WO2021059901A1 - Inorganic reinforced semi-aromatic polyamide resin composition - Google Patents

Inorganic reinforced semi-aromatic polyamide resin composition Download PDF

Info

Publication number
WO2021059901A1
WO2021059901A1 PCT/JP2020/033125 JP2020033125W WO2021059901A1 WO 2021059901 A1 WO2021059901 A1 WO 2021059901A1 JP 2020033125 W JP2020033125 W JP 2020033125W WO 2021059901 A1 WO2021059901 A1 WO 2021059901A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyamide
semi
resin composition
polyamide resin
acid
Prior art date
Application number
PCT/JP2020/033125
Other languages
French (fr)
Japanese (ja)
Inventor
誠 玉津島
山田 潤
鮎澤 佳孝
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2021548734A priority Critical patent/JPWO2021059901A1/ja
Publication of WO2021059901A1 publication Critical patent/WO2021059901A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention is excellent in heat resistance and heat discoloration, can suppress mold stains due to outgas during melt molding, and is excellent in melt fluidity and gelation characteristics, such as automobile parts, bicycle parts, electric / electronic parts, etc.
  • the present invention relates to a semi-aromatic polyamide resin composition suitable for molding the above.
  • thermoplastic resins polyamide resins have been used for clothing, fibers for industrial materials, engineering plastics, etc., taking advantage of their excellent properties and ease of melt molding.
  • engineering plastics are not limited to automobile parts and industrial machine parts, but are widely used in various industrial parts, housing parts, electrical and electronic parts, and the like.
  • the surface mounting method (flow method, reflow method) has rapidly become popular due to the miniaturization of parts due to the miniaturization of product size, the high density of mounting, the simplification of processes and the cost reduction. It has penetrated.
  • the process atmosphere temperature is equal to or higher than the solder melting temperature (240 to 260 ° C.)
  • the resin used is inevitably required to have heat resistance at the above atmosphere temperature.
  • swelling and deformation of the mounting component due to the water absorption of the resin may become a problem, and the resin used is required to have low water absorption.
  • Resins satisfying these characteristics include 6T-based polyamides and 9T-based polyamides, and Patent Document 1 and Patent Document 2 indicate that these aromatic polyamides can be used for surface mount type electrical and electronic components.
  • the color tone of the resin is likely to change in the manufacturing process or the usage environment, and there is room for improvement from the viewpoint of the color tone stability of the resin due to external factors.
  • the various semi-aromatic polyamide resins described above have a high melting point and inferior melt fluidity as compared with the aliphatic polyamide resin, and have the drawbacks of thickening during melt retention and easy gelation, resulting in processing stability and high fluidity. There is room for improvement in terms of sexuality (see, for example, Patent Document 3).
  • the invention has been improved in terms of color stability and gelation, it has a problem in that the mold is contaminated by the gas generated during melt molding and the productivity is deteriorated.
  • an object of the present invention is to have solder heat resistance, low water absorption, mechanical properties necessary for use in surface mount type electrical and electronic parts, excellent heat resistance and heat discoloration, and further during melt molding. It is an object of the present invention to provide an inorganic reinforced semi-aromatic polyamide resin composition which can suppress mold contamination due to outgas and has excellent melt fluidity and gelation characteristics.
  • the present invention has the following configuration.
  • An inorganic reinforced semi-aromatic polyamide resin composition containing 30 to 75% by mass of the semi-aromatic polyamide (A) and 25 to 65% by mass of the inorganic reinforcing material (B).
  • the semi-aromatic polyamide (A) is at least one semi-aromatic polyamide containing a repeating unit composed of a condensation of at least one aliphatic diamine containing two or more carbon atoms and terephthalic acid. Further, the amino group terminal concentration (AEG), the carboxy group terminal concentration (CEG) of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition, and the terminal concentration in which the amino group terminal is blocked with a monocarboxylic acid.
  • the semi-aromatic polyamide (A) is a structural unit composed of a condensation of an aliphatic diamine having 2 to 12 carbon atoms and terephthalic acid, and at least one of an aliphatic aminocarboxylic acid or a lactam having 11 to 18 carbon atoms.
  • the copolymer of the semi-aromatic polyamide (A) contains 55 to 75 mol% of the constituent unit consisting of the condensation of hexamethylenediamine and terephthalic acid, and 45 to 25 mol% of the constituent unit consisting of 11-aminoundecanoic acid or undecantham.
  • R 1, R 2 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group or an arylalkyl group
  • X 1 ⁇ X 3 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group, an arylalkyl group, an alkali metal or an alkaline earth metal, may form a single linking to ring structure of the X 1 ⁇ X 3 in each formula R 1 ⁇ R 2)
  • the present invention provides an inorganic reinforced semi-aromatic polyamide resin composition which is excellent in heat resistance and heat discoloration, can suppress mold stains due to outgas during melt molding, and is excellent in melt fluidity and gelation characteristics. can do.
  • the semi-aromatic polyamide (A) in the present invention means one containing a dicarboxylic acid or diamine having an aromatic skeleton in the repeating unit of the polyamide.
  • the semi-aromatic polyamide (A) in the present invention is at least one semi-aromatic polyamide containing a repeating unit consisting of a condensation of at least one aliphatic diamine containing two or more carbon atoms and terephthalic acid. It preferably contains 50 mol% or more of a structural unit composed of a condensation of an aliphatic diamine having two or more carbon atoms and terephthalic acid.
  • the structural unit is preferably 55 mol% or more, more preferably 55 to 75 mol%, still more preferably 60 to 70 mol%. If the structural unit composed of the condensation of diamine and terephthalic acid is less than 50 mol%, the crystallinity and mechanical characteristics are deteriorated.
  • the aliphatic diamine having two or more carbon atoms is preferably an aliphatic diamine having 2 to 12 carbon atoms.
  • the temperature may be lower than 290 ° C., so that the aliphatic diamine having 2 to 8 carbon atoms may have a melting point.
  • a semi-aromatic polyamide containing 50 mol% or more of a constituent unit composed of a condensation of diamine and terephthalic acid and having a melting point of 290 ° C. or higher is preferable.
  • the structural unit composed of the condensation of an aliphatic diamine having 2 to 8 carbon atoms and terephthalic acid is more preferably 55 mol% or more, further preferably 55 to 75 mol%, and particularly preferably 60 to 70 mol%.
  • Other than the aliphatic diamine having 2 to 12 carbon atoms there are 1,13-tridecamethylenediamine, 1,16-hexamethylenediamine, 1,18-octadecamethylenediamine and the like, which also impair the effect of the present invention. It can be used as a copolymerization component as long as it is in a small amount.
  • Examples of the copolymerizable dicarboxylic acid component include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and 2,2'-diphenyldicarboxylic acid.
  • Aromatic dicarboxylic acids such as 4,4'-diphenyl ether dicarboxylic acid, sodium isophthalic acid 5-sulfonate, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid, 1,11-Undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecandioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1, Examples thereof include aliphatic and alicyclic dicarboxylic acids such as 2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid and dimer acid. Examples thereof include lactams such as ⁇ -caprolactam, 12-aminodo
  • the copolymerization component it is preferable that one or a plurality of aliphatic aminocarboxylic acids having 11 to 18 carbon atoms or aliphatic lactams having 11 to 18 carbon atoms are copolymerized.
  • the semi-aromatic polyamide (A) in the present invention preferably satisfies (i) 7.5 ⁇ [number of carbon atoms in polyamide / number of amide bonds in polyamide]. Further, the semi-aromatic polyamide in the present invention preferably satisfies 7.5 ⁇ [the number of carbon atoms in the polyamide / the number of amide bonds in the polyamide] ⁇ 8.2.
  • the semi-aromatic polyamide (A) in the present invention preferably satisfies (ii) [number of carbon atoms on aromatic ring in polyamide / total number of carbon atoms in polyamide] ⁇ 0.35. Further, the semi-aromatic polyamide in the present invention preferably satisfies 0.28 ⁇ [the number of carbon atoms on the aromatic ring in the polyamide / the total number of carbon atoms in the polyamide] ⁇ 0.35.
  • LED lighting parts and automobile interior / exterior parts receive ultraviolet rays when used outdoors, so the materials are required to have high UV resistance.
  • the number of carbon atoms on the aromatic ring in the polyamide / the total number of carbon atoms in the polyamide] exceeds 0.35, the absorption of light becomes large especially in the ultraviolet region, and the deterioration of the resin tends to be remarkable due to the light. ..
  • the presence of an aromatic ring makes it easier for the resin to form a conjugated structure that causes discoloration due to deterioration, and exhibits remarkable discoloration. Therefore, it is preferable that the aromatic ring concentration in the resin is low.
  • [the number of carbon atoms on the aromatic ring in the polyamide / the total number of carbon atoms in the polyamide] is preferably 0.28 or more.
  • Examples of the semi-aromatic polyamide in the present invention include hexamethylenediamine / terephthalic acid / aminoundecanoic acid (or undecalactam), hexamethylenediamine / terephthalic acid / aminododecanoic acid (or 12-lauryllactam), and decamethylenediamine / terephthal.
  • Acids / aminoundecanoic acid (or undecalactam), decamethylenediamine / terephthalic acid / aminododecanoic acid (or 12-lauryllactam) are particularly preferred, but among them, hexamethylenediamine and terephthalic acid from the viewpoint of high melting point.
  • the copolymerized polyamide composed of 45 to 25 mol% of a constituent unit (also referred to as 11 units) composed of 11-aminoundecanoic acid or undecanelactam. It is more preferable that the copolymerized polyamide is composed of 60 to 70 mol% of 6T units and 40 to 30 mol% of 11 units.
  • the melting point (Tm) of the semi-aromatic polyamide in the present invention is preferably 290 to 350 ° C., more preferably 290 to 340 ° C., and even more preferably 300 to 330 ° C. If Tm exceeds the above upper limit, the processing temperature required for molding the semi-aromatic polyamide resin composition by injection molding or the like becomes extremely high, so that it may be decomposed during processing and the desired physical properties and appearance may not be obtained. is there. On the contrary, when Tm is less than the above lower limit, the crystallization rate becomes slow and molding becomes difficult in either case.
  • the total number of terminals which is the sum of the amino group terminal concentration (AEG), the carboxyl group terminal concentration (CEG), and the terminal concentration (EC) blocked with monocarboxylic acid and / or monoamine, and the relative viscosity ( RV) is correlated.
  • the semi-aromatic polyamide in the semi-aromatic polyamide resin composition of the present invention is excellent in heat resistance and heat discoloration by satisfying the above formulas (1) and (2). Furthermore, it is possible to obtain a semi-aromatic polyamide resin composition which can suppress mold contamination due to outgas during melt molding and has excellent melt fluidity and gelation characteristics.
  • EC refers to the terminal concentration in which the amino group terminal is blocked with a monocarboxylic acid.
  • the amino group terminal, the carboxyl group terminal, and the terminal sealed with monocarboxylic acid and / or monoamine may be referred to as AEG, CEG, and EC, respectively.
  • (AEG + CEG) of the semi-aromatic polyamide (A) which is a raw material used is used.
  • (AEG + CEG) is less than 10 eq / t, no reactive terminal group remains, and the viscosity cannot be increased to the relative viscosity (RV) at which the mechanical strength of the molded product can be ensured.
  • RV relative viscosity
  • (AEG + CEG) exceeds 140 eq / t the amount of terminal blockade is small and the amount of AEG and CEG remaining is large, so that the thickening and gelation occur during melt molding.
  • / (AEG + CEG + EC) is preferably 0.70 or less, more preferably 0.55 or less, still more preferably 0.50 or less, particularly preferably 0.45 or less, and most preferably 0. It is .40 or less.
  • (AEG + CEG) / (AEG + CEG + EC) exceeds 0.70, the content of the terminal blocker is small and the residual amount of AEG and CEG is large, so that the thickening and gelation occur during melt molding.
  • the acid component of CEG causes a coloring reaction to occur, resulting in poor color stability and a resin that easily gels.
  • the semi-aromatic polyamide (A) satisfies the above-mentioned terminal group relationship.
  • the AEG, CEG, and EC of the semi-aromatic polyamide (A), which is the raw material, may satisfy the above-mentioned relationship, but the preferable ranges of each are as follows.
  • the AEG is preferably 5 to 70 eq / t, more preferably 10 to 40 eq / t, and even more preferably 15 to 40 eq / t.
  • the CEG is preferably 5 to 100 eq / t, more preferably 5 to 70 eq / t, and even more preferably 15 to 50 eq / t.
  • the EC is preferably 60 to 240 eq / t, more preferably 80 to 200 eq / t, and even more preferably 80 to 170 eq / t.
  • the relative viscosity (RV) of the semi-aromatic polyamide (A) in the present invention is preferably 1.3 to 3.5, more preferably 1.5 to 3.0, and even more preferably 1.8 to 1.8. It is 2.8, more preferably 1.9 to 2.5. If the RV is less than 1.3, the mechanical strength of the molded product cannot be obtained. When the RV is larger than 3.5, the fluidity at the time of melt molding becomes low, which is not preferable in terms of melt processability.
  • the semi-aromatic polyamide (A) in the present invention has a sum (P3) of phosphorus atom contents derived from phosphorus compounds detected in the structures of the structural formulas (P1) and (P2) in the semi-aromatic polyamide of 30 ppm or more. It is preferable that P3 is 10% or more with respect to the total amount of phosphorus atoms remaining in the semi-aromatic polyamide.
  • the phosphorus atom is derived from a phosphorus compound used as a catalyst. P3 is more preferably 40 ppm or more, still more preferably 50 ppm or more.
  • P3 When P3 is less than 30 ppm, the peroxide generated due to thermal oxidative deterioration cannot be suppressed, so that yellowing and coloring are likely to occur in a high temperature atmosphere. In addition, the peroxide generated by thermal oxidative deterioration results in a resin that easily gels.
  • P3 When P3 is less than 10% of the total residual phosphorus atomic weight, it means that the product has been damaged by heat due to the thermal history during polymerization or that it has reacted with oxygen remaining in the polymerization system to promote oxidative deterioration. This means that the resin is easily colored and easily gelled.
  • the upper limit of the ratio of P3 to the total residual phosphorus atomic weight is not particularly determined, but is about 50% in the present invention.
  • the oxygen concentration in the storage tank was set to 10 ppm or less, and the polycondensation step was carried out at a low temperature to obtain a low-order condensate. After that, it can be achieved by adjusting the viscosity to a predetermined value by solid-phase polymerization having a small thermal history. Since P3 is 30 ppm or more with respect to the total residual phosphorus atomic weight, the total phosphorus atomic weight remaining in the semi-aromatic polyamide is preferably 200 to 400 ppm.
  • R 1, R 2 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group or an arylalkyl group
  • X 1 ⁇ X 3 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group, an arylalkyl group, an alkali metal or an alkaline earth metal, may form a single linking to ring structure of the X 1 ⁇ X 3 in each formula R 1 ⁇ R 2)
  • the phosphorus compound used as a catalyst will be described later, but when sodium hypophosphate is used as the catalyst, R 1 and R 2 are hydrogen, and X 1 to X 3 are hydrogen or sodium, respectively.
  • ⁇ Co-b before and after the semi-aromatic polyamide resin composition of the present invention is heat-treated in the air at 260 ° C. for 10 minutes. Can be 12 or less. Further, a semi-aromatic polyamide resin composition having a gelation time of 4 hours or more when heat-treated at 330 ° C. under a nitrogen stream can be obtained. ⁇ Cob and gelation time are set by the method described in the section of Examples described later.
  • the method for producing the semi-aromatic polyamide (A) in the present invention includes a step of preparing a raw material aqueous solution constituting the semi-aromatic polyamide and a raw material introduction step of continuously introducing the raw material aqueous solution into a tubular reactor.
  • An amidation step in which the raw material is passed through a tubular reactor and amidated to obtain a reaction mixture containing the amidate and condensed water, and the reaction mixture is introduced into a continuous reactor capable of separating and removing water to carry out melt polymerization.
  • This includes a step of performing solid phase polymerization under vacuum or a nitrogen stream.
  • Preparation step A predetermined amount of diamine and dicarboxylic acid are added to the pressure-resistant reaction can. At the same time, water is added so that the concentration of the raw material is 30 to 90% by weight, and a phosphorus compound as a polymerization catalyst and a monocarboxylic acid as a terminal blocker are charged. In addition, a foaming inhibitor is added to those that foam in the subsequent process.
  • Examples of the catalyst used in producing the semi-aromatic polyamide (A) in the present invention include compounds of dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, ethyl hypophosphate, and phosphorous acid, and these. There are hydrolyzates and condensates. Alternatively, the metal salt, ammonium salt, and ester thereof can be mentioned. Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony.
  • ester ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like can be added.
  • sodium hypophosphate is preferable as the catalyst.
  • sodium hydroxide it is preferable to add sodium hydroxide.
  • the end-sealing agent is preferably added at the time of raw material preparation, but it may be at the start of polymerization, the late stage of polymerization, or the end of polymerization.
  • the terminal sequestering agent is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at the end of polyamide, but it is monocarboxylic acid or an acid anhydride such as monoamine or phthalic anhydride, or mono. Isocyanates, monoacid halides, monoesters, monoalcohols and the like can be used.
  • Aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid are examples of end-blocking agents.
  • Aliphatic monocarboxylic acids such as acids and cyclohexanecarboxylic acids, benzoic acids, toluic acids, ⁇ -naphthalenecarboxylic acids, ⁇ -naphthalenecarboxylic acids, methylnaphthalenecarboxylic acids, aromatic monocarboxylic acids such as phenylacetic acid, maleic anhydride , Acid anhydrides such as phthalic acid anhydride and phthalic acid anhydride, and fats such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine.
  • Aliphatic monoamines such as group monoamines, cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine can be mentioned.
  • the terminal blocking agent is preferably a monocarboxylic acid, and among the above examples, acetic acid and benzoic acid are preferable.
  • the salt concentration of the raw material aqueous solution varies depending on the type of polyamide and is not particularly limited, but is generally preferably 30 to 90% by mass. If the salt concentration exceeds 90% by mass, slight fluctuations in temperature may cause salt to precipitate and clog the piping, and since it is necessary to increase the solubility of the salt, the equipment is equipped with high temperature and high pressure resistance specifications. Therefore, it is disadvantageous in terms of cost. On the other hand, when the salt concentration is less than 30% by mass, the amount of water evaporated after the initial polymerization step increases, which is disadvantageous in terms of energy and causes a cost increase due to a decrease in productivity.
  • the desired salt concentration is 35-85% by weight.
  • the salt aqueous solution is generally prepared in the temperature range of 60 to 180 ° C. and the pressure range of 0 to 1 MPa.
  • the equipment has a high temperature and high withstand voltage specification, which increases the equipment cost and is disadvantageous.
  • the temperature is less than 60 ° C or the pressure is less than 0 MPa, not only will it cause troubles such as clogging of the piping due to salt precipitation, but it will also be difficult to increase the salt concentration, resulting in productivity. It causes a decline.
  • Desirable conditions are a temperature of 70 to 170 ° C. and a pressure of 0.05 to 0.8 MPa, more preferably 75 to 165 ° C. and 0.1 to 0.6 MPa.
  • the salt aqueous solution prepared in this way is continuously supplied to the amidation step by the supply pump in the raw material introduction step.
  • the supply pump used here must be highly quantitative.
  • the fluctuation of the supply amount becomes the process fluctuation of the amidation step, and as a result, a polyamide having a large deviation in relative viscosity (RV) and unstable quality can be obtained. From this point of view, it is recommended to use a plunger pump with excellent quantification as the supply pump.
  • the atmospheric oxygen concentration at the time of raw material preparation greatly affects the color tone of the obtained polyamide. There is no problem if the atmospheric oxygen concentration at the time of raw material preparation is 10 ppm or less, but if the oxygen concentration exceeds 10 ppm, the yellowness of the obtained polyamide becomes strong and the quality of the product tends to deteriorate.
  • the lower limit of the oxygen concentration is not particularly defined, but is, for example, 0.05 ppm or more.
  • the oxygen concentration is less than 0.05 ppm, but in order to achieve less than 0.05 ppm, the oxygen removal process becomes more complicated than necessary, and the color tone and the like are started. There is almost no effect on other physical properties.
  • the range of desirable oxygen concentration is 0.05 ppm or more and 9 ppm or less, and more preferably 0.05 ppm or more and 8 ppm or less.
  • the raw material is supplied to a compounding tank (melting tank or raw material salt forming tank) in which oxygen is removed in advance and the oxygen concentration is 10 ppm or less, or the raw material is put into the compounding tank (melting tank or raw material salt forming tank). Later, oxygen may be removed to reduce the atmosphere in the compounding tank to an oxygen concentration of 10 ppm or less, or both may be used in combination. This may be selected from the aspect of equipment or operation. It is also preferable that the atmosphere in the storage tank has an oxygen concentration of 10 ppm or less.
  • Oxygen removal methods include vacuum substitution method, pressure substitution method, or a combination thereof.
  • the degree of vacuum or the degree of pressurization applied to the substitution and the number of substitutions may be selected from the conditions most efficient for achieving the desired oxygen concentration.
  • the salt aqueous solution prepared in the raw material preparation step is continuously introduced into the inlet of the tubular reactor in the amidation step by a supply pump through a pipeline.
  • amidation step In the amidation step, a salt aqueous solution continuously introduced into the inlet of the tubular reactor is passed through the tubular reactor to perform amidation, and the amidation product having a low degree of polymerization and condensed water are used. A reaction mixture containing and is obtained. Water is not separated and removed in the tubular reactor.
  • the tubular reactor preferably has an L / D of 50 or more, where the inner diameter of the tube is D (mm) and the length of the tube is L (mm).
  • the tubular reactor has merits such as no liquid level control is required due to its structure, high plug flow property, excellent pressure resistance, and low equipment cost.
  • L / D is less than 50, if L is small, the residence time of the reaction mixture flow is short and the degree of increase in relative viscosity (RV) is small, while if D is large, the plug flow property is small and retention is small. A time distribution is created, and the desired function is not performed.
  • the upper limit of L / D is not particularly defined, but is about 3000 in consideration of the residence time and the degree of increase in relative viscosity (RV).
  • the lower limit of L / D is more preferably 60 or more, the upper limit is more preferably 80 or more, the upper limit is more preferably 2000 or less, and further preferably 1000 or less.
  • the lower limit of L is preferably 3 m or more, more preferably 5 m or more, and the upper limit is preferably 50 m or less, more preferably 30 m or less.
  • the reaction conditions vary depending on the structure of the polyamide and the desired degree of polymerization.
  • the internal temperature is 110 to 310 ° C.
  • the internal pressure is 0 to 5 MPa
  • the average residence time of the reaction mixture in the tube is 10 to 120 minutes. is there.
  • the degree of polymerization of the amidation product can be controlled by the internal temperature, internal pressure and average residence time.
  • the average residence time is shorter than 10 minutes, the degree of polymerization of the amidation product having a low degree of polymerization becomes low, and as a result, the diamine component tends to scatter during the polycondensation step, making it difficult to adjust the terminal groups.
  • the average residence time is longer than 120 minutes, the amidation reaches equilibrium, the increase in RV reaches a plateau, and the thermal deterioration progresses, which is not preferable.
  • the desired average residence time is 12 to 110 minutes, more preferably 15 to 100 minutes.
  • the average residence time can be controlled by adjusting the inner diameter D of the tube of the tubular reactor, the length L of the tube, or changing the amount of raw material supplied.
  • the relative viscosity (RV) of the reaction mixture increases by 0.05 to 0.6 at the inlet and outlet of the tubular reactor by the polycondensation reaction in the amidation step.
  • RV relative viscosity
  • the increase in RV is smaller than 0.05, the diamine component tends to scatter during the polycondensation step, making it difficult to adjust the terminal groups.
  • the increase in RV is made larger than 0.6, thermal deterioration tends to proceed due to the influence of coexisting condensed water (in the case of the salt forming method, the water used for salt formation and the condensed water).
  • the reaction mixture having an excessively high viscosity may cause pipe blockage, which may adversely affect the operation.
  • the desired range of increase in RV in the amidation step is 0.15 to 0.5, more preferably 0.2 to 0.4.
  • the reaction conditions in the initial polymerization step are that the internal pressure is 0 to 5 MPa, the average residence time is 10 to 150 minutes, and the internal temperature is determined according to the melting point drop formula of Free by the residual water content in the can. Will be done. Desirable reaction conditions are an internal temperature of 230-285 ° C., an internal pressure of 0.5-4.5 MPa, an average residence time of 15-140 minutes, and a more desirable reaction condition is an internal temperature of 235-280. The temperature is ° C., the internal pressure is 1.0 to 4.0 MPa, and the average residence time is 20 to 130 minutes.
  • reaction conditions deviate from the lower limit of the above range, the degree of polymerization reached is too low, and the resin solidifies in the can, which is not preferable. If the reaction conditions deviate from the upper limit of the above range, decomposition of the P3 component and side reactions occur at the same time, and P3 becomes less than 30 ppm, which is disadvantageous for heat-resistant yellowing and gelation characteristics.
  • the solid-phase polymerization referred to in the present invention refers to a step of advancing the polymerization reaction under vacuum or a nitrogen stream at an arbitrary temperature within the range where the semi-aromatic polyamide does not melt.
  • the equipment for performing solid-phase polymerization is not particularly limited, and examples thereof include a blender and a vacuum dryer. Desirable reaction conditions are an internal temperature of 200 to 260 ° C. and an internal pressure of 0.7 KPa or less, and more desirable reaction conditions are an internal temperature of 210 to 250 ° C. and an internal pressure of 0.4 KPa or less.
  • the blending amount of the semi-aromatic polyamide (A) is 30 to 75% by mass, preferably 35 to 70% by mass, and more preferably 40 to 67 with respect to 100% by mass of the inorganic reinforced semi-aromatic polyamide resin composition. It is by mass, more preferably 45 to 65% by mass.
  • the blending amount is the content in the inorganic reinforced semi-aromatic polyamide resin composition as it is.
  • the inorganic reinforcing material (B) in the present invention most effectively improves physical properties such as strength, rigidity and heat resistance, and specifically, glass fiber, carbon fiber, alumina fiber, silicon carbide fiber, etc.
  • glass fiber such as strength, rigidity and heat resistance
  • carbon fiber such as aluminum borate and potassium titanate
  • acicular warastonite such as acicular warastonite, and milled fibers.
  • glass fiber, carbon fiber and the like are particularly preferably used.
  • These inorganic reinforcing materials (B) may be only one type or a combination of two or more types.
  • a fibrous reinforcing material is used as the inorganic reinforcing material (B), among the above, glass fiber, carbon fiber and the like are particularly preferably used.
  • These fibrous reinforcing materials are preferably those which have been pretreated with a coupling agent such as an organic silane compound, an organic titanium compound, an organic borane compound and an epoxy compound, and have a carboxylic acid group and / or a carboxylic acid. Those that easily react with the anhydride group are particularly preferable.
  • a polyamide-based resin composition containing glass fibers treated with a coupling agent is preferable because a molded product having excellent mechanical properties and appearance characteristics can be obtained.
  • other fibrous reinforcing materials can also be used after being added if the coupling agent has not been treated.
  • the inorganic reinforcing material (B) is glass fiber
  • a chopped strand-like material cut to a fiber length of about 1 to 20 mm can be preferably used.
  • a glass fiber having a circular cross section and a non-circular cross section can be used.
  • a glass fiber having a non-circular cross section is preferable from the physical characteristics.
  • Non-circular cross-section glass fibers include those having a substantially elliptical system, a substantially elliptical system, and a substantially cocoon-shaped cross section in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. Is preferable.
  • the flatness is assumed to be a rectangle having the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of this rectangle is the major axis, and the length of the short side is the minor axis.
  • This is the ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 ⁇ m and the major axis is about 2 to 100 ⁇ m.
  • the blending amount of the inorganic reinforcing material (B) is 25 to 65% by mass, preferably 30 to 60% by mass, and more preferably 33 to 55% by mass with respect to 100% by mass of the inorganic reinforced semi-aromatic polyamide resin composition. %, More preferably 35 to 50% by mass. If the blending amount exceeds 65% by mass, the productivity deteriorates. Further, if it is less than 25% by mass, the effect of the reinforcing material may not be sufficiently exhibited, and the shearing force is insufficient at the time of kneading with the semi-aromatic polyamide (A) component, and the thickening reaction of the component (A) proceeds sufficiently. It may disappear.
  • the blending amount is the content in the inorganic reinforced semi-aromatic polyamide resin composition as it is.
  • a conductive filler other than the inorganic reinforcing material (B)
  • a conductive filler can be used for different purposes other than the reinforcing filler.
  • These fillers are not limited to one type alone, but may be used in combination of several types.
  • the shape is not particularly limited, but a needle shape, a spherical shape, a plate shape, an amorphous shape, or the like can be used.
  • additives for conventional polyamides can be used in the inorganic reinforced semi-aromatic polyamide resin composition of the present invention.
  • additives stabilizers, impact improvers, flame retardants, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, and polyamide resins different from the semi-aromatic polyamide (A) of the present invention.
  • Thermoplastic resin other than polyamide resin and the like are examples of the like.
  • Stabilizers include organic antioxidants such as hindered phenolic antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants, heat stabilizers, hindered amine-based, benzophenone-based, and imidazole-based light stabilizers. Examples include UV absorbers, metal deactivators, copper compounds and the like. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate and copper acetate can be used.
  • the constituent components other than the copper compound preferably contain an alkali metal halide compound
  • the alkali metal halide compound includes lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, and bromide.
  • Examples include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used not only alone but also in combination of several.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention may be polymer-blended with a polyamide resin having a composition different from that of the semi-aromatic polyamide (A).
  • thermoplastic resin other than the polyamide resin may be added to the inorganic reinforced semi-aromatic polyamide resin composition of the present invention.
  • thermoplastic resins can be blended in a molten state by melt-kneading, but the thermoplastic resin may be made into fibrous or particulate forms and dispersed in the composition of the present invention.
  • ethylene-propylene rubber EPM
  • ethylene-propylene-diene rubber EPDM
  • ethylene-acrylic acid copolymer ethylene-acrylic acid ester copolymer
  • ethylene-methacrylic acid copolymer ethylene- Polyolefin resins such as methacrylate ester copolymers and ethylene vinyl acetate copolymers, styrene-butadiene-styrene block copolymers (SBS), styrene-ethylene-butylene-styrene block copolymers (SEBS), styrene-isoprenes -Vinyl polymer resins such as styrene copolymers (SIS) and acrylic acid ester copolymers, polybutylene terephthalate or polybutylene naphthalate were used as hard segments, and polytetramethylene glycol or polycaprolactone or polycarbonate diol was used as soft segments.
  • EPM ethylene-
  • flame retardants examples include halogen-based flame retardants, non-halogen flame retardants, and flame retardants. These may be used alone or in combination.
  • brominated polystyrene brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene anhydride maleic acid polymer, brominated epoxy resin, brominated phenoxy resin, decabromodiphenyl ether, decabromo
  • brominated polystyrene brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene anhydride maleic acid polymer, brominated epoxy resin, brominated phenoxy resin, decabromodiphenyl ether, decabromo
  • examples thereof include biphenyl, brominated polycarbonate, perchlorocyclopentadecane and brominated crosslinked aromatic polymers.
  • non-halogen flame retardants include melamine cyanurate, red phosphorus, metal salts of phosphinic acid, and nitrogen-containing phosphoric acid compounds.
  • Flame retardant aids include antimony compounds such as antimony trioxide, antimony pentoxide, and sodium antimonate, zinc nitrate, zinc borate, zinc sulfide, molybdenum compounds, iron oxide, aluminum hydroxide, magnesium hydroxide, and silicone resins. , Fluororesin, montmorillonite, silica, metal carbonate and the like.
  • release agent examples include long-chain fatty acids or esters and metal salts thereof, amide compounds, polyethylene waxes, silicones, polyethylene oxides, and the like.
  • slidability improving material examples include high molecular weight polyethylene, acid-modified high molecular weight polyethylene, fluororesin powder, molybdenum disulfide, silicone resin, silicone oil, zinc, graphite, mineral oil and the like.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention preferably occupies 80% by mass or more, and preferably 90% by mass or more, in total of the semi-aromatic polyamide (A) and the inorganic reinforced material (B). More preferably, it occupies 95% by mass or more.
  • the method for producing the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is not particularly limited, and for example, each component can be melt-kneaded by a conventionally known kneading method.
  • the specific kneading device is also not limited, and examples thereof include a single-screw or twin-screw extruder, a kneader, and a kneader, but a twin-screw extruder is particularly preferable in terms of productivity.
  • the screw arrangement is not particularly limited, but it is preferable to provide a kneading zone in order to disperse each component more evenly.
  • semi-aromatic polyamide (A) and other additive components are preblended with a blender, charged from a hopper into a single-screw or twin-screw extruder, and then at least a part of (A) is melted.
  • the inorganic reinforcing material (B) is put into the melt mixture by a feeder into a single-screw or twin-screw extruder, and after melt-kneading, the inorganic reinforcing material (B) is discharged into a strand shape, cooled, and cut.
  • the weight average of the residual fiber length is preferably 200 to 500 ⁇ m.
  • the residual fiber length is measured as follows. In a high-filling material, there is a lot of interference between fibers, the fibrous reinforcing material is easily damaged during measurement, and it is difficult to obtain an accurate fiber length. Therefore, in the present invention, in order to accurately measure the fiber length, it is obtained by melt-kneading. The pellets were heated at 650 ° C.
  • the fibrous reinforcing material was taken out as ash without damaging the fibrous reinforcing material, and the obtained fibrous reinforcing material was immersed in water to obtain a commonly used ultrasonic wave. Disperse the fibrous reinforcing material with a washing machine. The dispersed fibrous reinforcing material was taken out on a slide and observed with a digital microscope (KH-7700 manufactured by Hirox Co., Ltd.) at a magnification of 80 to obtain the weight average fiber length. Residual fiber length.
  • the shape of the pellet is not particularly limited as long as it is a generally obtained shape.
  • the cross section is any of a circle, an ellipse, and an oval
  • the diameter (including the minor axis and the major axis) is 2.0 mm to 4.0 mm
  • the pellet length is about 2.5 to 6.0 mm.
  • the pelleting conditions are not particularly limited as long as they are general conditions. For example, the method in the embodiment described later can be mentioned.
  • the AEG and CEG of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition of the present invention are usually smaller than those of the semi-aromatic polyamide (A). This is because some of the terminal groups react with each other due to melt-kneading under high temperature conditions during production, resulting in slight thickening.
  • the composition containing 25% by mass or more of the inorganic reinforcing material (B) higher shear is applied to the semi-aromatic polyamide, so that the thickening reaction further proceeds and AEG and CEG become smaller.
  • the amount of decrease in AEG and CEG cannot be unequivocally determined because it is affected by manufacturing conditions such as resin temperature, rotation speed, and kneading time.
  • the terminal group of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition it is simply abbreviated as "the terminal group of the inorganic reinforced semi-aromatic polyamide resin composition”.
  • the inorganic reinforced semi-aromatic polyamide resin composition (AEG + CEG) is 0 to 130 eq / t, preferably 0 to 120 eq / t, and more preferably 0 to 110 eq / t.
  • (AEG + CEG) exceeds 130 eq / t, the amount of terminal blockade is small and the amount of AEG and CEG remaining is large, so that the mixture thickens and gels due to melting during molding.
  • the (AEG + CEG) / (AEG + CEG + EC) of the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is 0.60 or less, preferably 0.55 or less, more preferably 0.50 or less, still more preferable. Is 0.45 or less, and particularly preferably 0.40 or less.
  • (AEG + CEG) / (AEG + CEG + EC) exceeds 0.60, the content of the terminal blocker is small and the residual amount of AEG and CEG is large, so that the thickening and gelation occur during melt molding.
  • the AEG, CEG, and EC of the inorganic reinforced semi-aromatic polyamide resin composition may satisfy the above-mentioned relationship, but the preferable ranges of each are as follows.
  • the AEG is preferably 0 to 70 eq / t, more preferably 0 to 40 eq / t, further preferably 0 to 30 eq / t, and particularly preferably 0 to 20 eq / t. ..
  • the CEG is preferably 0 to 130 eq / t, more preferably 0 to 100 eq / t, further preferably 0 to 70 eq / t, and particularly preferably 0 to 50 eq / t. ..
  • the EC is preferably 60 to 240 eq / t, more preferably 80 to 200 eq / t, and even more preferably 80 to 170 eq / t.
  • polyamide resins are thickened by the reaction between the amino group terminal and the carboxyl group terminal.
  • the reaction of CEG with EC may promote thickening. If AEG disappears (becomes 0) during the amidation reaction, the ends of the semi-aromatic polyamide become CEG and EC. Due to the acid catalytic effect of CEG due to the absence of AEG, CEG attacks the amide bond formed by the terminal blocker, causing an amide transesterification reaction. At this time, the thickening reaction proceeds while distilling the terminal blocker out of the reaction system. Therefore, the outgas component derived from the terminal blockant increases. In addition, the acid component of CEG causes a coloring reaction to occur, resulting in poor color stability and a resin that easily gels. In order to avoid such a phenomenon, it is important to satisfy the above equations (1) and (2).
  • the rate of decrease in bending strength calculated from the bending strength before and after 500 hours of treatment of the inorganic reinforced semi-aromatic polyamide resin composition of the present invention in a high temperature and high humidity environment of 80 ° C. and 95% RH is less than 15%. It is preferably less than 10%, even more preferably less than 8%. If it is 15% or more, the rigidity varies depending on the humidity, which adversely affects the characteristics of precise electronic components, which is not preferable.
  • the rate of decrease in bending strength can be measured by the method described in the section of Examples described later.
  • the flow length of the inorganic reinforced semi-aromatic polyamide resin composition of the present invention having a thickness of 0.2 mm is preferably 3 mm or more in order to mold minute and precise electronic parts.
  • the flow length can be measured by the method described in the section of Examples described later.
  • the amount of gas (outgas) generated when the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is thermally decomposed at 350 ° C. for 10 minutes is preferably 300 ppm or less.
  • the semi-aromatic polyamide (A) is further kneaded with the fibrous reinforcing material (B) or the like, thermal decomposition proceeds, so that the amount of gas in the composition is larger than the amount of gas in the component (A) alone.
  • the amount of gas (outgas) can be measured by the method described in the section of Examples described later.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention preferably has a tensile fracture strain of 0.3 to 3.4%.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention can have a tensile fracture strain within this range by satisfying the above constitution. Having the tensile fracture strain within this range is advantageous in that cracking during assembly and use as a part can be suppressed, loosening of the fixed portion is suppressed, and a sufficient fixing force can be obtained.
  • the tensile fracture strain can be measured by the method described in the section of Examples described later.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention preferably has a tensile strength of 100 MPa or more. It is more preferably 150 MPa or more, still more preferably 180 MPa or more.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention can have a tensile strength within this range by satisfying the above constitution. Having the tensile strength in this range is advantageous in that cracking during assembly and use as a part can be suppressed. The tensile strength can be measured by the method described in the section of Examples described later.
  • the molded product obtained from the inorganic reinforced semi-aromatic polyamide resin composition of the present invention has excellent heat resistance and color stability in an actual usage environment. Therefore, connectors and switches that require heat resistance are required. , Relays, printed wiring boards and other electrical and electronic parts, LEDs, lighting fixture reflectors and other parts having a function of reflecting light, and the like.
  • the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is excellent in heat resistance and melt processability, it is possible to highly fill a reinforcing material, a filler, etc., and high rigidity is required. It can be used for automobile parts such as engine peripheral parts, cooling parts, fuel parts, and industrial parts such as gears, screws, and other sliding parts.
  • RV t / t 0 (However, t 0 : the number of seconds for the solvent to fall, t: the number of seconds for the sample solution to fall)
  • 1 H-NMR analysis was performed using a 500 MHz Fourier transform nuclear magnetic resonance apparatus (AVANCE500 manufactured by BRUKER), and the AEG, CEG, EC, and composition of the semi-aromatic polyamide were determined from the integration ratio. ..
  • the inorganic reinforced semi-aromatic polyamide resin compositions AEG, CEG, and EC were dissolved in a mixed solvent, centrifuged, and the supernatant was taken out, and heavy formic acid was added dropwise to measure the results in the same manner.
  • the 31 P resonance frequency is 202.5 MHz
  • the flip angle of the detection pulse is 45 °
  • the data acquisition time is 1.5 seconds
  • the delay time is 1.0 second
  • the number of integrations is 1000 to 20000 times
  • the measurement temperature is room temperature.
  • the analysis was carried out under the condition of complete decoupling of protons, and the molar ratio of the phosphorus compound represented by the structural formula (P1) to the phosphorus compound represented by the structural formula (P2) was determined from the integration ratio.
  • the test piece was heated in an air reflow furnace (AIS-20-82C manufactured by Atec) from room temperature to 150 ° C for 60 seconds, preheated, and then heated to 190 ° C at a heating rate of 0.5 ° C / min. A preheat was performed. Then, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at a predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. to every 5 ° C., and the highest set temperature at which no surface swelling or deformation occurred was defined as the reflow heat resistance temperature and used as an index of solder heat resistance.
  • Reflow heat resistant temperature is 280 ° C or higher
  • Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C
  • Reflow heat resistant temperature is lower than 260 ° C
  • Synthesis example 1 9.13 kg (78.6 mol) of 1,6-hexamethylenediamine, 12.24 kg (73.7 mol) of terephthalic acid, 7.9 kg (39.7 mol) of 11-aminoundecanoic acid, hypophosphorous acid as a catalyst 30.4 g of sodium, 354 g (5.9 mol) of acetic acid as a terminal blocker, and 16.20 kg of ion-exchanged water adjusted to 0.5 ppm or less of dissolved oxygen by nitrogen bubbling were charged into a 50 liter autoclave, and the pressure was reduced to 0. pressurized with N 2 to 05MPa, was depressurized, it was returned to normal pressure.
  • This operation was performed 10 times, N 2 substitution was performed, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 260 ° C. by a heating pipe, and heat was applied for 0.5 hours. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 270 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Then, this low-order condensate was taken out into a container at normal temperature and pressure in the air, and then dried in an environment of 70 ° C.
  • Synthesis example 2 The mixture was changed to 9.10 kg (78.3 mol) of 1,6-hexamethylenediamine and 301 g (5.0 mol) of acetic acid as a terminal blocking agent, and vacuum dried in the same manner as in Synthesis Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 240 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-2.
  • Synthesis example 3 The amount was changed to 8.84 kg (76.1 mol) of 1,6-hexamethylenediamine and 286 g (4.8 mol) of acetic acid as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Synthesis Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 230 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-3.
  • Synthesis example 4 The mixture was changed to 9.21 kg (79.3 mol) of 1,6-hexamethylenediamine and 315 g (5.2 mol) of acetic acid as a terminal blocking agent, and vacuum dried in the same manner as in Synthesis Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 240 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-4.
  • Synthesis example 5 The mixture was changed to 9.11 kg (78.4 mol) of 1,6-hexamethylenediamine and 612 g (5.0 mol) of benzoic acid as a terminal blocking agent, and vacuum dried in the same manner as in Synthesis Example 1 to obtain a low-order condensate. .. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 240 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-5.
  • Synthesis example 6 1,6-Hexamethylenediamine 9.00 kg (77.4 mol), terephthalic acid 12.24 kg (73.7 mol), 11-aminoundecanoic acid 7.9 kg (39.7 mol), hypophosphorous acid as a catalyst 30.4 g of sodium, 226 g (3.8 mol) of acetic acid as a terminal blocker, and 16.20 kg of ion-exchanged water adjusted to 0.5 ppm or less of dissolved oxygen by nitrogen bubbling were charged into a 50 liter autoclave, and the pressure was reduced to 0. pressurized with N 2 to 05MPa, was depressurized, it was returned to normal pressure.
  • This operation was performed 10 times, N 2 substitution was performed, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 260 ° C. by a heating pipe, and heat was applied for 0.5 hours. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Then, this low-order condensate was taken out into a container at normal temperature and pressure in the air, and then dried in an environment of 70 ° C.
  • Synthesis example 7 The amount was changed to 8.89 kg (76.5 mol) of 1,6-hexamethylenediamine and 174 g (2.9 mol) of acetic acid as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Production Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m3), the reaction was carried out in an environment of 245 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-7.
  • Synthesis example 8 The amount was changed to 8.93 kg (76.9 mol) of 1,6-hexamethylenediamine and 197 g (3.3 mol) of acetic acid as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Production Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m3), the reaction was carried out in an environment of 245 ° C. and a vacuum degree of 0.07 KPa for 15 hours to obtain a semi-aromatic polyamide A-8.
  • Synthesis example 9 3.32 kg (20.0 mol) of terephthalic acid, 2.53 kg (16.0 mol) of 1,9-nonanediamine, 0.63 kg (4.0 mol) of 2-methyl-1,8-octanediamine as a catalyst 6.5 g of sodium hypophosphate monohydrate, 103 g (0.80 mol) of octylamine as a terminal blocker, and 20 liters of 6 liters of ion-exchanged water adjusted to 0.5 ppm or less of dissolved oxygen by nitrogen bubbling. It was charged into an autoclave, pressurized with N 2 from normal pressure to 0.05 MPa, released, and returned to normal pressure.
  • This operation was performed 10 times, N 2 substitution was performed, and then the mixture was uniformly dissolved at 100 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 230 ° C. by a heating pipe, and heat was applied for 1.5 hours. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Then, this low-order condensate was taken out into a container at normal temperature and pressure in the air, and then dried in an environment of 100 ° C.
  • Synthesis example 10 The amount of 1,6-hexamethylenediamine was changed to 8.72 kg (75.0 mol) and acetic acid was changed to 32 g (0.5 mol) as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Production Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 180 ° C. and a vacuum degree of 0.07 KPa for 5 hours to obtain a semi-aromatic polyamide A-10.
  • Synthesis example 11 Change to 1,6-hexamethylenediamine 8.57 kg (73.8 mol), acetic acid 140 g (2.3 mol) as a terminal blocker, and sodium hypophosphate 9 g as a catalyst, and vacuum dry as in Production Example 1. A low-order condensate was obtained. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 220 ° C. and a vacuum degree of 0.07 KPa for 4 hours to obtain a semi-aromatic polyamide A-11.
  • Synthesis example 12 7.54 kg (65.0 mol) of 1,6-hexamethylenediamine, 10.79 kg (65.0 mol) of terephthalic acid, 7.04 kg (35.0 mol) of 11-aminoundecanoic acid, hypophosphorous acid as a catalyst charged sodium 9 g, the ion-exchanged water 17.52kg 50 liter autoclave, pressurized with N 2 from atmospheric pressure to 0.05 MPa, was relieved and returned to normal pressure. This operation was performed three times to perform N 2 substitution, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C. by a heating pipe, and heated for 1 hour.
  • Examples and Comparative Examples The contents of the release agent and the stabilizer are set to 35 parts by mass so that the content of the following inorganic reinforcing material is 35 parts by mass with respect to 63.8 parts by mass of each semi-aromatic polyamide in the synthetic example.
  • melt-kneading was performed at 330 ° C. to obtain 0.6 parts by mass of the inorganic reinforced semi-aromatic polyamide resin compositions of Examples and Comparative Examples. It was.
  • the evaluation results are shown in Table 2.
  • Comparative Example 1 shows that AEG + CEG> 130 eq / t, the residual amount of AEG and CEG is large, the resin composition is easily gelled, and the moldability and the appearance of the molded product are also poor. Further, it can be seen that (AEG + CEG) / (AEG + CEG + EC)> 0.60, and the amount of the terminal blocking agent is small, and the resin composition is easily gelled. In Comparative Example 2, (AEG + CEG) / (AEG + CEG + EC)> 0.60, it can be seen that the amide exchange reaction proceeds due to the excess acid component at the terminal of the carboxyl group, and the outgas component derived from the terminal blockade increases.
  • the resin composition is inferior in color stability due to the simultaneous coloring reaction and is easily gelled.
  • Comparative Example 3 since the P3 component did not remain because it was melt-polymerized by a twin-screw extruder and thickened to a predetermined RV, it can be seen that the outgas, ⁇ Cob, and gelation time were deteriorated.

Abstract

[Problem] To provide an inorganic reinforced semi-aromatic polyamide resin composition that has excellent heat resistance and thermal discoloration resistance, is capable of suppressing mold contamination due to outgassing during melt molding, and has excellent melt fluidity and gelling properties. [Solution] The present invention is an inorganic reinforced semi-aromatic polyamide resin composition containing 30-75 mass% of a semi-aromatic polyamide (A) and 25-65 mass% of an inorganic reinforcing material (B). The semi-aromatic polyamide (A) is at least one semi-aromatic polyamide that includes a repeating unit obtained by condensation of at least one aliphatic diamine including two or more carbon atoms and terephthalic acid, and the end groups of the semi-aromatic polyamide (A) in the resin composition satisfy a specific relationship.

Description

無機強化半芳香族ポリアミド樹脂組成物Inorganic reinforced semi-aromatic polyamide resin composition
 本発明は、耐熱性と耐熱変色性に優れ、さらには溶融成形時のアウトガスによる金型汚れを抑制でき、溶融流動性、ゲル化特性に優れた、自動車部品、自転車部品、電気・電子部品などの成形に好適な半芳香族ポリアミド樹脂組成物に関する。 INDUSTRIAL APPLICABILITY The present invention is excellent in heat resistance and heat discoloration, can suppress mold stains due to outgas during melt molding, and is excellent in melt fluidity and gelation characteristics, such as automobile parts, bicycle parts, electric / electronic parts, etc. The present invention relates to a semi-aromatic polyamide resin composition suitable for molding the above.
 熱可塑性樹脂のうち、ポリアミド樹脂は、その優れた特性と溶融成形の容易さを活かして、衣料用、産業資材用繊維、エンジニアリングプラスチックなどに使用されてきた。特にエンジニアリングプラスチックとしては、自動車部品や産業機械用部品に限らず、種々の工業部品や筐体部品、電気・電子部品など多岐に渡って使用されている。 Of the thermoplastic resins, polyamide resins have been used for clothing, fibers for industrial materials, engineering plastics, etc., taking advantage of their excellent properties and ease of melt molding. In particular, engineering plastics are not limited to automobile parts and industrial machine parts, but are widely used in various industrial parts, housing parts, electrical and electronic parts, and the like.
 近年、電気電子部品の実装においては、製品サイズの小型化に伴う部品の小型化、実装の高密度化、工程の簡略化や低コスト化により表面実装方式(フロー方式、リフロー方式)が急速に浸透している。表面実装方式では、工程雰囲気温度が半田溶融温度以上(240~260℃)となることから、使用される樹脂にも必然的に上記雰囲気温度での耐熱性が求められる。また、表面実装工程においては樹脂の吸水に由来する実装部品のふくれ、変形が問題となることもあり、使用される樹脂には低吸水性が求められる。これらの特性を満足する樹脂としては6T系ポリアミドや9Tポリアミドがあり、特許文献1や特許文献2などでこれらの芳香族系ポリアミドが表面実装型電気電子部品に使用できることが示されている。しかしながら、製造工程あるいは使用環境下において樹脂の色調が変化しやすい課題を有しており、外的要因による樹脂の色調安定性の観点において改善の余地がある。また、上述の種々の半芳香族ポリアミド樹脂は、脂肪族ポリアミド樹脂に比べて高融点で溶融流動性が劣り、溶融滞留時に増粘したり、ゲル化しやすい欠点があり、加工安定性、高流動性の面で改善の余地がある(例えば、特許文献3参照)。 In recent years, in the mounting of electrical and electronic components, the surface mounting method (flow method, reflow method) has rapidly become popular due to the miniaturization of parts due to the miniaturization of product size, the high density of mounting, the simplification of processes and the cost reduction. It has penetrated. In the surface mounting method, since the process atmosphere temperature is equal to or higher than the solder melting temperature (240 to 260 ° C.), the resin used is inevitably required to have heat resistance at the above atmosphere temperature. Further, in the surface mounting process, swelling and deformation of the mounting component due to the water absorption of the resin may become a problem, and the resin used is required to have low water absorption. Resins satisfying these characteristics include 6T-based polyamides and 9T-based polyamides, and Patent Document 1 and Patent Document 2 indicate that these aromatic polyamides can be used for surface mount type electrical and electronic components. However, there is a problem that the color tone of the resin is likely to change in the manufacturing process or the usage environment, and there is room for improvement from the viewpoint of the color tone stability of the resin due to external factors. Further, the various semi-aromatic polyamide resins described above have a high melting point and inferior melt fluidity as compared with the aliphatic polyamide resin, and have the drawbacks of thickening during melt retention and easy gelation, resulting in processing stability and high fluidity. There is room for improvement in terms of sexuality (see, for example, Patent Document 3).
 一方、かかる外的要因による樹脂の色調安定性やゲル化という問題点を解消すべく所定の樹脂組成、溶融粘度、相対粘度、末端基濃度を調整することで290℃以上の高融点、低吸水性に加えて、溶融流動性、色調安定性にも優れた、自動車部品、電気・電子部品などの成形品用の樹脂組成物に好適な半芳香族ポリアミド樹脂を提供する発明もなされている(例えば、特許文献4参照)。 On the other hand, by adjusting the predetermined resin composition, melt viscosity, relative viscosity, and terminal group concentration in order to solve the problems of resin color stability and gelation due to such external factors, a high melting point of 290 ° C. or higher and low water absorption are achieved. An invention has also been made to provide a semi-aromatic polyamide resin suitable for resin compositions for molded products such as automobile parts and electric / electronic parts, which are excellent in melt fluidity and color stability in addition to properties (). For example, see Patent Document 4).
 また、樹脂の色調安定性やゲル化という問題点を解消すべく、還元性リン化合物種を樹脂中に残存させることで、乾燥時や成形する際の熱安定性に良好で、かつ、リサイクル品混合使用時にも色調が悪くならず、ゲル状物などの異物の発生が少なく、成形時の生産性に優れたポリアミド及びそれからなるポリアミド組成物を提供する発明もなされている(例えば、特許文献5参照)。 In addition, by leaving the reducing phosphorus compound species in the resin in order to solve the problems of color stability and gelation of the resin, it is good in thermal stability during drying and molding, and is a recycled product. An invention has also been made to provide a polyamide having excellent productivity during molding and a polyamide composition comprising the same, in which the color tone does not deteriorate even during mixed use, the generation of foreign substances such as gel-like substances is small, and the like (for example, Patent Document 5). reference).
 しかし、かかる発明は色調安定性やゲル化という点では改良されたものの、溶融成形時に発生するガスにより金型が汚染され、生産性が悪化してしまう点で問題であった。 However, although the invention has been improved in terms of color stability and gelation, it has a problem in that the mold is contaminated by the gas generated during melt molding and the productivity is deteriorated.
特開平3-88846号公報Japanese Unexamined Patent Publication No. 3-88846 特許3474246号公報Japanese Patent No. 3474246 国際公開WO2011/052464号International release WO2011 / 052464 国際公開WO2017/077901号International release WO2017 / 077901 特開2007-92053号公報JP-A-2007-92053
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、表面実装型電気電子部品に使用するのに必要なハンダ耐熱性、低吸水性、力学物性を備え、かつ耐熱性と耐熱変色性に優れ、さらには溶融成形時のアウトガスによる金型汚れを抑制でき、溶融流動性、ゲル化特性に優れた、無機強化半芳香族ポリアミド樹脂組成物を提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to have solder heat resistance, low water absorption, mechanical properties necessary for use in surface mount type electrical and electronic parts, excellent heat resistance and heat discoloration, and further during melt molding. It is an object of the present invention to provide an inorganic reinforced semi-aromatic polyamide resin composition which can suppress mold contamination due to outgas and has excellent melt fluidity and gelation characteristics.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、以下の構成からなる。
As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention.
That is, the present invention has the following configuration.
[1]
 半芳香族ポリアミド(A)30~75質量%、無機強化材(B)25~65質量%を含有する無機強化半芳香族ポリアミド樹脂組成物であり、
 前記半芳香族ポリアミド(A)が、2個以上の炭素原子を含む少なくとも1種の脂肪族ジアミンとテレフタル酸との縮合からなる繰り返し単位を含む少なくとも1種の半芳香族ポリアミドであり、
 さらに、無機強化半芳香族ポリアミド樹脂組成物中での半芳香族ポリアミド(A)のアミノ基末端濃度(AEG)、カルボキシ基末端濃度(CEG)及びモノカルボン酸でアミノ基末端を封鎖した末端濃度(EC)の関係が式(1)及び(2)を満たす無機強化半芳香族ポリアミド樹脂組成物。
 0eq/t≦AEG+CEG≦130eq/t ・・ (1)
 (AEG+CEG)/(AEG+CEG+EC)≦0.60 ・・ (2)
[1]
An inorganic reinforced semi-aromatic polyamide resin composition containing 30 to 75% by mass of the semi-aromatic polyamide (A) and 25 to 65% by mass of the inorganic reinforcing material (B).
The semi-aromatic polyamide (A) is at least one semi-aromatic polyamide containing a repeating unit composed of a condensation of at least one aliphatic diamine containing two or more carbon atoms and terephthalic acid.
Further, the amino group terminal concentration (AEG), the carboxy group terminal concentration (CEG) of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition, and the terminal concentration in which the amino group terminal is blocked with a monocarboxylic acid. An inorganic reinforced semi-aromatic polyamide resin composition in which the relationship of (EC) satisfies the formulas (1) and (2).
0 eq / t ≤ AEG + CEG ≤ 130 eq / t ... (1)
(AEG + CEG) / (AEG + CEG + EC) ≤0.60 ... (2)
[2]
 半芳香族ポリアミド(A)が、下記(i)および(ii)の要件を満足することを特徴とする[1]記載の無機強化半芳香族ポリアミド樹脂組成物。
 (i)7.5≦[ポリアミド中の炭素原子数/ポリアミド中のアミド結合数]
 (ii)[ポリアミド中の芳香環上の炭素原子数/ポリアミド中の全炭素原子数]≦0.35
[2]
The inorganic reinforced semi-aromatic polyamide resin composition according to [1], wherein the semi-aromatic polyamide (A) satisfies the requirements of (i) and (ii) below.
(I) 7.5 ≤ [Number of carbon atoms in polyamide / Number of amide bonds in polyamide]
(Ii) [Number of carbon atoms on aromatic ring in polyamide / Total number of carbon atoms in polyamide] ≤0.35
[3]
 半芳香族ポリアミド(A)が、炭素数2~12の脂肪族ジアミンとテレフタル酸との縮合からなる構成単位、及び炭素数11~18の脂肪族アミノカルボン酸もしくはラクタムのうちの少なくとも一種の構成単位を含む共重合体であることを特徴とする[1]に記載の無機強化半芳香族ポリアミド樹脂組成物。
[3]
The semi-aromatic polyamide (A) is a structural unit composed of a condensation of an aliphatic diamine having 2 to 12 carbon atoms and terephthalic acid, and at least one of an aliphatic aminocarboxylic acid or a lactam having 11 to 18 carbon atoms. The inorganic reinforced semi-aromatic polyamide resin composition according to [1], which is a copolymer containing a unit.
[4]
 半芳香族ポリアミド(A)が、ヘキサメチレンジアミンとテレフタル酸との縮合からなる構成単位55~75モル%、及び11-アミノウンデカン酸又はウンデカンラクタムからなる構成単位45~25モル%を含む共重合体である[1]に記載の無機強化半芳香族ポリアミド樹脂組成物。
[4]
The copolymer of the semi-aromatic polyamide (A) contains 55 to 75 mol% of the constituent unit consisting of the condensation of hexamethylenediamine and terephthalic acid, and 45 to 25 mol% of the constituent unit consisting of 11-aminoundecanoic acid or undecantham. The inorganic reinforced semi-aromatic polyamide resin composition according to [1], which is a coalescence.
[5]
 半芳香族ポリアミド(A)中で構造式(P1)と(P2)の構造で検出されるリン化合物由来のリン原子含有量の和(P3)が30ppm以上であり、半芳香族ポリアミド中に残存する全リン原子量に対してP3が10%以上であることを特徴とする[1]~[4]のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。
[5]
The sum (P3) of the phosphorus atom content derived from the phosphorus compound detected in the structures of the structural formulas (P1) and (P2) in the semi-aromatic polyamide (A) is 30 ppm or more, and remains in the semi-aromatic polyamide. The inorganic reinforced semi-aromatic polyamide resin composition according to any one of [1] to [4], wherein P3 is 10% or more based on the total atomic weight of phosphorus.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
(ただし、R、Rは水素、アルキル基、アリール基、シクロアルキル基または、アリールアルキル基、X~Xは水素、アルキル基、アリール基、シクロアルキル基、アリールアルキル基、アルカリ金属、またはアルカリ土類金属であり、各式中のX~XとR~Rのうちそれぞれ1個は互いに連結して環構造を形成してもよい) (Wherein, R 1, R 2 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group or an arylalkyl group, X 1 ~ X 3 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group, an arylalkyl group, an alkali metal or an alkaline earth metal, may form a single linking to ring structure of the X 1 ~ X 3 in each formula R 1 ~ R 2)
[6]
 350℃、10分間熱分解した際に発生するガス量(アウトガス)が300ppm以下であることを特徴とする[1]~[5]のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。
[6]
The inorganic reinforced semi-aromatic polyamide resin composition according to any one of [1] to [5], wherein the amount of gas (outgas) generated when thermally decomposed at 350 ° C. for 10 minutes is 300 ppm or less.
[7]
 80℃95%RHの高温高湿環境で500時間処理前後の曲げ強度から算出される曲げ強度の低下率が、15%未満であることを特徴とする[1]~[6]のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。
[7]
One of [1] to [6], wherein the reduction rate of the bending strength calculated from the bending strength before and after the treatment for 500 hours in a high temperature and high humidity environment of 80 ° C. and 95% RH is less than 15%. The inorganic reinforced semi-aromatic polyamide resin composition according to the above.
[8]
 0.2mm厚の流動長が3mm以上であることを特徴とする[1]~[7]のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。
[8]
The inorganic reinforced semi-aromatic polyamide resin composition according to any one of [1] to [7], which has a thickness of 0.2 mm and a flow length of 3 mm or more.
[9]
 引張り破壊ひずみが0.3~3.4%であることを特徴とする[1]~[8]のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。
[9]
The inorganic reinforced semi-aromatic polyamide resin composition according to any one of [1] to [8], wherein the tensile fracture strain is 0.3 to 3.4%.
 本発明により、耐熱性と耐熱変色性に優れ、さらには溶融成形時のアウトガスによる金型汚れを抑制でき、溶融流動性、ゲル化特性に優れた、無機強化半芳香族ポリアミド樹脂組成物を提供することができる。 INDUSTRIAL APPLICABILITY The present invention provides an inorganic reinforced semi-aromatic polyamide resin composition which is excellent in heat resistance and heat discoloration, can suppress mold stains due to outgas during melt molding, and is excellent in melt fluidity and gelation characteristics. can do.
 以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
 本発明における半芳香族ポリアミド(A)とは、ポリアミドの繰り返し単位中に、芳香族骨格を有するジカルボン酸またはジアミンを含有するものを意味する。 The semi-aromatic polyamide (A) in the present invention means one containing a dicarboxylic acid or diamine having an aromatic skeleton in the repeating unit of the polyamide.
 本発明における半芳香族ポリアミド(A)は、2個以上の炭素原子を含む少なくとも1種の脂肪族ジアミンとテレフタル酸との縮合からなる繰り返し単位を含む少なくとも1種の半芳香族ポリアミドであり、2個以上の炭素原子の脂肪族ジアミンとテレフタル酸との縮合からなる構成単位を50モル%以上含有することが好ましい。前記構成単位は、55モル%以上が好ましく、55~75モル%がより好ましく、60~70モル%がさらに好ましい。ジアミンとテレフタル酸との縮合からなる構成単位が50モル%未満であると、結晶性、力学物性が低下する。前記2個以上の炭素原子の脂肪族ジアミンは、炭素数2~12の脂肪族ジアミンであることが好ましい。 The semi-aromatic polyamide (A) in the present invention is at least one semi-aromatic polyamide containing a repeating unit consisting of a condensation of at least one aliphatic diamine containing two or more carbon atoms and terephthalic acid. It preferably contains 50 mol% or more of a structural unit composed of a condensation of an aliphatic diamine having two or more carbon atoms and terephthalic acid. The structural unit is preferably 55 mol% or more, more preferably 55 to 75 mol%, still more preferably 60 to 70 mol%. If the structural unit composed of the condensation of diamine and terephthalic acid is less than 50 mol%, the crystallinity and mechanical characteristics are deteriorated. The aliphatic diamine having two or more carbon atoms is preferably an aliphatic diamine having 2 to 12 carbon atoms.
 炭素数2~12の脂肪族ジアミン成分としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,5-ぺンタメチレンジアミン、2-メチル-1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1、9-ノナメチレンジアミン、2-メチル―1,8-オクタメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、2,2,4(または2,4,4)-トリメチルヘキサメチレンジアミンが挙げられ、これらを単独もしくは複数使用することが可能である。しかしながら、炭素数が9以上の脂肪族ジアミンとテレフタル酸との縮合からなる構成単位からなる半芳香族ポリアミドの場合、290℃未満に融点を有する場合があるため、炭素数2~8の脂肪族ジアミンとテレフタル酸との縮合からなる構成単位を50モル%以上含有し、融点が290℃以上である半芳香族ポリアミドが好ましい。炭素数2~8の脂肪族ジアミンとテレフタル酸との縮合からなる構成単位は、55モル%以上がより好ましく、55~75モル%がさらに好ましく、60~70モル%が特に好ましい。炭素数2~12の脂肪族ジアミン以外では、1,13-トリデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン等があり、これらも本発明の効果を損なわない少量の範囲であれば、共重合成分として使用可能である。 As the aliphatic diamine component having 2 to 12 carbon atoms, 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 2-methyl-1, 5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, Examples include 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 2,2,4 (or 2,4,4) -trimethylhexamethylenediamine, which are used alone. Alternatively, it is possible to use more than one. However, in the case of a semi-aromatic polyamide composed of a constituent unit composed of a condensation of an aliphatic diamine having 9 or more carbon atoms and terephthalic acid, the temperature may be lower than 290 ° C., so that the aliphatic diamine having 2 to 8 carbon atoms may have a melting point. A semi-aromatic polyamide containing 50 mol% or more of a constituent unit composed of a condensation of diamine and terephthalic acid and having a melting point of 290 ° C. or higher is preferable. The structural unit composed of the condensation of an aliphatic diamine having 2 to 8 carbon atoms and terephthalic acid is more preferably 55 mol% or more, further preferably 55 to 75 mol%, and particularly preferably 60 to 70 mol%. Other than the aliphatic diamine having 2 to 12 carbon atoms, there are 1,13-tridecamethylenediamine, 1,16-hexamethylenediamine, 1,18-octadecamethylenediamine and the like, which also impair the effect of the present invention. It can be used as a copolymerization component as long as it is in a small amount.
 共重合可能なジカルボン酸成分としては、イソフタル酸、オルソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、2,2’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-スルホン酸ナトリウムイソフタル酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、1,18-オクタデカン二酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸等が挙げられる。また、ε-カプロラクタム、12-アミノドデカン酸、12-ラウリルラクタムなどのラクタムおよびこれらが開環した構造であるアミノカルボン酸などが挙げられる。 Examples of the copolymerizable dicarboxylic acid component include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and 2,2'-diphenyldicarboxylic acid. Aromatic dicarboxylic acids such as 4,4'-diphenyl ether dicarboxylic acid, sodium isophthalic acid 5-sulfonate, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid, 1,11-Undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecandioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1, Examples thereof include aliphatic and alicyclic dicarboxylic acids such as 2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid and dimer acid. Examples thereof include lactams such as ε-caprolactam, 12-aminododecanoic acid and 12-lauryl lactam, and aminocarboxylic acids having an open ring structure thereof.
 なかでも、共重合成分としては、炭素数11~18の脂肪族アミノカルボン酸、もしくは炭素数11~18の脂肪族ラクタムのうちの一種もしくは複数種を共重合していることが好ましい。 Among them, as the copolymerization component, it is preferable that one or a plurality of aliphatic aminocarboxylic acids having 11 to 18 carbon atoms or aliphatic lactams having 11 to 18 carbon atoms are copolymerized.
 本発明における半芳香族ポリアミド(A)は、(i)7.5≦[ポリアミド中の炭素原子数/ポリアミド中のアミド結合数]を満足することが好ましい。さらに、本発明における半芳香族ポリアミドは、7.5≦[ポリアミド中の炭素原子数/ポリアミド中のアミド結合数]≦8.2を満足することが好ましい。 The semi-aromatic polyamide (A) in the present invention preferably satisfies (i) 7.5 ≦ [number of carbon atoms in polyamide / number of amide bonds in polyamide]. Further, the semi-aromatic polyamide in the present invention preferably satisfies 7.5 ≦ [the number of carbon atoms in the polyamide / the number of amide bonds in the polyamide] ≦ 8.2.
 [ポリアミド中の炭素原子数/ポリアミド中のアミド結合数]が7.5未満では、ポリアミド中のアミド基濃度が高くなるため、熱や光による樹脂劣化を起点とした変色が起こりやすくなる。一方で、[ポリアミド中の炭素原子数/ポリアミド中のアミド結合数]が8.2を超えると、ポリアミド中のアミド基濃度が低くなり、融点が290℃を下回る場合があるため、耐熱性が不足する場合がある。 When [the number of carbon atoms in the polyamide / the number of amide bonds in the polyamide] is less than 7.5, the concentration of amide groups in the polyamide becomes high, so that discoloration easily occurs due to resin deterioration due to heat or light. On the other hand, if [the number of carbon atoms in the polyamide / the number of amide bonds in the polyamide] exceeds 8.2, the concentration of amide groups in the polyamide becomes low and the melting point may be lower than 290 ° C. There may be a shortage.
 本発明における半芳香族ポリアミド(A)は、(ii)[ポリアミド中の芳香環上の炭素原子数/ポリアミド中の全炭素原子数]≦0.35を満足することが好ましい。さらに、本発明における半芳香族ポリアミドは、0.28≦[ポリアミド中の芳香環上の炭素原子数/ポリアミド中の全炭素原子数]≦0.35を満足することが好ましい。 The semi-aromatic polyamide (A) in the present invention preferably satisfies (ii) [number of carbon atoms on aromatic ring in polyamide / total number of carbon atoms in polyamide] ≤ 0.35. Further, the semi-aromatic polyamide in the present invention preferably satisfies 0.28 ≦ [the number of carbon atoms on the aromatic ring in the polyamide / the total number of carbon atoms in the polyamide] ≦ 0.35.
 LED照明部品や自動車内外装用部品においては、屋外使用の際に紫外線を受けるため、材料には高い耐UV性が求められる。[ポリアミド中の芳香環上の炭素原子数/ポリアミド中の全炭素原子数]が0.35を超えると、特に紫外線領域での光の吸収が大きくなり、その光により樹脂の劣化が顕著となりやすい。また、芳香環が存在すると、樹脂が劣化により変色の要因となる共役構造を形成しやすくなり顕著な変色を示す。したがって、樹脂中の芳香環濃度は低い方が好ましい。一方、耐熱性や高融点を達成する目的から[ポリアミド中の芳香環上の炭素原子数/ポリアミド中の全炭素原子数]は0.28以上であることが好ましい。 LED lighting parts and automobile interior / exterior parts receive ultraviolet rays when used outdoors, so the materials are required to have high UV resistance. When [the number of carbon atoms on the aromatic ring in the polyamide / the total number of carbon atoms in the polyamide] exceeds 0.35, the absorption of light becomes large especially in the ultraviolet region, and the deterioration of the resin tends to be remarkable due to the light. .. In addition, the presence of an aromatic ring makes it easier for the resin to form a conjugated structure that causes discoloration due to deterioration, and exhibits remarkable discoloration. Therefore, it is preferable that the aromatic ring concentration in the resin is low. On the other hand, for the purpose of achieving heat resistance and high melting point, [the number of carbon atoms on the aromatic ring in the polyamide / the total number of carbon atoms in the polyamide] is preferably 0.28 or more.
 本発明における半芳香族ポリアミドとしては、ヘキサメチレンジアミン/テレフタル酸/アミノウンデカン酸(またはウンデカラクタム)、ヘキサメチレンジアミン/テレフタル酸/アミノドデカン酸(または12-ラウリルラクタム)、デカメチレンジアミン/テレフタル酸/アミノウンデカン酸(またはウンデカラクタム)、デカメチレンジアミン/テレフタル酸/アミノドデカン酸(または12-ラウリルラクタム)が特に好ましいが、なかでも、高融点の観点から、ヘキサメチレンジアミンとテレフタル酸との縮合からなる構成単位(6T単位とも言う)を有する場合は、高い耐熱性、流動性、低い吸水性に加えて優れた色調安定性を実現するために、6T単位55~75モル%と、11-アミノウンデカン酸又はウンデカンラクタムからなる構成単位(11単位とも言う)45~25モル%とからなる共重合ポリアミドであることが好ましい。6T単位60~70モル%と、11単位40~30モル%とからなる共重合ポリアミドであることがより好ましい。 Examples of the semi-aromatic polyamide in the present invention include hexamethylenediamine / terephthalic acid / aminoundecanoic acid (or undecalactam), hexamethylenediamine / terephthalic acid / aminododecanoic acid (or 12-lauryllactam), and decamethylenediamine / terephthal. Acids / aminoundecanoic acid (or undecalactam), decamethylenediamine / terephthalic acid / aminododecanoic acid (or 12-lauryllactam) are particularly preferred, but among them, hexamethylenediamine and terephthalic acid from the viewpoint of high melting point. When it has a structural unit (also called 6T unit) composed of the condensation of 6T unit, it is 55 to 75 mol% of 6T unit in order to realize excellent color stability in addition to high heat resistance, fluidity and low water absorption. It is preferably a copolymerized polyamide composed of 45 to 25 mol% of a constituent unit (also referred to as 11 units) composed of 11-aminoundecanoic acid or undecanelactam. It is more preferable that the copolymerized polyamide is composed of 60 to 70 mol% of 6T units and 40 to 30 mol% of 11 units.
 本発明における半芳香族ポリアミドの融点(Tm)は、290~350℃であることが好ましく、290~340℃がより好ましく、300~330℃が更に好ましい。Tmが上記上限を超える場合、半芳香族ポリアミド樹脂組成物を射出成形などにより成形する際に必要となる加工温度が極めて高くなるため、加工時に分解し目的の物性や外観が得られない場合がある。逆に、Tmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になる。 The melting point (Tm) of the semi-aromatic polyamide in the present invention is preferably 290 to 350 ° C., more preferably 290 to 340 ° C., and even more preferably 300 to 330 ° C. If Tm exceeds the above upper limit, the processing temperature required for molding the semi-aromatic polyamide resin composition by injection molding or the like becomes extremely high, so that it may be decomposed during processing and the desired physical properties and appearance may not be obtained. is there. On the contrary, when Tm is less than the above lower limit, the crystallization rate becomes slow and molding becomes difficult in either case.
 一般的にポリアミド樹脂のアミノ基末端濃度(AEG)、カルボキシル基末端濃度(CEG)、及びモノカルボン酸又は/及びモノアミンで封鎖した末端濃度(EC)の総和である総末端数と、相対粘度(RV)は相関関係にある。種々の検討を行った結果、本発明の半芳香族ポリアミド樹脂組成物中での半芳香族ポリアミドは、上記した式(1)及び(2)を満たすことで耐熱性と耐熱変色性にも優れ、さらには溶融成形時のアウトガスによる金型汚れを抑制でき、溶融流動性、ゲル化特性に優れた、半芳香族ポリアミド樹脂組成物を得ることができる。本発明では、ECは、モノカルボン酸でアミノ基末端を封鎖した末端濃度を指す。
 なお、便宜上、アミノ基末端、カルボキシル基末端、及びモノカルボン酸又は/及びモノアミンで封鎖した末端を、それぞれAEG、CEG、及びECと称することもある。
In general, the total number of terminals, which is the sum of the amino group terminal concentration (AEG), the carboxyl group terminal concentration (CEG), and the terminal concentration (EC) blocked with monocarboxylic acid and / or monoamine, and the relative viscosity ( RV) is correlated. As a result of various studies, the semi-aromatic polyamide in the semi-aromatic polyamide resin composition of the present invention is excellent in heat resistance and heat discoloration by satisfying the above formulas (1) and (2). Furthermore, it is possible to obtain a semi-aromatic polyamide resin composition which can suppress mold contamination due to outgas during melt molding and has excellent melt fluidity and gelation characteristics. In the present invention, EC refers to the terminal concentration in which the amino group terminal is blocked with a monocarboxylic acid.
For convenience, the amino group terminal, the carboxyl group terminal, and the terminal sealed with monocarboxylic acid and / or monoamine may be referred to as AEG, CEG, and EC, respectively.
 半芳香族ポリアミド樹脂組成物中での半芳香族ポリアミド(A)が、上記した式(1)及び(2)を満たすためには、使用する原料である半芳香族ポリアミド(A)の(AEG+CEG)は、10~140eq/tが好ましく、より好ましくは20~130eq/tであり、さらに好ましくは30~100eq/tである。(AEG+CEG)が10eq/t未満の場合、反応する末端基が残存しておらず、成形品の機械的強度が確保できる相対粘度(RV)まで増粘することができない。また、(AEG+CEG)が140eq/tを超えてしまう場合、末端封鎖量が少なくAEG、CEGの残存量が多いため溶融成形時に増粘しゲル化してしまう。 In order for the semi-aromatic polyamide (A) in the semi-aromatic polyamide resin composition to satisfy the above formulas (1) and (2), (AEG + CEG) of the semi-aromatic polyamide (A) which is a raw material used is used. ) Is preferably 10 to 140 eq / t, more preferably 20 to 130 eq / t, and even more preferably 30 to 100 eq / t. When (AEG + CEG) is less than 10 eq / t, no reactive terminal group remains, and the viscosity cannot be increased to the relative viscosity (RV) at which the mechanical strength of the molded product can be ensured. Further, when (AEG + CEG) exceeds 140 eq / t, the amount of terminal blockade is small and the amount of AEG and CEG remaining is large, so that the thickening and gelation occur during melt molding.
 また、半芳香族ポリアミド樹脂組成物中での半芳香族ポリアミドが、上記した式(1)及び(2)を満たすためには、使用する原料である半芳香族ポリアミド(A)の(AEG+CEG)/(AEG+CEG+EC)は、0.70以下であることが好ましく、より好ましくは0.55以下であり、さらに好ましくは0.50以下であり、特に好ましくは0.45以下であり、最も好ましくは0.40以下である。(AEG+CEG)/(AEG+CEG+EC)が0.70を超える場合は、末端封鎖剤の含有量が少なく、AEG、CEGの残存量が多いため溶融成形時に増粘しゲル化してしまう。また、一般的にポリアミド樹脂は、アミノ基末端とカルボキシル基末端が反応することで増粘が進行していく。しかし、CEGがECと反応することで、増粘が進行することがある。アミド化反応の進行途中で、AEGが無くなった(0になった)場合、半芳香族ポリアミドの末端がCEGとECとなる。AEGが無いためCEGの酸触媒効果により、CEGが、末端封鎖剤が形成するアミド結合部を攻撃し、アミド交換反応が起こる。この際、末端封鎖剤を反応系外に留出させながら、増粘反応が進行する。そのため、末端封鎖剤由来のアウトガス成分が増加してしまう。また、CEGの酸成分により着色反応が併発し色調安定性に劣り、またゲル化しやすい樹脂となってしまう。このような現象を避けるためにも、半芳香族ポリアミド(A)は上記の末端基の関係を満たすことが重要となる。 Further, in order for the semi-aromatic polyamide in the semi-aromatic polyamide resin composition to satisfy the above formulas (1) and (2), (AEG + CEG) of the semi-aromatic polyamide (A) which is a raw material used. / (AEG + CEG + EC) is preferably 0.70 or less, more preferably 0.55 or less, still more preferably 0.50 or less, particularly preferably 0.45 or less, and most preferably 0. It is .40 or less. When (AEG + CEG) / (AEG + CEG + EC) exceeds 0.70, the content of the terminal blocker is small and the residual amount of AEG and CEG is large, so that the thickening and gelation occur during melt molding. Further, in general, in a polyamide resin, thickening progresses by the reaction between the amino group terminal and the carboxyl group terminal. However, the reaction of CEG with EC may promote thickening. If AEG disappears (becomes 0) during the amidation reaction, the ends of the semi-aromatic polyamide become CEG and EC. Due to the acid catalytic effect of CEG due to the absence of AEG, CEG attacks the amide bond formed by the terminal blocker, causing an amide transesterification reaction. At this time, the thickening reaction proceeds while distilling the terminal blocker out of the reaction system. Therefore, the outgas component derived from the terminal blockant increases. In addition, the acid component of CEG causes a coloring reaction to occur, resulting in poor color stability and a resin that easily gels. In order to avoid such a phenomenon, it is important that the semi-aromatic polyamide (A) satisfies the above-mentioned terminal group relationship.
 原料である半芳香族ポリアミド(A)のAEG、CEG、ECは、上記した関係を満たしていれば良いが、それぞれの好ましい範囲は次の通りである。AEGとしては、5~70eq/tであることが好ましく、10~40eq/tであることがより好ましく、15~40eq/tであることがさらに好ましい。CEGとしては、5~100eq/tであることが好ましく、5~70eq/tであることがより好ましく、15~50eq/tであることがさらに好ましい。ECとしては、60~240eq/tであることが好ましく、80~200eq/であることがより好ましく、80~170eq/であることがさらに好ましい。 The AEG, CEG, and EC of the semi-aromatic polyamide (A), which is the raw material, may satisfy the above-mentioned relationship, but the preferable ranges of each are as follows. The AEG is preferably 5 to 70 eq / t, more preferably 10 to 40 eq / t, and even more preferably 15 to 40 eq / t. The CEG is preferably 5 to 100 eq / t, more preferably 5 to 70 eq / t, and even more preferably 15 to 50 eq / t. The EC is preferably 60 to 240 eq / t, more preferably 80 to 200 eq / t, and even more preferably 80 to 170 eq / t.
 本発明における半芳香族ポリアミド(A)の相対粘度(RV)は1.3~3.5であることが好ましく、より好ましくは1.5~3.0であり、さらに好ましくは1.8~2.8であり、一層好ましくは1.9~2.5である。RVが1.3未満の場合、成形品の機械的強度が得られなくなってしまう。RVが3.5より大きい場合は溶融成形時の流動性が低くなり、溶融加工性の面で好ましくない。 The relative viscosity (RV) of the semi-aromatic polyamide (A) in the present invention is preferably 1.3 to 3.5, more preferably 1.5 to 3.0, and even more preferably 1.8 to 1.8. It is 2.8, more preferably 1.9 to 2.5. If the RV is less than 1.3, the mechanical strength of the molded product cannot be obtained. When the RV is larger than 3.5, the fluidity at the time of melt molding becomes low, which is not preferable in terms of melt processability.
 本発明における半芳香族ポリアミド(A)は、半芳香族ポリアミド中で構造式(P1)と(P2)の構造で検出されるリン化合物由来のリン原子含有量の和(P3)が30ppm以上であることが好ましく、半芳香族ポリアミド中に残存する全リン原子量に対してP3が10%以上であることが好ましい。リン原子は、触媒として使用するリン化合物に由来するものである。P3は、より好ましくは40ppm以上であり、さらに好ましくは50ppm以上である。P3が30ppm未満の場合は、熱酸化劣化で発生する過酸化物を抑制できないため、高温大気下で黄変着色しやすくなってしまう。また熱酸化劣化で発生する過酸化物によって、ゲル化しやすい樹脂となってしまう。
 残存する全リン原子量に対してP3が10%未満の場合は、重合時の熱履歴による熱ダメージを受けている場合や重合系内に残存する酸素と反応し酸化劣化が進行していることを意味しており、着色しやすくゲル化しやすい樹脂となってしまう。残存する全リン原子量に対してP3の比率の上限は特に定めないが、本発明においては50%程度である。
 P3が30ppm以上であり、且つ残存する全リン原子量に対してP3が10%以上とするには貯蔵槽の酸素濃度を10ppm以下とし、重縮合工程を低温で重合した低次縮合物を得た後、熱履歴の少ない固相重合により所定の粘度まで調整することで達成できる。
 残存する全リン原子量に対してP3が30ppm以上とするため、半芳香族ポリアミド中に残存する全リン原子量は、200~400ppmが好ましい。
The semi-aromatic polyamide (A) in the present invention has a sum (P3) of phosphorus atom contents derived from phosphorus compounds detected in the structures of the structural formulas (P1) and (P2) in the semi-aromatic polyamide of 30 ppm or more. It is preferable that P3 is 10% or more with respect to the total amount of phosphorus atoms remaining in the semi-aromatic polyamide. The phosphorus atom is derived from a phosphorus compound used as a catalyst. P3 is more preferably 40 ppm or more, still more preferably 50 ppm or more. When P3 is less than 30 ppm, the peroxide generated due to thermal oxidative deterioration cannot be suppressed, so that yellowing and coloring are likely to occur in a high temperature atmosphere. In addition, the peroxide generated by thermal oxidative deterioration results in a resin that easily gels.
When P3 is less than 10% of the total residual phosphorus atomic weight, it means that the product has been damaged by heat due to the thermal history during polymerization or that it has reacted with oxygen remaining in the polymerization system to promote oxidative deterioration. This means that the resin is easily colored and easily gelled. The upper limit of the ratio of P3 to the total residual phosphorus atomic weight is not particularly determined, but is about 50% in the present invention.
In order for P3 to be 30 ppm or more and P3 to be 10% or more with respect to the total residual phosphorus atomic weight, the oxygen concentration in the storage tank was set to 10 ppm or less, and the polycondensation step was carried out at a low temperature to obtain a low-order condensate. After that, it can be achieved by adjusting the viscosity to a predetermined value by solid-phase polymerization having a small thermal history.
Since P3 is 30 ppm or more with respect to the total residual phosphorus atomic weight, the total phosphorus atomic weight remaining in the semi-aromatic polyamide is preferably 200 to 400 ppm.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
(ただし、R、Rは水素、アルキル基、アリール基、シクロアルキル基、またはアリールアルキル基、X~Xは水素、アルキル基、アリール基、シクロアルキル基、アリールアルキル基、アルカリ金属、またはアルカリ土類金属であり、各式中のX~XとR~Rのうちそれぞれ1個は互いに連結して環構造を形成してもよい) (Wherein, R 1, R 2 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group or an arylalkyl group, X 1 ~ X 3 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group, an arylalkyl group, an alkali metal or an alkaline earth metal, may form a single linking to ring structure of the X 1 ~ X 3 in each formula R 1 ~ R 2)
 触媒として使用するリン化合物については、後記で説明するが、触媒として次亜リン酸ナトリウムを使用した場合、R、Rは水素、X~Xはそれぞれ、水素またはナトリウムとなる。 The phosphorus compound used as a catalyst will be described later, but when sodium hypophosphate is used as the catalyst, R 1 and R 2 are hydrogen, and X 1 to X 3 are hydrogen or sodium, respectively.
 半芳香族ポリアミド(A)中に含まれるP3の量が、上記範囲にあることにより、本発明の半芳香族ポリアミド樹脂組成物を大気下にて260℃×10分間熱処理した前後のΔCo-bが12以下にすることができる。また、窒素気流下で330℃熱処理した時のゲル化時間が、4時間以上とする半芳香族ポリアミド樹脂組成物を得ることができる。ΔCo-b、及びゲル化時間は、後記する実施例の項に記載の方法で行う。 When the amount of P3 contained in the semi-aromatic polyamide (A) is within the above range, ΔCo-b before and after the semi-aromatic polyamide resin composition of the present invention is heat-treated in the air at 260 ° C. for 10 minutes. Can be 12 or less. Further, a semi-aromatic polyamide resin composition having a gelation time of 4 hours or more when heat-treated at 330 ° C. under a nitrogen stream can be obtained. ΔCob and gelation time are set by the method described in the section of Examples described later.
 本発明における半芳香族ポリアミド(A)の製造方法としては、半芳香族ポリアミドを構成する原料水溶液を調合する工程と、原料水溶液を管状反応装置に連続的に導入する原料導入工程と、導入された原料を管状反応装置内を通過させアミド化を行いアミド化物と縮合水とを含む反応混合物を得るアミド化工程と、反応混合物を水分離除去可能な連続式反応装置に導入して溶融重合を行う工程と、真空下または窒素気流下で固相重合を行う工程を含む。 The method for producing the semi-aromatic polyamide (A) in the present invention includes a step of preparing a raw material aqueous solution constituting the semi-aromatic polyamide and a raw material introduction step of continuously introducing the raw material aqueous solution into a tubular reactor. An amidation step in which the raw material is passed through a tubular reactor and amidated to obtain a reaction mixture containing the amidate and condensed water, and the reaction mixture is introduced into a continuous reactor capable of separating and removing water to carry out melt polymerization. This includes a step of performing solid phase polymerization under vacuum or a nitrogen stream.
(1)調合工程
 耐圧反応缶に、ジアミンとジカルボン酸をそれぞれ所定量、投入する。同時に、原料濃度が30~90重量%となるように水を加え、重合触媒であるリン化合物、末端封鎖剤であるモノカルボン酸を仕込む。また、後工程で発泡するものには、発泡抑制剤を投入する。
(1) Preparation step A predetermined amount of diamine and dicarboxylic acid are added to the pressure-resistant reaction can. At the same time, water is added so that the concentration of the raw material is 30 to 90% by weight, and a phosphorus compound as a polymerization catalyst and a monocarboxylic acid as a terminal blocker are charged. In addition, a foaming inhibitor is added to those that foam in the subsequent process.
 本発明における半芳香族ポリアミド(A)を製造するに際に使用する触媒としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸エチル、亜リン酸の化合物及びこれらの加水分解物、ならびに縮合物などがある。もしくはその金属塩やアンモニウム塩、エステルが挙げられる。金属塩の金属種としては、具体的には、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモンなどが挙げられる。エステルとしては、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどを添加することができる。本発明においては、触媒としては、次亜リン酸ナトリウムが好ましい。また、溶融滞留安定性向上の観点から、水酸化ナトリウムを添加することが好ましい。 Examples of the catalyst used in producing the semi-aromatic polyamide (A) in the present invention include compounds of dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, ethyl hypophosphate, and phosphorous acid, and these. There are hydrolyzates and condensates. Alternatively, the metal salt, ammonium salt, and ester thereof can be mentioned. Specific examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony. As the ester, ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like can be added. In the present invention, sodium hypophosphate is preferable as the catalyst. Further, from the viewpoint of improving melt retention stability, it is preferable to add sodium hydroxide.
 末端封鎖剤を添加する時期としては、原料仕込み時が好ましいが、重合開始時、重合後期、または重合終了時でも構わない。末端封鎖剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、モノカルボン酸またはモノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを使用することができる。末端封鎖剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、無水マレイン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン等が挙げられる。本発明においては、末端封鎖剤としては、モノカルボン酸が好ましく、上記の例示の中でも酢酸、安息香酸が好ましい。 The end-sealing agent is preferably added at the time of raw material preparation, but it may be at the start of polymerization, the late stage of polymerization, or the end of polymerization. The terminal sequestering agent is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at the end of polyamide, but it is monocarboxylic acid or an acid anhydride such as monoamine or phthalic anhydride, or mono. Isocyanates, monoacid halides, monoesters, monoalcohols and the like can be used. Aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid are examples of end-blocking agents. Aliphatic monocarboxylic acids such as acids and cyclohexanecarboxylic acids, benzoic acids, toluic acids, α-naphthalenecarboxylic acids, β-naphthalenecarboxylic acids, methylnaphthalenecarboxylic acids, aromatic monocarboxylic acids such as phenylacetic acid, maleic anhydride , Acid anhydrides such as phthalic acid anhydride and phthalic acid anhydride, and fats such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine. Aliphatic monoamines such as group monoamines, cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine can be mentioned. In the present invention, the terminal blocking agent is preferably a monocarboxylic acid, and among the above examples, acetic acid and benzoic acid are preferable.
 原料水溶液の塩濃度は、ポリアミドの種類によって異なり特に限定はされないが、一般的には30~90質量%とすることが望ましい。塩濃度が90質量%を超える場合、温度のわずかな変動で塩が析出して配管を詰まらせることがあり、また、塩の溶解度を高くする必要から、設備的には高温、高耐圧仕様となることからコスト的に不利となる。一方、塩濃度を30質量%未満とする場合、初期重合工程以降における水の蒸発量が多くなりエネルギー的に不利となるだけでなく、生産性低下によるコストアップ要因となる。望ましい塩濃度は35~85質量%である。 The salt concentration of the raw material aqueous solution varies depending on the type of polyamide and is not particularly limited, but is generally preferably 30 to 90% by mass. If the salt concentration exceeds 90% by mass, slight fluctuations in temperature may cause salt to precipitate and clog the piping, and since it is necessary to increase the solubility of the salt, the equipment is equipped with high temperature and high pressure resistance specifications. Therefore, it is disadvantageous in terms of cost. On the other hand, when the salt concentration is less than 30% by mass, the amount of water evaporated after the initial polymerization step increases, which is disadvantageous in terms of energy and causes a cost increase due to a decrease in productivity. The desired salt concentration is 35-85% by weight.
 ポリアミドの種類や塩濃度によって異なるが、塩水溶液の調合は一般的に、温度は60~180℃、圧力は0~1MPaの範囲である。温度が180℃を超える場合、又は圧力が1MPaを超える場合は、設備が高温高耐圧仕様となるため、設備費が増加し不利となる。逆に、温度が60℃未満の場合、又は圧力が0MPa未満の場合には、塩の析出による配管の詰まりなどトラブル要因となるだけでなく、塩濃度を高くすることが難しくなり、生産性の低下をきたす。望ましい条件は、温度が70~170℃、圧力が0.05~0.8MPa、更に望ましくは75~165℃、0.1~0.6MPaである。 Although it depends on the type of polyamide and the salt concentration, the salt aqueous solution is generally prepared in the temperature range of 60 to 180 ° C. and the pressure range of 0 to 1 MPa. When the temperature exceeds 180 ° C. or the pressure exceeds 1 MPa, the equipment has a high temperature and high withstand voltage specification, which increases the equipment cost and is disadvantageous. On the other hand, if the temperature is less than 60 ° C or the pressure is less than 0 MPa, not only will it cause troubles such as clogging of the piping due to salt precipitation, but it will also be difficult to increase the salt concentration, resulting in productivity. It causes a decline. Desirable conditions are a temperature of 70 to 170 ° C. and a pressure of 0.05 to 0.8 MPa, more preferably 75 to 165 ° C. and 0.1 to 0.6 MPa.
 塩水溶液の貯蔵槽は、基本的には塩の析出がなければ問題はなく、塩形成工程の条件がそのまま適用できる。 Basically, there is no problem in the salt aqueous solution storage tank as long as there is no salt precipitation, and the conditions of the salt forming process can be applied as they are.
 このように調製された塩水溶液は、原料導入工程において、供給ポンプによってアミド化工程へ連続供給される。ここで使用される供給ポンプは、定量性に優れたものでなければならない。供給量の変動はアミド化工程の工程変動となり、結果として、相対粘度(RV)の偏差の大きい、品質の不安定なポリアミドが得られることになる。この意味から、供給ポンプとしては、定量性に優れたプランジャーポンプの使用が推奨される。 The salt aqueous solution prepared in this way is continuously supplied to the amidation step by the supply pump in the raw material introduction step. The supply pump used here must be highly quantitative. The fluctuation of the supply amount becomes the process fluctuation of the amidation step, and as a result, a polyamide having a large deviation in relative viscosity (RV) and unstable quality can be obtained. From this point of view, it is recommended to use a plunger pump with excellent quantification as the supply pump.
 原料調合時の雰囲気酸素濃度は得られるポリアミドの色調に大きく影響する。原料調合時の雰囲気酸素濃度は10ppm以下であれば問題ないが、酸素濃度が10ppmを超えると、得られるポリアミドの黄色味が強くなり製品の品位が悪くなる傾向がある。一方、酸素濃度の下限は特に定められないが、例えば、0.05ppm以上である。ポリアミドの製造において、酸素濃度が0.05ppm未満であることは、何ら問題はないが、0.05ppm未満を達成するためには酸素の除去工程が必要以上に煩雑となるだけで、色調をはじめその他の物性にほとんど影響は見られない。望ましい酸素濃度の範囲は0.05ppm以上9ppm以下であり、更に望ましくは0.05ppm以上8ppm以下である。 The atmospheric oxygen concentration at the time of raw material preparation greatly affects the color tone of the obtained polyamide. There is no problem if the atmospheric oxygen concentration at the time of raw material preparation is 10 ppm or less, but if the oxygen concentration exceeds 10 ppm, the yellowness of the obtained polyamide becomes strong and the quality of the product tends to deteriorate. On the other hand, the lower limit of the oxygen concentration is not particularly defined, but is, for example, 0.05 ppm or more. In the production of polyamide, there is no problem if the oxygen concentration is less than 0.05 ppm, but in order to achieve less than 0.05 ppm, the oxygen removal process becomes more complicated than necessary, and the color tone and the like are started. There is almost no effect on other physical properties. The range of desirable oxygen concentration is 0.05 ppm or more and 9 ppm or less, and more preferably 0.05 ppm or more and 8 ppm or less.
 本発明において、予め酸素を除去し酸素濃度10ppm以下とした調合槽(溶融槽又は原料塩形成槽)に原料を供給するか、又は原料を調合槽(溶融槽又は原料塩形成槽)に投入した後に、酸素を除去し調合槽内の雰囲気を酸素濃度10ppm以下とするか、又は両者を併用するとよい。このことは、設備的あるいは操業面から選択すればよい。また、貯蔵槽内の雰囲気を酸素濃度10ppm以下とすることも好ましい。 In the present invention, the raw material is supplied to a compounding tank (melting tank or raw material salt forming tank) in which oxygen is removed in advance and the oxygen concentration is 10 ppm or less, or the raw material is put into the compounding tank (melting tank or raw material salt forming tank). Later, oxygen may be removed to reduce the atmosphere in the compounding tank to an oxygen concentration of 10 ppm or less, or both may be used in combination. This may be selected from the aspect of equipment or operation. It is also preferable that the atmosphere in the storage tank has an oxygen concentration of 10 ppm or less.
 酸素の除去方法としては、真空置換法、加圧置換法あるいはその併用がある。置換に適用する真空度あるいは加圧度及び置換回数は、所望する酸素濃度達成に最も効率のよい条件を選べばよい。 Oxygen removal methods include vacuum substitution method, pressure substitution method, or a combination thereof. The degree of vacuum or the degree of pressurization applied to the substitution and the number of substitutions may be selected from the conditions most efficient for achieving the desired oxygen concentration.
(2)原料導入工程
 原料調合工程において調整された塩水溶液を、管路を通じて供給ポンプによってアミド化工程の管状反応装置の入口に連続的に導入する。
(2) Raw material introduction step The salt aqueous solution prepared in the raw material preparation step is continuously introduced into the inlet of the tubular reactor in the amidation step by a supply pump through a pipeline.
(3)アミド化工程
 アミド化工程では、管状反応装置の入口に連続的に導入された塩水溶液を、管状反応装置内を通過させアミド化を行い、低重合度のアミド化生成物と縮合水とを含む反応混合物を得る。管状反応装置内では、水の分離除去は行われない。
(3) Amidation step In the amidation step, a salt aqueous solution continuously introduced into the inlet of the tubular reactor is passed through the tubular reactor to perform amidation, and the amidation product having a low degree of polymerization and condensed water are used. A reaction mixture containing and is obtained. Water is not separated and removed in the tubular reactor.
 管状反応装置は、管の内径をD(mm)、管の長さをL(mm)としたとき、L/Dが50以上のものであることが好ましい。管状反応装置には、その構造上液面制御が不要であること、プラグフロー性が高いこと、耐圧性が優れること及び設備費が安価であること等のメリットがある。L/Dが50未満の場合、Lが小さいと、反応混合物流れの滞留時間が短くなり、相対粘度(RV)の上昇度合いが小さく、一方、Dが大きいと、プラグフロー性が小さくなり、滞留時間分布ができてしまい、所望する機能を果たさなくなる。L/Dの上限については特に定められないが、滞留時間や相対粘度(RV)の上昇度合いを考慮すると、3000程度である。L/Dは、下限については60以上がより好ましく、80以上がさらに好ましく、上限については2000以下がより好ましく、1000以下がさらに好ましい。また、Lは、下限については3m以上が好ましく、5m以上がより好ましく、上限については50m以下が好ましく、30m以下がより好ましい。 The tubular reactor preferably has an L / D of 50 or more, where the inner diameter of the tube is D (mm) and the length of the tube is L (mm). The tubular reactor has merits such as no liquid level control is required due to its structure, high plug flow property, excellent pressure resistance, and low equipment cost. When L / D is less than 50, if L is small, the residence time of the reaction mixture flow is short and the degree of increase in relative viscosity (RV) is small, while if D is large, the plug flow property is small and retention is small. A time distribution is created, and the desired function is not performed. The upper limit of L / D is not particularly defined, but is about 3000 in consideration of the residence time and the degree of increase in relative viscosity (RV). The lower limit of L / D is more preferably 60 or more, the upper limit is more preferably 80 or more, the upper limit is more preferably 2000 or less, and further preferably 1000 or less. The lower limit of L is preferably 3 m or more, more preferably 5 m or more, and the upper limit is preferably 50 m or less, more preferably 30 m or less.
 反応条件は、ポリアミドの構造や目的とする重合度によって異なるが、例えば、内温は110~310℃であり、内圧は0~5MPaであり、反応混合物の管内平均滞留時間は10~120分である。アミド化生成物の重合度は、内温、内圧及び平均滞留時間によって制御できる。 The reaction conditions vary depending on the structure of the polyamide and the desired degree of polymerization. For example, the internal temperature is 110 to 310 ° C., the internal pressure is 0 to 5 MPa, and the average residence time of the reaction mixture in the tube is 10 to 120 minutes. is there. The degree of polymerization of the amidation product can be controlled by the internal temperature, internal pressure and average residence time.
 平均滞留時間が10分より短い場合、低重合度のアミド化生成物の重合度が低くなり、その結果、重縮合工程時にジアミン成分が飛散しやすくなり末端基の調整が困難となる。一方、平均滞留時間が120分より長い場合、アミド化が平衡に達し、RVの上昇が頭打ちとなる一方で、熱劣化が進行するため好ましくない。望ましい平均滞留時間は12~110分、さらに望ましくは15~100分である。平均滞留時間の制御は、管状反応装置の管の内径D、管の長さLの調整、あるいは原料供給量を変化させることで可能である。 When the average residence time is shorter than 10 minutes, the degree of polymerization of the amidation product having a low degree of polymerization becomes low, and as a result, the diamine component tends to scatter during the polycondensation step, making it difficult to adjust the terminal groups. On the other hand, when the average residence time is longer than 120 minutes, the amidation reaches equilibrium, the increase in RV reaches a plateau, and the thermal deterioration progresses, which is not preferable. The desired average residence time is 12 to 110 minutes, more preferably 15 to 100 minutes. The average residence time can be controlled by adjusting the inner diameter D of the tube of the tubular reactor, the length L of the tube, or changing the amount of raw material supplied.
 アミド化工程での重縮合反応により、管状反応装置の入口と出口とで、反応混合物の相対粘度(RV)が0.05~0.6上昇するようにすることが好ましい。RVの上昇を0.05より小さくした場合、重縮合工程時にジアミン成分が飛散しやすくなり末端基の調整が困難となる。一方、RVの上昇を0.6より大きくする場合、共存する縮合水(塩形成法の場合には、塩形成に用いた水と縮合水)の影響により熱劣化が進行しやすい。また粘度の上がりすぎた反応混合物は配管閉塞の原因となるので、操業に悪影響を及ぼすことがある。アミド化工程における望ましいRVの上昇範囲は0.15~0.5、さらに望ましくは0.2~0.4である。 It is preferable that the relative viscosity (RV) of the reaction mixture increases by 0.05 to 0.6 at the inlet and outlet of the tubular reactor by the polycondensation reaction in the amidation step. When the increase in RV is smaller than 0.05, the diamine component tends to scatter during the polycondensation step, making it difficult to adjust the terminal groups. On the other hand, when the increase in RV is made larger than 0.6, thermal deterioration tends to proceed due to the influence of coexisting condensed water (in the case of the salt forming method, the water used for salt formation and the condensed water). In addition, the reaction mixture having an excessively high viscosity may cause pipe blockage, which may adversely affect the operation. The desired range of increase in RV in the amidation step is 0.15 to 0.5, more preferably 0.2 to 0.4.
(4)重縮合工程
 初期重合工程における反応条件は、内圧は0~5MPaであり、平均滞留時間は10~150分であり、内温は缶内の残存水分率によるFloryの融点降下式に従い決定される。望ましい反応条件は、内温は230~285℃であり、内圧は0.5~4.5MPaであり、平均滞留時間は15~140分であり、さらに望ましい反応条件は、内温は235~280℃であり、内圧は1.0~4.0MPaであり、平均滞留時間は20~130分である。反応条件が上記範囲の下限から外れると到達重合度が低すぎたり、缶内で樹脂が固化してしまうなど好ましくない。反応条件が上記範囲の上限から外れると、P3成分の分解や副反応が併発し、P3が30ppm未満となるため、耐熱黄変性やゲル化特性に不利である。
(4) Polycondensation step The reaction conditions in the initial polymerization step are that the internal pressure is 0 to 5 MPa, the average residence time is 10 to 150 minutes, and the internal temperature is determined according to the melting point drop formula of Free by the residual water content in the can. Will be done. Desirable reaction conditions are an internal temperature of 230-285 ° C., an internal pressure of 0.5-4.5 MPa, an average residence time of 15-140 minutes, and a more desirable reaction condition is an internal temperature of 235-280. The temperature is ° C., the internal pressure is 1.0 to 4.0 MPa, and the average residence time is 20 to 130 minutes. If the reaction conditions deviate from the lower limit of the above range, the degree of polymerization reached is too low, and the resin solidifies in the can, which is not preferable. If the reaction conditions deviate from the upper limit of the above range, decomposition of the P3 component and side reactions occur at the same time, and P3 becomes less than 30 ppm, which is disadvantageous for heat-resistant yellowing and gelation characteristics.
(5)固相重合工程
 本発明でいう固相重合は、半芳香族ポリアミドが溶融しない範囲の任意の温度で、真空下または窒素気流下で重合反応を進める工程をいう。固相重合を行う設備は、特に限定はされないが、ブレンダーや真空乾燥機が例として挙げられる。望ましい反応条件は、内温は200~260℃であり、内圧は0.7KPa以下であり、さらに望ましい反応条件は、内温は210~250℃であり、内圧は0.4KPa以下である。
(5) Solid-Phase Polymerization Step The solid-phase polymerization referred to in the present invention refers to a step of advancing the polymerization reaction under vacuum or a nitrogen stream at an arbitrary temperature within the range where the semi-aromatic polyamide does not melt. The equipment for performing solid-phase polymerization is not particularly limited, and examples thereof include a blender and a vacuum dryer. Desirable reaction conditions are an internal temperature of 200 to 260 ° C. and an internal pressure of 0.7 KPa or less, and more desirable reaction conditions are an internal temperature of 210 to 250 ° C. and an internal pressure of 0.4 KPa or less.
 重縮合工程で得られたポリアミドプレポリマーを二軸押し出し機で溶融重合し、所定のRVまで増粘させることは可能だが、溶融時の熱履歴によりP3成分の分解や副反応が併発し、耐熱黄変性やゲル化特性に不利である。また、半芳香族ポリアミド中にオリゴマー等の低分子量体が残存してしまうため、後工程の溶融成形時におけるアウトガスの観点から不向きである。 It is possible to melt-polymerize the polyamide prepolymer obtained in the polycondensation step with a biaxial extruder to thicken it to a predetermined RV, but due to the thermal history at the time of melting, decomposition of P3 components and side reactions occur together, resulting in heat resistance. It is disadvantageous for yellowing and gelling properties. In addition, low molecular weight substances such as oligomers remain in the semi-aromatic polyamide, which is unsuitable from the viewpoint of outgassing during melt molding in the subsequent process.
 半芳香族ポリアミド(A)の配合量は、無機強化半芳香族ポリアミド樹脂組成物100質量%に対して、30~75質量%であり、好ましくは35~70質量%、より好ましくは40~67質量%、さらに好ましくは45~65質量%である。本発明の無機強化半芳香族ポリアミド樹脂組成物においては、配合量は、そのまま無機強化半芳香族ポリアミド樹脂組成物中の含有量となる。 The blending amount of the semi-aromatic polyamide (A) is 30 to 75% by mass, preferably 35 to 70% by mass, and more preferably 40 to 67 with respect to 100% by mass of the inorganic reinforced semi-aromatic polyamide resin composition. It is by mass, more preferably 45 to 65% by mass. In the inorganic reinforced semi-aromatic polyamide resin composition of the present invention, the blending amount is the content in the inorganic reinforced semi-aromatic polyamide resin composition as it is.
 本発明における無機強化材(B)としては、強度や剛性および耐熱性等の物性を最も効果的に改良するものであり、具体的には、ガラス繊維、炭素繊維、アルミナ繊維、炭化珪素繊維、ジルコニア繊維等の繊維状のもの、ホウ酸アルミニウム、チタン酸カリウム等のウイスカー類、針状ワラストナイト、ミルドファイバー等を挙げることができる。またこれらのほか、ガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、ワラストナイト、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、グラファイト、カーボンナノチューブ、フラーレン、酸化亜鉛、酸化インジウム、酸化錫、酸化鉄、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、赤燐、炭酸カルシウム、チタン酸カリウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、ホウ酸アルミニウム、硫酸バリウム、硫酸マグネシウム、層間剥離を目的として有機処理を施した層状ケイ酸塩等の充填材も無機強化材(B)として用いることができる。これらの中でも特に、ガラス繊維、炭素繊維などが好ましく用いられる。これら無機強化材(B)は、1種のみであってもよいし2種以上を組み合わせてもよい。 The inorganic reinforcing material (B) in the present invention most effectively improves physical properties such as strength, rigidity and heat resistance, and specifically, glass fiber, carbon fiber, alumina fiber, silicon carbide fiber, etc. Examples include fibrous materials such as zirconia fibers, whiskers such as aluminum borate and potassium titanate, acicular warastonite, and milled fibers. In addition to these, glass beads, glass flakes, glass balloons, silica, talc, kaolin, wallastonite, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, zinc oxide, indium oxide, tin oxide, Iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, red phosphorus, calcium carbonate, potassium titanate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, aluminum borate , Barium sulfate, magnesium sulfate, and a filler such as layered silicate that has been organically treated for the purpose of delamination can also be used as the inorganic reinforcing material (B). Among these, glass fiber, carbon fiber and the like are particularly preferably used. These inorganic reinforcing materials (B) may be only one type or a combination of two or more types.
 無機強化材(B)として繊維状強化材を用いる場合、上記の中でも、特に、ガラス繊維、炭素繊維などが好ましく用いられる。これらの繊維状強化材は、有機シラン系化合物、有機チタン系化合物、有機ボラン系化合物およびエポキシ系化合物等のカップリング剤で予め処理をしてあるものが好ましく、カルボン酸基又は/及びカルボン酸無水物基と反応しやすいものが特に好ましい。カップリング剤で処理してあるガラス繊維を配合したポリアミド系樹脂組成物では優れた機械的特性や外観特性の優れた成形品が得られるので好ましい。また他の繊維状強化材においても、カップリング剤が未処理の場合は後添加して使用することが出来る。 When a fibrous reinforcing material is used as the inorganic reinforcing material (B), among the above, glass fiber, carbon fiber and the like are particularly preferably used. These fibrous reinforcing materials are preferably those which have been pretreated with a coupling agent such as an organic silane compound, an organic titanium compound, an organic borane compound and an epoxy compound, and have a carboxylic acid group and / or a carboxylic acid. Those that easily react with the anhydride group are particularly preferable. A polyamide-based resin composition containing glass fibers treated with a coupling agent is preferable because a molded product having excellent mechanical properties and appearance characteristics can be obtained. In addition, other fibrous reinforcing materials can also be used after being added if the coupling agent has not been treated.
 無機強化材(B)がガラス繊維の場合、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。ガラス繊維の断面形状としては、物性面より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円系、略長円系、略繭形系であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。 When the inorganic reinforcing material (B) is glass fiber, a chopped strand-like material cut to a fiber length of about 1 to 20 mm can be preferably used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a non-circular cross section is preferable from the physical characteristics. Non-circular cross-section glass fibers include those having a substantially elliptical system, a substantially elliptical system, and a substantially cocoon-shaped cross section in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. Is preferable. Here, the flatness is assumed to be a rectangle having the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of this rectangle is the major axis, and the length of the short side is the minor axis. This is the ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 μm and the major axis is about 2 to 100 μm.
 無機強化材(B)の配合量は、無機強化半芳香族ポリアミド樹脂組成物100質量%に対して、25~65質量%であり、好ましくは30~60質量%、より好ましくは33~55質量%、さらに好ましくは35~50質量%である。配合量が65質量%を超えると生産性が悪くなる。また25質量%未満では強化材の効果が充分発揮できない場合があり、また、半芳香族ポリアミド(A)成分との混練時にせん断力が不足し、(A)成分の増粘反応が十分に進まなくなる可能性もある。本発明の無機強化半芳香族ポリアミド樹脂組成物においては、配合量は、そのまま無機強化半芳香族ポリアミド樹脂組成物中の含有量となる。 The blending amount of the inorganic reinforcing material (B) is 25 to 65% by mass, preferably 30 to 60% by mass, and more preferably 33 to 55% by mass with respect to 100% by mass of the inorganic reinforced semi-aromatic polyamide resin composition. %, More preferably 35 to 50% by mass. If the blending amount exceeds 65% by mass, the productivity deteriorates. Further, if it is less than 25% by mass, the effect of the reinforcing material may not be sufficiently exhibited, and the shearing force is insufficient at the time of kneading with the semi-aromatic polyamide (A) component, and the thickening reaction of the component (A) proceeds sufficiently. It may disappear. In the inorganic reinforced semi-aromatic polyamide resin composition of the present invention, the blending amount is the content in the inorganic reinforced semi-aromatic polyamide resin composition as it is.
 無機強化材(B)以外の充填材(フィラー)として、強化用フィラー以外で、目的別には導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラーを用いることができる。具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、ワラストナイト、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、ヒドロキシアパタイト、グラファイト、カーボンナノチューブ、フラーレン、酸化亜鉛、酸化インジウム、酸化錫、酸化鉄、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、赤燐、炭酸カルシウム、チタン酸カリウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、ホウ酸アルミニウム、硫酸バリウム、硫酸マグネシウム、硫化亜鉛、鉄、アルミ、銅、銀等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。形状としては、特に限定されないが、針状、球状、板状、不定形などを使用することが可能で
ある。
As the filler (filler) other than the inorganic reinforcing material (B), a conductive filler, a magnetic filler, a flame-retardant filler, and a heat conductive filler can be used for different purposes other than the reinforcing filler. Specifically, glass beads, glass flakes, glass balloons, silica, talc, kaolin, wallastonite, mica, alumina, hydrotalcite, montmorillonite, hydroxyapatite, graphite, carbon nanotubes, fullerene, zinc oxide, indium oxide, oxidation. Tin, iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, red phosphorus, calcium carbonate, potassium titanate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, boro Examples thereof include aluminum oxide, barium sulfate, magnesium sulfate, zinc sulfide, iron, aluminum, copper and silver. These fillers are not limited to one type alone, but may be used in combination of several types. The shape is not particularly limited, but a needle shape, a spherical shape, a plate shape, an amorphous shape, or the like can be used.
 本発明の無機強化半芳香族ポリアミド樹脂組成物には、従来のポリアミド用の各種添加剤を使用することができる。添加剤としては、安定剤、衝撃改良材、難燃剤、離型剤、摺動性改良材、着色剤、可塑剤、結晶核剤、本発明の半芳香族ポリアミド(A)とは異なるポリアミド樹脂、ポリアミド樹脂以外の熱可塑性樹脂などが挙げられる。 Various additives for conventional polyamides can be used in the inorganic reinforced semi-aromatic polyamide resin composition of the present invention. As additives, stabilizers, impact improvers, flame retardants, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, and polyamide resins different from the semi-aromatic polyamide (A) of the present invention. , Thermoplastic resin other than polyamide resin and the like.
 安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。 Stabilizers include organic antioxidants such as hindered phenolic antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants, heat stabilizers, hindered amine-based, benzophenone-based, and imidazole-based light stabilizers. Examples include UV absorbers, metal deactivators, copper compounds and the like. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate and copper acetate can be used. Further, the constituent components other than the copper compound preferably contain an alkali metal halide compound, and the alkali metal halide compound includes lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, and bromide. Examples include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used not only alone but also in combination of several.
 また、本発明の無機強化半芳香族ポリアミド樹脂組成物には、半芳香族ポリアミド(A)とは異なる組成のポリアミド樹脂をポリマーブレンドしても良い。 Further, the inorganic reinforced semi-aromatic polyamide resin composition of the present invention may be polymer-blended with a polyamide resin having a composition different from that of the semi-aromatic polyamide (A).
 本発明の無機強化半芳香族ポリアミド樹脂組成物には、ポリアミド樹脂以外の熱可塑性樹脂を添加しても良い。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明の組成物中に分散しても良い。 A thermoplastic resin other than the polyamide resin may be added to the inorganic reinforced semi-aromatic polyamide resin composition of the present invention. These thermoplastic resins can be blended in a molten state by melt-kneading, but the thermoplastic resin may be made into fibrous or particulate forms and dispersed in the composition of the present invention.
 衝撃改良材としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ナイロンエラストマー、ウレタンエラストマー、シリコーンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。 As the impact improving material, ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylate ester copolymers and ethylene vinyl acetate copolymers, styrene-butadiene-styrene block copolymers (SBS), styrene-ethylene-butylene-styrene block copolymers (SEBS), styrene-isoprenes -Vinyl polymer resins such as styrene copolymers (SIS) and acrylic acid ester copolymers, polybutylene terephthalate or polybutylene naphthalate were used as hard segments, and polytetramethylene glycol or polycaprolactone or polycarbonate diol was used as soft segments. Examples thereof include polyester block copolymers, nylon elastomers, urethane elastomers, silicone rubbers, fluororubbers, and polymer particles having a core-shell structure composed of two different types of polymers.
 難燃剤としては、ハロゲン系難燃剤、非ハロゲン系難燃剤、難燃助剤が挙げられる。これらは単独または組み合わせて使用してもよい。 Examples of flame retardants include halogen-based flame retardants, non-halogen flame retardants, and flame retardants. These may be used alone or in combination.
 ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン及び臭素化架橋芳香族重合体等が挙げられる。 As halogen-based flame retardants, brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene anhydride maleic acid polymer, brominated epoxy resin, brominated phenoxy resin, decabromodiphenyl ether, decabromo Examples thereof include biphenyl, brominated polycarbonate, perchlorocyclopentadecane and brominated crosslinked aromatic polymers.
 非ハロゲン系難燃剤としては、メラミンシアヌレート、赤リン、ホスフィン酸の金属塩、含窒素リン酸系の化合物が挙げられる。 Examples of non-halogen flame retardants include melamine cyanurate, red phosphorus, metal salts of phosphinic acid, and nitrogen-containing phosphoric acid compounds.
 難燃助剤としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等のアンチモン化合物、錫酸亜鉛、ホウ酸亜鉛、硫化亜鉛、モリブデン化合物、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、シリコーン樹脂、フッ素樹脂、モンモリロナイト、シリカ、炭酸金属塩等が挙げられる。 Flame retardant aids include antimony compounds such as antimony trioxide, antimony pentoxide, and sodium antimonate, zinc nitrate, zinc borate, zinc sulfide, molybdenum compounds, iron oxide, aluminum hydroxide, magnesium hydroxide, and silicone resins. , Fluororesin, montmorillonite, silica, metal carbonate and the like.
 離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。 Examples of the release agent include long-chain fatty acids or esters and metal salts thereof, amide compounds, polyethylene waxes, silicones, polyethylene oxides, and the like.
 摺動性改良材としては、高分子量ポリエチレン、酸変性高分子量ポリエチレン、フッ素樹脂粉末、二硫化モリブデン、シリコーン樹脂、シリコーンオイル、亜鉛、グラファイト、鉱物油等が挙げられる。 Examples of the slidability improving material include high molecular weight polyethylene, acid-modified high molecular weight polyethylene, fluororesin powder, molybdenum disulfide, silicone resin, silicone oil, zinc, graphite, mineral oil and the like.
 本発明の無機強化半芳香族ポリアミド樹脂組成物は、半芳香族ポリアミド(A)と無機強化材(B)の合計で、80質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましい。 The inorganic reinforced semi-aromatic polyamide resin composition of the present invention preferably occupies 80% by mass or more, and preferably 90% by mass or more, in total of the semi-aromatic polyamide (A) and the inorganic reinforced material (B). More preferably, it occupies 95% by mass or more.
 本発明の無機強化半芳香族ポリアミド樹脂組成物の製造方法としては、特に制限は無く、例えば、各成分を従来公知の混練方法により溶融混練して得ることができる。具体的な混練装置にも制限はなく、例えば単軸または二軸の押出機、混練機、ニーダーなどが挙げられるが、特に二軸押出機が生産性の面で好ましい。スクリューアレンジにも特に制限は無いが、各成分をより均一に分散させるためにニーディングゾーンを設けることが好ましい。具体的な方法としては、半芳香族ポリアミド(A)、他の添加成分をブレンダーでプリブレンドし、ホッパーから単軸や二軸の押出機に投入した後、(A)の少なくとも一部が溶融した状態で、溶融混合物中に無機強化材(B)をフィーダーで単軸や二軸の押出機に投入し、溶融混練後ストランド状に吐出し、冷却、カットする方法が挙げられる。 The method for producing the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is not particularly limited, and for example, each component can be melt-kneaded by a conventionally known kneading method. The specific kneading device is also not limited, and examples thereof include a single-screw or twin-screw extruder, a kneader, and a kneader, but a twin-screw extruder is particularly preferable in terms of productivity. The screw arrangement is not particularly limited, but it is preferable to provide a kneading zone in order to disperse each component more evenly. As a specific method, semi-aromatic polyamide (A) and other additive components are preblended with a blender, charged from a hopper into a single-screw or twin-screw extruder, and then at least a part of (A) is melted. In this state, the inorganic reinforcing material (B) is put into the melt mixture by a feeder into a single-screw or twin-screw extruder, and after melt-kneading, the inorganic reinforcing material (B) is discharged into a strand shape, cooled, and cut.
 本発明の無機強化半芳香族ポリアミド樹脂組成物から得られる成形品中の無機強化材(B)が繊維状強化材の場合、残存繊維長の重量平均が200~500μmであることが好ましい。残存繊維長の測定は、以下のように行う。高充填材料では、繊維同士の干渉が多く、測定時に繊維状強化材が破損しやすく、正確な繊維長を求めにくいので、本発明では繊維長を正確に測定するため、溶融混練して得られたペレットを650℃にて、2時間強熱し、繊維状強化材を破損することなく繊維状強化材を灰分として取り出し、得られた繊維状強化材を水に浸し、一般的に用いられる超音波洗浄機にて繊維状強化材を分散させる。分散した繊維状強化材をプレパラート上に取り出し、デジタルマイクロスコープ(株式会社ハイロックス製KH-7700)で、80倍にて観察し、重量平均の繊維長を求め、
残存繊維長とする。
 なお、ペレットの形状は、一般的に得られる形状であれば、特に制限はない。例えば、断面は、円形、楕円形、長円形のいずれかであり、直径(短径、長径含む)は、2.0mm~4.0mm、ペレットの長さは、2.5~6.0mm程度である。また、ペレット化の条件は、一般的な条件であれば、特に制限はない。例えば、後記する実施例での方法が挙げられる。
When the inorganic reinforcing material (B) in the molded product obtained from the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is a fibrous reinforcing material, the weight average of the residual fiber length is preferably 200 to 500 μm. The residual fiber length is measured as follows. In a high-filling material, there is a lot of interference between fibers, the fibrous reinforcing material is easily damaged during measurement, and it is difficult to obtain an accurate fiber length. Therefore, in the present invention, in order to accurately measure the fiber length, it is obtained by melt-kneading. The pellets were heated at 650 ° C. for 2 hours, the fibrous reinforcing material was taken out as ash without damaging the fibrous reinforcing material, and the obtained fibrous reinforcing material was immersed in water to obtain a commonly used ultrasonic wave. Disperse the fibrous reinforcing material with a washing machine. The dispersed fibrous reinforcing material was taken out on a slide and observed with a digital microscope (KH-7700 manufactured by Hirox Co., Ltd.) at a magnification of 80 to obtain the weight average fiber length.
Residual fiber length.
The shape of the pellet is not particularly limited as long as it is a generally obtained shape. For example, the cross section is any of a circle, an ellipse, and an oval, the diameter (including the minor axis and the major axis) is 2.0 mm to 4.0 mm, and the pellet length is about 2.5 to 6.0 mm. Is. The pelleting conditions are not particularly limited as long as they are general conditions. For example, the method in the embodiment described later can be mentioned.
 本発明の無機強化半芳香族ポリアミド樹脂組成物中の半芳香族ポリアミド(A)のAEG、CEGは通常、半芳香族ポリアミド(A)と比べて小さくなる。これは製造時の高温条件下の溶融混練により一部の末端基が反応し、若干増粘が生じるためである。無機強化材(B)を25質量%以上含む組成物ではより高いせん断が半芳香族ポリアミドにかかることから、一層増粘反応が進み、AEG、CEGはより小さくなる。AEG、CEGの減少量は樹脂温度、回転数、混練時間など製造条件の影響を受けるため一概には言えないが、目安として一回の混練りで10~50eq/t、AEGとCEGとでほぼ同量減少する。以下、「無機強化半芳香族ポリアミド樹脂組成物中の半芳香族ポリアミド(A)の末端基」を指す場合、単に「無機強化半芳香族ポリアミド樹脂組成物の末端基」と省略して記載することもある。 The AEG and CEG of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition of the present invention are usually smaller than those of the semi-aromatic polyamide (A). This is because some of the terminal groups react with each other due to melt-kneading under high temperature conditions during production, resulting in slight thickening. In the composition containing 25% by mass or more of the inorganic reinforcing material (B), higher shear is applied to the semi-aromatic polyamide, so that the thickening reaction further proceeds and AEG and CEG become smaller. The amount of decrease in AEG and CEG cannot be unequivocally determined because it is affected by manufacturing conditions such as resin temperature, rotation speed, and kneading time. It decreases by the same amount. Hereinafter, when referring to "the terminal group of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition", it is simply abbreviated as "the terminal group of the inorganic reinforced semi-aromatic polyamide resin composition". Sometimes.
 したがって、無機強化半芳香族ポリアミド樹脂組成物の(AEG+CEG)は、0~130eq/tであり、好ましくは0~120eq/tであり、より好ましくは0~110eq/tである。(AEG+CEG)が130eq/tを超えてしまう場合、末端封鎖量が少なくAEG、CEGの残存量が多いため成形時の溶融により増粘しゲル化してしまう。 Therefore, the inorganic reinforced semi-aromatic polyamide resin composition (AEG + CEG) is 0 to 130 eq / t, preferably 0 to 120 eq / t, and more preferably 0 to 110 eq / t. When (AEG + CEG) exceeds 130 eq / t, the amount of terminal blockade is small and the amount of AEG and CEG remaining is large, so that the mixture thickens and gels due to melting during molding.
 本発明の無機強化半芳香族ポリアミド樹脂組成物の(AEG+CEG)/(AEG+CEG+EC)は、0.60以下であり、好ましくは0.55以下であり、より好ましくは0.50以下であり、さらに好ましくは0.45以下であり、特に好ましくは0.40以下である。(AEG+CEG)/(AEG+CEG+EC)が0.60を超える場合は、末端封鎖剤の含有量が少なく、AEG、CEGの残存量が多いため溶融成形時に増粘しゲル化してしまう。 The (AEG + CEG) / (AEG + CEG + EC) of the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is 0.60 or less, preferably 0.55 or less, more preferably 0.50 or less, still more preferable. Is 0.45 or less, and particularly preferably 0.40 or less. When (AEG + CEG) / (AEG + CEG + EC) exceeds 0.60, the content of the terminal blocker is small and the residual amount of AEG and CEG is large, so that the thickening and gelation occur during melt molding.
 無機強化半芳香族ポリアミド樹脂組成物のAEG、CEG、ECは、上記した関係を満たしていれば良いが、それぞれの好ましい範囲は次の通りである。AEGとしては、0~70eq/tであることが好ましく、0~40eq/tであることがより好ましく、0~30eq/tであることがさらに好ましく、0~20eq/tであることが特に好ましい。CEGとしては、0~130eq/tであることが好ましく、0~100eq/tであることがより好ましく、0~70eq/tであることがさらに好ましく、0~50eq/tであることが特に好ましい。ECとしては、60~240eq/tであることが好ましく、80~200eq/であることがより好ましく、80~170eq/であることがさらに好ましい。 The AEG, CEG, and EC of the inorganic reinforced semi-aromatic polyamide resin composition may satisfy the above-mentioned relationship, but the preferable ranges of each are as follows. The AEG is preferably 0 to 70 eq / t, more preferably 0 to 40 eq / t, further preferably 0 to 30 eq / t, and particularly preferably 0 to 20 eq / t. .. The CEG is preferably 0 to 130 eq / t, more preferably 0 to 100 eq / t, further preferably 0 to 70 eq / t, and particularly preferably 0 to 50 eq / t. .. The EC is preferably 60 to 240 eq / t, more preferably 80 to 200 eq / t, and even more preferably 80 to 170 eq / t.
 また、一般的にポリアミド樹脂は、アミノ基末端とカルボキシル基末端が反応することで増粘が進行していく。しかし、CEGがECと反応することで、増粘が進行することがある。アミド化反応の進行途中で、AEGが無くなった(0になった)場合、半芳香族ポリアミドの末端がCEGとECとなる。AEGが無いためCEGの酸触媒効果により、CEGが、末端封鎖剤が形成するアミド結合部を攻撃し、アミド交換反応が起こる。この際、末端封鎖剤を反応系外に留出させながら、増粘反応が進行する。そのため、末端封鎖剤由来のアウトガス成分が増加してしまう。また、CEGの酸成分により着色反応が併発し色調安定性に劣り、またゲル化しやすい樹脂となってしまう。このような現象を避けるためにも、上記式(1)及び(2)を満たすことが重要となる。 In general, polyamide resins are thickened by the reaction between the amino group terminal and the carboxyl group terminal. However, the reaction of CEG with EC may promote thickening. If AEG disappears (becomes 0) during the amidation reaction, the ends of the semi-aromatic polyamide become CEG and EC. Due to the acid catalytic effect of CEG due to the absence of AEG, CEG attacks the amide bond formed by the terminal blocker, causing an amide transesterification reaction. At this time, the thickening reaction proceeds while distilling the terminal blocker out of the reaction system. Therefore, the outgas component derived from the terminal blockant increases. In addition, the acid component of CEG causes a coloring reaction to occur, resulting in poor color stability and a resin that easily gels. In order to avoid such a phenomenon, it is important to satisfy the above equations (1) and (2).
 また、本発明の無機強化半芳香族ポリアミド樹脂組成物を80℃95%RHの高温高湿環境で500時間処理前後の曲げ強度から算出される曲げ強度の低下率が15%未満であることが好ましく、より好ましくは10%未満、さらに好ましくは8%未満である。15%以上の場合、湿度により剛性がばらつき、精密な電子部品の特性に悪影響を与えるため好ましくない。曲げ強度の低下率は、後記する実施例の項で記載の方法で測定できる。 Further, the rate of decrease in bending strength calculated from the bending strength before and after 500 hours of treatment of the inorganic reinforced semi-aromatic polyamide resin composition of the present invention in a high temperature and high humidity environment of 80 ° C. and 95% RH is less than 15%. It is preferably less than 10%, even more preferably less than 8%. If it is 15% or more, the rigidity varies depending on the humidity, which adversely affects the characteristics of precise electronic components, which is not preferable. The rate of decrease in bending strength can be measured by the method described in the section of Examples described later.
 本発明の無機強化半芳香族ポリアミド樹脂組成物の0.2mm厚の流動長は、3mm以上であることが、微小・精密な電子部品を成型する上で好ましい。流動長は、後記する実施例の項で記載の方法で測定できる。 The flow length of the inorganic reinforced semi-aromatic polyamide resin composition of the present invention having a thickness of 0.2 mm is preferably 3 mm or more in order to mold minute and precise electronic parts. The flow length can be measured by the method described in the section of Examples described later.
 本発明の無機強化半芳香族ポリアミド樹脂組成物を、350℃、10分間熱分解した際に発生するガス量(アウトガス)が300ppm以下であることが好ましい。半芳香族ポリアミド(A)を、繊維状強化材(B)などとさらに混練すると熱分解が進むため、組成物のガス量は、(A)成分単体のガス量と比べ増えてしまう。しかし、上記範囲を満たすことで、外観の良好な成形品を得ることができる。ガス量(アウトガス)は、後記する実施例の項で記載の方法で測定できる。 The amount of gas (outgas) generated when the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is thermally decomposed at 350 ° C. for 10 minutes is preferably 300 ppm or less. When the semi-aromatic polyamide (A) is further kneaded with the fibrous reinforcing material (B) or the like, thermal decomposition proceeds, so that the amount of gas in the composition is larger than the amount of gas in the component (A) alone. However, by satisfying the above range, a molded product having a good appearance can be obtained. The amount of gas (outgas) can be measured by the method described in the section of Examples described later.
 本発明の無機強化半芳香族ポリアミド樹脂組成物は、引張り破壊ひずみが0.3~3.4%であることが好ましい。本発明の無機強化半芳香族ポリアミド樹脂組成物は、上記の構成を満たすことで、引張り破壊ひずみをこの範囲とすることができる。引張り破壊ひずみをこの範囲にあることで、パーツとして組付けや使用時の割れ発生が抑制でき、かつ固定個所の緩みが抑制され十分な固定力が得られる点で有利である。引張り破壊ひずみは、後記する実施例の項で記載の方法で測定できる。 The inorganic reinforced semi-aromatic polyamide resin composition of the present invention preferably has a tensile fracture strain of 0.3 to 3.4%. The inorganic reinforced semi-aromatic polyamide resin composition of the present invention can have a tensile fracture strain within this range by satisfying the above constitution. Having the tensile fracture strain within this range is advantageous in that cracking during assembly and use as a part can be suppressed, loosening of the fixed portion is suppressed, and a sufficient fixing force can be obtained. The tensile fracture strain can be measured by the method described in the section of Examples described later.
 本発明の無機強化半芳香族ポリアミド樹脂組成物は、引張り強度が100MPa以上であることが好ましい。より好ましくは150MPa以上、さらに好ましくは180MPa以上である。本発明の無機強化半芳香族ポリアミド樹脂組成物は、上記の構成を満たすことで、引張り強度をこの範囲とすることができる。引張り強度がこの範囲にあることで、パーツとして組付けや使用時の割れ発生が抑制できる点で有利である。引張り強度は、後記する実施例の項で記載の方法で測定できる。 The inorganic reinforced semi-aromatic polyamide resin composition of the present invention preferably has a tensile strength of 100 MPa or more. It is more preferably 150 MPa or more, still more preferably 180 MPa or more. The inorganic reinforced semi-aromatic polyamide resin composition of the present invention can have a tensile strength within this range by satisfying the above constitution. Having the tensile strength in this range is advantageous in that cracking during assembly and use as a part can be suppressed. The tensile strength can be measured by the method described in the section of Examples described later.
 本発明の無機強化半芳香族ポリアミド樹脂組成物から得られる成形品は、耐熱性に優れるとともに、実際の使用環境下での色調安定性に優れているので、耐熱性が要求されるコネクタ、スイッチ、リレー、プリント配線板等の電気電子部品、LED、照明器具のリフレクターなどの光を反射する機能を有する部品などとして好適に使用することができる。 The molded product obtained from the inorganic reinforced semi-aromatic polyamide resin composition of the present invention has excellent heat resistance and color stability in an actual usage environment. Therefore, connectors and switches that require heat resistance are required. , Relays, printed wiring boards and other electrical and electronic parts, LEDs, lighting fixture reflectors and other parts having a function of reflecting light, and the like.
 また、本発明の無機強化半芳香族ポリアミド樹脂組成物は、耐熱性に優れるとともに溶融加工性に優れているため、強化材や充填材等の高充填化が可能であり、高い剛性を必要とするエンジン周辺部品や冷却部品、燃料部品等の自動車部品、ギアやネジ、その他摺動部品等の工業部品に使用することができる。 Further, since the inorganic reinforced semi-aromatic polyamide resin composition of the present invention is excellent in heat resistance and melt processability, it is possible to highly fill a reinforcing material, a filler, etc., and high rigidity is required. It can be used for automobile parts such as engine peripheral parts, cooling parts, fuel parts, and industrial parts such as gears, screws, and other sliding parts.
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples.
(1)アウトガス
 無機強化半芳香族ポリアミド樹脂組成物ペレット3mgを秤量し、熱分解GC/MS(Shimadzu製PY-2020iD)を用いて350℃×10分間のHe下で発生するガスの量を測定した。定量値は標準物質にジメチルシロキサン環状4量体を用いて換算した。カラム:Rxi-5ms、注入口圧力:80KPa、スプリット比:30、カラムオーブン温度:40℃(2分)-300℃(15分)、昇温速度:10分/℃、質量測定範囲:m/z30-550。
(1) Outgas Weigh 3 mg of inorganic reinforced semi-aromatic polyamide resin composition pellets and measure the amount of gas generated under He at 350 ° C. for 10 minutes using thermal decomposition GC / MS (PY-2020iD manufactured by Shimadzu). did. Quantitative values were converted using a dimethylsiloxane cyclic tetramer as a standard substance. Column: Rxi-5ms, inlet pressure: 80KPa, split ratio: 30, column oven temperature: 40 ° C (2 minutes) -300 ° C (15 minutes), heating rate: 10 minutes / ° C, mass measurement range: m / z30-550.
(2)RV
 半芳香族ポリアミド(A)0.25gを96%硫酸25mlに溶解し、この溶液10mlをオストワルド粘度管に入れ20℃で測定し、下式より求めた。
 RV=t/t
(但し、t:溶媒の落下秒数、t:試料溶液の落下秒数)
(2) RV
0.25 g of semi-aromatic polyamide (A) was dissolved in 25 ml of 96% sulfuric acid, 10 ml of this solution was placed in an Ostwald viscosity tube and measured at 20 ° C., which was calculated by the following formula.
RV = t / t 0
(However, t 0 : the number of seconds for the solvent to fall, t: the number of seconds for the sample solution to fall)
(3)AEG、CEG、EC、組成
 半芳香族ポリアミド20mgを重水素化クロロホルム(CDCl)/ヘキサフルオロイソプロパノール(HFIP)=1/1(Vol比)の混合溶媒0.6mlに溶解し、重蟻酸を滴下後、500MHzフーリエ変換核磁気共鳴装置(BRUKER社製AVANCE500)を用いて、H-NMR分析を行い、その積分比より、半芳香族ポリアミドのAEG、CEG、EC、組成を決定した。
 無機強化半芳香族ポリアミド樹脂組成物のAEG、CEG、ECは、混合溶媒に溶解後、遠心分離して上澄み液を取り出して、重蟻酸を滴下して同様に測定した。
(3) AEG, CEG, EC, composition 20 mg of semi-aromatic polyamide is dissolved in 0.6 ml of a mixed solvent of deuterated chloroform (CDCl 3 ) / hexafluoroisopropanol (HFIP) = 1/1 (Vol ratio), and the weight is increased. After dropping the formic acid, 1 H-NMR analysis was performed using a 500 MHz Fourier transform nuclear magnetic resonance apparatus (AVANCE500 manufactured by BRUKER), and the AEG, CEG, EC, and composition of the semi-aromatic polyamide were determined from the integration ratio. ..
The inorganic reinforced semi-aromatic polyamide resin compositions AEG, CEG, and EC were dissolved in a mixed solvent, centrifuged, and the supernatant was taken out, and heavy formic acid was added dropwise to measure the results in the same manner.
(4)融点
 半芳香族ポリアミド5mgをアルミニウム製サンプルパンに入れて密封し、ティー・エイ・インスツルメント・ジャパン(株)製示差走査熱量分析計(DSC)DSC-Q100を用いて、350℃まで、昇温速度20℃/分にて測定し、融解熱の最大ピーク温度を結晶融点として求めた。
(4) Melting point 5 mg of semi-aromatic polyamide was placed in an aluminum sample pan, sealed, and used at 350 ° C. using a differential scanning calorimetry (DSC) DSC-Q100 manufactured by TA Instruments Japan Co., Ltd. The temperature was measured at a heating rate of 20 ° C./min, and the maximum peak temperature of the heat of fusion was determined as the melting point of the crystal.
(5)P化合物の定量
 試料を硝酸イットリウム法により溶液化し、ICP(日立ハイテクサイエンス製 SPECTROBLUE)で分析した。白金るつぼに試料0.1gを秤量し、5%の硝酸イットリウムのエタノール溶液を5mL添加し、硝酸塩灰化処理を実施した。灰化残渣に1.2Nの塩酸を20mL添加し、一晩浸漬した。樹脂成分の完全溶解を確認したのち、遠心分離して上澄み液を取り出して、溶液をICP発光分析装置にかけ、214nmの波長のリンの発光強度を測定し、溶液中のリン濃度を定量後、試料中のリン含有量に換算した。
(5) Quantitative analysis of P compound A sample was solubilized by the yttrium nitrate method and analyzed by ICP (SPECTROBLUE manufactured by Hitachi High-Tech Science). A 0.1 g sample was weighed into a platinum crucible, 5 mL of an ethanol solution of 5% yttrium nitrate was added, and a nitrate ashing treatment was carried out. 20 mL of 1.2N hydrochloric acid was added to the ashing residue, and the mixture was immersed overnight. After confirming the complete dissolution of the resin component, centrifuge to take out the supernatant, apply the solution to an ICP emission spectrometer, measure the emission intensity of phosphorus having a wavelength of 214 nm, quantify the phosphorus concentration in the solution, and then sample. Converted to the phosphorus content in.
(6)P化合物の構造分析
 試料340~350mgを重水素化クロロホルム(CDCl)/ヘキサフルオロイソプロパノール(HFIP)=1/1(Vol比)の混合溶媒2.5mlに室温で溶解させ、遠心分離して上澄み液を取り出して、トリ(t-ブチルフェニール)リン酸(以下、TBPPAと略称)をPとしてポリアミド樹脂に対して100ppm添加し、さらに室温でトリフロロ酢酸を0.1ml加え、30分後にフーリエ変換核磁気共鳴装置(BRUKER社製AVANCE500)にて31P-NMR分析を行った。なお、31P共鳴周波数は202.5MHz、検出パルスのフリップ角は45°、データ取り込み時間は1.5秒、遅延時間は1.0秒、積算回数は1000~20000回、測定温度は室温、プロトン完全デカップリングの条件で分析を行い、その積分比により構造式(P1)で表されるリン化合物と構造式(P2)で表されるリン化合物とのモル比を求めた。
(6) Structural analysis of P compound Dissolve 340 to 350 mg of sample in 2.5 ml of a mixed solvent of deuterated chloroform (CDCl 3 ) / hexafluoroisopropanol (HFIP) = 1/1 (Vol ratio) at room temperature and centrifuge. Then, the supernatant was taken out, 100 ppm of tri (t-butylphenyl) phosphoric acid (hereinafter abbreviated as TBPPA) was added to the polyamide resin as P, and 0.1 ml of trifluoroacetic acid was further added at room temperature, and after 30 minutes. 31 P-NMR analysis was performed with a Fourier transformed nuclear magnetic resonance apparatus (AVANCE500 manufactured by BRUKER). The 31 P resonance frequency is 202.5 MHz, the flip angle of the detection pulse is 45 °, the data acquisition time is 1.5 seconds, the delay time is 1.0 second, the number of integrations is 1000 to 20000 times, and the measurement temperature is room temperature. The analysis was carried out under the condition of complete decoupling of protons, and the molar ratio of the phosphorus compound represented by the structural formula (P1) to the phosphorus compound represented by the structural formula (P2) was determined from the integration ratio.
(7)P3の算出
 上記、ICPで求めたP化合物量と31P-NMRで求めたP1、P2のモル比からP1、P2の量をそれぞれ算出し、その合計をP3とした。
(7) Calculation of P3 The amounts of P1 and P2 were calculated from the above-mentioned amount of P compound determined by ICP and the molar ratio of P1 and P2 determined by 31 P-NMR, and the total was taken as P3.
(8)ΔCo-b
 無機強化半芳香族ポリアミド樹脂組成物10gを液体窒素により冷凍凍結後、粉砕機(大阪ケミカル製 ABLOLUTE 3)にて15000rpmで3分間粉砕し、粉末とした。カラーメーター(日本電色社製 ZE 2000)を用いて粉砕した無機強化半芳香族ポリアミド樹脂組成物のCo-bを測定した。ポリアミド樹脂組成物の粉末をシャーレ上に薄く敷き、260℃に加温されたギアオーブン(TABAI製 GEER OVEN GHPS-222)中に入れ、大気下で10分間熱処理した樹脂組成物のCo-b値を測定し、熱処理前後の差をΔCo-bとした。
(8) ΔCo-b
After freezing and freezing 10 g of the inorganic reinforced semi-aromatic polyamide resin composition with liquid nitrogen, it was pulverized with a pulverizer (ABLOLUTE 3 manufactured by Osaka Chemical Co., Ltd.) at 15,000 rpm for 3 minutes to obtain a powder. The Cob of the inorganic reinforced semi-aromatic polyamide resin composition pulverized using a color meter (ZE 2000 manufactured by Nippon Denshoku Co., Ltd.) was measured. Cob value of the resin composition obtained by laying a thin layer of the polyamide resin composition powder on a petri dish, placing it in a gear oven heated to 260 ° C. (GEER OVEN GHPS-222 manufactured by TABAI), and heat-treating it in the air for 10 minutes. Was measured, and the difference before and after the heat treatment was defined as ΔCob.
(9)ゲル化時間
 無機強化半芳香族ポリアミド樹脂組成物3gをアンプル管に入れ、330℃に加温されたイナートオーブン(TAMATO製 DN4101)に10l/minの窒素気流下で所定の時間熱処理を行った。熱処理した樹脂組成物0.25gを96%硫酸25mlに溶解し、不溶物が出てくる熱処理時間をゲル化時間とした。
(9) Gelation time 3 g of an inorganic reinforced semi-aromatic polyamide resin composition was placed in an ampoule tube and heat-treated in an inert oven (DN4101 manufactured by TAMATO) heated to 330 ° C. under a nitrogen stream of 10 l / min for a predetermined time. went. 0.25 g of the heat-treated resin composition was dissolved in 25 ml of 96% sulfuric acid, and the heat treatment time at which the insoluble matter came out was defined as the gelation time.
(10)流動長
 東芝機械製射出成形機EC-100を用い、シリンダー温度は330℃、金型温度は140℃に設定し、射出圧設定値40%、射出速度設定値40%、計量35mm、射出時間6秒、冷却時間10秒の条件で、幅1mm、厚み0.2mmの流動長測定用金型で射出成形し、評価用試験片を作製した。流動性の評価として、この試験片の流動長さ(mm)を測定した。
(10) Flow length Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., the cylinder temperature was set to 330 ° C. and the mold temperature was set to 140 ° C., the injection pressure set value was 40%, the injection speed set value was 40%, and the weighing was 35 mm. An evaluation test piece was prepared by injection molding with a flow length measuring die having a width of 1 mm and a thickness of 0.2 mm under the conditions of an injection time of 6 seconds and a cooling time of 10 seconds. As an evaluation of fluidity, the flow length (mm) of this test piece was measured.
(11)引張り強度および引張り破壊ひずみ
 ISO527-2規格に準じて測定した。
(11) Tensile strength and tensile fracture strain Measured according to ISO527-2 standard.
(12)高温高湿処理(吸水)前後の曲げ強度、吸水による低下率
 80℃95%RHの高温高湿環境で500時間処理前後のISO引張試験片(A型ダンベル)について、曲げ強度をISO178に準じて測定し、以下の低下率(%)を求めた。
 低下率(%)={(処理前の曲げ強度-処理後の曲げ強度)/処理前の曲げ強度}×100
(12) Bending strength before and after high temperature and high humidity treatment (water absorption), reduction rate due to water absorption For ISO tensile test piece (A type dumbbell) before and after treatment for 500 hours in a high temperature and high humidity environment of 80 ° C and 95% RH, the bending strength is ISO178. The following reduction rate (%) was obtained by measuring according to the above.
Reduction rate (%) = {(bending strength before treatment-bending strength after treatment) / bending strength before treatment} x 100
(13)ハンダ耐熱性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。試験片は85℃、85%RH(相対湿度)の雰囲気中に72時間放置した。試験片はエアリフロー炉中(エイテック製 AIS-20-82C)、室温から150℃まで60秒かけて昇温させ予備加熱を行った後、190℃まで0.5℃/分の昇温速度でプレヒートを実施した。その後、100℃/分の速度で所定の設定温度まで昇温し、所定の温度で10秒間保持した後、冷却を行った。設定温度は240℃から5℃おきに増加させ、表面の膨れや変形が発生しなかった最高の設定温度をリフロー耐熱温度とし、ハンダ耐熱性の指標として用いた。
 ◎:リフロー耐熱温度が280℃以上
 ○:リフロー耐熱温度が260℃以上280℃未満
 ×:リフロー耐熱温度が260℃未満
(13) Solder heat resistance Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., the cylinder temperature is set to the melting point of the resin + 20 ° C. and the mold temperature is set to 140 ° C., the length is 127 mm, the width is 12.6 mm, and the thickness is 0.8 mmt. The test piece for the UL combustion test was injection-molded to prepare a test piece. The test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours. The test piece was heated in an air reflow furnace (AIS-20-82C manufactured by Atec) from room temperature to 150 ° C for 60 seconds, preheated, and then heated to 190 ° C at a heating rate of 0.5 ° C / min. A preheat was performed. Then, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at a predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. to every 5 ° C., and the highest set temperature at which no surface swelling or deformation occurred was defined as the reflow heat resistance temperature and used as an index of solder heat resistance.
⊚: Reflow heat resistant temperature is 280 ° C or higher ○: Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C ×: Reflow heat resistant temperature is lower than 260 ° C
(14)連続成形性
 東芝機械製射出成形機EC-100を用い、シリンダー温度330℃、金型温度140℃、射出6秒、冷却10秒、100×100×2mmt金型(材質STVAX)で成形し、下記の指標で判断した。
 ××:30shot未満でガス成分が成形品に付着する。金型に付着したガス成分はゲル化し、拭き取りに時間がかかる。
  ×:30~300shot未満でガス成分が成形品に付着する。
  △:300~500shot未満でガス成分が成形品に付着する。
  ○:500shot以上でも成形品へのガス成分の付着はない。
(14) Continuous moldability Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., molding is performed with a cylinder temperature of 330 ° C., a mold temperature of 140 ° C., injection for 6 seconds, cooling for 10 seconds, and a 100 × 100 × 2 mmt mold (material STVAX). However, it was judged by the following indicators.
XX: The gas component adheres to the molded product in less than 30 shots. The gas component adhering to the mold gels and it takes time to wipe it off.
X: The gas component adheres to the molded product at less than 30 to 300 shots.
Δ: The gas component adheres to the molded product at less than 300 to 500 shots.
◯: No gas component adheres to the molded product even at 500 shots or more.
(15)ウェルド部強度
 東芝機械製射出成形機EC-100を用い、シリンダー温度330℃、金型温度140℃の条件で、両端から溶融樹脂組成物を流入して中心にウェルドが形成される125mm×13mm×0.8mmtの試験片を成形した後、ISO527-1に準じて測定した。
(15) Weld part strength Using an injection molding machine EC-100 manufactured by Toshiba Machine Co., Ltd., a weld is formed at the center by inflowing a molten resin composition from both ends under the conditions of a cylinder temperature of 330 ° C. and a mold temperature of 140 ° C. After molding a test piece of × 13 mm × 0.8 mmt, the measurement was performed according to ISO527-1.
(16)ウェルド部外観
 (15)で作成した成形品のウェルド部外観を下記の指標で判断した。
  ×:ウェルドライン、ガス焼けの両方が観察される。
  △:ウェルドラインはほとんど観察されないが、ガス焼けが若干観察される。
  〇:ウェルドラインがほとんど観察されず、ガス焼けもない
(16) Appearance of welded portion The appearance of the welded portion of the molded product prepared in (15) was judged by the following index.
X: Both weld line and gas burning are observed.
Δ: Weld lines are hardly observed, but some gas burning is observed.
〇: Weld line is hardly observed and there is no gas burning.
合成例1
 1,6-ヘキサメチレンジアミン9.13kg(78.6モル)、テレフタル酸12.24kg(73.7モル)、11-アミノウンデカン酸7.99kg(39.7モル)、触媒として次亜リン酸ナトリウム30.4g、末端封鎖剤として酢酸354g(5.9モル)および窒素バブリングし溶存酸素を0.5ppm以下に調整したイオン交換水16.20kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を10回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で260℃まで昇温させ、0.5時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、270℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を大気中、常温、常圧の容器に取り出した後、真空乾燥機を用いて、70℃、真空度0.07KPa以下の環境下で乾燥した。乾燥後、低次縮合物をブレンダー(容量0.1m)を用いて、225℃、真空度0.07KPaの環境で8時間反応させ、半芳香族ポリアミドA-1を得た。得られた半芳香族ポリアミドの特性の詳細を表1に示す。
Synthesis example 1
9.13 kg (78.6 mol) of 1,6-hexamethylenediamine, 12.24 kg (73.7 mol) of terephthalic acid, 7.9 kg (39.7 mol) of 11-aminoundecanoic acid, hypophosphorous acid as a catalyst 30.4 g of sodium, 354 g (5.9 mol) of acetic acid as a terminal blocker, and 16.20 kg of ion-exchanged water adjusted to 0.5 ppm or less of dissolved oxygen by nitrogen bubbling were charged into a 50 liter autoclave, and the pressure was reduced to 0. pressurized with N 2 to 05MPa, was depressurized, it was returned to normal pressure. This operation was performed 10 times, N 2 substitution was performed, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 260 ° C. by a heating pipe, and heat was applied for 0.5 hours. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 270 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Then, this low-order condensate was taken out into a container at normal temperature and pressure in the air, and then dried in an environment of 70 ° C. and a vacuum degree of 0.07 KPa or less using a vacuum dryer. After drying, the low-order condensate was reacted in an environment of 225 ° C. and a vacuum degree of 0.07 KPa for 8 hours using a blender (capacity 0.1 m 3) to obtain a semi-aromatic polyamide A-1. Details of the properties of the obtained semi-aromatic polyamide are shown in Table 1.
合成例2
 1,6-ヘキサメチレンジアミン9.10kg(78.3モル)、末端封鎖剤として酢酸301g(5.0モル)に変更し、合成例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m)を用いて、240℃、真空度0.07KPaの環境で8時間反応させ、半芳香族ポリアミドA-2を得た。
Synthesis example 2
The mixture was changed to 9.10 kg (78.3 mol) of 1,6-hexamethylenediamine and 301 g (5.0 mol) of acetic acid as a terminal blocking agent, and vacuum dried in the same manner as in Synthesis Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 240 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-2.
合成例3
 1,6-ヘキサメチレンジアミン8.84kg(76.1モル)、末端封鎖剤として酢酸286g(4.8モル)に変更し、合成例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m)を用いて、230℃、真空度0.07KPaの環境で8時間反応させ、半芳香族ポリアミドA-3を得た。
Synthesis example 3
The amount was changed to 8.84 kg (76.1 mol) of 1,6-hexamethylenediamine and 286 g (4.8 mol) of acetic acid as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Synthesis Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 230 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-3.
合成例4
 1,6-ヘキサメチレンジアミン9.21kg(79.3モル)、末端封鎖剤として酢酸315g(5.2モル)に変更し、合成例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m)を用いて、240℃、真空度0.07KPaの環境で8時間反応させ、半芳香族ポリアミドA-4を得た。
Synthesis example 4
The mixture was changed to 9.21 kg (79.3 mol) of 1,6-hexamethylenediamine and 315 g (5.2 mol) of acetic acid as a terminal blocking agent, and vacuum dried in the same manner as in Synthesis Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 240 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-4.
合成例5
 1,6-ヘキサメチレンジアミン9.11kg(78.4モル)、末端封鎖剤として安息香酸612g(5.0モル)に変更し、合成例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m)を用いて、240℃、真空度0.07KPaの環境で8時間反応させ、半芳香族ポリアミドA-5を得た。
Synthesis example 5
The mixture was changed to 9.11 kg (78.4 mol) of 1,6-hexamethylenediamine and 612 g (5.0 mol) of benzoic acid as a terminal blocking agent, and vacuum dried in the same manner as in Synthesis Example 1 to obtain a low-order condensate. .. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 240 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-5.
合成例6
 1,6-ヘキサメチレンジアミン9.00kg(77.4モル)、テレフタル酸12.24kg(73.7モル)、11-アミノウンデカン酸7.99kg(39.7モル)、触媒として次亜リン酸ナトリウム30.4g、末端封鎖剤として酢酸226g(3.8モル)および窒素バブリングし溶存酸素を0.5ppm以下に調整したイオン交換水16.20kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を10回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で260℃まで昇温させ、0.5時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を大気中、常温、常圧の容器に取り出した後、真空乾燥機を用いて、70℃、真空度0.07KPa以下の環境下で乾燥した。乾燥後、低次縮合物をブレンダー(容量0.1m)を用いて、230℃、真空度0.07KPaの環境で6時間反応させ、半芳香族ポリアミドA-6を得た。
Synthesis example 6
1,6-Hexamethylenediamine 9.00 kg (77.4 mol), terephthalic acid 12.24 kg (73.7 mol), 11-aminoundecanoic acid 7.9 kg (39.7 mol), hypophosphorous acid as a catalyst 30.4 g of sodium, 226 g (3.8 mol) of acetic acid as a terminal blocker, and 16.20 kg of ion-exchanged water adjusted to 0.5 ppm or less of dissolved oxygen by nitrogen bubbling were charged into a 50 liter autoclave, and the pressure was reduced to 0. pressurized with N 2 to 05MPa, was depressurized, it was returned to normal pressure. This operation was performed 10 times, N 2 substitution was performed, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 260 ° C. by a heating pipe, and heat was applied for 0.5 hours. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Then, this low-order condensate was taken out into a container at normal temperature and pressure in the air, and then dried in an environment of 70 ° C. and a vacuum degree of 0.07 KPa or less using a vacuum dryer. After drying, the low-order condensate was reacted in an environment of 230 ° C. and a vacuum degree of 0.07 KPa for 6 hours using a blender (capacity 0.1 m 3) to obtain a semi-aromatic polyamide A-6.
合成例7
 1,6-ヘキサメチレンジアミン8.89kg(76.5モル)、末端封鎖剤として酢酸174g(2.9モル)に変更し、製造例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m3)を用いて、245℃、真空度0.07KPaの環境で8時間反応させ、半芳香族ポリアミドA-7を得た。
Synthesis example 7
The amount was changed to 8.89 kg (76.5 mol) of 1,6-hexamethylenediamine and 174 g (2.9 mol) of acetic acid as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Production Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m3), the reaction was carried out in an environment of 245 ° C. and a vacuum degree of 0.07 KPa for 8 hours to obtain a semi-aromatic polyamide A-7.
合成例8
 1,6-ヘキサメチレンジアミン8.93kg(76.9モル)、末端封鎖剤として酢酸197g(3.3モル)に変更し、製造例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m3)を用いて、245℃、真空度0.07KPaの環境で15時間反応させ、半芳香族ポリアミドA-8を得た。
Synthesis example 8
The amount was changed to 8.93 kg (76.9 mol) of 1,6-hexamethylenediamine and 197 g (3.3 mol) of acetic acid as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Production Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m3), the reaction was carried out in an environment of 245 ° C. and a vacuum degree of 0.07 KPa for 15 hours to obtain a semi-aromatic polyamide A-8.
合成例9
 テレフタル酸を3.32kg(20.0モル)、1,9-ノナンジアミン2.53kg(16.0モル)、2-メチル-1,8-オクタンジアミン0.63kg(4.0モル)、触媒として次亜リン酸ナトリウム一水和物6.5g、末端封鎖剤としてオクチルアミン103g(0.80モル)、および窒素バブリングし溶存酸素を0.5ppm以下に調整したイオン交換水6リットルを20リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を10回行い、N置換を行った後、攪拌下100℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で230℃まで昇温させ、1.5時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を大気中、常温、常圧の容器に取り出した後、真空乾燥機を用いて、100℃、真空度0.07KPa以下の環境下で乾燥した。乾燥後、低次縮合物をブレンダー(容量0.1m)を用いて、230℃、真空度0.07KPaの環境で6時間反応させ、半芳香族ポリアミドA-9を得た。得られた半芳香族ポリアミドの特性の詳細を表1に示す。
Synthesis example 9
3.32 kg (20.0 mol) of terephthalic acid, 2.53 kg (16.0 mol) of 1,9-nonanediamine, 0.63 kg (4.0 mol) of 2-methyl-1,8-octanediamine as a catalyst 6.5 g of sodium hypophosphate monohydrate, 103 g (0.80 mol) of octylamine as a terminal blocker, and 20 liters of 6 liters of ion-exchanged water adjusted to 0.5 ppm or less of dissolved oxygen by nitrogen bubbling. It was charged into an autoclave, pressurized with N 2 from normal pressure to 0.05 MPa, released, and returned to normal pressure. This operation was performed 10 times, N 2 substitution was performed, and then the mixture was uniformly dissolved at 100 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, the temperature was raised to 230 ° C. by a heating pipe, and heat was applied for 1.5 hours. Then, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Then, this low-order condensate was taken out into a container at normal temperature and pressure in the air, and then dried in an environment of 100 ° C. and a vacuum degree of 0.07 KPa or less using a vacuum dryer. After drying, the low-order condensate was reacted in an environment of 230 ° C. and a vacuum degree of 0.07 KPa for 6 hours using a blender (capacity 0.1 m 3) to obtain a semi-aromatic polyamide A-9. Details of the properties of the obtained semi-aromatic polyamide are shown in Table 1.
合成例10
 1,6-ヘキサメチレンジアミン8.72kg(75.0モル)、末端封鎖剤として酢酸32g(0.5モル)に変更し、製造例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m)を用いて、180℃、真空度0.07KPaの環境で5時間反応させ、半芳香族ポリアミドA-10を得た。
Synthesis example 10
The amount of 1,6-hexamethylenediamine was changed to 8.72 kg (75.0 mol) and acetic acid was changed to 32 g (0.5 mol) as a terminal blocking agent, and vacuum drying was carried out in the same manner as in Production Example 1 to obtain a low-order condensate. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 180 ° C. and a vacuum degree of 0.07 KPa for 5 hours to obtain a semi-aromatic polyamide A-10.
合成例11
 1,6-ヘキサメチレンジアミン8.57kg(73.8モル)、末端封鎖剤として酢酸140g(2.3モル)、触媒として次亜リン酸ナトリウム9gに変更し、製造例1同様に真空乾燥まで行い低次縮合物を得た。次いでブレンダー(容量0.1m)を用いて、220℃、真空度0.07KPaの環境で4時間反応させ、半芳香族ポリアミドA-11を得た。
Synthesis example 11
Change to 1,6-hexamethylenediamine 8.57 kg (73.8 mol), acetic acid 140 g (2.3 mol) as a terminal blocker, and sodium hypophosphate 9 g as a catalyst, and vacuum dry as in Production Example 1. A low-order condensate was obtained. Then, using a blender (capacity 0.1 m 3 ), the reaction was carried out in an environment of 220 ° C. and a vacuum degree of 0.07 KPa for 4 hours to obtain a semi-aromatic polyamide A-11.
合成例12
 1,6-ヘキサメチレンジアミン7.54kg(65.0モル)、テレフタル酸10.79kg(65.0モル)、11-アミノウンデカン酸7.04kg(35.0モル)、触媒として次亜リン酸ナトリウム9g、イオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た(末端封鎖率0%)。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、末端封鎖剤として酢酸107g(1.8モル)を添加しながら、樹脂温度を335℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、半芳香族ポリアミドA-12を得た。
 各合成例で得られた半芳香族ポリアミドの特性の詳細を表1に示す。
Synthesis example 12
7.54 kg (65.0 mol) of 1,6-hexamethylenediamine, 10.79 kg (65.0 mol) of terephthalic acid, 7.04 kg (35.0 mol) of 11-aminoundecanoic acid, hypophosphorous acid as a catalyst charged sodium 9 g, the ion-exchanged water 17.52kg 50 liter autoclave, pressurized with N 2 from atmospheric pressure to 0.05 MPa, was relieved and returned to normal pressure. This operation was performed three times to perform N 2 substitution, and then the mixture was uniformly dissolved at 135 ° C. and 0.3 MPa with stirring. Then, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C. by a heating pipe, and heated for 1 hour. After that, the reaction mixture was supplied to the pressurized reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate (terminal blockade rate 0). %). Then, this low-order condensate was directly supplied to a twin-screw extruder (screw diameter 37 mm, L / D = 60) while maintaining the molten state, and 107 g (1.8 mol) of acetic acid was added as a terminal sequestering agent. While the resin temperature was 335 ° C., polycondensation was carried out under melting while draining water from the vents at three locations to obtain a semi-aromatic polyamide A-12.
Table 1 shows the details of the characteristics of the semi-aromatic polyamide obtained in each synthetic example.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 表中、AcOHは酢酸、BAは安息香酸、TOAはオクチルアミンを表す。また、9Tは、1,9-ノナンジアミン:2-メチル-1,8-オクタンジアミン(4:1モル比)とテレフタル酸からなる単位を表す。 In the table, AcOH stands for acetic acid, BA stands for benzoic acid, and TOA stands for octylamine. Further, 9T represents a unit composed of 1,9-nonanediamine: 2-methyl-1,8-octanediamine (4: 1 molar ratio) and terephthalic acid.
実施例、比較例
 合成例の各半芳香族ポリアミド63.8質量部に対し、下記の無機強化材の含有量が35質量部となるように、離型剤及び安定剤の含有量は、それぞれ0.6質量部になるように、コペリオン(株)製二軸押出機STS-35を用いて、330℃で溶融混練し、実施例及び比較例の無機強化半芳香族ポリアミド樹脂組成物を得た。評価結果を表2に示す。
Examples and Comparative Examples The contents of the release agent and the stabilizer are set to 35 parts by mass so that the content of the following inorganic reinforcing material is 35 parts by mass with respect to 63.8 parts by mass of each semi-aromatic polyamide in the synthetic example. Using a twin-screw extruder STS-35 manufactured by Coperion Co., Ltd., melt-kneading was performed at 330 ° C. to obtain 0.6 parts by mass of the inorganic reinforced semi-aromatic polyamide resin compositions of Examples and Comparative Examples. It was. The evaluation results are shown in Table 2.
 無機強化材(B):ガラス繊維(日本電気硝子社製、ECS03T-275H)
 離型剤:ステアリン酸マグネシウム
 安定剤:ヨウ化カリウム
Inorganic reinforcing material (B): Glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ECS03T-275H)
Release agent: Magnesium stearate Stabilizer: Potassium iodide
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 比較例1は、AEG+CEG>130eq/tであり、AEG、CEGの残存量が多く、ゲル化しやすい樹脂組成物であり、また成形性や成形体の外観も悪いことがわかる。また、(AEG+CEG)/(AEG+CEG+EC)>0.60であり、末端封鎖剤の量が少なく、ゲル化しやすい樹脂組成物であることがわかる。
 比較例2は、(AEG+CEG)/(AEG+CEG+EC)>0.60であり、カルボキシル基末端の過剰な酸成分によりアミド交換反応が進行し、末端封鎖由来のアウトガス成分が増加していることがわかる。また、着色反応が併発し色調安定性に劣り、またゲル化しやすい樹脂組成物となっている。
 比較例3は、二軸押し出し機で溶融重合し所定のRVまで増粘させているためP3成分が残存しておらず、アウトガス、ΔCo-b、ゲル化時間が悪化していることがわかる。
Comparative Example 1 shows that AEG + CEG> 130 eq / t, the residual amount of AEG and CEG is large, the resin composition is easily gelled, and the moldability and the appearance of the molded product are also poor. Further, it can be seen that (AEG + CEG) / (AEG + CEG + EC)> 0.60, and the amount of the terminal blocking agent is small, and the resin composition is easily gelled.
In Comparative Example 2, (AEG + CEG) / (AEG + CEG + EC)> 0.60, it can be seen that the amide exchange reaction proceeds due to the excess acid component at the terminal of the carboxyl group, and the outgas component derived from the terminal blockade increases. In addition, the resin composition is inferior in color stability due to the simultaneous coloring reaction and is easily gelled.
In Comparative Example 3, since the P3 component did not remain because it was melt-polymerized by a twin-screw extruder and thickened to a predetermined RV, it can be seen that the outgas, ΔCob, and gelation time were deteriorated.
 耐熱性と耐熱変色性に優れ、さらには溶融成形時のアウトガスによる金型汚れを抑制でき、溶融流動性、ゲル化特性に優れた、自動車部品、自転車部品、電気・電子部品などの成形品用に好適な無機強化半芳香族ポリアミド樹脂組成物を提供することができ、産業界に大きく寄与することが期待される。 For molded products such as automobile parts, bicycle parts, electrical and electronic parts, which have excellent heat resistance and heat discoloration, can suppress mold stains due to outgas during melt molding, and have excellent melt fluidity and gelation characteristics. It is expected that an inorganic reinforced semi-aromatic polyamide resin composition suitable for the above can be provided, which greatly contributes to the industrial world.

Claims (9)

  1.  半芳香族ポリアミド(A)30~75質量%、無機強化材(B)25~65質量%を含有する無機強化半芳香族ポリアミド樹脂組成物であり、
     前記半芳香族ポリアミド(A)が、2個以上の炭素原子を含む少なくとも1種の脂肪族ジアミンとテレフタル酸との縮合からなる繰り返し単位を含む少なくとも1種の半芳香族ポリアミドであり、
     さらに、無機強化半芳香族ポリアミド樹脂組成物中での半芳香族ポリアミド(A)のアミノ基末端濃度(AEG)、カルボキシ基末端濃度(CEG)及びモノカルボン酸でアミノ基末端を封鎖した末端濃度(EC)の関係が式(1)及び(2)を満たす無機強化半芳香族ポリアミド樹脂組成物。
     0eq/t≦AEG+CEG≦130eq/t ・・ (1)
     (AEG+CEG)/(AEG+CEG+EC)≦0.60 ・・ (2)
    An inorganic reinforced semi-aromatic polyamide resin composition containing 30 to 75% by mass of the semi-aromatic polyamide (A) and 25 to 65% by mass of the inorganic reinforcing material (B).
    The semi-aromatic polyamide (A) is at least one semi-aromatic polyamide containing a repeating unit composed of a condensation of at least one aliphatic diamine containing two or more carbon atoms and terephthalic acid.
    Further, the amino group terminal concentration (AEG), the carboxy group terminal concentration (CEG) of the semi-aromatic polyamide (A) in the inorganic reinforced semi-aromatic polyamide resin composition, and the terminal concentration in which the amino group terminal is blocked with a monocarboxylic acid. An inorganic reinforced semi-aromatic polyamide resin composition in which the relationship of (EC) satisfies the formulas (1) and (2).
    0 eq / t ≤ AEG + CEG ≤ 130 eq / t ... (1)
    (AEG + CEG) / (AEG + CEG + EC) ≤0.60 ... (2)
  2.  半芳香族ポリアミド(A)が、下記(i)および(ii)の要件を満足することを特徴とする請求項1記載の無機強化半芳香族ポリアミド樹脂組成物。
     (i)7.5≦[ポリアミド中の炭素原子数/ポリアミド中のアミド結合数]
     (ii)[ポリアミド中の芳香環上の炭素原子数/ポリアミド中の全炭素原子数]≦0.35
    The inorganic reinforced semi-aromatic polyamide resin composition according to claim 1, wherein the semi-aromatic polyamide (A) satisfies the requirements of (i) and (ii) below.
    (I) 7.5 ≤ [Number of carbon atoms in polyamide / Number of amide bonds in polyamide]
    (Ii) [Number of carbon atoms on aromatic ring in polyamide / Total number of carbon atoms in polyamide] ≤0.35
  3.  半芳香族ポリアミド(A)が、炭素数2~12の脂肪族ジアミンとテレフタル酸との縮合からなる構成単位、及び炭素数11~18の脂肪族アミノカルボン酸もしくはラクタムのうちの少なくとも一種の構成単位を含む共重合体であることを特徴とする請求項1に記載の無機強化半芳香族ポリアミド樹脂組成物。 The semi-aromatic polyamide (A) is a structural unit composed of a condensation of an aliphatic diamine having 2 to 12 carbon atoms and terephthalic acid, and at least one of an aliphatic aminocarboxylic acid or a lactam having 11 to 18 carbon atoms. The inorganic reinforced semi-aromatic polyamide resin composition according to claim 1, which is a copolymer containing a unit.
  4.  半芳香族ポリアミド(A)が、ヘキサメチレンジアミンとテレフタル酸との縮合からなる構成単位55~75モル%、及び11-アミノウンデカン酸又はウンデカンラクタムからなる構成単位45~25モル%を含む共重合体である請求項1に記載の無機強化半芳香族ポリアミド樹脂組成物。 The copolymer of the semi-aromatic polyamide (A) contains 55 to 75 mol% of the constituent unit consisting of the condensation of hexamethylenediamine and terephthalic acid, and 45 to 25 mol% of the constituent unit consisting of 11-aminoundecanoic acid or undecantham. The inorganic reinforced semi-aromatic polyamide resin composition according to claim 1, which is a coalescence.
  5.  半芳香族ポリアミド(A)中で構造式(P1)と(P2)の構造で検出されるリン化合物由来のリン原子含有量の和(P3)が30ppm以上であり、半芳香族ポリアミド中に残存する全リン原子量に対してP3が10%以上であることを特徴とする請求項1~4のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
    (ただし、R、Rは水素、アルキル基、アリール基、シクロアルキル基または、アリールアルキル基、X~Xは水素、アルキル基、アリール基、シクロアルキル基、アリールアルキル基、アルカリ金属、またはアルカリ土類金属であり、各式中のX~XとR~Rのうちそれぞれ1個は互いに連結して環構造を形成してもよい)
    The sum (P3) of the phosphorus atom content derived from the phosphorus compound detected in the structures of the structural formulas (P1) and (P2) in the semi-aromatic polyamide (A) is 30 ppm or more, and remains in the semi-aromatic polyamide. The inorganic reinforced semi-aromatic polyamide resin composition according to any one of claims 1 to 4, wherein P3 is 10% or more based on the total atomic weight of phosphorus.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    (Wherein, R 1, R 2 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group or an arylalkyl group, X 1 ~ X 3 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group, an arylalkyl group, an alkali metal or an alkaline earth metal, may form a single linking to ring structure of the X 1 ~ X 3 in each formula R 1 ~ R 2)
  6.  350℃、10分間熱分解した際に発生するガス量(アウトガス)が300ppm以下であることを特徴とする請求項1~5のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。 The inorganic reinforced semi-aromatic polyamide resin composition according to any one of claims 1 to 5, wherein the amount of gas (outgas) generated when thermally decomposed at 350 ° C. for 10 minutes is 300 ppm or less.
  7.  80℃95%RHの高温高湿環境で500時間処理前後の曲げ強度から算出される曲げ強度の低下率が、15%未満であることを特徴とする請求項1~6のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。 The method according to any one of claims 1 to 6, wherein the reduction rate of the bending strength calculated from the bending strength before and after the treatment for 500 hours in a high temperature and high humidity environment of 80 ° C. and 95% RH is less than 15%. Inorganic reinforced semi-aromatic polyamide resin composition.
  8.  0.2mm厚の流動長が3mm以上であることを特徴とする請求項1~7のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。 The inorganic reinforced semi-aromatic polyamide resin composition according to any one of claims 1 to 7, wherein the flow length of 0.2 mm thickness is 3 mm or more.
  9.  引張り破壊ひずみが0.3~3.4%であることを特徴とする請求項1~8のいずれかに記載の無機強化半芳香族ポリアミド樹脂組成物。 The inorganic reinforced semi-aromatic polyamide resin composition according to any one of claims 1 to 8, wherein the tensile fracture strain is 0.3 to 3.4%.
PCT/JP2020/033125 2019-09-27 2020-09-01 Inorganic reinforced semi-aromatic polyamide resin composition WO2021059901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548734A JPWO2021059901A1 (en) 2019-09-27 2020-09-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019176942 2019-09-27
JP2019-176942 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059901A1 true WO2021059901A1 (en) 2021-04-01

Family

ID=75166625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033125 WO2021059901A1 (en) 2019-09-27 2020-09-01 Inorganic reinforced semi-aromatic polyamide resin composition

Country Status (2)

Country Link
JP (1) JPWO2021059901A1 (en)
WO (1) WO2021059901A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098434A1 (en) * 2005-03-18 2006-09-21 Kuraray Co., Ltd. Semi-aromatic polyamide resin
JP2007182550A (en) * 2005-11-15 2007-07-19 Asahi Kasei Chemicals Corp Heat-resistant resin composition
JP2008179753A (en) * 2006-12-26 2008-08-07 Kuraray Co Ltd Polyamide resin composition and molded article comprising the same
JP2010209247A (en) * 2009-03-11 2010-09-24 Kuraray Co Ltd Method for producing polyamide composition, polyamide composition, and molded article composed of polyamide composition
WO2015019882A1 (en) * 2013-08-05 2015-02-12 東洋紡株式会社 Flame-retardant polyamide resin composition
WO2017077901A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Semi-aromatic polyamide resin and method for producing same
WO2017217447A1 (en) * 2016-06-17 2017-12-21 東洋紡株式会社 Semi-aromatic polyamide resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098434A1 (en) * 2005-03-18 2006-09-21 Kuraray Co., Ltd. Semi-aromatic polyamide resin
JP2007182550A (en) * 2005-11-15 2007-07-19 Asahi Kasei Chemicals Corp Heat-resistant resin composition
JP2008179753A (en) * 2006-12-26 2008-08-07 Kuraray Co Ltd Polyamide resin composition and molded article comprising the same
JP2010209247A (en) * 2009-03-11 2010-09-24 Kuraray Co Ltd Method for producing polyamide composition, polyamide composition, and molded article composed of polyamide composition
WO2015019882A1 (en) * 2013-08-05 2015-02-12 東洋紡株式会社 Flame-retardant polyamide resin composition
WO2017077901A1 (en) * 2015-11-02 2017-05-11 東洋紡株式会社 Semi-aromatic polyamide resin and method for producing same
WO2017217447A1 (en) * 2016-06-17 2017-12-21 東洋紡株式会社 Semi-aromatic polyamide resin

Also Published As

Publication number Publication date
JPWO2021059901A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
EP2436717B1 (en) Polyamide resin
JP5497921B2 (en) Copolyamide
JPWO2011074536A1 (en) Copolyamide
JP5964964B2 (en) Polyamide, polyamide composition and molded article
JP6039945B2 (en) Polyamide resin composition and molded product
JPWO2017077901A1 (en) Semi-aromatic polyamide resin and method for producing the same
WO2011052464A1 (en) Copolymerized polyamide
WO2012161064A1 (en) Polyamide resin composition for optical components
WO2015001996A1 (en) High-melting-point polyamide resin composition having excellent vibration characteristics upon water absorption
JP5042263B2 (en) Polyamide composition
JP2011111576A (en) Copolyamide
JP2011080046A (en) Polyamide composition, molded product and electric part containing polyamide composition
WO2021065205A1 (en) Inorganic reinforced semi-aromatic polyamide resin composition
JP5818184B2 (en) High melting point polyamide resin composition with excellent vibration and appearance at the time of water absorption
WO2021059901A1 (en) Inorganic reinforced semi-aromatic polyamide resin composition
JP5997525B2 (en) Copolymerized polyamide composition and molded article
WO2021205938A1 (en) Flame-retardant polyamide resin composition
JP2012102232A (en) Copolyamide
WO2021193196A1 (en) Polyamide resin composition
JP6075691B2 (en) Polyamide resin composition with excellent vibration characteristics when absorbing water
JP5461052B2 (en) Polyamide composition
JPWO2020122170A1 (en) Semi-aromatic polyamide resin and its manufacturing method
JPWO2019189145A1 (en) Semi-aromatic polyamide resin and its manufacturing method
JPWO2014132883A1 (en) Flame retardant polyamide resin composition for use in surface mount electrical and electronic parts
JP6042114B2 (en) Copolymerized polyamide and copolymerized polyamide composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868796

Country of ref document: EP

Kind code of ref document: A1