WO2021056943A1 - 同位素样品纯化和收集制备***及其方法和应用 - Google Patents

同位素样品纯化和收集制备***及其方法和应用 Download PDF

Info

Publication number
WO2021056943A1
WO2021056943A1 PCT/CN2020/073354 CN2020073354W WO2021056943A1 WO 2021056943 A1 WO2021056943 A1 WO 2021056943A1 CN 2020073354 W CN2020073354 W CN 2020073354W WO 2021056943 A1 WO2021056943 A1 WO 2021056943A1
Authority
WO
WIPO (PCT)
Prior art keywords
trap
sample
pipeline
enrichment
purification
Prior art date
Application number
PCT/CN2020/073354
Other languages
English (en)
French (fr)
Inventor
王肖波
孙维贞
郭新磊
田春桃
余海棠
王羿涵
李传金
赵雪茹
Original Assignee
中国科学院西北生态环境资源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院西北生态环境资源研究院 filed Critical 中国科学院西北生态环境资源研究院
Priority to DE112020000037.0T priority Critical patent/DE112020000037T5/de
Publication of WO2021056943A1 publication Critical patent/WO2021056943A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/02Separation by phase transition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/10Separation by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/22Separation by extracting
    • B01D59/26Separation by extracting by sorption, i.e. absorption, adsorption, persorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/50Separation involving two or more processes covered by different groups selected from groups B01D59/02, B01D59/10, B01D59/20, B01D59/22, B01D59/28, B01D59/34, B01D59/36, B01D59/38, B01D59/44
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/201Injection using a sampling valve multiport valves, i.e. having more than two ports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves

Definitions

  • the invention relates to the technical field of isotope detection, in particular to an isotope sample purification, collection and preparation system, and a method and application thereof.
  • the collection of samples from different sources and different target gases corresponds to different pre-processing methods.
  • Internationally, the analysis technology of methane cluster isotopes (13 CH 3 D and 12 CH 2 D 2 ) has become an important test for natural gas research after carbonates. means.
  • the detection technology of the binary isotope of methane is mainly to detect the two isotopes ( 13 CH 3 D and 12 CH 2 D 2 ) with a mass-to-charge ratio of 18 among the isotopes of methane. Because these two isotopes of methane are With 2 heavy isotopes (also called cluster isotopes), its relative abundance is very low (6.92*10 -6 and 1.44*10 -7 respectively ). To obtain its abundance accurately, the mass spectrometer must first have Extremely high sensitivity and high precision; at the same time, the sample must have extremely high purity to avoid any interference from other substances to obtain a good mass spectral separation effect.
  • large-scale high-resolution dual-focus stable isotope mass spectrometry has high resolution, such as MAT253 Ultra (Thermo Scientific) and Panorama (NU) two mass spectra, the former has a resolution of ⁇ 27000), which can detect isotopes in methane clusters.
  • the total concentration of 13 CH 3 D and 12 CH 2 D 2 (expressed as ⁇ 18) is tested; the latter has a resolution of up to 40,000 and can measure the concentrations of 13 CH 3 D and 12 CH 2 D 2 in the binary isotope of methane. test.
  • oxygen atoms from oxygen and oxygen-containing compounds
  • nitrogen atoms from nitrogen and nitrogen-containing compounds
  • hydrogen atoms other than methane which will combine with carbon, nitrogen, and oxygen atoms to form interfering ions
  • carbon atoms other than methane and argon atoms (the double-charged ion of the isotope 36 Ar), which have a mass number of about 18 amu, will seriously interfere with the accurate measurement of 13 CH 3 D and 12 CH 2 D 2 in the binary isotope of methane. Gas purity.
  • the sampling and collection processes have different requirements. For large amounts of samples (such as oil and gas) and small amounts of samples (such as cold regions (Antarctic or Arctic) Rare samples collected), it is necessary to distinguish between the injection method and the collection method, and the existing purification and collection preparation systems cannot meet the requirements of both at the same time.
  • the purpose of the present invention is to solve the problem of isotopic samples requiring higher purity in mass spectrometry detection in the prior art, and to provide an isotope sample purification and collection preparation system, which integrates the corresponding isotope purification and enrichment device and isotope mass spectrometer online
  • the sample can be injected through the syringe injection unit, after passing through the GC, then enrichment, after enrichment in the sample bottle, enter the mass spectrometer for analysis, and the enrichment can be divided into batches
  • the sample can be injected through the natural gas sample cylinder, and after passing through the GC, it will directly enter the mass spectrometer for analysis.
  • Another object of the present invention is to provide the application of the isotope sample purification and collection preparation system in isotope detection, which can complete the detection of methane 13 CD ( 13 CH 3 D, 13 CH 2 D 2 , 13 CHD 3 , 13 CD 4 )
  • Isotope detection provides technical support for petroleum exploration, deep-earth resource exploration, global climate change, and water resources evaluation. It can also be applied to the purification and collection of other types of isotopes, and use this technology to expand the tri-polar region (Antarctica, Antarctica, (Arctic and Qinghai-Tibet Plateau) cluster isotope monitoring of a variety of greenhouse gases.
  • Another object of the present invention is to provide an isotope sample purification and collection preparation method, by using this method to purify methane, the main technical indicators methane internal accuracy: ⁇ 18 internal accuracy is 0.3 ⁇ , ⁇ 13CH3D internal accuracy is 0.4 ⁇ , methane external accuracy Accuracy: ⁇ 18 is 2 ⁇ , ⁇ 13CH3D is 2.5 ⁇ .
  • An isotope sample purification, collection and preparation system including a sampling unit, a VOC trap, an adsorption trap group, a liquid nitrogen cold trap, a liquid nitrogen enrichment trap, a chromatographic column, a purification and re-enrichment trap, and a sample connected in sequence through a pipeline Collection tube, of which:
  • the inlet of the VOC trap is connected with a first carrier gas supply pipeline, and the outlet is connected with a discharge pipeline to discharge the chilled water and VOC components in the VOC trap;
  • the pipeline connecting the adsorption trap group and the liquid nitrogen cold trap is provided with a carrier gas purge pipeline, wherein the carrier gas purge pipeline includes a zeroth carrier gas supply that provides carrier gas to the inlet of the adsorption trap group A pipeline and an impurity gas discharge pipeline connected to the outlet of the liquid nitrogen cold trap;
  • a permanent gas discharge pipe is connected to the outlet of the liquid nitrogen enrichment trap to discharge permanent gas (such as nitrogen, oxygen, hydrogen, argon and other gas components) that cannot be condensed in the liquid nitrogen enrichment trap;
  • permanent gas such as nitrogen, oxygen, hydrogen, argon and other gas components
  • a second carrier gas supply pipe is connected to the inlet of the liquid nitrogen enrichment trap.
  • the carrier gas passed through the second carrier gas supply pipe sends the sample enriched in the liquid nitrogen enrichment trap into the In the inlet of the chromatographic column, a heavy gas discharge pipeline and a purification and re-enrichment trap are respectively connected to the outlet of the chromatographic column, and the heavy gas discharge pipeline is used to discharge impurity gases whose retention time is after the target gas
  • the retention time of ethane and ethylene that may be doped in methane is after methane.
  • methane extraction is completed, the others are discharged through the heavy gas discharge pipeline;
  • the inlet of the purification and re-enrichment trap is connected with a third carrier gas supply pipeline, the outlet of the purification and re-enrichment trap is respectively connected with a sample collection tube and a sample discharge pipeline, and the sample collection tube is located in the sample collection trap. Inside, the outlet of the sample collection tube is connected with a vacuum pipeline for removing impurity gas and carrier gas.
  • the zeroth carrier gas supply pipeline is connected to the inlet of the adsorption trap group, or the zeroth carrier gas supply pipeline is connected to the sampling unit, and the sampling unit is connected to the sampling unit through the pipeline.
  • the inlets of the adsorption trap group are connected.
  • the sampling unit is a syringe sampling unit and/or a cylinder sampling unit.
  • the syringe sample injection unit includes an injection sampler connected to the VOC trap through a pipeline, and the zero-th carrier gas supply line is connected to the injection sampler; the steel cylinder inlet
  • the sample unit includes a natural gas sample cylinder connected to the VOC trap through a connecting pipe, and the connecting pipe is provided with a cylinder pressure reduction gauge.
  • the adsorption trap group includes at least a CO oxidation trap and an acid gas adsorption trap.
  • the pipeline between the liquid nitrogen enrichment trap and the chromatographic column is provided with a verification enrichment trap to verify whether the sample in the liquid nitrogen enrichment trap is completely enriched, especially for unknown
  • the sample to be tested can be verified by verifying the enrichment trap to verify whether the length of the pipeline connected between the liquid nitrogen cold trap and the liquid nitrogen enrichment trap and the carrier gas flow match, and adjust it in time until it is verified that there is no methane target gas in the enrichment trap Release, indicating that the parameters of the liquid nitrogen cold trap and liquid nitrogen enrichment trap are reasonable.
  • the vacuum pipeline includes a primary vacuum pipeline connected to the dry pump and a secondary vacuum pipeline connected to the molecular pump.
  • the isotope sample purification, collection and preparation system is applied to methane 13 CD ( 13 CH 3 D, 13 CH 2 D 2 , 13 CHD 3 , 13 CD 4 ) isotope detection.
  • the purification and collection method of the isotope sample purification and collection preparation system includes the following steps:
  • Step 1 The sample is introduced through the sampling unit.
  • the gas sample enters the VOC trap to remove water and VOC components, enters the adsorption trap group to remove impurities, enters the liquid nitrogen cold trap to remove impurities with a boiling point higher than the target gas, and finally enters the liquid
  • the nitrogen is enriched in the enrichment trap, and other non-condensable impurity gases are discharged through the permanent gas discharge pipe;
  • Step 2 The carrier gas introduced in the second carrier gas supply pipeline sends the sample in the liquid nitrogen enrichment trap to the chromatographic column GC, and the separation is carried out in the chromatographic column GC according to the difference in retention time. After the separation, the target The gas is enriched in the purification and re-enrichment trap, and impurities other than the target gas are discharged through the heavy gas discharge pipeline.
  • Step 1 Cut off the pipeline connecting the purification and re-enrichment trap and the chromatographic column.
  • the carrier gas introduced in the third carrier gas supply pipeline passes through the purification and re-enrichment trap and its connecting pipeline, and then is discharged from the sample discharge pipeline.
  • Step 2 Vacuum the purification and re-enrichment trap and the connecting pipeline of the sample collection tube through a vacuum pipeline to exhaust impurity gas and carrier gas;
  • step 3 the target gas enriched in the purification and re-enrichment trap diffuses into the sample collection tube.
  • step 1 of the transfer and re-enrichment collection process the third carrier gas completes the complete transfer and enrichment of the target gas while purging the pipeline, and is stored in the purification and re-enrichment trap.
  • the dry pump when vacuuming the purification and re-enrichment trap and the connecting pipeline of the sample collection tube, the dry pump is firstly evacuated to discharge the impurity gas, and then the molecular pump is evacuated to discharge the carrier gas.
  • the cleaning of the pipeline before the chromatographic column can be carried out, including:
  • VOC trap function recovery increase the temperature of VOC trap T1, introduce carrier gas into the first carrier gas supply pipeline, and the water and VOC components remaining in the VOC trap are discharged through the discharge pipeline;
  • Carrier gas is introduced into the zero-th carrier gas supply pipeline, and after passing through the adsorption trap group and liquid nitrogen cold trap, it is discharged from the impurity gas discharge pipeline;
  • An isotope sample purification and collection preparation system including a sampling unit, a first conversion valve (ValcoB), a VOC trap, an adsorption trap group, a liquid nitrogen cold trap, a second conversion valve (ValcoC), a chromatographic column, and a third conversion valve (ValcoD) and purification and re-enrichment trap, where:
  • a zeroth carrier gas supply pipeline is connected to the sampling unit
  • the ports of the first switching valve are respectively connected to the sampling pipeline, the sampling port of the VOC trap, the sampling port of the VOC trap, the sampling port of the adsorption trap group, the first carrier gas supply pipeline and the discharge pipeline through the pipeline.
  • the sampling pipeline is connected to the sampling unit, and when the first switching valve is in the sampling state (load), the sampling inlets of the sampling pipeline, the VOC trap, and the adsorption trap group are connected in sequence, and the first The carrier gas supply pipeline is in communication with the discharge pipeline, and when the first switching valve is in the injection state (inject), the sampling pipeline is in communication with the adsorption trap group, and the first carrier gas supply
  • the pipeline, the VOC trap, and the discharge pipeline are connected in sequence, the first carrier gas supply pipeline is connected with the inlet of the VOC trap, and the outlet of the VOC trap is connected with the discharge pipeline;
  • the sample outlet of the adsorption trap group is communicated with the sample inlet of the liquid nitrogen cold trap through a pipeline, and the ports of the second switching valve are respectively connected to the sample outlet and the liquid nitrogen cold trap of the liquid nitrogen trap through pipelines.
  • the inlet and outlet of the nitrogen enrichment trap, the second carrier gas supply pipeline, the inlet of the chromatographic column and the impurity gas discharge pipeline are connected, wherein: when the second switching valve is in the sampling state (load) , The liquid nitrogen cold trap, the liquid nitrogen enrichment trap and the impurity gas discharge pipeline are sequentially connected, the injection port of the liquid nitrogen cold trap is connected with the sample outlet of the adsorption trap group, and the outlet of the liquid nitrogen cold trap is connected.
  • the sample port is connected with the sample inlet of the liquid nitrogen enrichment trap, the sample outlet of the liquid nitrogen enrichment trap is connected with the impurity gas discharge pipe, and the second carrier gas supply pipe is connected with the sample inlet of the chromatographic column
  • the second switching valve is in the injection state (in
  • the ports of the third switching valve are respectively connected to the sample outlet of the chromatographic column, the sample inlet of the purification and re-enrichment trap, the third carrier gas supply pipeline and the heavy gas discharge pipeline through pipelines, wherein: When the third switching valve is in the sampling state, the sample outlet of the chromatographic column is connected with the sample inlet of the purification and re-enrichment trap, and the third carrier gas supply pipeline is connected with the heavy gas discharge pipeline, so When the third switching valve is in the sampling state, the sample outlet of the chromatographic column is connected to the heavy gas discharge pipeline, and the third carrier gas supply pipeline is connected to the inlet of the purification and re-enrichment trap;
  • the sample outlets of the purification and re-enrichment trap are respectively connected to the sample discharge pipeline and the sample collection tube through a pipeline, wherein the sample collection tube is located in a sample collection trap that provides a low-temperature environment, and the sample collection tube is connected to It is used to remove the vacuum line of carrier gas and impurity gas.
  • the sample injection unit includes an injection sampler, a natural gas sample cylinder, and a conversion valve (ValcoA), wherein the ports of the conversion valve are connected to the sample outlet of the injection sampler and the natural gas through a pipeline respectively.
  • the sample outlet of the sample cylinder, the exhaust pipe, and the inlet of the first switching valve are connected.
  • the switching valve When the switching valve is in the sampling state (when the sample amount is small (load)), the sample outlet of the injection injector It is connected to the inlet of the sampling pipeline (the first switching valve), the sampling port of the natural gas sample cylinder is connected to the exhaust pipe, and the switching valve is in the sampling state (when the sample volume is relatively large).
  • the sample outlet of the natural gas sample cylinder is communicated with the inlet of the sample injection pipe (first switching valve), and the sample outlet of the injection sampler is connected to the exhaust pipe Connected.
  • the adsorption trap group includes at least a CO adsorption trap and an acid gas adsorption trap.
  • the pipeline between the liquid nitrogen enrichment trap and the chromatographic column is provided with a verification enrichment trap to verify whether the sample in the liquid nitrogen enrichment trap is completely enriched.
  • the sample outlet of the trap is connected with the sample inlet of the verification enrichment trap, and the sample outlet of the verification enrichment trap is connected with the sample inlet of the liquid nitrogen enrichment trap.
  • the vacuum pipeline includes a primary vacuum pipeline connected to the dry pump and a secondary vacuum pipeline connected to the molecular pump to remove impurities and carrier gas in the pipeline.
  • the isotope sample purification, collection and preparation system is applied to methane 13 CD ( 13 CH 3 D, 13 CH 2 D 2 , 13 CHD 3 , 13 CD 4 ) isotope detection.
  • the purification and collection method of the isotopic sample purification and collection preparation system further includes the following steps:
  • Step 1 The first switching valve and the second switching valve are in the sampling state, and the gas sample enters the VOC trap to remove water and VOC components; enters the adsorption trap group to remove impurities, and enters the liquid nitrogen cold trap to remove the gas with a boiling point higher than the target The impurities in the liquid nitrogen are finally concentrated in the liquid nitrogen enrichment trap, and other non-condensable impurity gases are discharged through the permanent gas discharge pipeline;
  • Step 2 The second switching valve is in the sampling state, and the carrier gas introduced in the second carrier gas supply pipeline sends the sample in the liquid nitrogen enrichment trap to the chromatographic column GC.
  • the component gas is separated by the difference in the retention time.
  • the third switching valve is in the sampling state. After separation, the target gas is enriched in the purification and re-enrichment trap.
  • the retention time is when the heavy gas after the target gas flows out, the third The changeover valve is in the sampling state and is discharged through the heavy gas discharge pipeline.
  • the third switching valve is in the sampling state:
  • Step 1 After the carrier gas introduced into the third carrier gas supply pipeline passes through the purification and re-enrichment trap and its connecting pipeline, it is discharged from the sample discharge pipeline, and the purification and re-enrichment trap and its connecting pipeline are purged;
  • Step 2 Vacuum the purification and re-enrichment trap and the connecting pipeline of the sample collection tube through a vacuum pipeline to exhaust impurity gas and carrier gas;
  • step 3 the target gas enriched in the purification and re-enrichment trap diffuses into the sample collection tube.
  • step 1 of the transfer and re-enrichment collection process the third carrier gas completes the complete transfer and enrichment of the target gas while purging the pipeline, and is stored in the purification and re-enrichment trap.
  • the dry pump when vacuuming the purification and re-enrichment trap and the communication pipeline of the sample collection tube, the dry pump is firstly evacuated to discharge the impurity gas, and then the molecular pump is evacuated to discharge the impurity gas and carrier gas.
  • the first switching valve is in the sampling state: the carrier gas is introduced into the first carrier gas supply pipe, and the water and VOC components remaining in the VOC trap T1 are discharged through the discharge pipeline;
  • the first switching valve is in the sampling state: the carrier gas is introduced into the zero carrier gas supply pipeline, and the impurities remaining in the adsorption trap group, liquid nitrogen cold trap, and liquid nitrogen enrichment trap are discharged from the impurity gas discharge pipeline ;
  • An isotope sample purification and collection preparation system including two-position four-way valve A, two-position six-way valve B, two-position six-way valve C, two-position four-way valve D, VOC trap T1, adsorption trap T2, adsorption trap T3 , Chemical trap T4, liquid nitrogen cold trap T5, liquid nitrogen enrichment trap T6, verification enrichment trap T7, purification and re-enrichment trap T8, sample collection trap T9, among them:
  • the two-position four-way valve A has four holes a1, a2, a3, and a4.
  • the a2 is connected to the natural gas sample cylinder through a connecting pipe, and the a4 is connected to the injection sampler through a pipe.
  • the sample injector is provided with a GC sample inlet, the injection sampler is provided with a zeroth carrier gas input pipeline, and the a1 is connected with an exhaust pipeline;
  • the two-position six-way valve B has six holes b1, b2, b3, b4, b5, and b6.
  • the b2 is connected to the a3 through a pipe, and the b3 is connected to the inlet of the VOC trap T1 through a pipe.
  • the outlet of the VOC trap T1 is connected to b6 through a pipe, and the b1 is connected to the inlet of the liquid nitrogen cold trap T5 through a decontamination pipe.
  • the decontamination pipe is sequentially connected with an adsorption trap T2, an adsorption trap T3, Chemical trap T4, said b4 is connected with a first load gas input pipeline, and said b5 is connected with a discharge pipeline;
  • the two-position six-way valve C has six holes c1, c2, c3, c4, c5, and c6.
  • the outlet of the liquid nitrogen cold trap T5 is connected to the c2 through a pipe, and the c3 is connected to the c2 through the pipe.
  • the inlet of the liquid nitrogen enrichment trap T6 is connected, the outlet of the liquid nitrogen enrichment trap T6 is connected to the inlet of the verification enrichment trap T7 through a pipeline, and the outlet of the verification enrichment trap T7 is connected to the outlet through a pipeline.
  • the c6 is connected, the c1 is connected to the impurity gas discharge pipeline, the c4 is connected to the second load gas input pipeline, and the c5 is connected to the inlet of the chromatographic column GC8 through the pipeline;
  • the two-position four-way valve D has four holes d1, d2, d3, and d4.
  • the d1 is connected to the outlet of the chromatographic column GC through a pipeline, and the d2 is connected to the purification and re-enrichment trap T8 through the enrichment pipeline.
  • the inlet is connected, the d3 is connected with the third load gas input pipeline, the d4 is connected with the heavy gas discharge pipe, the enrichment pipeline is provided with an on-off valve V1, and the outlet of the purification and re-enrichment trap T8
  • the sample collection trap T9 is communicated with the inlet of the sample collection trap T9 through a pipe, and the sample collection trap T9 is respectively communicated with the sample discharge pipe and the collection pipe through a communication pipe, wherein a switch valve V2 is provided on the communication pipe, and the sample discharge pipe
  • An on-off valve V3 is provided on the road, an on-off valve V4 is provided on the collection pipe, the collection pipe is respectively connected with a vacuum branch pipe and a collection branch pipe, the vacuum branch pipe is connected to a vacuum source, and the collection branch pipe is provided with an on-off valve V5
  • the switch valve V10 the end of the collection branch pipe is connected with a sample collection tube, and the sample collection tube is located in the sample collection trap.
  • the low vacuum gauge P1 is connected to the vacuum branch pipe through a first connecting pipe, the first connecting pipe is provided with an on-off valve V8, and the dry pump is connected to the vacuum branch pipe through a second connecting pipe, so
  • the second connecting pipe is provided with an on-off valve V6
  • the high vacuum gauge P2 is connected to the vacuum branch pipe through a third connecting pipe
  • the third connecting pipe is provided with an on-off valve V9
  • the molecular pump is connected through a fourth connecting pipe
  • an on-off valve V7 is provided on the fourth connecting pipe.
  • a steel cylinder decompression gauge is installed on the connecting pipe.
  • the isotope sample purification, collection and preparation system is applied to methane 13 CD ( 13 CH 3 D, 13 CH 2 D 2 , 13 CHD 3 , 13 CD 4 ) isotope detection.
  • the present invention implements the impurity removal function, enrichment function, purification function, transfer function, carrier gas release and collection function of the collected gas sample to complete the sample purification and collection preparation for the detection of binary isotope of methane.
  • Each component in the system is reasonably designed, easy to operate, and aggregates together to realize the purification and collection of sample gas.
  • the present invention accommodates two sample injection methods from source samples at the same time, injection type injection and steel bottle type injection, the two methods are freely switched through the valve body, which is convenient to take and has strong applicability.
  • the collected methane gas can be used in manual injection mode or online automatic injection mode, and it can be docked with the dual sampling system of the isotope mass spectrometer to realize the detection of the binary isotopes of methane 13 CH 3 D and 12 CH 2
  • the principle of the present invention is simple, and the structure design integrates sampling, adsorption, separation, enrichment, purification, transfer, collection and other functions, which makes the test process of the sample simple and convenient, convenient to operate, and can effectively improve the accuracy of the test value , Is a set of sample preparation system with scientific research significance and strong pertinence. Has good use and promotion value.
  • Fig. 1 is a system block diagram of Embodiment 1 of the present invention.
  • Figure 2 is a pipeline connection diagram of Embodiment 1 of the present invention.
  • Fig. 3 is a diagram of the sampling and enrichment state of a methane sample in Example 2 of the present invention.
  • Figure 4 is a diagram of the purification, transfer and collection state of a methane sample in Example 2 of the present invention.
  • An isotope sample purification and collection preparation system including a sampling unit connected by pipelines, a VOC trap T1, an adsorption trap T2, an adsorption trap T3, a chemical trap T4, a liquid nitrogen cold trap T5, and a liquid nitrogen enrichment trap T6 , Verify the enrichment trap T7, chromatographic column GC, purification and re-enrichment trap T8, sample collection trap T9, among them:
  • the inlet of the sampling unit is connected with a GC injection port 1 and a zeroth carrier gas supply pipeline, the GC injection port 1 is provided with an on-off valve V24, and the zero carrier gas supply pipeline is provided with an on-off valve V23;
  • the outlet of the sampling unit is connected to the inlet of the VOC trap T1 through a first pipeline, the first pipeline is provided with an on-off valve V11, and the outlet of the sampling unit is connected to the inlet of the adsorption trap T2 through a second pipeline
  • the second pipeline is provided with an on-off valve V12;
  • the inlet of the VOC trap T1 is connected with a first carrier gas supply pipeline, and the outlet is connected with a discharge pipeline to discharge the chilled water and VOC components in the VOC trap;
  • the first carrier gas supply pipeline is provided with a switch valve V13 , V14 is provided on the discharge pipeline;
  • the pipeline connecting the adsorption trap T2, the adsorption trap T3, the chemical trap T4 and the liquid nitrogen cold trap T5 is provided with a carrier gas purge pipeline, wherein the carrier gas purge pipeline includes supplying the zeroth carrier gas
  • the carrier gas purge pipeline includes supplying the zeroth carrier gas
  • the pipeline and the impurity gas discharge pipeline connected to the outlet of the liquid nitrogen cold trap T5, and the impurity gas discharge pipeline is provided with an on-off valve V15;
  • the pipeline between the liquid nitrogen cold trap T5 and the liquid nitrogen enrichment trap T6 is provided with an on-off valve V16, the inlet of the liquid nitrogen enrichment trap T6 is connected with a second carrier gas supply pipeline, and the second carrier gas supply
  • An on-off valve V17 is provided on the pipeline, the second carrier gas supply pipeline is connected to the inlet of the chromatographic column GC through a third pipeline, and an on-off valve V18 is provided on the third pipeline;
  • a permanent gas discharge pipe is connected to the outlet of the verification enrichment trap T7 to discharge gases that cannot be condensed in the liquid nitrogen cold trap and the liquid nitrogen enrichment trap, such as nitrogen, oxygen, hydrogen, argon, etc.
  • the permanent gas discharge pipe is provided with an on-off valve V19;
  • a third carrier gas supply pipeline is connected to the inlet of the purification and re-enrichment trap T8, and a switch valve V20 is provided on the third carrier gas supply pipeline.
  • a switch valve V20 is provided on the third carrier gas supply pipeline.
  • V1 on the pipeline between the two
  • the outlet of the purification and re-enrichment trap is respectively connected with the heavy gas discharge pipeline, the sample collection pipe and the sample discharge pipeline, and the heavy gas discharge pipeline is provided with an on-off valve V22
  • the sample collection tube is located in the sample collection trap, and the outlet of the sample collection tube is connected with a vacuum pipeline for removing the carrier gas.
  • the carrier gas passed through the second carrier gas supply pipe sends the sample enriched in the liquid nitrogen enrichment trap into the inlet of the chromatographic column; the outlet of the chromatographic column is connected with a heavy gas discharge pipe
  • the impurity gas whose retention time is after the target gas is discharged.
  • the retention time of ethane doped in the sample is after methane.
  • the ethane passes through the heavy gas discharge pipe. Road discharge.
  • the sample injection unit is a syringe sample injection unit and/or a steel cylinder sample injection unit.
  • the syringe sample injection unit includes an injection sampler connected to the VOC trap through a pipeline;
  • the steel bottle sample injection unit includes a natural gas sample cylinder connected to the VOC trap through a connecting pipe, and the connecting pipe is provided with a natural gas sample cylinder connected to the VOC trap. Cylinder decompression table.
  • the pipeline between the liquid nitrogen enrichment trap and the chromatographic column is provided with a verification enrichment trap to verify whether the sample in the liquid nitrogen enrichment trap is completely enriched, especially when a new sample to be tested is introduced.
  • the enrichment trap can be verified to verify whether the length of the cooling pipeline in the previous liquid nitrogen cold trap and the liquid nitrogen enrichment trap is appropriate, whether the cooling temperature is appropriate, and adjust it in time until it is verified that the sample is not enriched in the enrichment trap, indicating that liquid nitrogen The parameters of cold trap and liquid nitrogen enrichment trap are reasonable.
  • the vacuum pipeline includes a primary vacuum pipeline connected to the dry pump and a secondary vacuum pipeline connected to the molecular pump.
  • the low vacuum gauge P1 is connected to the vacuum branch pipe through a first connecting pipe
  • the first connecting pipe is provided with an on-off valve V8
  • the dry pump 6 is connected to the vacuum branch pipe through a second connecting pipe.
  • the second connecting pipe is provided with an on-off valve V6
  • the high vacuum gauge P2 is connected to the vacuum branch pipe through a third connecting pipe
  • the third connecting pipe is provided with an on-off valve V9
  • the molecular pump 7 is connected through a fourth connecting pipe.
  • an on-off valve V7 is provided on the fourth connecting pipe.
  • the purification and collection method of the isotope sample purification and collection preparation system described in Example 1 includes the following steps:
  • Step 1 the sample is introduced through the sampling unit, the on-off valves V24, V11, V16, V18 and V19 are opened, other on-off valves are closed, and the gas sample enters the VOC trap T1 to remove water and VOC components (the temperature control range of the VOC trap T1 is -24 °C ⁇ -0°C.
  • adsorption trap T2 filled with iodine pentoxide to oxidize CO to carbon dioxide
  • adsorption trap T3 filled with soda lime or sodium hydroxide to remove acid gas, carbon dioxide, etc.
  • chemical trap T4 separe trap for targeted removal of other impurities
  • liquid nitrogen cold trap T5 liquid nitrogen cold trap without filler, removal of sulfur dioxide and volatile Natural gas
  • liquid nitrogen enrichment trap T6 verification enrichment trap T7, the final sample is enriched in the liquid nitrogen enrichment trap T6, and other impurity gases are discharged through the permanent gas discharge pipe;
  • Step 2 On-off valves V17, V21, V1 and V3 are opened, other on-off valves are closed, and the carrier gas introduced in the second carrier gas supply pipeline sends the sample in the liquid nitrogen enrichment trap T6 to the chromatographic column GC ,
  • the target gas is enriched in the purification and re-enrichment trap T8, when the heavy gas (the gas with the retention time after the target gas) flows out
  • V1 is closed, V22 is opened, and the heavy gas is discharged through the heavy gas discharge pipeline.
  • Step 1 the on-off valves V20, V1, V2, and V3 are opened, other on-off valves are closed, and the carrier gas introduced in the third carrier gas supply pipeline passes through the purification and re-enrichment trap T8 and is discharged from the sample discharge pipeline.
  • Step 2 Close V1, V2 and V5, open V2, V4, V6, V8, and use dry pump 6 to drain the impurities in the passage.
  • the vacuum gauge P1 shows a value of 0.1mbar
  • close the vacuum valve V6 and open the vacuum valve V7 , V9 use the molecular pump unit 7 to continue to empty the carrier gas.
  • the vacuum gauge P2 shows that the requirements are met
  • the sample collection tube 5 is placed in the sample collection trap T9.
  • the front pipeline can be cleaned. Specifically:
  • VOC trap T1 Open V13 and V14, close other valves, increase the temperature of VOC trap T1 (100°C), and pass carrier gas into the first carrier gas supply pipe, leaving the residual in the VOC trap T1 Water and VOC components are discharged through the discharge pipeline;
  • An isotope sample purification and collection preparation system including two-position four-way valve A, two-position six-way valve B, two-position six-way valve C, two-position four-way valve D, VOC trap T1, adsorption trap T2, adsorption trap T3 , Chemical trap T4, liquid nitrogen cold trap T5, liquid nitrogen enrichment trap T6, verification enrichment trap T7, purification and re-enrichment trap T8, sample collection trap T9, among them:
  • the two-position four-way valve A has four holes a1, a2, a3, and a4.
  • the a2 is connected to the natural gas sample cylinder 3 through a connecting pipe, and a cylinder pressure reducing meter 4 is installed on the connecting pipe. It is communicated with the injection sampler 2 through a pipeline, the injection sampler 2 is provided with a GC injection port 1, and the injection sampler 2 is provided with a zeroth carrier gas input pipeline;
  • the two-position six-way valve B has six holes b1, b2, b3, b4, b5, and b6.
  • the b2 is connected to the a3 through a pipe, and the b3 is connected to the inlet of the VOC trap T1 through a pipe.
  • the outlet of the VOC trap T1 is connected to b6 through a pipe, and the b1 is connected to the inlet of the liquid nitrogen cold trap T5 through a decontamination pipe.
  • the decontamination pipe is sequentially connected with an adsorption trap T2, an adsorption trap T3, Chemical trap T4, said b4 is connected with a first load gas input pipeline, and said b5 is connected with a discharge pipeline;
  • the two-position six-way valve C has six holes c1, c2, c3, c4, c5, and c6.
  • the outlet of the liquid nitrogen cold trap T5 is connected to the c2 through a pipe, and the c3 is connected to the c2 through the pipe.
  • the inlet of the liquid nitrogen enrichment trap T6 is connected, the outlet of the liquid nitrogen enrichment trap T6 is connected to the inlet of the verification enrichment trap T7 through a pipeline, and the outlet of the verification enrichment trap T7 is connected to the outlet through a pipeline.
  • the c6 is connected, the c1 is connected to the impurity gas discharge pipeline, the c4 is connected to the second load gas input pipeline, and the c5 is connected to the inlet of the chromatographic column GC8 through the pipeline;
  • the two-position four-way valve D has four holes d1, d2, d3, and d4.
  • the d1 is connected to the outlet of the chromatographic column GC8 through a pipeline, and the d2 is connected to the purification and re-enrichment trap T8 through the enrichment pipeline.
  • the inlet is connected, the d3 is connected with the third load gas input pipeline, the d4 is connected with the permanent gas discharge pipe, the enrichment pipeline is provided with an on-off valve V1, and the outlet of the purification and re-enrichment trap T8
  • the sample collection trap T9 is communicated with the inlet of the sample collection trap T9 through a pipe, and the sample collection trap T9 is respectively communicated with the sample discharge pipe and the collection pipe through a communication pipe, wherein a switch valve V2 is provided on the communication pipe, and the sample discharge pipe There is a switch valve V3 on the road, the collection pipe is provided with a switch valve V4, the collection pipe is respectively connected with the vacuum branch pipe and the collection branch pipe, and the collection branch pipe is provided with a switch valve V5 and a switch valve V10.
  • the end of the branch pipe is connected with a sample collection tube 5, the sample collection tube 5 is located in the sample collection trap T9, the low vacuum gauge P1 is connected to the vacuum branch pipe through a first connecting pipe, and a switch valve V8 is provided on the first connecting pipe ,
  • the dry pump 6 is connected to the vacuum branch pipe through a second connecting pipe, the second connecting pipe is provided with an on-off valve V6, and the high vacuum gauge P2 is connected to the vacuum branch pipe through a third connecting pipe.
  • An on-off valve V9 is provided on the three connecting pipes, the molecular pump 7 is connected to the vacuum branch pipe through a fourth connecting pipe, and the on-off valve V7 is provided on the fourth connecting pipe.
  • the vacuum gauge P2 is connected to the vacuum system through vacuum valves V8 and V9 respectively.
  • the temperature control range of the VOC trap T1 is between -24°C and -0°C.
  • adsorption trap T2 is filled with diiodine pentoxide (to oxidize CO to carbon dioxide);
  • adsorption trap T3 is filled with soda lime or sodium hydroxide (to remove acid Gas carbon dioxide, etc.);
  • chemical trap T4 is a spare trap (targeted removal of other impurities);
  • liquid nitrogen cold trap T5 is a liquid nitrogen cold trap without filler (shorter than the cooling pipeline in the liquid nitrogen enrichment trap T6, Remove sulfur dioxide and some volatile impurity gases);
  • the liquid nitrogen enrichment trap T6 and the verification enrichment trap T7 are two identical series liquid nitrogen cold traps, with built-in molecular sieve or resin fillers and connected in series.
  • the two positions of the four rotary valves are the injection (Inject) state when rotating clockwise and the sampling (load) state when rotating counterclockwise. They pass through the two-position four-way valve (A) and the two-position six-way valve (B). ), two-position six-way valve (C), two-position four-way valve (D) and the combination of hole positions to achieve the functions of de-impurity, enrichment, purification, separation, and transfer of sample gas; vacuum switch valve V1 , V2, V3, V4, V5, V6, V7, V8, V9, V10 are used together to realize the functions of re-enrichment, transfer, collection and online sampling analysis of the target gas. For the combined use of the above valve body.
  • I)Sample injection method 1For the more concentrated gas sample, connect to the injection injector 2, the sampling (load) status of the two-position four-way valve A, the hole positions a4, a3, and the sampling (load) status of the two-position six-way valve B Holes b2, b3, and He0 carrier gas are introduced from GC injection port 1, and the sample in the injection injector 2 is introduced into the system; 2Needle the lower concentration cylinder gas, connect the natural gas sample cylinder 3 with the lower concentration sample gas, two bits Four-way valve A injection (Inject) state holes a2, a3, two-position six-way valve B sampling (load) state holes b2, b3, He0 carrier gas is introduced into the system from GC inlet 1;
  • liquid nitrogen cold trap T5 two-position six-way valve C (load) hole positions c2, c3, liquid nitrogen enrichment trap T6, set a chemical trap combination to remove impurity gas components; the sample is purified and enriched Store in the liquid nitrogen enrichment trap T6, and then verify the enrichment effect of the enriched target gas in the verification enrichment trap T7 (to verify the length of the connecting pipes of the liquid nitrogen cold trap T5 and the liquid nitrogen enrichment trap T6 Adjust the flow of carrier gas and carrier gas so that the sample is completely enriched in the liquid nitrogen enrichment trap T6); other impurity gases in the sample gas pass through the two-position six-way valve C (load) holes c6, c1 and the impurity gas discharge pipe Road vents to discharge permanent gas.
  • Two-position four-way valve D (load) hole positions d1, d2, vacuum valve V1, purification and re-enrichment trap T8, He2 carrier gas is introduced from hole position c4 of two-position six-way valve C, and will be stored in the liquid nitrogen enrichment trap
  • the purified methane gas in T6 enters the chromatographic column 8, and the separation chromatographic column or capillary column is used to complete the separation of methane.
  • the separated methane gas passes through the valve body conversion setting to complete the methane enrichment and save it in the purification and re-enrichment trap T8 , And wait for the next transfer collection.
  • Carrier gas removal and methane collection Close the vacuum valves V1, V3, V5, open the vacuum valves V2, V4, V6, V8, and use the dry pump 6 to drain the impurities in the passage.
  • the vacuum gauge P1 shows a value of 0.1mbar
  • close V7, open V5 and V10 the methane sample in the purification and enrichment trap T8 is released and diffused into the pre-pumped sample collection tube 5, and the sample collection tube 5 is placed in the sample collection trap T9.
  • V) Stable gas isotope mass spectrometry test the sample collection tube 5 is directly connected to the dual-channel sampling system of the gas-stable isotope mass spectrometer (MAT253 Ultra Thermo Scientific), or V5 is directly balanced and diffused into the dual-channel sampling storage tank of the isotope mass spectrometer. , Cooperate with the gas isotope mass spectrometer MAT253 Ultra (Thermo Scientific) to jointly complete the analysis and determination of the binary isotopes 13CH3D and 12CH2D2 in the methane sample, and complete the ⁇ 18 and ⁇ 13CH3D analysis and detection of the methane binary isotopes 13CH3D and 12CH2D2.
  • system also has the following functions:
  • VOC trap T1 The function of VOC trap T1 is restored: adjust the temperature of VOC trap T1 to 100°C, and connect the holes b4 and b3 of the two-position six-way valve B (Inject), the VOC trap T1, and the hole position b6 of the two-position six-way valve B , B5, He1 carrier gas is introduced from the hole b4 of the two-position six-way valve B, and the frozen water and other VOC components in the system are discharged for repeated use;
  • Chemical trap purge mode connect the two-position four-way valve A (load) hole positions a4 and a3, the two-position six-way valve B (Inject) hole positions b2, b1, the adsorption trap T2, the adsorption trap T3, and the chemical trap T4 , Liquid nitrogen cold trap T5, two-position six-way valve C hole positions c2, c1, He0 carrier gas is introduced from GC inlet 1 and vented after passing through the pipeline to keep the gas circuit system clean;
  • Purification and re-enrichment mode connect the two-position four-way valve D (inject) holes d3, d2, vacuum valve V1, purification and re-enrichment trap T8, vacuum valve V2, vacuum valve V3, and He3 carrier gas by two-position four-way
  • the holes d3 and d2 of the port valve D are introduced, and the system is discharged from the vacuum valve V3 to complete the purification and enrichment of the methane sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种同位素样品纯化和收集制备***及其方法,纯化和收集制备方法包括:一、纯化富集过程:步骤1,样品通过进样单元导入,气体样品依次进入VOC阱(T1)内去除水及VOC成分;步骤2,第二载气供给管道内通入的载气将液氮富集阱(T6)内的样品送入GC色谱柱,在GC色谱柱中根据保留时间的不同进行分离。二、转移再富集收集过程:切断提纯再富集阱(T8)与GC色谱柱相连通的管路,第三载气供给管道内通入的载气经由提纯再富集阱(T8)及其连通管路后,从样品排放管路排出;通过真空管路对提纯再富集阱(T8)和提纯再富集阱(T8)与样品收集管(5)之间的连通管路进行抽真空以排出杂质气体及载气;提纯再富集阱(T8)内富集的目标气体扩散至样品收集管(5)内。

Description

同位素样品纯化和收集制备***及其方法和应用 技术领域
本发明涉及同位素检测技术领域,特别是涉及一种同位素样品纯化和收集制备***及其方法和应用。
背景技术
同位素理论和质谱仪的发展由一元一维到一元多维同位素的测定,成为单元素稳定同位素体系方法上的一个里程碑,被应用于探索天体化学和地球化学、地质学及生物学等诸多学科。本世纪初,一种同位素研究的新视角“簇同位素地球化学”被引入,它从同位素互相结合的角度来研究“同位素体”的地球化学行为,并能获得传统同位素对总体组成研究无法提供的信息,是继传统稳定同位素之后极具潜力的一项革命性技术。尤其是MAT 253-Ultra(Thermo Fisher)和Panoroma(Nu instruments)分析设备的问世,使得同位素分析技术从对简单分子的测定推进到对分子同位素分析中,如对分子簇同位素比以及分子特殊位点的测定等。
但再先进的质谱仪也必须用各种方法将原始样品(无机形态物质或复杂的有机质)制备或转化成纯净的气体如N 2、O 2、H 2、CO 2、SO 2、N 2O、CH 4等才能进入质谱进行相应的同位素检测,因此样品的前处理技术和配套的前处理装置成为质谱检测成功的关键。纯净气体的获得除了要经过复杂的去杂质过程之外,还需要对痕量气体进行富集、分离以及目标气的收集和转换等。
不同来源的样品和不同目标气的收集对应着不同的前处理方法,国际上对甲烷簇同位素( 13CH 3D和 12CH 2D 2)分析技术已经成为继碳酸盐之后对天然气研究重要检测手段。甲烷二元同位素的检测技术主要是针对甲烷的同位素体中,质荷比为18的2个同位素体( 13CH 3D和 12CH 2D 2)进行检测,由于甲烷的这两个同位素体是具有2个重同位素取代的(又叫团簇同位素),其相对丰度非常低(分别为6.92*10 -6和1.44*10 -7),要精确获得其丰度情况,首先要求质谱仪器有极高灵敏度、极高精度;同时要求样品要有极高的纯度,以避免其它物质的任何干扰来获得好的质谱分离效果。
目前大型高分辨率双聚焦稳定同位素质谱已经具备很高的分辨率,如MAT253 Ultra(Thermo Scientific)和Panorama(NU)两种质谱,前者分辨率可达~27000),可以对甲烷团簇同位素中 13CH 3D和 12CH 2D 2的总浓度(表示为Δ18)进行测试;后者分辨率可达40000,可以对甲烷二元同位素中 13CH 3D和 12CH 2D 2的浓度分别进行测试。由于甲烷中天然丰度非常低的 13CH 3D和 12CH 2D 2分子量整数都在18amu,甲烷样品进入质谱仪被电离之后,在离子源中各原子会以一定概率组合成相应的离子,若样品中存在诸如水分子、氧原子(来源于氧气和含氧化合物)、氮原子(来源于氮气和含氮化合物)、甲烷以外的氢原子(会与碳、氮、氧原子结合形成干扰离子)、甲烷以外的碳原子以及氩原子(同位素 36Ar的双荷离子)等这些质量数为18amu左右的成分,将会严重干扰甲烷二元同位素中 13CH 3D和 12CH 2D 2精确测试气体纯度。
由于甲烷簇同位素分子相对丰度很低,其他物质的干扰多,因此准确测定是一项挑战性很大的工作。目前帝国理工学院与Protium公司研发一套自动纯化***(Imperial Batch Extraction,IBEX,)这个***主要工作原理是:使用超低温氦制冷泵,在温度范围10K至320K液氦环境去除甲烷里的H 2,He,CO 2,O 2,N 2等杂质气体,然后将冷冻的甲烷升温释放,用液氮将甲烷转移到装有5A分子筛的样品管中烧封,之后再加热释放出来在质谱上完成测量。由于本***所使用的液氦制冷泵维持费用昂贵;且本***还没有实现商业化生产;另外本***只给出甲烷纯化后一个指标是:Δ18的内精度为0.4‰。
除此之外,对不同量的样品而言,其进样和收集过程具有不同的需求,对于量大的样品(比如石油天然气)和量小的样品而言(比如寒地(南极或北极)收集的稀有样品),需要区分进样方式和收集方式,现有的纯化和收集制备***不能同时满足两者的需求。
为此需要建立一套二元同位素检测的样品纯化和收集制备***,以确保样品气在进入质谱分析之前,除去所有可能存在的干扰项离子,对于稀有样品进行富集,实现对同位素化合物的准确检测,同时可应用到甲烷二元同位素 13CH 3D和 12CH 2D 2检测中。
发明内容
本发明的目的是针对现有技术中存在的同位素样品在质谱检测中需要较高纯度的问题,而提供一种同位素样品纯化和收集制备***,将相应的同位素提纯富集装置和同位素质谱仪在线联用,而对于量小的样品而言,可通过注射器进样单元进样,通过GC后,再富集,富集在样品瓶中之后进入质谱仪中进行分析,富集之后可分批次进行检验,需要时,将样品瓶插在质谱上即可,对于量大的样品而言,可通过天然气样品钢瓶进样,通过GC后,直接进入到质谱仪中进行分析。
本发明的另一个目的是提供所述同位素样品纯化和收集制备***在同位素检测中的应用,既可以完成对甲烷 13C-D( 13CH 3D、 13CH 2D 213CHD 313CD 4)同位素检测,为石油勘探、深地资源探查、全球气候变化、水资源评价提供技术支撑,也可以应用于其它类型同位素的提纯与收集中,并利用这一技术拓展对三极地区(南极、北极和青藏高原)多种温室气体的簇同位素监测。
本发明的另一个目的是提供一种同位素样品纯化和收集制备方法,利用该方法提纯甲烷可达到主要技术指标甲烷内精度:Δ18的内精度为0.3‰,Δ13CH3D的内精度为0.4‰,甲烷外精度:Δ18为2‰,Δ13CH3D为2.5‰。
为实现本发明的目的所采用的技术方案是:
一种同位素样品纯化和收集制备***,包括依次通过管路相连通的进样单元、VOC阱、吸附阱组、液氮冷阱、液氮富集阱、色谱柱、提纯再富集阱和样品收集管,其中:
所述VOC阱的入口上连接有第一载气供给管道,出口上连接有排放管路以排出VOC阱内冷冻水和VOC组分;
连接所述吸附阱组和液氮冷阱的管路上设有载气吹扫管路,其中所述载气吹扫管路包括给所述吸附阱组的进口提供载气的第零载气供给管道和与连接在所述液氮冷阱出口上的杂质气体排放管路;
所述液氮富集阱的出口上连接有永久气体排放管,以排放在所述液氮富集阱中无法 冷凝的永久气体(如氮气、氧气、氢气、氩气等气体组分);
所述液氮富集阱的入口上连接有第二载气供给管道,取样时,第二载气供给管道通入的载气将所述液氮富集阱内富集的样品送入所述色谱柱的进口内,所述色谱柱的出口上分别连接有重气排放管路和提纯再富集阱,所述重气排放管路用于将保留时间在所述目标气体之后的杂质气体排出,比如对甲烷进行纯化后,可能掺杂于甲烷中的乙烷、乙烯保留时间在甲烷之后,当甲烷提取完成后,其它通过重气排放管路排出;
所述提纯再富集阱的入口上连接有第三载气供给管道,所述提纯再富集阱的出口分别与样品收集管和样品排放管路相连通,所述样品收集管位于样品收集阱内,所述样品收集管的出口连接有用于除去杂质气体和载气的真空管路。
在上述技术方案中,所述第零载气供给管道连接在所述吸附阱组的进口上,或第零载气供给管道连接在所述进样单元上,所述进样单元再通过管道与所述吸附阱组的进口相连通。
在上述技术方案中,所述进样单元为注射器进样单元和/或钢瓶进样单元。
在上述技术方案中,所述注射器进样单元包括通过管路与VOC阱相连通的注射进样器,所述第零载气供给管路连接在所述注射进样器上;所述钢瓶进样单元包括通过连接管道与所述VOC阱相连通的天然气样品钢瓶,所述连接管道上设有钢瓶减压表。
在上述技术方案中,所述吸附阱组至少包括CO氧化阱和酸性气体吸附阱。
在上述技术方案中,所述液氮富集阱与所述色谱柱之间的管路上设有验证富集阱,以验证所述液氮富集阱中样品是否富集完全,尤其是对未知待测样品,可通过验证富集阱来验证前期液氮冷阱和液氮富集阱所连接的管路长度、载气流量是否匹配,并及时调整,直至验证富集阱内没有甲烷目标气释放,说明液氮冷阱和液氮富集阱设置的参数合理。
在上述技术方案中,所述真空管路包括连通干泵的初级真空管路以及连通分子泵的二次真空管路。
本发明的另一方面,所述同位素样品纯化和收集制备***在甲烷 13C-D( 13CH 3D、 13CH 2D 213CHD 313CD 4)同位素检测中的应用。
本发明的另一方面,所述同位素样品纯化和收集制备***的纯化和收集方法包括以下步骤:
一.纯化富集过程:
步骤1,样品通过进样单元导入,气体样品依次进入VOC阱内去除水及VOC成分,进入吸附阱组内去除杂气,进入液氮冷阱以去除沸点高于目标气体的杂质,最后进入液氮富集阱内富集,其它不凝的杂质气体通过永久气体排放管排出;
步骤2,第二载气供给管道内通入的载气将所述液氮富集阱内的样品送入所述色谱柱GC,在色谱柱GC中根据保留时间的不同进行分离,分离后目标气体在提纯再富集阱内富集,目标气体之外的杂质通过重气排放管路排出。
二.转移再富集收集过程:
步骤1,切断提纯再富集阱与色谱柱相连通的管路,第三载气供给管道内通入的载气经由提纯再富集阱及其连通管路后,从样品排放管路排出进行管路吹扫;
步骤2,通过真空管路对提纯再富集阱和样品收集管其连通管路进行抽真空以排出杂质气体及载气;
步骤3,提纯再富集阱内富集的目标气体扩散至样品收集管内。
在上述技术方案中,所述转移再富集收集过程的步骤1中,第三载气在吹扫管路的同时完成对目标气体完全转移富集,并在提纯再富集阱中保存。
在上述技术方案中,对提纯再富集阱和样品收集管其连通管路进行抽真空时,先通过干泵抽真空以排出杂质气体,再通过分子泵抽真空以排出载气。
在上述技术方案中,在转移再富集收集过程中或完成后,可进行色谱柱前管路的清洁,包括:
(1)VOC阱功能恢复:升高VOC阱T1温度,第一载气供给管道内通入载气,残留在所述VOC阱内的水和VOC成分通过排放管路排出;
(2)吸附阱组、液氮冷阱的吹扫:第零载气供给管道内通入载气,经由吸附阱组、液氮冷阱后,从杂质气体排放管路排出;
一种同位素样品纯化和收集制备***,包括进样单元、第一转换阀(ValcoB)、VOC阱、吸附阱组、液氮冷阱、第二转换阀(ValcoC)、色谱柱、第三转换阀(ValcoD)和提纯再富集阱,其中:
所述进样单元上连接有第零载气供给管道;
所述第一转换阀的端口分别通过管路与进样管道、VOC阱的进样口、VOC阱的出样口、吸附阱组的进样口、第一载气供给管道和排放管路相连接,所述进样管道与进样单元相连通,当第一转换阀处于取样状态(load)时,所述进样管道、VOC阱、吸附阱组的进样口依次连通,所述第一载气供给管道和所述排放管路相连通,当所述第一转换阀处于进样状态(inject)时,所述进样管道与所述吸附阱组相连通,所述第一载气供给管道、VOC阱和排放管路依次连通,第一载气供给管道与VOC阱的进样口相连通,VOC阱的出样口和排放管路相连通;
所述吸附阱组的出样口通过管路与所述液氮冷阱的进样口相连通,所述第二转换阀的端口分别管路与所述液氮冷阱的出样口、液氮富集阱的进样口和出样口、第二载气供给管道、色谱柱的进样口和杂质气体排放管路相连通,其中:所述第二转换阀处于取样状态(load)时,所述液氮冷阱、液氮富集阱与杂质气体排放管路依次相连通,液氮冷阱的进样口与所述吸附阱组的出样口相连通,液氮冷阱的出样口与所述液氮富集阱的进样口相连通,液氮富集阱的出样口与杂质气体排放管相连通,所述第二载气供给管道与色谱柱的进样口相连通,所述第二转换阀处于进样状态(inject)时,所述液氮冷阱的出样口与所述杂质气体排放管路相连通,所述第二载气供给管道与液氮富集阱、色谱柱进样口依次连通,第二载气供给管道与液氮富集阱的进样口相连通,液氮富集阱的出样口与色谱柱进样口相连通;
所述第三转换阀的端口上通过管路分别与所述色谱柱的出样口、提纯再富集阱的进样口、第三载气供给管道和重气排放管路相连通,其中:所述第三转换阀处于取样状态时,所述色谱柱的出样口与提纯再富集阱的进样口相连通,所述第三载气供给管道和重气排放管路相连通,所述第三转换阀处于进样状态时,所述色谱柱的出样口与重气排放 管路相连通,所述第三载气供给管道与提纯再富集阱的进样口相连通;
所述提纯再富集阱的出样口分别通过管道与样品排放管路和样品收集管相连通,其中所述样品收集管位于提供低温环境的样品收集阱内,所述样品收集管上连接有用于去除载气和杂气的真空管路。
在上述技术方案中,所述进样单元包括注射进样器、天然气样品钢瓶和转换阀(ValcoA),其中所述转换阀的端口分别通过管道与所述注射进样器的出样口、天然气样品钢瓶的出样口、排气管路和第一转换阀的入口相连通,所述转换阀处于取样状态时(当样品量较小时(load)),所述注射进样器的出样口与所述进样管道(第一转换阀)的入口相连通,所述天然气样品钢瓶的出样口与所述排气管路相连通,所述转换阀处于进样状态时(当样品量较大时(inject)),所述天然气样品钢瓶的出样口与所述进样管道(第一转换阀)的入口相连通,所述注射进样器的出样口与所述排气管路相连通。在上述技术方案中,所述吸附阱组至少包括CO吸附阱和酸性气体吸附阱。
在上述技术方案中,所述液氮富集阱与所述色谱柱之间的管路上设有验证富集阱以验证所述液氮富集阱中样品是否富集完全,所述液氮富集阱的出样口与所述验证富集阱的进样口相连接,验证富集阱的出样口与所述液氮富集阱的进样口相连接。
在上述技术方案中,所述真空管路包括连通干泵的初级真空管路以及连通分子泵的二次真空管路以去除管路中的杂气及载气。
本发明的另一方面,所述同位素样品纯化和收集制备***在甲烷 13C-D( 13CH 3D、 13CH 2D 213CHD 313CD 4)同位素检测中的应用。
本发明的另一方面,还包括所述同位素样品纯化和收集制备***的纯化和收集方法包括以下步骤:
一.纯化富集过程:
步骤1,第一转换阀、第二转换阀处于取样状态,气体样品依次进入VOC阱内去除水及VOC成分;进入吸附阱组内去除杂气,进入液氮冷阱以去除沸点高于目标气体的杂质,最后进入液氮富集阱内富集,其它不凝杂质气体通过永久气体排放管路排出;
步骤2,第二转换阀处于进样状态,第二载气供给管道内通入的载气将所述液氮富集阱内的样品送入所述色谱柱GC,在色谱柱GC中根据不同成分气体保留时间的不同进行分离,目标气体流出时,第三转换阀处于取样状态,分离后目标气体在提纯再富集阱内富集,保留时间在目标气体之后的重气流出时,第三转换阀处于进样状态,通过重气排放管路排出。
二.转移再富集收集过程:
第三转换阀处于进样状态:
步骤1,第三载气供给管道内通入的载气经由提纯再富集阱及其连通管路后,从样品排放管路排出,对提纯再富集阱及其连通管路进行吹扫;
步骤2,通过真空管路对提纯再富集阱和样品收集管其连通管路进行抽真空以排出杂质气体及载气;
步骤3,提纯再富集阱内富集的目标气体扩散至样品收集管内。
在上述技术方案中,所述转移再富集收集过程的步骤1中,第三载气在吹扫管路的 同时完成对目标气体完全转移富集,并在提纯再富集阱中保存。
在上述技术方案中,对提纯再富集阱和样品收集管其连通管路进行抽真空时,先通过干泵抽真空以排出杂质气体,再通过分子泵抽真空以排出杂质气体及载气。
在上述技术方案中,还包括管路清洗方法:
(1)第一转换阀处于进样状态:第一载气供给管道内通入载气,残留在所述VOC阱T1内的水和VOC成分通过排放管路排出;
(2)第一转换阀处于取样状态:第零载气供给管道内通入载气,将残留在吸附阱组、液氮冷阱、液氮富集阱内的杂质从杂质气体排放管路排出;
一种同位素样品纯化和收集制备***,包括两位四通阀A、两位六通阀B、两位六通阀C、两位四通阀D、VOC阱T1、吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、液氮富集阱T6、验证富集阱T7、提纯再富集阱T8、样品收集阱T9,其中:
所述两位四通阀A具有a1、a2、a3、a4四个孔位,所述a2通过连接管道与天然气样品钢瓶相连通,所述a4通过管道与注射进样器相连通,所述注射进样器上设有GC进样口,所述注射进样器上设有第零载气输入管道,所述a1与排气管路相连通;
所述两位六通阀B具有b1、b2、b3、b4、b5、b6六个孔位,所述b2通过管道与所述a3相连通,所述b3通过管道与VOC阱T1的进口相连通,所述VOC阱T1的出口通过管道与b6相连通,所述b1通过除杂管道与液氮冷阱T5的入口相连通,所述除杂管道上依次连接有吸附阱T2、吸附阱T3、化学阱T4,所述b4上连接有第一负载气体输入管道,所述b5连接排放管路;
所述两位六通阀C具有c1、c2、c3、c4、c5、c6六个孔位,所述液氮冷阱T5的出口通过管道与所述c2相连通,所述c3通过管道与所述液氮富集阱T6的入口相连通,所述液氮富集阱T6的出口通过管道与所述验证富集阱T7的入口相连通,所述验证富集阱T7的出口通过管道与所述c6相连通,所述c1连接杂质气体排放管路,所述c4与第二负载气体输入管道相连通,所述c5通过管道与色谱柱GC8的入口相连通;
所述两位四通阀D具有d1、d2、d3、d4四个孔位,所述d1通过管道与色谱柱GC的出口相连通,所述d2通过富集管道与提纯再富集阱T8的入口相连通,所述d3与第三负载气体输入管道相连通,所述d4与重气排放管相连通,所述富集管道上设有开关阀V1,所述提纯再富集阱T8的出口通过管道与样品收集阱T9的入口相连通,所述样品收集阱T9通过连通管道分别与样品排放管路和收集管道相连通,其中所述连通管道上设有开关阀V2,所述样品排放管路上设有开关阀V3,所述收集管道上设有开关阀V4,所述收集管道分别与真空支管和收集支管相连通,所述真空支管连接真空源,所述收集支管上设有开关阀V5和开关阀V10,所述收集支管的末端连接有样品收集管,所述样品收集管位于样品收集阱内。
在上述技术方案中,低真空计P1通过第一连接管道连接在真空支管上,所述第一连接管道上设有开关阀V8,干泵通过第二连接管道连接在所述真空支管上,所述第二连接管道上设有开关阀V6,高真空计P2通过第三连接管道连接在所述真空支管上,所述第三连接管道上设有开关阀V9,分子泵通过第四连接管道连接在所述真空支管上,所述第 四连接管道上设有开关阀V7。
在上述技术方案中,所述连接管道上安装有钢瓶减压表。
本发明的另一方面,所述同位素样品纯化和收集制备***在甲烷 13C-D( 13CH 3D、 13CH 2D 213CHD 313CD 4)同位素检测中的应用。
与现有技术相比,本发明的有益效果是:
1、本发明通过对采集的气体样品所实施的去杂质功能、富集功能、提纯功能、转移功能、载气释放以及收集功能等,完成对甲烷二元同位素检测的样品纯化和收集制备。***中各个构件设计合理、操作方便、聚合在一起共同实现对样品气的纯化和收集。
2.本发明同时容纳两种来源样品的进样方式,注射式进样和钢瓶式进样,两种方式通过阀体自由转换,取用方便,适用性强。
3.收集后的甲烷气既可以选用手动进样模式,又可以采用在线自动进样模式,与同位素质谱仪的双路进样***对接,实现对甲烷二元同位素 13CH 3D和 12CH 2D 2的Δ18和Δ13CH 3D分析检测。
4.本发明原理简单,结构设计上集取样、吸附、分离、富集、提纯、转移、收集等功能于一体,使样品的测试流程简单便捷,操作方便,可以有效的提高测试数值的准确性,是一套具有科学研究意义和针对性强的样品制备***。具有良好的使用和推广价值。
附图说明
图1是本发明实施例1的***框图。
图2是本发明实施例1的管路连接图。
[根据细则91更正 13.04.2020] 
 图3是本发明实施例2甲烷样品的取样富集状态图。
[根据细则91更正 13.04.2020] 
图4是本发明实施例2甲烷样品的提纯转移收集状态图。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种同位素样品纯化和收集制备***,包括依次通过管路相连通的进样单元、VOC阱T1、吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、液氮富集阱T6、验证富集阱T7、色谱柱GC、提纯再富集阱T8、样品收集阱T9,其中:
所述进样单元的进口上连接有GC进样口1和第零载气供给管道,GC进样口1上设有开关阀V24,第零载气供给管道上设有开关阀V23;
所述进样单元的出口通过第一管路与VOC阱T1的入口相连通,第一管路上设有开关阀V11,所述进样单元的出口通过第二管路与吸附阱T2的入口相连通,所述第二管路上设有开关阀V12;
所述VOC阱T1的入口上连接有第一载气供给管道,出口上连接有排放管路以排出VOC阱内冷冻水和VOC组分;所述第一载气供给管道上设有开关阀V13,所述排放管路上设有V14;
连接所述吸附阱T2、吸附阱T3、化学阱T4和液氮冷阱T5的管路上设有载气吹扫管路,其中所述载气吹扫管路包括给所述第零载气供给管道和与连接在液氮冷阱T5出口上的杂质气体排放管路,所述杂质气体排放管路上设有开关阀V15;
所述液氮冷阱T5和液氮富集阱T6之间的管路上设有开关阀V16,所述液氮富集阱T6的入口上连接有第二载气供给管道,第二载气供给管道上设有开关阀V17,所述第二载气供给管道通过第三管路与所述色谱柱GC的入口相连接,第三管路上设有开关阀V18;
所述验证富集阱T7的出口上连接有永久气体排放管,以排放在液氮冷阱及所述液氮富集阱中无法冷凝的气体,比如氮气、氧气、氢气、氩气等,所述永久气体排放管上设有开关阀V19;
所述提纯再富集阱T8的入口上连接有第三载气供给管道,所述第三载气供给管道上设有开关阀V20,所述色谱柱GC和所述提纯再富集阱T8之间的管路上设有阀门V1,所述提纯再富集阱的出口分别与重气排放管路、样品收集管和样品排放管路相连通,所述重气排放管路上设有开关阀V22,所述样品收集管位于样品收集阱内,所述样品收集管的出口连接有用于除去载气的真空管路。取样时,第二载气供给管道通入的载气将所述液氮富集阱内富集的样品送入所述色谱柱的进口内;所述色谱柱的出口上连接有重气排放管路,以将保留时间在所述目标气体之后的杂质气体排出,比如对甲烷进行纯化时,样品中掺杂的乙烷保留时间在甲烷之后,当甲烷提取完成后,乙烷通过重气排放管路排出。
作为优选方式,所述进样单元为注射器进样单元和/或钢瓶进样单元。所述注射器进样单元包括通过管路与VOC阱相连通的注射进样器;所述钢瓶进样单元包括通过连接管道与所述VOC阱相连通的天然气样品钢瓶,所述连接管道上设有钢瓶减压表。
所述液氮富集阱与所述色谱柱之间的管路上设有验证富集阱,以验证所述液氮富集阱中样品是否富集完全,尤其是在新来待测样品时,可通过验证富集阱来验证前期液氮冷阱和液氮富集阱内冷却管路长度是否合适,冷却温度是否合适,并及时调整,直至验证富集阱内不富集样品,说明液氮冷阱和液氮富集阱设置的参数合理。
作为优选方式,所述真空管路包括连通干泵的初级真空管路以及连通分子泵的二次真空管路。具体的,低真空计P1通过第一连接管道连接在真空支管上,所述第一连接管道上设有开关阀V8,干泵6通过第二连接管道连接在所述真空支管上,所述第二连接管道上设有开关阀V6,高真空计P2通过第三连接管道连接在所述真空支管上,所述第三连接管道上设有开关阀V9,分子泵7通过第四连接管道连接在所述真空支管上,所述第四连接管道上设有开关阀V7。
实施例2
实施例1所述同位素样品纯化和收集制备***的纯化和收集方法包括以下步骤:
一.富集过程:
步骤1,样品通过进样单元导入,开关阀V24、V11、V16、V18和V19打开,其它开关阀关闭,气体样品进入VOC阱T1内去除水及VOC成分(VOC阱T1温控范围在-24℃~-0℃间。内置HayeSep D或PoraPLOT Q树脂类或分子筛类填料,去除样品中大量的 VOC成分),然后进入吸附阱T2(填充五氧化二碘,将CO氧化为二氧化碳)、吸附阱T3(填充碱石灰或氢氧化钠除去酸性气体二氧化碳等)、化学阱T4(备用阱有针对性的除去其它杂质)、液氮冷阱T5(没有填料的液氮冷阱,去除二氧化硫以及易挥发性的气体)和液氮富集阱T6、验证富集阱T7,最终样品富集在所述液氮富集阱T6中,其它杂质气体通过永久气体排放管排出;
步骤2,开关阀V17、V21、V1和V3打开,其它开关阀关闭,第二载气供给管道内通入的载气将所述液氮富集阱T6内的样品送入所述色谱柱GC,在色谱柱GC中根据保留时间的不同进行分离,当目标气体流出时,V1打开,目标气体在提纯再富集阱T8内富集,当重气(保留时间在目标气体之后的气体)流出时,V1关闭,V22打开,重气通过重气排放管路排出。
二.转移再富集收集过程:
步骤1,开关阀V20、V1、V2和V3打开,其它开关阀关闭,第三载气供给管道内通入的载气经由提纯再富集阱T8后,从样品排放管路排出。
步骤2,关闭V1、V2和V5,打开V2、V4、V6、V8,以干泵6工作排空通路中杂气,待真空计P1显示值0.1mbar时,关闭真空阀V6,打开真空阀V7、V9,以分子泵机组7继续排空其中的载气,待真空计P2显示达到要求,关闭V7,打开V10,提纯再富集阱T8中的甲烷样品释放扩散到预抽好样品收集管5中,样品收集管5在放在样品收集阱T9中。
在转移再富集收集过程中或完成后,可进行前管路的清洁,具体的:
(1)VOC阱T1功能恢复:打开V13和V14,关闭其它阀门,升高VOC阱T1温度(100℃),第一载气供给管道内通入载气,残留在所述VOC阱T1内的水和VOC成分通过排放管路排出;
(2)吸附阱组、化学阱、液氮冷阱的吹扫:打开V23、V12、V16和V19,关闭其它开关阀,第零载气供给管道内通入载气,经由吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5后,从杂质气体排放管路排出;
实施例3
一种同位素样品纯化和收集制备***,包括两位四通阀A、两位六通阀B、两位六通阀C、两位四通阀D、VOC阱T1、吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、液氮富集阱T6、验证富集阱T7、提纯再富集阱T8、样品收集阱T9,其中:
所述两位四通阀A具有a1、a2、a3、a4四个孔位,所述a2通过连接管道与天然气样品钢瓶3相连通,该连接管道上安装有钢瓶减压表4,所述a4通过管道与注射进样器2相连通,所述注射进样器2上设有GC进样口1,所述注射进样器2上设有第零载气输入管道;
所述两位六通阀B具有b1、b2、b3、b4、b5、b6六个孔位,所述b2通过管道与所述a3相连通,所述b3通过管道与VOC阱T1的进口相连通,所述VOC阱T1的出口通过管道与b6相连通,所述b1通过除杂管道与液氮冷阱T5的入口相连通,所述除杂管道上依次连接有吸附阱T2、吸附阱T3、化学阱T4,所述b4上连接有第一负载气体输入管 道,所述b5连接排放管路;
所述两位六通阀C具有c1、c2、c3、c4、c5、c6六个孔位,所述液氮冷阱T5的出口通过管道与所述c2相连通,所述c3通过管道与所述液氮富集阱T6的入口相连通,所述液氮富集阱T6的出口通过管道与所述验证富集阱T7的入口相连通,所述验证富集阱T7的出口通过管道与所述c6相连通,所述c1连接杂质气体排放管路,所述c4与第二负载气体输入管道相连通,所述c5通过管道与色谱柱GC8的入口相连通;
所述两位四通阀D具有d1、d2、d3、d4四个孔位,所述d1通过管道与色谱柱GC8的出口相连通,所述d2通过富集管道与提纯再富集阱T8的入口相连通,所述d3与第三负载气体输入管道相连通,所述d4与永久气体排放管相连通,所述富集管道上设有开关阀V1,所述提纯再富集阱T8的出口通过管道与样品收集阱T9的入口相连通,所述样品收集阱T9通过连通管道分别与样品排放管路和收集管道相连通,其中所述连通管道上设有开关阀V2,所述样品排放管路上设有开关阀V3,所述收集管道上设有开关阀V4,所述收集管道分别与真空支管和收集支管相连通,所述收集支管上设有开关阀V5和开关阀V10,所述收集支管的末端连接有样品收集管5,所述样品收集管5位于样品收集阱T9内,低真空计P1通过第一连接管道连接在真空支管上,所述第一连接管道上设有开关阀V8,干泵6通过第二连接管道连接在所述真空支管上,所述第二连接管道上设有开关阀V6,高真空计P2通过第三连接管道连接在所述真空支管上,所述第三连接管道上设有开关阀V9,分子泵7通过第四连接管道连接在所述真空支管上,所述第四连接管道上设有开关阀V7。
在真空控制单元,为了减小气体扩散体积,避免低真空计P1可能的放气影响和高真空计P2的安全保护以及高真空计P2电离带来的影响,***中的低真空计P1和高真空计P2分别通过真空阀门V8、V9连接到真空***。
在本实施例中VOC阱T1温控范围在-24℃~-0℃间。内置HayeSep D或PoraPLOT Q树脂类或分子筛类填料,去除样品中大量的VOC成分;吸附阱T2填充五氧化二碘(将CO氧化为二氧化碳);吸附阱T3填充碱石灰或氢氧化钠(除去酸性气体二氧化碳等);化学阱T4为备用阱(有针对性的除去其它杂质);液氮冷阱T5为没有填料的液氮冷阱(较液氮富集阱T6中的冷却管路较短,去除二氧化硫以及一些易挥发性杂质气体);液氮富集阱T6和验证富集阱T7是两个完全一致的串联液氮冷阱,内置分子筛类或树脂类填料并串联在一起。开关阀V1、V2、V3、V4、V5、V6、V7、V8、V9、V10为真空手动阀,分布在各管路中配合完成对目标气体的收集。
四个旋转阀的两个位置分别为顺时针旋转时的进样(Inject)状和逆时针旋转时的采样(load)状态,通过两位四通阀(A)、两位六通阀(B)、两位六通阀(C)、两位四通阀(D)间孔位的切换和组合来实现对样品气的去杂质、富集、提纯、分离、转移等功能;真空开关阀V1、V2、V3、V4、V5、V6、V7、V8、V9、V10的配合使用实现对目标气体的再富集、转移、收集和在线进样分析等功能。针对上述阀体的组合使用。
Ⅰ)样品进样方式:①对较浓的气体样品,连通注射进样器2、两位四通阀A采样(load)状态孔位a4、a3、两位六通阀B采样(load)状态孔位b2、b3,He0载气从GC进样口1导入,将注射进样器2中样品导入***;②针较低浓度钢瓶气,连通天然气样品钢瓶3 中浓度较低样品气、两位四通阀A进样(Inject)状态孔位a2、a3、两位六通阀B采样(load)状态孔位b2、b3,He0载气从GC进样口1导入***;
Ⅱ)去除杂质气:样品气进入***后,He0载气依次通过VOC阱T1,以除去水和VOC组分;两位六通阀B(load)孔位b6、b1连通吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、两位六通阀C(load)孔位c2、c3、液氮富集阱T6,设置化学阱组合以去除杂质气体组分;样品被净化富集在液氮富集阱T6中保存,然后在验证富集阱T7中对富集目标气体进行富集效果的验证(以对液氮冷阱T5、液氮富集阱T6的连接管路的长度和载气气流量进行调整,使得样品在液氮富集阱T6中富集完全);样品气中的其它杂质气体通过两位六通阀C(load)孔位c6、c1和杂质气体排放管路放空排出永久性气体。
Ⅲ)色谱分离与甲烷气的再富集:去载气收集甲烷,完成甲烷气体的转移并收集。连通两位六通阀C(Inject)的孔位c4、c3、液氮富集阱T6、验证富集阱T7、两位六通阀C(Inject)的孔位c6、c5,色谱柱8、两位四通阀D(load)孔位d1、d2、真空阀V1、提纯再富集阱T8,He2载气从两位六通阀C的孔位c4导入,将存储在液氮富集阱T6中被纯化的甲烷气体进入色谱柱8中,使用分离色谱柱或毛细管柱完成对甲烷的分离,分离后的甲烷气体通过阀体转换设置,完成甲烷富集在提纯再富集阱T8中保存,等待下一步转移收集。
IV)载气排除与甲烷收集:关闭真空阀V1、V3、V5,打开真空阀V2、V4、V6、V8,以干泵6工作排空通路中杂气,待真空计P1显示值0.1mbar时,关闭真空阀V6,打开真空阀V5、V7、V9,以分子泵机组7继续排空其中的载气,待真空计P2显示达到要求(显示值不劣于1*10 -6mbar),关闭V7,打开V5、V10,提纯再富集阱T8中的甲烷样品释放扩散到预抽好样品收集管5中,样品收集管5在放在样品收集阱T9中。
V)气体稳定同位素质谱测试:样品收集管5直接和气体稳定同位素质谱仪(MAT253 Ultra Thermo Scientific)双路进样***连接,或者打开V5直接平衡扩散到同位素质谱仪的双路进样贮存罐中,配合气体同位素质谱仪MAT253 Ultra(Thermo Scientific)共同完成对甲烷样品中二元同位素13CH3D和12CH2D2的分析测定,完成对甲烷二元同位素13CH3D和12CH2D2的Δ18和Δ13CH3D分析检测。
除此之外,本***还具有以下功能:
Ⅰ)VOC阱T1功能恢复:将VOC阱T1的温度调节到100℃,连通两位六通阀B(Inject)的孔位b4、b3、VOC阱T1、两位六通阀B的孔位b6、b5,He1载气从两位六通阀B的孔位b4导入,***中冷冻的水和其它VOC组分被排出,以便重复使用;
Ⅱ)化学阱吹扫模式:连通两位四通阀A(load)孔位a4、a3、两位六通阀B(Inject)孔位b2、b1、吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、两位六通阀C孔位c2、c1,He0载气从从GC进样口1导入,通过管路后放空排出,维持气路***洁净;
Ⅲ)永久气体排空模式:连通液氮冷阱T5和两位六通阀C(load)孔位c2、c3、液氮富集阱T6、验证富集阱T7、两位六通阀C(load)孔位c6、c1,He0载气从两位六通阀A(load)和两位六通阀B(load)的依次连接导入,将本连接管路中存留的永久气体放空排出,并维持***洁净。
IV)提纯再富集模式:连通两位四通阀D(inject)孔位d3、d2、真空阀V1、提纯 再富集阱T8、真空阀V2,真空阀V3,He3载气由两位四通阀D孔位d3、d2导入,由真空阀V3排出***,完成甲烷样品提纯再富集。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (23)

  1. 一种同位素样品纯化和收集制备***,其特征在于,包括两位四通阀A、两位六通阀B、两位六通阀C、两位四通阀D、VOC阱T1、吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、液氮富集阱T6、验证富集阱T7、提纯再富集阱T8、样品收集阱T9,其中:
    所述两位四通阀A具有a1、a2、a3、a4四个孔位,所述a2通过连接管道与天然气样品钢瓶相连通,所述a4通过管道与注射进样器相连通,所述注射进样器上设有GC进样口,所述注射进样器上设有第零载气输入管道,所述a1与排气管路相连通;
    所述两位六通阀B具有b1、b2、b3、b4、b5、b6六个孔位,所述b2通过管道与所述a3相连通,所述b3通过管道与VOC阱T1的进口相连通,所述VOC阱T1的出口通过管道与b6相连通,所述b1通过除杂管道与液氮冷阱T5的入口相连通,所述除杂管道上依次连接有吸附阱T2、吸附阱T3、化学阱T4,所述b4上连接有第一负载气体输入管道,所述b5连接排放管路;
    所述两位六通阀C具有c1、c2、c3、c4、c5、c6六个孔位,所述液氮冷阱T5的出口通过管道与所述c2相连通,所述c3通过管道与所述液氮富集阱T6的入口相连通,所述液氮富集阱T6的出口通过管道与所述验证富集阱T7的入口相连通,所述验证富集阱T7的出口通过管道与所述c6相连通,所述c1连接杂质气体排放管路,所述c4与第二负载气体输入管道相连通,所述c5通过管道与色谱柱GC8的入口相连通;
    所述两位四通阀D具有d1、d2、d3、d4四个孔位,所述d1通过管道与色谱柱GC的出口相连通,所述d2通过富集管道与提纯再富集阱T8的入口相连通,所述d3与第三负载气体输入管道相连通,所述d4与重气排放管相连通,所述富集管道上设有开关阀V1,所述提纯再富集阱T8的出口通过管道与样品收集阱T9的入口相连通,所述样品收集阱T9通过连通管道分别与样品排放管路和收集管道相连通,其中所述连通管道上设有开关阀V2,所述样品排放管路上设有开关阀V3,所述收集管道上设有开关阀V4,所述收集管道分别与真空支管和收集支管相连通,所述真空支管连接真空源,所述收集支管上设有开关阀V5和开关阀V10,所述收集支管的末端连接有样品收集管,所述样品收集管位于样品收集阱内。
  2. 如权利要求1所述的同位素样品纯化和收集制备***,其特征在于,低真空计P1通过第一连接管道连接在真空支管上,所述第一连接管道上设有开关阀V8,干泵通过第二连接管道连接在所述真空支管上,所述第二连接管道上设有开关阀V6,高真空计P2通过第三连接管道连接在所述真空支管上,所述第三连接管道上设有开关阀V9,分子泵通过第四连接管道连接在所述真空支管上,所述第四连接管道上设有开关阀V7。
  3. 如权利要求1-2中任一项所述的同位素样品纯化和收集制备***的同位素样品纯化和收集制备方法,包括以下步骤:
    Ⅰ)样品进样:①对较浓的气体样品,连通注射进样器、两位四通阀A采样状态孔位a4、a3、两位六通阀B采样状态孔位b2、b3,He0载气从GC进样口导入,将注射进样器中样品导入***;②针较低浓度钢瓶气,连通天然气样品钢瓶中浓度较低样品气、两位四通阀A进样状态孔位a2、a3、两位六通阀B采样状态孔位b2、b3,He0载气从 GC进样口1导入***;
    Ⅱ)去除杂质气:样品气进入***后,He0载气依次通过VOC阱T1,以除去水和VOC组分;两位六通阀B孔位b6、b1连通吸附阱T2、吸附阱T3、化学阱T4、液氮冷阱T5、两位六通阀C孔位c2、c3、液氮富集阱T6,设置化学阱组合以去除杂质气体组分;样品被净化富集在液氮富集阱T6中保存,然后在验证富集阱T7中对富集目标气体进行富集效果的验证;样品气中的其它杂质气体通过两位六通阀C孔位c6、c1和杂质气体排放管路放空排出永久性气体;
    Ⅲ)色谱分离与甲烷气的再富集:去载气收集甲烷,完成甲烷气体的转移并收集,连通两位六通阀C的孔位c4、c3、液氮富集阱T6、验证富集阱T7、两位六通阀C的孔位c6、c5,色谱柱8、两位四通阀D孔位d1、d2、真空阀V1、提纯再富集阱T8,He2载气从两位六通阀C的孔位c4导入,将存储在液氮富集阱T6中被纯化的甲烷气体进入色谱柱8中,使用分离色谱柱或毛细管柱完成对甲烷的分离,分离后的甲烷气体通过阀体转换设置,完成甲烷富集在提纯再富集阱T8中保存,等待下一步转移收集;
    IV)载气排除与甲烷收集:关闭真空阀V1、V3、V5,打开真空阀V2、V4、V6、V8,以干泵工作排空通路中杂气,待真空计P1显示值0.1mbar时,关闭真空阀V6,打开真空阀V5、V7、V9,以分子泵机组继续排空其中的载气,待真空计P2显示达到要求,关闭V7,打开V5、V10,提纯再富集阱T8中的甲烷样品释放扩散到预抽好样品收集管中,样品收集管在放在样品收集阱T9中;
    V)气体稳定同位素质谱测试:样品收集管直接和气体稳定同位素质谱仪双路进样***连接,或者打开V5直接平衡扩散到同位素质谱仪的双路进样贮存罐中,配合气体同位素质谱共同完成同位素分析检测。
  4. 一种同位素样品纯化和收集制备***,其特征在于,包括进样单元、第一转换阀、VOC阱、吸附阱组、液氮冷阱、第二转换阀、色谱柱、第三转换阀和提纯再富集阱,其中:
    所述进样单元上连接有第零载气供给管道;
    所述第一转换阀的端口上通过管路分别连接有进样管道、VOC阱的进样口、VOC阱的出样口、吸附阱组的进样口、第一载气供给管道和排放管路,所述进样管道与进样单元相连通,当第一转换阀处于取样状态时,所述进样管道、VOC阱、吸附阱组依次连通,所述第一载气供给管道和所述排放管路相连通,当所述第一转换阀处于进样状态时,所述进样管道与所述吸附阱组相连通,所述第一载气供给管道、VOC阱和排放管路依次连通;
    所述吸附阱组的出样口通过管路与所述液氮冷阱的进样口相连通,所述第二转换阀的端口上通过管路分别连接有所述液氮冷阱的出样口、液氮富集阱的进样口和出样口、第二载气供给管道、色谱柱的进样口和杂质气体排放管路,其中:所述第二转换阀处于取样状态时,所述液氮冷阱、液氮富集阱与杂质气体排放管路依次相连通,所述第二载气供给管道与色谱柱的进样口相连通,所述第二转换阀处于进样状态时,所述液氮冷阱的出样口与所述杂质气体排放管路相连通,所述第二载气供给管道与液氮富集阱、色谱柱进样口依次连通;
    所述第三转换阀的端口上通过管路分别与所述色谱柱的出样口、提纯再富集阱的进样口、第三载气供给管道和重气排放管路相连通,其中:所述第三转换阀处于取样状态时,所述色谱柱的出样口与提纯再富集阱的进样口相连通,所述第三载气供给管道和重气排放管路相连通,所述第三转换阀处于进样状态时,所述色谱柱的出样口与重气排放管路相连通,所述第三载气供给管道与提纯再富集阱的进样口相连通;
    所述提纯再富集阱的出样口分别通过管道与样品排放管路和样品收集管相连通,其中所述样品收集管位于提供低温环境的样品收集阱内,所述样品收集管上连接有用于去除载气和杂气的真空管路。
  5. 如权利要求4所述的同位素样品纯化和收集制备***,其特征在于,所述进样单元包括注射进样器、天然气样品钢瓶和转换阀,其中所述转换阀分别连接所述注射进样器的出样口、天然气样品钢瓶的出样口、排气管路和第一转换阀的入口,当样品量较小时所述注射进样器的出样口与所述进样管道相连通,所述天然气样品钢瓶的出样口与所述排气管路相连通,当样品量较大时,所述天然气样品钢瓶的出样口与所述进样管道相连通,所述注射进样器的出样口与所述排气管路相连通。
  6. 如权利要求4所述的同位素样品纯化和收集制备***,其特征在于,所述吸附阱组至少包括CO吸附阱和酸性气体吸附阱。
  7. 如权利要求4所述的同位素样品纯化和收集制备***,其特征在于,所述液氮富集阱与所述色谱柱之间的管路上设有验证富集阱以验证所述液氮富集阱中样品是否富集完全。
  8. 如权利要求4所述的同位素样品纯化和收集制备***,其特征在于,所述真空管路包括连通干泵的初级真空管路以及连通分子泵的二次真空管路以去除管路中的杂气及载气。
  9. 如权利要求4所述的同位素样品纯化和收集制备***的纯化和收集制备方法包括以下步骤:
    一.纯化富集过程:
    步骤1,第一转换阀、第二转换阀处于取样状态,气体样品依次进入VOC阱内去除水及VOC成分;进入吸附阱组内去除杂气,进入液氮冷阱以去除沸点高于目标气体的杂质,最后进入液氮富集阱内富集,其它不凝杂质气体通过永久气体排放管路排出;
    步骤2,第二转换阀处于进样状态,第二载气供给管道内通入的载气将所述液氮富集阱内的样品送入所述色谱柱GC,在色谱柱GC中根据不同成分气体保留时间的不同进行分离,目标气体流出时,第三转换阀处于取样状态,分离后目标气体在提纯再富集阱内富集,保留时间在目标气体之后的重气流出时,第三转换阀处于进样状态,通过重气排放管路排出;
    二.转移再富集收集过程:
    第三转换阀处于进样状态:
    步骤1,第三载气供给管道内通入的载气经由提纯再富集阱及其连通管路后,从样品排放管路排出,对提纯再富集阱及其连通管路进行吹扫;
    步骤2,通过真空管路对提纯再富集阱和样品收集管其连通管路进行抽真空以排出杂 质气体及载气;
    步骤3,提纯再富集阱内富集的目标气体扩散至样品收集管内。
  10. 如权利要求9所述的同位素样品纯化和收集制备方法,其特征在于,所述转移再富集收集过程的步骤1中,第三载气在吹扫管路的同时完成对目标气体完全转移富集,并在提纯再富集阱中保存。
  11. 如权利要求9所述的同位素样品纯化和收集制备方法,其特征在于,对提纯再富集阱和样品收集管其连通管路进行抽真空时,先通过干泵抽真空以排出杂质气体,再通过分子泵抽真空以排出杂质气体及载气。
  12. 如权利要求9所述的同位素样品纯化和收集制备方法,其特征在于,还包括管路清洗方法:
    (1)第一转换阀处于进样状态:第一载气供给管道内通入载气,残留在所述VOC阱T1内的水和VOC成分通过排放管路排出;
    (2)第一转换阀处于取样状态:第零载气供给管道内通入载气,将残留在吸附阱组、液氮冷阱、液氮富集阱内的杂质从杂质气体排放管路排出。
  13. 一种同位素样品纯化和收集制备***,其特征在于,包括依次通过管路相连通的进样单元、VOC阱、吸附阱组、液氮冷阱、液氮富集阱、色谱柱、提纯再富集阱和样品收集管,其中:
    所述VOC阱的入口上连接有第一载气供给管道,出口上连接有排放管路以排出VOC阱内冷冻水和VOC组分;
    连接所述吸附阱组和液氮冷阱的管路上设有载气吹扫管路,其中所述载气吹扫管路包括给所述吸附阱组的进口提供载气的第零载气供给管道和与连接在所述液氮冷阱出口上的杂质气体排放管路;
    所述液氮富集阱的出口上连接有永久气体排放管,以排放在所述液氮富集阱中无法冷凝的永久气体(如氮气、氧气、氢气、氩气等气体组分);
    所述液氮富集阱的入口上连接有第二载气供给管道,取样时,第二载气供给管道通入的载气将所述液氮富集阱内富集的样品送入所述色谱柱的进口内,所述色谱柱的出口上分别连接有重气排放管路和提纯再富集阱,所述重气排放管路用于将保留时间在目标气体之后的杂质气体排出;
    所述提纯再富集阱的入口上连接有第三载气供给管道,所述提纯再富集阱的出口分别与样品收集管和样品排放管路相连通,所述样品收集管位于样品收集阱内,所述样品收集管的出口连接有用于除去杂质气体和载气的真空管路。
  14. 如权利要求13所述的同位素样品纯化和收集制备***,其特征在于,所述第零载气供给管道连接在所述吸附阱组的进口上,或第零载气供给管道连接在所述进样单元上,所述进样单元再通过管道与所述吸附阱组的进口相连通。
  15. 如权利要求13所述的同位素样品纯化和收集制备***,其特征在于,所述进样单元为注射器进样单元和/或钢瓶进样单元;
    所述注射器进样单元包括通过管路与VOC阱相连通的注射进样器,所述第零载气供给管路连接在所述注射进样器上;所述钢瓶进样单元包括通过连接管道与所述VOC阱相 连通的天然气样品钢瓶,所述连接管道上设有钢瓶减压表。
  16. 如权利要求13所述的同位素样品纯化和收集制备***,其特征在于,所述吸附阱组至少包括CO氧化阱和酸性气体吸附阱。
  17. 如权利要求13所述的同位素样品纯化和收集制备***,其特征在于,所述液氮富集阱与所述色谱柱之间的管路上设有验证富集阱,以验证所述液氮富集阱中样品是否富集完全。
  18. 如权利要求13所述的同位素样品纯化和收集制备***,其特征在于,所述真空管路包括连通干泵的初级真空管路以及连通分子泵的二次真空管路。
  19. 如权利要求1或4或13所述的同位素样品纯化和收集制备***,其特征在于,所述同位素样品纯化和收集制备***在甲烷13C-D同位素检测中的应用。
  20. 一种同位素样品纯化和收集制备方法其特征在于,包括以下步骤:
    一.纯化富集过程:
    步骤1,样品通过进样单元导入,气体样品依次进入VOC阱内去除水及VOC成分,进入吸附阱组内去除杂气,进入液氮冷阱以去除沸点高于目标气体的杂质,最后进入液氮富集阱内富集,其它不凝的杂质气体通过永久气体排放管排出;
    步骤2,第二载气供给管道内通入的载气将所述液氮富集阱内的样品送入色谱柱GC,在色谱柱GC中根据保留时间的不同进行分离,分离后目标气体在提纯再富集阱内富集,目标气体之外的杂质通过重气排放管路排出;
    二.转移再富集收集过程:
    步骤1,切断提纯再富集阱与色谱柱相连通的管路,第三载气供给管道内通入的载气经由提纯再富集阱及其连通管路后,从样品排放管路排出进行管路吹扫;
    步骤2,通过真空管路对提纯再富集阱和样品收集管其连通管路进行抽真空以排出杂质气体及载气;
    步骤3,提纯再富集阱内富集的目标气体扩散至样品收集管内。
  21. 如权利要求20所述的纯化和收集制备方法,其特征在于,所述转移再富集收集过程的步骤1中,第三载气在吹扫管路的同时完成对目标气体完全转移富集,并在提纯再富集阱中保存。
  22. 如权利要求20所述的纯化和收集制备方法,其特征在于,对提纯再富集阱和样品收集管其连通管路进行抽真空时,先通过干泵抽真空以排出杂质气体,再通过分子泵抽真空以排出载气。
  23. 如权利要求20所述的纯化和收集制备方法,其特征在于,在转移再富集收集过程中或完成后,可进行色谱柱前管路的清洁,包括:
    (1)VOC阱功能恢复:升高VOC阱T1温度,第一载气供给管道内通入载气,残留在所述VOC阱内的水和VOC成分通过排放管路排出;
    (2)吸附阱组、液氮冷阱的吹扫:第零载气供给管道内通入载气,经由吸附阱组、液氮冷阱后,从杂质气体排放管路排出。
PCT/CN2020/073354 2019-09-24 2020-01-21 同位素样品纯化和收集制备***及其方法和应用 WO2021056943A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020000037.0T DE112020000037T5 (de) 2019-09-24 2020-01-21 System und Verfahren zur Reinigung, Sammlung und Aufbereitung von Isotopenproben und ihre Anwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910902327 2019-09-24
CN201910902327.0 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021056943A1 true WO2021056943A1 (zh) 2021-04-01

Family

ID=75165558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073354 WO2021056943A1 (zh) 2019-09-24 2020-01-21 同位素样品纯化和收集制备***及其方法和应用

Country Status (3)

Country Link
CN (1) CN112629985A (zh)
DE (1) DE112020000037T5 (zh)
WO (1) WO2021056943A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514315A (zh) * 2021-07-09 2021-10-19 广东海洋大学 一种富集测定氧化亚氮稳定同位素时除水的装置和方法
CN113624901A (zh) * 2021-07-07 2021-11-09 自然资源部第三海洋研究所 一种总有机碳分析仪与稳定同位素质谱联用接口装置
CN114414706A (zh) * 2022-03-30 2022-04-29 南通森呼吸环保科技有限公司 苯系挥发性有机组分高效检测装置及检测方法
CN115264365A (zh) * 2022-07-29 2022-11-01 苏州金宏气体股份有限公司 四甲基硅烷用钢瓶处理方法
IT202200002924A1 (it) * 2022-02-17 2023-08-17 Nc Tech S R L Sistema e metodo per ottenere campioni di gas
WO2023222806A1 (en) * 2022-05-17 2023-11-23 Luxembourg Institute Of Science And Technology (List) Multi-bed trap for water isotope analysis
CN117871194A (zh) * 2023-12-18 2024-04-12 中国科学院青藏高原研究所 一种用于碳酸盐双团簇同位素分析的样品制备装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743846A (zh) * 2014-01-13 2014-04-23 中国科学院寒区旱区环境与工程研究所 温室气体ch4中碳、氢元素富集分析仪
CN106731837A (zh) * 2016-12-01 2017-05-31 上海化工研究院有限公司 一种氖气生产稳定同位素的精馏工艺和装置
CN108844801A (zh) * 2018-09-13 2018-11-20 中国地质科学院矿产资源研究所 一种不易热分解矿物的流体包裹体碳、氢同位素分析***及方法
CN109100451A (zh) * 2018-09-13 2018-12-28 中国科学院地质与地球物理研究所 一种碳酸盐耦合同位素的制备器及其检测方法
CN110146640A (zh) * 2019-06-03 2019-08-20 中国科学院地质与地球物理研究所 微量氮同位素的分析***和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743846A (zh) * 2014-01-13 2014-04-23 中国科学院寒区旱区环境与工程研究所 温室气体ch4中碳、氢元素富集分析仪
CN106731837A (zh) * 2016-12-01 2017-05-31 上海化工研究院有限公司 一种氖气生产稳定同位素的精馏工艺和装置
CN108844801A (zh) * 2018-09-13 2018-11-20 中国地质科学院矿产资源研究所 一种不易热分解矿物的流体包裹体碳、氢同位素分析***及方法
CN109100451A (zh) * 2018-09-13 2018-12-28 中国科学院地质与地球物理研究所 一种碳酸盐耦合同位素的制备器及其检测方法
CN110146640A (zh) * 2019-06-03 2019-08-20 中国科学院地质与地球物理研究所 微量氮同位素的分析***和方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624901A (zh) * 2021-07-07 2021-11-09 自然资源部第三海洋研究所 一种总有机碳分析仪与稳定同位素质谱联用接口装置
CN113514315A (zh) * 2021-07-09 2021-10-19 广东海洋大学 一种富集测定氧化亚氮稳定同位素时除水的装置和方法
CN113514315B (zh) * 2021-07-09 2024-01-05 广东海洋大学 一种富集测定氧化亚氮稳定同位素时除水的装置和方法
IT202200002924A1 (it) * 2022-02-17 2023-08-17 Nc Tech S R L Sistema e metodo per ottenere campioni di gas
WO2023156948A1 (en) * 2022-02-17 2023-08-24 Nc Technologies S.R.L. System and method for obtaining gas samples
CN114414706A (zh) * 2022-03-30 2022-04-29 南通森呼吸环保科技有限公司 苯系挥发性有机组分高效检测装置及检测方法
CN114414706B (zh) * 2022-03-30 2022-06-21 南通森呼吸环保科技有限公司 苯系挥发性有机组分高效检测装置及检测方法
WO2023222806A1 (en) * 2022-05-17 2023-11-23 Luxembourg Institute Of Science And Technology (List) Multi-bed trap for water isotope analysis
LU502099B1 (en) * 2022-05-17 2023-11-30 Luxembourg Inst Science & Tech List Multi-bed trap for water isotope analysis
CN115264365A (zh) * 2022-07-29 2022-11-01 苏州金宏气体股份有限公司 四甲基硅烷用钢瓶处理方法
CN117871194A (zh) * 2023-12-18 2024-04-12 中国科学院青藏高原研究所 一种用于碳酸盐双团簇同位素分析的样品制备装置及方法

Also Published As

Publication number Publication date
DE112020000037T5 (de) 2022-03-24
CN112629985A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2021056943A1 (zh) 同位素样品纯化和收集制备***及其方法和应用
CN110333313B (zh) 一种烟气污染物在线交替浓缩释放的处理方法
CN110261188B (zh) 一种烟气污染物在线交替浓缩释放装置
CN110568118A (zh) 一种c2-c3烃类物质浓度测定方法
CN111579694B (zh) 一种氘氚混合气中微量杂质含量的分析***及方法
CN112255355B (zh) 非甲烷总烃分析方法
CN113624901B (zh) 一种总有机碳分析仪与稳定同位素质谱联用接口装置
CN109856308B (zh) 一种分析氮氧同位素组成的方法及装置
CN111766357A (zh) 一种水中VOCs连续自动监测***及监测方法
CN103645253A (zh) 一种超纯磷烷的分析方法及其装置
CN106404927B (zh) 冰芯中微量硝酸盐的no3--17o同位素检测方法
CN209927805U (zh) 一种分析氮氧同位素组成的装置
CN105954416B (zh) 一种测定水体中溶解异戊二烯的装置和方法
CN211205970U (zh) 同位素样品纯化***
CN118090875A (zh) 一种三重迭代捕捉式全系列稀有气体同位素分离分析方法
JP3864395B2 (ja) 大気中又は溶存気体中の三種安定酸素同位体比測定方法及びそれに用いるo2単離装置
US20230068184A1 (en) Purification System for Nitrogen Gas and Xenon Gas in Water and Isotope Static Analysis Method Thereof
CN211205971U (zh) 同位素样品纯化和收集制备***
CN109030651B (zh) 基于中心切割的双柱分离检测***及检测方法
CN114034795B (zh) 基于多维色谱、中心切割及反向吹扫的大气中氩氪氙全组分气相色谱分离分析方法及装置
JP2858143B2 (ja) 濃縮分析方法及びその装置
CN210427140U (zh) 一种烟气污染物在线交替浓缩释放装置
CN115166014A (zh) 少量气体样品中稀有气体和co2碳同位素同步分析流程
CN212646226U (zh) 大气中氮气、氧气和二氧化碳同位素取样分析装置
CN112629984A (zh) 同位素样品纯化***及其方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869865

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20869865

Country of ref document: EP

Kind code of ref document: A1