WO2021056720A1 - 一种高速树脂涂层3d打印*** - Google Patents

一种高速树脂涂层3d打印*** Download PDF

Info

Publication number
WO2021056720A1
WO2021056720A1 PCT/CN2019/117073 CN2019117073W WO2021056720A1 WO 2021056720 A1 WO2021056720 A1 WO 2021056720A1 CN 2019117073 W CN2019117073 W CN 2019117073W WO 2021056720 A1 WO2021056720 A1 WO 2021056720A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
hob
resin tank
speed
Prior art date
Application number
PCT/CN2019/117073
Other languages
English (en)
French (fr)
Inventor
夏春光
Original Assignee
深圳摩方新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳摩方新材科技有限公司 filed Critical 深圳摩方新材科技有限公司
Priority to EP19946421.5A priority Critical patent/EP3915765B1/en
Publication of WO2021056720A1 publication Critical patent/WO2021056720A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/218Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/223Foils or films, e.g. for transferring layers of building material from one working station to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic

Definitions

  • the invention belongs to the technical field of 3D printing, and specifically relates to a high-speed resin coating 3D printing system.
  • Stereolithography (printing) first appeared as a rapid prototyping technology. Rapid prototyping technology or 3D printing technology refers to a series of technologies that directly generate full-scale samples from computer models. They are much faster than traditional mechanical cutting. Since Chuck Hull invented stereo lithography in 1986, it has played its role economically and quickly in many fields, such as visualization of complex components, error detection of initial design, verification of design functions of important initial components, and verification of theoretical designs. In the past few decades, people's investment in micro-electromechanical systems (MEMS) has led to the emergence of micro-scale stereo lithography, which inherits the basic principles of traditional stereo lithography, but can achieve micro-scale precision.
  • MEMS micro-electromechanical systems
  • the resin curing technology based on single-photon and two-photon can even reach an accuracy of 200 nanometers.
  • these technologies are based on serial sequential scanning of laser spots on the resin surface or inside, which greatly affects the printing speed and cost-effectiveness.
  • This also contributed to the emergence of projection micro-stereolithography technology.
  • micro-display devices such as micro-liquid crystal displays (LCD) and Texas Instruments' digital light processor (DLP).
  • 3D printers image the pictures on the micro-display through optical machines and project them onto the photosensitive resin liquid. It is cured on the surface, and the computer-generated model design is copied through multi-layer superposition.
  • each resin layer there are three ways to define each resin layer: free liquid surface, transparent film window, and transparent hard window.
  • the free liquid surface depends on the surface tension and gravity of the resin to define the resin layer.
  • the speed is the slowest, but has the least impact on the optical accuracy;
  • the film window uses the tensile force of the film to drive the movement of the resin.
  • the force can have the mechanical properties and tensile strength of the film.
  • the elongation state is determined; the rigid window is actually a film with strong mechanical properties, because it can generate a lot of pressure, so the printing speed is the fastest.
  • the thickness of each layer is less than 30 microns.
  • the present invention provides a high-speed resin coating 3D printing system, a new film-based coating technology, which not only solves the problem of the existing free liquid surface and transparent film window in processing high-viscosity resin for a long time,
  • the shortcoming of slow printing also solves the problem of large solid-liquid force and damage to the sample when using a transparent hard window.
  • this technical invention further improves the printing speed of the existing transparent film technology for low-viscosity resins.
  • a high-speed resin coating 3D printing system including exposure optical system, film, laser displacement meter, hob, bubble scraper, resin tank, sample stage;
  • the sample stage is connected with the lifting device, the sample stage is located in the resin tank, and the film covers the resin in the resin tank; the resin tank is installed on the three-dimensional motion control axis; the exposure optical system is located above the resin tank, and the exposure optical system
  • the projection lens faces the film, and the projection lens is covered with an electromagnetic coil; thereby controlling the direction and size of the magnetic field during each exposure; a laser displacement meter is arranged on one side of the projection lens; a hob is also arranged above the film, and a bubble scraper is arranged below the film.
  • the hob includes a cylinder and two parallel rails.
  • the rails are longitudinally arranged along the resin groove. Both ends of the central axis of the cylinder are installed on the rails and move along the rails. At least one rail is provided There is a central axis driving device, which drives the hob to roll back and forth on the upper surface of the film.
  • the hob includes a plurality of bearing coaxial lines, and each bearing rotates independently.
  • the resin tank also includes a film clamp and a heating unit, and the heating unit is used to control the temperature of the resin.
  • the squeegee includes a blade, the cross section of the blade is a smooth cylindrical surface, the roughness is less than 0.4 microns, the radius is 1.5 mm, and the length covers the largest printing format; the blade is mounted on the squeegee body through a spring.
  • the invention provides a high-speed resin coating 3D printing system. Due to the introduction of the hob system, the invention not only provides high-speed, large-format processing capabilities, but also introduces a magnetic field to control the magnetization direction of the magnetic resin during the printing process. Therefore, the invention not only greatly improves the current resin-based 3D printing speed, but also allows the use of high-viscosity or high-content solid-liquid mixed resins.
  • This technology will provide an advanced and accurate approach to the development of micro-electromechanical (MEMS) fields, biomedical fields, industrial connectors and other fields that require micro-processing.
  • MEMS micro-electromechanical
  • Figure 1 is a schematic diagram of the structure of the device of the present invention.
  • Figure 2 is a schematic diagram of the linear movable hob structure of the present invention.
  • Figure 3 is a schematic view of the structure of the hob in the form of rotation of the present invention.
  • Figure 4 is a schematic diagram of the structure of the bubble scraper of the present invention.
  • Fig. 5 is a cross-sectional view taken along line A-A of Fig. 4 of the present invention.
  • Figure 6 is a schematic diagram of the printing steps of the present invention.
  • the sample stage 7 is connected to the lifting device, the sample stage 7 is located in the resin tank 6, the film 5 covers the resin in the resin tank 6; the resin tank 6 is installed on the three-dimensional motion control axis; the exposure optical system 1 is located in the resin Above the slot 6, the projection lens of the exposure optical system 1 faces the film 5, and the projection lens has an electromagnetic coil 2; a laser displacement meter 3 is provided on one side of the projection lens; a hob 4 is also provided above the film 5, and a bubble scraper 8 is provided below .
  • the hob 4 includes a cylinder, and also includes two parallel rails.
  • the rails are longitudinally arranged along the resin groove 6, and both ends of the central axis of the cylinder are installed on the rails along the The track moves, and at least one track is provided with a central axis driving device to drive the hob to roll back and forth on the upper surface of the film.
  • the hob 4 includes a plurality of bearings 41 with coaxial cores, and each bearing 41 rotates independently.
  • the resin tank 6 also includes a film clamp and a heating unit, and the heating unit is used to control the temperature of the resin.
  • the bubble scraper 8 includes a knife edge 81, the cross section of the knife edge 81 is a smooth cylindrical surface, the roughness is less than 0.4 microns, the radius is 1.5 mm, and the length covers the largest printing format; 81 is mounted on the scraper body 83 through a spring 82.
  • each layer of image by this device can be done by laser dot scanning like SLA, it can also be a reflective liquid crystal screen LCOS or DLP of Texas Instruments in the form of surface projection.
  • SLA laser dot scanning
  • DLP digital light-producing dielectric
  • 3D molding is easier due to the relatively high power of the laser.
  • An electromagnetic coil 2 can be added above the film 5 to generate a magnetic field in a specific direction on the bottom surface of the processed film 5. According to different designs of the electromagnetic coil 2, the magnetic field can be perpendicular to the film 5 or form a certain angle with the film 5. The generated magnetic field can be used to control the magnetization direction of the magnetic particles in each layer of resin, and even multiple exposures can be used to control the magnetization direction of the magnetic particles in different regions of the same layer.
  • the use of the film 5 is mainly to: (1) use the deformation of the film 5 to reduce the force that the sample bears when moving up and down in the resin, so as to ensure the integrity of the fine structure; (2) use the strong tensile force of the film 5 to drive the resin The movement along the film surface defines the thickness of each layer of resin, reducing the printing time; (3) The film 5 is between the hob 4 and the resin to prevent the resin from directly contacting the hob 4 and causing printing failure. In use, the film 5 is pre-stretched by 20-30%.
  • the material of the film 5 here can be polydimethylsiloxane (PDMS), PFA or other transparent plastics, with a thickness from 25 microns to 100 microns; and a glass/quartz material film less than 100 microns thick, the surface of which is coated PFA, Teflon or other non-stick coatings with a thickness of a few microns can also be used in this invention.
  • the laser displacement meter 3 is used to measure whether the resin stops flowing and the film 5 has returned to the set position and leveled after the film 5 moves after the sample stage 7 moves.
  • the invention uses Keyence's laser displacement meter, which has an accuracy of 1 micron. But for different accuracy requirements, other types of displacement meters are also feasible, such as ultrasonic displacement meters.
  • the laser displacement meter 3 is parallel to the optical axis of the projection lens, so the surface perpendicular to the displacement meter probe is related to the perpendicular to the optical axis.
  • the displacement meter can also determine the verticality of the plane relative to the displacement meter through three points on the same plane but not in a line.
  • the hob 4 is a cylinder with precision bearings and precisely controlled dimensions (the size error is less than 10 microns).
  • the material can be metal, plastic, or ceramic, but the hob 4 and the film contact surface
  • the roughness should be low, such as RA 0.4 microns or less.
  • the central axis of the hob 4 is connected with two parallel rails.
  • the two rails can be synchronous driving rails at the same time; or one can be driven, and the other can be a passive Gantry system.
  • the hob 4 rolls back and forth on the upper surface (dry surface) of the film 5, and the film 5 is flattened during the rolling process. At the same time, the rotation of the bearing reduces the friction between the hob 4 and the film 5 and prolongs the service life of the film.
  • the movement of the hob 4 can be a linear movement on the surface of the film 5 perpendicular to the direction of the roller; the hob 4 can also rotate around a point on the surface of the film 5 on the axis line, as shown in Fig. 3, in order to prevent rotation
  • a differential speed principle is required to release the deformation of the film.
  • the hob 4 is composed of a plurality of bearings 41 arranged side by side, and each bearing 41 can rotate independently, so that the bearings 41 in different positions can run at different linear speeds, preventing the hob 4 from being connected to the film. 5 sliding friction between.
  • the resin tank 6 includes a film holder and a resin container underneath, and the resin container may be equipped with a heating unit to control the temperature of the resin.
  • the laser displacement meter 3 is used to monitor the difference between the height of a point on the upper surface of the film in the working area of the hob and the height of the film when it is calm. When the difference is less than the set value, such as 10 microns, the film is considered to be flat and the hob can be stopped. movement.
  • Gases will inevitably dissolve during resin preparation and printing. These gases will generate fine air bubbles during the printing process due to the movement of the resin and the film 5 and the heat generated during the photocuring process. Gradually combine with each other to form millimeter-level bubbles. However, these bubbles are wrapped in the film 5 at the junction of the resin and the film 5, which will cause defects in the final printed sample. Therefore, the device structure in this invention is projected from the upper part of the gravity direction onto the lower film 5, so This makes the bubbles converge under the film 5 due to buoyancy, and a specially designed bubble scraper 8 is introduced under the film 5.
  • the blade 81 of the bubble scraper 8 is blunt and has a smooth cylindrical surface with a roughness of less than 0.4 microns, a radius of 1.5 mm, and a length that covers the largest printing format.
  • the blade 81 is supported by a spring 82 on the scraper body 83, so that the blade 81 is in elastic contact with the film 5 or the hard window during scraping without causing damage to the surface.
  • the supporting shape of the film 5 is designed to be tilted by about 20 degrees at both ends, as shown in Figures 2 and 3, so that when the bubbles are pushed to the tilted position by the bubble scraper 8, they stay in the tilted area due to the effect of buoyancy. Will be brought back to the printing area by the bubble scraper 8.
  • the device of the invention has a total of 6 motion axes. As shown in Figure 1, the two-axis control resin tank 6 and the sample stage 7 move simultaneously in the XY plane, the Z1 axis that controls the height of the sample stage 7 and the height of the resin tank 6 and the film 5 Z2 axis, the axis that controls the bubble scraper 8 and the axis that controls the hob 4.
  • the accuracy of other axis movement control is much higher than the optical accuracy, for example, for 10 micron optics
  • the axis control accuracy of 1 micrometer is selected in this embodiment; the optical accuracy of 2 micrometers is selected, and the axis control accuracy of 0.5 micrometer is selected in this embodiment.
  • the printing of this invention starts with the establishment of a geometric model on a computer. If there is a suspended structure during the establishment of the model, a small supporting structure, usually a thin column, needs to be added.
  • the three-dimensional geometric model will be further sliced into two-dimensional pictures in one direction, usually in black and white, and may have grayscale. Each picture represents a thin layer in the three-dimensional model.
  • the slicing direction of the model will be the printing direction of the printer.
  • the resulting series of pictures will be read by the printer and projected onto the interface between the film 5 and the resin. A certain thickness of cured layer will be produced where there is light for a certain period of time, which represents the corresponding layer in the model represented by the projected picture.
  • the sample stage 7 and the sample When the upper layer is exposed and printed, the sample stage 7 and the sample will drop by 1-4 mm or more to separate from the film 5. The descending distance is determined by the size of the specific film 5 and the adhesion between the cured resin and the film 5. When the sample stage 7 is returned to the position, the thickness of the next layer is less returned. However, due to the large sample size or the high viscosity of the resin, after the sample stage is returned, the resin fluidity between the sample stage and the film 5 is very poor, which causes the film 5 to protrude. If relying on the tension of the film 5 itself, it will take a long time to make the resin in the middle of the sample flow around, and then the film 5 can return to the plane.
  • a hob 4 is introduced.
  • the hob 4 is tangent to the upper surface of the film 5 when it is calm.
  • the hob 4 rolls back and forth on the upper surface of the film 5 at the same time. (speed on the order of cm/s) or rotate, so as to quickly drive the raised film 5 to flatten. This is because when the hob 4 rolls, the resin under the convex portion of the film 5 will be squeezed by the hob 4 and flow quickly to the outer periphery.
  • the number of rolls of the hob 4 is determined by the feedback of the displacement meter of the film 5.
  • the hob 4 will stop outside the projection area.
  • the size of the scanning area of the hob 4 can be adjusted according to the size of the printed sample. The scanning area of the small sample can be reduced accordingly, but the sample must be covered, and there must be a certain margin on the edge.
  • the gap between the sample and the film 5 is filled with the resin layer needed to print the next layer ( Figure 5).
  • the hob 4 should be moved out of the exposed area, and at the same time, according to the needs of the sample design, the projection lens electromagnetic coil 2 is energized to generate a certain intensity and direction of the magnetic field, and then the exposure is repeated, and the exposure is repeated in sequence. After descending, the model is copied in the resin tank 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种高速树脂涂层3D打印***,包括曝光光学***(1)、薄膜(5)、激光位移计(3)、滚刀(4)、气泡刮刀(8)、树脂槽(6)、样品台(7);所述的样品台(7)与升降装置连接,样品台(7)位于树脂槽(6)内,薄膜(5)覆盖在树脂槽(6)内的树脂上;树脂槽(6)安装在三维的运动控制轴上;曝光光学***(1)位于树脂槽(6)上方,曝光光学***(1)的投影镜头朝向薄膜(5),投影镜头外套有电磁线圈(2);投影镜头一侧设有激光位移计(3);薄膜(5)上方还设有滚刀(4),下方设有气泡刮刀(8)。上述方案不仅提供了高速,大幅面的加工能力,还引入了磁场在打印过程中控制磁性树脂的磁化方向,提高了目前基于树脂的3D打印速度,还允许使用高粘度或者高含量的固液混合树脂。

Description

一种高速树脂涂层3D打印*** 技术领域
本发明属于3D打印技术领域,具体涉及一种高速树脂涂层3D打印***。
背景技术
立体光刻(打印)最早是以一种快速成型技术出现。快速成型技术或者3D打印技术指的是一系列从计算机模型上直接生成全尺度样件的技术,他们比传统的机械切削加工要快很多。自从Chuck Hull在1986年发明立体光刻以来,它已经在诸多领域经济快速的发挥它的作用,比如复杂部件的可视化,初始设计的错误检测,验证重要初始部件的设计功能,检验理论设计等。在过去的几十年中随着人们在微机电***(MEMS)的投入,促成了微尺度立体光刻出现,它继承了传统立体光刻的基本原理,但是可达到微米尺度的精度。基于单光子和双光子的树脂固化技术甚至可以达到200纳米的精度。但是这些技术都是基于激光斑在树脂液面或里面串联顺序扫描,很大程度上影响了打印速度和成本经济性。这也促成了投影式微立体光刻技术的出现。这项技术的核心来自于微显示器件的出现比如微液晶显示器(LCD)和德州仪器的数字光处理器(DLP),3D打印机将微显示器上的图片通过光机成像并投影到感光的树脂液面上而固化,并通过多层的叠加复制电脑产生的模型设计。在这些以液态感光树脂作为工作介质的3D打印技术中,对每一树脂层的定义方式有三种:自由液面,透明薄膜窗口,和透明硬质窗口。自由液面依赖树脂的表面张力和重力来定义树脂层,速度最慢,但对光学精度影响最小;薄膜窗口利用薄膜的伸张力来驱动树脂的运动,力的大小可有薄膜的力学性能和拉伸状态决定;硬质窗口实际上是一张力学性能很强的膜,由于它可产生很大的压力,因此打印速度最快。在高精度的3D打印中,每层的厚度小于30微米。对于粘度只有10cP的树脂,在10毫米X10毫米的自由液面上定义一层10微米厚的树脂层需要等待超过半小时,显然在实际应用中是不可接受的慢;同样的条件下,50微米厚的薄膜一般也要等2~3分钟;虽然硬质窗体无需等待,但因为样品在相对于硬窗体的运动中可以产生足以破坏样品 的固液作用力,从而严重限制了样品的运动速度。在同样的作用力下,液体的流动速度随着液体粘度的提高而线性的降低,因此对于自身粘度高于几百上千cP的树脂,或者添加了高组分颗粒而高粘度的树脂,在高精度的样品加工中,现有的3D打印技术显然是不可取的。
发明概述
技术问题
问题的解决方案
技术解决方案
针对上述技术问题,本发明提供一种高速树脂涂层3D打印***,基于薄膜的新涂层技术,该技术不仅解决了现有的自由液面和透明薄膜窗口在处理高粘度树脂中时间长,打印慢的缺点,还同时解决了在使用透明硬质窗口时固液作用力大而破坏样品的问题。而且该项技术发明进一步提高了现有透明薄膜技术对低粘度树脂的打印速度。
具体技术方案为:
一种高速树脂涂层3D打印***,包括曝光光学***、薄膜、激光位移计、滚刀、气泡刮刀、树脂槽、样品台;
所述的样品台与升降装置连接,样品台位于树脂槽内,薄膜覆盖在树脂槽内的树脂上;树脂槽安装在三维的运动控制轴上;曝光光学***位于树脂槽上方,曝光光学***的投影镜头朝向薄膜,投影镜头外套有电磁线圈;从而控制每次曝光时的磁场方向和大小;投影镜头一侧设有激光位移计;薄膜上方还设有滚刀,下方设有气泡刮刀。
所述的滚刀包括圆筒,还包括两条平行的轨道,导轨纵向的沿着树脂槽设置,圆筒的中心轴的两端安装在轨道上,并沿着轨道移动,至少一个轨道上设有中心轴驱动装置,驱动所述的滚刀在薄膜上表面来回滚动。
或者,所述的滚刀包括多个轴承同轴心线组成,每个轴承独立的转动。
进一步的,所述的树脂槽内还包括膜夹具和加热单元,所述的加热单元用于控制树脂的温度。
所述的刮刀包括刀刃,刀刃的横截面呈光滑圆柱面,粗糙度小于0.4微米,半径 1.5毫米,长度覆盖最大的打印幅面;所述的刀刃通过弹簧安装在刮刀体上。
本发明提供的一种高速树脂涂层3D打印***,由于滚刀***的引入,该发明不仅提供了高速,大幅面的加工能力,还引入了磁场在打印过程中控制磁性树脂的磁化方向。因此该发明不但极大提高了目前基于树脂的3D打印速度,还允许使用高粘度或者高含量的固液混合树脂。该技术将在微机电(MEMS)领域,生物医疗领域,工业接插件领域和其他需要微加工领域的发展提供了一种先进精准的切入手段。
发明的有益效果
有益效果
对附图的简要说明
附图说明
图1是本发明装置的结构示意图;
图2是本发明的线性移动式的滚刀结构示意图;
图3是本发明的转动形式的滚刀结构示意图;
图4是本发明的气泡刮刀的结构示意图;
图5是本发明的图4的A-A剖面图;
图6是本发明的打印步骤示意图;
发明实施例
本发明的实施方式
结合实施例说明本发明的具体技术方案。
如图1所示的一种高速树脂涂层3D打印***,包括曝光光学***1、薄膜5、激光位移计3、滚刀4、气泡刮刀8、树脂槽6、样品台7;
所述的样品台7与升降装置连接,样品台7位于树脂槽6内,薄膜5覆盖在树脂槽6内的树脂上;树脂槽6安装在三维的运动控制轴上;曝光光学***1位于树脂槽6上方,曝光光学***1的投影镜头朝向薄膜5,投影镜头外套有电磁线圈2;投影镜头一侧设有激光位移计3;薄膜5上方还设有滚刀4,下方设有气泡刮刀8。
如图2所示,所述的滚刀4包括圆筒,还包括两条平行的轨道,导轨纵向的沿着 树脂槽6设置,圆筒的中心轴的两端安装在轨道上,并沿着轨道移动,至少一个轨道上设有中心轴驱动装置,驱动所述的滚刀在薄膜上表面来回滚动。
如图3所示,所述的滚刀4包括多个轴承41同轴心线组成,每个轴承41独立的转动。
所述的树脂槽6内还包括膜夹具和加热单元,所述的加热单元用于控制树脂的温度。
如图4和图5所示,所述的气泡刮刀8包括刀刃81,刀刃81的横截面呈光滑圆柱面,粗糙度小于0.4微米,半径1.5毫米,长度覆盖最大的打印幅面;所述的刀刃81通过弹簧82安装在刮刀体83上。
该装置对每层图像的固化,可以象SLA一样用激光点扫描也可以是面投影形式用反射液晶屏LCOS或德州仪器的DLP。对于添加了颗粒的树脂,由于激光的功率相对高而使得3D成型更容易。在薄膜5的上方可加上电磁线圈2从而在加工的薄膜5底面产生特定方向的磁场,根据电磁线圈2的不同设计,该磁场可以是垂直于薄膜5也可以和薄膜5形成一定的角度。产生的磁场可用于控制每一层树脂中磁性颗粒的磁化方向,甚至可以用多次曝光来控制同一层中不同区域的磁性颗粒的磁化方向。
薄膜5的使用主要是为了:(1)利用薄膜5的变形来降低样品在树脂中上下移动时所承受的力,从而保证细微结构的完整;(2)利用薄膜5的强伸张力来驱动树脂沿着膜面的运动而定义每一层树脂的厚度,减少打印的时间;(3)薄膜5介于滚刀4和树脂之间,防止树脂直接接触滚刀4而造成打印失败。在使用中薄膜5被预先撑开20-30%。这里的薄膜5的材料可以是聚二甲基矽氧烷(PDMS),PFA或者其他透明的塑料,厚度从25微米到100微米;而小于100微米厚的玻璃/石英材质的膜,其表面涂有几微米厚的PFA,Teflon或者其他不粘涂料,也是可以在这项发明中使用的。同时激光位移计3是为了测量薄膜5在样品台7移动之后,树脂是否停止流动且薄膜5已经回到设定的位置而复平。该发明使用了Keyence公司的激光位移计,其精度达到了1微米。但对不同的精度要求,其他类型的位移计也是可行的,比如超声位移计。该激光位移计3平行于投影镜头的光轴,因此垂直于位移计探头的面就关联垂直于光轴。该位移计还可以通过在同个面上 但不在一条线的三点确定这个平面相对位移计的垂直。
滚刀4是一根带精密轴承的并且精确控制尺寸(尺寸误差小于10微米)的圆柱,如图2所示,材料可以是金属,塑料,或者陶瓷,但滚刀4和膜接触的表面的粗糙度要低,比如RA0.4微米或更低。滚刀4的中心轴与两头平行的轨道相连,这两条轨道可以同时是同步的驱动轨道;也可以一条驱动,而另一条是被动的Gantry***。滚刀4在薄膜5上表面(干燥表面)来回滚动,在滚动的过程中将薄膜5压平,同时轴承的转动减少了滚刀4和薄膜5之间的摩檫力,延长膜的使用寿命。这里滚刀4的运动可以是垂直于滚轴方向的在薄膜5表面的线性运动;滚刀4也可以是绕着轴心线上一点在薄膜5面上的转动,如图3,为防止转动时滚刀4的内外的线性速度差而造成对膜的拉扯破坏,需要有差速原理释放膜的变形。如图3中所示,滚刀4由多个轴承41并列而成,每个轴承41是可以独立的转动,从而使得不同位置的轴承41可以有不同的线性速度运转,防止滚刀4与薄膜5之间的滑动摩擦。
树脂槽6包括膜夹具和底下的树脂容器,树脂容器可以带有加热单元来控制树脂的温度。
激光位移计3用于监测滚刀工作区域内膜上表面一点高度和膜平静时的高度的差别,当此差别小于设定数值比如10微米时,就认为膜已经复平,可以停止滚刀的运动。
树脂制备时和打印时气体不可避免的会溶入,这些气体在打印过程中由于树脂和薄膜5的运动以及光固化过程中产生的热的相互作用下会产生细微的气泡,这些细微的气泡会渐渐相互结合而形成毫米级的气泡。而这些气泡却被薄膜5裹在树脂和薄膜5的交界处,会因此造成最终打印样品的缺陷,因此在这项发明中的设备构架是从重力方向的上方投影到下方的薄膜5上,这样就使得气泡由于浮力的作用汇聚于薄膜5的下方,并在薄膜5下方引入了专门设计的气泡刮刀8。气泡刮刀8的刀刃81是钝的,呈光滑圆柱面,粗糙度小于0.4微米,半径1.5毫米,长度覆盖最大的打印幅面。并且该刀刃81是有弹簧82支撑于刮刀体83上,使得在刮动时刀刃81跟薄膜5或者硬窗口是弹性接触,而不造成表面的破坏。同时薄膜5的支撑形状被设计成两端翘起20度左右,如图2和图3,这样气泡被气泡刮刀8 推到翘起位置时,由于浮力的作用使得它们呆在翘起区域而不会被气泡刮刀8带回打印区域。
该发明设备总共有6根运动轴,如图1所示,两轴控制树脂槽6和样品台7在XY平面同时移动,控制样品台7高度的Z1轴,控制树脂槽6和薄膜5高度的Z2轴,控制气泡刮刀8的轴和控制滚刀4的轴。除了控制气泡刮刀8的轴和控制滚刀4的轴的运动精度(0.1毫米),根据设备的光学精度设计,其它的轴运动控制的精度都要远高于光学精度,比如对于10微米的光学精度,本实施例选择1微米的轴控制精度;2微米的光学精度,本实施例选择0.5微米的轴控制精度。
如图6所示,该发明的打印从在计算机上建立几何模型开始,在建立模型时如果有悬空的结构时需要加上细小的支撑结构,通常是细柱。三维的几何模型会被进一步在一个方向上被切成二维的图片,一般是黑白,可以有灰度。每一张图片代表着三维模型中的一薄层。模型的切片方向将是打印机的打印方向。产生的一系列图片会依次被打印机读取并投影到薄膜5和树脂的交界面。在一定的时间内有光的地方会产生一定厚度的固化层,它代表了投影图片所代表的模型中对应的一层。当上一层完成曝光打印后,样品台7和样品会下降1-4毫米或更多而脱离薄膜5,下降距离由具体的薄膜5的尺寸和固化树脂与薄膜5的粘合力决定。样品台7回位时,少回正好下一层的厚度。但由于样品大或者树脂的粘度高,在样品台回位后,在样品台和薄膜5之间的树脂流动性很差,从而造成薄膜5突起。如果靠薄膜5自身的张力,需要等待很长的时间才能使得在样品中间的树脂流向四周,进而让薄膜5恢复平面。正因为有等待薄膜5复平的时间,使得打印的速度受到极大的限制。为此在此项发明中,引入了滚刀4,滚刀4与平静时的薄膜5上表面是相切的,在样品台7回位时,滚刀4同时在薄膜5的上表面来回滚动(cm/s量级的速度)或者转动,从而快速驱使凸起的薄膜5复平。因为在滚刀4滚动时,薄膜5凸起部分下面的树脂会受到滚刀4的挤压而向外周快速流动。滚刀4滚动的次数由薄膜5的位移计的反馈决定,当位移计的读数说明薄膜5已经在允许的误差范围内复平时,滚刀4将停止在投影区域之外。滚刀4扫描的区域大小可以根据打印样品大小进行相应的调节,小样品的扫描区域可以相应的缩小,但必须覆盖样品,且边缘要有一定的余量。当薄膜5复平后样品和薄膜5间的 缝隙就充满了打印下一层所需的树脂层(图5)。这时要将滚刀4移出曝光的区域,同时根据样品设计的需要给投影镜头电磁线圈2通电流从而产生一定强度和方向的磁场,然后曝光,依次重复曝光,随着样品台7的逐层下降,模型在树脂槽6中被复制出来。

Claims (5)

  1. 一种高速树脂涂层3D打印***,其特征在于,包括曝光光学***、薄膜、激光位移计、滚刀、气泡刮刀、树脂槽、样品台;
    所述的样品台与升降装置连接,样品台位于树脂槽内,薄膜覆盖在树脂槽内的树脂上;树脂槽安装在三维的运动控制轴上;曝光光学***位于树脂槽上方,曝光光学***的投影镜头朝向薄膜,投影镜头外套有电磁线圈;投影镜头一侧设有激光位移计;薄膜上方还设有滚刀,下方设有气泡刮刀。
  2. 根据权利要求1所述的一种高速树脂涂层3D打印***,其特征在于,所述的滚刀包括圆筒,还包括两条平行的轨道,导轨纵向的沿着树脂槽设置,圆筒的中心轴的两端安装在轨道上,并沿着轨道移动,至少一个轨道上设有中心轴驱动装置,驱动所述的滚刀在薄膜上表面来回滚动。
  3. 根据权利要求1所述的一种高速树脂涂层3D打印***,其特征在于,所述的滚刀包括多个轴承同轴心线组成,每个轴承独立的转动。
  4. 根据权利要求1所述的一种高速树脂涂层3D打印***,其特征在于,所述的树脂槽内还包括膜夹具和加热单元,所述的加热单元用于控制树脂的温度。
  5. 根据权利要求1到4任一项所述的一种高速树脂涂层3D打印***,其特征在于,所述的气泡刮刀包括刀刃,刀刃的横截面呈光滑圆柱面,粗糙度小于0.4微米,半径1.5毫米,长度覆盖最大的打印幅面;所述的刀刃通过弹簧安装在刮刀体上。
PCT/CN2019/117073 2019-09-23 2019-11-11 一种高速树脂涂层3d打印*** WO2021056720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19946421.5A EP3915765B1 (en) 2019-09-23 2019-11-11 High-speed resin coating 3d printing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910898700.XA CN110539482B (zh) 2019-09-23 2019-09-23 一种高速树脂涂层3d打印***
CN201910898700.X 2019-09-23

Publications (1)

Publication Number Publication Date
WO2021056720A1 true WO2021056720A1 (zh) 2021-04-01

Family

ID=68714228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117073 WO2021056720A1 (zh) 2019-09-23 2019-11-11 一种高速树脂涂层3d打印***

Country Status (3)

Country Link
EP (1) EP3915765B1 (zh)
CN (1) CN110539482B (zh)
WO (1) WO2021056720A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665118A (zh) * 2021-07-19 2021-11-19 广州黑格智造信息科技有限公司 一种树脂清除装置及其清除方法
CN113942224A (zh) * 2021-09-23 2022-01-18 深圳摩方新材科技有限公司 一种单向刮除气泡的刮刀、刮气泡装置及刮气泡方法
CN114323870A (zh) * 2022-01-06 2022-04-12 中国建筑科学研究院有限公司 一种高粘度胶粘剂胶体性能试样的制备方法
CN114801186A (zh) * 2022-04-19 2022-07-29 青岛博瑞科三维制造有限公司 一种光固化3d打印机智能刮刀***及控制方法
CN114986883A (zh) * 2022-05-31 2022-09-02 南京铖联激光科技有限公司 一种基于dlp原理3d打印机用的转盘式料槽
CN115891148A (zh) * 2022-10-26 2023-04-04 佛山臻硅科技有限公司 一种用于液态热固化材料固化成型的3d打印设备及其打印方法
CN116198128A (zh) * 2023-03-01 2023-06-02 诺丁汉大学卓越灯塔计划(宁波)创新研究院 一种全息3d打印机及3d打印方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111873433B (zh) * 2020-06-19 2022-04-12 深圳摩方新材科技有限公司 树脂涂层3d打印方法及***
WO2021103503A1 (zh) * 2020-06-19 2021-06-03 深圳摩方新材科技有限公司 树脂涂层3d打印方法及***
CN114147957A (zh) * 2020-09-07 2022-03-08 苏州苏大维格科技集团股份有限公司 一种基于投影曝光技术的3d打印***
CN113290845A (zh) * 2020-09-11 2021-08-24 江门市兴晟科技有限公司 一种高粘度及多材料3d打印设备
CN113635553B (zh) * 2021-07-21 2023-05-23 深圳摩方新材科技有限公司 一种3d打印***及方法
CN114986881B (zh) * 2022-06-20 2023-03-03 深圳摩方新材科技有限公司 一种方便操作的3d打印装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104908320A (zh) * 2015-05-14 2015-09-16 江苏敦超电子科技有限公司 Uv光固化3d打印机及叠成精度保证方法
CN106738898A (zh) * 2017-03-14 2017-05-31 吉林大学 一种可编程定向短纤维增强复合材料3d打印方法及装置
CN108248020A (zh) * 2016-12-28 2018-07-06 西安科技大学 一种水平式dlp投影技术面曝光成型装置及方法
EP3354442A1 (en) * 2017-01-25 2018-08-01 Smart3D.net di Dotta Andrea E Gie' Andrea SNC Apparatus for producing objects by stereolithography and method for producing objects by stereolithography
KR20190031888A (ko) * 2017-09-19 2019-03-27 (주)센트롤 삼차원 프린터
CN109822891A (zh) * 2019-03-13 2019-05-31 无锡摩方精密科技有限公司 一种高精度大幅面立体投影3d打印***及其打印方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143817A (en) * 1989-12-22 1992-09-01 E. I. Du Pont De Nemours And Company Solid imaging system
US5158858A (en) * 1990-07-05 1992-10-27 E. I. Du Pont De Nemours And Company Solid imaging system using differential tension elastomeric film
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
JP2000218708A (ja) * 1999-01-01 2000-08-08 Three D Syst Inc 立体造形装置および方法
US7275925B2 (en) * 2001-08-30 2007-10-02 Micron Technology, Inc. Apparatus for stereolithographic processing of components and assemblies
DE102004022606A1 (de) * 2004-05-07 2005-12-15 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit verbesserter Trennung ausgehärteter Materialschichten von einer Bauebene
JP2011090055A (ja) * 2009-10-20 2011-05-06 Sony Corp 露光装置及び露光方法
EP2605898B1 (en) * 2010-08-20 2020-09-30 Zydex Pty Ltd Apparatus and method for making an object
WO2015188175A1 (en) * 2014-06-06 2015-12-10 Northeastern University Additive manufacturing of discontinuous fiber composites using magnetic fields
DE102016203582A1 (de) * 2016-03-04 2017-09-07 Airbus Operations Gmbh Additives Fertigungssystem und Verfahren zur additiven Fertigung von Bauteilen
CN107030852A (zh) * 2017-05-22 2017-08-11 东莞理工学院 下曝式陶瓷光固化3d打印装备及其制造方法
WO2018226709A1 (en) * 2017-06-05 2018-12-13 3D Fortify Systems and methods for aligning anisotropic particles for additive manufacturing
JP7167931B2 (ja) * 2017-10-30 2022-11-09 ソニーグループ株式会社 露光装置および露光物の製造方法
JP7230354B2 (ja) * 2017-11-09 2023-03-01 株式会社リコー 立体造形用粉末、樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
CN108170007B (zh) * 2017-12-29 2021-08-06 深圳摩方新材科技有限公司 高精度3d打印装置及打印方法
CN109080130B (zh) * 2018-07-25 2021-05-25 东莞职业技术学院 一种用于打印光敏材料的3d打印设备及3d打印方法
CN209240491U (zh) * 2018-12-28 2019-08-13 东北林业大学 一种覆膜式激光烧结打印装置
JP2019137071A (ja) * 2019-05-24 2019-08-22 株式会社ニコン 造形装置及び造形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104908320A (zh) * 2015-05-14 2015-09-16 江苏敦超电子科技有限公司 Uv光固化3d打印机及叠成精度保证方法
CN108248020A (zh) * 2016-12-28 2018-07-06 西安科技大学 一种水平式dlp投影技术面曝光成型装置及方法
EP3354442A1 (en) * 2017-01-25 2018-08-01 Smart3D.net di Dotta Andrea E Gie' Andrea SNC Apparatus for producing objects by stereolithography and method for producing objects by stereolithography
CN106738898A (zh) * 2017-03-14 2017-05-31 吉林大学 一种可编程定向短纤维增强复合材料3d打印方法及装置
KR20190031888A (ko) * 2017-09-19 2019-03-27 (주)센트롤 삼차원 프린터
CN109822891A (zh) * 2019-03-13 2019-05-31 无锡摩方精密科技有限公司 一种高精度大幅面立体投影3d打印***及其打印方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665118A (zh) * 2021-07-19 2021-11-19 广州黑格智造信息科技有限公司 一种树脂清除装置及其清除方法
CN113665118B (zh) * 2021-07-19 2023-10-20 广州黑格智造信息科技有限公司 一种树脂清除装置及其清除方法
CN113942224A (zh) * 2021-09-23 2022-01-18 深圳摩方新材科技有限公司 一种单向刮除气泡的刮刀、刮气泡装置及刮气泡方法
CN113942224B (zh) * 2021-09-23 2023-06-06 深圳摩方新材科技有限公司 一种单向刮除气泡的刮刀、刮气泡装置及刮气泡方法
CN114323870A (zh) * 2022-01-06 2022-04-12 中国建筑科学研究院有限公司 一种高粘度胶粘剂胶体性能试样的制备方法
CN114323870B (zh) * 2022-01-06 2023-12-22 中国建筑科学研究院有限公司 一种高粘度胶粘剂胶体性能试样的制备方法
CN114801186A (zh) * 2022-04-19 2022-07-29 青岛博瑞科三维制造有限公司 一种光固化3d打印机智能刮刀***及控制方法
CN114801186B (zh) * 2022-04-19 2023-01-24 青岛博瑞科三维制造有限公司 一种光固化3d打印机智能刮刀***及控制方法
CN114986883A (zh) * 2022-05-31 2022-09-02 南京铖联激光科技有限公司 一种基于dlp原理3d打印机用的转盘式料槽
CN114986883B (zh) * 2022-05-31 2023-06-16 南京铖联激光科技有限公司 一种基于dlp原理3d打印机用的转盘式料槽
CN115891148A (zh) * 2022-10-26 2023-04-04 佛山臻硅科技有限公司 一种用于液态热固化材料固化成型的3d打印设备及其打印方法
CN116198128A (zh) * 2023-03-01 2023-06-02 诺丁汉大学卓越灯塔计划(宁波)创新研究院 一种全息3d打印机及3d打印方法

Also Published As

Publication number Publication date
CN110539482B (zh) 2021-04-30
EP3915765A1 (en) 2021-12-01
EP3915765A4 (en) 2022-07-06
EP3915765B1 (en) 2023-09-27
CN110539482A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2021056720A1 (zh) 一种高速树脂涂层3d打印***
CN109822891B (zh) 一种高精度大幅面立体投影3d打印***及其打印方法
CN111873433B (zh) 树脂涂层3d打印方法及***
US20210299952A1 (en) Roller-membrane layering micro stereolithography
Wu et al. Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model
CN106426915B (zh) 一种高速连续光固化3d打印装置及其工作方法
US20230078198A1 (en) Illumination techniques for additive fabrication and methods
US20210237345A1 (en) Immersion projection micro steriolithography
WO2016169170A1 (zh) 一种3d打印装置和方法
EP1760526A1 (en) Mold, imprint method, and process for producing chip
US20140339741A1 (en) Apparatus for fabrication of three dimensional objects
WO2021114602A1 (zh) 3d打印方法及3d打印***
US11654619B2 (en) Immersion multi-material projection micro stereolithography with non-stick gas permeable transparent membrane
EP4065343B1 (en) Methods and systems for determining viscosity of photo-curing resin for vat photopolymerization printer
WO2020177628A1 (zh) 一种3d打印机构
CN111421815A (zh) 一种dlp 3d生物打印机
CN108501362A (zh) 一种面曝光快速成型的机械运动***及方法
CN109782534B (zh) 一种局域磁场驱动的纳米图案直写装置及其制备方法
CN218315255U (zh) 一种高精度3d打印机
JP5744593B2 (ja) 計測装置、リソグラフィ装置及びデバイスの製造方法
IT202000003647A1 (it) Apparato per stampa 3D di tipo a foto-indurimento bottom-up, con vetro rotativo a indice di rifrazione variabile e relativo metodo di utilizzo
WO2021103503A1 (zh) 树脂涂层3d打印方法及***
Jo et al. Liquid bridge stereolithography: a proof of concept
CN114801161A (zh) 一种侧面3d打印***及打印方法
CN111873432B (zh) 3d打印方法及3d打印***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019946421

Country of ref document: EP

Effective date: 20210823

WWE Wipo information: entry into national phase

Ref document number: 19946421.5

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE