WO2021060093A1 - タービン翼 - Google Patents

タービン翼 Download PDF

Info

Publication number
WO2021060093A1
WO2021060093A1 PCT/JP2020/034988 JP2020034988W WO2021060093A1 WO 2021060093 A1 WO2021060093 A1 WO 2021060093A1 JP 2020034988 W JP2020034988 W JP 2020034988W WO 2021060093 A1 WO2021060093 A1 WO 2021060093A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice
flow path
side edge
blade
edge portion
Prior art date
Application number
PCT/JP2020/034988
Other languages
English (en)
French (fr)
Other versions
WO2021060093A8 (ja
Inventor
智子 都留
博資 瀧
大毅 鍋島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to DE112020004602.8T priority Critical patent/DE112020004602T5/de
Priority to GB2203943.2A priority patent/GB2603338B/en
Priority to CN202080067343.3A priority patent/CN114450466B/zh
Publication of WO2021060093A1 publication Critical patent/WO2021060093A1/ja
Priority to US17/702,914 priority patent/US11708763B2/en
Publication of WO2021060093A8 publication Critical patent/WO2021060093A8/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the present invention relates to turbine blades used in a turbine of a gas turbine engine, and particularly to a structure for cooling the turbine blades.
  • the turbines that make up the gas turbine engine are located downstream of the combustor, and because the high-temperature gas burned by the combustor is supplied, they are exposed to high temperatures during the operation of the gas turbine engine. Therefore, it is necessary to cool the turbine blades, that is, the stationary blades and the moving blades.
  • As a structure for cooling such a turbine blade it is known that a part of air compressed by a compressor is introduced into a cooling passage formed in the blade to cool the turbine blade using compressed air as a cooling medium. (See, for example, Patent Document 1).
  • both side edges thereof are closed by side wall surfaces.
  • the cooling medium flowing through one flow path of the lattice structure collides with the side wall surface, turns and flows into the other flow path.
  • the cooling medium flowing through the other flow path of the lattice structure collides with the other side wall surface, turns and flows into one flow path.
  • the cooling medium repeatedly collides with and turns to the wall surfaces on both side edges to promote cooling. Further, cooling is further promoted by generating a vortex when the cooling medium crosses the intersection of the grid-like ribs.
  • the cooling medium flowing through the lattice structure collides with the side wall surface that closes the side edge portion and is turned, the fluid resistance increases remarkably near the side edge portion.
  • the flow paths communicate with each other at the intersection of the flow paths in the portion other than the side edge portion, if the fluid resistance increases in the vicinity of the side edge portion, the flow path does not reach the side edge portion as described above.
  • a short-circuit flow occurs from the communicating portion of the above to the other flow path.
  • the cooling medium does not sufficiently spread over the entire flow path, and the cooling efficiency is lowered. Further, the eddy current that should be generated by passing through the intersection is insufficient, and a sufficient cooling effect cannot be obtained from this point as well.
  • an object of the present invention is to suppress an increase in fluid resistance at the side edge of the lattice structure in a turbine blade having a lattice structure inside in order to solve the above problems, and to efficiently cool the turbine blade. Is to enable.
  • the turbine blade according to the present invention is a turbine blade of a turbine driven by a high temperature gas.
  • a cooling passage formed between the first inner wall surface and the second inner wall surface of the turbine blade facing each other, and the cooling medium moves from the root side to the tip side in the height direction of the turbine blade.
  • a cooling passage configured to A first rib set composed of a plurality of ribs arranged so as to extend in a direction inclined with respect to the height direction on the first inner wall surface of the cooling passage, and the height on the second inner wall surface.
  • a lattice structure formed by stacking a second rib set composed of a plurality of ribs arranged so as to extend in a direction inclined in a direction opposite to the first rib set in the longitudinal direction in a grid pattern.
  • a turning part is provided to turn the medium, In the height direction between the first side edge portion, which is one side edge portion of both side edges of the lattice structure, and the first side wall surface of the cooling passage facing the first side edge portion.
  • a first communication flow path is formed which extends and communicates a plurality of lattice flow paths at the first side edge portion.
  • the height is between the second side edge portion, which is the other side edge portion of both side edges of the lattice structure, and the second side wall surface of the cooling passage facing the second side edge portion.
  • a second communication flow path extending in the direction and communicating a plurality of lattice flow paths at the second side edge portion may be formed.
  • the cooling medium flowing through the lattice structure is turned at a turning portion that does not block the lattice flow path provided at the side edge of the lattice structure, and this turning part is outside the lattice structure. It communicates with the formed communication flow path. Therefore, the increase in fluid resistance at the side edges of the lattice structure is suppressed. As a result, the cooling medium is suppressed from flowing in a short circuit in the lattice structure, and the cooling medium is promoted to spread throughout the lattice flow path, so that the turbine blades can be cooled efficiently.
  • the direction in which the cooling medium flows is connected to the root of the turbine blade, that is, the turbine blade such as the rotor of the turbine (in the case of a turbine blade) or the casing (in the case of a turbine blade), and the cooling medium is introduced into the turbine blade. Since the direction is from the place where the introduction port is easily provided toward the tip side, the structure in the cooling passage can be simplified.
  • FIG. 5 is an enlarged vertical cross-sectional view showing the connecting portion of FIG. It is a vertical cross-sectional view which shows one modification of the connection part of FIG.
  • FIG. 1 shows a turbine blade, which is a turbine blade of a gas turbine engine according to an embodiment of the present invention.
  • the “turbine blade” includes a moving blade and a stationary blade of a turbine (hereinafter, simply referred to as “moving blade” and “static blade”, respectively).
  • moving blade and “static blade”, respectively.
  • the rotor blade 1 forms a turbine driven by a high-temperature gas G flowing in the direction of the arrow supplied from a combustor (not shown).
  • the turbine blade 1 has a first blade wall 3 that is concavely curved with respect to the high temperature gas G flow path GP, and a second blade wall 5 that is convexly curved with respect to the high temperature gas flow path GP.
  • the blade wall that is concavely curved with respect to the high temperature gas G flow path GP is referred to as the first blade wall 3, and is convex with respect to the high temperature gas flow path GP.
  • the wing wall curved in the direction of 2 is referred to as a second wing wall 5, but unless otherwise specified, the configuration of the first wing wall 3 and the configuration of the second wing wall 5 can be interchanged with each other.
  • the upstream side (left side in FIG. 1) along the flow direction of the high temperature gas G is referred to as front, and the downstream side (right side in FIG. 1) is referred to as rear.
  • the moving blade 1 is planted in the turbine rotor by connecting the platform 7 to the outer peripheral portion of the turbine disk 9 which is a part of the turbine rotor.
  • a large number of rotor blades 1 are planted in the circumferential direction of the turbine rotor to form a turbine.
  • a cooling passage 11 for cooling the rotor blade 1 from the inside is formed inside the rotor blade 1 (the space between the first blade wall 3 and the second blade wall 5 in FIG. 1).
  • blade height direction H the height direction of the turbine blade (moving blade 1 in this example), that is, the radial direction of the turbine is referred to as “blade height direction H”, and is substantially along the blade chord perpendicular to the blade height direction H.
  • blade width direction W The direction in which the first blade wall 3 and the second blade wall 5 face each other (direction perpendicular to the paper surface in FIG. 2) is referred to as “blade width direction W”, and is referred to as "blade thickness direction D”.
  • the cooling medium CL which is a part of the compressed air from the compressor, passes through the refrigerant introduction passage 13 formed inside the turbine disk 9 on the inner side in the radial direction and toward the outer side in the radial direction.
  • the flow is introduced into the cooling passage 11 via the refrigerant introduction port 15 formed on the end surface on the root portion (the portion connected to the turbine disk 9) 1a side of the moving blade 1.
  • the entire cooling medium CL flows in the direction from the root portion 1a side to the tip portion 1b side in the blade height direction H.
  • the cooling medium CL supplied to the cooling passage 11 is discharged to the outside (passage GP of the high temperature gas G) from the refrigerant discharge hole 17 provided at the tip portion 1b of the moving blade 1.
  • the refrigerant discharge hole 17 may be provided.
  • the flow direction of the cooling medium CL is set to the root portion 1a side of the turbine blade, that is, the turbine blades such as the rotor (in the case of the moving blade 1) or the casing (in the case of the stationary blade) of the turbine, and the cooling medium CL is connected.
  • the structure in the cooling passage 11 can be simplified by making the direction from the position where it is easy to provide the introduction port (the refrigerant introduction port 15 in the example of the figure) into the turbine blade toward the tip portion 1b side.
  • the cooling passage 11 is provided over the entire blade width direction W of the moving blade 1, but only a part of the moving blade 1 in the blade width direction W, for example, only the rear half region. It may be provided.
  • a lattice structure 21 is provided as a cooling structure for cooling the moving blade 1.
  • the lattice structure 21 is composed of a plurality of ribs erected on the wall surface of the first wing wall 3 and the wall surface of the second wing wall 5 facing the cooling passage 11.
  • the wall surface of the first wing wall 3 facing the cooling passage 11 is referred to as a first inner wall surface 3a
  • the wall surface of the second wing wall 5 facing the cooling passage 11 is referred to as a second inner wall surface 5a.
  • the lattice structure 21 is provided only on a part of the cooling passage 11 on the root portion 1a side in the blade height direction H.
  • the cooling medium CL discharged from the lattice structure 21 is guided to the refrigerant discharge hole 17 in the remaining portion of the cooling passage 11 on the tip 1b side in the blade height direction H (that is, the downstream portion in the cooling passage 11).
  • the refrigerant lead-out unit 23 is formed.
  • the refrigerant lead-out portion 23 is formed in a portion of the cooling passage 11 in a region from the outlet of the lattice structure 21 to the refrigerant discharge hole 17.
  • the first inner wall surface 3a and the second inner wall surface 5a (FIG. 3) of the refrigerant lead-out portion 23 are provided with flat surfaces, that is, protrusions and recesses, except for the portion where the connecting column 25, which will be described later, is provided. It is formed as a non-surface.
  • the lattice structure 21 has a plurality of rib sets 33 composed of a plurality of ribs 31 provided parallel to each other and at equal intervals on both wall surfaces 3a and 5a facing the cooling passage 11. It is formed by stacking and combining in a grid pattern.
  • a first rib set (in FIG. 4) composed of a plurality of ribs 31 arranged so as to extend in a direction inclined with respect to the blade height direction H on the first inner wall surface 3a.
  • the lattice structure 21 is formed by combining the two rib sets (upper rib set in FIG. 4) 33B in a grid pattern in the blade thickness direction D.
  • the gap between the adjacent ribs 31 and 31 of each rib set 33 forms the flow path (lattice flow path) 35 of the cooling medium CL.
  • Each lattice flow path 35 extends so as to be inclined with respect to the blade height direction H between the two side edge portions 21a, 21a extending in the blade height direction H of the lattice structure 21.
  • the "side edge portion 21a" of the lattice structure 21 refers to the edge portion of the lattice structure 21 in the blade width direction W.
  • the inclination angle ⁇ 1 of the first rib set 33A with respect to the height direction H is set to 45 °.
  • the inclination angle ⁇ 2 of the second rib set 33B with respect to the height direction H is set to 45 ° in the direction opposite to that of the first rib set 33A. Therefore, the angle formed by the extending direction of the first rib set 33A and the extending direction of the second rib set 33B is approximately 90 °.
  • the values of these inclination angles ⁇ 1 and ⁇ 2 are not limited to 45 °.
  • the side edge portions 21a and 21a of the lattice structure 21 are opened at each side edge portion 21a, and the other rib assembly is formed from the lattice flow path 35 formed in one rib assembly 33.
  • a turning portion 37 for turning the cooling medium CL to the lattice flow path 35 formed in 33 is provided.
  • the turning portion 37 of the lattice structure 21 is at least downstream of the two ribs 31 and 31 forming each lattice flow path 35 (tip portion 1b in the blade height direction H).
  • the side edge portion 21a of the rib 31 located on the upper side of FIG. 6 has a portion deflected inward of the lattice flow path 35 with respect to the inclination direction of the rib 31.
  • the turning portion 37 has a portion of the side edge portion 21a of the rib 31 located on the downstream side of the lattice flow path 35, which is bent by bending along the blade width direction W at the bent portion 37a.
  • the side edge portion 21a of the rib 31 located on the upstream side of the lattice flow path 35 is also deflected along the blade width direction W in order to easily form the turning portion 37.
  • the shape of the turning portion 37 of the lattice structure 21 is deflected inward of the lattice flow path 35 with respect to the inclination direction of the rib 31 at the side edge portion 21a of the rib 31 located on the downstream side of the lattice flow path 35. If so, it is not limited to the above example.
  • the side edge portion 21a of the rib 31 located on the downstream side of the lattice flow path 35 may be curved inward of the lattice flow path 35 with respect to the inclination direction of the rib 31. ..
  • the rib 31 located on the upstream side of the lattice flow path 35 does not have to be deflected as shown in the figure.
  • the blade height is further between the side edge portions 21a of the lattice structure 21 and the side wall surfaces 39 and 39 of the cooling passage 11 facing each side edge portion 21a.
  • Communication flow paths 41 extending in the longitudinal direction H are formed respectively.
  • the lattice structure 21 is formed so that its wingspan direction dimension Lx is smaller than the blade width direction dimension Cx of the cooling passage 11, and is positioned at equal intervals from the wall surfaces 39 and 39 on both sides of the cooling passage 11. It is provided in.
  • the gaps between the side edge portions 21a and 21a of the lattice structure 21 installed in this way and the side wall surfaces 39 and 39 of the cooling passage 11 form the communication flow path 41.
  • the turning portions 37 provided on both side edge portions 21a of the lattice structure 21 are open at each side edge portion 21a, a plurality of turning portions 37 at each side edge portion 21a are provided by each communication flow path 41.
  • Lattice flow path 35 (turning portion 37) communicates with each other.
  • the cooling medium CL introduced into the lattice structure 21 is first of one rib set 33 (in the illustrated example, the lower first rib set 33A) as shown by the broken line arrow in the figure. It flows through the lattice flow path 35, crosses the other rib set 33 (upper second rib set 33B in the illustrated example), and collides with the turning portion 37 provided on the side edge portion 21a. As shown by the solid arrow in the figure, the cooling medium CL that has collided with the turning portion 37 is turned and flows into the lattice flow path 35 of the other rib set 33 (in the illustrated example, the upper second rib set 33B). At the time of this conversion, a strong eddy current is generated in the cooling medium CL.
  • FIG. 4 shows only the turning portions 37 at both ends of one lattice flow path 35, and the others are omitted.
  • the heights of the ribs 31 of the first rib set 33A and the second rib set 33B that is, the lattice flow path heights h1 and h2 in the blade thickness direction are the same. is there. Further, the distance between the ribs 31 in the first rib set 33A and the distance between the ribs 31 in the second rib set 33B are the same. That is, the lattice flow path width P1 in the first rib set 33A and the lattice flow path width P2 in the second rib set 33B are the same.
  • the ratio of the lattice flow path heights h1 and h2 to the lattice flow path widths P1 and P2 in each lattice flow path 35 is not particularly limited, but as described above, in the lattice structure 21. From the viewpoint of avoiding deformation of the vortex flow and peeling from the wall surface, it is preferably in the range of about 0.5 to 1.5. In this embodiment, the aspect ratio of the lattice flow path 35 is 1.
  • the turning portion 37 for turning the cooling medium CL is open at each side edge portion 21a, that is, each lattice flow path 35 is not blocked. Moreover, each turning portion 37 communicates with the communication flow path 41 formed on the outside thereof. Therefore, the increase in the fluid resistance of the cooling medium CL is suppressed in the vicinity of the turning portion 37. As a result, the cooling medium CL surely reaches the side edge portion 21a of the lattice structure 21 without short-circuiting in the middle of the lattice flow path 35, and is turned at the turning portion 37.
  • the flow path width Px of the communication flow path 41 is not particularly limited. However, if the flow path width Px is too wide, the cooling medium CL will flow from the turning portion 37 into the communication flow path 41, and the cooling medium CL will not be sufficiently turned at the turning portion 37. On the other hand, if the flow path width Px is too narrow, the effect of suppressing an increase in the fluid resistance of the cooling medium CL in the turning portion 37 cannot be sufficiently obtained. From this point of view, the flow path width Px of the communication flow path 41 is about 1 to 3 times the lattice flow path heights h1 and h2, in other words, the cooling passage height (in the blade thickness direction D of the cooling passage 11). Dimension) It is preferable that it is in the range of about 0.5 to 1.5 times Cz.
  • the communication flow path 41 is shown to have a constant flow path width Px over the entire length for the sake of simplification of illustration.
  • the chord direction dimension of the moving blade 1 is not constant along the blade height direction H, and the dimension that can be assigned to the communication flow path 41 may change accordingly.
  • the blade height direction dimension Ly with respect to the blade width direction dimension Lx of the lattice structure 21 is preferably a dimension that reaches the side edge portion 21a at least once in any lattice flow path 35. From this point of view, Lx is preferably in the range of 1.5 to 2 times Ly / tan ⁇ 1.
  • the communication flow paths 41 and 41 corresponding to the side edge portions 21a and 21a of the lattice structure 21 are provided, respectively, but the communication flow path 41 corresponding to one of the side edge portions 21a is provided. Only may be provided.
  • each communication flow path 41 is opened to the above-mentioned refrigerant outlet 23, and the refrigerant discharge hole 17 is provided downstream of the refrigerant outlet 23.
  • the cooling medium CL flowing through the communication flow path 41 is smoothly discharged from the outlet, so that the increase in fluid resistance at the side edge portion 21a of the lattice structure 21 is more effectively suppressed.
  • the length Fy in the blade height direction H is not particularly limited, but is within a range of about 3 to 7 times the cooling passage height Cz (FIG. 4) at the outlet of the lattice structure 21. It is preferable to have.
  • the refrigerant lead-out unit 23 is provided with a connecting column 25 for connecting the first inner wall surface 3a and the second inner wall surface 5a.
  • a cylindrical pin-shaped member is used as the connecting column 25.
  • a plurality of (8 in this example) connecting columns 25 are arranged in a staggered pattern.
  • the shape, size, number and arrangement of the connecting columns 25 are sufficient to prevent deformation of the blade walls 3 and 5, and are appropriate so as not to excessively prevent the cooling medium CL from being led out to the refrigerant discharge hole 17. Be selected.
  • the diameter d of the connecting columns 25 is preferably about 0.5 to 1.5 times the lattice flow path widths P1 and P2, and the arrangement interval between the connecting columns 25 is preferable.
  • S is in the range of 0.5 times the flow path pitch (W dimension in the blade width direction of the unit lattice flow path 35) Pc at the outlet of the lattice flow path 35 to 0.5 times the blade width direction dimension Lx of the lattice structure 21. It is preferably inside.
  • the shape, number, and arrangement of the connecting columns 25 may be appropriately selected according to the size of the refrigerant lead-out unit 23, the distance between the blade walls, that is, the height of the cooling passage 11. Further, even when the refrigerant lead-out unit 23 is provided, the connecting column 25 may be omitted.
  • the cooling medium CL flowing in the lattice structure 21 is converted so as not to block the lattice flow path 35 provided in the side edge portion 21a of the lattice structure 21. It is converted in the portion 37, and the converted portion 37 communicates with the communication flow path 41 formed on the outside of the lattice structure 21. Therefore, the increase in fluid resistance at the side edge portion 21a of the lattice structure 21 is suppressed. As a result, the cooling medium CL is suppressed from flowing short-circuited in the lattice structure 21, and the circulation of the cooling medium CL throughout the lattice flow path 35 is promoted.
  • the cooling medium CL is surely turned at the side edge portion 21a of the lattice structure 21 to generate a vortex flow, so that the turbine blades can be cooled efficiently.
  • the flow direction of the cooling medium CL is connected to the root side of the turbine blade, that is, the turbine blades such as the rotor of the turbine (in the case of the turbine blade 1) or the casing (in the case of the turbine blade), and the turbine of the cooling medium CL is connected. Since the direction is such that the introduction port into the blade is easily provided toward the tip end side, the structure inside the cooling passage 11 can be simplified.
  • the turning portion 37 is a side edge portion 21a of a rib located at least downstream of the two ribs 31 and 31 forming the lattice flow path 35 with respect to the inclination direction of the rib. It may have a portion deflected inside the lattice flow path 35. According to this configuration, the cooling medium CL that has reached the side edge portion 21a of the lattice structure 21 can be turned at the turning portion by a simple structure.
  • the tip portion 1b is provided with a refrigerant discharge hole 17 for discharging the cooling medium CL in the cooling passage 11 to the outside, and the region of the cooling passage 11 on the tip portion 1b side is provided.
  • the cooling medium CL may be formed as a refrigerant lead-out unit 23 that leads out the cooling medium CL to the refrigerant discharge hole 17. According to this configuration, by providing the refrigerant lead-out portion 23, the cooling medium CL flowing through the communication flow path 41 is smoothly discharged from the installation region of the lattice structure 21 toward the tip portion 1b of the turbine blade 1. .. Therefore, the increase in static pressure at the side edge portion 21a of the lattice structure 21 is more effectively suppressed.
  • the refrigerant outlet may be provided with a connecting column 25 for connecting the first inner wall surface 3a and the second inner wall surface 5a. According to this configuration, deformation of the blade walls 3 and 5 in the refrigerant lead-out portion 23 is prevented, and the height of the cooling passage 11 is secured.
  • Cooling passage 10 Cooling structure 17 Refrigerant discharge hole 21 Lattice structure 21a Side edge of the lattice structure 23 Refrigerant outlet 25 Connecting column 31 Rib 33 of the lattice structure Lattice Rib assembly of structure 37 Turning part 39 Side wall surface of cooling passage 41 Communication flow path CL Cooling medium G High temperature gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

冷却媒体(CL)が翼高さ方向(H)における根元部側から先端部側へ移動するように構成された冷却通路(11)と、前記冷却通路(11)に配置された複数のリブ組(33)を格子状に重ねてなるラティス構造体(21)とを備えるタービン翼(1)において、前記ラティス構造体(21)の両側縁部(21a)に、各側縁部において開口し、かつ一方の前記リブ組間に形成されたラティス流路(35)から他方のラティス流路(35)へ冷却媒体(CL)を転向させる転向部(37)が設けられ、前記ラティス構造体の一方の側縁部(21a)と、前記冷却通路の側壁面(39)との間に、翼高さ方向に延びて前記側縁部における複数のラティス流路を連通させる連通流路(41)が形成されている。

Description

タービン翼 関連出願
 本出願は、2019年9月26日出願の特願2019-175092の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、ガスタービンエンジンのタービンに使用されるタービン翼に関し、特にタービン翼を冷却するための構造に関する。
 ガスタービンエンジンを構成するタービンは、燃焼器の下流に配置され、燃焼器で燃焼された高温のガスが供給されるため、ガスタービンエンジンの運転中は高温に曝される。したがって、タービン翼、つまり静翼および動翼を冷却する必要がある。このようなタービン翼を冷却する構造として、圧縮機で圧縮された空気の一部を、翼内に形成した冷却通路に導入し、圧縮空気を冷却媒体としてタービン翼を冷却することが知られている(例えば、特許文献1参照)。
 圧縮空気の一部をタービン翼の冷却に用いる場合、外部から冷却媒体を導入する必要がなく、冷却構造を簡単にできるメリットがある一方、圧縮機で圧縮された空気を多量に冷却に用いるとエンジン効率の低下につながるので、できるだけ少ない空気量で効率的に冷却を行う必要がある。タービン翼を高い効率で冷却するための構造として、複数の平行に延びるリブを格子状に重ねて形成した、いわゆるラティス構造体を採用することが提案されている(例えば、特許文献2参照)。
 一般に、ラティス構造体では、その両側縁部が側壁面によって閉塞されている。ラティス構造体の一方の流路を流れる冷却媒体が、側壁面に衝突し、転向して他方の流路に流入する。同様に、ラティス構造体の他方の流路を流れる冷却媒体が他方の側壁面に衝突し、転向して一方の流路に流入する。このように、ラティス構造体では、冷却媒体が両側縁の壁面への衝突・転向を繰り返すことで冷却が促進される。また、冷却媒体が格子状のリブの交差部分を横切る際に渦流が発生することにより一層冷却が促進される。
米国特許第5603606号明細書 特許第4957131号明細書
 しかし、ラティス構造体内を流れる冷却媒体を、その側縁部を閉塞する側壁面に衝突させて転向させる場合、側縁部付近で流体抵抗が著しく増大する。ラティス構造体では、側縁部以外の部分にも流路の交差部分で互いの流路が連通しているので、側縁部近傍において流体抵抗が増大すると、側縁部まで到達せずに上記の連通する部分から他方の流路へ短絡する流れが発生する。このような短絡する流れが生じると、流路全体に冷却媒体が十分に行き渡らず冷却効率が低下する。さらに、本来交差部分を通過することによって発生するべき渦流も不十分となり、この点からも十分な冷却効果が得られない。
 そこで、本発明の目的は、上記の課題を解決すべく、内部にラティス構造体を備えるタービン翼において、ラティス構造体の側縁部における流体抵抗の増大を抑制し、効率的なタービン翼の冷却を可能にすることにある。
 上記目的を達成するために、本発明に係るタービン翼は、高温ガスによって駆動されるタービンのタービン翼であって、
 当該タービン翼の、互いに対向する第1内壁面と第2内壁面との間に形成された冷却通路であって、冷却媒体が当該タービン翼の高さ方向における根元部側から先端部側へ移動するように構成された冷却通路と、
 前記冷却通路の前記第1内壁面上に、前記高さ方向に対して傾斜した方向に延びるように配置された複数のリブからなる第1リブ組と、前記第2内壁面上に、前記高さ方向に対して前記第1リブ組と反対方向に傾斜した方向に延びるように配置された複数のリブからなる第2リブ組とを格子状に重ねることによって組み合わせてなるラティス構造体と、
を備え、
 前記ラティス構造体の両側縁部に、各側縁部において開口し、かつ一方の前記リブ組間に形成されたラティス流路から、他方の前記リブ組間に形成されたラティス流路へ前記冷却媒体を転向させる転向部が設けられており、
 前記ラティス構造体の両側縁部の一方の側縁部である第1側縁部と、前記第1側縁部に対向する前記冷却通路の第1側壁面との間に、前記高さ方向に延びて前記第1側縁部における複数のラティス流路を連通させる第1連通流路が形成されている。
 なお、前記ラティス構造体の両側縁部の他方の側縁部である第2側縁部と、前記第2側縁部に対向する前記冷却通路の第2側壁面との間に、前記高さ方向に延びて前記第2側縁部における複数のラティス流路を連通させる第2連通流路が形成されていてもよい。
 この構成によれば、ラティス構造体内を流れる冷却媒体は、ラティス構造体の側縁部に設けられたラティス流路を閉塞しない転向部において転向され、かつ、この転向部はラティス構造体の外側に形成された連通流路に連通している。したがって、ラティス構造体の側縁部における流体抵抗の増大が抑制される。これにより、ラティス構造体内において冷却媒体が短絡的に流れることが抑制され、ラティス流路の全体に行き渡ることが促進されるので、効率的にタービン翼を冷却することが可能になる。さらに、冷却媒体の流れる方向を、タービン翼の根元部、すなわちタービンのロータ(タービン動翼の場合)またはケーシング(タービン静翼の場合)といったタービン翼が連結され、冷却媒体のタービン翼内への導入口を設け易い箇所から先端部側に向かう方向としているので、冷却通路内の構造を簡素化できる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の第1実施形態に係るタービン翼の一例を示す斜視図である。 図1のタービン翼の冷却通路を模式的に示す縦断面図である。 図1のタービン翼の横断面図である。 図1のタービン翼に用いられるラティス構造体を模式的に示す斜視図である。 図2の一部を拡大して示す縦断面図である。 図5の連結部を拡大して示す縦断面図である。 図6の連結部の一変形例を示す縦断面図である。
 以下,本発明の好ましい実施形態を図面に基づいて説明する。図1に、本発明の一実施形態に係るガスタービンエンジンのタービン翼である、タービンの動翼を示す。なお、本明細書において、「タービン翼」には、タービンの動翼および静翼(以下、それぞれ単に「動翼」,「静翼」という。)を含む。以下の説明では、タービン翼として、主として動翼を例として示すが、特に説明する場合を除き、本発明は静翼にも適用することができる。動翼1は、図示しない燃焼器から供給された、矢印方向に流れる高温ガスGによって駆動されるタービンを形成している。タービン動翼1は、高温ガスGの流路GPに対して凹状に湾曲する第1翼壁3と、高温ガスの流路GPに対して凸状に湾曲する第2翼壁5とを有する。
 本明細書では、説明の便宜上、上述のように、高温ガスGの流路GPに対して凹状に湾曲する翼壁を第1翼壁3と呼び、高温ガスの流路GPに対して凸状に湾曲する翼壁を第2翼壁5と呼ぶが、特に説明する場合を除き、第1翼壁3の構成と第2翼壁5の構成は互いに入れ替えることが可能である。また、本明細書では、高温ガスGの流れ方向に沿った上流側(図1の左側)を前方と呼び、下流側(図1の右側)を後方と呼ぶ。
 動翼1は、図2に示すように、そのプラットフォーム7がタービンロータの一部であるタービンディスク9の外周部に連結されることで、タービンロータに植設されている。多数の動翼1がタービンロータの周方向に植設されてタービンを形成している。動翼1の内部(図1の第1翼壁3と第2翼壁5との間の空間)には、動翼1を内部から冷却するための冷却通路11が形成されている。
 以下の説明において、タービン翼(この例では動翼1)の高さ方向、すなわちタービンの径方向を「翼高さ方向H」と呼び、翼高さ方向Hに直交する、翼弦にほぼ沿った方向を「翼幅方向W」と呼び、第1翼壁3と第2翼壁5とが対向する方向(図2の紙面に垂直な方向)を「翼厚方向D」と呼ぶ。
 図2に示すように、圧縮機からの圧縮空気の一部である冷却媒体CLが、径方向内側のタービンディスク9の内部に形成された冷媒導入通路13を通って、径方向外側に向かって流れ、動翼1の根元部(タービンディスク9に連結される部分)1a側の端面に形成された冷媒導入口15を介して冷却通路11に導入される。本実施形態では、冷却通路11内において、冷却媒体CLの全体が、翼高さ方向Hにおける根元部1a側から先端部1b側へ向かう方向に流れる。冷却通路11に供給された冷却媒体CLは、動翼1の先端部1bに設けられた冷媒排出孔17から外部(高温ガスGの流路GP)へ排出される。なお、図示の例では1つの冷媒排出孔17が設けられているが、複数の冷媒排出孔17が設けられていてもよい。
 このように、冷却媒体CLの流れる方向を、タービン翼の根元部1a側、すなわちタービンのロータ(動翼1の場合)またはケーシング(静翼の場合)といった、タービン翼が連結され、冷却媒体CLのタービン翼内への導入口(同図の例では冷媒導入口15)を設けることが容易な箇所から先端部1b側に向かう方向としていることにより、冷却通路11内の構造を簡素化できる。
 なお、本実施形態では、動翼1の翼幅方向Wの全体に渡って冷却通路11を設けているが、動翼1の翼幅方向Wにおける一部のみ、例えば後方の半分の領域のみに設けてもよい。
 冷却通路11の内部には、動翼1を冷却するための冷却構造体として、ラティス構造体21が設けられている。図3に示すように、ラティス構造体21は、冷却通路11に面する第1翼壁3の壁面および第2翼壁5の壁面にそれぞれ立設された複数のリブからなる。以下の説明では、第1翼壁3の冷却通路11に面する壁面を第1内壁面3aと称し、第2翼壁5の冷却通路11に面する壁面を第2内壁面5aと称する。
 図2に示すように、本実施形態では、ラティス構造体21は、冷却通路11の翼高さ方向Hにおける根元部1a側の一部にのみ設けられている。冷却通路11の翼高さ方向Hにおける先端部1b側の残りの部分(つまり、冷却通路11における下流側部分)には、ラティス構造体21から排出された冷却媒体CLを冷媒排出孔17へ導く冷媒導出部23が形成されている。冷媒導出部23は、冷却通路11内の、ラティス構造体21の出口から冷媒排出孔17までの領域の部分に形成されている。冷媒導出部23における第1内壁面3aおよび第2内壁面5a(図3)は、後述する連結支柱25が設けられている部分以外の部分が平坦面として、つまり突起物や凹所が設けられていない面として形成されている。
 図4に示すように、ラティス構造体21は、冷却通路11に面する両壁面3a,5a上に、互いに平行にかつ等間隔に設けられた複数のリブ31からなるリブ組33を、複数組格子状に重ねて組み合わせることにより形成されている。具体的には、本実施形態では、第1内壁面3a上に、翼高さ方向Hに対して傾斜した方向に延びるように配置された複数のリブ31からなる第1リブ組(図4における下段のリブ組)33Aと、第2内壁面5a上に、翼高さ方向Hに対して第1リブ組33と反対方向に傾斜した方向に延びるように配置された複数のリブ31からなる第2リブ組(図4における上段のリブ組)33Bとを、翼厚方向Dに格子状に重ねることによって組み合わせて、ラティス構造体21が形成されている。
 ラティス構造体21において、各リブ組33の隣り合うリブ31,31間の間隙が冷却媒体CLの流路(ラティス流路)35を形成する。各ラティス流路35は、ラティス構造体21の翼高さ方向Hに延びる2つの側縁部21a,21aの間で、翼高さ方向Hに対して傾斜するように延びている。なお、本明細書においてラティス構造体21の「側縁部21a」とは、ラティス構造体21の、翼幅方向Wにおける縁部を指す。
 図5に示すように、本実施形態において、第1リブ組33Aの高さ方向Hに対する傾斜角度θ1は45°に設定されている。第2リブ組33Bの高さ方向Hに対する傾斜角度θ2は、第1リブ組33Aと反対方向に45°に設定されている。したがって、第1リブ組33Aの延設方向と第2リブ組33Bの延設方向とのなす角度は略90°である。もっとも、これらの傾斜角度θ1,θ2の値は45°に限定されない。
 図4に示すように、ラティス構造体21の両側縁部21a,21aには、各側縁部21aにおいて開口し、かつ一方のリブ組33に形成されたラティス流路35から、他方のリブ組33に形成されたラティス流路35へ冷却媒体CLを転向させる転向部37が設けられている。
 具体的には、図6に示すように、ラティス構造体21の転向部37は、各ラティス流路35を形成する2つのリブ31,31の少なくとも下流側(翼高さ方向Hにおける先端部1b側;図6の上側)に位置するリブ31の側縁部21aにおいて、当該リブ31の傾斜方向に対して当該ラティス流路35内側に偏向した部分を有している。図示の例では、転向部37は、ラティス流路35の下流側に位置するリブ31の側縁部21aにおいて、折れ曲がり部37aで翼幅方向Wに沿って折れ曲がることにより偏向した部分を有している。なお、図示の例では、転向部37を容易に形成するために、ラティス流路35の上流側に位置するリブ31の側縁部21aも、翼幅方向Wに沿って偏向している。
 なお、ラティス構造体21の転向部37の形状は、ラティス流路35の下流側に位置するリブ31の側縁部21aにおいて、当該リブ31の傾斜方向に対して当該ラティス流路35内側に偏向していれば、上記の例に限定されない。例えば、図7に示すように、ラティス流路35の下流側に位置するリブ31の側縁部21aにおいて、当該リブ31の傾斜方向に対して当該ラティス流路35内側に湾曲していてもよい。なお、当該ラティス流路35の上流側に位置するリブ31は、同図に示すように、偏向していなくてよい。
 図5に示すように、本実施形態では、さらに、ラティス構造体21の両側縁部21aと、各側縁部21aに対向する冷却通路11の各側壁面39,39との間に、翼高さ方向Hに延びる連通流路41がそれぞれ形成されている。換言すれば、ラティス構造体21は、その翼幅方向寸法Lxが、冷却通路11の翼幅方向寸法Cxよりも小さく形成されており、冷却通路11の両側壁面39,39から等間隔となる位置に設けられている。このように設置されたラティス構造体21の両側縁部21a,21aと冷却通路11の両側壁面39,39との間の各隙間が連通流路41を形成している。上述したように、ラティス構造体21の両側縁部21aに設けられた転向部37は、各側縁部21aにおいて開口しているから、各連通流路41によって、各々の側縁部21aにおける複数のラティス流路35(転向部37)が連通している。
 図4に示すように、ラティス構造体21に導入された冷却媒体CLは、同図に破線矢印で示すように、まず一方のリブ組33(図示の例では下段の第1リブ組33A)のラティス流路35を流れ、他方のリブ組33(図示の例では上段の第2リブ組33B)を横切りながら、側縁部21aに設けられた転向部37に衝突する。転向部37に衝突した冷却媒体CLは、同図に実線矢印で示すように、他方のリブ組33(図示の例では上段の第2リブ組33B)のラティス流路35に転向して流れ込む。この転向時に冷却媒体CLに強い渦流が生じる。その後、冷却媒体CLが他方のリブ組33を横切る際、周期的に渦流に旋回が与えられることによって渦流が保持される。このようにして冷却媒体CLに発生し、保持された渦流によって壁面3a,5aの冷却が促進される。なお、図4では1つのラティス流路35の両端の転向部37のみを示し、他は省略している。
 本実施形態では、ラティス流路35の各出口部分において、第1リブ組33Aと第2リブ組33Bの各リブ31の高さ、すなわち翼厚方向のラティス流路高さh1,h2は同一である。また、第1リブ組33Aにおけるリブ31同士の間隔と、第2リブ組33Bにおけるリブ31同士の間隔とは同一である。すなわち、第1リブ組33Aにおけるラティス流路幅P1と、第2リブ組33Bにおけるラティス流路幅P2とは同一である。各ラティス流路35におけるラティス流路高さh1,h2とラティス流路幅P1,P2の比(ラティス流路35のアスペクト比)は、特に限定されないが、上述のようにラティス構造体21内で生じる渦流の変形や壁面からの剥離を避ける観点から、0.5~1.5程度の範囲内にあることが好ましい。本実施形態では、ラティス流路35のアスペクト比を1としている。
 図5に示すように、本実施形態では、冷却媒体CLを転向させる転向部37が、各側縁部21aにおいて開口している、つまり各ラティス流路35を閉塞していない。しかも、各転向部37は、その外側に形成された連通流路41と連通している。したがって、転向部37付近において冷却媒体CLの流体抵抗が増大することが抑制される。その結果、冷却媒体CLは、ラティス流路35の途中で短絡することなく確実にラティス構造体21の側縁部21aまで到達し、転向部37で転向する。
 連通流路41の流路幅Pxは、特に限定されない。もっとも、流路幅Pxが広すぎると、冷却媒体CLが転向部37から連通流路41へ流れ込むようになり、転向部37において冷却媒体CLが十分に転向しない。他方、流路幅Pxが狭すぎると、転向部37における冷却媒体CLの流体抵抗増大を抑制する効果が十分に得られない。このような観点から、連通流路41の流路幅Pxは、ラティス流路高さh1,h2の1~3倍程度、換言すれば、冷却通路高さ(冷却通路11の翼厚方向Dの寸法)Czの0.5~1.5倍程度の範囲内にあることが好ましい。なお、図5において、連通流路41は、図示の簡略化のため、全長に渡って一定の流路幅Pxを有しているように示されている。しかし、一般的に動翼1の翼弦方向寸法は翼高さ方向Hに沿って一定でなく、これに伴って、連通流路41に割り当てることのできる寸法も変動し得る。また、動翼1の翼幅方向寸法も翼高さ方向Hに沿って一定でないから、これに伴って冷却通路11の通路高さCz(=h1+h2)も一定でない。したがって、連通流路41の流路幅Pxも翼高さ方向Hに沿って変化する場合がある。
 また、この場合のラティス構造体21の翼幅方向寸法Lxに対する翼高さ方向寸法Lyは、いずれのラティス流路35も最低1回は側縁部21aに到達する寸法であることが好ましい。このような観点から、LxはLy/tanθ1の1.5~2倍の範囲内であることが好ましい。
 なお、本実施形態では、ラティス構造体21の両側縁部21a,21aそれぞれに対応する連通流路41,41が設けられているが、いずれか一方の側縁部21aに対応する連通流路41のみが設けられていてもよい。
 さらに、本実施形態では、各連通流路41の出口が上述した冷媒導出部23に開口しており、冷媒導出部23の下流には冷媒排出孔17が設けられている。このような構成により、連通流路41を流れる冷却媒体CLが円滑に出口から排出されるので、ラティス構造体21の側縁部21aにおける流体抵抗の増大が一層効果的に抑制される。また、動翼1内部にラティス構造体21を設けることによる重量増大は必要最小限に抑えることが好ましい。そこで、動翼1において大きな応力がかかる部分であることから先端部1bに比べて冷却の必要性が高い根元部1a側にのみラティス構造体21を設けることで、効率的な冷却と重量増大抑制とを両立することができる。もっとも、冷媒導出部23を設けることは必須ではなく、ラティス構造体21を動翼1の先端部1bまで設けてもよい。
 冷媒導出部23を設ける場合、その翼高さ方向Hの長さFyは特に限定されないが、ラティス構造体21の出口における冷却通路高さCz(図4)の3~7倍程度の範囲内にあることが好ましい。
 本実施形態では、冷媒導出部23において、第1内壁面3aと第2内壁面5aとを連結する連結支柱25が設けられている。図示の例では、連結支柱25として、円柱形状のピン状部材が用いられている。冷媒導出部23に連結支柱25を設けることによって、翼壁3,5の変形が防止され、冷却通路11の通路高さを確保することができる。
 図示の例では、複数(この例では8個)の連結支柱25を千鳥状に配置している。連結支柱25の形状、寸法、数および配置は、翼壁3,5の変形を防止するのに十分で、かつ冷却媒体CLが冷媒排出孔17へ導出されるのを過剰に妨げないように適宜選択される。このような観点から、より具体的には、連結支柱25の直径dは、ラティス流路幅P1,P2の0.5~1.5倍程度であることが好ましく、連結支柱25間の配置間隔Sは、ラティス流路35の出口の流路ピッチ(単位ラティス流路35の翼幅方向W寸法)Pcの0.5倍~ラティス構造体21の翼幅方向寸法Lxの0.5倍の範囲内にあることが好ましい。なお、連結支柱25の形状、数および配置は、冷媒導出部23の広さや翼壁間の距離、すなわち冷却通路11の通路高さ等に応じて適宜選択してよい。また、冷媒導出部23を設ける場合であっても、連結支柱25は省略してもよい。
 以上説明したように、本実施形態に係るタービン翼によれば、ラティス構造体21内を流れる冷却媒体CLは、ラティス構造体21の側縁部21aに設けられたラティス流路35を閉塞しない転向部37において転向され、かつ、この転向部37はラティス構造体21の外側に形成された連通流路41に連通している。したがって、ラティス構造体21の側縁部21aにおける流体抵抗の増大が抑制される。これにより、ラティス構造体21内において冷却媒体CLが短絡的に流れることが抑制され、ラティス流路35の全体に行き渡ることが促進される。このようにして、確実に冷却媒体CLをラティス構造体21の側縁部21aにおいて転向させ、渦流を生じさせることにより、効率的にタービン翼を冷却することが可能になる。さらに、冷却媒体CLの流れる方向を、タービン翼の根元部側、すなわちタービンのロータ(タービン動翼1の場合)またはケーシング(タービン静翼の場合)といったタービン翼が連結され、冷却媒体CLのタービン翼内への導入口を設け易い箇所から先端部側に向かう方向としているので、冷却通路11内の構造を簡素化できる。
 本発明の一実施形態において、前記転向部37は、前記ラティス流路35を形成する2つのリブ31,31の少なくとも下流側に位置するリブの側縁部21aにおいて、当該リブの傾斜方向に対して当該ラティス流路35内側に偏向した部分を有していてもよい。この構成によれば、簡易な構成によって、ラティス構造体21の側縁部21aに到達した冷却媒体CLを転向部において転向させることができる。
 本発明の一実施形態において、先端部1bに設けられて、前記冷却通路11内の冷却媒体CLを外部へ排出する冷媒排出孔17を備え、前記冷却通路11の前記先端部1b側の領域が、前記冷却媒体CLを前記冷媒排出孔17へ導出する冷媒導出部23として形成されていてもよい。この構成によれば、冷媒導出部23を設けることにより、上記連通流路41を流れる冷却媒体CLが、ラティス構造体21の設置領域からタービン翼1の先端部1bへ向けて円滑に排出される。したがって、ラティス構造体21の側縁部21aにおける静圧上昇が一層効果的に抑制される。
 本発明の一実施形態において、前記冷媒導出部に、前記第1内壁面3aと前記第2内壁面5aとを連結する連結支柱25が設けられていてもよい。この構成によれば、前記冷媒導出部23における翼壁3,5の変形が防止され、冷却通路11の高さが確保される。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 動翼(タービン翼)
1a 動翼の根元部
1b 動翼の先端部
11 冷却通路
10 冷却構造体
17 冷媒排出孔
21 ラティス構造体
21a ラティス構造体の側縁部
23 冷媒導出部
25 連結支柱
31 ラティス構造体のリブ
33 ラティス構造体のリブ組
37 転向部
39 冷却通路の側壁面
41 連通流路
CL 冷却媒体
G 高温ガス

Claims (5)

  1.  高温ガスによって駆動されるタービンのタービン翼であって、
     当該タービン翼の、互いに対向する第1内壁面と第2内壁面との間に形成された冷却通路であって、冷却媒体が当該タービン翼の高さ方向における根元部側から先端部側へ移動するように構成された冷却通路と、
     前記冷却通路の前記第1内壁面上に、前記翼高さ方向に対して傾斜した方向に延びるように配置された複数のリブからなる第1リブ組と、前記第2内壁面上に、前記翼高さ方向に対して前記第1リブ組と反対方向に傾斜した方向に延びるように配置された複数のリブからなる第2リブ組とを格子状に重ねることによって組み合わせてなるラティス構造体と、
    を備え、
     前記ラティス構造体の両側縁部に、各側縁部において開口し、かつ一方の前記リブ組間に形成されたラティス流路から、他方の前記リブ組間に形成されたラティス流路へ前記冷却媒体を転向させる転向部が設けられており、
     前記ラティス構造体の両側縁部の一方の側縁部である第1側縁部と、前記第1側縁部に対向する前記冷却通路の第1側壁面との間に、前記翼高さ方向に延びて前記第1側縁部における複数のラティス流路を連通させる第1連通流路が形成されている、
    タービン翼。
  2.  請求項1に記載のタービン翼において、前記転向部は、前記ラティス流路を形成する2つのリブの少なくとも下流側に位置するリブの側縁部において、当該リブの傾斜方向に対して当該ラティス流路内側に偏向した部分を有しているタービン翼。
  3.  請求項1または2に記載のタービン翼において、先端部に設けられて、前記冷却通路内の冷却媒体を外部へ排出する冷媒排出孔を備え、前記冷却通路の前記先端部側の領域が、前記冷却媒体を前記冷媒排出孔へ導出する冷媒導出部として形成されているタービン翼。
  4.  請求項3に記載の冷却構造において、前記冷媒導出部に、前記第1内壁面と前記第2内壁面とを連結する連結支柱が設けられているタービン翼。
  5.  請求項1から4のいずれか一項に記載の冷却構造において、前記ラティス構造体の両側縁部の他方の側縁部である第2側縁部と、前記第2側縁部に対向する前記冷却通路の第2側壁面との間に、前記翼高さ方向に延びて前記第2側縁部における複数のラティス流路を連通させる第2連通流路が形成されているタービン翼。
PCT/JP2020/034988 2019-09-26 2020-09-15 タービン翼 WO2021060093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020004602.8T DE112020004602T5 (de) 2019-09-26 2020-09-15 Turbinenflügel
GB2203943.2A GB2603338B (en) 2019-09-26 2020-09-15 Turbine Airfoil
CN202080067343.3A CN114450466B (zh) 2019-09-26 2020-09-15 涡轮叶片
US17/702,914 US11708763B2 (en) 2019-09-26 2022-03-24 Turbine airfoil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-175092 2019-09-26
JP2019175092A JP2021050688A (ja) 2019-09-26 2019-09-26 タービン翼

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,914 Continuation US11708763B2 (en) 2019-09-26 2022-03-24 Turbine airfoil

Publications (2)

Publication Number Publication Date
WO2021060093A1 true WO2021060093A1 (ja) 2021-04-01
WO2021060093A8 WO2021060093A8 (ja) 2022-03-24

Family

ID=75157408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034988 WO2021060093A1 (ja) 2019-09-26 2020-09-15 タービン翼

Country Status (6)

Country Link
US (1) US11708763B2 (ja)
JP (1) JP2021050688A (ja)
CN (1) CN114450466B (ja)
DE (1) DE112020004602T5 (ja)
GB (1) GB2603338B (ja)
WO (1) WO2021060093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623010A (zh) * 2021-07-13 2021-11-09 哈尔滨工业大学 涡轮叶片

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286206A1 (ja) * 2021-07-14 2023-01-19 ヤマハ発動機株式会社 筐体
WO2023286205A1 (ja) * 2021-07-14 2023-01-19 ヤマハ発動機株式会社 筐体
WO2023286624A1 (ja) * 2021-07-14 2023-01-19 ヤマハ発動機株式会社 筐体具備装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829917A (ja) * 1971-08-25 1973-04-20
JP2002516944A (ja) * 1998-05-25 2002-06-11 エービービー アクチボラゲット ガスタービン用要素
US20070172354A1 (en) * 2004-02-27 2007-07-26 Mats Annerfeldt Blade or vane for a turbomachine
JP2009221995A (ja) * 2008-03-18 2009-10-01 Ihi Corp 高温部品の内面冷却構造
US20130034429A1 (en) * 2010-04-14 2013-02-07 Dave Carter Blade or vane for a turbomachine
JP2013181543A (ja) * 2012-03-01 2013-09-12 General Electric Co <Ge> 先端漏洩流れガイドを有する回転ターボ機械部品
JP2016125380A (ja) * 2014-12-26 2016-07-11 川崎重工業株式会社 タービン翼の冷却構造
WO2018164149A1 (ja) * 2017-03-10 2018-09-13 川崎重工業株式会社 タービン翼の冷却構造
WO2018164148A1 (ja) * 2017-03-10 2018-09-13 川崎重工業株式会社 タービン翼の冷却構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603606A (en) 1994-11-14 1997-02-18 Solar Turbines Incorporated Turbine cooling system
JP4957131B2 (ja) 2006-09-06 2012-06-20 株式会社Ihi 冷却構造
US10247015B2 (en) * 2017-01-13 2019-04-02 Rolls-Royce Corporation Cooled blisk with dual wall blades for gas turbine engine
JP6898104B2 (ja) * 2017-01-18 2021-07-07 川崎重工業株式会社 タービン翼の冷却構造
US10895157B2 (en) * 2017-04-24 2021-01-19 Honeywell International Inc. Gas turbine engine components with air-cooling features, and related methods of manufacturing the same
JP2019175092A (ja) 2018-03-28 2019-10-10 三菱プレシジョン株式会社 Icカードリーダシステム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829917A (ja) * 1971-08-25 1973-04-20
JP2002516944A (ja) * 1998-05-25 2002-06-11 エービービー アクチボラゲット ガスタービン用要素
US20070172354A1 (en) * 2004-02-27 2007-07-26 Mats Annerfeldt Blade or vane for a turbomachine
JP2009221995A (ja) * 2008-03-18 2009-10-01 Ihi Corp 高温部品の内面冷却構造
US20130034429A1 (en) * 2010-04-14 2013-02-07 Dave Carter Blade or vane for a turbomachine
JP2013181543A (ja) * 2012-03-01 2013-09-12 General Electric Co <Ge> 先端漏洩流れガイドを有する回転ターボ機械部品
JP2016125380A (ja) * 2014-12-26 2016-07-11 川崎重工業株式会社 タービン翼の冷却構造
WO2018164149A1 (ja) * 2017-03-10 2018-09-13 川崎重工業株式会社 タービン翼の冷却構造
WO2018164148A1 (ja) * 2017-03-10 2018-09-13 川崎重工業株式会社 タービン翼の冷却構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623010A (zh) * 2021-07-13 2021-11-09 哈尔滨工业大学 涡轮叶片

Also Published As

Publication number Publication date
GB202203943D0 (en) 2022-05-04
DE112020004602T5 (de) 2022-06-09
US20220213792A1 (en) 2022-07-07
GB2603338B (en) 2023-02-08
WO2021060093A8 (ja) 2022-03-24
GB2603338A (en) 2022-08-03
CN114450466A (zh) 2022-05-06
JP2021050688A (ja) 2021-04-01
US11708763B2 (en) 2023-07-25
CN114450466B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2021060093A1 (ja) タービン翼
JP5383270B2 (ja) ガスタービン翼
JP4889123B2 (ja) ターボ機械用可動ブレード
EP2825748B1 (en) Cooling channel for a gas turbine engine and gas turbine engine
US20100124485A1 (en) Aerofoil cooling arrangement
US9181807B2 (en) Blade member and rotary machine
US20120207591A1 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
KR101509385B1 (ko) 스월링 냉각 채널을 구비한 터빈 블레이드 및 그 냉각 방법
US11414998B2 (en) Turbine blade and gas turbine
JP2007002843A (ja) ターボ機械の可動な翼のための冷却回路
JP6461382B2 (ja) シュラウド付きタービンブレード
JP6860383B2 (ja) タービン翼の冷却構造
US20220106884A1 (en) Turbine engine component with deflector
JP2016121682A (ja) 回転ガスタービンブレードおよびそのようなブレードを備えるガスタービン
JP6624653B2 (ja) ガスタービン用プレスワーラ装置
JP2018512535A (ja) 非束縛的な流れ変向ガイド構造を有するタービンブレード
CN109154199B (zh) 燃气涡轮机叶片
KR20210103391A (ko) 에어포일에서 충돌 공기를 재사용하기 위한 충돌 인서트, 충돌 인서트를 포함하는 에어포일, 터보머신 구성요소, 및 이를 포함하는 가스 터빈
CN110392769B (zh) 涡轮叶片的冷却结构
JP5232084B2 (ja) タービン動翼
WO2018164149A1 (ja) タービン翼の冷却構造
KR20210103392A (ko) 에어포일에서 충돌 공기를 재사용하기 위한 삼중 벽 충돌 인서트, 충돌 인서트를 포함하는 에어포일, 터보머신 구성요소, 및 이를 포함하는 가스 터빈
WO2019002274A1 (en) TURBOMACHINE COMPONENT AND METHOD FOR MANUFACTURING THE TURBOMACHINE COMPONENT
KR102588778B1 (ko) 터빈 동익 및 가스 터빈
WO2018135283A1 (ja) タービン翼の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202203943

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200915

122 Ep: pct application non-entry in european phase

Ref document number: 20868993

Country of ref document: EP

Kind code of ref document: A1