WO2021059568A1 - インク、該インクの製造方法、および該インクを用いた温度インジケータ - Google Patents

インク、該インクの製造方法、および該インクを用いた温度インジケータ Download PDF

Info

Publication number
WO2021059568A1
WO2021059568A1 PCT/JP2020/015444 JP2020015444W WO2021059568A1 WO 2021059568 A1 WO2021059568 A1 WO 2021059568A1 JP 2020015444 W JP2020015444 W JP 2020015444W WO 2021059568 A1 WO2021059568 A1 WO 2021059568A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ink
temperature detection
particles
color
Prior art date
Application number
PCT/JP2020/015444
Other languages
English (en)
French (fr)
Inventor
暢一郎 岡崎
森 俊介
航平 會田
繁貴 坪内
昌宏 川崎
雅彦 荻野
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2021059568A1 publication Critical patent/WO2021059568A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/16Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials

Definitions

  • the present invention relates to a technique of a temperature indicator for checking a temperature change of a temperature-controlled object, particularly a temperature-sensing water-based ink for marking the temperature indicator, a method for producing the water-based ink, and a temperature using the water-based ink. It is about the indicator.
  • Fresh foods, frozen foods, and cryopreserved medicines are required to be kept within a predetermined temperature range without interruption in the distribution process of production, transportation, storage, and sales. Therefore, conventionally, a method has often been adopted in which a data logger capable of continuously recording time and temperature is mounted on a shipping container to constantly measure and record the temperature in the distribution process.
  • the method using a data logger has the advantage of being able to clarify when a temperature problem occurred if the product was damaged due to temperature.
  • this method is suitable for centrally managing a large number of products, and there is a weakness in terms of cost for managing individual products individually.
  • the temperature indicator is a member capable of knowing the change in ambient temperature by discoloring the marker portion when the temperature exceeds or falls below a preset temperature.
  • the temperature indicator is not as accurate as a data logger, it is suitable for managing individual products because it is attached to each product individually.
  • a temperature detection material is used for the marker portion that changes color.
  • the temperature detection material ink-like that is, using the temperature detection ink
  • various printing methods can be used as markings (for example, characters, symbols, one-dimensional barcodes, two-dimensional barcodes) on the temperature indicator.
  • markings for example, characters, symbols, one-dimensional barcodes, two-dimensional barcodes
  • gravure printing, screen printing, dispenser, inkjet printing can be used.
  • Patent Document 1 describes an electron-donating color-developing organic compound, an electron-accepting compound, and a homogeneous phase solution of a reaction medium that controls the color reaction between the electron-donating color-developing organic compound and the electron-accepting compound.
  • a microcapsule pigment comprising a reversible thermochromic composition comprising, and at least a reversible thermochromic writing oil-based ink composition comprising an organic solvent are disclosed.
  • Patent Document 2 describes a temperature detection material containing a temperature indicating material containing a leuco dye, a color developer and a decoloring agent, and a matrix material, wherein the matrix material is a non-polar material and the melting point of the matrix material. Discloses a temperature detection material, which is higher than the melting point of the temperature indicating material and is characterized in that the temperature indicating material forms a phase-separated structure in which the temperature indicating material is dispersed in the matrix material. Further, Patent Document 2 discloses a temperature detection ink containing the temperature detection material and a solvent.
  • the temperature detection ink various printing methods can be used as markings on the temperature indicator.
  • marking by inkjet printing is preferable.
  • water-based ink it is preferable to use water-based ink.
  • Patent Document 1 relates to an oil-based ink composition and is not a water-based ink.
  • Patent Document 2 suggests the possibility of water-based ink.
  • Patent Document 2 does not specifically disclose the dispersibility of the temperature detecting material in the water-based ink.
  • an object of the present invention is to provide a temperature-detecting water-based ink having excellent stability, a method for producing the temperature-sensing water-based ink, and a temperature indicator using the temperature-sensing water-based ink.
  • One aspect of the present invention is an ink in which temperature detection particles are dispersed in an aqueous dispersion medium.
  • the temperature detection particles provide a temperature detection material containing a leuco dye, a color developer and a decoloring agent, and an ink characterized by containing a surfactant.
  • the present invention can make the following improvements and changes to the above ink (I).
  • the surfactant coats the fine particles of the temperature detection material in which the leuco dye and the color developer are dispersed in the matrix of the decolorizing agent.
  • the surfactant is also present inside the temperature detection particles.
  • the median diameter of the temperature detection particles is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the temperature-sensing water-based ink further contains additives.
  • the additive is a water-soluble resin binder, a conductive agent and / or a leveling agent.
  • the temperature-sensing water-based ink contains a plurality of types of the temperature-detecting particles having different color-developing start temperatures, and each of the plurality of types of temperature-detecting particles develops color when the temperature falls below a predetermined temperature. It is a temperature detection particle containing a detection type temperature detection material.
  • the temperature-sensing water-based ink contains a plurality of types of the temperature-detecting particles having different color-developing start temperatures, and each of the plurality of types of temperature-detecting particles develops color when the temperature exceeds a predetermined temperature. It is a temperature detection particle containing a detection type temperature detection material.
  • the temperature detection water-based ink contains a plurality of types of the temperature detection particles having different color development start temperatures, and the plurality of types of temperature detection particles are a low temperature side detection type that develops color when the temperature falls below a predetermined temperature. It includes both the temperature detection particles containing the temperature detection material of the above and the temperature detection particles including the temperature detection material of the high temperature side detection type that develops color when the temperature exceeds a predetermined temperature.
  • Another aspect of the present invention is the above-mentioned method for producing an ink.
  • a temperature detection material preparation step of mixing, melting, and solidifying the leuco dye, the color developer, and the decolorizing agent to prepare the temperature detection material.
  • An emulsion preparation step of preparing an emulsion of the temperature detection material / surfactant by heating and stirring and mixing the temperature detection material and the solution of the surfactant, and
  • the present invention provides a method for producing an ink, which is characterized by having.
  • the present invention can make the following improvements and changes in the above ink manufacturing method (II).
  • (Ix) After the suspension preparation step, there is further an additive mixing step of mixing the additive with the suspension.
  • (X) The temperature detection material preparation step includes a pulverization process for granulating the temperature detection material from agglomerates.
  • Yet another aspect of the present invention is a temperature indicator in which a marker with a predetermined ink is printed on a printing substrate. It provides a temperature indicator, characterized in that the predetermined ink is the ink described above.
  • thermoelectric fixing it is possible to provide a temperature-detecting water-based ink having excellent stability, a method for producing the temperature-sensing water-based ink, and a temperature indicator using the temperature-sensing water-based ink.
  • FIG. 1A and 1B are schematic views showing a temperature detection material and the principle of its color change, in which FIG. 1A represents a decolorized state and FIG. 1B represents a developed state.
  • the temperature detection material 4 is a material whose color density is reversibly changed by a temperature change (increasing / decreasing temperature), and as shown in FIG. 1, is an electron-donating compound, leuco dye 1, and an electron-accepting compound.
  • a color developer 2 and a decolorizing agent 3 to control the temperature range of discoloration.
  • the decoloring agent 3 the state in which the leuco dye 1 and the decoloring agent 2 are separated and dispersed is the decolorizing state (see FIG. 1 (a)), and the decoloring agent 3 crystallizes and the leuco dye 1
  • the state in which the color developer 2 is combined with the color developer 2 is the color development state (see FIG. 1B).
  • FIG. 2 is a schematic diagram showing the state of color change of the high temperature side detection type temperature detection material
  • FIG. 3 is a schematic view showing the state of color change of the low temperature side detection type temperature detection material.
  • the vertical axis represents color density
  • the horizontal axis is the temperature
  • T a is developer starting temperature
  • T d is the decolorization initiation temperature.
  • the high temperature side detection type temperature detection material 4 it is preferable to use a material that is difficult to crystallize as the decolorizing agent 3.
  • the high temperature side detection type temperature detection material 4 is decolorized when it is rapidly cooled from the temperature M, which is the molten state (the decolorization state in which the leuco dye 1 and the color developer 2 are separated), to the color development start temperature T a or less.
  • the agent 3 solidifies in an amorphous state, and the leuco dye 1 and the color developer 2 are frozen in a separated state (that is, in a decolorized state).
  • the decolorizer 3 in the color developing start temperature T a started to crystallize, with the rearrangement of molecules for crystallization leuco Dye 1 and color developer 2 combine to develop color.
  • the developed state is maintained while the decolorizing agent 3 is crystallizing.
  • the crystals of the decolorizing agent 3 begin to melt at the decoloring start temperature T d , and the leuco dye 1 and the decolorizing agent 2 are separated and decolorized. That is, the change in color density shows hysteresis with respect to the change in temperature.
  • the low temperature side detection type temperature detection material 4 it is preferable to use a material that is difficult to solidify (a material that easily maintains the supercooled liquid phase) as the decolorizing agent 3.
  • a material that is difficult to solidify a material that easily maintains the supercooled liquid phase
  • the decolorizing agent 3 becomes a supercooling liquid phase and the decoloring state (leuco dye 1 and the developing agent 2 are separated). Maintain the state).
  • a cold side detection type temperature sensing material 4 was prepared so as to manage the lower limit temperature of the temperature control object, presence or absence of color change From (presence or absence of color development), it is possible to detect whether or not the temperature of the temperature-controlled object has reached the control lower limit temperature.
  • FIG. 4 is a schematic diagram showing a configuration example of the temperature detection water-based ink.
  • the temperature-detecting water-based ink 100 contains an aqueous dispersion medium 20 and temperature-detecting particles 10 and / or 11 dispersed in the aqueous dispersion medium, and the temperature-sensing particles 10 and 11 are leuco dyes. 1. It contains a temperature detection material 4 containing a developer 2 and a decolorizing agent 3, and a surfactant 5.
  • the temperature-sensing water-based ink 100 may further contain various additives (for example, the water-soluble resin binder 30 and other additives 40) in order to satisfy various properties required depending on the application.
  • the content of the temperature-detecting particles 10 and 11 in the temperature-detecting water-based ink 100 is preferably 5% by mass or more and 20% by mass or less.
  • the content of the temperature-detecting particles in the ink is preferably 5% by mass or more and 20% by mass or less.
  • the content of the temperature-detecting particles in the ink is preferably 5% by mass or more and 20% by mass or less.
  • the content of the water-soluble resin binder 30 in the temperature-detecting water-based ink 100 is preferably 1% by mass or more and 30% by mass or less, and more preferably 1% by mass or more and 15% by mass or less.
  • the content of the water-soluble resin binder in the ink is preferably 1% by mass or more and 30% by mass or less, and more preferably 1% by mass or more and 15% by mass or less.
  • the temperature detection water-based ink 100 is not limited to one color development start temperature Ta (color develops when the temperature exceeds a predetermined temperature, or develops when the temperature falls below a predetermined temperature), and a plurality of color development starts. it may include a plurality of types of temperature sensing particles 10 and 11 having a temperature T different color development initiation temperature to indicate a T a.
  • each of the temperature detection particles 10 and 11 is coated with the surfactant 5 and is independent, even if a plurality of types of temperature detection particles are mixed, it is chemically chemical. the advantage of not mutual interference (showing the different color development initiation temperature T a to each other) to.
  • both the temperature detection particles containing the high temperature side detection type temperature detection material 4 and the temperature detection particles including the low temperature side detection type temperature detection material 4 are included, both the upper limit temperature and the lower limit temperature can be managed. can do.
  • the surfactant does not necessarily completely cover the surface of the temperature detection particles.
  • coating means that most of the surface of the temperature-sensing particles (for example, 60% or more of the entire surface) is surrounded by the surfactant.
  • the temperature-detecting water-based ink 100 of the present invention includes the fact that the temperature-detecting particles 10 and 11 are dispersed in the aqueous dispersion medium 20 in a state of being agglomerated to some extent.
  • FIG. 5A is a schematic cross-sectional view showing an example of the temperature detection particles
  • FIG. 5B is a schematic cross-sectional view showing another example of the temperature detection particles. Both FIGS. 5A and 5B show a decolorized state.
  • the surfactant 5 coats the fine particles of the temperature detection material 4 in which the leuco dye 1 and the color developer 2 are dispersed in the matrix of the decolorizing agent 3. ing.
  • the surfactant 5 is present not only around the fine particles of the temperature detection material 4 but also inside the temperature detection particles.
  • the temperature detection particles 11 involve the surfactant 5 in the process of forming fine particles of the temperature detection material 4, and / or a plurality of fine temperature detection particles 10 are aggregated /. It is thought that it can be obtained by coalescing.
  • the surfactant 5 By coating the fine particles of the temperature detection material 4 with the surfactant 5, when the temperature detection water-based ink 100 is prepared, the undesired influence of the water-soluble resin binder 30 and the additive 40 on the temperature detection material 4 (for example, it becomes possible to suppress an unwanted chemical reaction).
  • the particle size / particle size distribution of the temperature-detected particles 10 and 11 can be measured by, for example, a particle size distribution measuring device, and the medium diameter (median diameter, also referred to as D 50 ) is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 0.1. More preferably, it is ⁇ m or more and 10 ⁇ m or less. In the case of inkjet printing, a medium diameter of 0.1 ⁇ m or more and 2 ⁇ m or less is more preferable in order to suppress nozzle clogging.
  • the leuco dye 1 constituting the temperature detection material 4 is an electron donating compound, and known dyes for pressure-sensitive copying paper and heat-sensitive recording paper can be used.
  • known dyes for pressure-sensitive copying paper and heat-sensitive recording paper can be used.
  • triphenylmethanephthalide, fluorane, phenothiazine, indrillphthalide, leucooramine, spiropyrane, rhodamine lactam, triphenylmethane, triazene, spiroftalanthene, naphtholactam Examples include azomethine-based leuco dyes.
  • More specific examples include 9- (N-ethyl-N-isopentylamino) spiro [benzo [a] xanthene-12,3'-phthalide], 2-methyl-6- (Np-tolyl-N-). Ethylamino) -fluorane 6- (diethylamino) -2-[(3-trifluoromethyl) anilino] xanthene-9-spiro-3'-phthalide, 3,3-bis (p-diethylaminophenyl) -6-dimethylamino Phtalide, 2'-anilino-6'-(dibutylamino) -3'-methylspiro [phthalide-3,9'-xanthene], 3- (4-diethylamino-2-methylphenyl) -3- (1-ethyl -2-Methylindole-3-yl) -4-azaphthalide, 1-ethyl-8- [N-ethyl-N- (4-methyl
  • Two or more kinds of leuco dyes 1 may be used in combination.
  • the color developer 2 constituting the temperature detection material 4 changes the chemical structure of the leuco dye 1 by combining with the electron-donating leuco dye 1 to develop a color, and is used for pressure-sensitive copying paper or heat-sensitive recording.
  • a known color developer for paper can be used.
  • the color developer is not limited to the color developer for pressure-sensitive copying paper and thermal recording paper, and the color developer 2 may be a compound that is an electron acceptor and can change the color of leuco dye 1.
  • metal salts of carboxylic acid derivatives, salicylic acid metal salts, salicylic acid metal salts, sulfonic acids, sulfonates, phosphoric acids, phosphoric acid metal salts, acidic phosphoric acid esters, acidic phosphoric acid ester metal salts, phosphites, sub Metal phosphate salts can be preferably used. Those having high compatibility with leuco dye 1 and the decoloring agent 3 described later are particularly preferable.
  • More specific examples include benzyl 4-hydroxybenzoate, 2,2'-biphenol, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, and 2,2-bis (3-cyclohexyl-4).
  • -Phenols such as hydroxyphenyl) propane, bisphenol A, bisphenol F, bis (4-hydroxyphenyl) sulfide, paraoxybenzoic acid ester, gallic acid ester, etc.
  • 1,1-bis (4-hydroxyphenyl) cyclohexane 1, examples thereof include 1-bis (4-hydroxy-3-methylphenyl) cyclohexane and ⁇ , ⁇ , ⁇ '-tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene.
  • Two or more kinds of developer 2 may be used in combination.
  • the color density of leuco dye 1 at the time of color development can be adjusted.
  • the mixing ratio of the developer 2 to the leuco dye 1 can be appropriately selected according to the desired color density. For example, about 0.1 to 100 parts by weight of the color developer 2 may be mixed with 1 part by weight of the leuco dye.
  • the decolorizing agent 3 constituting the temperature detection material 4 is a compound capable of dissociating the bond between the leuco dye 1 and the developing agent 2, and controls the developing temperature of the leuco dye 1 and the developing agent 2. It is also a compound that can be produced. Generally, in the temperature range in which the leuco dye 1 and the color developer 2 are combined to develop a color, the decolorizing agent 3 is in a crystallized solid phase state. On the other hand, in the liquid phase state in which the decolorizing agent 3 is melted, the decoloring state is exhibited by exerting the function of dissociating the bond between the leuco dye 1 and the decolorizing agent 2. Therefore, the state change temperature of the decolorizing agent 3 is important for controlling the developing color temperature.
  • the decolorizing agent 3 is a material that does not change the chemical structure of the leuco dye 1 (that is, does not develop a color), and can dissociate the bond between the leuco dye 1 and the color developer 2 (leuco dye 1 and the developing agent 2).
  • the binding force between the color developer 2 and the decoloring agent 3 is greater than the binding force with the coloring agent 2).
  • examples thereof include compounds, diazo compounds, azi compounds, ether compounds, fats and oil compounds, sugar compounds, peptide compounds, nucleic acid compounds, alkaloid compounds and steroid compounds.
  • ester compound examples include isopropyl myristate, diethyl sebacate, dimethyl adipate, decyl decanoate, diethyl phenylmalonate, diisobutyl phthalate, triethyl citrate, benzyl butyl phthalate, methyl nicotinate, 2-phenylacetate.
  • glycerol compound examples include tripalmitin, tripalmitin, ethylene glycol dibenzoate, and triolein.
  • acetate compounds include 4-diacetoxybutane, 1,1-ethanediol diacetate, benzaldiacetate, 1,4-diacetoxybutane, diethylene glycol diacetate, vitamin K4, 2,5-di. Acetoxytoluene, 1,1-ethanediol diacetate, and the like.
  • aromatic compound include m-tolyl acetate, 1,2-diacetoxybenzene, and valetamate bromide.
  • amino compound examples include ethyl anthranilate and butyl 4-aminobenzoate.
  • imino compound examples include methyl N-methylanthranilate.
  • nitro compound examples include ethyl 4-nitrobenzoate.
  • steroid compounds include cholesterol, cholesteryl bromide, ⁇ -estradiol, methyl androstendiol, pregnenolone, cholesterol benzoate, cholesterol acetate, cholesterol linoleate, cholesterol palmitate, cholesterol stearate, cholesterol oleate, 3-chloro.
  • Cholesterol hydrosilicate cholesterol, cholesterol laurate, cholesterol butyrate, cholesterol formate, cholesterol heptanate, cholesterol hexanoate, cholesterol myristate, cholesterol propionate, cholesterol phenylacetate, cholesterol chlorostate, 2,4-dichloro Cholesterol benzoate, cocholesterol oleyl carbonate, cholesterol amylcarbonate, cholesterol n-octylcarbonate, estron, ethynyl estradiol, estradiol, estradiol benzoate, ⁇ -estradiol, 17-heptanoate ⁇ -estradiol, 2-methoxy- ⁇ -estradiol, androsterone, avirateron, dehydroepiandrosterone, dehydroepiandrosterone acetate, etisterone, 17 ⁇ -hydroxy-17-methylandrosta-1,4-diene-3-one, methylandrostendiol, 16- Dehydropregnenolone
  • the surfactant 5 constituting the temperature detection particles 10 and 11 is for dispersing the temperature detection material 4 in the aqueous dispersion medium 20, and various ionic surfactants (anionic, cationic, etc.) Amphoteric) and various nonionic surfactants can be utilized.
  • anionic surfactants include those in which the hydrophilic group is composed of a carboxylate, a sulfonate, a sulfate ester type, and a phosphoric acid ester type.
  • cationic surfactants include those in which the hydrophilic group is composed of an amine salt, a pyridinium salt, and a benzyl halide salt.
  • amphoteric tenside agents include those in which the hydrophilic group is composed of a carboxylate, a sulfonate, a sulfate ester type, and a phosphoric acid ester type.
  • nonionic surfactants include those in which the hydrophilic group is composed of ester, ethylene oxide, ether, amineamide, and sorbitol.
  • the temperature-sensing water-based ink 100 of the present invention preferably has a pH (potential of hydrogen) of 6 or more and 8 or less as a liquid property in order to suppress the influence on the color-developing / decoloring characteristics of the temperature-detecting material. ..
  • the water-based dispersion medium 20 is not particularly limited as long as the temperature-sensing water-based ink 100 is adjusted to an appropriate liquid property, and may be pure water or an aqueous solution (for example, a buffer solution) for suppressing pH fluctuation. There may be.
  • the temperature-detecting water-based ink 100 preferably contains the water-soluble resin binder 30 in order to help adjust the viscosity and adhere the temperature-detecting particles 10 and 11 to the temperature indicator base material.
  • the water-soluble resin binder 30 for example, acrylic resin, urethane resin, phenol resin, polyester, polyethylene oxide, styrene / maleic acid, polyvinyl alcohol, and polyacrylamide can be preferably used.
  • the content of the water-soluble resin binder 30 in the temperature-detecting water-based ink 100 is preferably 1% by mass or more and 30% by mass or less, and more preferably 1% by mass or more and 15% by mass or less.
  • the temperature-sensing water-based ink 100 of the present invention may contain a conductive agent as another additive 40 in order to adjust the electrical resistivity.
  • water-soluble salts are preferable, and for example, nitrates, perchlorates, tetraphenylborates, and ammonium ion salts are preferably used. it can. More specific examples include lithium nitrate, sodium nitrate, ammonium nitrate, lithium perchlorate, sodium perchlorate, ammonium perchlorate, lithium tetraphenylborate, sodium tetraphenylborate, ammonium tetraphenylborate. Can be mentioned.
  • the temperature-sensing water-based ink 100 of the present invention may contain a leveling agent as another additive 40 in order to adjust the print quality.
  • FIG. 6 is a process diagram showing an example of a method for manufacturing a temperature detection ink according to the present invention.
  • the leuco dye, the developer, and the decolorizer are mixed, melted, and solidified so as to have the desired color development start temperature T a and decolorization start temperature T d, and the temperature is detected.
  • the melting is preferably carried out in a temperature range of 150 to 250 ° C.
  • the adjusted temperature detection material 4 can be used in the next process as it is in the form of a lump, but the lump may be crushed into granules.
  • the pulverization process is not an essential process, it is preferable from the viewpoint of allowing the next process to proceed smoothly.
  • the temperature sensing material preparation step S1 shall include a milling process.
  • an emulsion preparation step (S2) is performed in which the temperature detection material 4 and the solution of the surfactant 5 are heated, stirred and mixed to prepare the temperature detection material / surfactant emulsion 6.
  • the mass ratio of "temperature detection material: surfactant” is preferably “1: 1" to "1: 5", and the heating / stirring mixture is in the temperature range in which the temperature detection material 4 becomes droplets (for example, 80 to 100). °C) is preferable.
  • the size of the droplets of the temperature detection material 4 can be adjusted by the stirring speed. In other words, the stirring speed is controlled in order to control the size of the droplet of the temperature detection material 4 (the size of the later temperature detection particles 10 and 11).
  • the emulsion 6 heated to a temperature range in which the temperature detection material 4 becomes droplets and the aqueous dispersion medium 20 heated to the temperature range are stirred and mixed, and then cooled to room temperature while stirring to obtain the temperature detection particles.
  • the suspension preparation step (S3) to prepare the suspension 7 of the aqueous dispersion medium.
  • the pH of the aqueous dispersion medium 20 is preferably adjusted to 6 to 8, and may be pure water or a buffer solution.
  • the mixing amount of the aqueous dispersion medium 20 is preferably such that the mass ratio of "emulsion liquid: aqueous dispersion medium" is "1: 5" to "1:10".
  • the aqueous dispersion medium 20 may be injected into the emulsion 6, or the emulsion 6 may be injected into the aqueous dispersion medium 20.
  • the temperature detection material 4 is hydrophobic, so that the surfactant 5 coats around the droplets of the temperature detection material 4. It becomes an emulsion in a state of being dispersed in the aqueous dispersion medium 20.
  • this emulsion is cooled, the droplets of the temperature detection material 4 are solidified, and a suspension 7 in which the temperature detection particles 10 and 11 are dispersed in the aqueous dispersion medium 20 is obtained.
  • an additive mixing step (S4) is performed in which various additives (water-soluble resin binder 30, conductive agent and / or leveling agent) are mixed with the suspension 7.
  • various additives water-soluble resin binder 30, conductive agent and / or leveling agent
  • the additive mixing step S4 is not an essential step, it is preferable to perform the additive mixing step S4 from the viewpoint of adjusting print controllability and print quality as ink. As a result, the temperature detection water-based ink 100 is completed.
  • a separately prepared suspension 7 or temperature detection is used.
  • the water-based ink 100 may be appropriately mixed.
  • Example 1 Preparation of Example 1 As a leuco dye 2'-anilino-6'-(N-ethyl-N-isopentylamino) -3'-methylspiro [phthalide-3,9'-[9H] xanthene] (manufactured by Yamada Chemical Co., Ltd., S- 205) was used. Octyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a color developer.
  • the decolorizing agent As the decolorizing agent, a mixture of methyl p-toluate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2-phenylethyl phenylacetic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) at a mass ratio of "9: 1" was used. ..
  • Leuco dye developer: decolorant was mixed at a mass ratio of "3: 3: 100", melted and stirred at 190 ° C, and then solidified to prepare a massive temperature detection material. The obtained mass was manually crushed in a mortar to prepare a granular temperature detection material (temperature detection material preparation step S1). This temperature detection material is in a decolorized (colorless) state in an environment maintained at room temperature (25 ° C.), but once cooled to 4 ° C. or lower, it develops a black color.
  • the temperature detection material becomes spherical droplets in order to minimize the interfacial energy because it is hydrophobic.
  • the emulsion becomes an emulsion in a state in which the droplets are coated with a surfactant and dispersed in a phosphate buffered aqueous solution.
  • the droplets of the temperature detection material are solidified to form a suspension in which spherical temperature detection particles are dispersed in a phosphate buffered aqueous solution.
  • a water-soluble resin binder was mixed with the obtained suspension to prepare a temperature-sensing water-based ink of Example 1 (additive mixing step S4).
  • Polyvinyl alcohol (PVA) was used as the water-soluble resin binder, and the mixture was mixed so that the content of the water-soluble resin binder in the temperature-detecting water-based ink was 5% by mass.
  • Example 1 A temperature indicator was produced using the temperature-detecting water-based ink of Example 1, and a confirmation experiment of printability and temperature detection was performed.
  • a commercially available DOD (Drop On Demand) inkjet printer was used as the printing apparatus, and a commercially available art paper was used as the printing base material.
  • a temperature change test (holding at 25 ° C for 10 minutes and then cooling to 4 ° C) was performed on the prepared temperature indicator, and the color change of the printed characters was visually confirmed. It was evaluated as "pass” when it was colorless when it was held at 25 ° C, and when it was cooled to 4 ° C and the printed characters could be identified, it was evaluated as "fail”.
  • FIG. 7 is a photograph showing a state of color change of printed characters in a temperature indicator using the temperature detection water-based ink of Example 1.
  • the printed characters cannot be identified because they are colorless when kept at 25 ° C, but the printed characters can be identified by developing colors when cooled at 4 ° C. That is, Example 1 is evaluated as "passed".
  • the components and evaluation results of the temperature-sensing water-based ink of Example 1 are summarized in Table 1 described later.
  • Example 2 (Preparation and evaluation of Comparative Example 1) A granular temperature detection material was prepared in the same manner as in Example 1. Then, the granular temperature detection material was crushed using a jet mill to prepare a powder temperature detection material. When the particle size distribution of the obtained powdery temperature detection material was measured using a particle size distribution measuring device, it was confirmed that the median diameter was about 2 ⁇ m.
  • a water-soluble resin binder was mixed with the obtained suspension to prepare a temperature-sensing water-based ink of Comparative Example 1.
  • Polyvinyl alcohol was used as the water-soluble resin binder, and the mixture was mixed so that the content of the water-soluble resin binder in the temperature-detecting water-based ink was 5% by mass.
  • Example 1 a temperature indicator was produced in the same manner as in Example 1 using the temperature detection water-based ink of Comparative Example 1.
  • the same temperature change test as in Example 1 (holding at 25 ° C. for 10 minutes and then cooling to 4 ° C.) was performed on the prepared temperature indicator.
  • both the temperature was maintained at 25 ° C and the temperature was cooled at 4 ° C, and the printed characters were colorless, and no clear decolorization or color change due to temperature changes was observed. That is, Comparative Example 1 was evaluated as "failed”.
  • the components and evaluation results of the temperature-sensing water-based ink of Comparative Example 1 are also shown in Table 1.
  • the temperature detection water-based ink of Comparative Example 1 was applied with a brush on the printing substrate, and then the same temperature change test as in Example 1 (after holding at 25 ° C. for 10 minutes, after holding for 10 minutes, Cooled to 4 ° C). As a result, it was colorless at both 25 ° C retention and 4 ° C cooling, but it was confirmed that the temperature detection particles were coated on the printing substrate.
  • Example 3 (Preparation and evaluation of Example 2)
  • the temperature-detecting water-based ink of Example 2 was obtained in the same manner as in Example 1 except that lithium nitrate was mixed so that the content of the conductive agent in the temperature-detecting water-based ink was 5% by mass. Was produced.
  • Example 2 a temperature indicator was produced using the temperature detection water-based ink of Example 2.
  • a commercially available charge control type inkjet printer was used as the printing apparatus, and a commercially available art paper was used as the printing base material.
  • the same temperature change test as in Example 1 (holding at 25 ° C. for 10 minutes and then cooling to 4 ° C.) was performed on the prepared temperature indicator. As a result, Example 2 was evaluated as "passed”.
  • the components and evaluation results of the temperature-sensing water-based ink of Example 2 are also shown in Table 1.
  • Example 4 (Preparation and evaluation of Examples 3 and 4)
  • the temperature-sensing water-based ink of Example 3 was prepared in the same manner as in Example 1 except that Demol (registered trademark) NL manufactured by Kao Co., Ltd. was used as the surfactant, and the surface activity was prepared.
  • the temperature-sensing water-based ink of Example 4 was prepared in the same manner as in Example 2 except that Demol (registered trademark) NL manufactured by Kao Co., Ltd. was used as the agent.
  • a temperature indicator was produced in the same manner as in Example 1 using the temperature-sensing water-based ink of Example 3, and a temperature indicator was produced in the same manner as in Example 2 using the temperature-sensing water-based ink of Example 4.
  • Example 3 The prepared temperature indicator was subjected to the same temperature change test as in Example 1 (holding at 25 ° C for 10 minutes and then cooling to 4 ° C), and the color change of the printed characters was visually confirmed. As a result, both Examples 3 and 4 were evaluated as "passed". The components and evaluation results of the temperature-detecting water-based inks of Examples 3 and 4 are also shown in Table 1.
  • Example 5 (Preparation and evaluation of Examples 5 and 6) 3,3-Bis (p-dimethylaminophenyl) -6-dimethylaminophthalide (manufactured by Yamada Chemical Co., Ltd., crystal violet lactone: CVL) is used as the leuco dye, and octyl gallate is used as the color developer. Vitamin K4 (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used as a coloring agent.
  • leuco dye: color developer: decolorizer are mixed at a mass ratio of "2: 2: 100", melted and stirred at 180 ° C, and then solidified to prepare a massive temperature detection material. did. The obtained mass was manually crushed in a mortar to prepare a granular temperature detection material. This temperature detection material is colorless in an environment maintained at 25 ° C, but once heated to 40 ° C or higher, it develops a blue color.
  • emulsion preparation step S2 0.5 g of the temperature detection material and 2.5 g of the surfactant (Demol (registered trademark) EP manufactured by Kao Co., Ltd.) are weighed and mixed by heating and stirring using a magnetic stirrer. (95 ° C, 600 rpm, 10 minutes) An emulsion of temperature detection material / surfactant was prepared.
  • the surfactant Demol (registered trademark) EP manufactured by Kao Co., Ltd.
  • the particle size distribution of the temperature-detected particles of the obtained suspension was measured using a particle size distribution measuring device, it was confirmed that the medium diameter was about 1.5 ⁇ m.
  • Example 5 was produced in the same manner as in Example 1
  • the temperature-detecting water-based ink of Example 6 was produced in the same manner as in Example 2.
  • a temperature indicator was produced in the same manner as in Example 1 using the temperature-sensing water-based ink of Example 5, and a temperature indicator was produced in the same manner as in Example 2 using the temperature-sensing water-based ink of Example 6.
  • Example 6 (Preparation and evaluation of Examples 7 and 8)
  • the temperature-sensing water-based ink of Example 7 was prepared in the same manner as in Example 5 except that Demol (registered trademark) NL manufactured by Kao Corporation was used as the surfactant, and the surface activity was increased.
  • the temperature-sensing water-based ink of Example 8 was prepared in the same manner as in Example 2 except that Demol NL manufactured by Kao Corporation was used as the agent.
  • a temperature indicator was produced in the same manner as in Example 1 using the temperature-sensing water-based ink of Example 7, and a temperature indicator was produced in the same manner as in Example 2 using the temperature-sensing water-based ink of Example 8.
  • Example 7 The prepared temperature indicator was subjected to the same temperature change test as in Example 5 (holding at 25 ° C for 10 minutes and then heated to 40 ° C), and the color change of the printed characters was visually confirmed. As a result, both Examples 7 and 8 were evaluated as "passed". The components and evaluation results of the temperature-detecting water-based inks of Examples 7 and 8 are also shown in Table 1.
  • Example 5 and Example 5 except that vitamin K4 (manufactured by Tokyo Chemical Industry Co., Ltd.) and propyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed as a decolorizing agent at a mass ratio of "1: 1". Similarly, a granular temperature detection material was prepared. This temperature detection material is colorless in an environment maintained at 25 ° C, but once heated to 50 ° C or higher, it develops a blue color.
  • a suspension of temperature-detecting particles / aqueous dispersion medium was prepared in the same manner as in Example 5.
  • the particle size distribution of the temperature-detected particles of the obtained suspension was measured using a particle size distribution measuring device, it was confirmed that the medium diameter was about 1.5 ⁇ m.
  • Example 9 was produced in the same manner as in Example 1
  • the temperature-detecting water-based ink of Example 10 was produced in the same manner as in Example 2.
  • a temperature indicator was produced in the same manner as in Example 1 using the temperature-sensing water-based ink of Example 9, and a temperature indicator was produced in the same manner as in Example 2 using the temperature-sensing water-based ink of Example 10.
  • Example 8 (Preparation and evaluation of Examples 11 and 12)
  • the temperature-sensing water-based ink of Example 11 was prepared in the same manner as in Example 5 except that Demol (registered trademark) NL manufactured by Kao Corporation was used as the surfactant, and the surface activity was increased.
  • the temperature-sensing water-based ink of Example 12 was prepared in the same manner as in Example 2 except that Demol NL manufactured by Kao Corporation was used as the agent.
  • a temperature indicator was produced in the same manner as in Example 1 using the temperature-sensing water-based ink of Example 11, and a temperature indicator was produced in the same manner as in Example 2 using the temperature-sensing water-based ink of Example 12.
  • Example 11 The prepared temperature indicator was subjected to the same temperature change test as in Example 9 (holding at 25 ° C for 10 minutes and then heated to 50 ° C), and the color change of the printed characters was visually confirmed. As a result, both Examples 11 and 12 were evaluated as "passed". The components and evaluation results of the temperature-detecting water-based inks of Examples 11 and 12 are also shown in Table 1.
  • Example 9 (Preparation and evaluation of Examples 13 and 14)
  • the temperature-detecting water-based ink of Example 1 and the temperature-sensing water-based ink of Example 9 were mixed at a mass ratio of "1: 1" to prepare the temperature-detecting water-based ink of Example 13. Further, the temperature-detecting water-based ink of Example 4 and the temperature-sensing water-based ink of Example 12 were mixed at a mass ratio of "1: 1" to adjust the temperature-detecting water-based ink of Example 14.
  • Example 13 and 14 each contain two types of temperature-sensing materials, they are colorless in an environment maintained at 25 ° C., but once cooled to 4 ° C. or lower, they appear black. It becomes a temperature-detecting water-based ink that develops color and develops blue once heated to 50 ° C or higher.
  • a temperature indicator was produced in the same manner as in Example 1 using the temperature-sensing water-based ink of Example 13, and a temperature indicator was produced in the same manner as in Example 2 using the temperature-sensing water-based ink of Example 14.
  • Example 13 and 14 were evaluated as "passed”.
  • the components and evaluation results of the temperature-detecting water-based inks of Examples 13 and 14 are also shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本発明は、安定性に優れる温度検知水性インク、当該温度検知水性インクを製造する方法、および当該温度検知水性インクを用いた温度インジケータを提供することを目的とする。本発明に係るインクは、温度検知粒子が水系分散媒中に分散したインクであって、前記温度検知粒子は、ロイコ染料、顕色剤および消色剤を含む温度検知材料と、界面活性剤とを含むことを特徴とする。

Description

インク、該インクの製造方法、および該インクを用いた温度インジケータ
 本発明は、温度管理対象物の温度変化をチェックするための温度インジケータの技術に関し、特に温度インジケータにマーキングするための温度検知水性インク、該水性インクの製造方法、および該水性インクを用いた温度インジケータに関するものである。
 生鮮食品や、冷凍食品や、低温保存医薬品(例えば、ワクチン、バイオ医薬品)は、生産、輸送、保管、販売の流通過程の中で途切れることなく所定の温度範囲内に保つことが求められる。そのため、従来から、時間と温度とを連続的に記録可能なデータロガーを運送コンテナに搭載して、流通過程の温度を絶えず測定・記録する方法がしばしば採用されてきた。
 データロガーを利用する方法は、もしも製品に温度起因のダメージがあった場合に温度トラブルがいつ生じたのかを明らかにすることができるという利点がある。ただし、この方法は、多量の製品を一括管理するのに適しており、個々の製品を個別管理するのにはコストの観点で弱点がある。
 一方、製品を個別に温度管理する方法として、データロガーではなく温度インジケータを利用する方法がある。温度インジケータとは、あらかじめ設定された温度を上回るか下回るかした場合にマーカー部分が変色して周囲の温度変化を知ることができる部材である。温度インジケータは、データロガーほどの記録精度はないものの、製品個別に貼付けられることから個々の製品を個別管理するのに適している。変色するマーカー部分には、温度検知材料が用いられる。
 また、温度検知材料をインク状にする(すなわち、温度検知インクを用いる)ことにより、温度インジケータへのマーキング(例えば、文字、記号、一次元バーコード、二次元バーコード)として、種々の印刷法(例えば、グラビア印刷、スクリーン印刷、ディスペンサ、インクジェットプリンティング)を利用することができる。
 特許文献1には、電子供与性呈色性有機化合物、電子受容性化合物、および前記電子供与性呈色性有機化合物と前記電子受容性化合物との呈色反応をコントロールする反応媒体の均質相溶体からなる可逆熱変色性組成物を内包したマイクロカプセル顔料と、有機溶剤とから少なくともなる可逆熱変色性筆記用油性インキ組成物、が開示されている。
 特許文献2には、ロイコ染料、顕色剤及び消色剤を含む示温材と、マトリックス材料と、を含む温度検知材料であって、前記マトリックス材料は非極性材料であり、前記マトリックス材料の融点は前記示温材の融点よりも高く、前記マトリックス材料中に前記示温材が分散した相分離構造を形成していることを特徴とする温度検知材料、が開示されている。また、特許文献2には、当該温度検知材料と溶媒とを含む温度検知インク、が開示されている。
特開2005-320485号公報 国際公開第2018/110200号
 前述したように、温度検知インクを用いることにより、温度インジケータへのマーキングとして種々の印刷法を利用することができる。ここで、温度インジケータの製造コストの観点からは、インクジェットプリンティングによるマーキングが好ましい。また、環境保護の観点からは、水性インクを用いることが好ましい。
 特許文献1に記載の技術は、油性インキ組成物に関するものであり、水性インクではないことが明らかである。一方、特許文献2は、水性インクの可能性を示唆している。しかしながら、特許文献2には、水性インク内の温度検知材料の分散性については具体的に開示されていない。
 言い換えると、温度検知材料のインク内分散性の確保・維持が容易な温度検知水性インク(言い換えると、安定性に優れる温度検知水性インク)が求められている。
 したがって、本発明の目的は、安定性に優れる温度検知水性インク、当該温度検知水性インクを製造する方法、および当該温度検知水性インクを用いた温度インジケータを提供することにある。
 (I)本発明の一態様は、温度検知粒子が水系分散媒中に分散したインクであって、
前記温度検知粒子は、ロイコ染料、顕色剤および消色剤を含む温度検知材料と、界面活性剤とを含むことを特徴とするインク、を提供するものである。
 本発明は、上記のインク(I)において、以下のような改良や変更を加えることができる。
(i)前記温度検知粒子は、前記消色剤のマトリックス中に前記ロイコ染料および前記顕色剤が分散した前記温度検知材料の微粒子の周りを、前記界面活性剤が被覆している。
(ii)前記温度検知粒子は、前記界面活性剤が該温度検知粒子の内部にも存在している。
(iii)前記温度検知粒子の中位径が0.1μm以上100μm以下である。
(iv)前記温度検知水性インクは添加剤を更に含む。
(v)前記添加剤は水溶性樹脂バインダ、導電剤および/またはレベリング剤である。
(vi)前記温度検知水性インクは、互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、前記複数種の温度検知粒子のそれぞれは、所定の温度以下になると顕色する低温側検知タイプの温度検知材料を含む温度検知粒子である。
(vii)前記温度検知水性インクは、互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、前記複数種の温度検知粒子のそれぞれは、所定の温度以上になると顕色する高温側検知タイプの温度検知材料を含む温度検知粒子である。
(viii)前記温度検知水性インクは、互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、前記複数種の温度検知粒子は、所定の温度以下になると顕色する低温側検知タイプの温度検知材料を含む温度検知粒子と、所定の温度以上になると顕色する高温側検知タイプの温度検知材料を含む温度検知粒子との両方を含む。
 (II)本発明の他の一態様は、上記のインクの製造方法であって、
前記ロイコ染料と前記顕色剤と前記消色剤とを混合、溶融、固化させて前記温度検知材料を調製する温度検知材料調製工程と、
前記温度検知材料と前記界面活性剤の溶液とを加熱攪拌混合して温度検知材料/界面活性剤の乳濁液を用意する乳濁液用意工程と、
加熱した前記乳濁液と加熱した前記水系分散媒とを攪拌混合した後に、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意する懸濁液用意工程と、
を有することを特徴とするインクの製造方法、を提供するものである。
 本発明は、上記のインクの製造方法(II)において、以下のような改良や変更を加えることができる。
(ix)前記懸濁液用意工程の後に、前記懸濁液に添加剤を混合する添加剤混合工程を更に有する。
(x)前記温度検知材料調製工程は、前記温度検知材料を塊状から粒状にする粉砕プロセスを含む。
 (III)本発明の更に他の一態様は、印刷基材上に所定のインクによるマーカーが印刷された温度インジケータであって、
前記所定のインクが、上記のインクであることを特徴とする温度インジケータ、を提供するものである。
 本発明によれば、安定性に優れる温度検知水性インク、当該温度検知水性インクを製造する方法、および当該温度検知水性インクを用いた温度インジケータを提供することができる。
温度検知材料およびその色変化の原理を示す模式図であり、(a)は消色状態を表し、(b)は顕色状態を表す。 高温側検知タイプの温度検知材料の色変化の様子を示す模式図である。 低温側検知タイプの温度検知材料の色変化の様子を示す模式図である。 本発明に係る温度検知水性インクの構成例を示す模式図である。 温度検知粒子の一例を示す断面模式図である。 温度検知粒子の他の一例を示す断面模式図である。 本発明に係る温度検知インクの製造方法の一例を示す工程図である。 実施例1の温度検知水性インクを用いた温度インジケータにおける印刷文字の色変化の様子を示す写真である。
 以下、本発明の実施形態について図面を参照しながら、より具体的に説明する。本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。なお、同義の物質や工程(差異が小さい場合を含む)に対しては、同じ符号を付すことがある。
 [温度検知材料およびその色変化]
 はじめに、本発明で用いる温度検知材料およびその色変化について、簡単に説明する。図1は、温度検知材料およびその色変化の原理を示す模式図であり、(a)は消色状態を表し、(b)は顕色状態を表す。
 温度検知材料4は、温度変化(昇温/降温)により色濃度が可逆的に変化する材料であり、図1に示すように、電子供与性化合物であるロイコ染料1、電子受容性化合物である顕色剤2、および変色の温度範囲を制御するための消色剤3を含む。消色剤3中で、ロイコ染料1と顕色剤2とが分離して分散した状態が消色状態であり(図1(a)参照)、消色剤3が結晶化すると共にロイコ染料1と顕色剤2とが結合した状態が顕色状態となる(図1(b)参照)。
 つぎに、図2~3を用いて温度検知材料4の温度と色変化との関係を簡単に説明する。図2は、高温側検知タイプの温度検知材料の色変化の様子を示す模式図であり、図3は、低温側検知タイプの温度検知材料の色変化の様子を示す模式図である。図2~3において、縦軸は色濃度、横軸は温度であり、Taは顕色開始温度、Tdは消色開始温度である。
 高温側検知タイプの温度検知材料4では、消色剤3として結晶化しにくい材料を用いることが好ましい。高温側検知タイプの温度検知材料4は、溶融状態(ロイコ染料1と顕色剤2とが分離した消色状態)である温度Mから顕色開始温度Ta以下に急冷させた場合、消色剤3が非晶質状態で固化し、ロイコ染料1と顕色剤2とが分離した状態(すなわち消色状態)で凍結される。
 図2に示したように、この凍結状態から徐々に昇温していくと、顕色開始温度Taで消色剤3が結晶化し始め、結晶化のための分子の再配列に伴ってロイコ染料1と顕色剤2とが結合して顕色する。顕色状態は、消色剤3が結晶化している間は維持される。更に温度が上昇すると、消色開始温度Tdで消色剤3の結晶が溶融し始め、ロイコ染料1と顕色剤2とが分離して消色する。すなわち、色濃度変化は温度変化に対してヒステリシスを示す。
 このような色変化の性質を利用すると、顕色開始温度Taが温度管理対象物の管理上限温度となるように調製した高温側検知タイプの温度検知材料4を用いることによって、色変化の有無(顕色の有無)から温度管理対象物の温度が管理上限温度に達したか否かを検知することができる。
 一方、低温側検知タイプの温度検知材料4では、消色剤3として固化しにくい材料(過冷却液相を維持し易い材料)を用いることが好ましい。低温側検知タイプの温度検知材料4は、溶融状態である温度Mからゆっくり冷却した場合、消色剤3が過冷却液相となって消色状態(ロイコ染料1と顕色剤2とが分離した状態)を維持する。
 図3に示したように、この過冷却液相状態から更に冷却していくと、顕色開始温度Taで消色剤3が結晶化し始め、結晶化のための分子の再配列に伴ってロイコ染料1と顕色剤2とが結合して顕色する。その後、温度が上昇したとしても、消色剤3が結晶化している間は顕色状態が維持される。更に温度が上昇すると、消色開始温度Tdで消色剤3の結晶が溶融し始め、ロイコ染料1と顕色剤2とが分離して消色する。すなわち、色濃度変化は温度変化に対してヒステリシスを示す。
 このような色変化の性質を利用すると、顕色開始温度Taが温度管理対象物の管理下限温度となるように調製した低温側検知タイプの温度検知材料4を用いることによって、色変化の有無(顕色の有無)から温度管理対象物の温度が管理下限温度に達したか否かを検知することができる。
 [温度検知水性インク]
 つぎに、本発明の一実施形態に係る温度検知水性インクについて説明する。
 図4は、温度検知水性インクの構成例を示す模式図である。図4に示したように、温度検知水性インク100は、水系分散媒20と、水系分散媒中に分散した温度検知粒子10および/または11とを含み、温度検知粒子10,11が、ロイコ染料1、顕色剤2および消色剤3を含む温度検知材料4と、界面活性剤5とを含むものである。温度検知水性インク100は、用途に応じて要求される諸特性を満たすために、各種添加剤(例えば、水溶性樹脂バインダ30や他の添加剤40)を更に含んでもよい。
 印刷容易性および印刷品質の観点から、温度検知水性インク100中の温度検知粒子10,11の含有率は、5質量%以上20質量%以下が好ましい。インク中の温度検知粒子の含有率を5質量%以上とすることで、印字物の発色性が高くなり印字物の視認性が向上する。インク中の温度検知粒子の含有率を20質量%以下とすることにより、温度検知粒子の凝集を抑制できる。インクジェットプリンティングの場合は、5質量%以上10質量%以下がより好ましい。
 また、温度検知水性インク100中の水溶性樹脂バインダ30の含有率は、1質量%以上30質量%以下が好ましく、1質量%以上15質量%以下がより好ましい。インク中の水溶性樹脂バインダの含有率を1質量%以上とすることにより、印刷物の耐擦性が向上し、印刷物の剥離を抑制できる。インク中の水溶性樹脂バインダの含有率を30質量%以下とすることにより、インク粘度の上昇を抑制し、より安定した印刷を可能とする。
 温度検知水性インク100は、1つの顕色開始温度Ta(所定の温度以上になると顕色する、または所定の温度以下になると顕色する)に限定されるものではなく、複数の顕色開始温度Taを示すように互いに異なる顕色開始温度Taを有する複数種の温度検知粒子10,11を含んでもよい。言い換えると、本発明の温度検知水性インク100は、温度検知粒子10,11のそれぞれが界面活性剤5で被覆されて独立していることから、複数種の温度検知粒子を混合しても化学的に相互干渉しない(互いに異なる顕色開始温度Taを示す)という利点がある。
 例えば、所定の温度以上になると顕色する高温側検知タイプの温度検知材料4を含む温度検知粒子を2種類以上含ませると、2以上の温度を検知することができ、高温側の温度検知分解能が向上する。同様に、所定の温度以下になると顕色する低温側検知タイプの温度検知材料4を含む温度検知粒子を2種類以上含ませると、低温側の温度検知分解能が向上する。また、高温側検知タイプの温度検知材料4を含む温度検知粒子と、低温側検知タイプの温度検知材料4を含む温度検知粒子との両方を含ませると、上限温度と下限温度との両方を管理することができる。
 なお、界面活性剤は、必ずしも温度検知粒子の表面を完全に覆っている必要はない。本発明において、「被覆」とは、温度検知粒子の表面の大部分(例えば、全表面の60%以上)を界面活性剤が取り囲んでいること言うものとする。
 また、温度検知粒子10,11は水系分散媒20中に均等に分散していることが最も望ましいが、温度検知粒子10,11同士がある程度凝集した状態で分散していてもよい。言い換えると、本発明の温度検知水性インク100は、温度検知粒子同士10,11がある程度凝集した状態で水系分散媒20中に分散していることを含むものとする。
 (温度検知粒子)
 図5Aは、温度検知粒子の一例を示す断面模式図であり、図5Bは、温度検知粒子の他の一例を示す断面模式図である。なお、図5Aおよび図5Bは共に消色状態を示している。図5Aに示したように、温度検知粒子10は、消色剤3のマトリックス中にロイコ染料1および顕色剤2が分散した温度検知材料4の微粒子の周りを、界面活性剤5が被覆している。
 また、図5Bに示したように、温度検知粒子11では、界面活性剤5が、温度検知材料4の微粒子の周りに加えて、温度検知粒子の内部にも存在している。温度検知粒子11は、後述する温度検知水性インク100の製造において、温度検知材料4が微粒子を形成する過程で界面活性剤5を巻き込む、および/または複数個の微細な温度検知粒子10が凝集/合体することによって得られると考えられる。
 温度検知材料4の微粒子の周りを界面活性剤5が被覆することにより、温度検知水性インク100に調製した際に、温度検知材料4に対する水溶性樹脂バインダ30や添加剤40からの望まない影響(例えば、望まない化学反応)を抑制することが可能になる。
 各種印刷法/印刷装置との適合性の観点や、インクの保存安定性の観点から、温度検知粒子10,11の粒径/粒度分布を調整することが好ましい。温度検知粒子10,11の粒径/粒度分布は、例えば粒度分布測定装置により測定することが可能であり、中位径(メジアン径、D50とも言う)で0.1μm以上100μm以下が好ましく、0.1μm以上10μm以下がより好ましい。インクジェットプリンティングの場合は、ノズルのつまりを抑制するために中位径で0.1μm以上2μm以下が更に好ましい。
 (ロイコ染料)
 温度検知材料4を構成するロイコ染料1は、電子供与性化合物であって、感圧複写紙用や感熱記録紙用の染料として公知のものを利用できる。例えば、トリフェニルメタンフタリド系、フルオラン系、フェノチアジン系、インドリルフタリド系、ロイコオーラミン系、スピロピラン系、ローダミンラクタム系、トリフェニルメタン系、トリアゼン系、スピロフタランキサンテン系、ナフトラクタム系、アゾメチン系のロイコ染料が挙げられる。
 より具体的な例としては、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2-メチル-6-(Np-トリル-N-エチルアミノ)-フルオラン6-(ジエチルアミノ)-2-[(3-トリフルオロメチル)アニリノ]キサンテン-9-スピロ-3’-フタリド、3,3-ビス(p-ジエチルアミノフェニル)-6-ジメチルアミノフタリド、2’-アニリノ-6’-(ジブチルアミノ)-3’-メチルスピロ[フタリド-3,9’-キサンテン]、3-(4-ジエチルアミノ-2-メチルフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、1-エチル-8-[N-エチル-N-(4-メチルフェニル)アミノ]-2,2,4-トリメチル-1,2-ジヒドロスピロ[11H-クロメノ[2,3-g]キノリン-11,3’-フタリド]、が挙げられる。
 2種以上のロイコ染料1を組合せて用いてもよい。
 (顕色剤)
 温度検知材料4を構成する顕色剤2は、電子供与性のロイコ染料1と結合することでロイコ染料1の化学構造を変化させて呈色させるものであり、感圧複写紙用や感熱記録紙用の顕色剤として公知のものを利用できる。また、感圧複写紙用や感熱記録紙用の顕色剤に限定されるものではなく、顕色剤2は、電子受容体でありロイコ染料1を変色させることができる化合物であればよい。
 例えば、カルボン酸誘導体の金属塩、サリチル酸金属塩、サリチル酸金属塩、スルホン酸類、スルホン酸塩類、リン酸類、リン酸金属塩類、酸性リン酸エステル類、酸性リン酸エステル金属塩類、亜リン酸類、亜リン酸金属塩類を好適に用いることができる。ロイコ染料1や後述する消色剤3に対する相溶性が高いものが特に好ましい。
 より具体的な例としては、4-ヒドロキシ安息香酸ベンジル、2,2’-ビフェノール、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、ビスフェノールA、ビスフェノールF、ビス(4-ヒドロキシフェニル)スルフィド、パラオキシ安息香酸エステル、没食子酸エステル、等のフェノール類や1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、α,α,α’-トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン、が挙げられる。
 2種以上の顕色剤2を組合せて用いてもよい。複数種の顕色剤2を組合せることにより、ロイコ染料1の顕色時の色濃度を調整できる。ロイコ染料1に対する顕色剤2の混合比率は、所望する色濃度に応じて適宜選択できる。例えば、1重量部のロイコ染料に対して、0.1~100重量部程度の顕色剤2を混合すればよい。
 (消色剤)
 温度検知材料4を構成する消色剤3は、ロイコ染料1と顕色剤2との結合を解離させることが可能な化合物であり、ロイコ染料1と顕色剤2との顕色温度を制御できる化合物でもある。一般的に、ロイコ染料1と顕色剤2とが結合して呈色した状態の温度範囲では、消色剤3は結晶化した固相状態になっている。一方、消色剤3が溶融した液相状態では、ロイコ染料1と顕色剤2との結合を解離させる機能を発揮して消色状態となる。そのため、消色剤3の状態変化温度が顕色温度の制御に対して重要になる。
 消色剤3としては、ロイコ染料1の化学構造を変化させない(すなわち、顕色させない)材料であり、ロイコ染料1と顕色剤2との結合を解離させることができる(ロイコ染料1と顕色剤2との結合力よりも、顕色剤2と消色剤3との結合力の方が大きい)材料が使用される。例えば、ヒドロキシ化合物、エステル化合物、グリセロール化合物、アセテート化合物、ペルオキシ化合物、カルボニル化合物、芳香族化合物、脂肪族化合物、ハロゲン化合物、アミノ化合物、イミノ化合物、N-オキシド化合物、ヒドロキシアミン化合物、ニトロ化合物、アゾ化合物、ジアゾ化合物、アジ化合物、エーテル化合物、油脂化合物、糖化合物、ペプチド化合物、核酸化合物、アルカロイド化合物、ステロイド化合物が挙げられる。
 エステル化合物の具体例としては、ミリスチン酸イソプロピル、セバシン酸ジエチル、アジピン酸ジメチル、デカン酸デシル、フェニルマロン酸ジエチル、フタル酸ジイソブチル、クエン酸トリエチル、フタル酸ベンジルブチル、ニコチン酸メチル、フェニル酢酸2-フェニルエチル、けい皮酸ベンジル、アセト酢酸メチル、こはく酸ジメチル、セバシン酸ジメチル、モノオレイン、ステアリン酸エチル、パルミチン酸メチル、フタル酸ジ-n-オクチル、安息香酸ベンジル、ジエチレングリコールジベンゾアート、プロピオン酸2-フェニルエチル、ステアリン酸ブチル、ミリスチン酸メチル、アントラニル酸メチル、パルミチン酸イソプロピル、4-フルオロ安息香酸エチル、2-ブロモプロピオン酸エチル、トリステアリン、1,3-ジブロモ酪酸エチル、アジピン酸ジメチル、2-パルミチン酸エチル、テレフタル酸ジエチル、ステアリン酸フェニル、アラキジン酸メチル、4-クロロ安息香酸メチル、ドデカン二酸ジメチル、ホルムアミノマロン酸ジエチル、ペンタデカン酸メチル、アラキジン酸エチル、ベンジル酸エチル、フタル酸ジシクロヘキシル、4-アミノ安息香酸イソブチル、4-ヒドロキシ安息香酸ブチル、フマル酸モノエチル、ベンジル酸メチル、フタル酸ジフェニル、安息香酸フェニル、3-ニトロ安息香酸メチル、3-ヒドロキシ-2-ナフトエ酸メチル、くえん酸トリメチル、4-アミノ安息香酸エチル、4-ニトロ安息香酸メチル、安息香酸2-ナフチル、フマル酸ジメチル、アジフェニン塩酸塩、4-ヒドロキシ安息香酸エチル、酪酸ビニル、4-ヨード安息香酸メチル、没食子酸プロピル、1,4-ジアセトキシベンゼン、アリルマロン酸ジエチル、ブロモマロン酸ジエチル、エトキシメチレンマロン酸ジエチル、エチルマロン酸ジエチル、フマル酸ジエチル、マレイン酸ジエチル、マロン酸ジエチル、フタル酸ジエチル、安息香酸エチル、4-(ジメチルアミノ)安息香酸エチル、ニコチン酸エチル、ラウリン酸ベンジル、酢酸ベンジル、フェニル酢酸メチル、酢酸フェニル、こはく酸ジエチル、トリブチリン、メチルマロン酸ジエチル、しゅう酸ジメチル、マロン酸ジベンジル、マレイン酸ジメチル、テレフタルアルデヒド酸メチル、フタル酸ジアリル、ブロモ酢酸ベンジル、フェニルプロピオル酸メチル、安息香酸イソブチル、セバシン酸ジブチル、アジピン酸ジエチル、テレフタル酸ジエチル、フタル酸ジプロピル、アジピン酸ジイソプロピル ソルビタントリステアレート、ソルビタンモノステアレート、ステアリン酸アミド、モノステアリン酸グリセロール、ジステアリン酸グリセロール、アクリル酸ステアリル、フタル酸ジベンジル、ニトロテレフタル酸ジメチル、クマリン-3-カルボン酸エチル、p-ベンジルオキシ安息香酸ベンジル、4-クロロ-3-ニトロ安息香酸メチル、テレフタル酸ジメチル、4-アミノ-2-メトキシ安息香酸メチル、5-アミノイソフタル酸ジメチル、が挙げられる。
 グリセロール化合物の具体例としては、トリカプリン、トリパルミチン、エチレングリコールジベンゾアート、トリオレイン、が挙げられる。アセテート化合物の具体例としては、4-ジアセトキシブタン、1,1-エタンジオールジアセタート、ベンザルジアセタート、1,4-ジアセトキシブタン、ジエチレングリコールジアセタート、ビタミンK4、2,5-ジアセトキシトルエン、1,1-エタンジオールジアセタート、が挙げられる。芳香族化合物の具体例としては、酢酸m-トリル、1,2-ジアセトキシベンゼン、バレタマートブロミド、が挙げられる。アミノ化合物の具体例としては、アントラニル酸エチル、4-アミノ安息香酸ブチル、が挙げられる。イミノ化合物の具体例としては、N-メチルアントラニル酸メチルが挙げられる。ニトロ化合物の具体例としては、4-ニトロ安息香酸エチルが挙げられる。
 ステロイド化合物の具体例としては、コレステロール、コレステリルブロミド、β-エストラジオール、メチルアンドロステンジオール、プレグネノロン、安息香酸コレステロール、酢酸コレステロール、リノール酸コレステロール、パルミチン酸コレステロール、ステアリン酸コレステロール、オレイン酸コレステロール、3-クロロコレステン、ヒドロけい皮酸コレステロール、ラウリン酸コレステロール、酪酸コレステロール、ぎ酸コレステロール、ヘプタン酸コレステロール、ヘキサン酸コレステロール、ミリスチン酸コレステロール、プロピオン酸コレステロール、フェニル酢酸コレステロール、クロロぎ酸コレステロール、2,4-ジクロロ安息香酸コレステロール、ココレステロールオレイルカルボナート、コレステロールアミルカルボナート、コレステロール n-オクチルカルボナート、エストロン、エチニルエストラジオール、エストリオール、安息香酸エストラジオール、α-エストラジオール、17-ヘプタン酸β-エストラジオール、2-メトキシ-β-エストラジオール、アンドロステロン、アビラテロン、デヒドロエピアンドロステロン、デヒドロエピアンドロステロンアセタート、エチステロン、17β-ヒドロキシ-17-メチルアンドロスタ-1,4-ジエン-3-オン、メチルアンドロステンジオール、16-デヒドロプレグネノロンアセタート、11α-ヒドロキシプロゲステロン、17α-ヒドロキシプロゲステロンカプロアート、17α-ヒドロキシプロゲステロンアセタート、酢酸メゲストロール酢酸コルチゾン、コルチゾン、コルテキソロン、デオキシコルチコステロンアセタート、ヒドロコルチゾン、6α-メチルプレドニゾロン、プレドニゾロン、プレドニゾン、β-コレスタノール、コレステロール-5α,6α-エポキシド、ジオスゲニン、エルゴステロール、β-シトステロール、スチグマステロール、β-シトステロールアセタート、が挙げられる。
 2種以上の消色剤3を組合せて用いてもよい。複数種の消色剤3を組合せることにより、変色温度や変色するのに要する時間を調整できる。
 (界面活性剤)
 温度検知粒子10,11を構成する界面活性剤5は、温度検知材料4を水系分散媒20中に分散させるためのものであり、種々のイオン性界面活性剤(陰イオン性、陽イオン性、両性)および種々の非イオン性界面活性剤を利用することができる。
 陰イオン性界面活性剤の例としては、親水基がカルボン酸塩、スルホン酸塩、硫酸エステル型、りん酸エステル型から構成されるものが挙げられる。陽イオン性界面活性剤の例としては、親水基がアミン塩、ピリジニウム塩、ベンジルハライド塩から構成されるものが挙げられる。両性界面活性剤の例としては、親水基がカルボン酸塩、スルホン酸塩、硫酸エステル型、りん酸エステル型から構成されるものが挙げられる。
 また、非イオン性界面活性剤の例としては、親水基がエステル、エチレンオキシド、エーテル、アミンアミド、ソルビトールから構成されるものが挙げられる。
 (水系分散媒)
 本発明の温度検知水性インク100は、温度検知材料の顕色/消色特性への影響を抑制するため、液性としてpH(potential of hydrogen)が6以上8以下に調整されていることが好ましい。温度検知水性インク100が適切な液性に調整されるかぎり水系分散媒20に特段の限定はなく、純水であってもよいし、pH変動を抑制するための水溶液(例えば、緩衝溶液)であってもよい。
 (添加剤)
 (1)水溶性樹脂バインダ
 温度検知水性インク100は、粘性の調整ならびに温度インジケータ基材への温度検知粒子10,11の固着を助けるため、水溶性樹脂バインダ30を含むことが好ましい。水溶性樹脂バインダ30としては、例えば、アクリル樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル、ポリエチレンオキサイド、スチレン・マレイン酸、ポリビニルアルコール、ポリアクリルアミド、を好適に用いることができる。温度検知水性インク100中の水溶性樹脂バインダ30の含有率は、1質量%以上30質量%以下が好ましく、1質量%以上15質量%以下がより好ましい。
 (2)導電剤
 温度検知水性インクを帯電制御式インクジェットプリンタに適用する場合、印刷制御性の観点から、インクの電気抵抗率を2000Ωcm以下に調整することが望ましい。本発明の温度検知水性インク100は、電気抵抗率を調整するために、他の添加剤40として導電剤を含んでもよい。
 ここで用いる導電剤は、水系分散媒20に溶解する必要があることから、水溶性の塩が好ましく、例えば、硝酸塩、過塩素酸塩、テトラフェニルホウ酸塩、アンモニウムイオンの塩を好適に利用できる。より具体的な例としては、硝酸リチウム、硝酸ナトリウム、硝酸アンモニウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸アンモニウム、テトラフェニルホウ酸リチウム、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸アンモニウム、が挙げられる。
 (3)レベリング剤
 本発明の温度検知水性インク100は、印刷品質を調整するために、他の添加剤40としてレベリング剤を含んでもよい。
 (温度検知水性インクの製造方法)
 つぎに、本発明に係る温度検知水性インク100の製造方法について説明する。
 図6は、本発明に係る温度検知インクの製造方法の一例を示す工程図である。図6に示したように、まず、所望の顕色開始温度Taおよび消色開始温度Tdとなるようにロイコ染料と顕色剤と消色剤とを混合、溶融、固化させて温度検知材料4を調製する温度検知材料調製工程(S1)を行う。溶融は、150~250℃の温度範囲で行うことが好ましい。
 調整した温度検知材料4は、塊状のままで次工程に利用することもできるが、塊状のものを粉砕して粒状にしてもよい。当該粉砕プロセスは必須のプロセスではないが、次工程をスムーズに進行させる観点で好ましい。温度検知材料調製工程S1は、粉砕プロセスを含めるものとする。
 つぎに、温度検知材料4と界面活性剤5の溶液とを加熱攪拌混合して温度検知材料/界面活性剤の乳濁液6を用意する乳濁液用意工程(S2)を行う。「温度検知材料:界面活性剤」の質量比率は、「1:1」~「1:5」が好ましく、加熱攪拌混合は、温度検知材料4が液滴となる温度範囲(例えば、80~100℃)で行うことが好ましい。また、攪拌速度によって温度検知材料4の液滴のサイズを調整することができる。言い換えると、温度検知材料4の液滴のサイズ(後の温度検知粒子10,11のサイズ)を制御するために、攪拌速度を制御する。
 つぎに、温度検知材料4が液滴となる温度範囲に加熱した乳濁液6と該温度範囲に加熱した水系分散媒20とを攪拌混合した後に、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液7を用意する懸濁液用意工程(S3)を行う。水系分散媒20は、前述したように、pHが6~8に調整されていることが好ましく、純水であってもよいし緩衝溶液であってもよい。水系分散媒20の混合量は、「乳濁液:水系分散媒」の質量比率が「1:5」~「1:10」となるようにすることが好ましい。乳濁液6と水系分散媒20との混合方法は、乳濁液6に水系分散媒20を注入してもよいし、水系分散媒20に乳濁液6を注入してもよい。
 懸濁液用意工程S3において、乳濁液6と水系分散媒20とを混合すると、温度検知材料4が疎水性であることから、温度検知材料4の液滴の周りを界面活性剤5が被覆したかたちで水系分散媒20中に分散した状態の乳濁液になる。この乳濁液を冷却すると、温度検知材料4の液滴が固化し、温度検知粒子10,11が水系分散媒20中に分散した状態の懸濁液7が得られる。
 つぎに、懸濁液7に各種添加剤(水溶性樹脂バインダ30、導電剤および/またはレベリング剤)を混合する添加剤混合工程(S4)を行う。添加剤混合工程S4は、必須の工程ではないが、インクとしての印刷制御性や印刷品質を調整する観点から、行うことが好ましい。これにより、温度検知水性インク100が完成する。
 なお、図6中には示していないが、互いに異なる顕色開始温度を有する複数種の温度検知粒子を含む温度検知水性インクを製造する場合には、別々に用意した懸濁液7または温度検知水性インク100を適宜混合すればよい。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 [実験1]
 (実施例1の作製)
 ロイコ染料として2’-アニリノ-6’-(N-エチル-N-イソペンチルアミノ)-3’-メチルスピロ[フタリド-3,9’-[9H]キサンテン](山田化学工業株式会社製、S-205)を用いた。顕色剤として没食子酸オクチル(東京化成工業株式会社製)を用いた。消色剤としては、p-トルイル酸メチル(東京化成工業株式会社製)とフェニル酢酸2-フェニルエチル(東京化成工業株式会社製)とを質量比「9:1」で混合したものを用いた。
 ロイコ染料:顕色剤:消色剤を質量比「3:3:100」で混合し、190℃で溶融攪拌した後、固化させて塊状の温度検知材料を調整した。得られた塊を乳鉢で手動粉砕して粒状の温度検知材料を用意した(温度検知材料調製工程S1)。この温度検知材料は、室温(25℃)に維持されている環境では消色(無色)状態であるが、一旦4℃以下に冷却すると黒色に顕色する温度検知材料である。
 用意した温度検知材料0.5 gと界面活性剤(花王株式会社製、デモール(登録商標)EP)2 gとを秤量し、マグネチックスターラを用いて加熱攪拌混合して(95℃、600 rpm、10分間)温度検知材料/界面活性剤の乳濁液を用意した(乳濁液用意工程S2)。
 つぎに、95℃の乳濁液と95℃に加熱したリン酸緩衝水溶液(濃度0.1 mol/L、pH=7.0、20 g)とを攪拌混合した(95℃、600 rpm、10分間)。その後、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意した(懸濁液用意工程S3)。
 懸濁液用意工程S3において、乳濁液とリン酸緩衝水溶液(水系分散媒)とを攪拌混合すると、温度検知材料は、疎水性であることから界面エネルギーを極小化するために球状液滴になろうとし、該液滴の周りを界面活性剤が被覆したかたちでリン酸緩衝水溶液中に分散した状態の乳濁液になる。その乳濁液を冷却すると、温度検知材料の液滴が固化して球状の温度検知粒子がリン酸緩衝水溶液中に分散した状態の懸濁液となる。
 得られた懸濁液の温度検知粒子の粒度分布を、粒度分布測定装置(ベックマン・コールター株式会社製、型式LS-230)を用いて測定したところ、中位径が約1μmであることを確認した。
 つぎに、得られた懸濁液に水溶性樹脂バインダを混合して、実施例1の温度検知水性インクを作製した(添加剤混合工程S4)。水溶性樹脂バインダとしてはポリビニルアルコール(PVA)を用い、温度検知水性インク中の水溶性樹脂バインダの含有率が5質量%となるように混合した。
 (実施例1の評価)
 実施例1の温度検知水性インクを用いて温度インジケータを作製し、印刷性および温度検知性の確認実験を行った。印刷装置として市販のDOD(Drop On Demand)方式のインクジェットプリンタを用い、印刷基材としては市販のアート紙を用いた。作製した温度インジケータに対して温度変化試験(25℃で10分間保持後、4℃に冷却)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、4℃に冷却した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。
 図7は、実施例1の温度検知水性インクを用いた温度インジケータにおける印刷文字の色変化の様子を示す写真である。図7に示したように、25℃保持では無色で印刷文字を識別できないが、4℃冷却では顕色して印刷文字を識別できる。すなわち、実施例1は「合格」と評価される。実施例1の温度検知水性インクの成分および評価結果を、後述する表1にまとめる。
 [実験2]
 (比較例1の作製と評価)
 実施例1と同様にして、粒状の温度検知材料を用意した。その後、ジェットミルを用いて粒状の温度検知材料を粉砕し、粉末状の温度検知材料を用意した。得られた粉末状の温度検知材料の粒度分布を、粒度分布測定装置を用いて測定したところ、中位径が約2μmであることを確認した。
 つぎに、95℃に加熱したリン酸緩衝水溶液(濃度0.1 mol/L、pH=7.0、22 g)に粉末状の温度検知材料0.5 gを投入、攪拌混合して(95℃、600 rpm、20分間)乳濁液を形成した後、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意した。
 つぎに、得られた懸濁液に水溶性樹脂バインダを混合して、比較例1の温度検知水性インクを作製した。水溶性樹脂バインダとしてはポリビニルアルコールを用い、温度検知水性インク中の水溶性樹脂バインダの含有率が5質量%となるように混合した。
 つぎに、比較例1の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製した。作製した温度インジケータに対して実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行った。その結果、25℃保持および4℃冷却ともに無色状態であり、印刷文字について温度変化による明瞭な消色、顕色の変化が見られなかった。すなわち、比較例1は「不合格」と評価された。比較例1の温度検知水性インクの成分および評価結果を、表1に併記する。
 温度検知粒子自体の健全性をチェックするために、比較例1の温度検知水性インクを印刷基材上に筆塗りした後、実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行った。その結果、25℃保持および4℃冷却ともに無色状態であったが、印刷基材上に温度検知粒子が塗布されていることは確認した。
 温度変化に対して顕色しなかった要因を考察すると、ジェトミルによる物理粉砕プロセスにより、温度検知粒子自体が劣化した可能性が考えられる。
 [実験3]
 (実施例2の作製と評価)
 添加剤混合工程S4において、温度検知水性インク中の導電剤の含有率が5質量%となるように硝酸リチウムを混合したこと以外は実施例1と同様にして、実施例2の温度検知水性インクを作製した。
 つぎに、実施例2の温度検知水性インクを用いて温度インジケータを作製した。印刷装置として市販の帯電制御方式のインクジェットプリンタを用い、印刷基材としては市販のアート紙を用いた。作製した温度インジケータに対して実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行った。その結果、実施例2は「合格」と評価された。実施例2の温度検知水性インクの成分および評価結果を、表1に併記する。
 [実験4]
 (実施例3,4の作製と評価)
 乳濁液用意工程S2において、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例1と同様にして、実施例3の温度検知水性インクを作製し、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例2と同様にして、実施例4の温度検知水性インクを作製した。
 実施例3の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例4の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
 作製した温度インジケータに対して実施例1と同様の温度変化試験(25℃で10分間保持後、4℃に冷却)を行い、印刷文字の色変化を目視で確認した。その結果、実施例3,4ともに「合格」と評価された。実施例3,4の温度検知水性インクの成分および評価結果を、表1に併記する。
 [実験5]
 (実施例5,6の作製と評価)
 ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製、クリスタルバイオレットラクトン:CVL)を用い、顕色剤として没食子酸オクチルを用い、消色剤としてビタミンK4(東京化成工業株式会社製)を用いた。
 温度検知材料調製工程S1として、ロイコ染料:顕色剤:消色剤を質量比「2:2:100」で混合し、180℃で溶融攪拌した後、固化させて塊状の温度検知材料を調整した。得られた塊を乳鉢で手動粉砕して粒状の温度検知材料を用意した。この温度検知材料は、25℃に維持されている環境では無色状態であるが、一旦40℃以上に加熱すると青色に顕色する温度検知材料である。
 つぎに、乳濁液用意工程S2として、温度検知材料0.5 gと界面活性剤(花王株式会社製、デモール(登録商標)EP)2.5 gとを秤量し、マグネチックスターラを用いて加熱攪拌混合して(95℃、600 rpm、10分間)温度検知材料/界面活性剤の乳濁液を用意した。
 つぎに、懸濁液用意工程S3として、95℃の乳濁液と95℃に加熱したリン酸緩衝水溶液(濃度0.1 mol/L、pH=7.0、20 g)とを攪拌混合した(95℃、600 rpm、10分間)。その後、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意した。得られた懸濁液の温度検知粒子の粒度分布を、粒度分布測定装置を用いて測定したところ、中位径が約1.5μmであることを確認した。
 つぎに、添加剤混合工程S4において、実施例1と同様にして実施例5の温度検知水性インクを作製し、実施例2と同様にして実施例6の温度検知水性インクを作製した。
 実施例5の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例6の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
 作製した温度インジケータに対して温度変化試験(25℃で10分間保持後、40℃に加熱)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、40℃に加熱した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。その結果、実施例5,6ともに「合格」と評価された。実施例5,6の温度検知水性インクの成分および評価結果を、表1に併記する。
 [実験6]
 (実施例7,8の作製と評価)
 乳濁液用意工程S2において、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例5と同様にして、実施例7の温度検知水性インクを作製し、界面活性剤として花王株式会社製のデモールNLを使用した以外は実施例2と同様にして、実施例8の温度検知水性インクを作製した。
 実施例7の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例8の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
 作製した温度インジケータに対して実施例5と同様の温度変化試験(25℃で10分間保持後、40℃に加熱)を行い、印刷文字の色変化を目視で確認した。その結果、実施例7,8ともに「合格」と評価された。実施例7,8の温度検知水性インクの成分および評価結果を、表1に併記する。
 [実験7]
 (実施例9,10の作製と評価)
 消色剤としてビタミンK4(東京化成工業株式会社製)と没食子酸プロピル(東京化成工業株式会社製)とを質量比「1:1」で混合したものを用いたこと以外は、実施例5と同様にして粒状の温度検知材料を用意した。この温度検知材料は、25℃に維持されている環境では無色状態であるが、一旦50℃以上に加熱すると青色に顕色する温度検知材料である。
 つぎに、乳濁液用意工程S2および懸濁液用意工程S3において、実施例5と同様にして温度検知粒子/水系分散媒の懸濁液を用意した。得られた懸濁液の温度検知粒子の粒度分布を、粒度分布測定装置を用いて測定したところ、中位径が約1.5μmであることを確認した。
 つぎに、添加剤混合工程S4において、実施例1と同様にして実施例9の温度検知水性インクを作製し、実施例2と同様にして実施例10の温度検知水性インクを作製した。
 実施例9の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例10の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
 作製した温度インジケータに対して温度変化試験(25℃で10分間保持後、50℃に加熱)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、50℃に加熱した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。その結果、実施例9,10ともに「合格」と評価された。実施例9,10の温度検知水性インクの成分および評価結果を、表1に併記する。
 [実験8]
 (実施例11,12の作製と評価)
 乳濁液用意工程S2において、界面活性剤として花王株式会社製のデモール(登録商標)NLを使用した以外は実施例5と同様にして、実施例11の温度検知水性インクを作製し、界面活性剤として花王株式会社製のデモールNLを使用した以外は実施例2と同様にして、実施例12の温度検知水性インクを作製した。
 実施例11の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例12の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
 作製した温度インジケータに対して実施例9と同様の温度変化試験(25℃で10分間保持後、50℃に加熱)を行い、印刷文字の色変化を目視で確認した。その結果、実施例11,12ともに「合格」と評価された。実施例11,12の温度検知水性インクの成分および評価結果を、表1に併記する。
 [実験9]
 (実施例13,14の作製と評価)
 実施例1の温度検知水性インクと実施例9の温度検知水性インクとを質量比「1:1」で混合して実施例13の温度検知水性インクを調整した。また、実施例4の温度検知水性インクと実施例12の温度検知水性インクとを質量比「1:1」で混合して実施例14の温度検知水性インクを調整した。
 実施例13、14の温度検知水性インクは、それぞれ2種類の温度検知材料が含まれることから、25℃に維持されている環境では無色状態であるが、一旦4℃以下に冷却すると黒色に顕色し、一旦50℃以上に加熱すると青色に顕色する温度検知水性インクとなる。
 実施例13の温度検知水性インクを用いて実施例1と同様にして温度インジケータを作製し、実施例14の温度検知水性インクを用いて実施例2と同様にして温度インジケータを作製した。
 作製した温度インジケータに対して温度変化試験(25℃で10分間保持、4℃に冷却、その後50℃に加熱)を行い、印刷文字の色変化を目視で確認した。25℃保持の時に無色で、4℃に冷却した時および50℃に加熱した時に顕色して印刷文字を識別できた場合を「合格」と評価し、それ以外を「不合格」と評価した。その結果、実施例13,14は「合格」と評価された。実施例13,14の温度検知水性インクの成分および評価結果を、表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成による置換・他の構成の追加をすることが可能である。
 1…ロイコ染料、2…顕色剤、3…消色剤、4…温度検知材料、5…界面活性剤、
 10,11…温度検知粒子、20…水系分散媒、30…水溶性樹脂バインダ、40…他の添加剤、
 100…温度検知水性インク。

Claims (13)

  1.  ロイコ染料、顕色剤および消色剤を含む温度検知材料と、界面活性剤と含む温度検知粒子と、水系分散媒と、を含むことを特徴とするインク。
  2.  請求項1に記載のインクにおいて、
    前記温度検知粒子は、前記消色剤のマトリックス中に前記ロイコ染料および前記顕色剤が分散した前記温度検知材料の微粒子の周りを、前記界面活性剤が被覆している、ことを特徴とするインク。
  3.  請求項2に記載のインクにおいて、
    前記界面活性剤は、前記温度検知粒子の内部にも存在している、ことを特徴とするインク。
  4.  請求項1乃至請求項3のいずれか一項に記載のインクにおいて、
    前記温度検知粒子の中位径が0.1μm以上100μm以下である、ことを特徴とするインク。
  5.  請求項1乃至請求項4のいずれか一項に記載のインクにおいて、
    前記インクは添加剤を更に含む、ことを特徴とするインク。
  6.  請求項5に記載のインクにおいて、
    前記添加剤は水溶性樹脂バインダ、および/または導電剤、レベリング剤である、ことを特徴とするインク。
  7.  請求項1乃至請求項6のいずれか一項に記載のインクにおいて、
    互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、
    前記複数種の温度検知粒子のそれぞれは、所定の温度以下になると顕色する、ことを特徴とするインク。
  8.  請求項1乃至請求項6のいずれか一項に記載のインクにおいて、
    互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、
    前記複数種の温度検知粒子のそれぞれは、所定の温度以上になると顕色する、ことを特徴とするインク。
  9.  請求項1乃至請求項6のいずれか一項に記載のインクにおいて、
    互いに異なる顕色開始温度を有する複数種の前記温度検知粒子を含み、
    前記複数種の温度検知粒子は、所定の温度以下になると顕色する温度検知粒子と、所定の温度以上になると顕色する温度検知粒子との両方を含む、ことを特徴とするインク。
  10.  請求項1乃至請求項9のいずれか一項に記載のインクの製造方法であって、前記ロイコ染料と前記顕色剤と前記消色剤とを混合、溶融、固化させて前記温度検知材料を調製する温度検知材料調製工程と、
    前記温度検知材料と前記界面活性剤の溶液とを加熱攪拌混合して温度検知材料/界面活性剤の乳濁液を用意する乳濁液用意工程と、
    加熱した前記乳濁液と加熱した前記水系分散媒とを攪拌混合した後に、攪拌しながら室温まで冷却して温度検知粒子/水系分散媒の懸濁液を用意する懸濁液用意工程と、
    を有することを特徴とするインクの製造方法。
  11.  請求項10に記載のインクの製造方法において、
    前記懸濁液用意工程の後に、前記懸濁液に添加剤を混合する添加剤混合工程を更に有することを特徴とするインクの製造方法。
  12.  請求項10又は請求項11に記載のインクの製造方法において、
    前記温度検知材料調製工程は、前記温度検知材料を塊状から粒状にする粉砕プロセスを含むことを特徴とするインクの製造方法。
  13.  印刷基材上にインクによるマーカーが印刷された温度インジケータであって、
    前記インクが、請求項1乃至請求項9のいずれか一項に記載のインクであることを特徴とする温度インジケータ。
PCT/JP2020/015444 2019-09-25 2020-04-06 インク、該インクの製造方法、および該インクを用いた温度インジケータ WO2021059568A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173988A JP7297624B2 (ja) 2019-09-25 2019-09-25 インク、該インクの製造方法、および該インクを用いた温度インジケータ
JP2019-173988 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021059568A1 true WO2021059568A1 (ja) 2021-04-01

Family

ID=75157079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015444 WO2021059568A1 (ja) 2019-09-25 2020-04-06 インク、該インクの製造方法、および該インクを用いた温度インジケータ

Country Status (2)

Country Link
JP (1) JP7297624B2 (ja)
WO (1) WO2021059568A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247807A (ja) * 1999-12-28 2001-09-14 Zebra Pen Corp 溶剤又は加熱による消色性組成物を利用した水性ボールペン用インキ組成物
JP2001271016A (ja) * 2000-03-27 2001-10-02 Dainichiseika Color & Chem Mfg Co Ltd 可消色性水性着色剤及びそれを用いる筆記具
JP2003176419A (ja) * 2001-08-21 2003-06-24 Fuji Photo Film Co Ltd 熱応答消色性着色組成物及びこれを用いた熱応答消色性着色要素並びに熱履歴の検出方法
JP2012180412A (ja) * 2011-02-28 2012-09-20 Pentel Corp 不可逆性熱変色水性インキ組成物
CN104087064A (zh) * 2014-01-26 2014-10-08 王勇 热消墨水
US20160376458A1 (en) * 2015-06-26 2016-12-29 Dong-A Pencil Co., Ltd. Thermochromic micro particles and thermochromic ink composition, writing apparatus and smart window using the same
JP2019127498A (ja) * 2018-01-22 2019-08-01 株式会社日立製作所 温度検知インク、温度検知インクの初期化方法、温度インジケータ、および物品管理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247807A (ja) * 1999-12-28 2001-09-14 Zebra Pen Corp 溶剤又は加熱による消色性組成物を利用した水性ボールペン用インキ組成物
JP2001271016A (ja) * 2000-03-27 2001-10-02 Dainichiseika Color & Chem Mfg Co Ltd 可消色性水性着色剤及びそれを用いる筆記具
JP2003176419A (ja) * 2001-08-21 2003-06-24 Fuji Photo Film Co Ltd 熱応答消色性着色組成物及びこれを用いた熱応答消色性着色要素並びに熱履歴の検出方法
JP2012180412A (ja) * 2011-02-28 2012-09-20 Pentel Corp 不可逆性熱変色水性インキ組成物
CN104087064A (zh) * 2014-01-26 2014-10-08 王勇 热消墨水
US20160376458A1 (en) * 2015-06-26 2016-12-29 Dong-A Pencil Co., Ltd. Thermochromic micro particles and thermochromic ink composition, writing apparatus and smart window using the same
JP2019127498A (ja) * 2018-01-22 2019-08-01 株式会社日立製作所 温度検知インク、温度検知インクの初期化方法、温度インジケータ、および物品管理システム

Also Published As

Publication number Publication date
JP2021050276A (ja) 2021-04-01
JP7297624B2 (ja) 2023-06-26

Similar Documents

Publication Publication Date Title
CN109154528B (zh) 温度历史显示体及使用其的物品品质管理方法
EP3730911B1 (en) Temperature sensing material, and temperature deviation time estimating system employing same
JP7022516B2 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、および物品管理システム
JP7115987B2 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、温度検知材料の製造方法、及び物品管理システム
EP3745106B1 (en) Temperature detection ink, temperature detection ink initialization method, temperature indicator, and article management system
CN108139279B (zh) 温度检测体
CN111433577B (zh) 温度检测标签和使用该温度检测标签的物品管理装置
WO2021059568A1 (ja) インク、該インクの製造方法、および該インクを用いた温度インジケータ
JP7220528B2 (ja) 温度検知インク
JP7174590B2 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、及び物品管理システム
JP2022052104A (ja) インク、該インクの製造方法、および該インクを用いた温度インジケータ
JP2020008384A5 (ja)
JP2020032649A (ja) 感熱塗料及びそれを用いたレーザーマーキング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867793

Country of ref document: EP

Kind code of ref document: A1