WO2022057866A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022057866A1
WO2022057866A1 PCT/CN2021/118850 CN2021118850W WO2022057866A1 WO 2022057866 A1 WO2022057866 A1 WO 2022057866A1 CN 2021118850 W CN2021118850 W CN 2021118850W WO 2022057866 A1 WO2022057866 A1 WO 2022057866A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
film resistor
optical
thin film
optical module
Prior art date
Application number
PCT/CN2021/118850
Other languages
English (en)
French (fr)
Inventor
孙飞龙
张俊红
张晓廓
张加傲
王欣南
慕建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022052192.4U external-priority patent/CN213302589U/zh
Priority claimed from CN202011223403.4A external-priority patent/CN112398541B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022057866A1 publication Critical patent/WO2022057866A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • Optical communication technology will be used in new business and application modes such as cloud computing, mobile Internet, and video.
  • the optical module realizes the function of photoelectric conversion in the field of optical communication technology, and is one of the key components in optical communication equipment.
  • the optical signal intensity input by the optical module to the external optical fiber directly affects the quality of optical fiber communication.
  • the present disclosure provides an optical module, comprising: a circuit board; a light emitting sub-module electrically connected to the circuit board for converting an electrical signal into an optical signal; the first signal pin and the second signal pin; the first signal pin and the second signal pin penetrate through the upper and lower surfaces of the tube seat; the TEC is arranged on the surface of the tube seat and is used to adjust the temperature of the edge-emitting laser; the base, It is arranged on the surface of the TEC to support the edge-emitting laser; the edge-emitting laser is arranged on the surface of the base to emit light signals from the side; the reflector is arranged on the front of the laser in the light-emitting direction, and is provided with a slope for The signal beam from the laser is reflected; the ceramic substrate is vertically arranged on the surface of the socket and between the laser and the first signal pin; wherein: the base has a first metal area and a second metal area; the ceramic substrate has interconnected The top metal area and the side metal area of It is connected
  • the present disclosure provides an optical module, including: a circuit board; a light emission sub-module electrically connected to the circuit board for converting an electrical signal into an optical signal; the light emission sub-module includes: a ceramic substrate , used to carry devices; EML laser, carried by the ceramic substrate, including a light-emitting area and an electro-absorption modulation area, used to convert electrical signals into optical signals; a first capacitor; a first thin film resistor, set on the ceramic substrate The surface is connected in series with the first capacitor to form an RC circuit, and the RC circuit is connected in parallel with the electro-absorption modulation region; the second thin-film resistor is arranged on the surface of the ceramic substrate and is connected in parallel with the first thin-film resistor, using for compensating the deviation resistance of the first thin film resistor.
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments.
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • FIG. 5 is a schematic diagram of an internal structure of an optical module according to some embodiments.
  • FIG. 6 is a schematic structural diagram of a light emission sub-module according to some embodiments.
  • FIG. 7 is a schematic diagram of an exploded structure of a light emission sub-module according to some embodiments.
  • FIG. 8 is another exploded schematic diagram of a light emission sub-module according to some embodiments.
  • FIG. 9 is a schematic structural diagram of an optical module with a tube base and pins provided on the tube base removed according to some embodiments.
  • FIG. 10 is a schematic structural diagram of a socket and pins provided on the socket according to some embodiments.
  • FIG. 11 is a schematic diagram of a light path corresponding to a mirror according to some embodiments.
  • FIG. 12 is a schematic diagram of an exploded structure of another light emission sub-module according to some embodiments.
  • FIG. 13 is a schematic diagram of a partial structure of a light emission sub-module according to some embodiments.
  • FIG. 14 is a schematic diagram of an equivalent circuit of the connection of components in a light emitting sub-module according to some embodiments.
  • 15 is a graph of a laser high frequency reflection test according to some embodiments.
  • optical communication technology light is used to carry the information to be transmitted, and the optical signal carrying the information is transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since optical signals have passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost and low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by information processing equipment such as computers are electrical signals. To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • the optical module realizes the mutual conversion function of the above-mentioned optical signal and electrical signal in the technical field of optical fiber communication.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fibers or optical waveguides through the optical port, and realizes electrical connection with an optical network terminal (for example, an optical cat) through the electrical port. It is mainly used to realize power supply, I2C signal transmission, data signal transmission and grounding; optical network terminals transmit electrical signals to information processing equipment such as computers through network cables or wireless fidelity technology (Wi-Fi).
  • Wi-Fi wireless fidelity technology
  • FIG. 1 is a connection diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103;
  • the optical fiber 101 is connected to the remote server 1000 , and the other end is connected to the optical network terminal 100 through the optical module 200 .
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of several kilometers (6 kilometers to 8 kilometers). On this basis, if repeaters are used, ultra-long distance transmission can theoretically be achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 may be any one or more of the following devices: a router, a switch, a computer, a mobile phone, a tablet computer, a television, and the like.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103 ; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100 .
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to be connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 can establish a two-way optical signal connection; electrical signal connection.
  • the optical module 200 realizes the mutual conversion of optical signals and electrical signals, so as to establish a connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101 .
  • the optical network terminal 100 includes a substantially rectangular housing, and an optical module interface 102 and a network cable interface 104 disposed on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 can establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 are connected.
  • a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the signal from the network cable 103 to the optical module 200.
  • the optical network terminal 100 as the host computer of the optical module 200, can monitor the optical module 200. work.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT) and the like.
  • OLT Optical Line Terminal
  • a bidirectional signal transmission channel is established between the remote server 1000 and the local information processing device 2000 through the optical fiber 101 , the optical module 200 , the optical network terminal 100 and the network cable 103 .
  • FIG. 2 is a structural diagram of an optical network terminal according to some embodiments.
  • the optical network terminal 100 further includes a PCB circuit board 105 disposed in the housing, a cage 106 disposed on the surface of the PCB circuit board 105 , and an electrical connector disposed inside the cage 106 .
  • the electrical connector is configured to be connected to the electrical port of the optical module 200 ; the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100 , and the optical module 200 is fixed by the cage 106 .
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106 , so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101 , so that the optical module 200 and the optical fiber 100 establish a bidirectional electrical signal connection.
  • FIG. 3 is a structural diagram of an optical module according to some embodiments
  • FIG. 4 is an exploded structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a casing, a circuit board 300 disposed in the casing, and an optical transceiver;
  • the casing includes an upper casing 201 and a lower casing 202.
  • the upper casing 201 is covered on the lower casing 202 to form the above casing with two openings 204 and 205; the outer contour of the casing generally presents a square body.
  • the lower casing 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and perpendicular to the bottom plate;
  • the upper casing 201 includes a cover plate, and two side plates located on both sides of the cover plate and perpendicular to the cover plate.
  • An upper side plate is combined with the two side plates by two side walls, so as to realize that the upper casing 201 is covered on the lower casing 202 .
  • the direction of the connection between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the light module 200 (the left end of FIG. 3 ), and the opening 205 is also located at the end of the light module 200 (the right end of FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200
  • the opening 205 is located at the side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden fingers of the circuit board 300 protrude from the electrical port 204 and are inserted into the host computer (such as the optical network terminal 100 );
  • the optical fiber 101 is connected to the optical transceiver device inside the optical module 200 .
  • the combination of the upper case 201 and the lower case 202 is used to facilitate the installation of the circuit board 300, optical transceivers and other devices into the case, and the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper case 201 and the lower case 202 can form encapsulation protection for these devices.
  • the upper casing 201 and the lower casing 202 are generally made of metal material, which is beneficial to achieve electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located on the outer wall of the housing thereof, and the unlocking component 203 is configured to realize a fixed connection between the optical module 200 and the upper computer, or release the connection between the optical module 200 and the upper computer fixed connection.
  • the unlocking components 203 are located on the outer walls of the two lower side panels 2022 of the lower casing 202, and include engaging components matching with the cage of the upper computer (eg, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the upper computer, the optical module 200 is fixed in the cage of the upper computer by the engaging part of the unlocking part 203; when the unlocking part 203 is pulled, the engaging part of the unlocking part 203 moves accordingly, thereby changing the The connection relationship between the engaging member and the host computer is used to release the engaging relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, limiter amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP) Wait.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, limiter amplifier chip, clock data recovery CDR, power management chip, data processing chip DSP) Wait.
  • the circuit board 300 connects the above-mentioned devices in the optical module 200 together according to the circuit design through circuit traces, so as to realize functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry chips smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. , in some embodiments of the present disclosure, metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector; these are inconvenient to be realized by the flexible circuit board.
  • Flexible circuit boards are also used in some optical modules; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers as a supplement to the rigid circuit boards.
  • the optical transceiver device 400 includes two parts, an optical transmitting sub-module and an optical receiving sub-module, which are respectively used for transmitting and receiving optical signals.
  • the emission sub-module generally includes a light emitter, a lens and a light detector, and the lens and the light detector are located on different sides of the light emitter. The front and back sides of the light emitter emit light beams respectively.
  • the lens is used to converge the front of the light emitter.
  • the emitted light beam makes the light beam emitted by the light transmitter a convergent light so as to be easily coupled to an external optical fiber; the light detector is used to receive the light beam emitted from the reverse side of the light transmitter to detect the optical power of the light transmitter.
  • the light emitted by the optical transmitter enters the optical fiber after being condensed by the lens, and the light detector detects the luminous power of the optical transmitter to ensure the constancy of the emitted optical power of the optical transmitter.
  • the optical transceiver device 400 will be described in detail below.
  • FIG. 5 is a schematic diagram of the internal structure of an optical module according to some embodiments; as shown in FIG. 5 , the optical transceiver device 400 in the foregoing embodiment includes an optical transmitting sub-module 500 and an optical receiving sub-module 700 , and the optical module further includes a round square The tube body 600 and the optical fiber adapter 800.
  • the optical transceiver submodule is preferably connected to the optical fiber by the optical fiber adapter 800, that is, the optical fiber adapter 800 is inlaid on the circular square tube body 600 for connecting the optical fiber.
  • the round tube body 600 is provided with a third nozzle 603 into which the optical fiber adapter 800 is inserted.
  • the sub-module 700 establishes an optical connection with the optical fiber adapter 800 respectively, and the light emitted and received in the optical transceiver device are both transmitted through the same optical fiber in the optical fiber adapter, that is, the same optical fiber in the optical fiber adapter is the optical transceiver device.
  • the transmission channel, the optical transceiver device realizes the single-fiber bidirectional optical transmission mode.
  • the square tube body 600 is used to carry the light emitting sub-module 500 and the light receiving sub-module 700.
  • the round tube body 600 is made of metal material, which is beneficial to realize electromagnetic shielding and heat dissipation.
  • the round tube body 600 is provided with a first nozzle 601 and a second nozzle 602 , and the first nozzle 601 and the second nozzle 602 are respectively disposed on the adjacent side walls of the round tube body 600 .
  • the first orifice 601 is provided on the side wall of the circular square tube body 600 in the length direction
  • the second orifice 602 is provided on the side wall of the circular square tube body 600 in the width direction.
  • the light-emitting sub-module 500 is embedded in the first nozzle 601, and through the first nozzle 601, the light-emitting sub-module 500 thermally contacts the round tube body 600; the light-receiving sub-module 700 is embedded in the second nozzle 602, and passes through the second pipe The port 602 , the light receiving sub-module 700 thermally contacts the round tube body 600 .
  • the light emitting sub-module 500 and the light receiving sub-module 700 are directly press-fitted into the round tube body 600, and the round tube body 600 is directly or Contact via a thermally conductive medium.
  • the round and square tube body can be used for the heat dissipation of the light emitting sub-module 500 and the light receiving sub-module 700 , so as to ensure the heat dissipation effect of the light emitting sub-module 500 and the light receiving sub-module 700 .
  • FIG. 6 is a schematic structural diagram of a light emitting sub-module according to some embodiments
  • FIG. 7 is a schematic diagram of an exploded structure of a light emitting sub-module according to some embodiments
  • FIG. 8 is another exploded structure of a light emitting sub-module according to some embodiments Schematic.
  • the light emission sub-module 500 provided by the embodiment of the present disclosure will be described below with reference to FIG. 6 , FIG. 7 and FIG. 8 . As shown in FIGS.
  • the light emission sub-module 500 includes a tube base 501, a TEC 502 disposed on the surface of the tube base, a base 503 disposed on the surface of the TEC 502, an edge-emitting laser 504 disposed on the surface of the base 503, and a reflector 505;
  • the light emitting sub-module 500 adopts a TO coaxial package, and the tube base 501 is used to support and carry the TEC502, the base 503, the edge-emitting laser 504, and the reflector 505; the lower surface of the TEC502 and the tube base
  • the top surface of TEC501 is in direct contact with the bottom surface of base 503, that is, one heat exchange surface of TEC502 is directly attached to the top surface of tube base 501, and the other heat exchange surface is directly attached to the base 503.
  • the lower surface; the base 503 is used to support and carry the edge-emitting laser 504 and the mirror 505.
  • the edge-emitting laser 504 is placed horizontally on the surface of the base 503, and the reflector 505 is arranged on one side of the base 503.
  • the base 503 is pasted on the TEC 502 using silver glue, and the optoelectronic devices such as the edge-emitting laser 504 and the mirror 505 are pasted on the base 503 using glue.
  • the material of the base 503 includes but is not limited to tungsten copper, raftable alloy, SPCC (Steel Plate Cold rolled Commercial, cold-rolled carbon steel), copper, etc., so as to facilitate the transfer of heat generated by the optoelectronic device to the TEC 502 for heat dissipation.
  • the laser in the present disclosure adopts an edge-emitting form, which emits optical signals from the side, and emits optical signals through the reflection of the mirror 505.
  • the edge-emitting laser 504 includes a laser chip and a laser ceramic heat sink. The laser chip is welded on the laser ceramic heat sink with gold-tin solder for emitting the signal beam.
  • the edge-emitting laser 504 is very sensitive to temperature changes, and the edge-emitting laser 504 needs to be heated or cooled by the TEC 502 to adjust the edge-emitting laser 504 to be at a constant operating temperature.
  • the light emitting sub-module 500 of the present disclosure further includes a thermistor 508 .
  • the thermistor 508 is arranged on the base 503 and is used to collect the operating temperature of the edge-emitting laser 504 to realize the adjustment of the operating temperature of the opposite-edge-emitting laser 504 . monitor.
  • the temperature of the edge-emitting laser 504 is collected in real time through the thermistor 508, and the collected temperature of the edge-emitting laser 504 is fed back to the drive circuit of the thermoelectric cooler.
  • the temperature of the edge emitting laser 504 is determined, and the heating or cooling current is input into the TEC 502 to realize the heating or cooling of the edge emitting laser 504, so that the temperature of the edge emitting laser 504 can be controlled within the target temperature range.
  • the thermistor 508 is disposed on the near side of the edge-emitting laser 504 .
  • the edge-emitting laser 504 In order to couple the signal beam emitted by the edge-emitting laser 504 into the external optical fiber along the light-transmitting direction of the tube base 501 , the edge-emitting laser 504 is usually installed vertically, that is, the setting direction is parallel to the tube base 501 , and the heat conduction surface of the TEC502 is At this time, in order to adjust the working temperature of the edge-emitting laser 504 by the TEC502, the heat conduction surface needs to be turned over by the L-shaped heat sink.
  • the L-shaped heat sink has a lower thermal conductivity coefficient, which will reduce the temperature control effect of the edge-emitting laser 504 and the TEC 502.
  • the edge-emitting laser 504 in the present disclosure is placed horizontally on the surface of the base 503, and the heat-conducting surface of the edge-emitting laser 504 is also a horizontal plane.
  • the base 503 is used as a heat transfer medium between the TEC502 and the edge-emitting laser 504, and the thermal conductivity of the base 503 is relatively large, and the setting method shortens the distance between the TEC502 and the edge-emitting laser 504, and the TEC502 and the base 503 supporting the laser are The contact area between them increases, and when the contact area increases, the heat flux transferred increases, so that the temperature control effect of the TEC 502 opposite the edge-emitting laser 504 can be increased.
  • heat can be transferred between the TEC 502 and the edge-emitting laser 504 , so as to adjust the temperature of the edge-emitting laser 504 .
  • the signal transmission of the edge-emitting laser 504 will be described.
  • the wire bonding length between the laser and signal pins is very important to the performance of high-speed devices.
  • the longer the wire bonding length the greater the parasitic inductance, which is not conducive to the transmission of high-frequency signals. Therefore, in the packaging of high-speed devices, it is hoped that the wire bonding length should be as long as possible.
  • the purpose is to reduce parasitic inductance and optimize the transmission performance of high-frequency signals.
  • the ceramic substrate 506 is selected to realize the connection between the positive and negative electrodes of the laser and the first signal pin and the second signal pin.
  • FIG. 9 is a schematic structural diagram of an optical module according to some embodiments in which the socket and the pins provided on the socket are removed.
  • the base 503 has a first metal area and a second metal area;
  • the ceramic substrate has a top metal area and a side metal area that communicate with each other.
  • the high-frequency signals emitted by the first signal pin and the second signal pin can be transmitted to the edge-emitting laser.
  • Such a connection method can shorten the length of the gold wire between the laser and the signal pin, which is conducive to the transmission of high-frequency signals and optimizes the high-frequency performance of the optical module.
  • the base 503 in the present disclosure is a ceramic base, and specifically, alumina ceramics, aluminum nitride ceramics, etc. can be selected.
  • the ceramic substrate 506 can be selected from alumina ceramics, aluminum nitride ceramics, and the like.
  • the surface of the base 503 is plated with a first metal region and a second metal region, the surface of the ceramic substrate 506 is plated with a third metal region and a fourth metal region, the first metal region, the second metal region, the third metal region and the fourth metal region
  • the regions can be specifically the first copper layer, the second copper layer, the third copper layer and the fourth copper layer, and the first metal region, the second metal region, the third metal region and the fourth metal region are all engraved with the laser chip. Functional circuit for signal transmission.
  • FIG. 10 is a schematic structural diagram of a header and pins provided on the header according to some embodiments.
  • the circumference of the socket 501 in addition to the first signal pin 511 and the second signal pin 512 , the circumference of the socket 501 also includes a laser pin 514 , a base pin 513 , a TEC pin 517 , and a thermistor.
  • Pin 516 and backlight detector pin 515, laser pin 514, base pin 513, TEC pin 517, thermistor pin 516 and backlight detector pin 515 are functional pins whose main function is to supply power.
  • each pin is electrically connected to the corresponding electrical device through a wire.
  • each pin is electrically connected to a corresponding electrical device through a gold wire.
  • the laser, the base, the TEC, the thermal surface resistance, and the backlight detector are respectively connected to the corresponding laser pins 514 , base pins 513 , TEC pins 517 , thermistor pins 516 and the backlight through gold wires.
  • the positive and negative electrodes of the laser are connected to the first signal pin and the second signal pin through the ceramic substrate 506, rather than the positive and negative electrodes of the laser and the first signal pin through the gold wire.
  • the positive and negative electrodes of the laser are selected to be connected to the first signal pin and the second signal pin through the ceramic substrate 506. , and the functional pins have lower requirements for efficient signal transmission, so in this disclosure, the laser, the base, the TEC, the thermal surface resistance and the backlight detector are respectively connected to the corresponding laser pins 514 and base pins 513 through gold wires. , TEC pin 517, thermistor pin 516 and backlight detector pin 515.
  • the present disclosure is further provided with a column 509, which is in direct contact with the ceramic substrate 506 and can support the ceramic substrate 506, thereby increasing the ceramic substrate 506. The stability of the substrate 506 .
  • the light emission sub-module 500 further includes a backlight detector 507, and the backlight detector 507 is arranged on one side of the edge-emitting laser 504, that is, the backlight detector 507 and the mirror 505 are respectively located on the side of the laser 504.
  • the mirror 505 is located on the light-emitting light path on the front of the edge-emitting laser 504
  • the backlight detector 507 is located on the light-emitting light path on the back of the laser 504
  • the backside of the edge-emitting laser 504 emits light beams into the backlight Detector 507.
  • the light power of the light beam emitted from the back side of the edge-emitting laser 504 is detected by the backlight detector 507, thereby detecting the light power of the light beam emitted by the front side of the laser 504.
  • the laser 504 can be dynamically adjusted. If the backlight detector 507 detects that the optical power becomes larger, the emitted optical power of the edge-emitting laser 504 becomes larger, which can be controlled by controlling the laser.
  • the drive circuit reduces the driving power applied to the laser to make the edge-emitting laser 504 emit less light; if the backlight detector 507 detects that the optical power becomes smaller, the edge-emitting laser 504 emits less light, which can be driven by controlling the laser.
  • the circuit increases the driving current of the laser to make the edge-emitting laser 504 emit less light, thereby ensuring the constant light-emitting power of the laser.
  • the light-emitting direction of the edge-emitting laser 504 is inconsistent with the light-transmitting direction of the socket 501.
  • the light path of the beam emitted by the laser 504 is arranged on the optical path.
  • the main optical axis of the signal beam is perpendicular to the stem 501 .
  • the reflector 505 in the embodiment of the present disclosure is used to provide a reflective surface for light reflection, so as to change the transmission direction of the light beam emitted by the edge-emitting laser 504, so that the light-emitting direction of the edge-emitting laser 504 is inconsistent with the light-transmitting direction of the tube base 501 In this case, the signal beam can still be transmitted through the light window of the socket 501 .
  • the reflector 505 is provided with a bottom platform, a top platform and a slope connecting the bottom platform and the top platform, the bottom platform is fixed on the surface of the base 503, the top platform is parallel to the surface of the base 503, and the slope is used to reflect the reflection from the side
  • the signal beam of the light-emitting laser 504 is emitted so that the light-emitting direction of the signal beam after reflection is perpendicular to the socket 501 .
  • FIG. 11 is a schematic diagram of an optical path corresponding to a mirror according to some embodiments.
  • the reflecting mirror 505 can be a 45-degree reflecting prism, and in some embodiments of the present disclosure, it is composed of a bottom platform, a top platform, three side surfaces and an inclined surface, the bottom platform is pasted on the base 503, and the top platform is parallel to the base 503, the three sides are perpendicular to the base 503, the inclined plane connects the top platform and the bottom platform, and the inclined plane is located in the emission direction of the edge-emitting laser 504, and the inclined surface is coated with a reflective film for reflecting the signal emitted by the edge-emitting laser 504 light beam, so that the outgoing direction of the reflected signal beam is perpendicular to the tube base 501.
  • a flat glass coated with a reflective film is arranged on the inclined surface of the base, and is used to reflect the light emitted by the edge-emitting laser 504. signal beam, so that the light-emitting direction of the reflected signal beam is perpendicular to the socket 501 .
  • the reflector 505 can also be composed of a bottom platform, a top platform, three side surfaces and two inclined surfaces.
  • the bottom platform is pasted on the base 503
  • the top platform is parallel to the base 503
  • the three sides are perpendicular to the base 503
  • one side is connected to the bottom platform and is close to the light-emitting surface of the edge-emitting laser 504, the other two sides are respectively connected to the top platform and the bottom platform, one slope is connected to the top platform and the bottom platform, and the other slope is connected to the top platform of the mirror 505.
  • the side of the light-emitting surface of the edge-emitting laser 504, and the inclined plane connecting the top platform and the side near the light-emitting surface of the edge-emitting laser 504 is located in the emission direction of the edge-emitting laser 504, and the inclined surface is coated with a reflective film for reflecting the edge-emitting laser 504
  • the light-emitting direction of the reflected signal beam is consistent with the light-transmitting direction of the tube base 501 .
  • the flat glass coated with the reflective film can be pasted on the inclined surface with glue, and the glue includes but is not limited to silver glue, UV glue, epoxy glue, UV epoxy glue and the like.
  • the shape of the reflector provided by the embodiment of the present disclosure is not limited to the above-mentioned shape, as long as it satisfies assembly and total reflection, and can convert the light-emitting direction of the signal beam to be consistent with the light-transmitting direction of the tube base 501 , that is, The main optical axis of the reflected signal beam is perpendicular to the tube base 501 , which all belong to the protection scope of the embodiments of the present disclosure.
  • the present disclosure provides an optical module including a circuit board and a light emitting sub-module.
  • the light emitting sub-module includes a tube base.
  • the TEC is arranged on the surface of the tube base, the base is arranged on the surface of the TEC, and the laser is placed on the side of the base.
  • the signal beam emitted by the laser is reflected by the mirror, and then the signal beam is emitted in the direction perpendicular to the tube base, and the TEC realizes heat transfer between the base and the laser;
  • the light emission sub-module also includes a ceramic substrate, and the laser can communicate with the signal through the ceramic substrate. Signal transmission between pins.
  • the heat transfer between the TEC and the laser does not need to be realized through the heat sink L-shaped heat sink substrate, and the TEC can realize the heat transfer between the TEC and the laser through the base disposed horizontally with it.
  • the heat transfer method shortens the distance between the TEC and the laser, thereby increasing the temperature control effect of the TEC on the laser.
  • FIG. 12 is a schematic diagram of an exploded structure of another light emission sub-module according to some embodiments
  • FIG. 13 is a schematic diagram of a partial structure of a light emission sub-module according to some embodiments; as shown in FIGS. 12 and 13 , in the embodiments of the present disclosure
  • the light emission sub-module 500 includes a tube base 501, a TEC 502 disposed on the surface of the tube base, a base 503 disposed on the surface of the TEC 502, and a ceramic substrate 504A disposed on the surface of the base 503.
  • the light emission sub-module 500 adopts TO coaxial package, the tube base 501 is used to support and carry the TEC502, the base 503, and the ceramic substrate 504A; That is, one heat exchange surface of the TEC502 is directly attached to the upper surface of the tube base 501, and the other heat exchange surface is directly attached to the lower surface of the base 503; the base 503 is used to support the ceramic substrate 504A.
  • the base 503 mainly plays the role of fan heat and bearing.
  • the material of the base 503 includes but is not limited to tungsten copper, raftable alloy, SPCC (Steel Plate Cold rolled Commercial, cold-rolled carbon steel), copper, etc.
  • the heat generated is transferred to the TEC502 for heat dissipation;
  • the ceramic substrate 504A is selected from alumina ceramics, aluminum nitride ceramics, etc.
  • the surface of the ceramic substrate 504A is engraved with the functional circuit of the laser chip for signal transmission.
  • the surface of the ceramic substrate 504A is provided with EML
  • the laser 505A and the EML laser 505A are integrated devices of the laser DFB and the electro-absorption modulator EA.
  • the laser DFB converts the electrical signal into an optical signal
  • the electro-absorption modulator EA encodes and modulates the optical signal and outputs it, so that the output optical signal carries information.
  • Optical converters and optical modulators, electro-absorption modulators are one of the commonly used optical modulators. They are widely used in the transmission of high-speed optical signals due to their fast response speed and low power consumption.
  • the EML laser 505A is very sensitive to temperature changes, and the EML laser 505A needs to be heated or cooled by the TEC 502 to adjust the EML laser 505A to be at a constant operating temperature.
  • the light emission sub-module 500 of the present disclosure further includes a thermistor, which is arranged on the base 503 and is used to collect the working temperature of the EML laser 505A to monitor the working temperature of the EML laser 505A.
  • the temperature of the EML laser 505A is collected in real time through the thermistor, and the collected temperature of the EML laser 505A is fed back to the drive circuit of the thermoelectric cooler, and the drive circuit of the thermoelectric cooler is based on the received EML laser
  • the temperature of 505A determines the heating or cooling current input to the TEC 502 to achieve heating or cooling of the EML laser 505A, so that the temperature of the EML laser 505A can be controlled within the target temperature range.
  • the golden finger introduces the electrical signal into the laser driver chip, and the laser driver chip transmits the electrical signal to the EML laser 505A, and then uses the EML laser 505A to convert the electrical signal into an optical signal, where the laser driver
  • the chip and the EML laser 505A are connected by a wire, and the wire has a certain characteristic impedance. Since the output impedance of the laser driver chip is rated, when the output impedance of the EML laser 505A does not match the characteristic impedance, there will be a gap between the laser driver chip and the laser. The transmission signal will be lost, reducing the integrity of the signal.
  • the output impedance of the EML laser 505A matches the characteristic impedance. It should be noted that the meaning of matching here refers to the EML laser 505A.
  • the output impedance value reaches the characteristic impedance value, that is, the impedance value output by the EML laser 505A is consistent with the characteristic impedance value.
  • the first thin film resistor 506A is connected in parallel at the EML laser 505A.
  • the first thin film resistor 506A has an impedance matching function, and finally the impedance output by the EML laser 505A is consistent with the characteristic impedance. Therefore, the first thin film resistor 506A can be It is called a matched resistor; because the space of the ceramic substrate 504A is small, generally the first thin film resistor 506A adopts a thin film resistor, which is sintered through a region of the ceramic substrate 504A.
  • the process is complicated, but because the first thin film resistor 506A is in the During processing, a deviation impedance that deviates from the ideal impedance by 5%-10% towards the upper limit will be generated.
  • the deviation impedance is a force majeure factor.
  • the existence of the deviation impedance will reduce the impedance matching performance of the first thin film resistor 506A. Therefore, a second thin film resistor is provided in the present disclosure. 507A, the second thin film resistor 507A is connected in parallel with the first thin film resistor 506A to compensate the deviation impedance deviating from the upper limit.
  • the second thin film resistor 507A has Similarly to the upper limit characteristic, the impedance of the second thin film resistor 507A is 1375 ⁇ after the upper limit is offset.
  • the equivalent resistance of the first thin film resistor 506A and the second thin film resistor 507A in parallel is 52.88 ⁇ , which is closer to the ideal impedance value of 50 ⁇ , so that The impedance matching performance of the first thin film resistor 506A is improved, wherein the second thin film resistor 507A can be in the form of a thin film resistor.
  • the first thin film resistor 506A is used to make the impedance value output by the EML laser 505A consistent with the characteristic impedance value
  • the second thin film resistor 507A is used to compensate for the deviation generated by the first thin film resistor 506A during processing
  • the impedance can eliminate the deviation impedance as much as possible, so that the impedance of the first thin film resistor 506A can be restored to the ideal impedance value as much as possible
  • the EML laser 505A in the present disclosure includes a light emitting region 505A1 and an electroabsorption modulation region 505A2, and the first thin film resistor 506A and The electro-absorption modulation area 505A2 is connected in parallel
  • the second thin-film resistor 507A is connected in parallel with the first thin-film resistor 506A
  • the second thin-film resistor 507A is also connected in parallel with the electro-absorption modulation area 505A2, that is, the first thin-film resistor 506A
  • the EML laser 505A when the impedance output by the EML laser 505A cannot be well matched with the characteristic impedance, the EML laser 505A will reflect part of the signal, and the signal will return to the EML laser 505A along the original path, reducing the performance of the signal, and may even cause the signal
  • the first thin film resistor 506A and the second thin film resistor in the present disclosure can absorb the reflected part of the signal at the same time, and the second thin film resistor in the present disclosure is disposed in front of the EML laser 505A, which can further suppress the EML laser 505A reflected signal.
  • FIG. 15 is a test chart of the high frequency reflection of the laser according to some embodiments, and the test results are shown in FIG. 15 , FIG. 15 There are two curves in it. For the convenience of description, the thinner curve is called the first curve, and the thicker curve is called the second curve. The first curve is the result of not connecting the second thin film resistor 507A in parallel in front of the EML laser 505A.
  • the second curve is a schematic diagram of the result of connecting a second thin film resistor 507A in parallel in front of the EML laser 505A. It can be seen from Figure 14 that adding a parallel resistor in the 5-13GHZ frequency band has a better effect of suppressing reflection, which corresponds to the laser Has better signal integrity.
  • the optical module provided in the embodiment of the present disclosure further includes a first capacitor 508 and a second capacitor 509A, wherein the first capacitor 508 and the second capacitor 509A are both disposed on the surface of the base 503 , that is, the ceramic substrate 504A, the first capacitor 508 and the second capacitor 509A are all disposed on the surface of the base 503, wherein the first capacitor 508 and the first thin film resistor 506A are connected in series to form an RC circuit, and the RC circuit, the second thin film resistor and the electro-absorption modulation region are three They are connected in parallel with each other.
  • the circuit is arranged on the periphery of the EML laser 505A.
  • the surface of the base 503 has a first circuit area that can transmit signals.
  • the first circuit area is a signal line transmission layer formed of a metal material.
  • the negative electrode is arranged on two opposite surfaces, wherein the lower surface (bottom surface) is provided with a negative electrode, the upper surface (top surface) is provided with a positive electrode, the negative electrode of the first capacitor 508 is connected to the first circuit area, the first The anode of the capacitor 508 is connected to one end of the first thin film resistor 506A.
  • the first capacitor 508 has the function of passing AC and blocking DC, thereby reducing power consumption.
  • the second capacitor 509A has the function of filtering, specifically, it can reduce the amplitude of the voltage fluctuation of the EML laser 505A.
  • the second capacitor 509A also has a positive electrode and a negative electrode, and the positive electrode and the negative electrode are arranged on two opposite surfaces, wherein The lower surface (bottom surface) is provided with a negative electrode, the upper surface (top surface) is provided with a positive electrode, the negative electrode of the second capacitor 509A is also connected to the first circuit area, and the positive electrode of the second capacitor 509A is connected to the light emitting area 505A1.
  • both ends of the first thin film resistor 506A are respectively provided with a first pad and a second pad, and a third pad is also provided next to the second pad, the first pad and the second pad are The area formed by the third pad and the area occupied by the EML laser 505A is arranged next to the area occupied by the EML laser 505A.
  • the metal wire between the first capacitor 508 and the first thin film resistor 506A is defined as the first metal wire, and the first thin film
  • the metal wire between the resistor 506A and the EML laser 505A is defined as the second metal wire
  • the metal wire between the second capacitor 509A and the EML laser 505A is defined as the third metal wire
  • one end of the first metal wire is welded to the first capacitor.
  • the other end is welded on the first pad, one end of the second metal wire is welded on the second pad, the other end is welded on the positive electrode of the electro-absorption modulation area 505A2, and one end of the third metal wire is welded on the
  • the positive pole of the second capacitor 509A is soldered to a node of the third pad, and a fourth metal wire is drawn from the other node of the third pad, and one end of the fourth metal wire is welded to the third pad, The other end is welded to the positive electrode of the light-emitting area 505A1.
  • first wire between the positive electrode of the first capacitor and the first thin-film resistor
  • second wire is provided between the first thin-film resistor and the positive electrode of the electro-absorption modulation region
  • the second capacitor and the third wire between the light-emitting regions
  • a fourth wire is arranged between the positive electrode of the electro-absorption modulation region and the fourth pad
  • the first wire, the second wire, the third wire and the fourth wire can be gold
  • the made gold wire of course, can also be made of other metal materials.
  • FIG. 14 is a schematic diagram of an equivalent circuit of the connection of components in the light emission sub-module according to some embodiments; as shown in FIG. 14 , the first thin film resistor and the first capacitor are connected in series to form an RC circuit, where the RC circuit and the electro-absorption modulation area are located The branch where the second thin film resistor is located is connected in parallel with each other, and the second capacitor is connected in parallel with the branch where the light-emitting area is located.
  • the surface of the ceramic substrate 504A has a second circuit area and a third circuit area.
  • the second circuit area and the third circuit area are signal line transmission layers formed of metal materials, wherein the negative electrode of the EML laser 505A is connected to the second circuit area.
  • the EML laser The fifth metal wire is connected between 505A and the third circuit area, which mainly provides power signals for the EML laser 505A.
  • the first pad, the second pad, the third pad, the first thin film resistor 506A, the third circuit area and the EML laser 505A have less space on the surface of the ceramic substrate 504A for the second thin film resistor.
  • the resistance value is often relatively large, usually between 1000 ⁇ -1500 ⁇ , but the space available for it is small, when the resistance with such a large resistance value is arranged in a small space, the second thin film resistor 507A is arranged in the broken line in the present disclosure.
  • One end of the second thin film resistor 507A is grounded, and the other end is connected to the pad formed in the third circuit area.
  • the present disclosure provides an optical module including a circuit board and a light emitting sub-module.
  • the light emitting sub-module includes a ceramic substrate, an EML laser, a first capacitor, a second capacitor, a first thin film resistor and a second thin film resistor.
  • the EML laser is composed of The ceramic substrate carries a laser and an electro-absorption modulator, wherein the first capacitor is used to control communication, AC and DC blocking to reduce power consumption, the second capacitor is used to reduce the voltage fluctuation of the laser, and the first thin film resistor is used to make the
  • the output impedance of the laser matches the characteristic impedance between the laser driver chip and the laser, but the first thin film resistor will produce a deviation impedance of 5%-10% from the ideal impedance to the upper limit during processing, so the second thin film resistor is used to It is possible to eliminate the deviation impedance of the first thin film resistor and restore it to the vicinity of the ideal impedance of the first thin film resistor as much as possible, wherein the respective connection modes are: the first thin film resistor and the electro-absorption modulator are connected in parallel, and the second thin film resistor and the first thin film resistor are connected in parallel.
  • the resistors are connected in parallel, the positive electrode of the first capacitor is connected to one end of the first thin-film resistor, the other end of the first thin-film resistor is connected to the positive electrode of the electro-absorption modulator, and the second capacitor is electrically connected to the laser. Match with the characteristic impedance to ensure the signal integrity between the laser driver chip and the laser; at the same time, when the laser impedance does not match the characteristic impedance, part of the signal reflected by the laser will return along the original path, causing signal distortion.
  • the first thin film resistor and the second thin film resistor can absorb the reflected signal, and the second thin film resistor is located in front of the EML laser and has a strong effect of suppressing the reflected signal of the EML laser, so the first thin film resistor and the second thin film resistor in the present disclosure.
  • the thin film resistor can not only match the output impedance of the laser with the characteristic impedance, but also absorb the signal reflected by the EML laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块(200),包括电路板(300)和光发射器件(500),光发射器件(500)包括管座(501),TEC(502)设置在管座(501)的表面,底座(503)设置于TEC(502)的表面,且激光器(504)为边发光激光器,通过反射镜(505)的反射发射光信号;TEC(502)通过底座(503)与激光器(504)实现热量的传递;同时光发射器件(500)还包括陶瓷基板(506),激光器(504)可以通过陶瓷基板(506)与信号管脚(511,212)之间实现信号的传递。TEC(502)通过与其水平设置的底座(503)即可实现与激光器(504)之间的热传递,该热传递方式缩短了TEC(502)与激光器(504)之间的距离,从而可以增加TEC(502)对激光器(504)的温度控制效果且缩短信号管脚(511,212)与激光器(504)之间的金线长度,优化高频性能。

Description

一种光模块
本公开要求在2020年09月17日提交中国专利局、申请号为202022052192.4、专利名称为“一种光模块”、在2020年11月05日提交中国专利局、申请号为202011223403.4、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。光模块在光通信技术领域中实现光电转换的功能,是光通信设备中的关键器件之一,光模块向外部光纤中输入的光信号强度直接影响光纤通信的质量。
发明内容
一方面,本公开提供的一种光模块,包括:电路板;光发射次模块,与电路板电连接,用于将电信号转换为光信号;光发射次模块包括:管座,表面设有第一信号管脚、第二信号管脚;第一信号管脚和第二信号管脚贯穿管座的上下表面;TEC,设置于管座的表面,用于调节边发光激光器的温度;底座,设置于TEC的表面,用于支撑边发光激光器;边发光激光器,设置于底座的表面,用于从侧边发射光信号;反射镜,设置于激光器的正面出光方向上,设置有斜面,用于反射来自激光器的信号光束;陶瓷基板,垂直设置于管座的表面,且设于激光器与第一信号管脚之间;其中:底座具有第一金属区域和第二金属区域;陶瓷基板具有相互连通的顶面金属区域和侧面金属区域;第一信号管脚和所述第二信号管脚贴在侧面金属区域;顶面金属区域通过打线与第一金属区域连接,第一金属区域通过打线与边发光激光器的正极相连;顶面金属区域通过打线与第二金属区域连接,第二金属区域与边发光激光器的负极贴合连接。
另一方面,本公开提供一种光模块,包括:电路板;光发射次模块,与所述电路板电连接,用于将电信号转换为光信号;所述光发射次模块包括:陶瓷基板,用于承载器件;EML激光器,由所述陶瓷基板承载,包括发光区和电吸收调制区,用于将电信号转化为光信号;第一电容;第一薄膜电阻,设于所述陶瓷基板表面,与所述第一电容串联形成RC电路,且所述RC电路与所述电吸收调制区并联;第二薄膜电阻,设于所述陶瓷基板表面,与所述第一薄膜电阻并联,用于补偿所述第一薄膜电阻的偏差阻抗。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据一些实施例的光通信***连接关系图;
图2为根据一些实施例的光网络终端结构图;
图3为根据一些实施例的光模块结构图;
图4为根据一些实施例的光模块分解结构图;
图5为根据一些实施例的一种光模块的内部结构示意图;
图6为根据一些实施例的光发射次模块的结构示意图;
图7为根据一些实施例的光发射次模块的分解结构示意图;
图8为根据一些实施例的光发射次模块的另一分解结构示意图;
图9为根据一些实施例中去除管座和管座上设置的管脚的光模块的结构示意图;
图10为根据一些实施例中管座和管座上设置的管脚的结构示意图;
图11为根据一些实施例的一种反射镜对应的光路示意图;
图12为根据一些实施例的另一光发射次模块的分解结构示意图;
图13为根据一些实施例的光发射次模块的局部结构示意图;
图14为根据一些实施例的光发射次模块中各组件连接的等效电路示意图;
图15为根据一些实施例的激光器高频反射测试图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
光通信技术中使用光携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光信号通过光纤或光波导中传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于实现供电、I2C信号传输、数据信号传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据一些实施例的光通信***连接关系图。如图1所示,光通信***主要包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103;
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。 光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现超长距离传输。因此在通常的光通信***中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口。光口被配置为与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立连接。示例的,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例的,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据一些实施例的光网络终端结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100中还包括设置于壳体内的PCB电路板105,设置在PCB电路板105的表面的笼子106,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200***笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤100建立双向的电信号连接。
图3为根据一些实施例的光模块结构图,图4为根据一些实施例的光模块分解结构图。 如图3和图4所示,光模块200包括壳体、设置于壳体中的电路板300及光收发器件;
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,以及位于盖板两侧与盖板垂直设置的两个上侧板,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。示例地,开口204位于光模块200的端部(图3的左端),开口205也位于光模块200的端部(图3的右端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。其中,开口204为电口,电路板300的金手指从电口204伸出,***上位机(如光网络终端100)中;开口205为光口,配置为接入外部的光纤101,以使光纤101连接光模块200内部的光收发器件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发器件等器件安装到壳体中,由上壳体201、下壳体202可以对这些器件形成封装保护。此外,在装配电路板300等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化的实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外壁的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板2022的外壁,包括与上位机的笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200***上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300通过电路走线将光模块200中的上述器件按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以***上位机笼子中的电连接器中,在本公开的一些实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接,作为硬性电路板的补充。
光收发器件400包括光发射次模块及光接收次模块两部分,分别用于实现光信号的发射与光信号的接收。发射次模块一般包括光发射器、透镜与光探测器,且透镜与光探测器分别位于光发射器的不同侧,光发射器的正反两侧分别发射光束,透镜用于会聚光发射器正面发射的光束,使得光发射器射出的光束为会聚光,以方便耦合至外部光纤;光探测器用于接收光发射器反面发射的光束,以检测光发射器的光功率。在本公开的某一些实施例中,光发射器发出的光经透镜会聚后进入光纤中,同时光探测器检测光发射器的发光功率,以保证光发射器发射光功率的恒定性。下面对光收发器件400进行具体说明。
图5为根据一些实施例的一种光模块的内部结构示意图;如图5所示,前述实施例中的光收发器件400包括光发射次模块500和光接收次模块700,光模块还包括圆方管体600、光纤适配器800,在本公开实施例中,光收发次模块优选光纤适配器800连接光纤,即光纤适配器800镶嵌在圆方管体600上,用于连接光纤。在本公开的某一些实施例中,圆方管体600上设置有供所述光纤适配器800***的第三管口603,光纤适配器800镶嵌入第三管口603,光发射次模块500和光接收次模块700分别与光纤适配器800建立光连接,光收发器件中发出的光及接收的光均经由光纤适配器中的同一根光纤进行传输,即光纤适配器中的同一根光纤是光收发器件进出光的传输通道,光收发器件实现单纤双向的光传输模式。
圆方管体600用于承载光发射次模块500和光接收次模块700,在本公开实施例中,圆方管体600采用金属材料,利于实现电磁屏蔽及散热。圆方管体600上设置有第一管口601、第二管口602,第一管口601和第二管口602分别设置在圆方管体600相邻的侧壁上。在本公开的某一些实施例中,第一管口601设置在圆方管体600长度方向的侧壁上,第二管口602设置在圆方管体600宽度方向的侧壁上。
光发射次模块500镶嵌入第一管口601,通过第一管口601,光发射次模块500导热接触圆方管体600;光接收次模块700镶嵌入第二管口602,通过第二管口602,光接收次模块700导热接触圆方管体600。在本公开的某一些实施例中,光发射次模块500和光接收次模块700直接压配到圆方管体600中,圆方管体600分别与光发射次模块500和光接收次模块700直接或通过导热介质接触。如此圆方管体可用于光发射次模块500和光接收次模块700的散热,保证光发射次模块500和光接收次模块700的散热效果。
图6为根据一些实施例的光发射次模块的结构示意图,图7为根据一些实施例的光发射次模块的分解结构示意图,图8为根据一些实施例的光发射次模块的另一分解结构示意图。下面结合图6、图7和图8对本公开实施例提供的光发射次模块500进行说明。如图6-图8所示,光发射次模块500包括管座501、设置于管座表面的TEC502、设置于TEC502表面的底座503、设置于底座503表面的边发光激光器504、反射镜505;在本公开的某一些实施例中,光发射次模块500采用TO同轴封装,管座501用于支撑和承载TEC502、底座503、边发光激光器504、反射镜505;TEC502的下表面与管座501的上表面直接接触,TEC502的上表面与底座503的下表面直接接触,也就是,TEC502的一热交换面直接贴于管座501的上表面,另一热交换面直接贴于底座503的下表面;底座503用于支撑和承载边发光激光器504、反射镜505,在本公开的某一些实施例中,边发光激光器504横置于 底座503的表面,反射镜505设于底座503的一侧,底座503使用银胶粘贴于TEC502上,而边发光激光器504、反射镜505等光电器件使用胶水粘贴于底座503上。本示例中,底座503的材料包括但不限于钨铜、可筏合金、SPCC(Steel Plate Cold rolled Commercial,冷轧碳钢)、铜等,便于将光电器件产生的热量传递至TEC502上进行散热。
本公开中的激光器选用边发光形式,其从侧边发出光信号,并经过反射镜505的反射发射光信号,在本公开的某一些实施例中,边发光激光器504包括激光器芯片与激光器陶瓷热沉,激光器芯片使用金锡焊料焊接在激光器陶瓷热沉上,用于发射信号光束。边发光激光器504对温度变化十分敏感,需通过TEC502对边发光激光器504进行加热或制冷,从而调节边发光激光器504处于恒定的工作温度中。如图6所示,本公开的光发射次模块500还包括热敏电阻508,热敏电阻508设置底座503上,用于采集边发光激光器504的工作温度进而实现对边发光激光器504工作温度的监测。在本公开的某一些实施例中,通过热敏电阻508实时采集边发光激光器504的温度,并将采集的边发光激光器504的温度反馈给热电制冷器驱动电路,热电制冷器驱动电路根据接收到的边发光激光器504的温度,确定向TEC502中输入加热或制冷的电流,实现对边发光激光器504的加热或制冷,从而可以使得边发光激光器504的温度控制在目标温度的范围内。如图8所示,在本公开实施例中,为准确的监测边发光激光器504的温度,热敏电阻508设置在边发光激光器504的近处侧面。
为了将边发光激光器504发射的信号光束沿管座501的透光方向耦合至外部光纤中,通常边发光激光器504的设置方向为竖放即设置方向平行于管座501,而TEC502的热传导面为水平面,此时为了TEC502对边发光激光器504进行工作温度的调节,需要通过L型热沉进行热传导面的翻转,这样的话,边发光激光器504与TEC502的位置距离较远,且热量的传递需要通过L型热沉,L性热沉的热传导系数较低,如此会降低边发光激光器504与TEC502的温控效果。
由于TEC502的热传导面为水平面,本公开中的边发光激光器504横置于底座503表面,边发光激光器504的热传导面同样为水平面,不需要经过L型热沉进行热传导面的翻转,只需通过底座503作为TEC502和边发光激光器504之间的热量传递介质,而底座503的热传导系数较大,且该设置方式缩短了TEC502与边发光激光器504之间的距离,且TEC502与支撑激光器的底座503间的接触面积增大,接触面积增大则传递的热流量增大,从而可以增加TEC502对边发光激光器504的温度控制效果。
上述内容中TEC502与边发光激光器504之间可以实现热量的传递,进而调节边发光激光器504的温度。下面针对边发光激光器504的信号的传递进行说明。
激光器与信号管脚的打线长度对高速器件的性能至关重要,打线长度越长,寄生电感越大,不利于高频信号的传输,因此在高速器件的封装中,希望打线长度尽量短,目的是减小寄生电感,优化高频信号的传输性能。基于此,本公开中选择通过陶瓷基板506实现激光器的正负极与第一信号管脚和第二信号管脚的连接。
图9为根据一些实施例中去除管座和管座上设置的管脚的光模块的结构示意图。本公开实施例中,为了保证边发光激光器504接收到相应的信号,如图9所示,底座503具有 第一金属区域和第二金属区域;陶瓷基板具有相互连通的顶面金属区域和侧面金属区域;第一信号管脚511和第二信号管脚512贴在侧面金属区域,第一信号管脚511和第二信号管脚512分别通过第一金锡焊料510a和第二金锡焊料510b连接至侧面金属区域;顶面金属区域通过打线与第一金属区域连接,第一金属区域通过打线与边发光激光器的正极相连;顶面金属区域通过打线与第二金属区域连接,第二金属区域与边发光激光器的负极贴合连接。
上述方式可以将第一信号管脚和第二信号管脚发出的高频信号传递至边发光激光器。这样的连接方式可以缩短激光器与信号管脚之间的金线长度,有利于高频信号的传输,优化光模块的高频性能。
本公开中的底座503为陶瓷底座,具体可选氧化铝陶瓷、氮化铝陶瓷等,同样地,陶瓷基板506可选氧化铝陶瓷、氮化铝陶瓷等。底座503表面镀有第一金属区域和第二金属区域,陶瓷基板506的表面镀有第三金属区域和第四金属区域,第一金属区域、第二金属区域、第三金属区域和第四金属区域分别具体可以为第一铜层、第二铜层、第三铜层和第四铜层,第一金属区域、第二金属区域、第三金属区域和第四金属区域均雕刻有激光器芯片的功能电路,用于信号的传输。
图10为根据一些实施例中管座和管座上设置的管脚的结构示意图。如图10所示,管座501的圆周上除了设有第一信号管脚511和第二信号管脚512外,还包括激光器管脚514、底座管脚513、TEC管脚517、热敏电阻管脚516及背光探测器管脚515,激光器管脚514、底座管脚513、TEC管脚517、热敏电阻管脚516及背光探测器管脚515为功能管脚,主要功能为供电,在本公开的某一些实施例中,分别用于为激光器、底座、TEC、热面电阻及背光探测器提供足够的电流连接,各管脚通过导线与相应的电器件电连接,在本公开的某一些实施例中,各管脚通过金线与相应的电器件电连接。
本公开实施例中通过金线将激光器、底座、TEC、热面电阻及背光探测器分别连接至相应的激光器管脚514、底座管脚513、TEC管脚517、热敏电阻管脚516及背光探测器管脚515上,而通过陶瓷基板506实现激光器的正负极与第一信号管脚和第二信号管脚的连接,而不是通过金线实现激光器的正负极与第一信号管脚和第二信号管脚的连接,其原因主要是如果通过金线直接将激光器的正负极与第一信号管脚和第二信号管脚连接,则金线布设的长度会比较长,则传递的高频信号对随着金线长度的增加而减弱,不利于信号高效传递,因此本公开中选择通过陶瓷基板506实现激光器的正负极与第一信号管脚和第二信号管脚的连接,而功能管脚对信号高效传递要求较低,因此本公开中选择通过金线实现将激光器、底座、TEC、热面电阻及背光探测器分别连接至相应的激光器管脚514、底座管脚513、TEC管脚517、热敏电阻管脚516及背光探测器管脚515上。
本公开实施例中由于陶瓷基板506垂直置于底座503的表面,为了增加其稳固性,本公开中还设有立柱509,立柱509与陶瓷基板506直接接触,可支撑陶瓷基板506,进而增加陶瓷基板506的稳固性。
继续参考图6-图8所示,光发射次模块500还包括背光探测器507,背光探测器507设置于边发光激光器504的一侧,即背光探测器507与反射镜505分别位于激光器504的 两侧,在本公开的某一些实施例中,反射镜505位于边发光激光器504正面的出光光路上,背光探测器507位于激光器504背面的出光光路上,边发光激光器504的背面发射光束进入背光探测器507。通过背光探测器507来检测边发光激光器504背面发射光束的光功率,由此来检测激光器504正面发射光束的光功率大小。检测到边发光激光器504正面发射光束的光功率大小后,可对激光器504进行动态调节,如背光探测器507检测到光功率变大,则边发光激光器504发射光功率变大,可通过控制激光器驱动电路减小加给激光器的驱动电力与,来使边发光激光器504发光变小;如背光探测器507检测到光功率变小,则边发光激光器504发射光功率变小,可通过控制激光器驱动电路增加激光器的驱动电流,来使边发光激光器504发光变小,从而保证激光器发光功率的恒定。
在本公开实施例中,边发光激光器504的出光方向与管座501的透光方向不一致,为使得信号光束由管座501穿过并耦合至外部光纤中,在激光器504发射光束的光路上设置有反射镜505,反射镜505使用胶水粘贴在底座503的表面,用于反射来自边发光激光器504的信号光束,使得反射后信号光束的出光方向与管座501的透光方向一致,如反射后信号光束的主光轴垂直于管座501。本公开实施例中的反射镜505用于提供一个光反射的反射面,以改变边发光激光器504发射光束的传输方向,以在边发光激光器504的出光方向与管座501的透光方向不一致的情况下,信号光束仍能由管座501的光窗透过。本示例中,反射镜505设置有底部平台、顶部平台及连接底部平台与顶部平台的斜面,底部平台固定于底座503的表面上,顶部平台平行于底座503的表面,且斜面用于反射来自边发光激光器504的信号光束,使得反射后信号光束的出光方向垂直于管座501发射。
图11为根据一些实施例的一种反射镜对应的光路示意图。反射镜505可为45度反射棱镜,在本公开的某一些实施例中,由一个底部平台、一个顶部平台、三个侧面与一个斜面组成,底部平台粘贴于底座503上,顶部平台平行于底座503,三个侧面均垂直于底座503,斜面连接顶部平台与底部平台,且该斜面位于边发光激光器504的发射方向上,该斜面上镀有反射膜,用于反射边发光激光器504发射的信号光束,使得反射后的信号光束的出光方向垂直于管座501,在本公开的某一些实施例中,镀有反射膜的平面玻璃设置在底座的斜面上,用于反射边发光激光器504发射的信号光束,使得反射后的信号光束的出光方向垂直于管座501。
需要说明的是,反射镜505也可由一个底部平台、一个顶部平台、三个侧面与两个斜面组成,底部平台粘贴于底座503上,顶部平台平行于底座503,三个侧面均垂直于底座503,且一个侧面连接底部平台且靠近边发光激光器504的发光面,另两个侧面分别连接顶部平台与底部平台,一个斜面连接顶部平台与底部平台,另一斜面连接反射镜505的顶部平台与靠近边发光激光器504发光面的侧面,且连接顶部平台与靠近边发光激光器504发光面的侧面的斜面位于边发光激光器504的发射方向上,该斜面上镀有反射膜,用于反射边发光激光器504发射的信号光束,使得反射后的信号光束的出光方向与管座501的透光方向一致。
镀有反射膜的平面玻璃可使用胶水粘贴在斜面上,该胶水包括但不限于银胶、UV胶、环氧胶、UV环氧胶等。
需要说明的是,本公开实施例提供的反射镜形状并不仅限于上述形状,只要其满足组装及全反射,能够将信号光束的出光方向转换为与管座501的透光方向一致即可,即反射后信号光束的主光轴垂直于管座501,其均属于本公开实施例的保护范围。
本公开提供了一种光模块,包括电路板和光发射次模块,光发射次模块包括管座,本公开中将TEC设置在管座的表面,底座设置于TEC的表面,激光器横置于底座的表面,激光器发出的信号光束经过反射镜反射后信号光束沿垂直于管座的方向射出,TEC通过底座与激光器实现热量的传递;同时光发射次模块还包括陶瓷基板,激光器可以通过陶瓷基板与信号管脚之间实现信号的传递。在本公开中由于激光器横置于TEC的表面,则不需要通过热沉L型热沉基板实现TEC与激光器之间的热传递,TEC通过与其水平设置的底座即可实现与激光器之间的热传递,该热传递方式缩短了TEC与激光器之间的距离,从而可以增加TEC对激光器的温度控制效果。
图12为根据一些实施例的另一光发射次模块的分解结构示意图;图13为根据一些实施例的光发射次模块的局部结构示意图;如图12和图13所示,本公开实施例中光发射次模块500包括管座501、设置于管座表面的TEC502、设置于TEC502表面的底座503、设置于底座503表面的陶瓷基板504A,在本公开的某一些实施例中,光发射次模块500采用TO同轴封装,管座501用于支撑和承载TEC502、底座503、陶瓷基板504A;TEC502的下表面与管座501的上表面直接接触,TEC502的上表面与底座503的下表面直接接触,也就是,TEC502的一热交换面直接贴于管座501的上表面,另一热交换面直接贴于底座503的下表面;底座503用于支撑陶瓷基板504A。本示例中,底座503主要起扇热和承载作用,底座503的材料包括但不限于钨铜、可筏合金、SPCC(Steel Plate Cold rolled Commercial,冷轧碳钢)、铜等,便于将光电器件产生的热量传递至TEC502上进行散热;陶瓷基板504A选氧化铝陶瓷、氮化铝陶瓷等,陶瓷基板504A表面雕刻有激光器芯片的功能电路,用于信号的传输,陶瓷基板504A的表面设有EML激光器505A,EML激光器505A为激光器DFB与电吸收调制器EA与的集成器件,激光器DFB将电信号转换为光信号,电吸收调制器EA对光信号进行编码调制后输出,使得输出的光信号携带信息。光转换器和光调制器,电吸收调制器是常用光调制器之一,因具有响应速度快、功耗低的特点,广泛应用于传输高速光信号。
本公开中EML激光器505A对温度变化十分敏感,需通过TEC502对EML激光器505A进行加热或制冷,从而调节EML激光器505A处于恒定的工作温度中。本公开的光发射次模块500还包括热敏电阻,热敏电阻设置底座503上,用于采集EML激光器505A的工作温度进而实现对EML激光器505A工作温度的监测。在本公开的某一些实施例中,通过热敏电阻实时采集EML激光器505A的温度,并将采集的EML激光器505A的温度反馈给热电制冷器驱动电路,热电制冷器驱动电路根据接收到的EML激光器505A的温度,确定向TEC502中输入加热或制冷的电流,实现对EML激光器505A的加热或制冷,从而可以使得EML激光器505A的温度控制在目标温度的范围内。
在光模块模进行信号发送时,金手指将电信号引入到激光器驱动芯片,激光器驱动芯片将该电信号传输到EML激光器505A,然后利用EML激光器505A将该电信号转化为光 信号,其中激光器驱动芯片和EML激光器505A之间通过导线连接,该导线存在一定地特性阻抗,由于激光器驱动芯片输出的阻抗额定,当EML激光器505A输出的阻抗与该特性阻抗不匹配时,激光器驱动芯片和激光器之间传输信号会有损耗,降低信号的完整性,因此为了保证信号的完整性,需要保证EML激光器505A输出的阻抗与该特性阻抗相匹配,需要说明的是,此处的匹配含义是指使EML激光器505A输出的阻抗值达到特性阻抗值,也就是,EML激光器505A输出的阻抗值与特性阻抗值一致。
本公开中在EML激光器505A处并联第一薄膜电阻506A,此时第一薄膜电阻506A具备阻抗匹配作用,最终使EML激光器505A输出的阻抗与该特性阻抗相一致,因此可以将第一薄膜电阻506A称为匹配电阻;由于陶瓷基板504A的空间较小,一般第一薄膜电阻506A采用的是薄膜电阻,其通过陶瓷基板504A的一块区域烧结而成,其工艺复杂,但是由于第一薄膜电阻506A在加工时会产生往上限偏离理想阻抗5%-10%的偏差阻抗,该偏差阻抗属不可抗因素,偏差阻抗的存在会降低第一薄膜电阻506A的阻抗匹配性能因此本公开中设置第二薄膜电阻507A,将第二薄膜电阻507A与第一薄膜电阻506A并联,进而补偿往上限偏离的偏差阻抗,以第一薄膜电阻506A的理想阻抗值为50Ω为例,当产生10%的偏差阻抗时,此时第一薄膜电阻506A的阻抗值为55Ω,当第二薄膜电阻507A的阻抗值为1250Ω时,由于第一薄膜电阻506A和第二薄膜电阻507A在同一个陶瓷基板上,第二薄膜电阻507A具有同样地偏上限特性,第二薄膜电阻507A偏上限后阻抗为1375Ω,此时第一薄膜电阻506A和第二薄膜电阻507A并联后等效出的电阻为52.88Ω,更接近理想阻抗值50Ω,使得第一薄膜电阻506A的阻抗匹配性能得到改善,其中第二薄膜电阻507A可采用薄膜电阻形式。
在本公开的某一些实施例中,第一薄膜电阻506A用于使EML激光器505A输出的阻抗值与特性阻抗值一致,第二薄膜电阻507A用于补偿第一薄膜电阻506A在加工时产生的偏差阻抗以尽可能地消除偏差阻抗,使第一薄膜电阻506A的阻抗尽可能地恢复至理想阻抗值;本公开中的EML激光器505A包括发光区505A1与电吸收调制区505A2,第一薄膜电阻506A与电吸收调制区505A2并联,第二薄膜电阻507A与第一薄膜电阻506A并联,同时第二薄膜电阻507A也与电吸收调制区505A2并联,也就是,第一薄膜电阻506A、第二薄膜电阻507A和电吸收调制区505A2三者之间互相并联,且具体可以将第一薄膜电阻506A设置在发光区505A1的后方,第二薄膜电阻507A设置在发光区505A1的前方。
同时,当EML激光器505A输出的阻抗与该特性阻抗不能很好地匹配时,EML激光器505A会反射部分信号,该信号沿原路返回至EML激光器505A中,降低信号的性能,甚至可能会造成信号的畸变,而本公开中设置的第一薄膜电阻506A和第二薄膜电阻同时可以吸收反射的该部分信号,且本公开中第二薄膜电阻设置在EML激光器505A的前方,可以进一步抑制EML激光器505A反射信号。
本公开中通过在EML激光器505A前面并联第二薄膜电阻507A具有较好地抑制高频反射的作用。对此,本公开中对在EML激光器505A前面是否并联第二薄膜电阻507A进行了对比仿真测试,图15为根据一些实施例的激光器高频反射测试图,测试结果如图15所示,图15中包含两条曲线,为了便于描述,将较细的曲线称为第一曲线,将较粗的曲 线成为第二曲线,其中第一曲线为在EML激光器505A前面不并联第二薄膜电阻507A的结果示意,第二曲线为在EML激光器505A前面并联第二薄膜电阻507A的结果示意,从图14中可以看出,在5-13GHZ频段内加入并联电阻具有较好地抑制反射的效果,对应于激光器具有较好地信号完整性。
如图13所示,本公开实施例中提供的光模块还包括第一电容508和第二电容509A,其中第一电容508和第二电容509A均设置在底座503的表面,也就是,陶瓷基板504A、第一电容508和第二电容509A均设于底座503的表面,其中第一电容508和第一薄膜电阻506A串联连接构成RC电路,RC电路、第二薄膜电阻和电吸收调制区三者之间互相并联,该电路设置在EML激光器505A的***,底座503的表面具有可传输信号的第一电路区域,第一电路区域为金属材质形成的信号线传输层,第一电容508的正极和负极设置在两个相对的面上,其中,其下表面(底面)上设置有负极、上表面(顶面)上设有正极,第一电容508的负极连接至第一电路区域上,第一电容508的正极与第一薄膜电阻506A的一端连接,本公开中第一电容508具有通交流隔直流从而降低功耗的做用。第二电容509A具有滤波的作用,具体是可降低EML激光器505A电压波动的幅度,本公开实施例中第二电容509A同样地具有正极和负极,正极和负极设置在两个相对的面上,其中下表面(底面)上设置有负极、上表面(顶面)上设有正极,第二电容509A的负极同样连接至第一电路区域上,第二电容509A的正极与发光区505A1连接。
如图13所示,第一薄膜电阻506A的两端分别设置有第一焊盘和第二焊盘,与第二焊盘紧邻还设置有第三焊盘,第一焊盘、第二焊盘和第三焊盘构成的区域与EML激光器505A所占用的区域紧邻设置,为了便于描述,将第一电容508和第一薄膜电阻506A之间的金属导线定义为第一金属导线,将第一薄膜电阻506A和EML激光器505A之间的金属导线定义为第二金属导线,将第二电容509A和EML激光器505A之间的金属导线定义为第三金属导线,第一金属导线的一端焊接在第一电容508的正极上,另一端焊接在第一焊盘上,第二金属导线的一端焊接在第二焊盘上,另一端焊接在电吸收调制区505A2的正极上,第三金属导线的一端焊接在第二电容509A的正极上,另一端焊接在第三焊盘的一节点上,从第三焊盘的另一节点引出第四金属导线,第四金属导线的一端焊接在第三焊盘在,另一端焊接在发光区505A1的正极上。
所述第一电容的正极和所述第一薄膜电阻之间具有第一导线,所述第一薄膜电阻和所述电吸收调制区的正极之间具有第二导线,所述第二电容和所述发光区之间具有第三导线,所述电吸收调制区的正极和所述第四焊盘之间具有第四导线,第一导线、第二导线、第三导线和第四导线可以为黄金制成的金丝导线,当然,也可以为其它金属材质。
图14为根据一些实施例的光发射次模块中各组件连接的等效电路示意图;如图14所示,第一薄膜电阻和第一电容串联后形成RC电路,RC电路、电吸收调制区所在的支路与第二薄膜电阻所在的支路三者之间互相并联,第二电容与发光区所在的支路并联。
陶瓷基板504A的表面具有第二电路区域和第三电路区域,第二电路区域和第三电路区域为金属材质形成的信号线传输层,其中EML激光器505A的负极连接至第二电路区域,EML激光器505A和第三电路区域之间通过第五金属导线连接,其主要是为EML激光器 505A提供电源信号。
可以看出,陶瓷基板504A的表面除去第一焊盘、第二焊盘、第三焊盘、第一薄膜电阻506A、第三电路区域及EML激光器505A外供第二薄膜电阻所用的空间较小,电阻值往往比较大,通常在1000Ω-1500Ω治之间,但是供其可用的空间较小,阻值如此大的电阻设置在小空间内时,本公开中采用将第二薄膜电阻507A设置在折线型排列在小空间内,当然也可以才用其他的排列形式进行布置,第二薄膜电阻507A的一端接地,另一端连接至第三电路区域形成的焊盘上。
本公开提供了一种光模块,包括电路板和光发射次模块,光发射次模块包括陶瓷基板、EML激光器、第一电容、第二电容、第一薄膜电阻和第二薄膜电阻,EML激光器,由所述陶瓷基板承载,包括激光器和电吸收调制器,其中,第一电容用于控制通交流隔直流进而降低功耗,第二电容用于减小激光器的电压波动,第一薄膜电阻用于使激光器输出的阻抗与激光器驱动芯片和激光器之间的特性阻抗相匹配,但是第一薄膜电阻在加工时会产生往上限偏离理想阻抗5%-10%的偏差阻抗,所以第二薄膜电阻用于尽可能地消除第一薄膜电阻的偏差阻抗尽可能恢复至第一薄膜电阻的理想阻抗附近,其中各自的连接方式为:第一薄膜电阻与电吸收调制器并联连接,第二薄膜电阻与第一薄膜电阻并联连接,第一电容的正极与第一薄膜电阻的一端连接,第一薄膜电阻的另一端与电吸收调制器的正极连接,第二电容与激光器电连接,通过上述内容使激光器输出的阻抗与特性阻抗相匹配进而保证激光器驱动芯片和激光器之间的信号完整性;同时,激光器阻抗与特性阻抗不匹配时,激光器反射的部分信号会沿原路返回,造成信号的畸变,而本公开中的第一薄膜电阻和第二薄膜电阻可以吸收反射的信号,且第二薄膜电阻位于EML激光器的前面具有较强的抑制EML激光器反射信号的作用,因此本公开中的第一薄膜电阻和第二薄膜电阻既可以使激光器输出的阻抗与特性阻抗匹配,同时也可以吸收EML激光器反射的信号。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (20)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,与所述电路板电连接,用于将电信号转换为光信号;
    所述光发射次模块包括:
    管座,表面设有第一信号管脚、第二信号管脚;
    所述第一信号管脚和第二信号管脚贯穿所述管座的上下表面;
    TEC,设置于所述管座的表面,用于调节边发光激光器的温度;
    底座,设置于所述TEC的表面,用于支撑所述边发光激光器;
    所述边发光激光器,设置于所述底座的表面,用于从侧边发射光信号;
    反射镜,设置于所述激光器的正面出光方向上,设置有斜面,用于反射来自所述激光器的信号光束;
    陶瓷基板,垂直设置于所述管座的表面,且设于所述激光器与所述第一信号管脚之间;
    其中:
    所述底座具有第一金属区域和第二金属区域;
    所述陶瓷基板具有相互连通的顶面金属区域和侧面金属区域;
    所述第一信号管脚和所述第二信号管脚贴在所述侧面金属区域;
    所述顶面金属区域通过打线与所述第一金属区域连接,所述第一金属区域通过打线与所述边发光激光器的正极相连;
    所述顶面金属区域通过打线与所述第二金属区域连接,所述第二金属区域与所述边发光激光器的负极贴合连接。
  2. 根据权利要求1所述的光模块,其特征在于,
    所述第一信号管脚通过第一金锡焊料与所述侧面金属区域连接,所述第二信号管脚通过第二金锡焊料与所述侧面金属区域连接。
  3. 根据权利要求1所述的光模块,其特征在于,所述反射镜设置有底部平台、顶部平台,所述斜面连接所述底部平台和顶部平台,所述斜面上设有镀有反射膜的平面玻璃。
  4. 根据权利要求3所述的光模块,其特征在于,所述反射镜设为45度反射棱镜。
  5. 根据权利要求1所述的光模块,其特征在于,所述第一信号管脚与所述第二信号管脚之间设有立柱,所述立柱用于支撑所述陶瓷基板。
  6. 根据权利要求1所述的光模块,其特征在于,所述光发射次模块还包括:
    背光探测器,设置于所述激光器的背面出光方向上,用于监测所述激光器发射光束的光功率。
  7. 根据权利要求6所述的光模块,其特征在于,所述光发射次模块还包括:
    热敏电阻,设置于所述底座的表面,用于监测所述激光器的工作温度。
  8. 根据权利要求7所述的光模块,其特征在于,所述管座的表面还设有激光器管脚、底座管脚、TEC管脚、热敏电阻管脚及背光探测器管脚,其中:
    所述激光器管脚与激光器连接,所述底座管脚与所述底座连接,所述TEC管脚与所述TEC连接,所述热敏电阻管脚与所述热敏电阻连接,所述背光探测器管脚与所述背光探测器连接。
  9. 根据权利要求8所述的光模块,其特征在于,所述激光器管脚、所述底座管脚、所述TEC管脚、所述热敏电阻管脚、所述背光探测器管脚、所述第一信号管脚及所述第二信号管脚分布于所述管座的圆周上。
  10. 根据权利要求8所述的光模块,其特征在于,所述激光器管脚、所述底座管脚、所述TEC管脚、所述热敏电阻管脚、所述背光探测器管脚、所述第一信号管脚及所述第二信号管脚与所述管座之间均设有绝缘介质。
  11. 一种光模块,其特征在于,包括:
    电路板;
    光发射次模块,与所述电路板电连接,用于将电信号转换为光信号;
    所述光发射次模块包括:
    陶瓷基板,用于承载器件;
    EML激光器,由所述陶瓷基板承载,包括发光区和电吸收调制区,用于将电信号转化为光信号;
    第一电容;
    第一薄膜电阻,设于所述陶瓷基板表面,与所述第一电容串联形成RC电路,且所述RC电路与所述电吸收调制区并联;
    第二薄膜电阻,设于所述陶瓷基板表面,与所述第一薄膜电阻并联,用于补偿所述第一薄膜电阻的偏差阻抗。
  12. 根据权利要求11所述的光模块,其特征在于,所述光模块还包括底座,所述底座用于承载所述第一电容、所述陶瓷基板和第二电容,其中:
    所述RC电路、所述电吸收调制区所在的支路、所述第二薄膜电阻所在的支路相互并联;
    所述第二电容与所述发光区所在的支路并联;
    所述第一薄膜电阻的两端分别具有第一焊盘和第二焊盘,所述第一电容通过所述第一焊盘连接至所述第一薄膜电阻的一端,所述第一薄膜电阻的另一端通过所述第二焊盘连接至所述电吸收调制区的一端;
    所述第二电容和所述发光区之间具有第三焊盘,所述第二电容通过所述第三焊盘连接至所述发光区;
    所述电吸收调制区相邻处具有第四焊盘,所述电吸收调制区的另一端连接至第四焊盘的一侧,所述第二薄膜电阻连接至所述第四焊盘的另一侧。
  13. 根据权利要求12所述的光模块,其特征在于,所述第一电容的正极和所述第一薄膜电阻之间具有第一导线,所述第一薄膜电阻和所述电吸收调制区的正极之间具有第二导线,所述第二电容和所述发光区之间具有第三导线,所述电吸收调制区的正极和所述第四焊盘之间具有第四导线。
  14. 根据权利要求12所述的光模块,其特征在于,所述底座表面具有第一电路区域,所述第一电容的负极与所述第一电路区域连接,所述第二电容的负极与所述第一电路区域连接,所述第一电容的正极与所述第一薄膜电阻连接,所述第二电容的正极与所述发光区的正极连接。
  15. 根据权利要求11所述的光模块,其特征在于,所述陶瓷基板表面具有第二电路区域,所述发光区的负极和所述电吸收调制区的负极均连接至所述第二电路区域,所述发光区的正所述电吸收调制区的正极与所述第一薄膜电阻连接。
  16. 根据权利要求12所述的光模块,其特征在于,所述第四陶瓷基板上具有第三电路区域,所述第二薄膜电阻通过所述第三电路区域连接至所述电吸收调制区。
  17. 根据权利要求11所述的光模块,其特征在于,所述第一薄膜电阻和所述第二薄膜电阻分别位于所述电吸收调制区的两侧。
  18. 根据权利要求17所述的光模块,其特征在于,所述第一薄膜电阻和所述第二薄膜电阻还用于吸收所述电吸收调制区反射的信号。
  19. 根据权利要求11所述的光模块,其特征在于,所述第二薄膜电阻的阻值大于所述第一薄膜电阻的阻值以消除所述第一薄膜电阻的偏差阻抗。
  20. 根据权利要求11所述的光模块,其特征在于,所述第二薄膜电阻以折线形状排列。
PCT/CN2021/118850 2020-09-17 2021-09-16 一种光模块 WO2022057866A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022052192.4 2020-09-17
CN202022052192.4U CN213302589U (zh) 2020-09-17 2020-09-17 一种光模块
CN202011223403.4 2020-11-05
CN202011223403.4A CN112398541B (zh) 2020-11-05 2020-11-05 一种光模块

Publications (1)

Publication Number Publication Date
WO2022057866A1 true WO2022057866A1 (zh) 2022-03-24

Family

ID=80776492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118850 WO2022057866A1 (zh) 2020-09-17 2021-09-16 一种光模块

Country Status (1)

Country Link
WO (1) WO2022057866A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990916A (zh) * 2023-09-26 2023-11-03 武汉钧恒科技有限公司 一种基于铌酸锂调制器和硅光探测器的光模块
WO2023240949A1 (zh) * 2022-06-14 2023-12-21 青岛海信宽带多媒体技术有限公司 一种光模块
WO2024093058A1 (zh) * 2022-11-02 2024-05-10 青岛海信宽带多媒体技术有限公司 光模块

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412240A (zh) * 2011-10-13 2012-04-11 武汉华工正源光子技术有限公司 带温控功能的apd-tia同轴型光电组件及制造方法
CN202586075U (zh) * 2012-05-16 2012-12-05 深圳新飞通光电子技术有限公司 一种高速同轴封装致冷型激光器组件
CN103050887A (zh) * 2012-12-26 2013-04-17 华为技术有限公司 电吸收方式调制激光器***
CN108988120A (zh) * 2017-06-02 2018-12-11 海信集团有限公司 同轴封装的激光器以及光模块
CN110192358A (zh) * 2017-02-28 2019-08-30 华为技术有限公司 无源光网络***、光组件及其匹配阻抗调整方法
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110649973A (zh) * 2019-09-23 2020-01-03 光为科技(广州)有限公司 光发射组件、光收发器和光通信***
CN112398541A (zh) * 2020-11-05 2021-02-23 青岛海信宽带多媒体技术有限公司 一种光模块
CN213302589U (zh) * 2020-09-17 2021-05-28 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412240A (zh) * 2011-10-13 2012-04-11 武汉华工正源光子技术有限公司 带温控功能的apd-tia同轴型光电组件及制造方法
CN202586075U (zh) * 2012-05-16 2012-12-05 深圳新飞通光电子技术有限公司 一种高速同轴封装致冷型激光器组件
CN103050887A (zh) * 2012-12-26 2013-04-17 华为技术有限公司 电吸收方式调制激光器***
CN110192358A (zh) * 2017-02-28 2019-08-30 华为技术有限公司 无源光网络***、光组件及其匹配阻抗调整方法
CN108988120A (zh) * 2017-06-02 2018-12-11 海信集团有限公司 同轴封装的激光器以及光模块
CN110376691A (zh) * 2019-09-02 2019-10-25 青岛海信宽带多媒体技术有限公司 一种光模块
CN110649973A (zh) * 2019-09-23 2020-01-03 光为科技(广州)有限公司 光发射组件、光收发器和光通信***
CN213302589U (zh) * 2020-09-17 2021-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN112398541A (zh) * 2020-11-05 2021-02-23 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240949A1 (zh) * 2022-06-14 2023-12-21 青岛海信宽带多媒体技术有限公司 一种光模块
WO2024093058A1 (zh) * 2022-11-02 2024-05-10 青岛海信宽带多媒体技术有限公司 光模块
CN116990916A (zh) * 2023-09-26 2023-11-03 武汉钧恒科技有限公司 一种基于铌酸锂调制器和硅光探测器的光模块

Similar Documents

Publication Publication Date Title
WO2022057866A1 (zh) 一种光模块
CN100521887C (zh) 具有陶瓷馈通头部组件的发射器光学子组件中的激光监视和控制
US8186892B2 (en) Optoelectronic subassembly with integral thermoelectric cooler driver
US20220224073A1 (en) Optical module
US9647762B2 (en) Integrated parallel optical transceiver
CN112398541B (zh) 一种光模块
WO2021218463A1 (zh) 一种光模块
CN112965190A (zh) 一种光模块
CN112558237A (zh) 一种光模块
CN215910692U (zh) 一种光模块
CN217521403U (zh) 一种光模块
CN211375138U (zh) 一种光模块
WO2022111034A1 (zh) 一种光模块
CN113885143A (zh) 一种光模块
CN216248434U (zh) 一种光发射次模块及光模块
WO2022052842A1 (zh) 一种光模块
CN114637079B (zh) 一种光模块
WO2023109210A1 (zh) 光模块
CN213302589U (zh) 一种光模块
WO2023030457A1 (zh) 光模块
CN217445362U (zh) 一种光模块及激光组件
CN214474114U (zh) 一种光模块
CN216310327U (zh) 一种光模块
WO2022193734A1 (zh) 一种光模块
CN213302597U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868688

Country of ref document: EP

Kind code of ref document: A1