WO2021054227A1 - Method for forming metal oxide film and film-forming device - Google Patents

Method for forming metal oxide film and film-forming device Download PDF

Info

Publication number
WO2021054227A1
WO2021054227A1 PCT/JP2020/034165 JP2020034165W WO2021054227A1 WO 2021054227 A1 WO2021054227 A1 WO 2021054227A1 JP 2020034165 W JP2020034165 W JP 2020034165W WO 2021054227 A1 WO2021054227 A1 WO 2021054227A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
forming
oxide film
inhibitor
gas
Prior art date
Application number
PCT/JP2020/034165
Other languages
French (fr)
Japanese (ja)
Inventor
澤遠 倪
加藤 大輝
原田 豪繁
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021054227A1 publication Critical patent/WO2021054227A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Definitions

  • the present disclosure relates to a method for forming a metal oxide film and a film forming apparatus.
  • Patent Documents 1 and 2 A technique for forming a conformal film using an inhibitor when forming a film in a trench is known (see, for example, Patent Documents 1 and 2).
  • the inhibitor include methanol, ethanol and the like in Patent Document 1, and HCl, CO 2 , CO, HCN, XeF 6 , HBr, HI and the like in Patent Document 2.
  • the present disclosure provides a technique capable of forming a conformal metal oxide film in a recess.
  • the method for forming the metal oxide film according to one aspect of the present disclosure includes a step of adsorbing an inhibitor containing a heterocyclic compound excluding alcohols and amines in a recess formed in the substrate, and the above-mentioned inhibitor adsorbing.
  • the step of forming a precursor layer on the substrate by supplying a precursor gas containing a metal complex to the recess, and the precursor by supplying an oxide gas to the recess in which the precursor layer is formed. It has a step of oxidizing the layer to form a metal oxide layer.
  • a conformal metal oxide film can be formed in the recess.
  • a flowchart showing a method for forming a metal oxide film of one embodiment A process sectional view showing a method for forming a metal oxide film of one embodiment. A process sectional view showing a method for forming a metal oxide film of one embodiment. A process sectional view showing a method for forming a metal oxide film of one embodiment. A process sectional view showing a method for forming a metal oxide film of one embodiment. A process sectional view showing a method for forming a metal oxide film of one embodiment. A process sectional view showing a method for forming a metal oxide film of one embodiment. A process sectional view showing a method for forming a metal oxide film of one embodiment. The figure which shows an example of the film forming apparatus used in the method of forming the metal oxide film of one Embodiment. The figure which shows the calculation result of the adsorption energy by the simulation
  • a metal oxide film for example, a zirconium oxide (ZrO 2 ) film, is widely used as a high-k film contained in logic ICs such as MPU and ASIC, and memory ICs such as DRAM and NAND.
  • the metal oxide film is, for example, an atomic layer deposition (ALD) in which a precursor gas containing a metal complex and an oxidation gas are alternately supplied in a processing container with a purge in between, and the metal oxide film is deposited on a substrate in the processing container. : Atomic Layer Deposition) Formed by the process.
  • ALD atomic layer deposition
  • the film thickness at the upper part of the trench becomes thicker than the film thickness at the lower part, and a conformal metal oxide film can be obtained. Have difficulty.
  • the present inventors before supplying the precursor gas, the present inventors supply an inhibitor containing alcohols, amines or a heterocyclic compound into the processing vessel to apply more inhibitors to the upper part of the trench than to the lower part. It was found that the deposition of the precursor on the upper part of the recess was suppressed by adsorbing.
  • an inhibitor containing alcohols, amines or a heterocyclic compound into the processing vessel to apply more inhibitors to the upper part of the trench than to the lower part. It was found that the deposition of the precursor on the upper part of the recess was suppressed by adsorbing.
  • the method for forming the metal oxide film of one embodiment is a method of forming a metal oxide film on a substrate in which recesses such as trenches and holes are formed on the surface by an ALD process, and the substrate in which the recesses are formed is treated. It is executed while being contained in a container.
  • a substrate to which the ALD process can be applied can be widely used.
  • the substrate to which the ALD process can be applied is, for example, a semiconductor substrate made of silicon or the like. Examples of the substrate include semiconductor substrates used in the manufacture of semiconductor devices having a capacitor insulating film and a gate insulating film.
  • FIG. 1 is a flowchart showing a method for forming a metal oxide film of one embodiment.
  • a step S1 for supplying an inhibitor a step S2 for supplying a precursor gas, a step S3 for purging, a step S4 for supplying an oxidizing gas, and a step of purging
  • a plurality of cycles including S5 and the like are executed.
  • FIG. 2A to 2F are process cross-sectional views showing a method of forming a metal oxide film of one embodiment.
  • the target substrate 200 on which the metal oxide film is formed has an insulating film 201 in which the recess 202 is formed.
  • the insulating film 201 may be, for example, a SiO 2 film or an Al 2 O 3 film.
  • step S1 as shown in FIG. 2A, the recess 202 is supplied with an inhibitor 203 containing at least one of alcohols, amines and a heterocyclic compound.
  • Alcohols are alcohol compounds represented by the formula R 1 OH (in the formula, R 1 represents a monovalent hydrocarbon group), and amines are the formula R 2 R 3 R 4- N (formula R 2 R 3 R 4-N). among, R 2, R 3 and R 4 represents a hydrogen atom or a monovalent hydrocarbon group, at least one of R 2, R 3 and R 4 is a monovalent hydrocarbon group .R 2, R 3 and R 4 may be the same as or different from each other).
  • the carbon number of R 1 , R 2 , R 3 and R 4 may be, for example, 1 to 8.
  • the hydrocarbon groups of R 1 , R 2 , R 3 and R 4 may be linear, branched or cyclic and may be saturated or unsaturated.
  • R 1 , R 2 , R 3 and R 4 may have substituents as long as they do not interfere with the effects of the present disclosure.
  • Specific examples of R 1 , R 2 , R 3 and R 4 include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, t-butyl group and isobutyl group, allyl group, phenyl group and the like. ..
  • alcohols include methyl alcohol (methanol), ethyl alcohol (ethanol), n-propyl alcohol (1-propanol), isopropyl alcohol (2-propanol), and t-butyl alcohol (2-methyl-2-propanol).
  • Alcohols such as isobutyl alcohol (2-methyl-1-propanol), allyl alcohols, phenols and the like.
  • amines include diethylamine, methylamine, ethylamine, isopropylamine, aniline and the like.
  • a heterocyclic compound is a cyclic compound containing at least two different elements in the ring.
  • Specific examples of the heterocyclic compound include pyridine, oxazole, tetrahydrofuran, quinuclidine and the like.
  • the supply of inhibitor 203 may be carried out in a diluted gas environment.
  • the inhibitor 203 may be supplied after replacing the inside of the processing container with a diluting gas.
  • the diluent gas may be supplied to the processing container together with the inhibitor 203.
  • the inhibitor 203 may be supplied while supplying the dilution gas to the treatment container, or the inhibitor 203 and the dilution gas are mixed and the inhibitor 203 (mixed gas) diluted with the dilution gas is supplied to the treatment container. May be supplied.
  • the diluting gas include an inert gas such as nitrogen (N 2 ) gas and a rare gas, carbon dioxide (CO 2 ) gas and carbon monoxide (CO) gas.
  • the diluting gas is selected from the group consisting of helium (He) gas, neon (Ne) gas, argon (Ar) gas, krypton (Kr) gas, xenone (Xe) gas, N 2 gas, CO 2 gas and CO gas. It is preferable to contain at least one kind of gas.
  • step S1 the inhibitor 203 is adsorbed on the exposed surface of the insulating film 201 of the recess 202 in the first cycle, but in the second and subsequent cycles, the metal oxide formed in steps S2 to S5.
  • the inhibitor 203 will be adsorbed on the surface of the layer 206. Therefore, it is preferable that the inhibitor 203 is easily adsorbed on the metal oxide layer 206.
  • the likelihood of adsorption of the inhibitor 203 to the metal oxide layer 206 is determined by, for example, the adsorption energy of the inhibitor 203 (for example, alcohols, amines and heterocyclic compounds) on the surface (surface site) of the metal oxide layer 206.
  • the "adsorption energy” is given as a value obtained by subtracting the energy before adsorption from the energy when the inhibitor 203 is adsorbed on the surface site, and a negative value means that the adsorption state is stable. Further, the larger the adsorption energy (negative value), the easier it is for the inhibitor 203 to be adsorbed on the surface site, and the stronger the adsorption force is.
  • the adsorption energy is obtained by, for example, the density functional theory (PBE / DNP) using the DMol3 module of the software Materials Studio.
  • FIG. 2B shows the step S1 of supplying the inhibitor in the first cycle, so that the insulating film 201 of the recess 202 is exposed, but in the step S1 of supplying the inhibitor in the second and subsequent cycles.
  • the surface of the recess 202 is covered with the metal oxide layer 206. That is, in the first cycle, the inhibitor 203 is adsorbed on the exposed surface of the insulating film 201 of the recess 202, but in the second and subsequent cycles, the inhibitor 203 is adsorbed on the surface of the metal oxide layer 206.
  • step S1 it is preferable to supply the inhibitor 203 containing the heterocyclic compound.
  • the inhibitor 203 can be easily removed in the purging step S3 or the purging step S5 performed after the step S2 for supplying the precursor gas.
  • Alcohols and amines have protic properties and donate protons (H +) to the metal oxide when adsorbed on the surface of the metal oxide, so that they have a strong ability to bind to the surface of the metal oxide.
  • heterocyclic compounds have aprotic properties and do not donate protons (H +) to metal oxides when adsorbed on the surface of metal oxides, so metal oxides are compared to alcohols and amines. The force to bond to the surface of is weak.
  • the inhibitor 203 containing the heterocyclic compound when used in step S1, the inhibitor 203 can be easily removed in the purging step S3 or the purging step S5 performed after the precursor gas supply step S2. As a result, it is possible to prevent the inhibitor 203 from being mixed into the target metal oxide film.
  • the substrate 200 is subjected to O 2 atmosphere, O 3 atmosphere, O 2 plasma, and O after at least one of steps S2 to S5. 3
  • the step of exposing to plasma or a combination thereof may be performed.
  • the substrate 200 has an O 2 atmosphere and an O 3 atmosphere from the viewpoint that the inhibitor 203 adsorbed on the surface of the metal oxide can be removed in a short time. , O 2 plasma, O 3 plasma, or a combination thereof.
  • step S2 as shown in FIG. 2C, the precursor gas containing the metal complex 204 is supplied to the recess 202.
  • the metal complex 204 contained in the precursor gas is chemically adsorbed in the recess 202, so that the precursor layer is formed from the precursor gas.
  • the precursor gas comes into contact with the surface (treated surface) of the recess 202, and the metal complex 204 is chemically adsorbed on the surface of the recess 202.
  • the metal atom in the metal complex 204 reacts with a functional group such as a hydroxyl group formed on the surface of the recess 202, so that the metal complex 204 (precursor) is chemically bonded to the surface of the recess 202.
  • a precursor layer composed of a plurality of precursors bonded to the surface of the recess 202 is formed.
  • the inhibitor 203 is adsorbed on the upper surface 202c of the recess 202 more than the bottom surface 202a and the inner wall 202b in step S1, it is adsorbed on the upper surface 202c of the recess 202.
  • the amount of metal complex 204 to be produced is reduced. Therefore, in step S2, the metal complex 204 is easily adsorbed on the bottom surface 202a and the inner wall 202b of the recess 202, and a precursor layer having a uniform thickness can be obtained.
  • a "precursor gas” means a gas composed of a precursor (precursor) containing a metal complex 204.
  • the structure of the precursor differs before and after chemisorption on the substrate, but in the present specification, these are collectively referred to as a precursor for convenience.
  • step S2 various metal complexes 204 can be used depending on the type of metal constituting the target metal oxide film.
  • the metal complex 204 may be any as long as it can be chemically adsorbed on the surface of the recess 202.
  • the metal complex 204 is represented by, for example, the following formula (1).
  • M indicates a metal center, shows the ligand (ligand) L 1 ⁇ L 4 are each independently. L 1 ⁇ L 4 may be the being the same or different. ]
  • the central metal may be hafnium, zirconium, aluminum, tantalum, tungsten, titanium, niobium, molybdenum, cobalt, nickel and the like. That is, the metal complex may be a hafnium complex, a zirconium complex, an aluminum complex, a tantalum complex, a tungsten complex, a titanium complex, a niobium complex, a molybdenum complex, a cobalt complex, a nickel complex or the like.
  • the metal complex is preferably a hafnium complex, a zirconium complex, an aluminum complex, a tantalum complex, or a tungsten complex from the viewpoint of obtaining a metal oxide film having a high dielectric constant. Specific examples of the metal complex include tris (dimethylamino) cyclopentadienyl zirconium (Zr [N (CH 3 ) 2 ] 3 [C 5 H 5 ]).
  • the ligand examples include alcohols such as t-butyl alcohol, isopropyl alcohol and isobutyl alcohol, amines such as dimethylamine, ethylmethylamine, diethylamine and t-butylamine, cyclopentadiene, butadiene and benzene.
  • alcohols such as t-butyl alcohol, isopropyl alcohol and isobutyl alcohol
  • amines such as dimethylamine, ethylmethylamine, diethylamine and t-butylamine, cyclopentadiene, butadiene and benzene.
  • the ligand may have a functional group containing a hydrogen atom.
  • the oxidant 205 contained in the oxidizing gas supplied in step S4 described later may react with the functional group to generate H 2 O. Therefore, when the ligand has a functional group containing a hydrogen atom and the oxidizing gas is a gas containing an oxidizing agent 205 that reacts with the functional group to generate H 2 O, the effect of the present disclosure is remarkably exhibited. Will be done.
  • the functional group containing a hydrogen atom include a hydrocarbon group.
  • the conditions for supplying the precursor gas in step S2 are not particularly limited, and conventionally known conditions can be applied as conditions for forming the precursor layer by the ALD process.
  • the supply of precursor gas may be carried out in a diluted gas environment.
  • the precursor gas may be supplied after replacing the inside of the processing container with a diluting gas.
  • the diluted gas may be supplied into the processing container together with the precursor gas.
  • the precursor gas may be supplied while supplying the dilution gas into the processing container, the precursor gas and the dilution gas are mixed, and the precursor gas (mixed gas) diluted by the dilution gas is supplied into the processing container. May be supplied to.
  • the details of the diluting gas are the same as the details of the diluting gas described in step S1.
  • step S3 purge gas is supplied into the processing container.
  • the precursor gas and the inhibitor 203 remaining in the processing container are removed from the processing container.
  • the purge gas is supplied into the processing container, the precursor gas and the inhibitor 203 in the processing container are exhausted together with the purge gas and removed from the processing container.
  • the purge gas examples include an inert gas such as N 2 gas and a rare gas, CO 2 gas and CO gas. Gas corresponding to the precursor gas, oxidizing gas and H 2 O removal gas is not included in the purge gas.
  • the conditions for supplying the purge gas in step S3 are not particularly limited.
  • the step S3 may be performed, for example, by evacuating the inside of the processing container without supplying the purge gas into the processing container. Further, the step S3 may be performed by supplying the purge gas into the processing container and then evacuating the inside of the processing container without supplying the purge gas into the processing container. Further, the step S3 may be performed by a cycle purge in which the supply of the purge gas and the evacuation are repeated.
  • step S4 as shown in FIG. 2E, an oxidizing gas containing an oxidizing agent 205 is supplied to the recess 202.
  • the precursor layer is oxidized by the oxidizing gas to form the metal oxide layer 206.
  • the oxidizing gas is supplied into the processing container, the oxidizing agent 205 contained in the oxidizing gas comes into contact with the precursor layer, and the metal complex 204 (precursor) constituting the precursor layer and the oxidizing agent 205 Reacts with.
  • the precursor is oxidized to form a metal oxide layer 206 made of a metal oxide.
  • the ligand 207 is eliminated from the precursor.
  • the oxidation gas is a gas containing H 2 O (for example, a gas containing H 2 O) or a gas containing an oxidizing agent that reacts with a functional group containing a hydrogen atom of the metal complex 204 to produce H 2 O (for example, a metal).
  • complex 204 is reacted with a functional group gas oxidizer that generates H 2 O) containing a hydrogen atom of the.
  • the gas corresponding to the inhibitor 203 is not included in the oxidizing gas.
  • the oxidizing agent that reacts with the functional group containing a hydrogen atom of the metal complex 204 to generate H 2 O include O 3 , H 2 / O 2 mixture, O 2 plasma, O 2 , and H 2 O 2. And so on.
  • H 2 O derived from the oxidation gas is adsorbed on the metal oxide film by hydrogen bonds.
  • a gas containing an oxidizing agent such as O 3 , H 2 / O 2 mixture, O 2 plasma, O 2 , H 2 O 2 or the like is used as the oxidizing gas, the function containing the hydrogen atom contained in the oxidizing agent and the metal complex 204 H 2 O derived from the reaction with the group is adsorbed on the metal oxide film by hydrogen peroxide.
  • the oxidation gas is at least selected from the group consisting of O 3 , H 2 / O 2 mixture, O 2 plasma, O 2 and H 2 O 2 from the viewpoint that the metal oxide layer 206 can be formed under low temperature conditions. It is preferably a gas containing one kind, and more preferably a gas containing at least one selected from the group consisting of O 3 , H 2 / O 2 mixture, and O 2 plasma.
  • the conditions for supplying the oxidizing gas in step S4 are not particularly limited.
  • Oxidation gas supply may be performed in a diluted gas environment.
  • the inside of the processing container may be replaced with a diluting gas, and then the oxidation gas may be supplied.
  • the diluted gas may be supplied into the processing container together with the oxidizing gas.
  • the oxidation gas may be supplied while supplying the dilution gas into the processing container, or the oxidation gas and the dilution gas are mixed and the oxidation gas (mixed gas) diluted by the dilution gas is supplied into the processing container. You may.
  • the details of the diluting gas are the same as the details of the diluting gas described in step S1.
  • step S5 purge gas is supplied into the processing container.
  • the oxidizing gas remaining in the processing container, the ligand 207 derived from the precursor, and the inhibitor 203 are exhausted and removed from the processing container.
  • the details of the purge gas in step S5 and the conditions for supplying the purge gas may be the same as those in step S3 described above.
  • step S6 it is determined whether or not the number of repetitions of the cycles of steps S1 to S5 has reached a predetermined number of times. In step S6, when it is determined that the number of repetitions of the cycles of steps S1 to S5 has reached a predetermined number of times, the process ends. On the other hand, in step S6, when it is determined that the cycle of steps S1 to S5 has not reached a predetermined number of times, the process returns to step S1.
  • the predetermined number of times is determined according to the film thickness of the target metal oxide film.
  • the method for forming the metal oxide film of one embodiment before supplying the precursor gas to the recess 202, more alcohols, amines or heterocycles are formed in the upper portion of the recess 202 than in the lower portion. Inhibitor 203 containing the formula compound is adsorbed. Since alcohols, amines or heterocyclic compounds have a large adsorption energy for the metal oxide layer 206, they are easily adsorbed on the surface of the metal oxide layer 206.
  • the inhibitor 203 containing more alcohols, amines or heterocyclic compounds is adsorbed on the upper part of the recess 202 than on the lower part
  • the precursor gas containing the metal complex 204 is supplied to the recess 202
  • the recess 202 is adsorbed. Adsorption of the metal complex 204 on the upper surface 202c of 202 is inhibited. Therefore, a precursor layer having a uniform thickness can be obtained.
  • the thickness of the metal oxide layer 206 formed by oxidizing the precursor layer with the oxidizing gas becomes uniform. That is, a conformal metal oxide film can be formed in the recess 202.
  • the method for forming a metal oxide film of one embodiment can be suitably used in, for example, an application for forming a gate insulating film and a capacitor insulating film.
  • the step covering property of the insulating film has become an important issue due to the complicated trench structure and the increase in the aspect ratio of the trench. Therefore, according to the method for forming a metal oxide film of one embodiment, ideal conformal film formation with high step coverage and low loading effect is possible.
  • the method for forming the metal oxide film of one embodiment can be carried out under low temperature conditions, a conformal metal oxide film can be formed even under low temperature conditions. Further, by applying the above-mentioned metal oxide film forming method to the semiconductor device manufacturing method, damage due to heat to the semiconductor substrate in the metal oxide film forming process such as a capacitor insulating film and a gate insulating film can be reduced. , A conformal insulating film can be formed. That is, according to the method for forming a metal oxide film of one embodiment, a semiconductor device having a conformal insulating film (capacitor insulating film, gate insulating film, etc.) can be obtained.
  • a conformal insulating film capacitor insulating film, gate insulating film, etc.
  • all of the plurality of cycles include the step S1 of supplying the inhibitor 203, but the present disclosure is not limited to this.
  • at least a portion of the plurality of cycles may include step S1 of supplying the inhibitor 203.
  • the step S1 of supplying the inhibitor 203 may be omitted in at least a part of the plurality of cycles.
  • a purge step of supplying purge gas into the processing container may be performed between the steps S1 and S2 in at least a part of the plurality of cycles.
  • the inhibition performance can be reduced and the productivity (film formation rate) is improved.
  • the balance between productivity and uniformity can be adjusted by changing the number of cycles in which the purging step is performed between the step S1 and the step S2 among the plurality of cycles.
  • the number of cycles in which the purging step is performed between the step S1 and the step S2 out of a plurality of cycles is set so as not to completely remove the inhibitor 203.
  • FIG. 3 is a diagram showing an example of a film forming apparatus used in the method for forming a metal oxide film of one embodiment.
  • the vertical heat treatment apparatus 1 has a vertically long shape extending in the vertical direction as a whole.
  • the vertical heat treatment apparatus 1 has a vertically long processing container 10 extending in the vertical direction.
  • the processing container 10 is formed of, for example, quartz.
  • the processing container 10 has, for example, a double pipe structure of a cylindrical inner pipe 11 and a ceilinged outer pipe 12 placed concentrically on the outside of the inner pipe 11.
  • the lower end of the processing container 10 is hermetically held by, for example, a stainless steel manifold 20.
  • the manifold 20 is fixed to, for example, a base plate (not shown).
  • the manifold 20 has an injector 30 and a gas exhaust unit 40.
  • the injector 30 is a gas supply unit that introduces various gases into the processing container 10.
  • the various gases include the gases used in the method of forming a metal oxide film of one embodiment. That is, the various gases include a precursor gas, an oxidizing gas, an inhibitor, and a purge gas.
  • a pipe 31 for introducing various gases is connected to the injector 30.
  • the pipe 31 is provided with a flow rate adjusting unit (not shown), a valve (not shown), or the like such as a mass flow controller for adjusting the gas flow rate.
  • the number of injectors 30 may be, for example, one (see FIG. 1) or a plurality (not shown).
  • the gas exhaust unit 40 exhausts the inside of the processing container 10.
  • a pipe 41 is connected to the gas exhaust unit 40.
  • the pipe 41 is provided with a variable opening valve 42, a vacuum pump 43, and the like that can control the pressure inside the processing container 10.
  • a furnace port 21 is formed at the lower end of the manifold 20.
  • the hearth 21 is provided with, for example, a stainless steel disk-shaped lid 50.
  • the lid 50 is provided so as to be able to move up and down by an elevating mechanism 51, and is configured so that the furnace port 21 can be hermetically sealed.
  • a quartz heat insulating cylinder 60 is installed on the lid 50.
  • the wafer boat 70 is carried into the processing container 10 by raising the lid 50 using the elevating mechanism 51, and is housed in the processing container 10. Further, the wafer boat 70 is carried out from the processing container 10 by lowering the lid 50.
  • the wafer boat 70 has a groove structure having a plurality of slots (support grooves) in the longitudinal direction, and the wafers W are loaded in the slots at vertical intervals in a horizontal state. A plurality of wafers placed on the wafer boat 70 form one batch, and various heat treatments are applied in batch units.
  • a heater 80 is provided on the outside of the processing container 10.
  • the heater 80 has, for example, a cylindrical shape, and heats the processing container 10 to a predetermined temperature.
  • the vertical heat treatment apparatus 1 is provided with a control unit 100 including, for example, a computer.
  • the control unit 100 includes a data processing unit including a program, a memory, and a CPU.
  • the program incorporates instructions (each step) to send a control signal from the control unit 100 to each unit of the vertical heat treatment apparatus 1 to execute the method for forming the metal oxide film of one embodiment.
  • the program is stored in a storage medium such as a computer storage medium such as a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), and a memory card, and is installed in the control unit 100.
  • control unit 100 controls the elevating mechanism 51 to carry the wafer boat 70 holding the plurality of wafers W into the processing container 10, and airtightly closes the opening at the lower end of the processing container 10 with the lid 50 to seal the wafer. To do.
  • control unit 100 controls the opening degree variable valve 42 to adjust the inside of the processing container 10 to the set pressure, and controls the heater 80 to adjust the wafer W to the set temperature. Further, the control unit 100 rotates the wafer boat 70.
  • control unit 100 supplies the precursor gas, the oxidizing gas, the inhibitor, and the purge gas from the injector 30 into the processing container 10 at a predetermined timing so as to execute the method for forming the metal oxide film of one embodiment. To do. As a result, a metal oxide film is formed on the surface of each of the plurality of wafers W.
  • control unit 100 controls the elevating mechanism 51 after boosting the inside of the processing container 10 to the atmospheric pressure, and transfers the wafer boat 70 holding the processed wafer W together with the lid 50 from the inside of the processing container 10. Carry out.
  • the metal oxide film can be formed on a plurality of wafers W at once by using the vertical heat treatment apparatus 1.
  • FIG. 4 is a diagram showing the calculation result of the adsorption energy by the simulation.
  • trimethylamine [NMe 3 (upside down)] trimethylamine [NMe 3 (TMA)]
  • NMe 3 (TMA)] trimethylamine [NMe 3 (TMA)]
  • ethane [C 2 H 6] diethyl ether [DEE]
  • dimethyl ether [DME] tetrahydrofuran [THF]
  • Water [H 2 O] Oxazole [oxazole]
  • Dimethylamine [DMA] Methanol [Methanol]
  • Ethanol [EtOH] Quinclideine, 1-propanol [1-PrOH] and t-
  • the calculation result of the adsorption energy of butanol [t-BuOH] with respect to the (111) plane of t-ZrO 2 is shown.
  • trimethylamine [NMe 3 (upside down)] and trimethylamine [NMe 3 (TMA)] show a case where the mode of adsorption of t—ZrO 2 on the (111) plane is different.
  • trimethylamine [NMe 3 (TMA)] shows a case where nitrogen (N) is adsorbed toward the (111) plane side of t-ZrO 2
  • trimethylamine [NMe 3 (upside down)] is nitrogen ( The case where N) is adsorbed toward the side opposite to the (111) plane of t-ZrO 2 is shown.
  • trimethylamine [NMe 3 (upside down)] adsorption energy of trimethylamine [NMe 3 (TMA)] and ethane [C 2 H 6] can be -1.00eV ⁇ -0.50eV
  • T-ZrO 2 is weakly adsorbed on the (111) plane.
  • the adsorption energy of diethyl ether [DEE], dimethyl ether [DME], tetrahydrofuran [THF], water [H 2 O] and oxazole [oxazole] was -1.50eV ⁇ -1.00eV.
  • adsorption energies of pyridine [Py], dimethylamine [DMA], methanol [MeOH], ethanol [EtOH], quinuclidine [Quinuclidine], 1-propanol [1-PrOH] and t-butanol [t-BuOH] are It was higher than -1.50 eV.
  • organic compounds such as diethyl ether [DEE], dimethyl ether [DME], methanol [THF], and oxazole [oxazole], which have the same adsorption energy as H 2 O, and adsorption.
  • high energy pyridin than H 2 O [Py] dimethylamine [DMA], methanol [MeOH], ethanol [EtOH], quinuclidine [quinuclidine], 1-propanol [1-PrOH] and t- butanol [t-BuOH ]
  • an inhibitor containing an organic compound it is preferable to use an inhibitor containing an organic compound.
  • the inhibitor can be easily adsorbed on the surface of the ZrO 2 layer.
  • the oxidizing gas is a gas containing H 2 O or a gas containing an oxidizing agent that reacts with a functional group containing a hydrogen atom of the metal complex to generate H 2 O
  • the surface of the ZrO 2 layer is subjected to in step S4. At least a part of the physically adsorbed H 2 O is removed by the inhibitory gas. This can suppress the lowering of self-controllability in ALD processes due to the H 2 O. As a result, it is possible to suppress the formation of multiple layers of ZrO 2 layers in one cycle, and to form a conformal ZrO 2 film.
  • pyridine [Py] dimethylamine [DMA]
  • methanol [MeOH] methanol having particularly higher adsorption energies than H 2 O
  • an inhibitor containing an organic compound such as [EtOH], quinuclidein, 1-propanol [1-PrOH], and t-butanol [t-BuOH].
  • an inhibitor containing a heterocyclic compound having an aprotic property it is preferable to use an inhibitor containing a heterocyclic compound having an aprotic property.
  • the film forming apparatus is a batch type apparatus for processing a plurality of wafers at once
  • the film forming apparatus may be a single-wafer type apparatus that processes wafers one by one.
  • the volume of the processing container for accommodating the wafer is larger in the batch type device than in the single-wafer type device, when the film formation process is performed using the batch type device, the film formation is performed using the single-wafer type device. the amount of H 2 O generated in the processing vessel than perform processing increases. Therefore, the technique of the present disclosure is particularly effective in the case of a batch type apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method for forming a metal oxide film according to an embodiment of the present disclosure has: a step for causing a recessed portion formed in a substrate to adsorb an inhibitor including a heterocyclic compound excluding alcohols and amines; a step for forming a precursor layer on the substrate by feeding a precursor gas containing a metal complex to the recessed portion in which the inhibitor has been adsorbed; and a step for oxidizing the precursor layer by feeding an oxidation gas to the recessed portion in which the precursor layer has been formed, to form a metal oxide layer.

Description

金属酸化物膜の形成方法及び成膜装置Metal oxide film forming method and film forming equipment
 本開示は、金属酸化物膜の形成方法及び成膜装置に関する。 The present disclosure relates to a method for forming a metal oxide film and a film forming apparatus.
 トレンチ内に膜を形成するに際し、阻害剤を用いてコンフォーマルな膜を形成する技術が知られている(例えば、特許文献1、2参照)。阻害剤としては、特許文献1にはメタノール、エタノール等が例示され、特許文献2にはHCl、CO、CO、HCN、XeF、HBr、HI等が例示されている。 A technique for forming a conformal film using an inhibitor when forming a film in a trench is known (see, for example, Patent Documents 1 and 2). Examples of the inhibitor include methanol, ethanol and the like in Patent Document 1, and HCl, CO 2 , CO, HCN, XeF 6 , HBr, HI and the like in Patent Document 2.
特開2012-235125号公報Japanese Unexamined Patent Publication No. 2012-235125 米国特許出願公開第2007/0269982号明細書U.S. Patent Application Publication No. 2007/0269982
 本開示は、凹部にコンフォーマルな金属酸化物膜を形成できる技術を提供する。 The present disclosure provides a technique capable of forming a conformal metal oxide film in a recess.
 本開示の一態様による金属酸化物膜の形成方法は、基板に形成された凹部に、アルコール類及びアミン類を除く複素環式化合物を含む阻害剤を吸着させる工程と、前記阻害剤が吸着した前記凹部に金属錯体を含む前駆体ガスを供給することにより、前記基板に前駆体層を形成する工程と、前記前駆体層が形成された前記凹部に酸化ガスを供給することにより、前記前駆体層を酸化して金属酸化物層を形成する工程と、を有する。 The method for forming the metal oxide film according to one aspect of the present disclosure includes a step of adsorbing an inhibitor containing a heterocyclic compound excluding alcohols and amines in a recess formed in the substrate, and the above-mentioned inhibitor adsorbing. The step of forming a precursor layer on the substrate by supplying a precursor gas containing a metal complex to the recess, and the precursor by supplying an oxide gas to the recess in which the precursor layer is formed. It has a step of oxidizing the layer to form a metal oxide layer.
 本開示によれば、凹部にコンフォーマルな金属酸化物膜を形成できる。 According to the present disclosure, a conformal metal oxide film can be formed in the recess.
一実施形態の金属酸化物膜の形成方法を示すフローチャートA flowchart showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法を示す工程断面図A process sectional view showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法を示す工程断面図A process sectional view showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法を示す工程断面図A process sectional view showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法を示す工程断面図A process sectional view showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法を示す工程断面図A process sectional view showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法を示す工程断面図A process sectional view showing a method for forming a metal oxide film of one embodiment. 一実施形態の金属酸化物膜の形成方法に用いられる成膜装置の一例を示す図The figure which shows an example of the film forming apparatus used in the method of forming the metal oxide film of one Embodiment. シミュレーションによる吸着エネルギーの算出結果を示す図The figure which shows the calculation result of the adsorption energy by the simulation
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Hereinafter, non-limiting exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. In all the attached drawings, the same or corresponding members or parts are designated by the same or corresponding reference numerals, and duplicate description is omitted.
 〔金属酸化物膜について〕
 金属酸化物膜、例えば酸化ジルコニウム(ZrO)膜は、MPU、ASIC等のロジックICやDRAM、NAND等のメモリIC等に含まれるhigh-k膜として広く利用されている。金属酸化物膜は、例えば処理容器内に金属錯体を含む前駆体ガスと酸化ガスとをパージを挟んで交互に供給し、処理容器内の基板に金属酸化物膜を堆積させる原子層堆積(ALD:Atomic Layer Deposition)プロセスにより形成される。
[About metal oxide film]
A metal oxide film, for example, a zirconium oxide (ZrO 2 ) film, is widely used as a high-k film contained in logic ICs such as MPU and ASIC, and memory ICs such as DRAM and NAND. The metal oxide film is, for example, an atomic layer deposition (ALD) in which a precursor gas containing a metal complex and an oxidation gas are alternately supplied in a processing container with a purge in between, and the metal oxide film is deposited on a substrate in the processing container. : Atomic Layer Deposition) Formed by the process.
 しかしながら、例えば高いアスペクト比を有する深いトレンチにALDプロセスにより金属酸化物膜を形成する場合、トレンチの上部の膜厚が下部の膜厚よりも厚くなり、コンフォーマルな金属酸化物膜を得ることが困難である。 However, for example, when a metal oxide film is formed in a deep trench having a high aspect ratio by the ALD process, the film thickness at the upper part of the trench becomes thicker than the film thickness at the lower part, and a conformal metal oxide film can be obtained. Have difficulty.
 そこで本発明者らは、前駆体ガスを供給する前に、処理容器内にアルコール類、アミン類又は複素環式化合物を含む阻害剤を供給してトレンチの上部に下部よりも多くの阻害剤を吸着させることで、凹部の上部に対する前駆体の堆積が抑制されることを見出した。以下、詳細に説明する。 Therefore, before supplying the precursor gas, the present inventors supply an inhibitor containing alcohols, amines or a heterocyclic compound into the processing vessel to apply more inhibitors to the upper part of the trench than to the lower part. It was found that the deposition of the precursor on the upper part of the recess was suppressed by adsorbing. Hereinafter, a detailed description will be given.
 〔金属酸化物膜の形成方法〕
 一実施形態の金属酸化物膜の形成方法は、ALDプロセスにより表面にトレンチ、ホール等の凹部が形成された基板上に金属酸化物膜を形成する方法であり、凹部が形成された基板が処理容器内に収容された状態で実行される。基板としては、ALDプロセスを適用可能な基板を広く用いることができる。ALDプロセスを適用可能な基板は、例えばシリコン等で構成された半導体基板である。基板としては、例えばキャパシタ絶縁膜やゲート絶縁膜を有する半導体装置の製造に用いられる半導体基板が挙げられる。
[Method of forming metal oxide film]
The method for forming the metal oxide film of one embodiment is a method of forming a metal oxide film on a substrate in which recesses such as trenches and holes are formed on the surface by an ALD process, and the substrate in which the recesses are formed is treated. It is executed while being contained in a container. As the substrate, a substrate to which the ALD process can be applied can be widely used. The substrate to which the ALD process can be applied is, for example, a semiconductor substrate made of silicon or the like. Examples of the substrate include semiconductor substrates used in the manufacture of semiconductor devices having a capacitor insulating film and a gate insulating film.
 図1は、一実施形態の金属酸化物膜の形成方法を示すフローチャートである。一実施形態の金属酸化物膜の形成方法では、阻害剤を供給する工程S1と、前駆体ガスを供給する工程S2と、パージする工程S3と、酸化ガスを供給する工程S4と、パージする工程S5と、を含む複数回のサイクルが実行される。 FIG. 1 is a flowchart showing a method for forming a metal oxide film of one embodiment. In the method for forming the metal oxide film of one embodiment, a step S1 for supplying an inhibitor, a step S2 for supplying a precursor gas, a step S3 for purging, a step S4 for supplying an oxidizing gas, and a step of purging A plurality of cycles including S5 and the like are executed.
 図2A~図2Fは、一実施形態の金属酸化物膜の形成方法を示す工程断面図である。図2Aに示されるように、金属酸化物膜を形成する対象の基板200は、凹部202が形成された絶縁膜201を有する。絶縁膜201は、例えばSiO膜、Al膜であってよい。 2A to 2F are process cross-sectional views showing a method of forming a metal oxide film of one embodiment. As shown in FIG. 2A, the target substrate 200 on which the metal oxide film is formed has an insulating film 201 in which the recess 202 is formed. The insulating film 201 may be, for example, a SiO 2 film or an Al 2 O 3 film.
 工程S1では、図2Aに示されるように、凹部202に、アルコール類、アミン類及び複素環式化合物の少なくとも一種を含む阻害剤203を供給する。 In step S1, as shown in FIG. 2A, the recess 202 is supplied with an inhibitor 203 containing at least one of alcohols, amines and a heterocyclic compound.
 アルコール類は、式ROH(式中、Rは、1価の炭化水素基を示す。)で表されるアルコール化合物であり、アミン類は、式R-N(式中、R、R及びRは水素原子又は1価の炭化水素基を示し、R、R及びRのうちの少なくとも一つは1価の炭化水素基を示す。R、R及びRは互いに同一であっても異なっていてもよい。)で表されるアミン化合物である。R、R、R及びRの炭素数は、例えば、1~8であってよい。R、R、R及びRの炭化水素基は、直鎖状、分枝状又は環状のいずれであってもよく、飽和又は不飽和のいずれであってもよい。R、R、R及びRは、本開示の効果を阻害しない限り、置換基を有していてもよい。R、R、R及びRの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、イソブチル基等のアルキル基、アリル基、フェニル基等が挙げられる。 Alcohols are alcohol compounds represented by the formula R 1 OH (in the formula, R 1 represents a monovalent hydrocarbon group), and amines are the formula R 2 R 3 R 4- N (formula R 2 R 3 R 4-N). among, R 2, R 3 and R 4 represents a hydrogen atom or a monovalent hydrocarbon group, at least one of R 2, R 3 and R 4 is a monovalent hydrocarbon group .R 2, R 3 and R 4 may be the same as or different from each other). The carbon number of R 1 , R 2 , R 3 and R 4 may be, for example, 1 to 8. The hydrocarbon groups of R 1 , R 2 , R 3 and R 4 may be linear, branched or cyclic and may be saturated or unsaturated. R 1 , R 2 , R 3 and R 4 may have substituents as long as they do not interfere with the effects of the present disclosure. Specific examples of R 1 , R 2 , R 3 and R 4 include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, t-butyl group and isobutyl group, allyl group, phenyl group and the like. ..
 アルコール類の具体例としては、メチルアルコール(メタノール)、エチルアルコール(エタノール)、n-プロピルアルコール(1-プロパノール)、イソプロピルアルコール(2-プロパノール)、t-ブチルアルコール(2-メチル-2-プロパノール)、イソブチルアルコール(2-メチル-1-プロパノール)等のアルキルアルコール、アリルアルコール、フェノール等が挙げられる。 Specific examples of alcohols include methyl alcohol (methanol), ethyl alcohol (ethanol), n-propyl alcohol (1-propanol), isopropyl alcohol (2-propanol), and t-butyl alcohol (2-methyl-2-propanol). ), Alcohols such as isobutyl alcohol (2-methyl-1-propanol), allyl alcohols, phenols and the like.
 アミン類の具体例としては、ジエチルアミン、メチルアミン、エチルアミン、イソプロピルアミン、アニリン等が挙げられる。 Specific examples of amines include diethylamine, methylamine, ethylamine, isopropylamine, aniline and the like.
 複素環式化合物は、環の中に少なくとも2種類の異なる元素を含む環式化合物である。複素環式化合物の具体例としては、ピリジン、オキサゾール、テトラヒドロフラン、キヌクリジン等が挙げられる。 A heterocyclic compound is a cyclic compound containing at least two different elements in the ring. Specific examples of the heterocyclic compound include pyridine, oxazole, tetrahydrofuran, quinuclidine and the like.
 阻害剤203の供給は、希釈ガス環境下で実行してよい。例えば、処理容器内を希釈ガスで置換した後に阻害剤203を供給してよい。また、例えば、阻害剤203と共に、希釈ガスを処理容器に供給してもよい。この場合、処理容器に希釈ガスを供給しながら阻害剤203を供給してもよく、阻害剤203と希釈ガスとを混合し、希釈ガスによって希釈された阻害剤203(混合ガス)を処理容器に供給してもよい。希釈ガスとしては、例えば窒素(N)ガス、希ガス等の不活性ガス、二酸化炭素(CO)ガス及び一酸化炭素(CO)ガスが挙げられる。希釈ガスは、ヘリウム(He)ガス、ネオン(Ne)ガス、アルゴン(Ar)ガス、クリプトン(Kr)ガス、キセノン(Xe)ガス、Nガス、COガス及びCOガスからなる群より選択される少なくとも一種のガスを含むことが好ましい。 The supply of inhibitor 203 may be carried out in a diluted gas environment. For example, the inhibitor 203 may be supplied after replacing the inside of the processing container with a diluting gas. Further, for example, the diluent gas may be supplied to the processing container together with the inhibitor 203. In this case, the inhibitor 203 may be supplied while supplying the dilution gas to the treatment container, or the inhibitor 203 and the dilution gas are mixed and the inhibitor 203 (mixed gas) diluted with the dilution gas is supplied to the treatment container. May be supplied. Examples of the diluting gas include an inert gas such as nitrogen (N 2 ) gas and a rare gas, carbon dioxide (CO 2 ) gas and carbon monoxide (CO) gas. The diluting gas is selected from the group consisting of helium (He) gas, neon (Ne) gas, argon (Ar) gas, krypton (Kr) gas, xenone (Xe) gas, N 2 gas, CO 2 gas and CO gas. It is preferable to contain at least one kind of gas.
 工程S1では、1回目のサイクルにおいては凹部202の絶縁膜201が露出した表面に阻害剤203を吸着させることになるが、2回目以降のサイクルにおいては工程S2~S5で形成される金属酸化物層206の表面に阻害剤203を吸着させることになる。そのため、阻害剤203の金属酸化物層206に対する吸着が起こり易いことが好ましい。 In step S1, the inhibitor 203 is adsorbed on the exposed surface of the insulating film 201 of the recess 202 in the first cycle, but in the second and subsequent cycles, the metal oxide formed in steps S2 to S5. The inhibitor 203 will be adsorbed on the surface of the layer 206. Therefore, it is preferable that the inhibitor 203 is easily adsorbed on the metal oxide layer 206.
 阻害剤203の金属酸化物層206に対する吸着の起こり易さは、例えば阻害剤203(例えば、アルコール類、アミン類及び複素環式化合物)の金属酸化物層206の表面(表面サイト)に対する吸着エネルギーを評価することにより予測可能である。なお、「吸着エネルギー」は、阻害剤203が表面サイトに吸着したときのエネルギーから吸着する前のエネルギーを減算した値で与えられ、負の値は吸着状態が安定であることを意味する。また、吸着エネルギー(負の値)が大きいほど、阻害剤203が表面サイトに吸着しやすく、吸着力が強いことを意味する。上記吸着エネルギーは、例えば、ソフトウェアMaterials StudioのDMol3モジュールを用いた密度汎関数法(PBE/DNP)により求められる。 The likelihood of adsorption of the inhibitor 203 to the metal oxide layer 206 is determined by, for example, the adsorption energy of the inhibitor 203 (for example, alcohols, amines and heterocyclic compounds) on the surface (surface site) of the metal oxide layer 206. Can be predicted by evaluating. The "adsorption energy" is given as a value obtained by subtracting the energy before adsorption from the energy when the inhibitor 203 is adsorbed on the surface site, and a negative value means that the adsorption state is stable. Further, the larger the adsorption energy (negative value), the easier it is for the inhibitor 203 to be adsorbed on the surface site, and the stronger the adsorption force is. The adsorption energy is obtained by, for example, the density functional theory (PBE / DNP) using the DMol3 module of the software Materials Studio.
 アルコール類、アミン類及び複素環式化合物は、金属酸化物の表面に対する吸着エネルギーが高いので、図2Bに示されるように、凹部202の上面202cに底面202a及び内壁202bよりも多く吸着しやすい。なお、図2Bは、1回目のサイクルにおける阻害剤を供給する工程S1を示しているため凹部202の絶縁膜201が露出しているが、2回目のサイクル以降における阻害剤を供給する工程S1では凹部202の表面は金属酸化物層206で覆われている。すなわち、1回目のサイクルでは凹部202の絶縁膜201が露出した表面に阻害剤203が吸着するが、2回目のサイクル以降では金属酸化物層206の表面に阻害剤203が吸着する。 Since alcohols, amines and heterocyclic compounds have high adsorption energy to the surface of the metal oxide, as shown in FIG. 2B, they are more likely to be adsorbed on the upper surface 202c of the recess 202 than on the bottom surface 202a and the inner wall 202b. Note that FIG. 2B shows the step S1 of supplying the inhibitor in the first cycle, so that the insulating film 201 of the recess 202 is exposed, but in the step S1 of supplying the inhibitor in the second and subsequent cycles. The surface of the recess 202 is covered with the metal oxide layer 206. That is, in the first cycle, the inhibitor 203 is adsorbed on the exposed surface of the insulating film 201 of the recess 202, but in the second and subsequent cycles, the inhibitor 203 is adsorbed on the surface of the metal oxide layer 206.
 工程S1では、複素環式化合物を含む阻害剤203を供給することが好ましい。これにより、前駆体ガスを供給する工程S2の後に行われるパージする工程S3又はパージする工程S5において阻害剤203を容易に除去できる。アルコール類及びアミン類はプロトン性を有し、金属酸化物の表面に吸着する際に金属酸化物に対してプロトン(H+)を供与するため、金属酸化物の表面に結合する力が強い。一方、複素環式化合物は非プロトン性を有し、金属酸化物の表面に吸着する際に金属酸化物に対してプロトン(H+)を供与しないため、アルコール類及びアミン類に比べて金属酸化物の表面に結合する力が弱い。そのため、工程S1において複素環式化合物を含む阻害剤203を用いる場合、前駆体ガスを供給する工程S2の後に行われるパージする工程S3又はパージする工程S5において阻害剤203を容易に除去できる。その結果、目的とする金属酸化物膜に阻害剤203が混入することを防止できる。 In step S1, it is preferable to supply the inhibitor 203 containing the heterocyclic compound. Thereby, the inhibitor 203 can be easily removed in the purging step S3 or the purging step S5 performed after the step S2 for supplying the precursor gas. Alcohols and amines have protic properties and donate protons (H +) to the metal oxide when adsorbed on the surface of the metal oxide, so that they have a strong ability to bind to the surface of the metal oxide. On the other hand, heterocyclic compounds have aprotic properties and do not donate protons (H +) to metal oxides when adsorbed on the surface of metal oxides, so metal oxides are compared to alcohols and amines. The force to bond to the surface of is weak. Therefore, when the inhibitor 203 containing the heterocyclic compound is used in step S1, the inhibitor 203 can be easily removed in the purging step S3 or the purging step S5 performed after the precursor gas supply step S2. As a result, it is possible to prevent the inhibitor 203 from being mixed into the target metal oxide film.
 なお、金属酸化物層206の表面に吸着した阻害剤203を除去するために、工程S2~S5の少なくともいずれかの工程の後に、基板200をO雰囲気、O雰囲気、Oプラズマ、Oプラズマ又はこれらの組み合わせに曝露させる工程を行ってもよい。特に、工程S1においてアルコール類及びアミン類を含む阻害剤203を用いる場合、金属酸化物の表面に吸着した阻害剤203を短時間で除去できるという観点から、基板200をO雰囲気、O雰囲気、Oプラズマ、Oプラズマ又はこれらの組み合わせに曝露させる工程を行うことが好ましい。 In order to remove the inhibitor 203 adsorbed on the surface of the metal oxide layer 206, the substrate 200 is subjected to O 2 atmosphere, O 3 atmosphere, O 2 plasma, and O after at least one of steps S2 to S5. 3 The step of exposing to plasma or a combination thereof may be performed. In particular, when the inhibitor 203 containing alcohols and amines is used in step S1, the substrate 200 has an O 2 atmosphere and an O 3 atmosphere from the viewpoint that the inhibitor 203 adsorbed on the surface of the metal oxide can be removed in a short time. , O 2 plasma, O 3 plasma, or a combination thereof.
 工程S2では、図2Cに示されるように、凹部202に金属錯体204を含む前駆体ガスを供給する。これにより、図2Dに示されるように、凹部202に前駆体ガスに含まれる金属錯体204が化学吸着することにより、前駆体ガスから前駆体層が形成される。具体的には、処理容器内に前駆体ガスが供給されると、前駆体ガスが凹部202の表面(処理面)に接触し、金属錯体204が凹部202の表面に化学吸着する。つまり、金属錯体204中の金属原子が凹部202の表面に形成された水酸基等の官能基と反応することにより、金属錯体204(前駆体)が凹部202の表面に化学的に結合する。その結果、凹部202の表面に結合した複数の前駆体からなる前駆体層が形成される。 In step S2, as shown in FIG. 2C, the precursor gas containing the metal complex 204 is supplied to the recess 202. As a result, as shown in FIG. 2D, the metal complex 204 contained in the precursor gas is chemically adsorbed in the recess 202, so that the precursor layer is formed from the precursor gas. Specifically, when the precursor gas is supplied into the processing container, the precursor gas comes into contact with the surface (treated surface) of the recess 202, and the metal complex 204 is chemically adsorbed on the surface of the recess 202. That is, the metal atom in the metal complex 204 reacts with a functional group such as a hydroxyl group formed on the surface of the recess 202, so that the metal complex 204 (precursor) is chemically bonded to the surface of the recess 202. As a result, a precursor layer composed of a plurality of precursors bonded to the surface of the recess 202 is formed.
 ところで、凹部202のアスペクト比が高くなると、凹部202の上面202cに比べて底面202a及び内壁202bに金属錯体204が到達しにくい。そのため、凹部202の上面202cに底面202a及び内壁202bよりも多くの金属錯体204が吸着し、均一な厚さを有する前駆体層を得ることが困難である。 By the way, when the aspect ratio of the recess 202 becomes high, it is difficult for the metal complex 204 to reach the bottom surface 202a and the inner wall 202b as compared with the upper surface 202c of the recess 202. Therefore, it is difficult to obtain a precursor layer having a uniform thickness because more metal complexes 204 are adsorbed on the upper surface 202c of the recess 202 than the bottom surface 202a and the inner wall 202b.
 しかし、一実施形態の金属酸化物膜の形成方法では、工程S1において凹部202の上面202cに底面202a及び内壁202bよりも多くの阻害剤203を吸着させているので、凹部202の上面202cに吸着する金属錯体204の量が低減される。そのため、工程S2では、凹部202の底面202a及び内壁202bに金属錯体204が吸着しやすくなり、均一な厚さを有する前駆体層が得られる。 However, in the method for forming the metal oxide film of one embodiment, since the inhibitor 203 is adsorbed on the upper surface 202c of the recess 202 more than the bottom surface 202a and the inner wall 202b in step S1, it is adsorbed on the upper surface 202c of the recess 202. The amount of metal complex 204 to be produced is reduced. Therefore, in step S2, the metal complex 204 is easily adsorbed on the bottom surface 202a and the inner wall 202b of the recess 202, and a precursor layer having a uniform thickness can be obtained.
 なお、本明細書において、「前駆体ガス」とは、金属錯体204を含む前駆体(プリカーサ)からなるガスを意味する。また、前駆体の構造は、基板に化学吸着する前後において異なるが、本明細書では便宜的にこれらを総称して前駆体という。 In addition, in this specification, a "precursor gas" means a gas composed of a precursor (precursor) containing a metal complex 204. The structure of the precursor differs before and after chemisorption on the substrate, but in the present specification, these are collectively referred to as a precursor for convenience.
 工程S2では、目的とする金属酸化物膜を構成する金属の種類に応じて種々の金属錯体204を利用できる。金属錯体204は、凹部202の表面に化学吸着し得るものであればよい。金属錯体204は、例えば下記式(1)で表される。 In step S2, various metal complexes 204 can be used depending on the type of metal constituting the target metal oxide film. The metal complex 204 may be any as long as it can be chemically adsorbed on the surface of the recess 202. The metal complex 204 is represented by, for example, the following formula (1).
Figure JPOXMLDOC01-appb-C000001
[式(1)中、Mは中心金属を示し、L~Lは各々独立してリガンド(配位子)を示す。L~Lは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000001
[In formula (1), M indicates a metal center, shows the ligand (ligand) L 1 ~ L 4 are each independently. L 1 ~ L 4 may be the being the same or different. ]
 中心金属は、ハフニウム、ジルコニウム、アルミニウム、タンタル、タングステン、チタン、ニオブ、モリブデン、コバルト、ニッケル等であってよい。すなわち、金属錯体は、ハフニウム錯体、ジルコニウム錯体、アルミニウム錯体、タンタル錯体、タングステン錯体、チタン錯体、ニオブ錯体、モリブデン錯体、コバルト錯体、ニッケル錯体等であってよい。金属錯体は、高い誘電率を有する金属酸化物膜が得られる観点から、ハフニウム錯体、ジルコニウム錯体、アルミニウム錯体、タンタル錯体、又はタングステン錯体であることが好ましい。金属錯体の具体例としては、トリス(ジメチルアミノ)シクロペンタジエニル・ジルコニウム(Zr[N(CH[C])が挙げられる。 The central metal may be hafnium, zirconium, aluminum, tantalum, tungsten, titanium, niobium, molybdenum, cobalt, nickel and the like. That is, the metal complex may be a hafnium complex, a zirconium complex, an aluminum complex, a tantalum complex, a tungsten complex, a titanium complex, a niobium complex, a molybdenum complex, a cobalt complex, a nickel complex or the like. The metal complex is preferably a hafnium complex, a zirconium complex, an aluminum complex, a tantalum complex, or a tungsten complex from the viewpoint of obtaining a metal oxide film having a high dielectric constant. Specific examples of the metal complex include tris (dimethylamino) cyclopentadienyl zirconium (Zr [N (CH 3 ) 2 ] 3 [C 5 H 5 ]).
 リガンドとしては、t-ブチルアルコール、イソプロピルアルコール、イソブチルアルコール等のアルコール、ジメチルアミン、エチルメチルアミン、ジエチルアミン、t-ブチルアミン等のアミン、シクロペンタジエン、ブタジエン、ベンゼン等が挙げられる。 Examples of the ligand include alcohols such as t-butyl alcohol, isopropyl alcohol and isobutyl alcohol, amines such as dimethylamine, ethylmethylamine, diethylamine and t-butylamine, cyclopentadiene, butadiene and benzene.
 リガンドは水素原子を含む官能基を有していてよい。リガンドが水素原子を含む官能基を有する場合、後述する工程S4において供給する酸化ガスに含まれる酸化剤205が該官能基と反応してHOを生成する場合がある。そのため、リガンドが水素原子を含む官能基を有し、且つ、酸化ガスが該官能基と反応してHOを生成する酸化剤205を含むガスである場合、本開示の効果が顕著に奏される。水素原子を含む官能基としては、例えば、炭化水素基が挙げられる。 The ligand may have a functional group containing a hydrogen atom. When the ligand has a functional group containing a hydrogen atom, the oxidant 205 contained in the oxidizing gas supplied in step S4 described later may react with the functional group to generate H 2 O. Therefore, when the ligand has a functional group containing a hydrogen atom and the oxidizing gas is a gas containing an oxidizing agent 205 that reacts with the functional group to generate H 2 O, the effect of the present disclosure is remarkably exhibited. Will be done. Examples of the functional group containing a hydrogen atom include a hydrocarbon group.
 工程S2において前駆体ガスを供給する条件は、特に限定されず、ALDプロセスにより前駆体層を形成する条件として従来公知の条件を適用可能である。 The conditions for supplying the precursor gas in step S2 are not particularly limited, and conventionally known conditions can be applied as conditions for forming the precursor layer by the ALD process.
 前駆体ガスの供給は、希釈ガス環境下で実行してよい。例えば、処理容器内を希釈ガスで置換した後に前駆体ガスを供給してよい。また、例えば前駆体ガスと共に、希釈ガスを処理容器内に供給してもよい。この場合、処理容器内に希釈ガスを供給しながら前駆体ガスを供給してよく、前駆体ガスと希釈ガスとを混合し、希釈ガスによって希釈された前駆体ガス(混合ガス)を処理容器内に供給してもよい。希釈ガスの詳細は、工程S1において説明した希釈ガスの詳細と同じである。 The supply of precursor gas may be carried out in a diluted gas environment. For example, the precursor gas may be supplied after replacing the inside of the processing container with a diluting gas. Further, for example, the diluted gas may be supplied into the processing container together with the precursor gas. In this case, the precursor gas may be supplied while supplying the dilution gas into the processing container, the precursor gas and the dilution gas are mixed, and the precursor gas (mixed gas) diluted by the dilution gas is supplied into the processing container. May be supplied to. The details of the diluting gas are the same as the details of the diluting gas described in step S1.
 工程S3では、処理容器内にパージガスを供給する。これにより、処理容器内に残存する前駆体ガス及び阻害剤203が処理容器内から除去される。具体的には、処理容器内にパージガスが供給されることで、パージガスと共に、処理容器内の前駆体ガス及び阻害剤203が排気されて処理容器内から除去される。 In step S3, purge gas is supplied into the processing container. As a result, the precursor gas and the inhibitor 203 remaining in the processing container are removed from the processing container. Specifically, when the purge gas is supplied into the processing container, the precursor gas and the inhibitor 203 in the processing container are exhausted together with the purge gas and removed from the processing container.
 パージガスとしては、例えば、Nガス、希ガス等の不活性ガス、COガス及びCOガスが挙げられる。前駆体ガス、酸化ガス及びHO除去ガスに該当するガスは、パージガスには含まれない。工程S3においてパージガスを供給する条件は、特に限定されない。 Examples of the purge gas include an inert gas such as N 2 gas and a rare gas, CO 2 gas and CO gas. Gas corresponding to the precursor gas, oxidizing gas and H 2 O removal gas is not included in the purge gas. The conditions for supplying the purge gas in step S3 are not particularly limited.
 なお、工程S3は、例えば処理容器内にパージガスを供給することなく、処理容器内を真空引きすることにより行われてもよい。また、工程S3は、処理容器内にパージガスを供給した後、処理容器内にパージガスを供給することなく、処理容器内の真空引きすることにより行われてもよい。さらに、工程S3は、パージガスの供給と真空引きとを繰り返すサイクルパージにより行われてもよい。 Note that the step S3 may be performed, for example, by evacuating the inside of the processing container without supplying the purge gas into the processing container. Further, the step S3 may be performed by supplying the purge gas into the processing container and then evacuating the inside of the processing container without supplying the purge gas into the processing container. Further, the step S3 may be performed by a cycle purge in which the supply of the purge gas and the evacuation are repeated.
 工程S4では、図2Eに示されるように、凹部202に酸化剤205を含む酸化ガスを供給する。これにより、図2Fに示されるように、酸化ガスにより前駆体層が酸化して金属酸化物層206が形成される。具体的には、処理容器内に酸化ガスが供給されると、酸化ガスに含まれる酸化剤205が前駆体層と接触し、前駆体層を構成する金属錯体204(前駆体)と酸化剤205とが反応する。これにより、前駆体が酸化され、金属酸化物からなる金属酸化物層206が形成される。この際、前駆体からリガンド207が脱離する。 In step S4, as shown in FIG. 2E, an oxidizing gas containing an oxidizing agent 205 is supplied to the recess 202. As a result, as shown in FIG. 2F, the precursor layer is oxidized by the oxidizing gas to form the metal oxide layer 206. Specifically, when the oxidizing gas is supplied into the processing container, the oxidizing agent 205 contained in the oxidizing gas comes into contact with the precursor layer, and the metal complex 204 (precursor) constituting the precursor layer and the oxidizing agent 205 Reacts with. As a result, the precursor is oxidized to form a metal oxide layer 206 made of a metal oxide. At this time, the ligand 207 is eliminated from the precursor.
 酸化ガスは、HOを含むガス(例えばHOのガス)、又は、金属錯体204が有する水素原子を含む官能基と反応してHOを生成する酸化剤を含むガス(例えば金属錯体204が有する水素原子を含む官能基と反応してHOを生成する酸化剤のガス)である。なお、阻害剤203に該当するガスは酸化ガスには含まれない。金属錯体204が有する水素原子を含む官能基と反応してHOを生成する酸化剤としては、例えば、O、H/O混合気、Oプラズマ、O、H等が挙げられる。酸化ガスとしてHOを含むガスを用いる場合、酸化ガス由来のHOが金属酸化物膜に水素結合によって吸着する。酸化ガスとしてO、H/O混合気、Oプラズマ、O、H等の酸化剤を含むガスを用いる場合、該酸化剤と金属錯体204が有する水素原子を含む官能基との反応由来のHOが金属酸化物膜に水素結合によって吸着する。酸化ガスは、低温条件下で金属酸化物層206を形成できるという観点から、O、H/O混合気、Oプラズマ、O及びHからなる群より選択される少なくとも一種を含むガスであることが好ましく、O、H/O混合気、及びOプラズマからなる群より選択される少なくとも一種を含むガスであることがより好ましい。工程S4において酸化ガスを供給する条件は、特に限定されない。 The oxidation gas is a gas containing H 2 O (for example, a gas containing H 2 O) or a gas containing an oxidizing agent that reacts with a functional group containing a hydrogen atom of the metal complex 204 to produce H 2 O (for example, a metal). complex 204 is reacted with a functional group gas oxidizer that generates H 2 O) containing a hydrogen atom of the. The gas corresponding to the inhibitor 203 is not included in the oxidizing gas. Examples of the oxidizing agent that reacts with the functional group containing a hydrogen atom of the metal complex 204 to generate H 2 O include O 3 , H 2 / O 2 mixture, O 2 plasma, O 2 , and H 2 O 2. And so on. When a gas containing H 2 O is used as the oxidation gas, H 2 O derived from the oxidation gas is adsorbed on the metal oxide film by hydrogen bonds. When a gas containing an oxidizing agent such as O 3 , H 2 / O 2 mixture, O 2 plasma, O 2 , H 2 O 2 or the like is used as the oxidizing gas, the function containing the hydrogen atom contained in the oxidizing agent and the metal complex 204 H 2 O derived from the reaction with the group is adsorbed on the metal oxide film by hydrogen peroxide. The oxidation gas is at least selected from the group consisting of O 3 , H 2 / O 2 mixture, O 2 plasma, O 2 and H 2 O 2 from the viewpoint that the metal oxide layer 206 can be formed under low temperature conditions. It is preferably a gas containing one kind, and more preferably a gas containing at least one selected from the group consisting of O 3 , H 2 / O 2 mixture, and O 2 plasma. The conditions for supplying the oxidizing gas in step S4 are not particularly limited.
 酸化ガスの供給は、希釈ガス環境下で実行してよい。例えば、処理容器内を希釈ガスで置換した後に酸化ガスを供給してよい。また、例えば酸化ガスと共に、希釈ガスを処理容器内に供給してもよい。この場合、処理容器内に希釈ガスを供給しながら酸化ガスを供給してもよく、酸化ガスと希釈ガスとを混合し、希釈ガスによって希釈された酸化ガス(混合ガス)を処理容器内に供給してもよい。希釈ガスの詳細は、工程S1において説明した希釈ガスの詳細と同じである。 Oxidation gas supply may be performed in a diluted gas environment. For example, the inside of the processing container may be replaced with a diluting gas, and then the oxidation gas may be supplied. Further, for example, the diluted gas may be supplied into the processing container together with the oxidizing gas. In this case, the oxidation gas may be supplied while supplying the dilution gas into the processing container, or the oxidation gas and the dilution gas are mixed and the oxidation gas (mixed gas) diluted by the dilution gas is supplied into the processing container. You may. The details of the diluting gas are the same as the details of the diluting gas described in step S1.
 工程S5では、処理容器内にパージガスを供給する。これにより、処理容器内に残存する酸化ガス、前駆体由来のリガンド207及び阻害剤203が排気されて処理容器内から除去される。工程S5におけるパージガスの詳細及びパージガスを供給する際の条件は、前述した工程S3と同じであってよい。 In step S5, purge gas is supplied into the processing container. As a result, the oxidizing gas remaining in the processing container, the ligand 207 derived from the precursor, and the inhibitor 203 are exhausted and removed from the processing container. The details of the purge gas in step S5 and the conditions for supplying the purge gas may be the same as those in step S3 described above.
 工程S6では、工程S1~S5のサイクルの繰り返し数が所定回数に到達したか否かを判定する。工程S6において、工程S1~S5のサイクルの繰り返し数が所定回数に到達したと判定された場合、処理を終了する。一方、工程S6において、工程S1~S5のサイクルが所定回数に到達していないと判定された場合、工程S1へ戻る。なお、所定回数は、目的とする金属酸化物膜の膜厚に応じて定められる。 In step S6, it is determined whether or not the number of repetitions of the cycles of steps S1 to S5 has reached a predetermined number of times. In step S6, when it is determined that the number of repetitions of the cycles of steps S1 to S5 has reached a predetermined number of times, the process ends. On the other hand, in step S6, when it is determined that the cycle of steps S1 to S5 has not reached a predetermined number of times, the process returns to step S1. The predetermined number of times is determined according to the film thickness of the target metal oxide film.
 以上に説明したように、一実施形態の金属酸化物膜の形成方法では、凹部202に前駆体ガスを供給する前に、凹部202の上部に下部よりも多くのアルコール類、アミン類又は複素環式化合物を含む阻害剤203を吸着させる。アルコール類、アミン類又は複素環式化合物は、金属酸化物層206に対する吸着エネルギーが大きいので、金属酸化物層206の表面に容易に吸着する。凹部202の上部に下部よりも多くのアルコール類、アミン類又は複素環式化合物を含む阻害剤203が吸着していると、凹部202に金属錯体204を含む前駆体ガスを供給した際に、凹部202の上面202cにおける金属錯体204の吸着が阻害される。そのため、均一な厚さを有する前駆体層が得られる。その結果、酸化ガスにより前駆体層を酸化して形成される金属酸化物層206の厚さが均一となる。すなわち、凹部202にコンフォーマルな金属酸化物膜を形成できる。 As described above, in the method for forming the metal oxide film of one embodiment, before supplying the precursor gas to the recess 202, more alcohols, amines or heterocycles are formed in the upper portion of the recess 202 than in the lower portion. Inhibitor 203 containing the formula compound is adsorbed. Since alcohols, amines or heterocyclic compounds have a large adsorption energy for the metal oxide layer 206, they are easily adsorbed on the surface of the metal oxide layer 206. When the inhibitor 203 containing more alcohols, amines or heterocyclic compounds is adsorbed on the upper part of the recess 202 than on the lower part, when the precursor gas containing the metal complex 204 is supplied to the recess 202, the recess 202 is adsorbed. Adsorption of the metal complex 204 on the upper surface 202c of 202 is inhibited. Therefore, a precursor layer having a uniform thickness can be obtained. As a result, the thickness of the metal oxide layer 206 formed by oxidizing the precursor layer with the oxidizing gas becomes uniform. That is, a conformal metal oxide film can be formed in the recess 202.
 また、一実施形態の金属酸化物膜の形成方法は、例えばゲート絶縁膜、キャパシタ絶縁膜を形成する用途において、好適に用いることができる。特に、3DNAND、DRAM等のメモリセルを有する半導体装置では、トレンチ構造の複雑化、トレンチのアスペクト比の増加等に伴い絶縁膜の段差被覆性が重要な課題となってきている。そこで、一実施形態の金属酸化物膜の形成方法によれば、高ステップカバレッジ及び低ローディング効果の理想的なコンフォーマル成膜が可能である。 Further, the method for forming a metal oxide film of one embodiment can be suitably used in, for example, an application for forming a gate insulating film and a capacitor insulating film. In particular, in semiconductor devices having memory cells such as 3D NAND and DRAM, the step covering property of the insulating film has become an important issue due to the complicated trench structure and the increase in the aspect ratio of the trench. Therefore, according to the method for forming a metal oxide film of one embodiment, ideal conformal film formation with high step coverage and low loading effect is possible.
 また、一実施形態の金属酸化物膜の形成方法は低温条件下で実行できるため、低温条件下においてもコンフォーマルな金属酸化物膜を形成できる。また、半導体装置の製造方法において前述の金属酸化物膜の形成方法を適用することにより、キャパシタ絶縁膜、ゲート絶縁膜等の金属酸化物膜の形成プロセスにおける半導体基板への熱によるダメージを低減し、コンフォーマルな絶縁膜を形成できる。すなわち、一実施形態の金属酸化物膜の形成方法によれば、コンフォーマルな絶縁膜(キャパシタ絶縁膜、ゲート絶縁膜等)を有する半導体装置が得られる。 Further, since the method for forming the metal oxide film of one embodiment can be carried out under low temperature conditions, a conformal metal oxide film can be formed even under low temperature conditions. Further, by applying the above-mentioned metal oxide film forming method to the semiconductor device manufacturing method, damage due to heat to the semiconductor substrate in the metal oxide film forming process such as a capacitor insulating film and a gate insulating film can be reduced. , A conformal insulating film can be formed. That is, according to the method for forming a metal oxide film of one embodiment, a semiconductor device having a conformal insulating film (capacitor insulating film, gate insulating film, etc.) can be obtained.
 なお、図1の例では、複数回のサイクルのうち全てのサイクルが、阻害剤203を供給する工程S1を含む場合を示したが、本開示はこれに限定されない。例えば、複数回のサイクルのうち少なくとも一部が、阻害剤203を供給する工程S1を含んでいればよい。言い換えると、複数回のサイクルのうち少なくとも一部のサイクルにおいて、阻害剤203を供給する工程S1を省略してもよい。ただし、よりコンフォーマルな金属酸化物膜を得るという観点から、阻害剤203を供給する工程S1を全てのサイクルにおいて行うことが好ましい。 Note that, in the example of FIG. 1, all of the plurality of cycles include the step S1 of supplying the inhibitor 203, but the present disclosure is not limited to this. For example, at least a portion of the plurality of cycles may include step S1 of supplying the inhibitor 203. In other words, the step S1 of supplying the inhibitor 203 may be omitted in at least a part of the plurality of cycles. However, from the viewpoint of obtaining a more conformal metal oxide film, it is preferable to carry out the step S1 of supplying the inhibitor 203 in all the cycles.
 また、阻害性能の調整のため、複数回のサイクルのうち少なくとも一部のサイクルにおいて、工程S1と工程S2との間に、処理容器内にパージガスを供給するパージ工程を行ってもよい。工程S1と工程S2との間にパージ工程を行うことにより、阻害性能を軽減することができ、生産性(成膜速度)が向上する。複数回のサイクルのうち工程S1と工程S2との間にパージ工程を行うサイクル数を変更することで、生産性と均一性のバランスを調整できる。ただし、複数回のサイクルのうち工程S1と工程S2との間にパージ工程を行うサイクル数は、阻害剤203を全部除去しないように設定することが好ましい。 Further, in order to adjust the inhibition performance, a purge step of supplying purge gas into the processing container may be performed between the steps S1 and S2 in at least a part of the plurality of cycles. By performing the purging step between the step S1 and the step S2, the inhibition performance can be reduced and the productivity (film formation rate) is improved. The balance between productivity and uniformity can be adjusted by changing the number of cycles in which the purging step is performed between the step S1 and the step S2 among the plurality of cycles. However, it is preferable that the number of cycles in which the purging step is performed between the step S1 and the step S2 out of a plurality of cycles is set so as not to completely remove the inhibitor 203.
 〔成膜装置〕
 一実施形態の金属酸化物膜の形成方法に用いられる成膜装置について、バッチ式の縦型熱処理装置を例に挙げて説明する。図3は、一実施形態の金属酸化物膜の形成方法に用いられる成膜装置の一例を示す図である。
[Film formation device]
The film forming apparatus used in the method for forming the metal oxide film of one embodiment will be described by taking a batch type vertical heat treatment apparatus as an example. FIG. 3 is a diagram showing an example of a film forming apparatus used in the method for forming a metal oxide film of one embodiment.
 縦型熱処理装置1は、全体として縦長の鉛直方向に延びた形状を有する。縦型熱処理装置1は、縦長で鉛直方向に延びた処理容器10を有する。 The vertical heat treatment apparatus 1 has a vertically long shape extending in the vertical direction as a whole. The vertical heat treatment apparatus 1 has a vertically long processing container 10 extending in the vertical direction.
 処理容器10は、例えば石英により形成される。処理容器10は、例えば円筒体の内管11と、内管11の外側に同心的に載置された有天井の外管12との2重管構造を有する。処理容器10の下端部は、例えばステンレス鋼製のマニホールド20により気密に保持される。 The processing container 10 is formed of, for example, quartz. The processing container 10 has, for example, a double pipe structure of a cylindrical inner pipe 11 and a ceilinged outer pipe 12 placed concentrically on the outside of the inner pipe 11. The lower end of the processing container 10 is hermetically held by, for example, a stainless steel manifold 20.
 マニホールド20は、例えばベースプレート(図示せず)に固定される。マニホールド20は、インジェクタ30と、ガス排気部40とを有する。 The manifold 20 is fixed to, for example, a base plate (not shown). The manifold 20 has an injector 30 and a gas exhaust unit 40.
 インジェクタ30は、処理容器10内に各種のガスを導入するガス供給部である。各種のガスは、一実施形態の金属酸化物膜の形成方法において使用されるガスを含む。すなわち、各種のガスは、前駆体ガス、酸化ガス、阻害剤、パージガスを含む。 The injector 30 is a gas supply unit that introduces various gases into the processing container 10. The various gases include the gases used in the method of forming a metal oxide film of one embodiment. That is, the various gases include a precursor gas, an oxidizing gas, an inhibitor, and a purge gas.
 インジェクタ30には、各種のガスを導入するための配管31が接続される。配管31には、ガス流量を調整するためのマスフローコントローラ等の流量調整部(図示せず)やバルブ(図示せず)等が介設される。インジェクタ30は、例えば1つであってよく(図1参照)、複数(図示せず)であってもよい。 A pipe 31 for introducing various gases is connected to the injector 30. The pipe 31 is provided with a flow rate adjusting unit (not shown), a valve (not shown), or the like such as a mass flow controller for adjusting the gas flow rate. The number of injectors 30 may be, for example, one (see FIG. 1) or a plurality (not shown).
 ガス排気部40は、処理容器10内を排気する。ガス排気部40には、配管41が接続されている。配管41には、処理容器10内を減圧制御可能な開度可変弁42、真空ポンプ43等が介設されている。 The gas exhaust unit 40 exhausts the inside of the processing container 10. A pipe 41 is connected to the gas exhaust unit 40. The pipe 41 is provided with a variable opening valve 42, a vacuum pump 43, and the like that can control the pressure inside the processing container 10.
 マニホールド20の下端部には、炉口21が形成されている。炉口21には、例えばステンレス鋼製の円盤状の蓋体50が設けられている。 A furnace port 21 is formed at the lower end of the manifold 20. The hearth 21 is provided with, for example, a stainless steel disk-shaped lid 50.
 蓋体50は、昇降機構51により昇降可能に設けられており、炉口21を気密に封止可能に構成されている。蓋体50の上には、例えば石英製の保温筒60が設置されている。 The lid 50 is provided so as to be able to move up and down by an elevating mechanism 51, and is configured so that the furnace port 21 can be hermetically sealed. For example, a quartz heat insulating cylinder 60 is installed on the lid 50.
 保温筒60の上には、複数のウエハWを水平状態で所定間隔を有して多段に保持する、例えば石英製のウエハボート70が載置されている。 On the heat insulating cylinder 60, for example, a wafer boat 70 made of quartz, which holds a plurality of wafers W in a horizontal state at predetermined intervals in multiple stages, is placed.
 ウエハボート70は、昇降機構51を用いて、蓋体50を上昇させることで処理容器10内へと搬入され、処理容器10内に収容される。また、ウエハボート70は、蓋体50を下降させることで処理容器10内から搬出される。ウエハボート70は、長手方向に複数のスロット(支持溝)を有する溝構造を有し、ウエハWはそれぞれ水平状態で上下に間隔をおいてスロットに積載される。ウエハボート70に載置される複数のウエハは、1つのバッチを構成し、バッチ単位で各種の熱処理が施される。 The wafer boat 70 is carried into the processing container 10 by raising the lid 50 using the elevating mechanism 51, and is housed in the processing container 10. Further, the wafer boat 70 is carried out from the processing container 10 by lowering the lid 50. The wafer boat 70 has a groove structure having a plurality of slots (support grooves) in the longitudinal direction, and the wafers W are loaded in the slots at vertical intervals in a horizontal state. A plurality of wafers placed on the wafer boat 70 form one batch, and various heat treatments are applied in batch units.
 処理容器10の外側には、ヒータ80が設けられる。ヒータ80は、例えば円筒形状を有し、処理容器10を所定の温度に加熱する。 A heater 80 is provided on the outside of the processing container 10. The heater 80 has, for example, a cylindrical shape, and heats the processing container 10 to a predetermined temperature.
 縦型熱処理装置1には、例えばコンピュータからなる制御部100が設けられている。制御部100はプログラム、メモリ、CPUからなるデータ処理部等を備えている。プログラムには、制御部100から縦型熱処理装置1の各部に制御信号を送り、一実施形態の金属酸化物膜の形成方法を実行させるように命令(各ステップ)が組み込まれている。プログラムは、コンピュータ記憶媒体例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)及びメモリーカード等の記憶媒体に格納されて制御部100にインストールされる。 The vertical heat treatment apparatus 1 is provided with a control unit 100 including, for example, a computer. The control unit 100 includes a data processing unit including a program, a memory, and a CPU. The program incorporates instructions (each step) to send a control signal from the control unit 100 to each unit of the vertical heat treatment apparatus 1 to execute the method for forming the metal oxide film of one embodiment. The program is stored in a storage medium such as a computer storage medium such as a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), and a memory card, and is installed in the control unit 100.
 〔成膜装置の動作〕
 成膜装置の動作について、前述の縦型熱処理装置1を例に挙げて説明する。
[Operation of film forming equipment]
The operation of the film forming apparatus will be described by taking the above-mentioned vertical heat treatment apparatus 1 as an example.
 まず、制御部100は、昇降機構51を制御して、複数のウエハWを保持したウエハボート70を処理容器10内に搬入し、処理容器10の下端の開口を蓋体50で気密に塞ぎ密閉する。 First, the control unit 100 controls the elevating mechanism 51 to carry the wafer boat 70 holding the plurality of wafers W into the processing container 10, and airtightly closes the opening at the lower end of the processing container 10 with the lid 50 to seal the wafer. To do.
 続いて、制御部100は、開度可変弁42を制御して処理容器10内を設定圧力に調整し、ヒータ80を制御してウエハWを設定温度に調整する。また、制御部100は、ウエハボート70を回転させる。 Subsequently, the control unit 100 controls the opening degree variable valve 42 to adjust the inside of the processing container 10 to the set pressure, and controls the heater 80 to adjust the wafer W to the set temperature. Further, the control unit 100 rotates the wafer boat 70.
 続いて、制御部100は、一実施形態の金属酸化物膜の形成方法を実行するように、インジェクタ30から処理容器10内に所定のタイミングで前駆体ガス、酸化ガス、阻害剤及びパージガスを供給する。これにより、複数のウエハWの各々の表面に金属酸化物膜が形成される。 Subsequently, the control unit 100 supplies the precursor gas, the oxidizing gas, the inhibitor, and the purge gas from the injector 30 into the processing container 10 at a predetermined timing so as to execute the method for forming the metal oxide film of one embodiment. To do. As a result, a metal oxide film is formed on the surface of each of the plurality of wafers W.
 続いて、制御部100は、処理容器10内を大気圧まで昇圧した後、昇降機構51を制御して、蓋体50と共に処理が終了したウエハWを保持したウエハボート70を処理容器10内から搬出する。 Subsequently, the control unit 100 controls the elevating mechanism 51 after boosting the inside of the processing container 10 to the atmospheric pressure, and transfers the wafer boat 70 holding the processed wafer W together with the lid 50 from the inside of the processing container 10. Carry out.
 以上により、縦型熱処理装置1を用いて、複数のウエハWに対して一度に金属酸化物膜を形成できる。 From the above, the metal oxide film can be formed on a plurality of wafers W at once by using the vertical heat treatment apparatus 1.
 〔シミュレーション結果〕
 ソフトウェアMaterials StudioのDMol3モジュールを用い、密度汎関数法(PBE/DNP)により、HO及び種々の有機化合物の正方晶ジルコニウム酸化物(t-ZrO)の(111)面に対する吸着エネルギーを算出した。
〔simulation result〕
Using DMol3 module software Materials Studio, the density functional theory (PBE / DNP), calculated adsorption energy for (111) plane of the tetragonal zirconium oxide of H 2 O and various organic compounds (t-ZrO 2) did.
 図4は、シミュレーションによる吸着エネルギーの算出結果を示す図である。図4では、左側から順に、トリメチルアミン〔NMe(upside down)〕、トリメチルアミン〔NMe(TMA)〕、エタン〔C〕、ジエチルエーテル〔DEE〕、ジメチルエーテル〔DME〕、テトラヒドロフラン〔THF〕、水〔HO〕、オキサゾール〔oxazole〕、ピリジン〔Py〕、ジメチルアミン〔DMA〕、メタノール〔MeOH〕、エタノール〔EtOH〕、キヌクリジン〔Quinuclidine〕、1-プロパノール〔1-PrOH〕及びt-ブタノール〔t-BuOH〕のt-ZrOの(111)面に対する吸着エネルギーの算出結果を示す。なお、トリメチルアミン〔NMe(upside down)〕とトリメチルアミン〔NMe(TMA)〕は、t-ZrOの(111)面に対する吸着の態様が異なる場合を示している。具体的には、トリメチルアミン〔NMe(TMA)〕は窒素(N)をt-ZrOの(111)面側に向けて吸着する場合を示し、トリメチルアミン〔NMe(upside down)〕は窒素(N)をt-ZrOの(111)面と反対側に向けて吸着する場合を示す。 FIG. 4 is a diagram showing the calculation result of the adsorption energy by the simulation. In Figure 4, in order from the left, trimethylamine [NMe 3 (upside down)], trimethylamine [NMe 3 (TMA)], ethane [C 2 H 6], diethyl ether [DEE], dimethyl ether [DME], tetrahydrofuran [THF] , Water [H 2 O], Oxazole [oxazole], pyridine [Py], Dimethylamine [DMA], Methanol [Methanol], Ethanol [EtOH], Quinclideine, 1-propanol [1-PrOH] and t- The calculation result of the adsorption energy of butanol [t-BuOH] with respect to the (111) plane of t-ZrO 2 is shown. In addition, trimethylamine [NMe 3 (upside down)] and trimethylamine [NMe 3 (TMA)] show a case where the mode of adsorption of t—ZrO 2 on the (111) plane is different. Specifically, trimethylamine [NMe 3 (TMA)] shows a case where nitrogen (N) is adsorbed toward the (111) plane side of t-ZrO 2 , and trimethylamine [NMe 3 (upside down)] is nitrogen ( The case where N) is adsorbed toward the side opposite to the (111) plane of t-ZrO 2 is shown.
 図4に示されるように、トリメチルアミン〔NMe(upside down)〕、トリメチルアミン〔NMe(TMA)〕及びエタン〔C〕の吸着エネルギーは、-1.00eV~-0.50eVであり、t-ZrOの(111)面に対する吸着が弱い。また、ジエチルエーテル〔DEE〕、ジメチルエーテル〔DME〕、テトラヒドロフラン〔THF〕、水〔HO〕及びオキサゾール〔oxazole〕の吸着エネルギーは、-1.50eV~-1.00eVであった。また、ピリジン〔Py〕、ジメチルアミン〔DMA〕、メタノール〔MeOH〕、エタノール〔EtOH〕、キヌクリジン〔Quinuclidine〕、1-プロパノール〔1-PrOH〕及びt-ブタノール〔t-BuOH〕の吸着エネルギーは、-1.50eVよりも高い値であった。 As shown in FIG. 4, trimethylamine [NMe 3 (upside down)], adsorption energy of trimethylamine [NMe 3 (TMA)] and ethane [C 2 H 6] can be -1.00eV ~ -0.50eV , T-ZrO 2 is weakly adsorbed on the (111) plane. Further, the adsorption energy of diethyl ether [DEE], dimethyl ether [DME], tetrahydrofuran [THF], water [H 2 O] and oxazole [oxazole] was -1.50eV ~ -1.00eV. The adsorption energies of pyridine [Py], dimethylamine [DMA], methanol [MeOH], ethanol [EtOH], quinuclidine [Quinuclidine], 1-propanol [1-PrOH] and t-butanol [t-BuOH] are It was higher than -1.50 eV.
 ALDプロセスによりt-ZrOを形成する場合、吸着エネルギーがHOと同程度であるジエチルエーテル〔DEE〕、ジメチルエーテル〔DME〕、テトラヒドロフラン〔THF〕、オキサゾール〔oxazole〕等の有機化合物や、吸着エネルギーがHOよりも高いピリジン〔Py〕、ジメチルアミン〔DMA〕、メタノール〔MeOH〕、エタノール〔EtOH〕、キヌクリジン〔Quinuclidine〕、1-プロパノール〔1-PrOH〕及びt-ブタノール〔t-BuOH〕等の有機化合物を含む阻害剤を用いることが好ましい。これにより、ZrO層の表面に阻害剤を容易に吸着させることができる。また、酸化ガスがHOを含むガス又は金属錯体が有する水素原子を含む官能基と反応してHOを生成する酸化剤を含むガスである場合、工程S4においてZrO層の表面に物理吸着したHOの少なくとも一部が阻害ガスにより除去される。これにより、HOに起因するALDプロセスにおける自己制御性の低下を抑制できる。その結果、1サイクル中にZrO層が多層に成膜されることが抑制され、コンフォーマルなZrO膜を形成できる。 When t-ZrO 2 is formed by the ALD process, organic compounds such as diethyl ether [DEE], dimethyl ether [DME], methanol [THF], and oxazole [oxazole], which have the same adsorption energy as H 2 O, and adsorption. high energy pyridin than H 2 O [Py], dimethylamine [DMA], methanol [MeOH], ethanol [EtOH], quinuclidine [quinuclidine], 1-propanol [1-PrOH] and t- butanol [t-BuOH ] And the like, it is preferable to use an inhibitor containing an organic compound. As a result, the inhibitor can be easily adsorbed on the surface of the ZrO 2 layer. Further, when the oxidizing gas is a gas containing H 2 O or a gas containing an oxidizing agent that reacts with a functional group containing a hydrogen atom of the metal complex to generate H 2 O, the surface of the ZrO 2 layer is subjected to in step S4. At least a part of the physically adsorbed H 2 O is removed by the inhibitory gas. This can suppress the lowering of self-controllability in ALD processes due to the H 2 O. As a result, it is possible to suppress the formation of multiple layers of ZrO 2 layers in one cycle, and to form a conformal ZrO 2 film.
 また、ZrO層の表面に物理吸着したHOの除去を促進するという観点から、吸着エネルギーがHOよりも特に高いピリジン〔Py〕、ジメチルアミン〔DMA〕、メタノール〔MeOH〕、エタノール〔EtOH〕、キヌクリジン〔Quinuclidine〕、1-プロパノール〔1-PrOH〕、t-ブタノール〔t-BuOH〕等の有機化合物を含む阻害剤を用いることが好ましい。 Further, from the viewpoint of promoting the removal of H 2 O physically adsorbed on the surface of the ZrO 2 layer, pyridine [Py], dimethylamine [DMA], methanol [MeOH] and ethanol having particularly higher adsorption energies than H 2 O It is preferable to use an inhibitor containing an organic compound such as [EtOH], quinuclidein, 1-propanol [1-PrOH], and t-butanol [t-BuOH].
 また、非プロトン性を有する複素環式化合物を含む阻害剤を用いることが好ましい。これにより、ZrO層の表面にZrを吸着させた後のパージする工程において、ZrO層の表面に吸着した阻害剤を容易に除去できる。 In addition, it is preferable to use an inhibitor containing a heterocyclic compound having an aprotic property. Thus, in the step of purging after adsorbing the Zr on the surface of the ZrO 2 layer, it can be easily removed inhibitor adsorbed on the surface of the ZrO 2 layer.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above embodiments may be omitted, replaced or modified in various forms without departing from the scope of the appended claims and their gist.
 上記の実施形態では、成膜装置が複数のウエハに対して一度に処理を行うバッチ式の装置である場合を説明したが、本開示はこれに限定されない。例えば、成膜装置はウエハを1枚ずつ処理する枚葉式の装置であってもよい。ただし、バッチ式の装置は枚葉式の装置よりもウエハを収容する処理容器の容積が大きいため、バッチ式の装置を用いて成膜処理を行う場合、枚葉式の装置を用いて成膜処理を行うよりも処理容器内に生じるHOの量が多くなる。そのため、本開示の技術はバッチ式の装置の場合に特に有効である。 In the above embodiment, the case where the film forming apparatus is a batch type apparatus for processing a plurality of wafers at once has been described, but the present disclosure is not limited to this. For example, the film forming apparatus may be a single-wafer type apparatus that processes wafers one by one. However, since the volume of the processing container for accommodating the wafer is larger in the batch type device than in the single-wafer type device, when the film formation process is performed using the batch type device, the film formation is performed using the single-wafer type device. the amount of H 2 O generated in the processing vessel than perform processing increases. Therefore, the technique of the present disclosure is particularly effective in the case of a batch type apparatus.
 本国際出願は、2019年9月20日に出願した日本国特許出願第2019-172302号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2019-172302 filed on September 20, 2019, and the entire contents of the application will be incorporated into this international application.
1   縦型熱処理装置
10  処理容器
30  インジェクタ
40  ガス排気部
100 制御部
1 Vertical heat treatment device 10 Processing container 30 Injector 40 Gas exhaust unit 100 Control unit

Claims (20)

  1.  基板に形成された凹部に、アルコール類及びアミン類を除く複素環式化合物を含む阻害剤を吸着させる工程と、
     前記阻害剤が吸着した前記凹部に金属錯体を含む前駆体ガスを供給することにより、前記基板に前駆体層を形成する工程と、
     前記前駆体層が形成された前記凹部に酸化ガスを供給することにより、前記前駆体層を酸化して金属酸化物層を形成する工程と、
     を有する、
     金属酸化物膜の形成方法。
    A step of adsorbing an inhibitor containing a heterocyclic compound excluding alcohols and amines into a recess formed in the substrate, and a step of adsorbing the inhibitor.
    A step of forming a precursor layer on the substrate by supplying a precursor gas containing a metal complex to the recesses on which the inhibitor is adsorbed.
    A step of oxidizing the precursor layer to form a metal oxide layer by supplying an oxidizing gas to the recess in which the precursor layer is formed.
    Have,
    Method of forming a metal oxide film.
  2.  前記阻害剤を吸着させる工程と前記前駆体層を形成する工程と前記金属酸化物層を形成する工程とを含む複数回のサイクルを実行し、
     前記複数回のサイクルのうち少なくとも一部が、前記阻害剤を吸着させる工程を含む、
     請求項1に記載の金属酸化物膜の形成方法。
    A plurality of cycles including a step of adsorbing the inhibitor, a step of forming the precursor layer, and a step of forming the metal oxide layer are executed.
    At least a part of the plurality of cycles includes a step of adsorbing the inhibitor.
    The method for forming a metal oxide film according to claim 1.
  3.  前記複素環式化合物は、ピリジン、オキサゾール、テトラヒドロフランのうちの少なくとも1つである、
     請求項1又は2に記載の金属酸化物膜の形成方法。
    The heterocyclic compound is at least one of pyridine, oxazole and tetrahydrofuran.
    The method for forming a metal oxide film according to claim 1 or 2.
  4.  前記金属錯体は、ハフニウム錯体、ジルコニウム錯体、アルミニウム錯体、タンタル錯体、タングステン錯体、チタン錯体、ニオブ錯体、モリブデン錯体、コバルト錯体、又はニッケル錯体である、
     請求項1乃至3のいずれか一項に記載の金属酸化物膜の形成方法。
    The metal complex is a hafnium complex, a zirconium complex, an aluminum complex, a tantalum complex, a tungsten complex, a titanium complex, a niobium complex, a molybdenum complex, a cobalt complex, or a nickel complex.
    The method for forming a metal oxide film according to any one of claims 1 to 3.
  5.  前記金属錯体は、Zr[N(CH[C]である、
     請求項4に記載の金属酸化物膜の形成方法。
    The metal complex is Zr [N (CH 3 ) 2 ] 3 [C 5 H 5 ].
    The method for forming a metal oxide film according to claim 4.
  6.  前記酸化ガスは、O、H/O、Oプラズマ、O及びHのうちの少なくとも1つを含む、
     請求項1乃至5のいずれか一項に記載の金属酸化物膜の形成方法。
    The oxidizing gas contains at least one of O 3 , H 2 / O 2 , O 2 plasma, O 2 and H 2 O 2.
    The method for forming a metal oxide film according to any one of claims 1 to 5.
  7.  前記前駆体層を形成する工程と前記金属酸化物層を形成する工程との間に、前記前駆体ガスをパージする工程を更に有する、
     請求項1乃至6のいずれか一項に記載の金属酸化物膜の形成方法。
    A step of purging the precursor gas is further included between the steps of forming the precursor layer and the step of forming the metal oxide layer.
    The method for forming a metal oxide film according to any one of claims 1 to 6.
  8.  前記金属酸化物層を形成する工程と前記阻害剤を吸着させる工程との間に、前記酸化ガスをパージする工程を更に有する、
     請求項1乃至6のいずれか一項に記載の金属酸化物膜の形成方法。
    A step of purging the oxidizing gas is further provided between the step of forming the metal oxide layer and the step of adsorbing the inhibitor.
    The method for forming a metal oxide film according to any one of claims 1 to 6.
  9.  前記阻害剤を吸着させる工程の後、パージを行うことなく前記前駆体層を形成する工程を行う、
     請求項1乃至8のいずれか一項に記載の金属酸化物膜の形成方法。
    After the step of adsorbing the inhibitor, a step of forming the precursor layer without purging is performed.
    The method for forming a metal oxide film according to any one of claims 1 to 8.
  10.  前記金属酸化物膜は、キャパシタ絶縁膜である、
     請求項1乃至9のいずれか一項に記載の金属酸化物膜の形成方法。
    The metal oxide film is a capacitor insulating film.
    The method for forming a metal oxide film according to any one of claims 1 to 9.
  11.  前記金属酸化物膜は、ゲート絶縁膜である、
     請求項1乃至9のいずれか一項に記載の金属酸化物膜の形成方法。
    The metal oxide film is a gate insulating film.
    The method for forming a metal oxide film according to any one of claims 1 to 9.
  12.  基板に形成された凹部に、アルコール類、アミン類及び複素環式化合物の少なくとも一種を含む阻害剤を吸着させる工程と、
     前記阻害剤が吸着した前記凹部にZr[N(CH[C]を含む前駆体ガスを供給することにより、前記基板に前駆体層を形成する工程と、
     前記前駆体層が形成された前記凹部に酸化ガスを供給することにより、前記前駆体層を酸化して金属酸化物層を形成する工程と、
     を有する、
     金属酸化物膜の形成方法。
    A step of adsorbing an inhibitor containing at least one of alcohols, amines and a heterocyclic compound in the recess formed on the substrate, and
    A step of forming a precursor layer on the substrate by supplying a precursor gas containing Zr [N (CH 3 ) 2 ] 3 [C 5 H 5 ] to the recess on which the inhibitor is adsorbed.
    A step of oxidizing the precursor layer to form a metal oxide layer by supplying an oxidizing gas to the recess in which the precursor layer is formed.
    Have,
    Method of forming a metal oxide film.
  13.  前記阻害剤を吸着させる工程と前記前駆体層を形成する工程と前記金属酸化物層を形成する工程とを含む複数回のサイクルを実行し、
     前記複数回のサイクルのうち少なくとも一部が、前記阻害剤を吸着させる工程を含む、
     請求項12に記載の金属酸化物膜の形成方法。
    A plurality of cycles including a step of adsorbing the inhibitor, a step of forming the precursor layer, and a step of forming the metal oxide layer are executed.
    At least a part of the plurality of cycles includes a step of adsorbing the inhibitor.
    The method for forming a metal oxide film according to claim 12.
  14.  前記酸化ガスは、O、H/O、Oプラズマ、O及びHのうちの少なくとも1つを含む、
     請求項12又は13に記載の金属酸化物膜の形成方法。
    The oxidizing gas contains at least one of O 3 , H 2 / O 2 , O 2 plasma, O 2 and H 2 O 2.
    The method for forming a metal oxide film according to claim 12 or 13.
  15.  前記前駆体層を形成する工程と前記金属酸化物層を形成する工程との間に、前記前駆体ガスをパージする工程を更に有する、
     請求項12乃至14のいずれか一項に記載の金属酸化物膜の形成方法。
    A step of purging the precursor gas is further included between the steps of forming the precursor layer and the step of forming the metal oxide layer.
    The method for forming a metal oxide film according to any one of claims 12 to 14.
  16.  前記金属酸化物層を形成する工程と前記阻害剤を吸着させる工程との間に、前記酸化ガスをパージする工程を更に有する、
     請求項12乃至15のいずれか一項に記載の金属酸化物膜の形成方法。
    A step of purging the oxidizing gas is further provided between the step of forming the metal oxide layer and the step of adsorbing the inhibitor.
    The method for forming a metal oxide film according to any one of claims 12 to 15.
  17.  前記阻害剤を吸着させる工程の後、パージを行うことなく前記前駆体層を形成する工程を行う、
     請求項12乃至16のいずれか一項に記載の金属酸化物膜の形成方法。
    After the step of adsorbing the inhibitor, a step of forming the precursor layer without purging is performed.
    The method for forming a metal oxide film according to any one of claims 12 to 16.
  18.  前記金属酸化物膜は、キャパシタ絶縁膜である、
     請求項12乃至17のいずれか一項に記載の金属酸化物膜の形成方法。
    The metal oxide film is a capacitor insulating film.
    The method for forming a metal oxide film according to any one of claims 12 to 17.
  19.  前記金属酸化物膜は、ゲート絶縁膜である、
     請求項12乃至17のいずれか一項に記載の金属酸化物膜の形成方法。
    The metal oxide film is a gate insulating film.
    The method for forming a metal oxide film according to any one of claims 12 to 17.
  20.  複数の基板を収容する処理容器と、
     前記処理容器内にガスを供給するガス供給部と、
     制御部と、
     を備え、
     前記制御部は、
     前記基板に形成された凹部に、アルコール類及びアミン類を除く複素環式化合物を含む阻害剤を吸着させる工程と、
     前記阻害剤が吸着した前記凹部に金属錯体を含む前駆体ガスを供給することにより、前記基板に前駆体層を形成する工程と、
     前記前駆体層が形成された前記凹部に酸化ガスを供給することにより、前記前駆体層を酸化して金属酸化物層を形成する工程と、
     を実行するように前記ガス供給部を制御する、
     成膜装置。
    A processing container that accommodates multiple substrates and
    A gas supply unit that supplies gas into the processing container and
    Control unit and
    With
    The control unit
    A step of adsorbing an inhibitor containing a heterocyclic compound excluding alcohols and amines into the recess formed in the substrate, and a step of adsorbing the inhibitor.
    A step of forming a precursor layer on the substrate by supplying a precursor gas containing a metal complex to the recesses on which the inhibitor is adsorbed.
    A step of oxidizing the precursor layer to form a metal oxide layer by supplying an oxidizing gas to the recess in which the precursor layer is formed.
    Control the gas supply unit to execute
    Film forming equipment.
PCT/JP2020/034165 2019-09-20 2020-09-09 Method for forming metal oxide film and film-forming device WO2021054227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019172302A JP2021052034A (en) 2019-09-20 2019-09-20 Metal oxide film forming method and film forming device
JP2019-172302 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054227A1 true WO2021054227A1 (en) 2021-03-25

Family

ID=74884462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034165 WO2021054227A1 (en) 2019-09-20 2020-09-09 Method for forming metal oxide film and film-forming device

Country Status (2)

Country Link
JP (1) JP2021052034A (en)
WO (1) WO2021054227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024006092A1 (en) * 2022-06-27 2024-01-04 Applied Materials, Inc. Method for formation of conformal alp sio2 films

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181289A1 (en) * 2022-03-24 2023-09-28 株式会社Kokusai Electric Substrate processing apparatus, substrate processing method, method for manufacturing semiconductor apparatus, and program
WO2024107567A1 (en) * 2022-11-17 2024-05-23 Lam Research Corporation Nonconformal films deposited within a recess using atomic layer deposition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506423A (en) * 2008-11-17 2012-03-15 インシリコテック カンパニー リミテッド Organic framework structure
JP2014510733A (en) * 2011-03-15 2014-05-01 メカロニックス シーオー. エルティディ. Novel group 4B organometallic compound and method for producing the same
JP2014203856A (en) * 2013-04-01 2014-10-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
JP2016516892A (en) * 2013-03-15 2016-06-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Bis (alkylimide) -bis (alkylamido) molybdenum molecules for the deposition of molybdenum-containing coatings
JP2019016778A (en) * 2017-07-07 2019-01-31 東京エレクトロン株式会社 Method of manufacturing semiconductor device and method of forming metal oxide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506423A (en) * 2008-11-17 2012-03-15 インシリコテック カンパニー リミテッド Organic framework structure
JP2014510733A (en) * 2011-03-15 2014-05-01 メカロニックス シーオー. エルティディ. Novel group 4B organometallic compound and method for producing the same
JP2016516892A (en) * 2013-03-15 2016-06-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Bis (alkylimide) -bis (alkylamido) molybdenum molecules for the deposition of molybdenum-containing coatings
JP2014203856A (en) * 2013-04-01 2014-10-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
JP2019016778A (en) * 2017-07-07 2019-01-31 東京エレクトロン株式会社 Method of manufacturing semiconductor device and method of forming metal oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024006092A1 (en) * 2022-06-27 2024-01-04 Applied Materials, Inc. Method for formation of conformal alp sio2 films

Also Published As

Publication number Publication date
JP2021052034A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
KR102588666B1 (en) Method of forming a structure on a substrate
WO2021054227A1 (en) Method for forming metal oxide film and film-forming device
JP2020136677A (en) Periodic accumulation method for filing concave part formed inside front surface of base material, and device
US9640387B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US9418855B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
US8435905B2 (en) Manufacturing method of semiconductor device, and substrate processing apparatus
JP5514129B2 (en) Film forming method, film forming apparatus, and method of using film forming apparatus
US7972977B2 (en) ALD of metal silicate films
US7795160B2 (en) ALD of metal silicate films
JP6106278B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2015230948A (en) Deposition device, deposition method and storage medium
KR101537946B1 (en) Method of manufacturing a semiconductor device, method of processing a substrate, non-transitory computer-readable recording medium and substrate processing apparatus
US9460914B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
JP6170754B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
US9412584B2 (en) Method of manufacturing a thin film having a high tolerance to etching and non-transitory computer-readable recording medium
JP2015230945A (en) Semiconductor device manufacturing method, substrate processing apparatus, program and storage medium
JP5839514B2 (en) Film forming method, film forming apparatus, and method of using film forming apparatus
JP2020128581A (en) Substrate treatment method and film deposition system
US9984887B2 (en) Method of manufacturing a semiconductor device
JP6308584B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, substrate processing system, and program
JP2019016778A (en) Method of manufacturing semiconductor device and method of forming metal oxide film
JP2009132961A (en) Film-forming method, film-forming apparatus and storage medium
WO2021054230A1 (en) Method for forming metal oxide film and film formation apparatus
JP6176776B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, substrate processing system, and program
JP2009299101A (en) Method of manufacturing semiconductor device and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866458

Country of ref document: EP

Kind code of ref document: A1