WO2021065063A1 - 溶接装置および溶接方法 - Google Patents

溶接装置および溶接方法 Download PDF

Info

Publication number
WO2021065063A1
WO2021065063A1 PCT/JP2020/018458 JP2020018458W WO2021065063A1 WO 2021065063 A1 WO2021065063 A1 WO 2021065063A1 JP 2020018458 W JP2020018458 W JP 2020018458W WO 2021065063 A1 WO2021065063 A1 WO 2021065063A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
gas
welding
flow path
unit
Prior art date
Application number
PCT/JP2020/018458
Other languages
English (en)
French (fr)
Inventor
裕企雄 佐藤
督生 川崎
郁馬 肥後
光彦 渡邉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2021065063A1 publication Critical patent/WO2021065063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding

Definitions

  • This disclosure relates to welding equipment and welding methods.
  • Design panel members reinforced with reinforcing members are used for the elevator landing doors, car doors, and car room walls.
  • the design panel and the reinforcing member were sometimes joined by spot welding or an adhesive. Spot welding requires the welding strain to be corrected with a grinder. Adhesives are excellent in finished condition, but inferior to spot welding in terms of fire resistance.
  • Patent Document 1 discloses an example in which 30 l / min argon gas is used as a shield gas as a laser welding condition. Further, since fume and spatter generated from a portion melted by the heat input of the laser beam cause a decrease in welding strength, a method for suppressing and removing the fume and spatter is required for precision welding.
  • the shield gas Since the shield gas is used for the purpose of removing oxygen from the welded part, it is used by spraying it toward the vicinity of the laser irradiation part. If the flow rate of the shield gas is increased, oxygen in the atmosphere may be involved in the molten portion, which may have an adverse effect, which may lead to poor welding quality, and it is not easy to obtain high-quality welding. In addition, the inert gas is expensive.
  • the present disclosure has been made in view of the above-mentioned actual conditions, and an object of the present disclosure is to provide a welding apparatus and a welding method that enable high-quality welding by an inexpensive method even in high-precision welding.
  • the welding apparatus includes a laser emitting unit that emits a laser to a condensing point and a gas injection unit that injects gas toward a peripheral portion of the condensing point.
  • the emitting portion irradiates the welding target member with a laser while moving relative to the welding target member, and the gas injection portion flows on the surface of the condensing point in the welding target member in a direction opposite to the moving direction. Inject gas.
  • high-quality welding can be made possible by an inexpensive method even in high-precision welding.
  • the figure which shows the welding apparatus which concerns on 1st Embodiment The block diagram which shows the welding apparatus which concerns on 1st Embodiment Partial sectional view which shows the laser emission part and the gas injection part of the welding apparatus which concerns on 1st Embodiment.
  • the figure which shows the moving direction of the laser emitting part and the gas injection part and the direction of a gas injection part which concerns on 1st Embodiment The figure which shows the moving direction of the laser emitting part and the gas injection part and the direction of a gas injection part which concerns on 1st Embodiment.
  • FIG. Sectional drawing explaining the welding method which concerns on 2nd Embodiment Sectional drawing which shows the injection port of the gas injection part which concerns on 2nd modification Sectional drawing which shows the injection port of the gas injection part which concerns on 2nd modification Sectional drawing which shows the injection port of the gas injection part which concerns on 2nd modification Sectional drawing which shows the injection port of the gas injection part which concerns on 2nd modification
  • the welding apparatus 100 includes a laser emitting unit 10 that emits a laser L, a gas injection unit 20 that injects a gas G, a laser emitting unit 10 and a laser emitting unit 10.
  • a robot unit 30 that moves the gas injection unit 20, a surface plate 40 on which a first welding target member R1 and a second welding target member R2 that are overlapped are placed, a laser emitting unit 10, a gas injection unit 20, and a robot.
  • a control unit 50 that controls the unit 30 is provided.
  • the first welding target member R1 is a metal reinforcing member having a plate-shaped portion.
  • the second welding target member R2 is a metal design panel used for a landing door, a car door, or a car room wall of an elevator facility.
  • the back surface of the surface of the second welding target member R2 that comes into contact with the first welding target member R1 is a design surface DS that appears in the appearance.
  • the direction in which the laser emitting unit 10 moves is set to the x direction
  • the direction in which the laser emitting unit 10 irradiates the laser L is set to the z direction
  • the directions perpendicular to the x direction and the z direction are set to the y direction.
  • the xy plane is a plane parallel to the plane irradiated with the laser in the first member R1 to be welded.
  • the laser emitting unit 10 irradiates the first member R1 to be welded with the laser L, and is transmitted to a power source, a laser oscillator, and a mirror or an optical fiber that transmits the laser L oscillated by the laser oscillator.
  • a fiber or disc laser comprising an optical system including a condenser lens that condenses the laser L.
  • the position of the condensing point C in the z direction is adjusted by the robot unit 30 to a position where the robot unit 30 just focuses on the surface of the first welding target member R1 facing the laser emitting unit 10.
  • the output of the laser L of the laser emitting unit 10 is controlled by the control unit 50 to an output that does not cause a welding trace on the design surface DS of the second welding target member R2.
  • the bead width is preferably 0.5 mm or more and 1.0 mm or less
  • the penetration depth of the second welding target member R2 is 0.1 mm or more and 0.3 mm.
  • the output of the laser L is controlled below.
  • the laser output may be adjusted so that the light collecting diameter is appropriately increased to increase the bead width and the penetration depth.
  • the output of the laser L is preferably 100 W or more and 10 kW or less, and more preferably 500 W or more and 2 kW or less.
  • the gas injection unit 20 injects the gas G, which is compressed air, into the peripheral portion P1 of the condensing point C of the laser L.
  • the gas injection unit 20 is injected with a nozzle 21 having a flow path 22, a regulator 23 that controls the flow rate of the gas G, a rotating unit 24 that rotates the flow path 22 around a path through which the laser passes, and a gas G. It has an injection port 25, an internal space 26 through which the laser L passes, and a helicoid portion 27 that moves the nozzle 21 in the z direction.
  • the nozzle 21 has a semi-circular truncated cone shape centered on the central axis AX, and has a hollow tapered shape that shrinks in diameter as it advances in the z direction.
  • the central axis AX is a path through which the laser L passes.
  • the flow path 22 is a gas flow path that is arranged at a position away from the central axis AX and surrounds the central axis AX, and is a path that approaches the central axis AX along the laser L from the laser emitting portion 10 toward the focusing point C. Is formed in.
  • the gas G flowing through the flow path 22 is injected from the injection port 25.
  • the flow path 22 and the injection port 25 are formed in a region in the x direction from the central axis AX in the state shown in FIG.
  • the angle ⁇ formed by the flow path 22 and the z-axis is preferably 3 ° or more and 30 ° or less, and more preferably 5 ° or more and 20 ° or less.
  • the extension line of the flow path 22 intersects the peripheral portion P1 of the condensing point C where the laser L is irradiated to the first welding target member R1.
  • the peripheral portion P1 is a position deviated from the focusing point C in the x direction.
  • the inlet portion of the flow path 22 has a shape along a semicircular arc surrounding the central axis AX, as shown in FIG. 5A.
  • the injection port 25 has a slit-like shape along a semicircular arc surrounding the central axis AX, as shown in FIG. 5B.
  • the diameter r1 of the inlet portion of the flow path 22 is larger than the diameter r2 of the injection port 25, and preferably the diameter r1 with respect to the diameter r2 is 1.5 times or more and 3 times or less.
  • the diameter r2 is preferably 10 mm or more and 30 mm or less.
  • the gap w1 of the injection port 25 is preferably 1 mm or more and 2 mm or less.
  • the regulator 23 shown in FIG. 3 is controlled by the control unit 50 to adjust the flow rate of the gas G flowing through the flow path 22.
  • the control to open the regulator 23 is executed.
  • the gas G is injected from the injection port 25.
  • the flow rate of the gas G injected from the injection port 25 is at least a flow rate at which fume can be removed, which is larger than the flow rate when the shield gas is flowed, preferably 50 l / min or more and 200 l / min or less, and more preferably. It is 70 l / min or more and 150 l / min or less.
  • the helicoid unit 27 is controlled by the control unit 50 to move the nozzle 21 in the z direction.
  • the injection port 25 of the gas injection unit 20 approaches the first and second welding target members R1 and R2.
  • the rotating unit 24 has a servomotor or a stepping motor that rotates the flow path 22 and the injection port 25 around the central axis AX, and is controlled by the control unit 50.
  • the central portion CP of the injection port 25 Is arranged at a position separated from the central axis AX in the x direction as shown in FIG. 6A.
  • the positions of the flow path 22 and the injection port 25 in this case are set as reference positions.
  • the injection port 25 is rotated by 180 ° from the reference position about the central axis AX, and the central CP of the injection port 25 is arranged at a position separated from the central axis AX in the ⁇ x direction.
  • the central axis AX is set.
  • the flow path 22 is rotated 90 ° from the reference position at the center.
  • the flow path 22 is rotated by 45 ° from the reference position about the central axis AX.
  • the robot unit 30 shown in FIG. 1 has a rail 31 extending in the x direction, a first drive unit that drives in the x direction along the rail 31, and a second drive unit that drives in the z direction, and is a control unit. Under the control of 50, the laser emitting unit 10 and the gas injection unit 20 are moved in the x direction or the ⁇ x direction along the rail 31. Further, the robot unit 30 moves the laser emitting unit 10 and the gas injection unit 20 in the z direction according to the thickness and shape of the first and second welding target members R1 and R2, and the light collecting point C in the z direction. Is adjusted to the surface of the first welding target member R1 facing the laser emitting portion 10.
  • the surface plate 40 has a surface 41 parallel to the xy plane, and mounts the first and second welding target members R1 and R2.
  • the first and second welding target members R1 and R2 are pressed and fixed to the surface plate 40 by a jig or a roller. When a roller is used, the unwelded portions of the first and second welding target members R1 and R2 are pressed against the surface plate 40 with a force of 10 kgf or more and 30 kgf or less.
  • the control unit 50 shown in FIG. 2 includes a CPU (Central Processing Unit) 51 for executing a program, a ROM (Read Only Memory) 52 for storing the program, and a RAM (Random Access) used as a work area for executing the program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access
  • control unit 50 controls the laser emission unit 10, the gas injection unit 20, and the robot unit 30 based on the materials, shapes, and welding positions of the first and second welding target members R1 and R2.
  • the control unit 50 measures the thicknesses of the first and second welding target members R1 and R2 and data indicating the materials of the first and second welding target members R1 and R2 in order to further improve the welding quality. Is acquired, and the output is controlled to irradiate the laser L suitable for the thickness and material. Further, the control unit 50 controls the robot unit 30 to move the laser emitting unit 10 and the gas injection unit 20 in the x direction or the ⁇ x direction.
  • the control unit 50 arranges the flow path 22 at a reference position.
  • the rotating portion 24 is controlled and the flow path 22 is arranged at a position rotated by 180 ° from the reference position.
  • the helicoid portion 27 is controlled to move the nozzle 21 in the z direction.
  • the first welding target member R1 is a reinforcing member having a hat-shaped cross-sectional shape, and is a steel plate or stainless steel mainly composed of iron.
  • the thickness of the first welding target member R1 has a thickness that secures the strength used as the reinforcing member.
  • the second welding target member R2 is a steel plate or stainless steel mainly made of iron, like the first welding target member R1.
  • the second welding target member R2 is a design panel used for a landing door, a car door, or a car chamber wall of an elevator facility, and is in contact with the first welding target member R1 in the second welding target member R2.
  • the back surface of the surface to be welded is the design surface DS that appears in the exterior.
  • the first welding target member R1 and the second welding target member R2 are overlapped by an operator and arranged so as to be aligned with the surface plate 40 of the welding apparatus 100.
  • the welding device 100 starts the welding process shown in FIG. 8 in response to an instruction from the user to start the process.
  • the welding process executed by the welding apparatus 100 will be described with reference to a flowchart.
  • the flow path 22 and the injection port 25 are arranged at reference positions.
  • the control unit 50 of the welding apparatus 100 acquires welding data indicating the materials and shapes of the first and second welding target members R1 and R2, and the planned welding positions T1 and T2 (step S101). ).
  • the acquired welding data is stored in the RAM 53.
  • the welding data includes data indicating whether or not to irradiate the laser while moving, data indicating whether to irradiate the laser L while moving in the x direction or ⁇ x direction, and data indicating the moving distance.
  • the planned welding position T1 is moved in the x direction and the planned welding position T2 is moved in the ⁇ x direction while being welded.
  • control unit 50 determines whether or not to irradiate the laser L while moving based on the welding data for welding the scheduled welding position T1 (step S102). In this example, it is determined that the laser L is irradiated while moving (step S102; Yes), and it is determined whether or not to irradiate the laser L while moving in the x direction (step S103).
  • step S104 it is determined that the laser L is irradiated while moving in the x direction (step S103; Yes), and the control unit 50 executes control to open the regulator 23 shown in FIG. 3 (step S104).
  • the flow path 22 and the injection port 25 are arranged at the reference positions, so that the gas G injected from the injection port 25 is sprayed onto the peripheral portion P1 and the surface of the focusing point C of the laser L. Since it flows in the ⁇ x direction, which is the direction of stroking, a stable airflow AF that does not disturb the molten pool is generated.
  • the control unit 50 controls the robot unit 30 to start moving the laser emitting unit 10 and the gas injection unit 20 in the x direction (step S105).
  • the control unit 50 controls the laser emitting unit 10 to transfer the laser L to the first and second welding target members R1 and R2. Irradiate (step S112).
  • the fume and spatter generated from the melted portion due to the heat input of the laser L are blown off by the airflow AF of the gas G in the ⁇ x direction opposite to the x direction, which is the moving direction, and are removed from the focusing point C of the laser L. .. Further, since the fume and spatter are blown to the upper part of the welded region that has already been welded, the fume and spatter are less in the upper part of the unwelded region to be welded.
  • the control unit 50 controls the laser emitting unit 10 to stop the irradiation of the laser L and end the welding process.
  • the planned welding positions T1 of the first and second welding target members R1 and R2 are welded, and a design panel to which the reinforcing member is welded is obtained.
  • it is determined whether or not welding is completed step S113).
  • the planned welding position T2 has not been welded, it is determined that the welding has not been completed (step S113; No), and the process returns to step S102.
  • control unit 50 Since the control unit 50 includes data indicating that the laser L is irradiated while moving in the ⁇ x direction in the welding data for welding the planned welding position T2, it is determined that the laser L is irradiated while moving (step S102). Yes), it is determined that the laser L is irradiated while moving in the ⁇ x direction (step S103; No).
  • the control unit 50 controls the rotating unit 24 and rotates the flow path 22 by 180 ° from the reference position as shown in FIG. (Step S106). As a result, the central CP of the flow path 22 is arranged at a position separated from the central axis AX in the ⁇ x direction.
  • the control unit 50 executes control for opening the regulator 23 (step S107).
  • the control unit 50 controls the robot unit 30 to start moving the laser emitting unit 10 and the gas injection unit 20 in the ⁇ x direction (step S108).
  • the control unit 50 controls the laser emitting unit 10 to shift the laser L to the first and second welding target members R1 and R2.
  • Step S112 The fume and spatter generated from the melted portion due to the heat input of the laser L are blown off by the airflow AF of the gas G in the x direction opposite to the ⁇ x direction, which is the moving direction, and are removed from the focusing point C of the laser L. .. Further, since the fume and spatter are blown off to the upper part of the already welded welded region Z1, the upper part of the unwelded region Z2 to be welded from now on has less fume and spatter.
  • the control unit 50 controls the laser emitting unit 10 to stop the irradiation of the laser L, determines that the welding is completed (step S113; Yes), and the flow path 22. And the injection port 25 is returned to the reference position, and the welding process is completed.
  • control unit 50 determines that the laser L is irradiated without moving (step S102; No).
  • control unit 50 controls the helicoid unit 27 and moves the nozzle 21 in the z direction (step S109).
  • the injection port 25 of the gas injection unit 20 approaches the first and second welding target members R1 and R2.
  • the control unit 50 executes control for opening the regulator 23 (step S110). As a result, as shown in FIG.
  • the control unit 50 controls the robot unit 30 to move the laser emission unit 10 and the gas injection unit 20 to the planned welding positions (step S111).
  • the control unit 50 controls the laser emitting unit 10 to irradiate the first and second welding target members R1 and R2 with the laser L (step S112). Fume and spatter generated from the portion melted by the heat input of the laser L are removed from the condensing point C of the laser L by the airflow AF of the gas G.
  • the control unit 50 controls the laser emitting unit 10 to stop the irradiation of the laser L and end the welding process.
  • the gas G is sprayed on the peripheral portion P1 or the peripheral portion P2 and flows in the direction of stroking the surface of the condensing point C of the laser L.
  • Stable airflow AF that does not disturb the molten pool is generated. This makes it possible to remove fume and spatter that cause poor welding quality from the focusing point C of the laser L. In particular, it is highly effective in removing fume that causes a phenomenon called defocus in which the focusing point C of the laser L shifts in the ⁇ z direction.
  • the fume F generated from the portion melted by the heat input of the laser L remains, and the focusing point C of the laser L is in the ⁇ z direction.
  • a phenomenon called defocus that shifts occurs.
  • the condensing point C is defocused, the energy density is low and the molten state is deteriorated, which may lead to welding defects including unwelded or sparse welding.
  • the laser L is scattered by the fume F and the sputter S, the energy density of the laser L becomes low, which may cause welding failure.
  • the shield gas since the shield gas is used for the purpose of removing oxygen from the focusing point C of the laser L, it is used by spraying it on a wide region including the focusing point C. Therefore, if the flow rate of the shield gas per unit area is reduced, there is a problem that the fume F and the spatter S cannot be sufficiently removed. If the flow rate is increased, oxygen in the atmosphere is entrained in the molten portion, which has an adverse effect and may lead to poor welding quality.
  • the gas injection unit 20 may have at least one injection port.
  • the gas injection unit 20 may have injection ports 61 and 62 in which the injection port 25 is divided into two.
  • the injection ports 61 to 62 are arranged side by side in the circumferential direction.
  • the injection ports 61 to 62 may each include a regulator that controls the flow rate of the gas independently.
  • the gas injection unit 20 may include a plurality of circular injection ports 81 along the circumference.
  • the shape of the injection port 81 is not limited to a circle, but may be an ellipse or a polygon. By doing so, the flow velocity of the gas can be increased without increasing the flow rate of the gas.
  • first welding target member R1 is a reinforcing member having a hat-shaped cross section and the second welding target member R2 is a design panel of an elevator facility has been described.
  • the shapes of the first welding target member R1 and the second welding target member R2 are not particularly limited as long as they can be welded on top of each other.
  • the shapes of the first welding target member R1 and the second welding target member R2 may include a curved surface shape as long as they can be welded on top of each other.
  • the gas injection unit 20 may inject a gas G capable of removing fume and spatter, and the type of the gas G is not limited. Nitrogen gas may be used, and in this case, the strength of the welded portion can be further prevented from being lowered due to oxidation.
  • the robot unit 30 directs the laser emitting unit 10 and the gas injection unit 20 in the x direction with respect to the first welding target member R1 and the second welding target member R2 fixed to the surface plate 40. And an example of moving in the y direction has been described.
  • the welding device 100 may move the laser emitting unit 10 and the gas injection unit 20 relative to the first welding target member R1 and the second welding target member R2 in the x direction or the y direction.
  • the laser emitting unit 10 and the gas injection unit 20 may be fixed, and the first welding target member R1 and the second welding target member R2 may be moved in the x direction and the y direction. As shown in FIG.
  • the rotating portion 24 is controlled and the flow path 22 is set to a reference position. It rotates 180 ° from and executes control to open the regulator 23. By doing so, the gas G flows in the x direction, which is the direction of stroking the surface of the condensing point C of the laser L, along the movement of the first welding target member R1, so that the molten pool is disturbed. No stable airflow AF occurs.
  • the fume and spatter generated from the portion melted by the heat input of the laser L are blown off in the x direction, which is the moving direction of the first welding target member R1, by the airflow AF of the gas G, and the condensing point of the laser L. Removed from C. Further, since the fume and spatter are blown off to the upper part of the already welded welded region Z1, the fume and spatter are not present in the upper part of the unwelded region Z2 to be welded from now on.
  • the gas injection unit 20 has one injection port 25 and one injection port 25 of the gas injection unit 20 is rotated by the rotating unit 24 from the reference position.
  • the gas injection unit 20 only needs to be able to flow the gas G in the direction of stroking the surface of the condensing point C of the laser L, and the welding apparatus 100 of the second embodiment has a rotating unit 24 in the gas injection unit 20. Instead, it comprises a coaxial nozzle 28 having a first flow path 22A and a second flow path 22B.
  • the configuration other than the gas injection unit 20 is the same as the configuration of the welding apparatus 100 of the first embodiment.
  • the gas injection unit 20 injects gas G, which is compressed air, into peripheral portions P1 and P2 of the condensing point C of the laser L.
  • the gas injection unit 20 injects a coaxial nozzle 28 having a first flow path 22A and a second flow path 22B, a first regulator 23A and a second regulator 23B for controlling the flow rate of the gas G, and a gas G. It has a first injection port 25A and a second injection port 25B, an internal space 26 through which the laser L passes, and a helicoid portion 27 that moves the coaxial nozzle 28 in the z direction.
  • the coaxial nozzle 28 is a rotationally symmetric body centered on the central axis AX, and has a hollow tapered shape that shrinks in diameter as it advances in the z direction.
  • the central axis AX is a path through which the laser L passes.
  • the first flow path 22A and the second flow path 22B are gas flow paths that surround the central axis AX, divide the central axis AX in the circumferential direction, and go from the laser emitting portion 10 toward the condensing point C. It is formed along the laser L in a path approaching the central axis AX.
  • the gas G flowing through the first flow path 22A is injected from the first injection port 25A.
  • the gas G flowing through the second flow path 22B is injected from the second injection port 25B.
  • the first flow path 22A and the first injection port 25A are formed in a region in the x direction from the central axis AX.
  • the second flow path 22B and the second injection port 25B are formed in a region in the ⁇ x direction from the central axis AX.
  • the angle ⁇ formed by the first flow path 22A or the second flow path 22B and the z-axis is preferably 3 ° or more and 30 ° or less, and more preferably 5 ° or more and 20 ° or less.
  • the extension line of the first flow path 22A intersects the peripheral portion P1 of the condensing point C where the laser L is irradiated to the first welding target member R1.
  • the extension line of the second flow path 22B intersects the peripheral portion P2 of the condensing point C where the laser L irradiates the first welding target member R1.
  • the peripheral portion P1 is a position deviated from the condensing point C in the x direction
  • the peripheral portion P2 is a position deviated from the condensing point C in the ⁇ x direction.
  • the inlet portions of the first flow path 22A and the second flow path 22B each have a shape along a semicircular arc surrounding the central axis AX, as shown in FIG. 18A.
  • the first injection port 25A and the second injection port 25B each have a slit-like shape along a semicircular arc surrounding the central axis AX, as shown in FIG. 18B, when viewed in the z direction.
  • the first regulator 23A shown in FIG. 16 is controlled by a control unit (not shown) to adjust the flow rate of the gas G flowing through the first flow path 22A.
  • the second regulator 23B is controlled by the control unit 50 to adjust the flow rate of the gas G flowing through the second flow path 22B.
  • the gas G is blown to the peripheral portion P1 and flows in the ⁇ x direction, which is the direction of stroking the surface of the condensing point C of the laser L, so that a stable airflow AF that does not disturb the molten pool is generated.
  • the control of closing the first regulator 23A and opening the second regulator 23B is executed.
  • the gas G is injected from the second injection port 25B, and the gas G is sprayed on the peripheral portion P2 and flows in the x direction, which is the direction of stroking the surface of the condensing point C of the laser L.
  • the control for opening the first regulator 23A and the second regulator 23B is executed.
  • the gas G is injected from the first injection port 25A and the second injection port 25B.
  • the helicoid portion 27 is controlled by a control portion (not shown) to move the coaxial nozzle 28 in the z direction.
  • the first injection port 25A and the second injection port 25B of the gas injection unit 20 approach the first and second welding target members R1 and R2.
  • the gas G injected from the first and second injection ports 25A and 25B is blown to the peripheral portions P1 and P2 and flows in a direction away from the condensing point C of the laser L, thereby disturbing the molten pool. Stable airflow AF is generated.
  • the gas G is applied to the peripheral portion P1 or the peripheral portion P2 as in the welding apparatus 100 and the welding method of the first embodiment. Since it is blown and flows in the direction of stroking the surface of the condensing point C of the laser L, a stable airflow AF that does not disturb the molten pool is generated. Thereby, the welding apparatus 100 and the welding method of the second embodiment can obtain the same effect as the welding apparatus 100 and the welding method of the first embodiment.
  • the gas injection unit 20 may have at least a plurality of injection ports. As shown in FIG. 20, the gas injection unit 20 may have injection ports 61 and 62 in which the first injection port 25A is divided into two and injection ports 63 and 64 in which the second injection port 25B is divided into two. ..
  • the injection ports 61 to 64 are arranged side by side in the circumferential direction.
  • the injection ports 61 to 64 are provided with regulators that independently control the flow rate of the gas.
  • the robot unit 30 can move the laser emitting unit 10 and the gas injection unit 20 in the x-direction and the y-direction.
  • gas G is injected from the injection port 61 and the injection port 62.
  • gas G is injected from the injection port 61 and the injection port 63.
  • the injection ports 71 to 78 having the circumference divided into eight may be provided. In this case, even if the laser emitting unit 10 and the gas injection unit 20 are moved obliquely, the case can be dealt with.
  • the gas injection unit 20 may include a plurality of circular injection ports 81 along the circumference.
  • the gas G is injected from the injection ports 81 of the regions 82 and 83.
  • the shape of the injection port 81 is not limited to a circle, and may be an ellipse or a polygon.
  • the laser emitting unit 10 uses a laser oscillator of a fiber laser or a disk laser that is excited by a semiconductor laser and emits a laser L.
  • the laser emitting unit 10 may irradiate the laser L that can be used for welding.
  • the laser emitting unit 10 may use a transmitter that oscillates a laser by irradiating an optical fiber having a rare earth element added to the core with excitation light, or may use a transmitter using a YAG crystal. Further, the laser emitting unit 10 may irradiate an excimer laser or a CO 2 laser.
  • first and second welding target members R1 and R2 are metal members.
  • the first and second welding target members R1 and R2 may be glass plates or resin plates as long as they can be joined by welding.
  • first and second welding target members R1 and R2 are used as a design panel for elevator equipment.
  • the equipment in which the first and second welding target members R1 and R2 are used is not limited, and the first and second welding target members R1 and R2 are indoors provided in a self-standing board including a switchboard and a control board, and an air conditioner. It may be used for machines and outdoor units, water heaters, lighting equipment, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

溶接装置は、レーザ出射部(10)と、ガス噴射部(20)と、を備える。レーザ出射部(10)は、集光点(C)にレーザ(L)を出射する。ガス噴射部(20)は、集光点(C)の周辺部(P1)に向けてガス(G)を噴射する。レーザ出射部(10)は、溶接対象部材(R1、R2)に対して相対的に移動しながら溶接対象部材(R1、R2)にレーザ(L)を照射する。ガス噴射部(20)は、溶接対象部材(R1、R2)における集光点(C)の表面を移動方向とは逆向きの方向に流れるガス(G)を噴射する。

Description

溶接装置および溶接方法
 この開示は、溶接装置および溶接方法に関する。
 エレベーターの乗場の戸、かごの戸およびかご室壁には、補強部材で補強された意匠パネル部材が用いられている。意匠パネルと補強部材とは、スポット溶接または接着剤により接合されることがあった。スポット溶接は、溶接歪みをグラインダで修正する必要がある。接着剤は、仕上がりの状態が優れているが、耐火性の点でスポット溶接に比べて劣る。
 レーザ溶接は、レーザの急峻なエネルギー密度分布により狭いビードと深い溶け込み形状を得ることに優れているため、鋼板材およびステンレス材を含む材質の薄鋼板であっても、高速且つ精密な入熱制御による深溶込み溶接が可能で、熱影響が小さい。また、設備の自動化が容易であるため、より能率的であるという利点がある。
 レーザ溶接技術を用いる際、酸化による溶接箇所の腐食による強度低下の防止のため、窒素およびアルゴンを含むアシストガスであるシールドガスが用いられる。特許文献1は、レーザ溶接条件として30l/minのアルゴンガスをシールドガスとして用いる実施例を開示している。また、レーザ光の入熱で溶融した箇所から発生するヒュームおよびスパッタが、溶接強度の低下要因となるため、精密溶接を行うには、その抑制および除去方法が必要となる。
特開2007-000888号公報
 シールドガスは、溶接箇所から酸素を除去する目的で用いられるため、レーザの照射箇所付近に向けて吹き付けて用いられる。シールドガスの流量を多くすると、溶融箇所に大気中の酸素を巻き込むことにより逆効果となることもあって、溶接品質の不良に繋がる虞があり高品質な溶接を得ることが容易でない。また、不活性ガスは高コストである。
 本開示は、上記実状に鑑みてなされたものであり、高精度溶接においても安価な方法で高品質な溶接を可能とする溶接装置および溶接方法を提供することを目的とする。
 上記目的を達成するため、本開示に係る溶接装置は、集光点にレーザを出射するレーザ出射部と、集光点の周辺部に向けてガスを噴射するガス噴射部と、を備え、レーザ出射部は、溶接対象部材に対して相対的に移動しながら溶接対象部材にレーザを照射し、ガス噴射部は、溶接対象部材における集光点の表面を移動方向とは逆向きの方向に流れるガスを噴射する。
 本開示によれば、高精度溶接においても安価な方法で高品質な溶接を可能とすることができる。
第1の実施の形態に係る溶接装置を示す図 第1の実施の形態に係る溶接装置を示すブロック図 第1の実施の形態に係る溶接装置のレーザ出射部とガス噴射部を示す部分断面図 第1の実施の形態に係る溶接方法のノズルを示す図 図3のA-A断面図 図3のB-B断面図 第1の実施の形態に係るレーザ出射部およびガス噴射部の移動方向とガス噴射部の向きを示す図 第1の実施の形態に係るレーザ出射部およびガス噴射部の移動方向とガス噴射部の向きを示す図 第1の実施の形態に係るレーザ出射部およびガス噴射部の移動方向とガス噴射部の向きを示す図 第1の実施の形態に係るレーザ出射部およびガス噴射部の移動方向とガス噴射部の向きを示す図 第1の実施の形態に係る第1の溶接対象部材と第2の溶接対象部材とを示す図 第1の実施の形態に係る溶接処理を示すフローチャート 第1の実施の形態に係る溶接方法を説明する断面図 第1の実施の形態に係る溶接方法を説明する断面図 比較例に係る溶接方法を説明する断面図 第1の変形例に係るガス噴射部の噴射口を示す断面図 第1の変形例に係るガス噴射部の噴射口を示す断面図 第1の変形例に係るガス噴射部の噴射口を示す断面図 第1の変形例に係る溶接方法を説明する断面図 第2の実施の形態に係る溶接装置のレーザ出射部とガス噴射部を示す部分断面図 第2の実施の形態に係る溶接方法の同軸ノズルを示す図 図16のC-C断面図 図16のD-D断面図 第2の実施の形態に係る溶接方法を説明する断面図 第2の変形例に係るガス噴射部の噴射口を示す断面図 第2の変形例に係るガス噴射部の噴射口を示す断面図 第2の変形例に係るガス噴射部の噴射口を示す断面図
 以下、本開示の実施の形態に係る溶接装置および溶接方法について説明する。
(第1の実施の形態)
 第1の実施の形態に係る溶接装置100は、図1および図2に示すように、レーザLを出射するレーザ出射部10と、ガスGを噴射するガス噴射部20と、レーザ出射部10およびガス噴射部20を移動するロボット部30と、重ねられた第1の溶接対象部材R1と第2の溶接対象部材R2を載置する定盤40と、レーザ出射部10、ガス噴射部20およびロボット部30を制御する制御部50と、を備える。第1の溶接対象部材R1は、板状の部分を有する金属製の補強部材である。第2の溶接対象部材R2は、エレベーター設備の乗り場の戸、かごの戸、またはかご室壁に用いられる金属製の意匠パネルである。第2の溶接対象部材R2における、第1の溶接対象部材R1と接触する面の裏面は、外観に表れる意匠面DSである。
 理解を容易にするために、相互に直交するxyz座標を設定し、適宜参照する。レーザ出射部10が移動する方向をx方向、レーザ出射部10がレーザLを照射する方向をz方向、x方向およびz方向に垂直な方向をy方向、と設定する。xy平面は、第1の溶接対象部材R1におけるレーザが照射される面に平行な面である。
 レーザ出射部10は、第1の溶接対象部材R1にレーザLを照射するものであり、電源と、レーザ発振器と、レーザ発振器で発振されたレーザLを伝送するミラーまたは光ファイバと、伝送されたレーザLを集光する集光レンズを含む光学系と、を有するファイバーレーザまたはディスクレーザである。これらの方式によりレーザを発振することで、第1の溶接対象部材R1に垂直にレーザを容易に照射することができる。レーザ出射部10から出射されたレーザLの集光径は、0.1mm以上0.2mm以下である。z方向における集光点Cの位置は、ロボット部30により第1の溶接対象部材R1のレーザ出射部10に向かい合う面にジャストフォーカスする位置に調整される。レーザ出射部10のレーザLの出力は、第2の溶接対象部材R2の意匠面DSに溶接痕跡を生じさせない出力に制御部50により制御される。たとえば、厚さ1.5mmの薄鋼板を重ね溶接する場合、好ましくは、ビード幅を0.5mm以上1.0mm以下、第2の溶接対象部材R2の溶け込み深さを0.1mm以上0.3mm以下に、レーザLの出力を制御する。薄鋼板の厚みが大きくなる場合は、適宜集光径を大きくしてビード幅と溶け込み深さを大きくするようにレーザ出力を調整すればよい。レーザLの出力は、好ましくは100W以上10kW以下であり、より好ましくは500W以上2kW以下である。
 ガス噴射部20は、図3および図4に示すように、レーザLの集光点Cの周辺部P1に圧縮空気であるガスGを噴射するものである。ガス噴射部20は、流路22を有するノズル21と、ガスGの流量を制御するレギュレータ23と、レーザが通過する経路を中心に流路22を回転する回転部24と、ガスGが噴射される噴射口25と、レーザLが通過する内部空間26と、ノズル21をz方向に移動するヘリコイド部27と、を有する。
 ノズル21は、中心軸AXを中心とする半円錐台形状を有し、z方向に進むにつれて縮径する中空のテーパ状の形状を有する。中心軸AXは、レーザLが通過する経路である。
 流路22は、中心軸AXから離れた位置に配置され、中心軸AXを取り囲むガス流路であり、レーザ出射部10から集光点Cに向かうレーザLに沿って、中心軸AXに近づく経路に形成されている。流路22を流れるガスGは、噴射口25から噴射される。流路22および噴射口25は、図3に示す状態では中心軸AXよりx方向の領域に形成されている。流路22と、z軸と、の為す角度θは、好ましくは3°以上30°以下であり、より好ましくは、5°以上20°以下である。流路22の延長線は、第1の溶接対象部材R1にレーザLが照射される集光点Cの周辺部P1と交わる。周辺部P1は、集光点Cよりx方向にずれた位置である。流路22の入口部分は、z方向に見ると、図5Aに示すように、中心軸AXを囲む半円の弧に沿った形状を有する。また、噴射口25は、z方向に見ると、図5Bに示すように、中心軸AXを囲む半円の弧に沿ったスリット状の形状を有する。流路22の入口部分の直径r1は、噴射口25の直径r2より大きく、好ましくは、直径r2に対する直径r1は、1.5倍以上3倍以下である。また、直径r2は、好ましくは10mm以上30mm以下である。また、噴射口25の隙間w1は、好ましくは1mm以上2mm以下である。
 図3に示すレギュレータ23は、制御部50により制御され流路22に流れるガスGの流量を調整する。レーザ出射部10からレーザLを照射する場合、レギュレータ23を開放する制御を実行する。これにより、噴射口25からガスGが噴射される。噴射口25から噴射されるガスGの流量は、少なくともヒュームを除去できる流量であり、シールドガスを流す場合の流量より大きく、好ましくは、50l/min以上200l/min以下であり、より好ましくは、70l/min以上150l/min以下である。ヘリコイド部27は、スポット溶接する場合、制御部50により制御されノズル21をz方向に移動する。これにより、ガス噴射部20の噴射口25は、第1と第2の溶接対象部材R1、R2に接近する。
 回転部24は、中心軸AXを中心に流路22および噴射口25を回転するサーボモータまたはステッピングモータを有し、制御部50により制御される。第1と第2の溶接対象部材R1、R2に対して相対的にx方向に移動しながら第1と第2の溶接対象部材R1、R2にレーザを照射する場合、噴射口25の中心部CPは、図6Aに示すように、中心軸AXからx方向に離れた位置に配置される。この場合の流路22および噴射口25の位置を基準位置とする。噴射口25が基準位置に配置された状態で流路22にガスGが流されると、ガスGは、周辺部P1に吹き付けられ、レーザLの集光点Cの表面を撫でる向きである-x方向に流れる。このため、溶融池を乱すことのない安定した気流AFが発生する。第1と第2の溶接対象部材R1、R2に対して相対的に-x方向に移動しながら第1と第2の溶接対象部材R1、R2にレーザLを照射する場合、回転部24は、図6Bに示すように、中心軸AXを中心に噴射口25を基準位置から180°回転し、噴射口25の中心部CPは、中心軸AXから-x方向に離れた位置に配置される。また、第1と第2の溶接対象部材R1、R2に対して相対的にy方向に移動しながら溶接対象部材R1、R2にレーザを照射する場合、図6Cに示すように、中心軸AXを中心に流路22を基準位置から90°回転する。また、第1と第2の溶接対象部材R1、R2に対して相対的にx方向から45°傾いた方向に移動しながら第1と第2の溶接対象部材R1、R2にレーザを照射する場合、図6Dに示すように、中心軸AXを中心に流路22を基準位置から45°回転する。
 図1に示すロボット部30は、x方向に延びるレール31と、レール31に沿ってx方向に駆動する第1の駆動部と、z方向に駆動する第2の駆動部を有し、制御部50の制御により、レール31に沿って、レーザ出射部10およびガス噴射部20をx方向または-x方向に移動するものである。また、ロボット部30は、第1と第2の溶接対象部材R1、R2の厚みおよび形状に応じて、レーザ出射部10およびガス噴射部20をz方向に移動し、z方向における集光点Cの位置を第1の溶接対象部材R1のレーザ出射部10に向かい合う面に調整する。
 定盤40は、xy平面に平行な面41を有するものであり、第1と第2の溶接対象部材R1、R2を載置するものである。第1と第2の溶接対象部材R1、R2は、治工具またはローラにより定盤40に押圧されて固定される。ローラを用いる場合、10kgf以上30kgf以下の力で第1と第2の溶接対象部材R1、R2の未溶接部分を定盤40に押圧する。
 図2に示す制御部50は、プログラムを実行するCPU(Central Processing Unit)51と、プログラムを記憶するROM(Read Only Memory)52と、プログラムを実行するための作業領域として用いられるRAM(Random Access Memory)53と、を有し、ROM52に記憶したプログラムを実行することにより、レーザ出射部10のレーザの出力、ガス噴射部20から噴射されるガスGの流量およびロボット部30を制御する。
 詳細には、制御部50は、第1と第2の溶接対象部材R1、R2の材質、形状、溶接位置に基づいて、レーザ出射部10、ガス噴射部20およびロボット部30を制御する。制御部50は、溶接品質をより向上させるために、第1と第2の溶接対象部材R1、R2の厚みを測定したデータおよび第1と第2の溶接対象部材R1、R2の材質を示すデータを取得して、当該厚みおよび材質に適合したレーザLを照射する出力に制御する。また、制御部50は、ロボット部30を制御してレーザ出射部10およびガス噴射部20をx方向または-x方向に移動する。制御部50は、ロボット部30によりx方向に移動しながらレーザ出射部10からレーザLを出射する場合、流路22を基準位置に配置する。一方、-x方向に移動しながらレーザLを照射する場合、回転部24を制御し、流路22を基準位置から180°回転した位置に配置する。また、移動せずにレーザLを照射する場合、ヘリコイド部27を制御して、ノズル21をz方向に移動する。
 つぎに、以上の構成を有する溶接装置100が、第1の溶接対象部材R1と第2の溶接対象部材R2とを溶接する例について、溶接装置100が実行する溶接処理を説明する。
 第1の溶接対象部材R1は、図7に示すように、ハット形の断面形状を有する補強部材であり、鉄を主体とする鋼板またはステンレスである。第1の溶接対象部材R1の厚みは、補強部材として用いる強度を確保する厚みを有する。
 第2の溶接対象部材R2は、第1の溶接対象部材R1と同様に、鉄を主体とする鋼板またはステンレスである。第2の溶接対象部材R2は、エレベーター設備の乗り場の戸、かごの戸、またはかご室壁に用いられる意匠パネルであり、第2の溶接対象部材R2における、第1の溶接対象部材R1と接触する面の裏面は、外観に表れる意匠面DSである。
 第1の溶接対象部材R1と第2の溶接対象部材R2は、作業者により重ねられて溶接装置100の定盤40に位置合わせして配置される。
 溶接装置100は、ユーザによる処理を開始させる指示に応答し、図8に示す溶接処理を開始する。以下、溶接装置100が実行する溶接処理をフローチャートを用いて説明する。なお、初期状態では、流路22および噴射口25は基準位置に配置されている。
 溶接処理が開始されると、溶接装置100の制御部50は、第1と第2の溶接対象部材R1、R2の材質、形状、溶接予定位置T1、T2を示す溶接データを取得する(ステップS101)。取得した溶接データは、RAM53に格納する。溶接データは、移動しながらレーザ照射するか否かを示すデータ、x方向および-x方向の何れに移動しながらレーザLを照射するかを示すデータ、および移動距離を示すデータを含む。この例では、溶接予定位置T1はx方向、溶接予定位置T2は-x方向に移動しながら溶接される。まず、制御部50は、溶接予定位置T1を溶接するための溶接データに基づいて、移動しながらレーザLを照射するか否かを判定する(ステップS102)。この例では、移動しながらレーザLを照射すると判定し(ステップS102;Yes)、x方向に移動しながらレーザLを照射するか否かを判定する(ステップS103)。
 この例では、x方向に移動しながらレーザLを照射すると判定し(ステップS103;Yes)、制御部50は、図3に示すレギュレータ23を開放する制御を実行する(ステップS104)。この状態では流路22および噴射口25は基準位置に配置されているので、これにより、噴射口25から噴射されたガスGは、周辺部P1に吹き付けられ、レーザLの集光点Cの表面を撫でる向きである-x方向に流れるため、溶融池を乱すことのない安定した気流AFが発生する。つぎに、制御部50は、ロボット部30を制御して、レーザ出射部10およびガス噴射部20をx方向に移動を開始する(ステップS105)。つぎに、レーザ出射部10およびガス噴射部20をx方向に移動しながら、制御部50は、レーザ出射部10を制御して、レーザLを第1と第2の溶接対象部材R1、R2に照射する(ステップS112)。レーザLの入熱で溶融した箇所から発生するヒュームおよびスパッタは、ガスGの気流AFにより移動方向であるx方向と逆の-x方向に吹き飛ばされ、レーザLの集光点Cから除去される。また、ヒュームおよびスパッタは、すでに溶接された溶接済み領域の上部に吹き飛ばされるため、これから溶接する未溶接領域の上部には、ヒュームおよびスパッタが少ない状態になる。レーザ出射部10およびガス噴射部20が溶接データに含まれる移動距離を移動すると、制御部50は、レーザ出射部10を制御して、レーザLの照射を停止し、溶接処理を終了する。その結果、第1と第2の溶接対象部材R1、R2の溶接予定位置T1が溶接され、補強部材が溶接された意匠パネルが得られる。つぎに、溶接が終了したか否かを判定する(ステップS113)。ここでは、溶接予定位置T2を溶接していないので、溶接を終了していないと判定し(ステップS113;No)、ステップS102に戻る。
 制御部50は、溶接予定位置T2を溶接するための溶接データに-x方向に移動しながらレーザLを照射することを示すデータを含むので、移動しながらレーザLを照射すると判定し(ステップS102;Yes)、-x方向に移動しながらレーザLを照射すると判定する(ステップS103;No)。つぎに、制御部50は、回転部24を制御し、図9に示すように、流路22を基準位置から180°回転する。(ステップS106)。これにより、流路22の中心部CPは、中心軸AXからみて-x方向に離れたた位置に配置される。つぎに、制御部50は、レギュレータ23を開放する制御を実行する(ステップS107)。これにより、基準位置から180°回転した噴射口25から噴射されたガスGは、周辺部P2に吹き付けられ、レーザLの集光点Cの表面を撫でる向きであるx方向に流れるため、溶融池を乱すことのない安定した気流AFが発生する。そのため、溶融池の酸化を促進することはない。つぎに、制御部50は、ロボット部30を制御して、レーザ出射部10およびガス噴射部20を-x方向に移動を開始する(ステップS108)。つぎに、レーザ出射部10およびガス噴射部20を-x方向に移動しながら、制御部50は、レーザ出射部10を制御して、レーザLを第1と第2の溶接対象部材R1、R2に照射する(ステップS112)。レーザLの入熱で溶融した箇所から発生するヒュームおよびスパッタは、ガスGの気流AFにより移動方向である-x方向と逆のx方向に吹き飛ばされ、レーザLの集光点Cから除去される。また、ヒュームおよびスパッタは、すでに溶接された溶接済み領域Z1の上部に吹き飛ばされるため、これから溶接する未溶接領域Z2の上部には、ヒュームおよびスパッタが少ない状態になる。溶接データに含まれる移動距離を移動すると、制御部50は、レーザ出射部10を制御して、レーザLの照射を停止し、溶接を終了したと判定し(ステップS113;Yes)、流路22および噴射口25を基準位置に戻し、溶接処理を終了する。
 制御部50は、溶接データに移動せずにレーザLを照射するスポット溶接であることを示すデータを含む場合、移動せずにレーザLを照射すると判定する(ステップS102;No)。つぎに、制御部50は、ヘリコイド部27を制御し、ノズル21をz方向に移動する(ステップS109)。これにより、ガス噴射部20の噴射口25は、第1と第2の溶接対象部材R1、R2に接近する。つぎに、制御部50は、レギュレータ23を開放する制御を実行する(ステップS110)。これにより、図10に示すように、噴射口25から噴射されたガスGは、周辺部P1に吹き付けられ、レーザLの集光点Cの表面を撫でる向きに流れるため、溶融池を乱すことのない安定した気流AFが発生する。つぎに、制御部50は、ロボット部30を制御して、レーザ出射部10およびガス噴射部20を溶接予定位置に移動する(ステップS111)。つぎに、制御部50は、レーザ出射部10を制御して、レーザLを第1と第2の溶接対象部材R1、R2に照射する(ステップS112)。レーザLの入熱で溶融した箇所から発生するヒュームおよびスパッタは、ガスGの気流AFによりレーザLの集光点Cから除去される。その後、制御部50は、レーザ出射部10を制御して、レーザLの照射を停止し、溶接処理を終了する。
 以上のように、第1の実施の形態の溶接装置100および溶接方法によれば、ガスGを周辺部P1または周辺部P2に吹き付け、レーザLの集光点Cの表面を撫でる向きに流れるため、溶融池を乱すことのない安定した気流AFが発生する。これにより、溶接品質の不良の原因となるヒュームおよびスパッタをレーザLの集光点Cから除去することが可能となる。特に、レーザLの集光点Cが-z方向にシフトするデフォーカスという現象の原因となるヒュームの除去に高い効果を発揮する。また、スポット溶接する場合、ガス噴射部20を下げた状態でガスGを周辺部P1に吹き付けることにより、ヒュームおよびスパッタをレーザLの集光点Cから除去することが可能となる。この結果、シールドガスを用いることなく低コストで高品質な溶接装置および溶接方法を提供することができる。また、エレベーター設備に用いられる意匠パネルを含む意匠品においては、ヒュームを除去することにより、レーザLのフォーカスがシフトしないことから集光点が安定して照射エネルギー密度が安定し、意匠面DSに溶接痕跡を生じさせない出力に、溶融部の溶け込み深さを容易に制御でき、意匠性と接合強度の双方を満たすことができる。
 これに対して、ガスGを吹き付けないとすると、図11に示すように、レーザLの入熱で溶融した箇所から発生したヒュームFが残存し、レーザLの集光点Cが-z方向にシフトするデフォーカスという現象が生じる。集光点Cがデフォーカスすると、エネルギー密度が低く溶融の状態が悪化し、未溶接または疎ら溶接を含む溶接欠陥に繋がる虞がある。
また、ヒュームFおよびスパッタSによりレーザLが散乱されることにより、レーザLのエネルギー密度が低くなることも溶接不良の原因となる虞がある。また、窒素およびアルゴンを含むシールドガスを用いる場合、シールドガスは、レーザLの集光点Cから酸素を除去する目的で用いられることから、集光点Cを含む広い領域に吹き付けて用いられる。
このため、シールドガスの単位面積当たりの流量を小さくすると、ヒュームFおよびスパッタSを十分除去できないという問題がある。流量を大きくすると、溶融箇所に大気中の酸素を巻き込むことにより逆効果となり、溶接品質の不良に繋がる虞もある。
 (第1の実施の形態の変形例)
 上述の実施の形態では、ガス噴射部20が、噴射口25を有する例について説明した。ガス噴射部20は、少なくとも一つの噴射口を有すればよい。ガス噴射部20は、図12に示すように、噴射口25を2分割した噴射口61、62を有してもよい。噴射口61~62は周方向に並んで配置される。噴射口61~62は、それぞれ独立してガスの流量を制御するレギュレータを備えてもよい。レーザ出射部10およびガス噴射部20をx方向に移動する場合、噴射口61および噴射口62からガスGを噴射する。レーザ出射部10およびガス噴射部20をy方向に移動する場合、流路22および噴射口25を基準位置から90°回転し、噴射口25の中心部CPをy方向に配置し、噴射口61および噴射口62からガスGを噴射する。また、図13に示すように、円周を4分割した噴射口71~74を有してもよい。また、ガス噴射部20は、図14に示すように、円周に沿って円形の噴射口81を複数備えてもよい。この場合、噴射口81の形状は、円形に限定されず、楕円または多角形であってもよい。このようにすることで、ガスの流量を大きくせず、ガスの流速を大きくすることができる。
 上述の実施の形態では、第1の溶接対象部材R1がハット形の断面を有する補強部材であり、第2の溶接対象部材R2が、エレベーター設備の意匠パネルである例について説明した。第1の溶接対象部材R1と第2の溶接対象部材R2の形状は、互いに重ねて溶接できる形状であれば、特に限定されない。第1の溶接対象部材R1と第2の溶接対象部材R2の形状は、互いに重ねて溶接できれば、曲面形状を含んでもよい。
 上述の実施の形態では、ガス噴射部20が、圧縮空気であるガスGを噴射する例について説明した。ガス噴射部20は、ヒュームおよびスパッタを除去できるガスGを噴射できればよく、ガスGの種類は限定されない。窒素ガスを用いてもよく、この場合、酸化による溶接箇所の強度低下をより防止できる。
 上述の実施の形態では、ロボット部30が、定盤40に固定された第1の溶接対象部材R1と第2の溶接対象部材R2に対して、レーザ出射部10およびガス噴射部20をx方向およびy方向に移動する例を説明した。溶接装置100は、第1の溶接対象部材R1と第2の溶接対象部材R2に対してレーザ出射部10およびガス噴射部20を相対的にx方向またはy方向に移動できればよい。レーザ出射部10およびガス噴射部20を固定し、第1の溶接対象部材R1と第2の溶接対象部材R2をx方向およびy方向に移動してもよい。図15に示すように、第1の溶接対象部材R1と第2の溶接対象部材R2をx方向に移動しながらレーザLを照射する場合は、回転部24を制御し、流路22を基準位置から180°回転し、レギュレータ23を開放する制御を実行する。このようにすることで、ガスGは、第1の溶接対象部材R1の動きに沿って、レーザLの集光点Cの表面を撫でる向きであるx方向に流れるため、溶融池を乱すことのない安定した気流AFが発生する。これにより、レーザLの入熱で溶融した箇所から発生するヒュームおよびスパッタは、ガスGの気流AFにより第1の溶接対象部材R1の移動方向であるx方向に吹き飛ばされ、レーザLの集光点Cから除去される。また、ヒュームおよびスパッタは、すでに溶接された溶接済み領域Z1の上部に吹き飛ばされるため、これから溶接する未溶接領域Z2の上部には、ヒュームおよびスパッタが存在しない状態になる。
 (第2の実施の形態)
 第1の実施の形態では、ガス噴射部20が1つの噴射口25を有し、ガス噴射部20の1つの噴射口25が基準位置から回転部24により回転する例について説明した。ガス噴射部20は、レーザLの集光点Cの表面を撫でる向きにガスGを流すことができればよく、第2の実施の形態の溶接装置100は、ガス噴射部20において回転部24を有さない代わりに、第1の流路22Aおよび第2の流路22Bを有する同軸ノズル28を備える。ガス噴射部20以外の構成は第1の実施の形態の溶接装置100の構成と同様である。
 ガス噴射部20は、図16および図17に示すように、レーザLの集光点Cの周辺部P1、P2に圧縮空気であるガスGを噴射するものである。ガス噴射部20は、第1の流路22Aおよび第2の流路22Bを有する同軸ノズル28と、ガスGの流量を制御する第1のレギュレータ23Aおよび第2のレギュレータ23Bと、ガスGが噴射される第1の噴射口25Aおよび第2の噴射口25Bと、レーザLが通過する内部空間26と、同軸ノズル28をz方向に移動するヘリコイド部27と、を有する。
 同軸ノズル28は、中心軸AXを中心とする回転対称体であり、z方向に進むにつれて縮径する中空のテーパ状の形状を有する。中心軸AXは、レーザLが通過する経路である。
 第1の流路22Aと第2の流路22Bとは、中心軸AXを取り囲むガス流路であり、周方向に中心軸AXを分割しており、レーザ出射部10から集光点Cに向かうレーザLに沿って、中心軸AXに近づく経路に形成されている。第1の流路22Aを流れるガスGは、第1の噴射口25Aから噴射される。第2の流路22Bを流れるガスGは、第2の噴射口25Bから噴射される。第1の流路22Aおよび第1の噴射口25Aは、中心軸AXよりx方向の領域に形成されている。第2の流路22Bおよび第2の噴射口25Bは、中心軸AXより-x方向の領域に形成されている。第1の流路22Aまたは第2の流路22Bと、z軸と、の為す角度θは、好ましくは3°以上30°以下であり、より好ましくは、5°以上20°以下である。第1の流路22Aの延長線は、第1の溶接対象部材R1にレーザLが照射される集光点Cの周辺部P1と交わる。第2の流路22Bの延長線は、第1の溶接対象部材R1にレーザLが照射される集光点Cの周辺部P2と交わる。周辺部P1は、集光点Cよりx方向にずれた位置であり、周辺部P2は、集光点Cより-x方向にずれた位置である。第1の流路22Aと第2の流路22Bの入口部分は、z方向に見ると、図18Aに示すように、それぞれ中心軸AXを囲む半円の弧に沿った形状を有する。また、第1の噴射口25Aおよび第2の噴射口25Bは、z方向に見ると、図18Bに示すように、それぞれ中心軸AXを囲む半円の弧に沿ったスリット状の形状を有する。
 図16に示す第1のレギュレータ23Aは、図示しない制御部により制御され第1の流路22Aに流れるガスGの流量を調整する。第2のレギュレータ23Bは、制御部50により制御され第2の流路22Bに流れるガスGの流量を調整する。レーザ出射部10およびガス噴射部20がx方向に移動しながらからレーザLを照射する場合、第2のレギュレータ23Bを閉じ、第1のレギュレータ23Aを開放する制御を実行する。これにより、第1の噴射口25AからガスGが噴射される。この場合、ガスGは、周辺部P1に吹き付けられ、レーザLの集光点Cの表面を撫でる向きである-x方向に流れるため、溶融池を乱すことのない安定した気流AFが発生する。一方、-x方向に移動しながらレーザLを照射する場合、第1のレギュレータ23Aを閉じ、第2のレギュレータ23Bを開放する制御を実行する。これにより、第2の噴射口25BからガスGが噴射され、ガスGは、周辺部P2に吹き付けられ、レーザLの集光点Cの表面を撫でる向きであるx方向に流れる。また、移動せずにレーザLを照射する場合、第1のレギュレータ23Aおよび第2のレギュレータ23Bを開放する制御を実行する。これにより、図19に示すように、第1の噴射口25Aおよび第2の噴射口25BからガスGが噴射される。また、ヘリコイド部27は、スポット溶接する場合、図示しない制御部により制御され同軸ノズル28をz方向に移動する。これにより、ガス噴射部20の第1の噴射口25Aおよび第2の噴射口25Bは、第1と第2の溶接対象部材R1、R2に接近する。これにより、第1と第2の噴射口25A、25Bから噴射されたガスGは、周辺部P1、P2に吹き付けられ、レーザLの集光点Cから離れる向きに流れるため、溶融池を乱すことのない安定した気流AFが発生する。
 以上のように、第2の実施の形態の溶接装置100および溶接方法によれば、第1の実施の形態の溶接装置100および溶接方法と同様に、ガスGを周辺部P1または周辺部P2に吹き付け、レーザLの集光点Cの表面を撫でる向きに流れるため、溶融池を乱すことのない安定した気流AFが発生する。これにより、第2の実施の形態の溶接装置100および溶接方法は、第1の実施の形態の溶接装置100および溶接方法と同様の効果を得ることができる。
(第2の実施の形態の変形例)
 第2の実施の形態では、ガス噴射部20が、第1の噴射口25Aと第2の噴射口25Bとを有する例について説明した。ガス噴射部20は、少なくとも複数の噴射口を有すればよい。ガス噴射部20は、図20に示すように、第1の噴射口25Aを2分割した噴射口61、62および第2の噴射口25Bを2分割した噴射口63、64を有してもよい。噴射口61~64は周方向に並んで配置される。噴射口61~64は、それぞれ独立してガスの流量を制御するレギュレータを備える。この場合、ロボット部30は、レーザ出射部10およびガス噴射部20をx方向およびy方向に移動することができる。レーザ出射部10およびガス噴射部20をx方向に移動する場合、噴射口61および噴射口62からガスGを噴射する。レーザ出射部10およびガス噴射部20をy方向に移動する場合、噴射口61および噴射口63からガスGを噴射する。また、図21に示すように、円周を8分割した噴射口71~78を有してもよい。この場合、レーザ出射部10およびガス噴射部20を斜めに移動する場合であっても対応できる。
 上述の実施の形態では、ガス噴射部20は、スリット状の噴射口を有する例について説明した。ガス噴射部20は、図22に示すように、円周に沿って円形の噴射口81を複数備えてもよい。この場合、レーザ出射部10およびガス噴射部20をx方向に移動する際領域82と領域83の噴射口81からガスGを噴射する。また、この場合、噴射口81の形状は、円形に限定されず、楕円または多角形であってもよい。
(変形例)
 上述の実施の形態では、レーザ出射部10が、半導体レーザにより励起させられレーザLを発信するファイバーレーザまたはディスクレーザのレーザ発振器を用いる例について説明した。レーザ出射部10は、溶接に用いることができるレーザLを照射できればよい。レーザ出射部10は、コアに希土類を添加した光ファイバに励起光を照射してレーザ発振する発信器を用いてもよく、YAG結晶を用いた発信器を用いてもよい。また、レーザ出射部10は、エキシマレーザまたはCOレーザを照射するものであってもよい。
 上述の実施の形態では、第1と第2の溶接対象部材R1、R2が、金属製の部材である例について説明した。第1と第2の溶接対象部材R1、R2は、溶接により接合できるものであればよく、ガラス板または樹脂板であってもよい。
 上述の実施の形態では、第1と第2の溶接対象部材R1、R2が、エレベーター設備の意匠パネルとして用いられる例について説明した。第1と第2の溶接対象部材R1、R2が用いられる設備は限定されず、第1と第2の溶接対象部材R1、R2は、配電盤および制御盤を含む自立盤、空調機器に備えられる室内機および室外機、給湯機、照明機器、に用いられてもよい。
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。
 本出願は、2019年10月3日に出願された、日本国特許出願特願2019-182656号に基づく。本明細書中に日本国特許出願特願2019-182656号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
10 レーザ出射部、20 ガス噴射部、21 ノズル、22 流路、22A 第1の流路、22B 第2の流路、23 レギュレータ、23A 第1のレギュレータ、23B 第2のレギュレータ、24 回転部、25噴射口、25A 第1の噴射口、25B 第2の噴射口、26 内部空間、27 ヘリコイド部、28 同軸ノズル、30 ロボット部、31 レール、40 定盤、41 面、50 制御部、51 CPU、52 ROM、53 RAM、61~64、71~78、81 噴射口、82~85領域、100 溶接装置、R1 第1の溶接対象部材、R2 第2の溶接対象部材、L レーザ、C 集光点、G ガス、P1、P2 周辺部、DS 意匠面、θ 角度、AX 中心軸、AF 気流、CP 中心部、r1、r2 直径、w1 隙間、T1、T2 溶接予定位置、F ヒューム、S スパッタ、Z1 溶接済み領域、Z2 未溶接領域。

Claims (20)

  1.  集光点にレーザを出射するレーザ出射部と、
     前記集光点の周辺部に向けてガスを噴射するガス噴射部と、を備え、
     前記レーザ出射部は、溶接対象部材に対して相対的に移動しながら前記溶接対象部材に前記レーザを照射し、前記ガス噴射部は、前記溶接対象部材における前記集光点の表面を移動方向とは逆向きの方向に流れるガスを噴射する、
     溶接装置。
  2.  前記ガス噴射部は、前記レーザが通過する経路から離れた位置に配置されたガス流路と、前記レーザが通過する経路を中心に前記ガス流路を回転する回転部と、を有する、
     請求項1に記載の溶接装置。
  3.  前記ガス流路は、前記レーザ出射部から前記集光点に向かう前記レーザに沿って、前記レーザが通過する経路に近づく、
     請求項2に記載の溶接装置。
  4.  前記レーザが通過する経路に垂直な面で切断した前記ガス流路は、前記レーザが通過する経路を囲む半円の弧に沿った形状を有する、
     請求項2または3に記載の溶接装置。
  5.  前記回転部を制御する制御部を備え、
     前記制御部は、前記レーザ出射部を前記溶接対象部材に対して相対的に第1の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記回転部を制御し、前記レーザが通過する経路からみて第1の方向にガス流路の中心部を配置する、
     請求項2から4の何れか1項に記載の溶接装置。
  6.  前記制御部は、前記レーザ出射部を前記溶接対象部材に対して相対的に前記第1の方向とは逆向きの第2の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記回転部を制御し、前記第1の方向に前記ガス流路の中心部を配置した状態から前記ガス流路を180°回転し、前記レーザが通過する経路からみて前記第2の方向にガス流路の中心部を配置する、
     請求項5に記載の溶接装置。
  7.  前記ガス噴射部は、前記レーザが通過する経路を囲む半円の弧に沿ったスリット状の形状を有する噴射口を備える、
     請求項1から6の何れか1項に記載の溶接装置。
  8.  前記ガス噴射部は、前記レーザが通過する経路の周囲を周方向に分割して並ぶ第1のガス流路と第2のガス流路と、前記第1のガス流路に流れるガスの流量を制御する第1のレギュレータと、前記第2のガス流路に流れるガスの流量を制御する第2のレギュレータと、前記第1のガス流路を流れるガスを噴射する第1の噴射口と、前記第2のガス流路を流れるガスを噴射する第2の噴射口と、を有し、
     前記第1の噴射口は、前記溶接対象部材における前記集光点の表面を第1の方向とは逆向きの第2の方向に流れるガスを噴射し、
     前記第2の噴射口は、前記溶接対象部材における前記集光点の表面を前記第1の方向に流れるガスを噴射する、
     請求項1に記載の溶接装置。
  9.  前記ガス噴射部を制御する制御部を備え、
     前記制御部は、前記レーザ出射部を前記溶接対象部材に対して相対的に前記第1の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記第1のレギュレータおよび前記第2のレギュレータを制御し、前記第1の噴射口からガスを噴射させる、
     請求項8に記載の溶接装置。
  10.  前記制御部は、前記レーザ出射部を前記溶接対象部材に対して相対的に前記第2の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記第1のレギュレータおよび前記第2のレギュレータを制御し、前記第2の噴射口からガスを噴射させる、
     請求項9に記載の溶接装置。
  11.  前記制御部は、前記レーザ出射部を移動せずに前記溶接対象部材に前記レーザを照射し、スポット溶接する場合、前記第1のレギュレータおよび前記第2のレギュレータを制御し、前記第1の噴射口および前記第2の噴射口からガスを噴射させる、
     請求項9または10に記載の溶接装置。
  12.  前記第1の噴射口および前記第2の噴射口は、前記レーザが通過する経路を囲む円の弧に沿ったスリット状の形状を有する、
     請求項8から11の何れか1項に記載の溶接装置。
  13.  前記ガス噴射部から噴射されるガスの流量は、少なくともヒュームを除去できる流量である、
     請求項1から12の何れか1項に記載の溶接装置。
  14.  集光点にレーザを出射するレーザ出射部と、
     前記集光点の周辺部に向けてガスを噴射するガス噴射部と、
     を備える溶接装置を用い、
     前記レーザ出射部を溶接対象部材に対して相対的に移動しながら、前記ガス噴射部から前記溶接対象部材における前記集光点の表面に移動方向とは逆向きの方向に流れるガスを噴射し、前記表面に前記ガスが流れる前記溶接対象部材に前記レーザを照射する、
     溶接方法。
  15.  前記レーザ出射部を前記溶接対象部材に対して相対的に第1の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記ガス噴射部から前記溶接対象部材における前記集光点の表面を前記第1の方向とは逆向きの第2の方向に流れるガスを噴射する、
     請求項14に記載の溶接方法。
  16.  前記ガス噴射部は、前記レーザが通過する経路から離れた位置に配置されたガス流路と、前記レーザが通過する経路を中心に前記ガス流路を回転する回転部と、を有し、
     前記レーザ出射部を前記溶接対象部材に対して相対的に前記第1の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記回転部を制御し、前記レーザが通過する経路からみて第1の方向にガス流路の中心部を配置する、
     請求項15に記載の溶接方法。
  17.  前記レーザ出射部を前記溶接対象部材に対して相対的に前記第1の方向とは逆向きの前記第2の方向に移動しながら前記溶接対象部材に前記レーザを照射する場合、前記回転部を制御し、前記第1の方向に前記ガス流路の中心部を配置した状態から前記ガス流路を180°回転し、前記レーザが通過する経路からみて前記第2の方向にガス流路の中心部を配置する、
     請求項16に記載の溶接方法。
  18.  前記ガス噴射部から噴射されるガスの流量は、少なくとも前記レーザの入熱で溶融した箇所から発生するヒュームを除去できる流量である、
     請求項14から17の何れか1項に記載の溶接方法。
  19.  前記ガス噴射部から噴射されたガスは、前記レーザの入熱で溶融した箇所から発生するヒュームおよびスパッタを、前記溶接対象部材におけるこれから溶接する未溶接領域からすでに溶接された溶接済み領域に吹き飛ばす、
     請求項14から18の何れか1項に記載の溶接方法。
  20.  前記ガス噴射部から噴射するガスは、空気である、
     請求項14から19の何れか1項に記載の溶接方法。
PCT/JP2020/018458 2019-10-03 2020-05-01 溶接装置および溶接方法 WO2021065063A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-182656 2019-10-03
JP2019182656 2019-10-03

Publications (1)

Publication Number Publication Date
WO2021065063A1 true WO2021065063A1 (ja) 2021-04-08

Family

ID=75337990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018458 WO2021065063A1 (ja) 2019-10-03 2020-05-01 溶接装置および溶接方法

Country Status (1)

Country Link
WO (1) WO2021065063A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462295A (en) * 1987-09-01 1989-03-08 Mitsubishi Electric Corp Laser beam machining head device
JP2003181676A (ja) * 2001-12-17 2003-07-02 Hokkaido Technology Licence Office Co Ltd レーザ溶接用ガスシールドノズル
JP2011509186A (ja) * 2008-01-08 2011-03-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード キーホールを安定化させることのできるノズルを使用するレーザー溶接法
JP2017080754A (ja) * 2015-10-26 2017-05-18 株式会社日本製鋼所 レーザ処理装置整流装置およびレーザ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462295A (en) * 1987-09-01 1989-03-08 Mitsubishi Electric Corp Laser beam machining head device
JP2003181676A (ja) * 2001-12-17 2003-07-02 Hokkaido Technology Licence Office Co Ltd レーザ溶接用ガスシールドノズル
JP2011509186A (ja) * 2008-01-08 2011-03-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード キーホールを安定化させることのできるノズルを使用するレーザー溶接法
JP2017080754A (ja) * 2015-10-26 2017-05-18 株式会社日本製鋼所 レーザ処理装置整流装置およびレーザ処理装置

Similar Documents

Publication Publication Date Title
JP6799755B2 (ja) レーザ溶接方法
US20120024828A1 (en) Method of hybrid welding and hybrid welding apparatus
RU2750313C2 (ru) Способ лазерной обработки металлического материала с высоким уровнем динамического управления осями движения лазерного луча по заранее выбранной траектории обработки, а также станок и компьютерная программа для осуществления указанного способа
JP4867599B2 (ja) レーザ溶接方法およびその装置
JPH07236984A (ja) レーザ加工方法及びその装置
JPH02290685A (ja) レーザ加工機
JPH09206975A (ja) レーザ加工方法およびレーザ加工装置
JP2008503355A (ja) 基板材料の切断、分断または分割装置、システムおよび方法
KR20140058571A (ko) 두 개의 접합 플라스틱 부재를 레이저 용접하기 위한 방법 및 장치
WO2007094348A1 (ja) レーザスクライブ方法、レーザスクライブ装置、及びこの方法または装置を用いて割断した割断基板
JP5365729B2 (ja) レーザ溶接方法および溶接接合体
RU2547987C1 (ru) Способ лазерной сварки
JPH06285662A (ja) レーザ加工装置及びレーザ加工方法
JP2019141876A (ja) 接合方法
EP3766630B1 (en) Laser processing machine and laser processing method
WO2019221181A1 (ja) ハイブリッド溶接装置
JP7369915B2 (ja) レーザ溶接装置及びそれを用いたレーザ溶接方法
WO2021065063A1 (ja) 溶接装置および溶接方法
JP2006346741A (ja) レーザ溶接方法
WO2021095253A1 (ja) レーザ切断方法及びレーザ切断装置
JP3157294B2 (ja) レーザ切断方法および装置
JP7382552B2 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
WO2020075632A1 (ja) レーザ加工機及びレーザ加工方法
JP2014024078A (ja) レーザ溶接装置
JP5692293B2 (ja) 金属板のレーザ溶接方法およびレーザ溶接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP