド
 50   出力光ファイバ
 51   センタコア
 52   内側クラッド
 53   リングコア
 54   外側クラッド(低屈折率媒質)
 60   光調整部材
150   出力光ファイバ
151   コア
152   内側クラッド
153   外側クラッド(低屈折率媒質)
210   第1のクラッドモード光除去部
220   第2のクラッドモード光除去部
230   第1の光制御部
240   第2の光制御部

Claims (13)

  1.  それぞれコアを含む複数の第1の入力光ファイバと、
     前記複数の第1の入力光ファイバの前記コアに接続されるブリッジ入射面と、光軸方向に沿って前記ブリッジ入射面から離れるにつれて次第に径が小さくなる縮径部と、前記光軸方向において前記ブリッジ入射面とは反対側のブリッジ出射面とを有するブリッジファイバと、
     前記ブリッジファイバの前記ブリッジ出射面に接続されるコアを含む中間光ファイバと、
     コアを含む少なくとも1つの第2の入力光ファイバと、
     前記中間光ファイバの前記コアに接続される第1の光導波路と、前記少なくとも1つの第2の入力光ファイバの前記コアに接続される第2の光導波路とを含む出力光ファイバと
    を備える、光コンバイナ。
  2.  前記出力光ファイバは、
      センタコアと、
      前記センタコアの屈折率よりも低い屈折率を有し、前記センタコアの周囲を覆う内側クラッドと、
      前記内側クラッドの屈折率よりも高い屈折率を有し、前記内側クラッドの周囲を覆うリングコアと、
      前記リングコアの屈折率よりも低い屈折率を有し、前記リングコアの周囲を覆う低屈折率媒質と
    を有し、
     前記センタコアは、前記第1の光導波路を構成し、
     前記リングコアは、前記第2の光導波路を構成する、
    請求項1に記載の光コンバイナ。
  3.  前記中間光ファイバの外周縁は、前記出力光ファイバの前記内側クラッドの領域に位置している、請求項2に記載の光コンバイナ。
  4.  前記中間光ファイバの前記コアは、前記出力光ファイバの前記センタコアの領域内に位置する、請求項2又は3に記載の光コンバイナ。
  5.  前記少なくとも1つの第2の入力光ファイバの外周縁の少なくとも一部は、前記出力光ファイバの前記内側クラッドの領域に位置している、請求項2から4のいずれか一項に記載の光コンバイナ。
  6.  前記少なくとも1つの第2の入力光ファイバの前記コアは、前記出力光ファイバの前記リングコアの領域内に位置する、請求項2から5のいずれか一項に記載の光コンバイナ。
  7.  前記出力光ファイバは、
      コアと、
      前記コアの屈折率よりも低い屈折率を有し、前記コアの周囲を覆う内側クラッドと、
      前記内側クラッドの屈折率よりも低い屈折率を有し、前記内側クラッドの周囲を覆う低屈折率媒質と
    を有し、
     前記コアは、前記第1の光導波路を構成し、
     前記コア及び前記内側クラッドは、前記第2の光導波路を構成する、
    請求項1に記載の光コンバイナ。
  8.  前記少なくとも1つの第2の入力光ファイバは、前記出力光ファイバの前記第2の光導波路に接続される部分で最も径が小さくなる縮径部を有しており、
     前記少なくとも1つの第2の入力光ファイバの前記縮径部の縮径率は、前記出力光ファイバの前記第1の光導波路に接続される前記中間光ファイバの前記コアの径に対する前記ブリッジファイバの前記ブリッジ入射面におけるコアの径の比よりも小さい、
    請求項1から7のいずれか一項に記載の光コンバイナ。
  9.  第1のレーザ光を生成する少なくとも1つの第1のレーザ光源と、
     第2のレーザ光を生成する少なくとも1つの第2のレーザ光源と、
     請求項1から8のいずれか一項に記載の光コンバイナと
    を備え、
     前記光コンバイナの前記複数の第1の入力光ファイバのうち少なくとも1つは、前記少なくとも1つの第1のレーザ光源に接続され、
     前記光コンバイナの前記少なくとも1つの第2の入力光ファイバは、前記少なくとも1つの第2のレーザ光源に接続される、
    レーザ装置。
  10.  前記少なくとも1つの第1のレーザ光源及び前記少なくとも1つの第2のレーザ光源を制御することにより、前記少なくとも1つの第1のレーザ光源により生成される第1のレーザ光の出力及び前記少なくとも1つの第2のレーザ光源により生成される第2のレーザ光の出力を調整する制御部をさらに備える、請求項9に記載のレーザ装置。
  11.  前記少なくとも1つの第1のレーザ光源と前記少なくとも1つの第2のレーザ光源とは、同等の性能を有し、
     前記少なくとも1つの第2のレーザ光源に接続された前記少なくとも1つの第2の入力光ファイバを通って前記出力光ファイバの前記第2の光導波路から出力される前記第2のレーザ光の出射角度は、前記少なくとも1つの第1のレーザ光源に接続された前記複数の第1の入力光ファイバのうち少なくとも1つを通って前記出力光ファイバの前記第1の光導波路から出力される第1のレーザ光の出射角度よりも小さい、
    請求項9又は10に記載のレーザ装置。
  12.  前記中間光ファイバの前記コアから漏洩するクラッドモード光を除去する第1のクラッドモード光除去部と、
     前記出力光ファイバの前記第2の光導波路から漏洩するクラッドモード光を除去する第2のクラッドモード光除去部と
    をさらに備える、請求項9から11のいずれか一項に記載のレーザ装置。
  13.  前記中間光ファイバに印加する負荷を制御して前記中間光ファイバの前記コアを伝搬する前記第1のレーザ光の出射角度を制御する第1の光制御部と、
     前記出力光ファイバに印加する負荷を制御して少なくとも前記出力光ファイバの前記第2の光導波路を伝搬する第2のレーザ光の出射角度を制御する第2の光制御部と
    をさらに備える、請求項9から12のいずれか一項に記載のレーザ装置。
PCT/JP2020/035961 2019-09-30 2020-09-24 光コンバイナ及びレーザ装置 WO2021065657A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/631,750 US11955777B2 (en) 2019-09-30 2020-09-24 Optical combiner and laser apparatus
EP20872318.9A EP4039401A4 (en) 2019-09-30 2020-09-24 OPTICAL COMBINATOR AND LASER DEVICE
CN202080057354.3A CN114270235B (zh) 2019-09-30 2020-09-24 光合并器以及激光装置
JP2021550674A JP7257540B2 (ja) 2019-09-30 2020-09-24 光コンバイナ及びレーザ装置
JP2023021941A JP2023058673A (ja) 2019-09-30 2023-02-15 光コンバイナ及びレーザ装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-178523 2019-09-30
JP2019178523 2019-09-30
JP2019178605 2019-09-30
JP2019-178605 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065657A1 true WO2021065657A1 (ja) 2021-04-08

Family

ID=75336459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035961 WO2021065657A1 (ja) 2019-09-30 2020-09-24 光コンバイナ及びレーザ装置

Country Status (5)

Country Link
US (1) US11955777B2 (ja)
EP (1) EP4039401A4 (ja)
JP (2) JP7257540B2 (ja)
CN (1) CN114270235B (ja)
WO (1) WO2021065657A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072738A1 (en) * 2022-09-27 2024-04-04 Nlight, Inc. Optical combiner for distributing laser light/power to a multl-core output fiber and laser system incorporating the optical combiner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145888A (ja) 2007-12-14 2009-07-02 Corelase Oy 光ファイバ型コンバイナ及びその製造方法
US20160211639A1 (en) * 2015-01-21 2016-07-21 Ofs Fitel, Llc Pump and signal combiner for high numerical aperture use
JP2017219628A (ja) * 2016-06-06 2017-12-14 株式会社フジクラ コンバイナ及びレーザシステム
JP2018527184A (ja) * 2016-07-15 2018-09-20 コアレイズ オーワイ レーザ加工装置及びレーザ加工方法
WO2018217298A1 (en) * 2016-09-29 2018-11-29 Nlight, Inc. Optical fiber bending mechanisms

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148127A2 (en) 2006-06-23 2007-12-27 Gsi Group Limited Fibre laser system
JP5738275B2 (ja) 2009-04-14 2015-06-24 オーエフエス ファイテル,エルエルシー ファイバベースのレーザコンバイナ
JP5216151B1 (ja) 2012-03-15 2013-06-19 株式会社フジクラ 光ファイバコンバイナ、及び、それを用いたレーザ装置
JP5814314B2 (ja) 2013-08-09 2015-11-17 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法
JP5908559B1 (ja) 2014-10-17 2016-04-26 株式会社フジクラ 光カプラ、レーザ装置、及びテーパファイバ
DK3308202T3 (da) * 2015-06-09 2021-10-04 Corelase Oy Laserbehandlingsapparat og fremgangsmåde og en optisk komponent derfor
US10620369B2 (en) * 2016-06-30 2020-04-14 Fujikura Ltd. Amplification optical fiber and laser device
JP6778633B2 (ja) 2017-02-20 2020-11-04 株式会社フジクラ コンバイナ、光デバイス、及び製造方法
CN208127619U (zh) * 2018-05-23 2018-11-20 福州腾景光电科技有限公司 一种具有多级功率性能的合束器及激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145888A (ja) 2007-12-14 2009-07-02 Corelase Oy 光ファイバ型コンバイナ及びその製造方法
US20160211639A1 (en) * 2015-01-21 2016-07-21 Ofs Fitel, Llc Pump and signal combiner for high numerical aperture use
JP2017219628A (ja) * 2016-06-06 2017-12-14 株式会社フジクラ コンバイナ及びレーザシステム
JP2018527184A (ja) * 2016-07-15 2018-09-20 コアレイズ オーワイ レーザ加工装置及びレーザ加工方法
WO2018217298A1 (en) * 2016-09-29 2018-11-29 Nlight, Inc. Optical fiber bending mechanisms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4039401A4

Also Published As

Publication number Publication date
EP4039401A1 (en) 2022-08-10
JP2023058673A (ja) 2023-04-25
US11955777B2 (en) 2024-04-09
JP7257540B2 (ja) 2023-04-13
CN114270235B (zh) 2023-10-03
EP4039401A4 (en) 2023-10-11
JPWO2021065657A1 (ja) 2021-04-08
CN114270235A (zh) 2022-04-01
US20220276433A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
CN108780189B (zh) 用于改变激光束轮廓的光纤结构和方法
US11215761B2 (en) Method and arrangement for generating a laser beam having a differing beam profile characteristic by coupling different input laser beams into different cores of a multi-clad fiber
WO2016059900A1 (ja) 光カプラ、レーザ装置、及びテーパファイバ
JP2017532607A (ja) 光学アセンブリ及び光学アセンブリの製造方法
JP7487197B2 (ja) 制御可能な出力ビーム強度プロファイルを有する超高ファイバレーザシステム
WO2021065657A1 (ja) 光コンバイナ及びレーザ装置
WO2021240880A1 (ja) 光コンバイナ及びレーザ装置
WO2021044677A1 (ja) 光ファイバ、レーザ生成装置、レーザ加工装置、及び光ファイバの製造方法
WO2021241545A1 (ja) 光コンバイナ及びレーザ装置
WO2021240916A1 (ja) 光コンバイナ及びレーザ装置
JP7402024B2 (ja) レーザ装置
JP2023030808A (ja) 光制御部材、光デバイス、及びレーザ装置
JP2017026660A (ja) 光ファイバ端末
CN113341498B (zh) 用于产生旋转光束的光纤
CN114280721B (zh) 一种反高斯型传能光纤及其应用
JP6853291B2 (ja) レーザ装置の製造方法
WO2020184358A1 (ja) レンズ部材、導光部材、及びレーザ装置
CN109521572B (zh) 激光输出装置、激光器***及光斑能量的调节方法
JP6902568B2 (ja) レーザ装置およびレーザ装置の製造方法
JP2021139963A (ja) 光結合器及び光出力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872318

Country of ref document: EP

Effective date: 20220502