WO2021057125A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021057125A1
WO2021057125A1 PCT/CN2020/097377 CN2020097377W WO2021057125A1 WO 2021057125 A1 WO2021057125 A1 WO 2021057125A1 CN 2020097377 W CN2020097377 W CN 2020097377W WO 2021057125 A1 WO2021057125 A1 WO 2021057125A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
optical module
electrically connected
laser
pin
Prior art date
Application number
PCT/CN2020/097377
Other languages
English (en)
French (fr)
Inventor
孙飞龙
周小军
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910916710.1A external-priority patent/CN112558236A/zh
Priority claimed from CN201921615934.0U external-priority patent/CN211348740U/zh
Priority claimed from CN201910916720.5A external-priority patent/CN112558237A/zh
Priority claimed from CN201921615518.0U external-priority patent/CN211375138U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021057125A1 publication Critical patent/WO2021057125A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical module.
  • optical modules In the field of optical fiber communication, the requirements for communication bandwidth are getting higher and higher, making global optical communication in a period of rapid development.
  • optical modules In the field of high-speed data communications, in order to ensure long-distance and high-speed transmission of data, optical modules are usually used to transmit and receive light of different wavelengths.
  • the optical module is usually used for photoelectric conversion, and the optical module is usually a package structure.
  • the optical module is prepared into a package structure to avoid the occurrence of failure of optoelectronic devices due to the action of oxygen and water vapor in a non-airtight environment.
  • optoelectronic devices include: laser chips, backlight detectors and other optoelectronic devices.
  • the embodiment of the present application provides an optical module, including: a circuit board, a tube socket, for carrying devices; a support plate, which is carried by the tube socket; a substrate, which is supported by the support plate, and the surface has a first metal plate formed of a metal material and The second metal plate; the laser chip, carried by the substrate, the anode on the top surface is connected with the surface of the first metal plate; the cathode on the bottom surface is arranged on the surface of the second metal plate to realize electrical connection; the first laser pin penetrates the tube socket One end is electrically connected to the first metal plate, and the other end is electrically connected to the circuit board; the second laser pin penetrates the upper and lower surfaces of the tube base, one end is electrically connected to the second metal plate, and the other end is electrically connected to the circuit board ; The grounding pin does not penetrate the upper and lower surfaces of the tube socket, one end is electrically connected to the tube socket, and the other end is electrically connected to the ground circuit of the circuit board; the grounding capacitor is carried by
  • the embodiment of the application also provides an optical module, which includes a circuit board and a tube socket for carrying devices; a first laser pin penetrates through the upper and lower surfaces of the tube socket, and one end is electrically connected to the circuit board; and a second laser pin penetrates
  • the upper and lower surfaces of the tube holder are electrically connected to the circuit board at one end;
  • the substrate, which is carried by the tube holder has a microstrip resistor on the surface;
  • the laser chip, the anode on the top surface is electrically connected to the first laser pin through the microstrip resistor, and the cathode on the bottom surface is electrically connected to the first laser pin
  • the second laser pin is electrically connected, or the anode on the top surface is electrically connected with the first laser pin, and the cathode on the bottom surface is electrically connected with the second laser pin through a microstrip resistor.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the application.
  • FIG. 5 is a perspective view of a connection relationship between an optical transceiver component and a circuit board provided by an embodiment of the application;
  • FIG. 6 is a top view of the connection relationship between the optical transceiver component and the circuit board provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of an exploded structure of a light emitting component according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a base structure provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another base structure provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another base structure provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of another base structure provided by an embodiment of the application.
  • Figure 12 is the loga (P output/P input)-frequency response curve of the laser chip
  • Figure 13 is the loga (P output/P input)-frequency response curve of the laser chip and optical module
  • FIG. 14 is an S11-frequency response curve of an optical module shown in the prior art and an optical module shown in an embodiment of the present application;
  • 15 is a schematic structural diagram of a base shown in another embodiment of the application.
  • 16 is a schematic structural diagram of a base shown in another embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a base shown in another embodiment of the application.
  • Fig. 19 is an I output/I input-frequency response curve of the energized circuit where the laser chip of this application is located;
  • Figure 20 is a comparison diagram of the response curve of current output/current input-frequency response curve.
  • optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides, and the passive transmission characteristics of light in optical fibers can realize low-cost and low-loss information transmission.
  • information processing equipment such as computers uses electrical signals, which requires mutual conversion between electrical signals and optical signals in the signal transmission process.
  • the optical module implements the above-mentioned photoelectric conversion function in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on the circuit board.
  • the main electrical connections include power supply, I2C signal, data signal transmission and grounding, etc.
  • the electrical connection method realized by the golden finger has become the optical module industry.
  • the standard method, based on this, the circuit board is a necessary technical feature in most optical modules.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of an optical communication terminal mainly includes an optical network unit 100, an optical module 200, an optical fiber 101, and a network cable 103;
  • One end of the optical fiber is connected to the remote server, and the other end of the network cable is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber and the network cable; and the connection between the optical fiber and the network cable is performed by the optical network with the optical module The unit is complete.
  • the optical port of the optical module 200 is connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber; the electrical port of the optical module 200 is connected to the optical network unit 100 to establish a bidirectional electrical signal connection with the optical network unit 100; the optical module 200 realizes The mutual conversion of optical signals and electrical signals realizes the establishment of a connection between the optical fiber and the optical network unit 100; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network unit 100, from the optical network unit 100 The electrical signal of the unit 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical module 200 is a tool for realizing the mutual conversion of photoelectric signals, and does not have the function of processing data. During the foregoing photoelectric conversion process, the information has not changed.
  • the optical network unit 100 has an optical module interface 102, which is used to connect to the optical module and establish a two-way electrical signal connection with the optical module; the optical network unit 100 has a network cable interface 104, which is used to connect to a network cable and establish a two-way electrical signal connection with the network cable
  • the connection between the optical module 200 and the network cable is established through the optical network unit.
  • the optical network unit transmits the signal from the optical module 200 to the network cable, and transmits the signal from the network cable to the optical module.
  • the optical network unit serves as the optical module 200
  • the upper computer monitors the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network units, and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network unit is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG. 2 is a schematic diagram of the optical network unit structure.
  • the optical network unit 100 has a second circuit board 105, and a cage 106 is provided on the surface of the second circuit board 105; an electrical connector is provided in the cage 106 for accessing optical modules such as golden fingers. Electric port; a radiator 107 is provided on the cage 106, and the radiator 107 has a convex structure such as fins to increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network unit, specifically, the electrical port of the optical module is inserted into the electrical connector in the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connectors on the circuit board in the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage. The heat generated by the optical module is conducted to the cage through the optical module housing, and finally passes through the cage.
  • the radiator 107 is diffused.
  • FIG. 3 is a schematic diagram of the structure of an optical module provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of an exploded structure of the optical module provided by an embodiment of the application.
  • the optical module 200 provided by the embodiment of the present application includes an upper housing 201, a lower housing 202, an unlocking handle 203, a first circuit board 300, and an optical transceiver 400;
  • the upper shell 201 and the lower shell 202 form a wrapping cavity with two openings, which can be opened at both ends (204, 205) in the same direction, or at two openings in different directions; one of the openings It is the electrical port 204, which is used to insert into the upper computer such as the optical network unit, and the other opening is the optical port 205, which is used for external optical fiber access to connect the internal optical fiber.
  • the first circuit board 300, optical transceiver device 400 and other optoelectronic devices are located in the package In the cavity.
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; the assembly method of the upper shell and the lower shell is used to facilitate the installation of circuit boards and other components into the shell. Generally, optical modules are not used.
  • the shell is made into an integral structure, so that when assembling circuit boards and other devices, positioning components, heat dissipation and electromagnetic shielding structures cannot be installed, and it is not conducive to production automation.
  • the unlocking handle 203 is located on the outer wall of the wrapping cavity/lower housing 202. Pulling the end of the unlocking handle can make the unlocking handle move relative to the outer wall surface; when the optical module is inserted into the upper computer, the unlocking handle fixes the optical module in the cage of the upper computer , By pulling the unlocking handle to release the engagement relationship between the optical module and the host computer, so that the optical module can be withdrawn from the cage of the host computer.
  • FIG. 5 is a perspective view of the connection relationship between the optical transceiver component and the circuit board provided by this application.
  • the optical transceiver device 400 generally includes an optical receiving sub-module 401 and an optical transmitting sub-module 402.
  • the optical receiving sub-module 401 is connected to the first circuit board 300 through a receiving end pin
  • the optical transmitting sub-module 402 is connected to the first circuit board 300 through a transmitting end pin.
  • the optical receiving sub-module 401 After the optical receiving sub-module 401 receives the optical signal by the corresponding optical fiber adapter, it converts the optical signal into an electrical signal, and then transmits the electrical signal to the second circuit board 105 through the first circuit board 300 (also referred to as the upper Machine), the second circuit board 105 performs a series of processing on the received electrical signal.
  • the optical transmitting sub-module 402 After the optical transmitting sub-module 402 receives the electrical signal, it converts the electrical signal into an optical signal, which is then emitted by the optical fiber adapter corresponding to the optical transmitting module, thereby realizing the conversion of the photoelectric signal. In the signal transmission process, the bare leakage of the receiving end pin or the transmitting end pin in the air will cause serious impedance mismatch.
  • the optical receiving sub-module 401 and the optical transmitting sub-module 401 The sub-module 402 may be connected to the first circuit board 300 through the flexible circuit board 500.
  • FIG. 6 is a top view of the connection relationship between the optical transceiver component and the circuit board provided by an embodiment of the application.
  • the light receiving sub-module 401 is connected to the first circuit board 300 through the first flexible circuit board 501
  • the light emitting sub-module 402 is connected to the first circuit board 300 through the second flexible circuit board 502. It can be seen that in the embodiment shown in FIG. 6 the light receiving sub-module 401 and the light emitting sub-module 402 are respectively connected to the first circuit board through a flexible circuit board.
  • This connection method effectively prevents the long pins from leaking in the air. Cause serious impedance mismatch, cause signal distortion and other problems.
  • the light emitting sub-module 402 is provided with photoelectric devices such as laser chips, backlight detectors and the like. In order to avoid the occurrence of failure of the above-mentioned optoelectronic devices due to the action of oxygen and water vapor in a non-airtight environment.
  • the light emitting sub-module 402 is usually prepared as a package structure.
  • FIG. 7 is a schematic diagram of an exploded structure of a light emitting assembly provided by an embodiment of the application. It can be seen that the light emitting sub-module 402 includes: an optical fiber adapter assembly 4021, an adjusting sleeve 4022, a sealing pipe body 4023, a pipe cap 4024, and a base 4025.
  • the structure of the base 4025 can be seen in FIG. 8.
  • the base 4025 includes: a tube base 1, a supporting plate 2, a substrate 3, optoelectronic devices and a plurality of emitter pins 8.
  • the tube socket 1 and the support plate 2 are arranged perpendicularly.
  • One surface of the support plate 2 is fixedly connected to one surface of the substrate 3, and the other surface of the substrate 3 is used for packaging optoelectronic devices.
  • FIG. 8 is a schematic diagram of the base structure provided by an embodiment of the application.
  • the optoelectronic device is packaged on the optoelectronic device substrate. It is a laser chip. In the actual application process, the optoelectronic device can also be a light receiving chip.
  • the laser chip in FIG. 8 is electrically connected to the emitter pin 8 through gold wire bonding, and the laser chip is electrically connected to the outside through the emitter pin 8.
  • the substrate 3 sealed with the cap 4024 and the base 4025 is packaged into a sealed cavity for carrying the substrate 3 and the laser chip.
  • the tube cap 4024 is connected with the optical fiber adapter assembly 4021 by using a sealed tube body 4023.
  • an adjustment sleeve 4022 may be provided between the sealing tube body 4023 and the optical fiber adapter assembly 4021, and the adjustment sleeve 4022 is used to adjust the position of the optical fiber adapter assembly 4021.
  • the frequency band curve of the laser chip itself may have resonance in a certain frequency range, the problem of insufficient bandwidth occurs when the laser chip is operated in the corresponding frequency range.
  • the base 4025 includes: a tube base 1, a support plate 2, a substrate 3, a laser chip 4, a backlight detector 5, a grounding capacitor 6 and a plurality of emitter pins 8.
  • the socket 1 and the support plate 2 are arranged perpendicularly; the support plate 2 has a first bonding surface 2a; the substrate 3 has a second bonding surface (not shown in the figure) and a first packaging surface 3a which are arranged oppositely, and the second bonding Surface mount on the first bonding surface 2a; the negative electrode of the laser chip 4 is packaged on the first package surface 3a; the backlight detector 5 and the grounding capacitor 6 are mounted on the surface of the base 1, and the light receiving surface of the backlight detector 5 Towards the rear light-emitting surface of the laser chip 4; the grounding capacitor 6 is electrically connected to the laser chip 4.
  • the socket 1 can be made of tungsten copper, copper, silver alloy, gold or ceramics, or other materials with good thermal conductivity.
  • the socket 1 is substantially cylindrical, and has a circular bearing surface 1a and a bottom surface 1b opposite to the bearing surface 1a.
  • the support plate 2 can be made of tungsten copper, copper, silver alloy, gold or ceramics, or other materials with good thermal conductivity. In an embodiment of the present application, the support plate 2 is made of tungsten copper.
  • the supporting plate 2 penetrates through the bearing surface 1a and the bottom surface 1b of the pipe socket 1, and the supporting plate 2 and the pipe socket 1 can be integrally formed, or they can be provided separately.
  • the support plate 2 is roughly a column, specifically, it can be a quadrangular prism or a semi-cylinder. In the actual application process, any column structure that can support the substrate 3 can be used as the support plate 2.
  • the supporting plate 2 is arranged on one side of the center of the pipe socket 1, the supporting plate 2 has a first bonding surface 2 a perpendicular to the bearing surface 1 a, and the first bonding surface 2 a is parallel to the central axis of the pipe socket 1.
  • the substrate 3 may be a ceramic substrate 3 with good thermal conductivity.
  • the material of the ceramic substrate 3 may be aluminum nitride or aluminum oxide or the like.
  • the substrate 3 has a second bonding surface and a first packaging surface 3a that are arranged oppositely.
  • the second bonding surface is used for bonding with the first bonding surface 2a of the support board 2, and the first packaging surface 3a is used for mounting the laser.
  • the substrate 3 and the supporting plate 2 are attached to each other.
  • the supporting plate 2 can support the substrate 3.
  • the heat generated during the operation of the optoelectronic device can be transferred to the support through the substrate 3.
  • the board 2 achieves the effect of increasing the heat dissipation surface and keeps the temperature of the substrate 3 substantially constant, so that the temperature of the optoelectronic device packaged on the substrate 3 is substantially constant.
  • the laser chip 4 is packaged on the first package surface 3 a of the substrate 3.
  • the laser chip 4 may be fixed to the first packaging surface 3a of the substrate 3 by solder or conductive glue.
  • the laser chip 4 mainly includes a semiconductor laser diode, and the semiconductor laser diode is used to emit laser light.
  • the backlight detector 5 is packaged on the bearing surface 1a of the tube socket 1, and the light receiving surface of the backlight detector 5 and the rear light emitting surface of the semiconductor laser diode are directly opposite to each other.
  • the backlight detector 5 may be a side-illuminated InGaAs/InP detector, or a front-side light-in InGaAs/InP detector.
  • the backlight detector 5 is used to sense the power of the laser light emitted by the semiconductor laser diode, so that the magnitude of the current applied to the semiconductor laser diode can be controlled according to the detection result of the backlight detector 5.
  • FIG. 9 is a schematic diagram of another base structure provided by an embodiment of the application. You can continue to refer to FIG. 9.
  • the light emission sub-module 402 also includes a heat sink 7 for supporting the backlight detector 5; the heat sink 7 has a third bonding surface ( (Not shown in the figure) and the second packaging surface 7a; the second packaging surface 7a is arranged obliquely with respect to the third bonding surface; the third bonding surface is mounted on the carrying surface 1a, and the negative electrode of the backlight detector 5 is packaged in the second packaging ⁇ 7a.
  • the heat sink 7 dissipates heat to the backlight detector 5 attached to it, so that the temperature of the backlight detector 5 is kept constant.
  • the second packaging surface 7a of the heat sink 7 is inclined with respect to the third bonding surface to reduce the influence of reflected light on the semiconductor laser diode.
  • the tube cap 4024 is used to cooperate with the base 4025 to seal the bearing surface 1 a of the tube socket 1 and the optoelectronic device mounted on the substrate 3.
  • the shape of the pipe cap 4024 corresponds to the shape of the pipe socket 1.
  • the cap 4024 is tightly combined with the bearing surface 1a of the tube socket 1 to seal the bearing surface 1a and the optoelectronic devices mounted on the substrate 3.
  • a light window is formed on the end of the cap 4024 far away from the bearing surface 1a, and the light window is used to transmit the signal light emitted by the laser chip 4.
  • the cap 4024 can be a flat window cap 4024, or a cap 4024 equipped with a ball lens or an aspheric lens. Different types of caps 4024 can be selected according to the coupling light path and the requirements of use.
  • One of the multiple transmitter pins 8 is a ground pin 8b; the others are electrode pins 8a.
  • the ground pin 8b is arranged on the opposite surface (bottom surface 1b) of the tube socket 1 and does not penetrate the tube socket 1; the electrode pin 8a penetrates the tube socket 1.
  • the material of the tube socket 1 is metal, and the tube socket 1 and the electrode pin 8a are connected through an insulating sleeve 8c of glass material to achieve electrical isolation between the tube socket 1 and the electrode pin 8a.
  • the socket 1 and the ground pin 8b are mutually conductive.
  • the grounding capacitor 6 is packaged on the bearing surface 1a of the tube socket 1, and at the same time, the grounding capacitor 6 is electrically connected to the laser chip.
  • the grounding capacitor adjusts the harmonic point of the laser chip to move the harmonic point to the high frequency direction, thereby achieving the purpose of improving the high frequency performance of the optical module.
  • connection relationship of each device is described in detail below in conjunction with specific embodiments to demonstrate how the grounding capacitor adjusts the harmonic point of the laser chip to move the harmonic point to the high frequency direction, thereby improving the optical module The purpose of high frequency performance.
  • FIG. 11 is a schematic diagram of the structure of the base 4025 shown in a preferred embodiment, and the numbers of some components in FIG. 11 can be referred to FIG. 9 and FIG. 10.
  • Figure 11 shows that the base 4025 includes: a tube socket 1, a support plate 2, a substrate 3, a laser chip 4, a backlight detector 5, a grounding capacitor 6, a heat sink 7, and 5 emitter pins 8, one of which is an emitter pin It is the grounding pin 8b.
  • the grounding pin is used for grounding. It can be grounded through the grounding circuit on the circuit board.
  • the grounding circuit on the circuit board can be connected to the ground of the host computer through the grounding pin in the golden finger.
  • the pins can also be connected to the circuit board through the flexible board or pass through; the rest are electrode pins 8a.
  • the electrode pins 8a are respectively a first laser pin 8a1, a first backlight pin 8a2, a second backlight pin 8a3, and a second laser pin 8a4.
  • the tube socket 1 includes a bearing surface 1a and a bottom surface 1b which are arranged oppositely, and the supporting plate 2 is vertically arranged on the bearing surface 1a; the supporting plate 2 has a first bonding surface 2a, and the first bonding surface 2a is perpendicular to the bearing surface 1a;
  • the substrate 3 has a second bonding surface (not shown in the figure) and a first packaging surface 3a which are arranged oppositely, and the second bonding surface is bonded to the first bonding surface 2a.
  • the first packaging surface 3a has a first metal plate 3a1 and a second metal plate 3a2 that are separated from each other.
  • the negative electrode of the laser chip 4 is fixed to one end of the first metal plate 3a1 by solder or conductive glue, and the other end of the first metal plate 3a1 is attached to the second laser pin 8a4.
  • the second laser pin 8a4 is electrically connected to the negative electrode of the grounding capacitor 6 through at least one gold wire;
  • the positive electrode of the grounding capacitor 6 is electrically connected to the base 1 through at least one gold wire, because the bottom surface of the base 1 is provided with a grounding pipe Pin 8b, and the tube socket 1 and the grounding pin 8b are mutually energized, so the positive pole of the grounding capacitor 6 can be electrically connected to the grounding pin 8b through the tube socket 1.
  • the anode of the laser chip 4 is electrically connected to one end of the second metal plate 3a2 through at least one gold wire, and the other end of the second metal plate 3a2 is attached to the first laser pin 8a1.
  • the second metal plate 3a2 may be a microstrip line; the microstrip line is encapsulated on the surface of the first packaging surface 3a; one end of the microstrip line passes through at least one gold wire and the anode of the laser chip 4 For electrical connection, the microstrip line is used to feed high-speed modulation signals to the electro-absorption modulator of the laser chip 4.
  • the rear light emitting surface of the laser chip 4 faces the light receiving surface of the backlight detector 5, and the backlight detector 5 is fixed on the supporting surface 1 a through a heat sink 7.
  • the heat sink has a third bonding surface (not shown in the figure) and a second packaging surface 7a; the second packaging surface is arranged obliquely with respect to the third bonding surface; the third bonding surface is mounted on the carrying surface 1a ,
  • the negative electrode of the backlight detector 5 is mounted on the second packaging surface 7a, and the second packaging surface 7a is electrically connected to the second backlight pin 8a3 through at least one gold wire; the backlight detector 5 can be realized through the second packaging surface 7a
  • the negative electrode of is electrically connected to the second backlight pin 8a3.
  • the anode of the backlight detector 5 is electrically connected to the first backlight pin 8a2 through at least one gold wire.
  • the optical module has better high-frequency performance.
  • the excitation frequency of the laser chip is equal to the natural frequency of the laser chip
  • the amplitude of the electromagnetic oscillation of the laser chip will also reach a peak, which is also called the resonance point.
  • the output power of the laser chip attenuates rapidly near the resonance point.
  • the laser chip is excited by an electric signal with a fixed input power, the frequency of the electric signal is gradually changed during the experiment, and the output power of the laser chip is recorded. Then, the power gain value is calculated based on the ratio of the input power P output to the output power P input.
  • a loga (P output/P input)-frequency response curve is constructed.
  • P output/P input is less than 1
  • the corresponding loga (P output/P input) is less than 0.
  • the output power of the laser chip is attenuated.
  • Figure 12 is the loga (P output/P input)-frequency response curve of the laser chip; it can be seen from Figure 12 that the laser chip has a resonance point at EGHz, and at the same time near EGHz, loga (P output/P input) corresponds to When the value of P moves to the negative direction, the corresponding P output drops sharply. It can be seen that the response power (also called output power) of the laser at around EGHz decays rapidly. Generally, the resonance point of the laser chip is located in a high frequency band, which results in a low response of the laser chip to the excitation signal of the high frequency band, and therefore, limits the high frequency performance of the optical module.
  • a grounding capacitor is connected to the negative electrode of the laser chip. It is known that the frequency of the resonant point of the laser chip is proportional to the total capacitance of the energization circuit where the laser chip is located. Because this embodiment connects a grounding capacitor to the negative electrode of the laser chip, the capacitance value of the grounding capacitor is greater than the capacitance value of the laser chip. , Which increases the total capacitance of the energized circuit where the laser chip is located. As the total capacitance increases, the frequency of the corresponding resonance point also increases.
  • the frequency increase of the resonant point of the laser chip in the optical module shown in the embodiment of the present application will be described below in combination with specific experimental data.
  • the loga (P output/P input)-frequency response curve comparison chart of the separate laser chip and the laser chip connected to the grounding capacitor can be seen in Figure 13.
  • the dashed line is the loga (P output/P input)-frequency response curve of the laser chip
  • the solid line is the loga (P output/P input)-frequency response curve of the laser chip connected to the ground capacitor.
  • the optical module product shown in this application has better high-frequency performance to further explain.
  • the experimental results can continue to refer to Figure 13.
  • the dotted line in FIG. 13 is the loga (P output/P input)-frequency response curve of the optical module shown in the prior art
  • the solid line is the loga (P output/P input)-frequency response curve of the optical module shown in the embodiment of the application.
  • the frequency adaptation range of the input signal of the optical module shown in the prior art is (0 to 15.5).
  • the frequency adaptation range of the input signal of the optical module shown in the embodiment of the present application is (0-22.1). It can be seen that compared with the optical module shown in the prior art, the high-frequency performance of the optical module shown in the embodiment of the present application is improved.
  • this embodiment combines with another test result (S11 input reflection coefficient) to further improve the high-frequency performance of the optical module shown in the embodiment of the present application.
  • S11 input reflection coefficient another test result
  • a common packaging form for optoelectronic devices is to encapsulate the optoelectronic devices in a package cavity formed by a tube base and a tube cap.
  • the specific packaging process is as follows: first, mount the optoelectronic device on the surface of the substrate of the base, connect the optoelectronic device with the pins of the base through gold wire bonding, and realize the electrical connection between the optoelectronic device and the outside through the pins; , The optoelectronic device is encapsulated in the package cavity formed by the tube base and the tube cap, and finally an optical module with a package structure is formed.
  • FIG. 14 is a comparison diagram of the S11-frequency response curve of the optical module shown in the prior art and the optical module shown in the embodiment of the present application.
  • the dotted line in FIG. 14 is the S11-frequency response curve of the optical module shown in the prior art
  • the solid line is the S11-frequency response curve of the optical module shown in the embodiment of the application. It can be seen that in the frequency range (15.5-22.1), the S11 coefficient of the optical module shown in the embodiment of this application is less than the S11 of the optical module shown in the prior art.
  • This experimental data can also prove that the implementation of this application
  • the responsive performance of the illustrated optical module in the frequency range (15.5-22.1) is stronger than that of the optical module in the prior art. It can be seen that compared with the optical module shown in the prior art, the high-frequency performance of the optical module shown in the embodiment of the present application is improved.
  • FIG. 15 is a schematic structural diagram of a base shown in another embodiment of the application.
  • the base 4025 includes: a tube base 1, a support plate 2, a substrate 3, a laser chip 4, a backlight detector 5, a first microstrip resistor 6d, a heat sink 7 and 5 pins 8, one of which is Ground pin 8b; the rest are electrode pins 8a.
  • the electrode pins 8a are respectively a first laser pin 8a1, a first backlight pin 8a2, a second backlight pin 8a3, and a second laser pin 8a4.
  • the first packaging surface of the substrate 3 has a first metal plate 31, a second metal plate 32 and a fourth metal plate 34 that are separated from each other.
  • the ground pin 8b is arranged on the bottom surface of the tube socket 1 and is electrically connected to the tube socket. Among them, the ground pin 8b is electrically connected to the socket 1 to play a protective role.
  • the negative electrode of the laser chip 4 is fixed to one end of the first metal plate 31 by solder or conductive glue, and the other end of the first metal plate 31 is attached to the second laser pin 8a4; the laser chip is realized by the first metal plate 31
  • the negative pole of 4 is electrically connected to the second laser pin 8a4; the positive pole of the laser chip 4 is electrically connected to one end of the second metal plate 32 through at least one gold wire, and the other end of the second metal plate 32 is electrically connected to the first microstrip resistor
  • One end of 6d is electrically connected, the other end of the first microstrip resistor 6d is electrically connected to one end of the fourth metal plate 34, and the other end of the fourth metal plate 34 is attached to the first laser pin 8a1 through the second metal plate. 32.
  • the fourth metal plate 34 realizes the electrical connection between the anode of the laser chip 4, the first microstrip resistor 6d and the first laser pin 8a1.
  • the microstrip resistor shown in FIG. 15 is rectangular, two long sides are used for conductive connection with the metal plate, and the length of the long side is the width of the microstrip resistor.
  • the side length of the metal plate connected with the microstrip resistor represents the width of the metal plate.
  • the first microstrip resistor 6d, the second metal plate, the second metal plate 32, and the fourth metal plate 34 have the same width, that is, the side connecting the second metal plate and the first microstrip resistor has the same width as the first microstrip resistor.
  • a microstrip resistor has the same length, the side connecting the fourth metal plate and the first microstrip resistor has the same length as the first microstrip resistor, and there is a gap between the second metal plate, the first microstrip resistor, and the fourth metal plate.
  • the electrical connection relationship, the current flows between the three, and the equal width makes the conduction width in the current path unchanged, and the current can enter the microstrip resistor from the entire side of the microstrip resistor, which is beneficial to reduce the attenuation of the current.
  • the rear light emitting surface of the laser chip 4 faces the light receiving surface of the backlight detector 5, and the backlight detector 5 is fixed on the carrying surface by a heat sink 7.
  • the heat sink 7 has a third bonding surface and a second packaging surface; the second packaging surface is arranged obliquely with respect to the third bonding surface; the third bonding surface is mounted on the carrying surface, and the negative electrode of the backlight detector 5 is attached Mounted on the second packaging surface, the second packaging surface is connected to the second backlight pin 8a3 through at least one gold wire; the negative electrode of the backlight detector 5 can be connected to the second backlight pin 8a3 through the second packaging surface.
  • the anode of the backlight detector 5 is connected to the first backlight pin 8a2 through at least one gold wire.
  • radio frequency signals and electrical signals can be transmitted to the electronic components inside the light emitting assembly through the pins, so as to realize the function of the light emitting assembly.
  • the optical module has better high-frequency performance.
  • FIG. 16 is a schematic structural diagram of a base shown in another embodiment of the application.
  • the base 4025 includes: a tube socket 1, a support plate 2, a substrate 3, a laser chip 4, a backlight detector 5, a second microstrip resistor 9, a heat sink 7 and 5 pins 8, one of which is Ground pin 8b; the rest are electrode pins 8a.
  • the electrode pins 8a are respectively a first laser pin 8a1, a first backlight pin 8a2, a second backlight pin 8a3, and a second laser pin 8a4.
  • the first packaging surface of the substrate 3 has a first metal plate 31, a second metal plate 32 and a third metal plate 33 that are separated from each other.
  • the ground pin 8b is arranged on the bottom surface of the tube socket 1 and is electrically connected to the tube socket 1. Among them, the ground pin 8b is electrically connected to the base to protect it.
  • the negative electrode of the laser chip 4 is attached to one end of the first metal plate 31, the other end of the first metal plate 31 is electrically connected to one end of the second microstrip resistor 9, and the other end of the second microstrip resistor 9 is connected to the third metal plate.
  • One end of the third metal plate 33 is electrically connected, and the other end of the third metal plate 33 is attached to the second laser pin 8a4.
  • the negative electrode of the laser chip 4 is realized by the first metal plate 31 and the third metal plate 33, and the second microstrip resistor 9 Electrical connection with the second laser pin 8a4;
  • the anode of the laser chip 4 is electrically connected to one end of the second metal plate 32 through at least one gold wire, the other end of the second metal plate 32 is attached to the first laser pin 8a1, and the laser chip is realized by the second metal plate 32
  • the positive electrode of 4 is electrically connected to the first laser pin 8a1.
  • the second microstrip resistor 9, the first metal plate 31, and the third metal plate 33 have the same width, that is, the side connecting the first metal plate and the first microstrip resistor has the same width as the first microstrip resistor.
  • the side connecting the third metal plate and the first microstrip resistor has the same length as the first microstrip resistor, and there is an electrical connection relationship between the first metal plate, the first microstrip resistor, and the third metal plate.
  • the current flows between the three, and the equal width makes the conduction width in the current path unchanged.
  • the current can enter the microstrip resistor from the entire side of the microstrip resistor, which is beneficial to reduce the attenuation of the current.
  • the rear light emitting surface of the laser chip 4 faces the light receiving surface of the backlight detector 5, and the backlight detector 5 is fixed on the carrying surface by a heat sink 7.
  • the heat sink 7 has a third bonding surface (not shown in the figure) and a second packaging surface; the second packaging surface is arranged obliquely with respect to the third bonding surface; the third bonding surface is mounted on the carrying surface,
  • the negative electrode of the backlight detector 5 is mounted on the second packaging surface, and the second packaging surface is connected to the second backlight 8a3 through at least one gold wire; the negative electrode of the backlight detector 5 and the second backlight tube can be realized through the second packaging surface Connection of pin 8a3.
  • the anode of the backlight detector 5 is connected to the first backlight pin 8a2 through at least one gold wire.
  • radio frequency signals and electrical signals can be transmitted to the electronic components inside the light emitting assembly through the pins, so as to realize the function of the light emitting assembly.
  • the optical module has better high-frequency performance.
  • FIG. 17 and FIG. 18 are schematic diagrams of the structure of the base shown in another embodiment of the present application.
  • Figures 17 and 18 show that the base includes: a tube base 1, a support plate 2, a substrate 3, a laser chip 4, a backlight detector 5, a first microstrip resistor 6d, a second microstrip resistor 9, a heat sink 7, and 5 leads.
  • Pin 8 one of the pins is the ground pin 8b; the others are the electrode pins 8a.
  • the electrode pins 8a are respectively a first laser pin 8a1, a first backlight pin 8a2, a second backlight pin 8a3, and a second laser pin 8a4.
  • the first packaging surface of the substrate 3 has a first metal plate 31, a second metal plate 32, a third metal plate 33 and a fourth metal plate 34 that are separated from each other.
  • the grounding pin 8b is arranged on the bottom surface of the tube socket 1 of the bearing plate and is electrically connected to the tube socket 1. Among them, the ground pin 8b is electrically connected to the base to protect it.
  • the negative electrode of the laser chip 4 is attached to one end of the first metal plate 31, the other end of the first metal plate 31 is electrically connected to one end of the second microstrip resistor 9, and the other end of the second microstrip resistor 9 is connected to the third metal plate.
  • One end of the third metal plate 33 is electrically connected, and the other end of the third metal plate 33 is attached to the second laser pin 8a4.
  • the negative electrode of the laser chip 4, the second microstrip resistor and the second laser pin 8a4 are realized by the first metal plate 31 and the third metal plate 33. Electrical connection of the second laser pin 8a4;
  • the anode of the laser chip 4 is electrically connected to one end of the second metal plate 32 through at least one gold wire, the other end of the second metal plate 32 is electrically connected to one end of the first microstrip resistor 6d, and the other end of the first microstrip resistor 6d One end is electrically connected to one end of the fourth metal plate 34, and the other end of the fourth metal plate 34 is attached to the first laser pin 8a1.
  • the anode of the laser chip 4 is realized by the second metal plate 32 and the fourth metal plate 34. Electrical connection between the first microstrip resistor and the first laser pin 8a1.
  • the second microstrip resistor 9, the width of the first metal plate 31, and the third metal plate 33 have the same width; the first microstrip resistor 6d, the width of the second metal plate 32, and the fourth metal plate 34 equal width, that is, the side of the second metal plate connected with the first microstrip resistor has the same length as the first microstrip resistor, and the side of the fourth metal plate connected with the first microstrip resistor has the same length as the first microstrip resistor
  • the length of the first metal plate connected to the first microstrip resistor has the same length as the first microstrip resistor
  • the third metal plate connected to the first microstrip resistor has the same length as the first microstrip resistor Length, the first metal plate, the first microstrip resistor, and the third metal plate are electrically connected; the second metal plate, the first microstrip resistor, and the fourth metal plate are electrically connected, and the same width makes the current The conduction width in the path has not changed, and the current can enter the microstrip resist
  • the rear light emitting surface of the laser chip 4 faces the light receiving surface of the backlight detector 5, and the backlight detector 5 is fixed on the carrying surface by a heat sink 7.
  • the heat sink 7 has a third bonding surface and a second packaging surface; the second packaging surface is arranged obliquely with respect to the third bonding surface; the third bonding surface is mounted on the carrying surface, and the negative electrode of the backlight detector 5 is attached Mounted on the second packaging surface, the second packaging surface is connected to the second backlight pin 8a3 through at least one gold wire; the negative electrode of the backlight detector 5 can be connected to the second backlight pin 8a3 through the second packaging surface.
  • the anode of the backlight detector 5 is connected to the first backlight pin 8a2 through at least one gold wire.
  • radio frequency signals and electrical signals can be transmitted to the electronic components inside the light emitting assembly through the pins, so as to realize the function of the light emitting assembly.
  • the positive electrode of the laser chip 4 and the first microstrip resistor 6d make the optical module have better high frequency performance.
  • the sum of the impedance value of the microstrip resistors connected to the positive and negative electrodes of the laser chip 4 and the impedance value of the real part of the laser chip 4 is equal to the impedance value of the single end of the energization loop where the laser chip 4 is located.
  • Connecting the laser chip 4 and the microstrip resistor in series can increase the quality factor of the energized circuit in which the laser chip 4 is located, and the corresponding pass band range of the energized circuit is increased, thereby achieving the purpose of increasing the optical module and expanding the applicable frequency of the optical module.
  • the laser chip is connected in series with the microstrip resistor in the process of packaging the optical module.
  • the laser chip (the laser chip is capacitive and resistant) and the microstrip resistor form an RLC (resistance-reactance-capacitance) energization loop.
  • the energized circuit has the ability to amplify input signals of different frequencies. However, due to the presence of capacitance, inductance and reactance in the energized circuit, when the input signal frequency is low or high, the value of the amplification factor will decrease.
  • the value of the amplification factor can be the ratio of the output current I output to the input current I input To represent.
  • the laser chip is excited by an electrical signal input with a fixed I, the frequency of the electrical signal is gradually changed during the experiment, and the I output of the energized circuit is recorded. Then, the current gain value (I output/I input) is calculated based on the ratio of I output to I input. Finally, based on the corresponding relationship between I output/I input and the frequency of the input electrical signal, the I output/I input-frequency response curve is constructed.
  • Fig. 19 is the I output/I input-frequency response curve of the energized circuit where the laser chip of this application is located. It can be seen from Figure 19 that when the input signal frequency is low or high, the magnification value of the energized loop will decrease.
  • the frequency range where the ratio of I output/I input is not less than 0.707 is called the pass band of the energized circuit, and is expressed by BW (transmission bands).
  • the frequency range corresponding to (a ⁇ b) GHz in Figure 19 is called the passband. In the frequency range outside the passband, because the signal attenuation is severe, it cannot be used as the input signal of the optical module.
  • the passband of the energization circuit where the laser chip is located is inversely proportional to the quality factor Q of the energization circuit. The smaller the quality factor, the wider the corresponding passband.
  • Q is the quality factor
  • L is the reactance in the energized circuit
  • C is the capacitance in the energized circuit
  • R is the total resistance in the energized circuit.
  • Q is determined by the total resistance in the energized circuit. The larger the total resistance, the smaller the corresponding quality factor and the wider the corresponding passband.
  • the greater the total resistance the greater the energization loop is packaged in the optical module, the wider the application range of the optical module's frequency will be.
  • I output/I input-frequency response curve response curve comparison chart can refer to Figure 20.
  • the dashed line is the I output/I input-frequency response curve of a single laser chip power loop
  • the solid line is the I output/I input-frequency response curve of the laser chip power loop connected with a microstrip resistor.
  • the pass band of the energization circuit of a single laser chip is (a ⁇ b) GHz
  • the pass band of the energization circuit of the laser chip connected with a microstrip resistor is (a1 ⁇ b1) GHz; (a1 ⁇ b1) GHz and (a ⁇ b) GHz
  • the frequency range of the input signal has increased, which can prove that the applicable frequency range of the optical module shown in the embodiment of the present application has increased.
  • connecting the laser chip in series with a microstrip resistor can correspondingly increase the passband of the optical module product.
  • the larger the resistance in series within a certain range the smaller the corresponding quality factor, and the wider the corresponding passband.
  • the performance of an optical module can be measured by the output power of the laser chip. Under the condition of constant input power, the greater the output power of the laser chip, the better the response performance of the corresponding optical module. Therefore, in the actual application process of the optical module, under the same excitation signal condition, it is desirable that the laser chip has a larger output power.
  • the output power of the laser chip is related to the impedance value of the microstrip resistor in the energization loop where the laser chip is located. When the impedance value of the microstrip resistor plus the impedance value of the real part of the laser chip is equal to the impedance value of the single end of the power loop where the laser chip is located, the output power of the laser machine can reach the maximum.
  • the voltage source in the actual energization loop always has internal resistance
  • the impedance value of the laser chip is R1
  • the impedance value of the connected microstrip resistor is R2
  • the electromotive force of the voltage source is U
  • the single-ended internal resistance is r2.
  • the embodiment of the present application shows an optical module.
  • the optical module includes: a support plate, a laser chip, a microstrip resistor, a ground pin, a second laser pin, and a first laser pin.
  • the negative electrode of the laser chip is electrically connected to the second laser pin
  • the positive electrode of the laser chip is electrically connected to one end of the microstrip resistor
  • the other end of the microstrip resistor is electrically connected to the first laser pin
  • the laser chip , Microstrip resistor, the first laser pin, and the second laser pin form a closed energization loop.
  • the optical module shown in this application in real time connects the laser chip and the microstrip resistor in series. After the microstrip resistor is connected in series, the resistance of the corresponding energization loop increases; the resistance increases, the corresponding quality factor Q decreases, and the corresponding passband becomes wider , The applicable scope of the corresponding optical module is increased.
  • the impedance value of the connected microstrip resistor will affect the output power of the laser chip.
  • the impedance value of the microstrip resistor plus the impedance value of the real part of the laser chip is equal to the impedance value of the single end of the power loop where the laser chip is located. The chip can obtain the maximum output power.

Abstract

一种光模块,包括:管座(1),激光器芯片(4),接地管脚(8b),第一激光管脚(8a1)和第二激光管脚(8a4)。在激光器芯片(4)的负极接一接地电容(6)。总电容增加,激光器芯片(4)的谐振点的频率向高频率方向移动,相应的激光器芯片(4)输出功率衰减过程中对应的截止频率也向高频率方向移动,因此,光模块的适用频率范围向高频方向移动,可提高产品的高频性能。

Description

一种光模块
本申请要求在2019年09月26日提交中国专利局、申请号为201910916710.1、发明名称为“一种光模块”,以及在2019年09月26日提交中国专利局、申请号为201921615934.0、发明名称为“一种光模块”,以及在2019年09月26日提交中国专利局、申请号为201910916720.5、发明名称为“一种光模块”,以及在2019年09月26日提交中国专利局、申请号为201921615518.0、发明名称为“一种光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光纤通信领域中对通信带宽的要求越来越高,使得全球光通信处在一个飞速发展时期。而在高速数据通信领域中,为了保障数据能够长距离高速传输,通常采用光模块实现不同波长光的发射和接收。
光模块通常指用于光电转换,光模块通常为封装结构。将光模块制备成封装结构是为了避免光电器件在非气密环境下由于氧气、水汽的作用下而导致失效问题的出现,其中,光电器件包括:激光器芯片,背光探测器等光电器件。
发明内容
本申请实施例提供一种光模块,包括:电路板,管座,用于承载器件;支撑板,由管座承载;基板,由支撑板支撑,表面具有由金属材料形成的第一金属板及第二金属板;激光器芯片,由基板承载,顶面的正极与第一金属板表面打线连接;底面的负极设置在第二金属板表面以实现电连接;第一激光管脚,贯穿管座的上下表面,一端与第一金属板电连接,另一端与电路板电连接;第二激光管脚,贯穿管座的上下表面,一端与第二金属板电连接,另一端与电路板电连接;接地管脚,未贯穿管座的上下表面,一端与管座电连接,另一端与电路板的接地电路电连接;接地电容,由管座承载,负极与第二激光管脚电连接,正极与管座电连接。
本申请实施例还提供一种光模块,包括电路板,管座,用于承载器件;第一激光管脚,贯穿管座的上下表面,一端与电路板电连接;第二激光管脚,贯穿管座的上下表面,一端与电路板电连接;基板,由管座承载,表面具有微带电阻;激光芯片,顶面的正极通过微带电阻与第一激光管脚电连接,底面的负极与第二激光管脚电连接,或顶面的正极与第一激光管脚电连接,底面的负极通过微带电阻与第二激光管脚电连接。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本申请实施例提供的一种光模块结构示意图;
图4为本申请实施例提供光模块分解结构示意图;
图5为本申请实施例提供光收发组件与电路板连接关系的立体图;
图6为本申请实施例提供光收发组件与电路板连接关系的俯视图;
图7为本申请实施例提供光发射组件分解结构示意图;
图8为本申请实施例提供的底座结构示意图;
图9为本申请实施例提供的另一底座结构示意图;
图10为本申请实施例提供的另一底座结构示意图;
图11为本申请实施例提供的另一底座结构示意图;
图12为激光器芯片的loga(P输出/P输入)-频率响应曲线;
图13为激光器芯片和光模块的loga(P输出/P输入)-频率响应曲线;
图14为已有技术示出的光模块和本申请实施例示出的光模块的S11-频率响应曲线;
图15为本申请另一实施例示出的底座的结构示意图;
图16为本申请另一实施例示出的底座的结构示意图;
图17为本申请另一实施例示出的底座的结构示意图;
图18为本申请另一实施例示出的底座的结构示意图;
图19为本申请激光器芯片所处通电回路的I输出/I输入-频率响应曲线;
图20为电流输出/电流输入-频率响应曲线响应曲线对比图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
光纤通信的核心环节之一是光电信号的转换。光纤通信使用携带信息的光信号在光纤/光波导中传输,利用光在光纤中的无源传输特性可以实现低成本、低损耗的信息传输。而计算机等信息处理设备采用的是电信号,这就需要在信号传输过程中实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光电转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、传输数据信号以及接地等,金手指实现的电连接方式已经成为光模块行业的标准方式,以此为基础,电路板是大部分光模块中必备的技术特征。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络单元100、光模块200、光纤101及网线103;
光纤的一端连接远端服务器,网线的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤与网线的连接完成;而光纤与网线之间的连接由具有光模块的光网络单元完成。
光模块200的光口与光纤101连接,与光纤建立双向的光信号连接;光模块200的电口接入光网络单元100中,与光网络单元100建立双向的电信号连接;光模块200实现光信号与电信号的相互转换,从而实现在光纤与光网络单元100之间建立连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络单元100中,来自光网络单元100的电信号由光模块转换为光信号输入至光纤中。光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络单元100具有光模块接口102,用于接入光模块,与光模块建立双向的电信号连接;光网络单元100具有网线接口104,用于接入网线,与网线建立双向的电信号连接;光模块200与网线之间通过光网络单元建立连接,具体地,光网络单元将来自光模块200的信号传递给网线,将来自网线的信号传递给光模块,光网络单元作为光模块200的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络单元及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络单元是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络单元结构示意图。如图2所示,在光网络单元100中具有第二电路板105,在第二电路板105的表面设置笼子106;在笼子106中设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起结构。
光模块200***光网络单元中,具体为光模块的电口***笼子106中的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中;光模块***笼子中,由笼子固定光模块,光模块产生的热量通过光模块壳体传导给笼子,最终通过笼子上的散热器107进行扩散。
图3为本申请实施例提供的一种光模块结构示意图,图4为本申请实施例提供光模块分解结构示意图。如图3、图4所示,本申请实施例提供的光模块200包括上壳体201、下壳体202、解锁手柄203、第一电路板300及光收发器件400;
上壳体201与下壳体202形成具有两个开口的包裹腔体,具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,用于***光网络单元等上位机中,另一个开口为光口205,用于外部光纤接入以连接内部光纤,第一电路板300、光收发器件400等光电器件位于包裹腔体中。
上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;采用上壳体、下壳体结合的装配方式,便于将电路板等器件安装到壳体中,一般不会将光模块的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁手柄203位于包裹腔体/下壳体202的外壁,拉动解锁手柄的末端可以在使解锁 手柄在外壁表面相对移动;光模块***上位机时由解锁手柄将光模块固定在上位机的笼子里,通过拉动解锁手柄以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
请参阅图5,图5为本申请提供的光收发组件与电路板连接关系的立体图。光收发器件400通常包括光接收次模块401和光发射次模块402。通常,光接收次模块401通过接收端管脚与第一电路板300连接;光发射次模块402通过发射端管脚与第一电路板300连接。光接收次模块401在由对应的光纤适配器接收到光信号后,会将光信号转换成电信号,再通过第一电路板300将电信号传输至第二电路板105(也可称之为上位机),第二电路板105对接收到的电信号一系列的处理。光发射次模块402在接收到电信号后,会将电信号转换成光信号,再由与光发射模块对应的光纤适配器射出,从而实现光电信号的转换。在信号的传输过程中,接收端管脚或发射端管脚裸漏在空气中会造成严重的阻抗失配,为解决该问题,在本申请的一些实施例中,光接收次模块401和光发射次模块402可以通过柔性电路板500与第一电路板300连接。
图6为本申请实施例提供光收发组件与电路板连接关系的俯视图。如图6所示,光接收次模块401通过第一柔性电路板501与第一电路板300连接,光发射次模块402通过第二柔性电路板502与第一电路板300连接。可见图6示出的实施例中光接收次模块401和光发射次模块402分别通过柔性电路板与第一电路板连接,这种连接方式有效的避免由于较长的管脚裸漏在空气中会造成严重的阻抗失配,造成信号畸变等问题的出现。
在一些实施方式中,光发射次模块402设置有激光器芯片,背光探测器等光电器件。为了避上述光电器件在非气密环境下由于氧气、水汽的作用下而导致失效问题的出现。通常将光发射次模块402制备成封装结构。图7为本申请实施例提供光发射组件分解结构示意图,可以看出光发射次模块402包括:光纤适配组件4021、调节套管4022、封焊管体4023、管帽4024、底座4025。
其中,底座4025的结构可以参阅图8,底座4025包括:管座1,支撑板2,基板3,光电器件以及多个发射端管脚8。管座1与支撑板2垂直设置。支撑板2的一表面与基板3的一表面固定连接,基板3另一表面用于封装光电器件,图8为本申请实施例提供的底座结构示意图,图8中光电器件基板上封装的光电器件为激光器芯片,在实际的应用过程中,光电器件也可以为光接收芯片。图8中的激光器芯片通过金丝键合的方式与发射端管脚8电连接,通过发射端管脚8以实现激光器芯片与外部的电气连接。
将管帽4024与底座4025封的基板3封装成一个用于承载基板3,激光器芯片的密封腔。采用封焊管体4023将管帽4024与光纤适配组件4021连接。在本申请某一实施例中,可以在封焊管体4023与光纤适配组件4021间设置一调节套管4022,调节套管4022用于实现光纤适配组件4021位置的调节。
在实际应用的过程中由于激光器芯片自身的频带曲线可能在某一频率范围存在谐振,使得激光器芯片在相应的频率范围内作业时,出现带宽不足的问题。
基于上述技术问题,本申请实施例提供的底座4025的结构可以参阅图9和图10。底座4025包括:管座1,支撑板2,基板3,激光器芯片4,背光探测器5和接地电容6和 多个发射端管脚8。管座1与支撑板2垂直设置;支撑板2具有第一贴合面2a;基板3具有相对设置的第二贴合面(图中未标出)和第一封装面3a,第二贴合面贴装于第一贴合面2a;激光器芯片4的负极封装于第一封装面3a;背光探测器5和接地电容6贴装于管座1表面上,且背光探测器5的光接收面朝向激光器芯片4的后出光面;接地电容6与激光器芯片4电电连接。
管座1可以采用钨铜、铜、银合金、金或者陶瓷等或其他导热性能良好的材料制成。管座1大致为圆柱形,其具有圆形的承载面1a和与承载面1a相对的底面1b。
支撑板2可以采用钨铜、铜、银合金、金或者陶瓷等或其他导热性能良好的材料制成。在本申请某一实施例中,支撑板2采用钨铜制成。支撑板2贯穿管座1的承载面1a和底面1b,支撑板2与管座1可以一体成型,也可以单独设置。支撑板2大致为柱体,具体的,可以为四棱柱体或半圆柱体,在实际应用的过程中,凡是可以起到支撑基板3作用的柱体结构均可以作为支撑板2。支撑板2设置于管座1的中心的一侧,支撑板2具有垂于承载面1a的第一贴合面2a,第一贴合面2a平行于管座1的中心轴。
在本申请实施例中,基板3可以为具有良好的导热性能的陶瓷基板3。陶瓷基板3的材料可以为氮化铝或者氧化铝等。基板3具有相对设置的第二贴合面和第一封装面3a,第二贴合面用于与支撑板2的第一贴合面2a相互贴合,第一封装面3a用于贴装激光器芯片4。在本申请实施例中基板3与支撑板2贴合设置,一方面支撑板2可以起到支撑基板3的作用,另一方面,光电器件做作业过程中产生的热量可以通过基板3传递至支撑板2,以达到增加散热面的作用,保持基板3的温度基本恒定,从而使得封装于基板3的光电器件的温度基本恒定。
激光器芯片4封装于基板3的第一封装面3a。激光器芯片4可以通过焊料或者导电胶固定于基板3的第一封装面3a。激光器芯片4主要包括半导体激光二极管,半导体激光二极管用于发射激光。
背光探测器5封装于管座1的承载面1a,背光探测器5的光接收面与半导体激光二极管的后出光面相互正对。背光探测器5可以为侧面照明InGaAs/InP探测器,也可以为正面进光InGaAs/InP探测器。背光探测器5用于感测半导体激光二极管发射的激光的功率,从而可以根据背光探测器5探测的结果,控制施加于半导体激光二极管的电流的大小。
在本申请一些实施例中,背光探测器5通过热沉7与管座1的承载面1a连接。图9为本申请实施例提供的另一底座结构示意图,可以继续参阅图9,光发射次模块402还包括用于支撑背光探测器5的热沉7;热沉7具有第三贴合面(图中未标出)和第二封装面7a;第二封装面7a相对于第三贴合面倾斜设置;第三贴合面贴装于承载面1a,背光探测器5负极封装于第二封装面7a。一方面,热沉7对贴装于其上的背光探测器5进行散热,以使得背光探测器5保持温度恒定。另一方面,热沉7的第二封装面7a相对于第三贴合面倾斜设置可以减少反射光对半导体激光二极管的影响。
在本实施例中管帽4024用于与底座4025配合,用于密封管座1的承载面1a以及基板3上安装的光电器件。管帽4024的形状与管座1的形状相对应。管帽4024与管座1的承载面1a紧密结合,以密封承载面1a以及基板3上安装的光电器件。管帽4024远 离承载面1a的一端形成有光窗,光窗用于透射激光器芯片4出射的信号光。管帽4024可以是平窗管帽4024,也可以是设有球透镜或非球透镜的管帽4024,根据耦合光路和使用要求的不同选择不同类型的管帽4024。
多个发射端管脚8中一管脚为接地管脚8b;其余的为电极管脚8a。接地管脚8b设置于管座1相对的一表面上(底面1b),未贯穿管座1;电极管脚8a贯穿管座1。管座1的材料为金属,管座1与电极管脚8a之间通过玻璃材料绝缘套8c连接,以实现管座1与电极管脚8a之前的电性隔离。同时,管座1与接地管脚8b之间相互导电。
接地电容6封装于管座1的承载面1a,同时,接地电容6与激光器芯片电连接。接地电容对激光器芯片的谐波点进行调整,使其谐波点向高频率方向移动,进而达到提高光模块的高频性能的目的。
下面结合具体的实施例对各器件的连接关系作以详细的说明,以论证接地电容如何通过对激光器芯片的谐波点进行调整,使其谐波点向高频率方向移动,进而达到提高光模块的高频性能的目的。
图11为一优选实施例示出的底座4025的结构示意图,图11中一些器件的标号可以参阅图9以及图10。图11示出底座4025包括:管座1、支撑板2、基板3、激光器芯片4、背光探测器5、接地电容6、热沉7和5个发射端管脚8,其中一发射端管脚为接地管脚8b,接地管脚用于接地,可以通过电路板上的接地电路接地,电路板上的接地电路可以通过金手指中的接地引脚与上位机接地连接,具体可以由管脚直接与电路板焊接,管脚也可以通过柔性板与电路板连接也可以通过;其余的为电极管脚8a。电极管脚8a分别为第一激光管脚8a1,第一背光管脚8a2,第二背光管脚8a3,第二激光管脚8a4。
其中,管座1包括相对设置的承载面1a和底面1b,支撑板2垂直设置于承载面1a上;支撑板2具有第一贴合面2a、第一贴合面2a垂直于承载面1a;基板3具有相对设置的第二贴合面(图中未示出)和第一封装面3a,第二贴合面与第一贴合面2a贴合设置。第一封装面3a具有相互隔离设置的第一金属板3a1和第二金属板3a2。
其中,激光器芯片4的负极通过焊料或者导电胶固定于第一金属板3a1的一端,第一金属板3a1的另一端与第二激光管脚8a4贴合设置。同时第二激光管脚8a4通过至少一根金线与接地电容6的负极电连接;接地电容6的正极通过至少一根金线与管座1电连接,由于管座1的底面设置有接地管脚8b,且管座1与接地管脚8b相互通电,因此可以通过管座1实现接地电容6的正极与接地管脚8b的电连接。
激光器芯片4的正极通过至少一根金线与第二金属板3a2的一端电连接,第二金属板3a2的另一端与第一激光管脚8a1贴合设置。在本申请某些实施例中,第二金属板3a2可以为微带线;微带线封装于第一封装面3a的表面;微带线的一端通过至少一根金线与激光器芯片4的正极电连接,微带线用于向激光器芯片4的电吸收调制器馈入高速调制信号。
激光器芯片4后出光面朝向背光探测器5的光接收面,背光探测器5通过热沉7固定于承载面1a上。具体的,热沉具有第三贴合面(图中未示出)和第二封装面7a;第二封装面相对于第三贴合面倾斜设置;第三贴合面贴装于承载面1a上,背光探测器5的负极贴装于第二封装面7a上,第二封装面7a通过至少一根金线与第二背光管脚8a3电连接; 通过第二封装面7a可以实现背光探测器5的负极与第二背光管脚8a3的电连接。背光探测器5的正极通过至少一根金线与第一背光管脚8a2的电连接。
通过上述电连接方式可以实现光模块具有较好的高频性能。具体的,当激光器芯片的激励的频率等于激光器芯片的固有频率时,激光器芯片的电磁振荡的振幅也将达到峰值,该峰值也称之为谐振点,在谐振点附近激光器芯片的输出功率迅速衰减。举例说明,采用以固定输入功率的电信号激发激光器芯片,在实验过程中逐渐的改变电信号的频率,并记录激光器芯片的输出功率。然后,基于输入功率P输出与输出功率P输入的比值计算出功率增益值。最后基于功率增益值的对数(loga(P输出/P输入))与输入的频率的对应关系,构建loga(P输出/P输入)-频率响应曲线。当P输出/P输入小于1时,相应的loga(P输出/P输入)小于0时,此时,激光器芯片的输出功率处于衰减状态。loga(P输出/P输入)对应的值越负,激光器芯片的输出功率处于衰减越严重。图12为激光器芯片的loga(P输出/P输入)-频率响应曲线;从图12中可以看出,激光器芯片在EGHz处出现谐振点,同时在EGHz附近,loga(P输出/P输入)对应的值向负值方向移动,对应的P输出急剧下降,可知在EGHz附近激光器的响应功率(也可称之为输出功率)迅速衰减。通常,激光器芯片的谐振点位于高频段,这就导致激光器芯片对于高频段的激发信号响应较低,因此,限制了光模块的高频性能。
为了达到提高光模块产品的高频性能的目的,本实施例例示出的光模块在封装的过程中,在激光器芯片的负极接一接地电容。已知激光器芯片谐振点的频率与激光器芯片所处通电回路的总电容成正比,由于本实施例在激光器芯片的负极接一接地电容,其中,接地电容的电容值大于激光器芯片的电容值,因此,提升了激光器芯片所处通电回路的总电容。总电容增加,相应的谐振点的频率也随之增大。
下面结合具体的实验数据对采用本申请实施例示出的光模块中激光器芯片的谐振点的频率增大作以说明。单独的激光器芯片与激光器芯片连接接地电容的loga(P输出/P输入)-频率响应曲线对比图可以参阅图13。图13中,虚线为激光器芯片的loga(P输出/P输入)-频率响应曲线,实线为激光器芯片连接接地电容的loga(P输出/P输入)-频率响应曲线。可以看出,单独的激光器芯片的谐振点为A,连接了接地电容的激光器芯片的谐振点为B;B与A相比较显然频率有所增大。
在光模块应用的过程中,loga(P输出/P输入)达到-3dB时,输出功率衰减为输入功率0.707,此时对应的输入信号的频率称之为截止频率。通常,loga(P输出/P输入)小于-3dB对应频率的输入信号,由于信号衰减严重,因此不能作为光模块的输入信号。在图13示出的实验结果中,可以看出与单独的激光器芯片相比较,连接了接地电容的激光器芯片的谐振点的频率向高频率方向移动,相应的激光器芯片输出功率衰减过程中对应的截止频率D相当于激光器芯片的截止频率C也向高频率方向移动,因此,光模块的适用频率范围也向高频方向移动,进而达到提高产品的高频性能的目的。
下面结合具体的实例,对本申请示出的光模块产品具有较好的高频性能做进一步的说明。具体的,实验结果可以继续参阅图13。图13虚线为已有技术示出的光模块的loga(P输出/P输入)-频率响应曲线,实线为本申请实施例示出的光模块的loga(P输出/P输入) -频率响应曲线。可以看出,已有技术示出的光模块的输入信号的频率适应范围为(0~15.5)。本申请实施例示出的光模块的输入信号的频率适应范围为(0~22.1)。可见与已有技术示出的光模块相比较,本申请实施例示出的光模块的高频性能有所提高。
为了进一步证明本申请实施例示出的光模块高频性能有所提高,本实施例结合另一测试结果(S11输入反射系数)对本申请实施例示出的光模块的高频性能有所提高做了进一步的说明。通常在输入功率恒定的前提下,S11越小,相应的光模块的输出功率越大。
目前,对光电器件常见的封装形式是将光电器件封装于管座与管帽形成的包裹腔体内。具体的封装过程为:首先,将光电器件贴装于底座的基板表面,通过金丝键合的方式将光电器件与底座的管脚连接,通过管脚以实现光电器件与外部的电气连接;然后,光电器件封装于管座与管帽形成的包裹腔体内,最终形成一个封装结构的光模块。已该常用封装形式为参考,图14为已有技术示出的光模块和本申请实施例示出的光模块的S11-频率响应曲线对比图。图14中虚线为已有技术示出的光模块的S11-频率响应曲线,实线为本申请实施例示出的光模块的S11-频率响应曲线。可以看出,在(15.5~22.1)频率段内,采用本申请实施例示出的光模块的S11系数均小于已有技术示出的光模块的S11,这一实验数据也可以证明,本申请实施例示出的光模块在(15.5~22.1)频率段内的响应性能强于已有技术是的光模块。可见与已有技术示出的光模块相比较,本申请实施例示出的光模块的高频性能有所提高。
图15为本申请另一实施例示出的底座的结构示意图。图15示出底座4025包括:管座1、支撑板2、基板3、激光器芯片4、背光探测器5、第一微带电阻6d、热沉7和5个引脚8,其中一引脚为接地引脚8b;其余的为电极引脚8a。电极引脚8a分别为第一激光管脚8a1,第一背光管脚8a2,第二背光管脚8a3,第二激光管脚8a4。其中,基板3第一封装面具有相互隔离设置的第一金属板31,第二金属板32和第四金属板34。
述接地管脚8b设置于管座1的底面,与管座电连接。其中,接地管脚8b与管座1电连接,以起到保护的作用。
其中,激光器芯片4的负极通过焊料或者导电胶固定于第一金属板31的一端,第一金属板31的另一端与第二激光管脚8a4贴合设置;通过第一金属板31实现激光器芯片4的负极与第二激光管脚8a4的电连接;激光器芯片4的正极通过至少一根金线与第二金属板32的一端电连接,第二金属板32的另一端与第一微带电阻6d的一端电连接,第一微带电阻6d的另一端与第四金属板34的一端电连接,第四金属板34的另一端与第一激光管脚8a1贴合设置,通过第二金属板32,第四金属板34实现激光器芯片4的正极,第一微带电阻6d和第一激光管脚8a1的电连接。
图15示出的微带电阻呈长方形,两个长边用于与金属板导电连接,长边的长度为微带电阻的宽度。与微带电阻连接的金属板的边,其边长表征金属板的宽度。
在一可行性实施例中,第一微带电阻6d,第二金属板第二金属板32,第四金属板34等宽,即第二金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第四金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第二金属板、第一微带电阻及第四金属板之间呈现电连接关系,电流在这三者之间流通,等宽使得电流路径中的传导 宽度未发生改变,电流可以从微带电阻的整个边进入微带电阻,有利于减少电流的衰减。
激光器芯片4后出光面朝向背光探测器5的光接收面,背光探测器5通过热沉7固定于承载面上。具体的,热沉7具有第三贴合面和第二封装面;第二封装面相对于第三贴合面倾斜设置;第三贴合面贴装于承载面上,背光探测器5的负极贴装于第二封装面上,第二封装面通过至少一根金线与第二背光管脚8a3连接;通过第二封装面可以实现背光探测器5的负极与第二背光管脚8a3的连接。背光探测器5的正极通过至少一根金线与第一背光管脚8a2的连接。
通过上述连接方式可以实现射频信号及电信号可以通过各引脚传入至光发射组件内部的各电子元件,以实现光发射组件的功能。同时,通过激光器芯片4的正极与第一微带电阻6d,使得光模块具有较好的高频性能。
图16为本申请另一实施例示出的底座的结构示意图。图16示出底座4025包括:管座1、支撑板2、基板3、激光器芯片4、背光探测器5、第二微带电阻9、热沉7和5个引脚8,其中一引脚为接地引脚8b;其余的为电极引脚8a。电极引脚8a分别为第一激光管脚8a1,第一背光管脚8a2,第二背光管脚8a3,第二激光管脚8a4。其中,基板3第一封装面具有相互隔离设置的第一金属板31,第二金属板32和第三金属板33。
接地管脚8b设置于管座1的底面,与管座1电连接。其中,接地管脚8b与管座电连接,以起到保护的作用。
激光器芯片4的负极贴装于第一金属板31的一端,第一金属板31的另一端与第二微带电阻9的一端电连接,第二微带电阻9的另一端与第三金属板33的一端电连接,第三金属板33的另一端与第二激光管脚8a4贴合设置,通过第一金属板31,第三金属板33实现激光器芯片4的负极,第二微带电阻9和第二激光管脚8a4的电连接;
激光器芯片4的正极通过至少一根金线与第二金属板32的一端电连接,第二金属板32的另一端与第一激光管脚8a1贴合设置,通过第二金属板32实现激光器芯片4的正极与第一激光管脚8a1的电连接。
在一可行性实施例中,第二微带电阻9,第一金属板31,第三金属板33等宽,即第一金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第三金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第一金属板、第一微带电阻及第三金属板之间呈现电连接关系,电流在这三者之间流通,等宽使得电流路径中的传导宽度未发生改变,电流可以从微带电阻的整个边进入微带电阻,有利于减少电流的衰减。
激光器芯片4后出光面朝向背光探测器5的光接收面,背光探测器5通过热沉7固定于承载面上。具体的,热沉7具有第三贴合面(图中未标出)和第二封装面;第二封装面相对于第三贴合面倾斜设置;第三贴合面贴装于承载面上,背光探测器5的负极贴装于第二封装面上,第二封装面通过至少一根金线与第二背光8a3连接;通过第二封装面可以实现背光探测器5的负极与第二背光管脚8a3的连接。背光探测器5的正极通过至少一根金线与第一背光管脚8a2的连接。
通过上述连接方式可以实现射频信号及电信号可以通过各引脚传入至光发射组件内部的各电子元件,以实现光发射组件的功能。同时,通过激光器芯片4的负极与第二微带 电阻9,使得光模块具有较好的高频性能。
图17和图18本申请另一实施例示出的底座的结构示意图。图17和18示出底座包括:管座1、支撑板2、基板3、激光器芯片4、背光探测器5、第一微带电阻6d,第二微带电阻9、热沉7和5个引脚8,其中一引脚为接地引脚8b;其余的为电极引脚8a。电极引脚8a分别为第一激光管脚8a1,第一背光管脚8a2,第二背光管脚8a3,第二激光管脚8a4。其中,基板3第一封装面具有相互隔离设置的第一金属板31,第二金属板32,第三金属板33和第四金属板34。
述接地管脚8b设置于承载板管座1的底面,与管座1电连接。其中,接地管脚8b与管座电连接,以起到保护的作用。
激光器芯片4的负极贴装于第一金属板31的一端,第一金属板31的另一端与第二微带电阻9的一端电连接,第二微带电阻9的另一端与第三金属板33的一端电连接,第三金属板33的另一端与第二激光管脚8a4贴合设置,通过第一金属板31,第三金属板33实现激光器芯片4的负极,第二微带电阻和第二激光管脚8a4的电连接;
激光器芯片4的正极通过至少一根金线与第二金属板32的一端电连接,第二金属板32的另一端与第一微带电阻6d的一端电连接,第一微带电阻6d的另一端与第四金属板34的一端电连接,第四金属板34的另一端与第一激光管脚8a1贴合设置,通过第二金属板32,第四金属板34实现激光器芯片4的正极,第一微带电阻和第一激光管脚8a1的电连接。
在一可行性实施例中,第二微带电阻9,第一金属板31的宽度,第三金属板33等宽;第一微带电阻6d,第二金属板32的宽度,第四金属板34等宽,即第二金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第四金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度;即第一金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第三金属板与第一微带电阻连接的边具有与第一微带电阻相同的长度,第一金属板、第一微带电阻及第三金属板之间呈现电连接关系;第二金属板、第一微带电阻及第四金属板之间呈现电连接关系,等宽使得电流路径中的传导宽度未发生改变,电流可以从微带电阻的整个边进入微带电阻,有利于减少电流的衰减。
激光器芯片4后出光面朝向背光探测器5的光接收面,背光探测器5通过热沉7固定于承载面上。具体的,热沉7具有第三贴合面和第二封装面;第二封装面相对于第三贴合面倾斜设置;第三贴合面贴装于承载面上,背光探测器5的负极贴装于第二封装面上,第二封装面通过至少一根金线与第二背光管脚8a3连接;通过第二封装面可以实现背光探测器5的负极与第二背光管脚8a3的连接。背光探测器5的正极通过至少一根金线与第一背光管脚8a2的连接。
通过上述连接方式可以实现射频信号及电信号可以通过各引脚传入至光发射组件内部的各电子元件,以实现光发射组件的功能。同时,通过激光器芯片4的负极与第二微带电阻9,激光器芯片4的正极与第一微带电阻6d使得光模块具有较好的高频性能。
在本申请某一实施例中,连接在激光器芯片4正负极两端微带电阻的阻抗值与激光器芯片4实部的阻抗值之和等于激光器芯片4所处通电回路单端的阻抗值。
将激光器芯片4与微带电阻串联可以增加激光器芯片4所处通电回路的品质因素,相应的通电回路的通频带范围有所增大,进而可以达到提高光模块扩大光模块适用频率的目的。
具体的,本申请实施例示出的技术方案中在光模块封装的过程中,将激光器芯片与微带电阻串联。激光器芯片(激光器芯片具有容性和抗性)与微带电阻形成RLC(电阻-电抗-电容)的通电回路。通电回路对不同频率的输入信号有放大的能力。但是,由于通电回路中的电容、电感及电抗的存在,在输入信号频率较低或较高时,放大倍数的数值会下降,放大倍数的数值可以用输出电流I输出与输入电流I输入的比值来表示。举例说明,采用以固定I输入的电信号激发激光器芯片,在实验过程中逐渐的改变电信号的频率,并记录通电回路的I输出。然后,基于I输出与I输入的比值计算出电流的增益值(I输出/I输入)。最后,基于I输出/I输入与输入电信号频率的对应关系,构建I输出/I输入-频率响应曲线。图19为本申请激光器芯片所处通电回路的I输出/I输入-频率响应曲线。从图19中可以看出,在输入信号频率较低或较高时,通电回路的放大倍数值会下降。通常,I输出/I输入比值不小于0.707的频率范围称之为通电回路的通频带,并用BW(transmission bands,通频带)表示。图19中(a~b)GHz对应的频率范围称之为通频带。在通频带以外的频率范围,由于信号衰减严重,因此不能作为光模块的输入信号。
已知,激光器芯片所处的通电回路的通频带,与通电回路的品质因数Q成反比,品质因数越小,相应的通频带越宽。
在通电回路中:
Figure PCTCN2020097377-appb-000001
其中Q为品质因数,L为通电回路中的电抗,C为通电回路中的电容,R为通电回路中的总电阻。在通电回路中L和C一定,因此Q由通电回路中的总电阻决定,总电阻越大,相应的品质因数越小,相应的通频带越宽。相应的,将总电阻越大通电回路封装于光模块中,光模块的频率的适用范围越宽。
下面结合具体的实验数据对采用本申请实施例示出的光模块适用的频率较大作以说明。单独的激光器芯片通电回路(已有技术示出的光模块中,激光器芯片所处的通电回路)与连接了微带电阻的激光器芯片通电回路(本申请实施例示出的光模块中,激光器芯片所处的通电回路)I输出/I输入-频率响应曲线响应曲线对比图可以参阅图20。图20中,虚线为单独的激光器芯片通电回路的I输出/I输入-频率响应曲线,实线为连接了微带电阻的激光器芯片通电回路的I输出/I输入-频率响应曲线。可以看出,单独的激光器芯片通电回路的通频带(a~b)GHz,连接了微带电阻的激光器芯片通电回路的通频带(a1~b1)GHz;(a1~b1)GHz与(a~b)GHz显然输入信号的频率范围有所增大,以此可以证明本申请实施例示出的光模块适用的频率范围有所增大。
可见光模块封装的过程中,将激光器芯片串联微带电阻可以相应的提升了光模块产品的通频带。并且,在一定范围内串联的电阻越大,相应的品质因数越小,相应的通频带越 宽。但是,并不是串联的电阻阻值越大,对应的光模块的性能越好。
通常,光模块的性能可以用激光器芯片的输出功率来衡量,在输入功率恒定的条件下,激光器芯片的输出功率越大,相应的光模块的响应性能越好。因此,光模块在实际应用的过程中,在相同的激发信号的条件下,希望激光器芯片具有较大的输出功率。激光器芯片的输出功率与激光芯片所处的通电回路中微带电阻的阻抗值有关。当微带电阻阻抗值加上激光器芯片实部的阻抗值等于激光器芯片所处通电回路单端的阻抗值,激光机的输出功率可以达到最大。
具体的,由于实际通电回路中电压源总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个微带电阻r1串联的模型,将激光器芯片接入上述线路中,那么激光器芯片所处通电回路单端的阻抗值为r2,其中,r2=0.5r1。假设激光器芯片的阻抗值为R1,接入微带电阻的阻抗值为R2,线路中负载微带电阻为R3,那么R3=R1+R2。在上述线路中,电压源的电动势为U,单端内阻为r2,可以计算出流过激光器芯片的电流为:I=U/(R3+r2),可以看出,负载微带电阻R3越小,则输出电流越大。计算一下微带电阻R3(可以将激光器芯片和微带电阻作为一个整体考虑)的输出功率:
P=I*I*R3=[U/(R3+r2)]*[U/(R3+r2)]*R3;
=U*U*R3/(R3*R3+2*R3*r2+r2*r2)=U*U*R3/[(R3-r2)*(R3-r2)+4*R3*r2];
=U*U/{[(R3-r2)*(R3-r2)/R3]+4*r2}。
对于一个给定的信号源,其内阻r是固定的,激光器芯片的实部阻抗值也是固定,由输出功率的计算公式可以看出当R3=r2时,即微带电阻的阻抗值加上激光器芯片实部的阻抗值等于激光器芯片所处通电回路单端的阻抗值,这时激光器芯片可获得最大输出功率。
本申请实施例示出本申请实施例示出一种光模块,光模块包括:支撑板,激光器芯片,微带电阻,接地管脚,第二激光管脚和第一激光管脚。其中,激光器芯片的负极与第二激光管脚电连接,激光器芯片的正极与微带电阻的一端电连接,微带电阻的另一端第一激光管脚电连接;通过上述的连接方式,激光器芯片,微带电阻,第一激光管脚,第二激光管脚形成一个闭合的通电回路。本申请实时示出的光模块将激光器芯片与微带电阻串联,串联微带电阻之后,相应的通电回路的阻值增加;阻值增加,相应的品质因数Q减小,相应的通频带越宽,相应的光模块适用范围增大。
接入的微带电阻的阻抗值会对激光器芯片的输出功率产生影响,通常微带电阻的阻抗值加上激光器芯片实部的阻抗值等于激光器芯片所处通电回路单端的阻抗值,这时激光器芯片可获得最大输出功率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种光模块,其特征在于,包括:
    电路板,具有电路及由所述电路连接的电学元件;
    管座,用于承载器件;
    基板,由所述管座承载,表面具有由金属材料形成的第一金属板及第二金属板;
    激光器芯片,由所述基板承载,顶面的正极与所述第一金属板表面打线连接;底面的负极设置在所述第二金属板表面以实现电连接;
    第一激光管脚,贯穿所述管座的上下表面,一端与所述第一金属板电连接,另一端与所述电路板电连接;
    第二激光管脚,贯穿所述管座的上下表面,一端与所述第二金属板电连接,另一端与所述电路板电连接;
    接地管脚,未贯穿所述管座的上下表面,一端与所述管座电连接,另一端与所述电路板的接地电路电连接;
    接地电容,由所述管座承载,负极与所述第二激光管脚电连接,正极与所述管座电连接。
  2. 根据权利要求1所述的光模块,其特征在于,所述接地电容的电容大于所述激光器芯片的电容。
  3. 根据权利要求1或2所述的光模块,其特征在于,还包括:支撑板;
    所述支撑板由所述管座承载,所述支撑板垂直设置于所述管座的承载面上;所述支撑板具有第一贴合面,所述第一贴合面垂直与所述承载面;
    所述基板具有相对设置的第二贴合面和第一封装面,所述第二贴合面贴装于所述第一贴合面;
    所述第二贴合面贴装于所述第一贴合面上;
    所述第一封装面具有由金属材料形成的第一金属板及第二金属板。
  4. 根据权利要求1-3任一项所述的光模块,其特征在于,还包括:背光探测器;
    所述背光探测器设置于所述管座的承载面上,所述背光探测器的光接收面朝向所述激光器芯片的后出光面。
  5. 根据权利要求4所述的光模块,其特征在于,所述还包括:第二背光管脚和第一背光管脚;
    所述背光探测器的负极通过打线的方式与所述第二背光管脚电连接,所述背光探测器的正极通过打线的方式与所述第一背光管脚电连接。
  6. 根据权利要求4所述的光模块,其特征在于,还包括:用于支撑所述背光探测器的热沉;
    所述背光探测器通过所述热沉设置于所述管座的承载面上。
  7. 根据权利要求6所述的光模块,其特征在于,所述热沉具有第三贴合面和第二封装面;
    所述第二封装面相对于所述第三贴合面倾斜设置;
    所述第三贴合面贴装于所述管座的承载面;
    所述背光探测器负极贴装于所述第二封装面。
  8. 一种光模块,其特征在于,包括:
    电路板,具有电路及由所述电路连接的电学元件;
    管座,用于承载器件;
    第一激光管脚,贯穿所述管座的上下表面,一端与所述电路板电连接;
    第二激光管脚,贯穿所述管座的上下表面,一端与所述电路板电连接;
    基板,由所述管座承载,表面具有微带电阻;
    激光芯片,顶面的正极通过所述微带电阻与所述第一激光管脚电连接,底面的负极与所述第二激光管脚电连接,
    顶面的正极与所述第一激光管脚电连接,底面的负极通过所述微带电阻与所述第二激光管脚电连接。
  9. 根据权利要求8所述的光模块,其特征在于,所述支撑板的表面具有相互绝缘的第一金属板、第二金属板、第三金属板及第四金属板,所述微带电阻包括:第一微带电阻和第二微带电阻;
    所述第一金属板与所述第三金属板之间通过所述第二微带电阻连接,所述第二金属板与所述第四金属板之间通过所述第一微带电阻连接;
    所述第三金属板与所述第二激光管脚电连接,所述第四金属板与所述第一激光管脚电连接;所述激光芯片,顶面的正极通过打线与所述第二金属板电连接,底面的负极设置在所述第一金属板的表面以实现电连接。
  10. 根据权利要求8所述的光模块,其特征在于,所述支撑板的表面具有相互绝缘的第一金属板、第二金属板及第四金属板;所述微带电阻包括:第一微带电阻;
    所述第二金属板与所述第四金属板之间通过所述第一微带电阻连接;
    所述第一金属板与所述第二激光管脚电连接,所述第四金属板与所述第一激光管脚电连接;所述激光芯片,顶面的正极通过打线与所述第二金属板电连接,底面的负极设置在所述第一金属板的表面以实现电连接。
  11. 根据权利要求8所述的光模块,其特征在于,所述支撑板的表面具有相互绝缘的第一金属板、第二金属板及第三金属板;所述微带电阻包括:第二微带电阻;
    所述第一金属板与所述第三金属板之间通过所述第二微带电阻连接;
    所述第三金属板与所述第二激光管脚电连接,所述第二金属板与所述第一激光管脚电连接;
    所述激光芯片,顶面的正极通过打线与所述第二金属板电连接,底面的负极设置在所述第一金属板的表面以实现电连接。
  12. 根据权利要求8-11任一项所述的光模块,其特征在于,连接在所述激光器芯片正负极两端微带电阻的阻抗值与所述激光器芯片实部的阻抗值之和等于激光器芯片所处通电回路单端的阻抗值。
  13. 根据权利要求9所述的光模块,其特征在于,所述第二微带电阻、所述第一金属板及所述第三金属板具有相同的宽度;
    所述第一微带电阻、所述第二金属板及所述第四金属板具有相同的宽度。
  14. 根据权利要求10所述的光模块,其特征在于,所述第一微带电阻、所述第二金属板及所述第四金属板具有相同的宽度。
  15. 根据权利要求11所述的光模块,其特征在于,所述第二微带电阻、所述第一金属板及所述第三金属板具有相同的宽度。
  16. 根据权利要求12所述的光模块,其特征在于,还包括:背光探测器;
    所述背光探测器设置于所述管座的承载面上,所述背光探测器的光接收面朝向所述激光器芯片的后出光面。
  17. 根据权利要求16所述的光模块,其特征在于,还包括:用于支撑所述背光探测器的热沉;
    所述背光探测器通过所述热沉设置于所述管座的承载面上;
    所述热沉具有第三贴合面和第二封装面;所述第二封装面相对于所述第三贴合面倾斜设置;
    所述第三贴合面贴装于所述管座的承载面;
    所述背光探测器负极贴装于所述第二封装面。
PCT/CN2020/097377 2019-09-26 2020-06-22 一种光模块 WO2021057125A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910916710.1 2019-09-26
CN201910916710.1A CN112558236A (zh) 2019-09-26 2019-09-26 一种光模块
CN201910916720.5 2019-09-26
CN201921615934.0U CN211348740U (zh) 2019-09-26 2019-09-26 一种光模块
CN201921615934.0 2019-09-26
CN201910916720.5A CN112558237A (zh) 2019-09-26 2019-09-26 一种光模块
CN201921615518.0U CN211375138U (zh) 2019-09-26 2019-09-26 一种光模块
CN201921615518.0 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021057125A1 true WO2021057125A1 (zh) 2021-04-01

Family

ID=75165527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097377 WO2021057125A1 (zh) 2019-09-26 2020-06-22 一种光模块

Country Status (1)

Country Link
WO (1) WO2021057125A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159036A (ja) * 2003-11-26 2005-06-16 Matsushita Electric Ind Co Ltd 光送受信モジュール
CN101017956A (zh) * 2006-02-08 2007-08-15 中国科学院微电子研究所 高速率半导体光发射组件的封装结构及方法
CN202423821U (zh) * 2011-11-21 2012-09-05 武汉华工正源光子技术有限公司 高速激光二极管封装结构
CN104734782A (zh) * 2013-12-19 2015-06-24 华为技术有限公司 光发射组件及其组装方法
CN206378622U (zh) * 2016-07-12 2017-08-04 深圳大学 一种同轴封装光通信器件
CN107508141A (zh) * 2017-08-16 2017-12-22 青岛海信宽带多媒体技术有限公司 一种同轴封装的激光器及光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159036A (ja) * 2003-11-26 2005-06-16 Matsushita Electric Ind Co Ltd 光送受信モジュール
CN101017956A (zh) * 2006-02-08 2007-08-15 中国科学院微电子研究所 高速率半导体光发射组件的封装结构及方法
CN202423821U (zh) * 2011-11-21 2012-09-05 武汉华工正源光子技术有限公司 高速激光二极管封装结构
CN104734782A (zh) * 2013-12-19 2015-06-24 华为技术有限公司 光发射组件及其组装方法
CN206378622U (zh) * 2016-07-12 2017-08-04 深圳大学 一种同轴封装光通信器件
CN107508141A (zh) * 2017-08-16 2017-12-22 青岛海信宽带多媒体技术有限公司 一种同轴封装的激光器及光模块

Similar Documents

Publication Publication Date Title
JP5180176B2 (ja) To−can型tosaモジュール
CA1292798C (en) Semiconductor laser module of dual in-line package type
US10587093B2 (en) Connection structure for laser and laser assembly
US20240012210A1 (en) Optical module
US20220224073A1 (en) Optical module
CN112558237A (zh) 一种光模块
CN212647081U (zh) 一种光模块
CN211375138U (zh) 一种光模块
KR100575950B1 (ko) 티오 캔 구조의 광수신 모듈
CN111694112A (zh) 一种光模块
JP2013197479A (ja) Tosaモジュールパッケージ
CN210775925U (zh) 光发射器及光模块
CN215910692U (zh) 一种光模块
CN216351386U (zh) 一种光发射器件和光模块
WO2022057866A1 (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
CN211348740U (zh) 一种光模块
WO2021057125A1 (zh) 一种光模块
CN113659441B (zh) 一种激光器组件及光模块
WO2022052527A1 (zh) 一种光模块
CN213934312U (zh) 一种光网络终端
CN115113345B (zh) 一种光模块
CN113281853B (zh) 一种光模块
CN115933070A (zh) 一种光模块及激光组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868397

Country of ref document: EP

Kind code of ref document: A1