WO2021053798A1 - 電源装置及び寿命診断方法 - Google Patents

電源装置及び寿命診断方法 Download PDF

Info

Publication number
WO2021053798A1
WO2021053798A1 PCT/JP2019/036800 JP2019036800W WO2021053798A1 WO 2021053798 A1 WO2021053798 A1 WO 2021053798A1 JP 2019036800 W JP2019036800 W JP 2019036800W WO 2021053798 A1 WO2021053798 A1 WO 2021053798A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switch
time
voltage value
life
Prior art date
Application number
PCT/JP2019/036800
Other languages
English (en)
French (fr)
Inventor
隆志 西岡
高彦 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020500673A priority Critical patent/JP6678845B1/ja
Priority to DE112019007629.9T priority patent/DE112019007629T5/de
Priority to PCT/JP2019/036800 priority patent/WO2021053798A1/ja
Priority to CN201980100372.2A priority patent/CN114375402B/zh
Priority to TW109109756A priority patent/TWI748383B/zh
Publication of WO2021053798A1 publication Critical patent/WO2021053798A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • the present invention relates to a power supply device and a life diagnosis method.
  • the power supply uses a capacitor, which is a life component, for voltage smoothing. As the deterioration of the capacitor progresses, the capacity of the capacitor decreases, so that there is a high possibility that the power supply device will not operate normally. Therefore, a technique for diagnosing the life of a capacitor is required.
  • Patent Documents 1 and 2 after the power supply to the capacitor is stopped, the electric charge accumulated in the capacitor is discharged by a resistor connected in parallel with the capacitor, and the voltage value of the capacitor is a predetermined voltage value from the start of discharge.
  • a technique for diagnosing the life of a capacitor based on the time required to reach is disclosed.
  • Patent Document 1 since the capacitor and the power transistor module are always connected in parallel, the electric charge accumulated in the capacitor is also discharged even in the power transistor module, so that there is a problem that the voltage of the capacitor at the start of discharge is not stable. is there.
  • Patent Document 2 since the capacitor and the resistor are always connected in parallel, the discharge is started immediately when the power supply to the capacitor is cut off, so that the voltage of the capacitor at the start of discharge is not stable due to the ripple component. There's a problem.
  • an object of the present invention is to provide a power supply device or the like capable of accurately diagnosing the life of a capacitor.
  • the power supply device The first line and The second line, which has a lower potential than the first line, A first switch whose one end is connected to the first wire, A capacitor with one end connected to the first switch and the other end connected to the second wire. A resistor connected in parallel with the capacitor A second switch connected in series with the resistor, A voltage value detecting means for detecting a voltage value between both ends of the capacitor and A switch control means for controlling the first switch and the second switch, Life diagnostic means for diagnosing the life of the capacitor and With When the first time is reached when the first switch is on and the second switch is off, the switch control means turns off the first switch, and the first switch is turned off from the first time.
  • the voltage value detecting means has a first voltage value of the capacitor between the first time and the second time, and a third time when the second elapsed time has elapsed from the second time.
  • the second voltage value of the capacitor in The life diagnosis means diagnoses the life of the capacitor based on the first voltage value and the second voltage value.
  • the voltage between both ends of the capacitor at the start of discharge is stabilized by turning on the second switch after the lapse of the first elapsed time after turning off the first switch. Therefore, according to the present invention, the life of the capacitor can be diagnosed with high accuracy.
  • the figure which shows the structure of the power-source device which concerns on embodiment of this invention The figure which shows an example of the life characteristic of the capacitor which concerns on embodiment of this invention.
  • capacitor life is to determine how much the deterioration of the capacitor has progressed, how much the capacitor can be used, and how much the deterioration of the capacitor should be replaced. It broadly includes determining the deterioration of the capacitor, such as determining whether or not the capacitor has progressed to.
  • the power supply device 1 is a power supply device capable of diagnosing the life of a capacitor provided in itself and notifying the diagnosis result.
  • the power supply device 1 includes a capacitor 10, a switch 11, a switch 12, a resistor 13, a capacitor 10a, a switch 11a, a switch 12a, a resistor 13a, a diode 14, a transformer 15, a control unit 16, a storage unit 17, a line L1 and a line L2. ..
  • the power supply device 1 drives the load 2 with DC power.
  • the power supply device 1 controls the notification device 3 to notify the diagnosis result of the life of the capacitor 10 and the capacitor 10a.
  • the power supply device 1 is an example of the power supply device according to the present invention.
  • the line L1 is an example of the first line according to the present invention
  • the line L2 is an example of the second line according to the present invention.
  • the left side is the primary side and the right side is the secondary side with respect to the transformer 15.
  • the description about the primary side is omitted. In the following description, the description of the primary side will be omitted.
  • the black circles on the upper left and lower right of the transformer 15 shown in FIG. 1 indicate the polarity of the winding of the transformer 15.
  • the power supply device 1 is a power supply device by a flyback method.
  • a set of capacitors 10a and the like is provided in order to operate the power supply device 1 normally even when the switch 11 is in the off state.
  • the power supply device 1 can be operated normally even when the switch 11 is in the off state. That is, the set of the capacitor 10a and the like is provided to duplicate the set of the capacitor 10 and the like. Based on the above, in FIG. 1, the switch 11a is turned on while the switch 11 is turned off.
  • each configuration of the power supply device 1 will be described. However, as described above, since each configuration of the set of the capacitor 10a and the like is the same as each configuration of the set of the capacitor 10 and the like, only each configuration of the set of the capacitor 10 and the like will be described, and each configuration of the set of the capacitor 10a and the like will be described. The description of the configuration will be omitted.
  • the capacitor 10 smoothes the power supplied through the transformer 15 and the diode 14.
  • the capacitor 10 is, for example, an aluminum electrolytic capacitor.
  • the capacitor 10 has a life characteristic as shown in FIG. 2, for example.
  • the life characteristic of a capacitor is the relationship between the deterioration of the capacitor and the capacity of the capacitor. In general, as the usage time of the capacitor becomes longer, the deterioration of the capacitor progresses and the capacity of the capacitor decreases. In each of A, B, and C shown in FIG. 2, the remaining life of the capacitor 10 is halved, the remaining life of the capacitor 10 is reduced and the replacement of the power supply device 1 is recommended, and the life of the capacitor 10 is exhausted. It shows that the normal operation of the power supply device 1 is difficult.
  • the capacitor 10 is an example of a capacitor according to the present invention.
  • the switch 11 is connected to the wire L1 and the other end is connected to the capacitor 10.
  • the switch 11 is turned on and off by the control of the switch control unit 162 of the control unit 16 described later.
  • the switch 11 is turned off, the capacitor 10 is electrically disconnected from the wire L1.
  • the switch 11 is a switching element such as a relay or a transistor that is turned on / off by control.
  • the switch 11 is an example of the first switch according to the present invention.
  • the switch 12 is connected in series with the resistor 13. Like the switch 11, the switch 12 is turned on and off under the control of the switch control unit 162. When the switch 12 is turned on, the electric charge accumulated in the capacitor 10 can be discharged by the resistor 13. Like the switch 11, the switch 12 is a switching element such as a relay or a transistor that is turned on / off by control.
  • the switch 12 is an example of the second switch according to the present invention.
  • the resistor 13 is connected in parallel with the capacitor 10.
  • the resistor 13 discharges the electric charge accumulated in the capacitor 10 in response to the switch 12 being turned on.
  • the resistor 13 is an example of the resistor according to the present invention.
  • the diode 14 rectifies the current flowing from the transformer 15. Due to the rectification by the diode 14, the potential of the line L1 becomes equal to or higher than the potential of the line L2.
  • the transformer 15 transforms the electric power supplied from the primary side and supplies it to the secondary side. Since the power supply device 1 is a power supply device based on the flyback method, the transformer 15 stores electric power when the switch on the primary side is on, and supplies electric power to the secondary side when the switch on the primary side is off.
  • the control unit 16 controls the power supply device 1 in an integrated manner.
  • the control unit 16 includes, for example, a microprocessor as a hardware configuration. Each function of the control unit 16 is realized by the CPU (Central Processing Unit) of the microcontroller executing the control program stored in the ROM (Read Only Memory). Alternatively, the control unit 16 may include a control circuit using an ASIC (Application Specific Integrated Circuit: integrated circuit for a specific application), an FPGA (Field Programmable Gate Array), or the like. In this case, each function of the control unit 16 is realized by the control circuit.
  • ASIC Application Specific Integrated Circuit: integrated circuit for a specific application
  • FPGA Field Programmable Gate Array
  • the control unit 16 includes a voltage value detection unit 161, a switch control unit 162, a capacity calculation unit 163, a life diagnosis unit 164, and a notification control unit 165 as functional configurations.
  • the control unit 16 controls each of these functional units in order to diagnose the life of the capacitor 10 or the capacitor 10a at regular intervals such as every hour and every 8 hours.
  • the voltage value detection unit 161 detects the voltage values of the capacitor 10 and the capacitor 10a.
  • the voltage value detection unit 161 is realized by, for example, an A / D (Analog to Digital) converter provided in a microcontroller.
  • the voltage value detected by the voltage value detection unit 161 is used for calculating the capacity of the capacitor 10 by the capacity calculation unit 163 described later.
  • the voltage value detecting unit 161 is an example of the voltage value detecting means according to the present invention.
  • the switch control unit 162 controls on / off switching of the switch 11, the switch 12, the switch 11a, and the switch 12a.
  • the switch control unit 162 is an example of the switch control means according to the present invention.
  • the switch control unit 162 turns on the switch 11 and the switch 11a and turns off the switch 12 and the switch 12a.
  • both the capacitor 10 and the capacitor 10a can be smoothed, and unnecessary discharge by the resistor 13 and the resistor 13a can be prevented.
  • FIG. 3 shows the on / off change of the switch 11 and the switch 12, and the corresponding change of the voltage value of the capacitor 10.
  • the switch control unit 162 turns off the switch 11 at time t1.
  • the influence of the ripple component generated on the wire L1 is eliminated, and the charge accumulated in the capacitor 10 is not discharged by the load 2, so that the voltage of the capacitor 10 is stable.
  • the resistor 13 does not discharge.
  • the voltage value V1 is detected by the voltage value detection unit 161 by the time t2 described later.
  • the time t1 is an example of the first time according to the present invention
  • the voltage value V1 is an example of the first voltage value according to the present invention.
  • the switch control unit 162 turns on the switch 12 at the time t2 when the elapsed time T1 has elapsed from the time t1. Then, the discharge by the resistor 13 is started, and the voltage of the capacitor 10 gradually decreases.
  • the elapsed time T1 is an example of the first elapsed time according to the present invention
  • the time t2 is an example of the second time according to the present invention.
  • the switch control unit 162 turns off the switch 12 at the time t3 when the elapsed time T2 has elapsed from the time t2. Then, the discharge by the resistor 13 is stopped, and the voltage of the capacitor 10 becomes stable.
  • time t4 which will be described later, the voltage value V2 is detected by the voltage value detection unit 161, the capacity of the capacitor 10 is calculated by the capacity calculation unit 163, and the life of the capacitor 10 is diagnosed by the life diagnosis unit 164.
  • the elapsed time T2 is an example of the second elapsed time according to the present invention
  • the time t3 is an example of the third time according to the present invention
  • the voltage value V2 is the second voltage value according to the present invention. This is an example.
  • the switch control unit 162 turns on the switch 11 at the time t4 when the elapsed time T3 has elapsed from the time t3. Then, the electric power is supplied from the wire L1, the electric charge is accumulated in the capacitor 10, and the voltage of the capacitor 10 rises.
  • the elapsed time T3 is an example of the third elapsed time according to the present invention
  • the time t4 is an example of the fourth time according to the present invention.
  • the switch control by the switch control unit 162 when the control unit 16 diagnoses the life of the capacitor 10a is exactly the same as when diagnosing the life of the capacitor 10, so the description thereof will be omitted.
  • the capacity calculation unit 163 will be described with reference to FIGS. 1 and 3.
  • the capacitance calculation unit 163 calculates the capacitance of the capacitor 10 based on the voltage value V1, the voltage value V2, the elapsed time T2, and the resistance value of the resistor 13 described above.
  • the capacitance calculation unit 163 also calculates the capacitance of the capacitor 10a in the same manner.
  • the capacity calculation unit 163 is an example of the capacity calculation means according to the present invention.
  • the voltage value V1 is the voltage value of the capacitor 10 before the discharge by the resistor 13 is performed.
  • the voltage value V2 is the voltage value of the capacitor 10 after being discharged by the resistor 13.
  • the elapsed time T2 is the time during which the discharge by the resistor 13 is performed.
  • the capacitance of the capacitor 10 can be obtained based on the following equation (1).
  • C is the capacitance of the capacitor 10
  • R is the resistance value of the resistor 13
  • ln is a logarithm function with the natural logarithm as the base.
  • C T2 / (R ⁇ ln (V1 / V2)) (1)
  • the capacitance calculation unit 163 calculates the capacitance of the capacitor 10 based on the equation (1) with reference to the information indicating the resistance value of the resistor 13 stored in the storage unit 17.
  • the life diagnosis unit 164 diagnoses the life of the capacitor 10 based on the capacity of the capacitor 10 calculated by the capacity calculation unit 163 and the life characteristics of the capacitor 10 as shown in FIG.
  • the life diagnosis unit 164 also diagnoses the life of the capacitor 10a in the same manner.
  • the life diagnosis unit 164 is an example of the life diagnosis means according to the present invention.
  • the life diagnosis unit 164 diagnoses the life of the capacitor 10 by referring to the information stored in the storage unit 17 indicating the life characteristics of the capacitor 10.
  • the life diagnosis unit 164 compares the magnitude of the capacity with the capacity of the capacitor 10 calculated by the capacity calculation unit 163, and the deterioration of the capacitor 10 is to the extent that replacement of the power supply device 1 is recommended.
  • the life of the capacitor 10 is diagnosed by determining whether or not it has advanced.
  • the capacity indicated by the information stored in the storage unit 17 serves as a threshold value in the life diagnosis. Also in this case, since the threshold value is a value obtained based on the life characteristic of the capacitor 10, it can be said that the life diagnosis unit 164 diagnoses the life of the capacitor 10 based on the life characteristic of the capacitor 10.
  • the notification control unit 165 controls the notification device 3 to notify the user of the diagnosis result by the life diagnosis unit 164.
  • the details of the notification device 3 will be described later.
  • the notification control unit 165 does not have to perform any notification when it is not necessary to notify the diagnosis result. For example, when the diagnosis result is notified only when the replacement of the power supply device 1 is recommended, the notification control unit 165 does not have to notify the diagnosis result when the life of the capacitor 10 is sufficiently remaining.
  • the storage unit 17 stores information indicating the resistance value of the resistor 13, information indicating the resistance value of the resistor 13a, information indicating the life characteristic of the capacitor 10, and information indicating the life characteristic of the capacitor 10a.
  • the storage unit 17 may store the above-mentioned threshold values in the capacitor 10 and the capacitor 10a instead of the information indicating the life characteristic of the capacitor 10 and the information indicating the life characteristic of the capacitor 10a.
  • the load 2 is a load driven by DC power supplied by the power supply device 1, and is, for example, a DC motor.
  • One end of the load 2 is connected to the wire L1 of the power supply device 1, and the other end of the load 2 is connected to the wire L2 of the power supply device 1.
  • the load 2 is an example of the load according to the present invention.
  • the notification device 3 notifies the user of the diagnosis result regarding the life of the capacitor 10 and the capacitor 10a.
  • the notification device 3 is, for example, a lamp that emits green, yellow, and red light.
  • the notification device 3 emits green light when the life of the capacitor 10 and the life of the capacitor 10a are sufficiently remaining, for example, based on the control by the notification control unit 165 of the control unit 16, and the power supply device 1 should be replaced.
  • yellow light is emitted
  • red light is emitted.
  • the notification device 3 may be a lamp that emits only red light.
  • the notification device 3 when the deterioration of the capacitor 10 or the capacitor 10a has progressed to the extent that the power supply device 1 should be replaced based on the control by the notification control unit 165, for example, the notification device 3 has a life of the capacitor 10 or the capacitor 10a. It emits red light (including when it is exhausted). For example, when the diagnosis by the lifespan diagnosis unit 164 is performed based on the threshold value, such a notification mode is used.
  • the notification device 3 may be a speaker that sounds a buzzer sound in addition to the lamp, or may be a display capable of displaying the diagnosis result in detail.
  • FIG. 4 As described above, the operation shown in FIG. 4 is executed, for example, at regular time intervals. Further, at the start of the operation shown in FIG. 4, as described above, the switch 11 and the switch 11a are in the on state, and the switch 12 and the switch 12a are in the off state. Further, the operation of the life diagnosis of the capacitor 10 will be described below. Since the life diagnosis of the capacitor 10a is the same as that of the capacitor 10, the description thereof will be omitted.
  • the switch control unit 162 of the control unit 16 of the power supply device 1 turns off the switch 11 (step S101).
  • the time when this operation is executed is the time t1 in FIG.
  • the switch 11 is turned off, the voltage of the capacitor 10 is stabilized.
  • step S101 the voltage value detection unit 161 of the control unit 16 detects the voltage value V1 of the capacitor 10 by the time t2 (step S102). However, if the operation of step S102 is executed immediately after step S101, the voltage value of the capacitor 10 is detected before the voltage of the capacitor 10 stabilizes, which is not preferable.
  • the switch control unit 162 turns on the switch 12 (step S103).
  • the time when this operation is executed is the time t2 in FIG.
  • the switch 12 is turned on, the discharge by the resistor 13 is started.
  • the switch control unit 162 turns off the switch 12 (step S104).
  • the time when this operation is executed is the time t3 in FIG.
  • the switch 12 is turned off, the discharge by the resistor 13 is completed, and the voltage of the capacitor 10 is stabilized.
  • step S104 the voltage value detection unit 161 of the control unit 16 detects the voltage value V2 of the capacitor 10 by the time t4 (step S105).
  • the switch control unit 162 turns on the switch 11 (step S106).
  • the time when this operation is executed is the time t4 in FIG.
  • the switch 11 is turned on, electric charges are accumulated from the wire L1 to the capacitor 10, and the voltage of the capacitor 10 rises.
  • the capacitance calculation unit 163 of the control unit 16 has the voltage value V1 detected in step S102, the voltage value V2 detected in step S105, the elapsed time T2, and the resistance of the resistor 13 stored in the storage unit 17.
  • the capacitance of the capacitor 10 is calculated based on the information indicating the value (step S107).
  • the life diagnosis unit 164 of the control unit 16 diagnoses the life of the capacitor 10 based on the capacity of the capacitor 10 calculated in step S107 and the information indicating the life characteristics of the capacitor 10 stored in the storage unit 17. (Step S108).
  • Control unit 165 controls the notification device 3 to notify the user of the diagnosis result obtained in step S108 (step S109). Then, the control unit 16 ends the operation of the life diagnosis.
  • step S106 may be executed after any of the operations of steps S107 to S109.
  • the power supply device 1 has been described above. According to the power supply device 1, since the switch 11 is turned off at the time t1 and the switch 12 is turned on at the time t2 after the elapsed time T1 has elapsed, the voltage of the capacitor 10 from the time t1 to t2 can be stabilized. That is, according to the power supply device 1, the voltage between both ends of the capacitor 10 at the start of discharge is stable.
  • the switch 12 is turned off at the time t3 to end the discharge, and the switch 11 is turned on at the time t4 after the elapsed time T3 elapses. It can be stabilized.
  • the elapsed time T2 which is the time during which the discharge by the resistor 13 is performed, is a time irrelevant to the voltage value of the capacitor, and the capacitor 10 is stable before and after the discharge.
  • the life of the capacitor 10 can be diagnosed with high accuracy based on the detected voltage value of the capacitor 10. Similarly, the life of the capacitor 10a can be diagnosed with high accuracy.
  • the voltage value detection unit 161 detects the voltage value V1 of the capacitor 10 once between the time t1 and the time t2, and sets the voltage value V2 of the capacitor 10 by 1 between the time t3 and the time t4. Detected times. However, the voltage value detection unit 161 detects the voltage value V1 of the capacitor 10 a plurality of times between the time t1 and the time t2, and detects the voltage value V2 of the capacitor 10 a plurality of times between the time t3 and the time t4. You may.
  • the capacitance calculation unit 163 may calculate the capacitance of the capacitor 10 based on the average value of the voltage values V1 detected a plurality of times and the average value of the voltage values V2 detected a plurality of times.
  • the average value of the voltage values detected a plurality of times it is possible to further suppress the decrease in the accuracy of the life diagnosis due to the influence of noise, and the life of the capacitor 10 can be diagnosed with high accuracy. It should be noted that only one of the voltage value V1 and the voltage value V2 may be detected a plurality of times.
  • the power supply device 1 diagnoses the life of both the capacitor 10 and the capacitor 10a.
  • the power supply device 1 may diagnose the life of only one capacitor 10.
  • the power supply device 1 is provided with a switch 11b and a capacitor 10b connected in series between the wire L1 and the wire L2.
  • the switch control unit 162 turns on the switch 11b only when diagnosing the life of the capacitor 10, and turns off the switch 11b at other times.
  • the circuit configuration can be made simpler than that of the first embodiment while enabling the diagnosis of the life of the capacitor 10.
  • the switch 11b is turned on and the electric charge is accumulated in the capacitor 10b only when diagnosing the life of the capacitor 10, there is almost no possibility that the life of the capacitor 10b will expire before the capacitor 10.
  • the capacity calculation unit 163 calculates the capacity of the capacitor 10, and the life diagnosis unit 164 diagnoses the life of the capacitor 10 based on the calculated capacity.
  • the life diagnosis unit 164 can also diagnose the life of the capacitor 10 without calculating the capacity of the capacitor 10 by the capacity calculation unit 163.
  • the elapsed time T2 and the resistance value R of the resistor 13 are known. Therefore, the capacitance C is determined based on the ratio of the voltage value V1 and the voltage value V2. Therefore, the life characteristic of the capacitor 10 can also be expressed by the relationship between the deterioration of the capacitor 10 and V1 / V2.
  • the life diagnosis unit 164 can diagnose the life of the capacitor 10 based on the voltage value V1 and the voltage value V2, not necessarily based on the capacitance of the capacitor 10.
  • the stable voltage value V2 of the capacitor 10 is detected by turning off the switch 12 at the time t3.
  • the voltage value of the capacitor 10 may be detected at time t3 without turning off the switch 12, and this voltage value may be set as the voltage value V2. Also in this case, since the voltage between both ends of the capacitor 10 at the start of discharge is stable, the life of the capacitor 10 can be diagnosed accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

電源装置(1)は、スイッチ(11)と、コンデンサ(10)と、抵抗(13)と、スイッチ(12)と、コンデンサ(10)の電圧値を検出する電圧値検知部(161)と、スイッチ(11)とスイッチ(12)とを制御するスイッチ制御部(162)と、コンデンサ(10)の寿命を診断する寿命診断部(164)と、を備える。スイッチ制御部(162)は、第1の時刻にスイッチ(11)をオフし、第2の時刻にスイッチ(12)をオンする。電圧値検知部(161)は、第1の時刻から第2の時刻までの間におけるコンデンサ(10)の第1の電圧値と、第3の時刻におけるコンデンサ(10)の第2の電圧値とを検出する。寿命診断部(164)は、第1の電圧値と第2の電圧値とに基づいてコンデンサ(10)の寿命を診断する。

Description

電源装置及び寿命診断方法
 本発明は、電源装置及び寿命診断方法に関する。
 電源装置には、電圧の平滑化のために寿命部品であるコンデンサが使用されている。コンデンサの劣化が進むにつれて、コンデンサの容量が低下するので電源装置が正常に動作しなくなる可能性が高くなる。そのため、コンデンサの寿命を診断する技術が必要とされている。
 特許文献1及び2には、コンデンサへの電力供給を停止したのちにコンデンサと並列接続された抵抗によりコンデンサに蓄積された電荷を放電させ、放電開始からコンデンサの電圧値が予め定められた電圧値に到達するまでに要した時間に基づいてコンデンサの寿命を診断する技術が開示されている。
特開平06-165523号公報 国際公開第2008/016050号
 特許文献1においては、コンデンサとパワートランジスタモジュールとが常に並列接続されているため、コンデンサに蓄積された電荷がパワートランジスタモジュールでも放電されるので、放電開始時におけるコンデンサの電圧が安定しないという問題がある。
 特許文献2においては、コンデンサと抵抗とが常に並列接続されているため、コンデンサへの電力供給を断つと即座に放電が開始されるので、放電開始時におけるコンデンサの電圧がリップル成分により安定しないという問題がある。
 したがって、特許文献1及び2のいずれにおいても、放電開始時におけるコンデンサの電圧が安定しないため、放電時間も安定せず、寿命診断の精度が悪くなるという問題がある。
 さらに、特許文献1及び2のいずれにおいても、コンデンサの電圧値が予め定められた電圧値に到達するまでに要した時間に基づいてコンデンサの寿命を診断するので、リップル成分、ノイズ等により電圧値が変動すると当該時間も変動し、寿命診断の精度が悪くなるという問題がある。
 上記の事情に鑑み、本発明の目的は、コンデンサの寿命を精度良く診断できる電源装置等を提供することにある。
 上記の目的を達成するため、本発明に係る電源装置は、
 第1の線と、
 前記第1の線より低電位の第2の線と、
 一端が前記第1の線に接続された第1のスイッチと、
 一端が前記第1のスイッチに接続され他端が前記第2の線に接続されたコンデンサと、
 前記コンデンサに並列に接続された抵抗と、
 前記抵抗に直列に接続された第2のスイッチと、
 前記コンデンサの両端間の電圧値を検出する電圧値検出手段と、
 前記第1のスイッチと前記第2のスイッチとを制御するスイッチ制御手段と、
 前記コンデンサの寿命を診断する寿命診断手段と、
 を備え、
 前記スイッチ制御手段は、前記第1のスイッチがオン状態かつ前記第2のスイッチがオフ状態であるときに第1の時刻に達すると前記第1のスイッチをオフし、前記第1の時刻から第1の経過時間が経過した第2の時刻に前記第2のスイッチをオンし、
 前記電圧値検出手段は、前記第1の時刻から前記第2の時刻までの間における前記コンデンサの第1の電圧値と、前記第2の時刻から第2の経過時間が経過した第3の時刻における前記コンデンサの第2の電圧値とを検出し、
 前記寿命診断手段は、前記第1の電圧値と前記第2の電圧値とに基づいて前記コンデンサの寿命を診断する。
 本発明によれば、第1のスイッチをオフしてから第1の経過時間の経過後に第2のスイッチをオンすることにより、放電開始時におけるコンデンサの両端間の電圧が安定する。したがって、本発明によれば、精度良くコンデンサの寿命を診断できる。
本発明の実施の形態に係る電源装置の構成を示す図 本発明の実施の形態に係るコンデンサの寿命特性の一例を示す図 本発明の実施の形態における、スイッチのオン・オフとコンデンサの電圧値との関係の一例を示す図 本発明の実施の形態に係る電源装置による寿命診断の動作の一例を示すフローチャート 本発明の実施の形態の変形例2に係る電源装置の構成を示す図
 以下、図面を参照しながら、本発明の実施の形態に係る電源装置を説明する。各図面においては、同一又は同等の部分に同一の符号を付す。
 また、以下の説明では、「コンデンサの両端間の電圧」「コンデンサの両端間の電圧値」などのことを単に「コンデンサの電圧」「コンデンサの電圧値」とも表現する。また、「コンデンサの寿命の診断」とは、コンデンサの劣化がどの程度進んでいるかを判定すること、コンデンサをあとどの程度まで使用可能であるかを判定すること、コンデンサの劣化が交換すべき程度にまで進んでいるか否かを判定することなど、コンデンサの劣化に関する判定をすることを広く含むものである。
(実施の形態)
 図1を参照しながら、実施の形態に係る電源装置1を説明する。電源装置1は、自身に設けられているコンデンサの寿命を診断し、診断結果を報知することができる電源装置である。電源装置1は、コンデンサ10とスイッチ11とスイッチ12と抵抗13とコンデンサ10aとスイッチ11aとスイッチ12aと抵抗13aとダイオード14とトランス15と制御部16と記憶部17と線L1と線L2を備える。電源装置1は、直流電力により負荷2を駆動する。電源装置1は、報知装置3を制御してコンデンサ10及びコンデンサ10aの寿命についての診断結果を報知する。電源装置1は、本発明に係る電源装置の一例である。また、線L1は本発明に係る第1の線の一例であり、線L2は本発明に係る第2の線の一例である。
 図1に示す電源装置1において、トランス15を基準として左側が一次側であり、右側が二次側である。図1では、一次側についての記載を省略している。以下の説明でも、一次側についての説明は省略する。図1に示すトランス15の左上及び右下に記載されている黒丸は、トランス15の巻線の極性を示す。トランス15の巻線の極性と、ダイオード14の配置とからわかるとおり、電源装置1はフライバック方式による電源装置である。
 コンデンサ10、スイッチ11、スイッチ12及び抵抗13のセット(以下、コンデンサ10等のセットという)と、コンデンサ10a、スイッチ11a、スイッチ12a及び抵抗13aのセット(以下、コンデンサ10a等のセットという)とは、ほぼ同様の構成である。ただし、各素子の特性は同一でなくてもよい。
 詳細は後述するが、コンデンサ10の寿命を診断するためには、スイッチ11をオフする必要がある。スイッチ11がオフ状態のときにも電源装置1を正常に動作させるために、コンデンサ10a等のセットが設けられている。スイッチ11aをオンすることにより、スイッチ11がオフ状態のときにも電源装置1を正常に動作させることができる。つまり、コンデンサ10a等のセットは、コンデンサ10等のセットを二重化するために設けられている。なお、上記を踏まえて、図1では、スイッチ11がオフ状態となっているのにあわせてスイッチ11aがオン状態となっている。
 次に、電源装置1の各構成を説明する。ただし、上述のとおり、コンデンサ10a等のセットの各構成は、コンデンサ10等のセットの各構成と同様であるため、コンデンサ10等のセットの各構成についてのみ説明し、コンデンサ10a等のセットの各構成については説明を省略する。
 コンデンサ10は、一端がスイッチ11に接続され他端が線L2に接続されている。コンデンサ10は、トランス15及びダイオード14を介して供給される電力を平滑化する。コンデンサ10は、例えばアルミ電解コンデンサである。コンデンサ10は、例えば図2に示すような寿命特性を有する。コンデンサの寿命特性とは、コンデンサの劣化とコンデンサの容量との関係性のことである。一般的に、コンデンサの使用時間が長くなるとコンデンサの劣化が進み、コンデンサの容量が低下する。図2に示すA,B,Cのそれぞれは、コンデンサ10の残り寿命が半分となった点、コンデンサ10の残り寿命が少なくなり電源装置1の交換が推奨される点、コンデンサ10の寿命が尽きて電源装置1の正常動作が困難となっている点を示す。コンデンサ10は、本発明に係るコンデンサの一例である。
 再び図1を参照する。スイッチ11は、一端が線L1に接続され他端がコンデンサ10に接続されている。スイッチ11は、後述の制御部16のスイッチ制御部162の制御によりオン・オフする。スイッチ11がオフすることにより、コンデンサ10は線L1から電気的に切り離される。スイッチ11は、リレー、トランジスタなどの、制御によりオン・オフするスイッチング素子である。スイッチ11は、本発明に係る第1のスイッチの一例である。
 スイッチ12は、抵抗13に直列に接続されている。スイッチ12は、スイッチ11と同様、スイッチ制御部162の制御によりオン・オフする。スイッチ12がオンすることにより、コンデンサ10に蓄積された電荷を抵抗13によって放電することができる。スイッチ12はスイッチ11と同様、リレー、トランジスタなどの、制御によりオン・オフするスイッチング素子である。スイッチ12は、本発明に係る第2のスイッチの一例である。
 抵抗13は、コンデンサ10と並列に接続されている。抵抗13は、スイッチ12がオンするのに応じて、コンデンサ10に蓄積された電荷を放電する。抵抗13は、本発明に係る抵抗の一例である。
 ダイオード14は、トランス15から流れる電流を整流する。ダイオード14による整流により、線L1の電位は線L2の電位以上となる。
 トランス15は、一次側から供給される電力を変圧して二次側に供給する。電源装置1はフライバック方式による電源装置であるため、トランス15は、一次側のスイッチがオン状態のとき電力を蓄積し、オフ状態のとき二次側に電力を供給する。
 制御部16は、電源装置1を統括制御する。制御部16は、ハードウェア構成として、例えばマイクロコントローラを備える。当該マイクロコントローラのCPU(Central Processing Unit:中央演算装置)が、ROM(Read Only Memory)に格納された制御プログラムを実行することにより、制御部16の各機能が実現される。あるいは、制御部16は、ASIC(Application Specific Integrated Circuit:特定用途向け集積回路)、FPGA(Field Programmable Gate Array)等による制御回路を備えてもよい。この場合、当該制御回路により制御部16の各機能が実現される。
 制御部16は、機能的構成として、電圧値検出部161とスイッチ制御部162と容量算出部163と寿命診断部164と報知制御部165とを備える。制御部16は、1時間ごと、8時間ごとなどの一定時間ごとに、コンデンサ10あるいはコンデンサ10aの寿命を診断するために、これらの各機能部を制御する。
 電圧値検出部161は、コンデンサ10及びコンデンサ10aの電圧値を検出する。電圧値検出部161は、例えばマイクロコントローラに設けられたA/D(Analog to Digital)コンバータにより実現される。電圧値検出部161により検出された電圧値は、後述の容量算出部163による、コンデンサ10の容量の算出に使用される。電圧値検出部161は、本発明に係る電圧値検出手段の一例である。
 スイッチ制御部162は、スイッチ11、スイッチ12、スイッチ11a及びスイッチ12aのオン・オフの切り替えを制御する。スイッチ制御部162は、本発明に係るスイッチ制御手段の一例である。
 以下、スイッチ11によるスイッチ制御の一例を示す。制御部16がコンデンサ10及びコンデンサ10aのいずれについても寿命を診断しないとき、スイッチ制御部162は、スイッチ11及びスイッチ11aをオンし、スイッチ12及びスイッチ12aをオフする。これにより、コンデンサ10及びコンデンサ10aの双方で平滑化をすることができ、かつ抵抗13及び抵抗13aによる不要な放電を防ぐことができる。
 図3を参照しながら、制御部16がコンデンサ10の寿命を診断するときのスイッチ制御部162によるスイッチ制御を説明する。図3には、スイッチ11及びスイッチ12のオン・オフの変化と、それに対応するコンデンサ10の電圧値の変化とが示されている。なお、寿命診断の開始前には、上記のとおり、スイッチ11及びスイッチ11aがオン状態であり、スイッチ12及びスイッチ12aがオフ状態であるものとする。また、このとき、図3に示すように、線L1に生じているリップル成分の影響によりコンデンサ10の電圧がやや不安定となっている。
 まず、スイッチ制御部162は、時刻t1にスイッチ11をオフする。このとき、線L1に生じているリップル成分の影響がなくなり、コンデンサ10に蓄積された電荷が負荷2により放電されることもないので、コンデンサ10の電圧が安定する。このとき、スイッチ12はまだオフ状態であるため、抵抗13による放電は行われない。また、後述の時刻t2までに、電圧値検出部161により電圧値V1が検出される。時刻t1は、本発明に係る第1の時刻の一例であり、電圧値V1は、本発明に係る第1の電圧値の一例である。
 次に、スイッチ制御部162は、時刻t1から経過時間T1が経過した時刻t2に、スイッチ12をオンする。すると、抵抗13による放電が開始され、コンデンサ10の電圧が徐々に低下する。経過時間T1は、本発明に係る第1の経過時間の一例であり、時刻t2は、本発明に係る第2の時刻の一例である。
 次に、スイッチ制御部162は、時刻t2から経過時間T2が経過した時刻t3に、スイッチ12をオフする。すると、抵抗13による放電が停止され、コンデンサ10の電圧が安定する。後述の時刻t4までに、電圧値検出部161により電圧値V2が検出され、容量算出部163によりコンデンサ10の容量が算出され、寿命診断部164によりコンデンサ10の寿命が診断される。経過時間T2は、本発明に係る第2の経過時間の一例であり、時刻t3は、本発明に係る第3の時刻の一例であり、電圧値V2は、本発明に係る第2の電圧値の一例である。
 そして、スイッチ制御部162は、時刻t3から経過時間T3が経過した時刻t4に、スイッチ11をオンする。すると、線L1から電力の供給を受けて、コンデンサ10に電荷が蓄積され、コンデンサ10の電圧が上昇する。経過時間T3は、本発明に係る第3の経過時間の一例であり、時刻t4は、本発明に係る第4の時刻の一例である。
 制御部16がコンデンサ10aの寿命を診断するときのスイッチ制御部162によるスイッチ制御については、コンデンサ10の寿命を診断するときと全く同様であるため、説明を省略する。
 図1及び図3を参照しながら、容量算出部163を説明する。容量算出部163は、上述した電圧値V1、電圧値V2及び経過時間T2と、抵抗13の抵抗値とに基づいて、コンデンサ10の容量を算出する。容量算出部163は、コンデンサ10aの容量も同様に算出する。容量算出部163は、本発明に係る容量算出手段の一例である。
 以下ではコンデンサ10の容量の算出のみについて説明する。電圧値V1は、抵抗13による放電が行われる前のコンデンサ10の電圧値である。電圧値V2は、抵抗13による放電が行われた後のコンデンサ10の電圧値である。経過時間T2は、抵抗13による放電が行われた時間である。コンデンサ10の容量は、以下の式(1)に基づいて求めることができる。ただし、Cはコンデンサ10の容量、Rは抵抗13の抵抗値、lnは自然対数を底とする対数関数である。
 C=T2/(R×ln(V1/V2))   (1)
 なお、詳細は後述するが、抵抗13の抵抗値を示す情報が記憶部17に保存されている。容量算出部163は、記憶部17に保存されている、抵抗13の抵抗値を示す情報を参照し、式(1)に基づいてコンデンサ10の容量を算出する。
 寿命診断部164は、容量算出部163により算出されたコンデンサ10の容量と、図2に示すようなコンデンサ10の寿命特性とに基づいて、コンデンサ10の寿命を診断する。寿命診断部164は、コンデンサ10aの寿命も同様に診断する。寿命診断部164は、本発明に係る寿命診断手段の一例である。
 詳細は後述するが、コンデンサ10の寿命特性を示す情報が記憶部17に保存されている。寿命診断部164は、記憶部17に保存されている、コンデンサ10の寿命特性を示す情報を参照して、コンデンサ10の寿命を診断する。
 なお、コンデンサ10の寿命特性を示す情報に代えて、図2に示すB点におけるコンデンサ10の容量を示す情報が記憶部17に保存されるものであってもよい。この場合、寿命診断部164は、当該容量と、容量算出部163により算出されたコンデンサ10の容量との大小を比較して、電源装置1の交換が推奨される程度までにコンデンサ10の劣化が進んでいるか否かを判定することにより、コンデンサ10の寿命を診断する。この場合、記憶部17に保存されている情報が示す容量は、寿命診断における閾値となる。この場合も、当該閾値はコンデンサ10の寿命特性に基づいて得られる値であるため、寿命診断部164は、コンデンサ10の寿命特性に基づいてコンデンサ10の寿命を診断する、といえる。
 再び図1を参照する。報知制御部165は、報知装置3を制御して、寿命診断部164による診断結果をユーザに報知する。報知装置3の詳細は後述する。ただし、報知制御部165は、診断結果を報知する必要がない場合には、何ら報知をしなくともよい。例えば、電源装置1の交換が推奨されるときのみ診断結果を報知する場合、コンデンサ10の寿命が十分に残っているときには、報知制御部165は診断結果を報知しなくてもよい。
 記憶部17は、抵抗13の抵抗値を示す情報と、抵抗13aの抵抗値を示す情報と、コンデンサ10の寿命特性を示す情報と、コンデンサ10aの寿命特性を示す情報とを保存する。ただし、上述したとおり、記憶部17は、コンデンサ10の寿命特性を示す情報及びコンデンサ10aの寿命特性を示す情報に代えて、コンデンサ10及びコンデンサ10aにおける上述の閾値を保存してもよい。
 次に、負荷2及び報知装置3を説明する。負荷2は、電源装置1が供給する直流電力により駆動される負荷であり、例えば直流モータである。負荷2の一端は電源装置1の線L1に接続され、負荷2の他端は電源装置1の線L2に接続されている。負荷2は、本発明に係る負荷の一例である。
 報知装置3は、コンデンサ10及びコンデンサ10aの寿命についての診断結果をユーザに報知する。報知装置3は、例えば緑色、黄色及び赤色の光を発するランプである。報知装置3は、例えば制御部16の報知制御部165による制御に基づいて、コンデンサ10の寿命及びコンデンサ10aの寿命が十分に残っているときには緑色の光を発し、電源装置1を交換すべき程度にまでコンデンサ10又はコンデンサ10aの劣化が進んでいるときには黄色の光を発し、コンデンサ10又はコンデンサ10aの寿命が尽きているときには赤色の光を発する。
 あるいは、報知装置3は、赤色の光のみを発するランプであってもよい。この場合、報知装置3は、例えば報知制御部165による制御に基づいて、電源装置1を交換すべき程度にまでコンデンサ10又はコンデンサ10aの劣化が進んでいるとき(コンデンサ10又はコンデンサ10aの寿命が尽きているときも含む)に赤色の光を発する。例えば、寿命診断部164による診断が閾値に基づいて行われるときには、このような報知態様となる。
 また、報知装置3は、ランプのほか、ブザー音を鳴らすスピーカであってもよいし、診断結果を詳細に表示可能なディスプレイであってもよい。
 次に、図4及び図3を参照しながら、電源装置1による寿命診断の動作の一例を説明する。図4に示す動作は、上述したとおり、例えば一定時間ごとに実行される。また、図4に示す動作の開始時には、上述したとおり、スイッチ11及びスイッチ11aはオン状態であり、スイッチ12及びスイッチ12aはオフ状態である。また、以下ではコンデンサ10の寿命診断の動作を説明する。コンデンサ10aの寿命診断は、コンデンサ10の場合と同様であるため説明を省略する。
 電源装置1の制御部16のスイッチ制御部162は、スイッチ11をオフする(ステップS101)。この動作が実行された時刻が、図3における時刻t1である。スイッチ11がオフすることにより、コンデンサ10の電圧が安定する。
 ステップS101の実行後、時刻がt2になるまでに、制御部16の電圧値検出部161は、コンデンサ10の電圧値V1を検出する(ステップS102)。ただし、ステップS101の直後にステップS102の動作を実行すると、コンデンサ10の電圧が安定する前にコンデンサ10の電圧値を検出することとなるため、好ましくない。
 時刻t1から経過時間T1経過後、スイッチ制御部162は、スイッチ12をオンする(ステップS103)。この動作が実行された時刻が、図3における時刻t2である。スイッチ12がオンすることにより、抵抗13による放電が開始される。
 ステップS103から経過時間T2経過後、スイッチ制御部162は、スイッチ12をオフする(ステップS104)。この動作が実行された時刻が、図3における時刻t3である。スイッチ12がオフすることにより、抵抗13による放電が終了し、コンデンサ10の電圧が安定する。
 ステップS104の実行後、時刻がt4になるまでに、制御部16の電圧値検出部161は、コンデンサ10の電圧値V2を検出する(ステップS105)。
 ステップS104から経過時間T3経過後、スイッチ制御部162は、スイッチ11をオンする(ステップS106)。この動作が実行された時刻が、図3における時刻t4である。スイッチ11がオンすることにより、線L1からコンデンサ10に電荷が蓄積され、コンデンサ10の電圧が上昇する。
 制御部16の容量算出部163は、ステップS102にて検出された電圧値V1と、ステップS105にて検出された電圧値V2と、経過時間T2と、記憶部17に保存された抵抗13の抵抗値を示す情報とに基づいて、コンデンサ10の容量を算出する(ステップS107)。
 制御部16の寿命診断部164は、ステップS107にて算出されたコンデンサ10の容量と、記憶部17に保存されたコンデンサ10の寿命特性を示す情報とに基づいて、コンデンサ10の寿命を診断する(ステップS108)。
 制御部16の報知制御部165は、報知装置3を制御して、ステップS108で得られた診断結果をユーザに報知する(ステップS109)。そして制御部16は、寿命診断の動作を終了する。
 なお、ステップS106の動作は、ステップS107からステップS109のいずれかの動作の後に実行されてもよい。
 以上、実施の形態に係る電源装置1を説明した。電源装置1によれば、時刻t1にスイッチ11をオフし、経過時間T1経過後の時刻t2にスイッチ12をオンするので、時刻t1からt2までにおけるコンデンサ10の電圧を安定させることができる。つまり、電源装置1によれば、放電開始時におけるコンデンサ10の両端間の電圧が安定する。
 また、電源装置1によれば、時刻t3にスイッチ12をオフして放電を終了し、経過時間T3経過後の時刻t4にスイッチ11をオンするので、時刻t3からt4までにおけるコンデンサ10の電圧を安定させることができる。
 また、電源装置1によれば、抵抗13による放電が行われる時間である経過時間T2は、コンデンサの電圧値とは無関係の時間であり、かつ放電の前後におけるコンデンサ10が安定する。
 したがって、電源装置1によれば、精度良くコンデンサ10の電圧値を検出できるので、検出したコンデンサ10の電圧値に基づいて精度良くコンデンサ10の寿命を診断できる。また、コンデンサ10aについても同様に、精度良く寿命を診断できる。
(変形例1)
 実施の形態では、電圧値検出部161は、時刻t1から時刻t2までの間にコンデンサ10の電圧値V1を1回検出し、時刻t3から時刻t4までの間にコンデンサ10の電圧値V2を1回検出した。しかし、電圧値検出部161は、時刻t1から時刻t2までの間にコンデンサ10の電圧値V1を複数回検出し、時刻t3から時刻t4までの間にコンデンサ10の電圧値V2を複数回検出してもよい。そして容量算出部163は、複数回検出された電圧値V1の平均値と、複数回検出された電圧値V2の平均値とに基づいて、コンデンサ10の容量を算出してもよい。複数回検出された電圧値の平均値を使用することにより、ノイズの影響による寿命診断の精度の低下をさらに抑えることができ、精度良くコンデンサ10の寿命を診断できる。なお、電圧値V1と電圧値V2とのうち、一方のみを複数回検出するものであってもよい。
(変形例2)
 実施の形態では、電源装置1は、コンデンサ10とコンデンサ10aとの双方について寿命を診断する。しかし、電源装置1は、1つのコンデンサ10についてのみ寿命を診断するものであってもよい。例えば図5に示すように、コンデンサ10a等のセットに代えて、線L1と線L2との間にスイッチ11bとコンデンサ10bとを直列に接続したものを電源装置1に設ける。そしてスイッチ制御部162は、コンデンサ10の寿命を診断するときのみスイッチ11bをオンし、それ以外のときにはスイッチ11bをオフする。このような構成により、コンデンサ10の寿命の診断を可能としつつ、回路構成を実施の形態1よりも簡素なものとすることができる。また、コンデンサ10の寿命を診断するときのみスイッチ11bがオンし、コンデンサ10bに電荷が蓄積されるので、コンデンサ10bがコンデンサ10よりも先に寿命が尽きる可能性はほとんどない。
(変形例3)
 実施の形態では、容量算出部163によりコンデンサ10の容量を算出し、寿命診断部164は算出された容量に基づいてコンデンサ10の寿命を診断した。しかし、寿命診断部164は、容量算出部163によりコンデンサ10の容量を算出することなくコンデンサ10の寿命を診断することもできる。上述の式(1)において、経過時間T2及び抵抗13の抵抗値Rは既知である。そのため、容量Cは、電圧値V1と電圧値V2との比に基づいて決定される。したがって、コンデンサ10の寿命特性は、コンデンサ10の劣化とV1/V2との関係によっても表すことができる。コンデンサ10の劣化とV1/V2との関係によって表された寿命特性を示す情報を記憶部17に保存することにより、コンデンサ10の容量を算出することなくコンデンサ10の寿命を診断することができる。つまり、寿命診断部164は、必ずしもコンデンサ10の容量に基づかなくとも、電圧値V1と電圧値V2とに基づいてコンデンサ10の寿命を診断することができる。
(変形例4)
 実施の形態では、時刻t3にスイッチ12をオフすることにより、安定したコンデンサ10の電圧値V2を検出した。しかし、スイッチ12をオフすることなく時刻t3にコンデンサ10の電圧値を検出し、この電圧値を電圧値V2としてもよい。この場合も、放電開始時におけるコンデンサ10の両端間の電圧は安定するので、精度よくコンデンサ10の寿命を診断できる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 1 電源装置、2 負荷、3 報知装置、10,10a,10b コンデンサ、11,11a,11b,12,12a スイッチ、13,13a 抵抗、14 ダイオード、15 トランス、16 制御部、17 記憶部、161 電圧値検出部、162 スイッチ制御部、163 容量算出部、164 寿命診断部、165 報知制御部、L1,L2 線。

Claims (6)

  1.  第1の線と、
     前記第1の線より低電位の第2の線と、
     一端が前記第1の線に接続された第1のスイッチと、
     一端が前記第1のスイッチに接続され他端が前記第2の線に接続されたコンデンサと、
     前記コンデンサに並列に接続された抵抗と、
     前記抵抗に直列に接続された第2のスイッチと、
     前記コンデンサの両端間の電圧値を検出する電圧値検出手段と、
     前記第1のスイッチと前記第2のスイッチとを制御するスイッチ制御手段と、
     前記コンデンサの寿命を診断する寿命診断手段と、
     を備え、
     前記スイッチ制御手段は、前記第1のスイッチがオン状態かつ前記第2のスイッチがオフ状態であるときに第1の時刻に達すると前記第1のスイッチをオフし、前記第1の時刻から第1の経過時間が経過した第2の時刻に前記第2のスイッチをオンし、
     前記電圧値検出手段は、前記第1の時刻から前記第2の時刻までの間における前記コンデンサの第1の電圧値と、前記第2の時刻から第2の経過時間が経過した第3の時刻における前記コンデンサの第2の電圧値とを検出し、
     前記寿命診断手段は、前記第1の電圧値と前記第2の電圧値とに基づいて前記コンデンサの寿命を診断する、
     電源装置。
  2.  前記第1の電圧値と前記第2の電圧値と前記第2の経過時間と前記抵抗の抵抗値とに基づいて前記コンデンサの容量を算出する容量算出手段をさらに備え、
     前記寿命診断手段は、前記容量算出手段により算出された前記コンデンサの容量と前記コンデンサの寿命特性とに基づいて前記コンデンサの寿命を診断する、
     請求項1に記載の電源装置。
  3.  前記電圧値検出手段は、前記第1の時刻から前記第2の時刻までの間に前記第1の電圧値を複数回検出し、
     前記寿命診断手段は、複数回検出した前記第1の電圧値の平均値に基づいて前記コンデンサの寿命を診断する、
     請求項1又は2に記載の電源装置。
  4.  前記スイッチ制御手段はさらに、前記第3の時刻に前記第2のスイッチをオフし、前記第3の時刻から第3の経過時間が経過した第4の時刻に前記第1のスイッチをオンし、
     前記電圧値検出手段は、前記第3の時刻から前記第4の時刻までの間における前記コンデンサの電圧値を前記第2の電圧値として検出する、
     請求項1から3のいずれか1項に記載の電源装置。
  5.  前記電圧値検出手段は、前記第3の時刻から前記第4の時刻までの間に前記第2の電圧値を複数回検出し、
     前記寿命診断手段は、複数回検出した前記第2の電圧値の平均値に基づいて前記コンデンサの寿命を診断する、
     請求項4に記載の電源装置。
  6.  第1の線と、
     前記第1の線より低電位の第2の線と、
     一端が前記第1の線に接続された第1のスイッチと、
     一端が前記第1のスイッチに接続され他端が前記第2の線に接続されたコンデンサと、
     前記コンデンサに並列に接続された抵抗と、
     前記抵抗に直列に接続された第2のスイッチと、
     を備える電源装置の前記コンデンサの寿命を診断する寿命診断方法であって、
     前記第1のスイッチがオン状態かつ前記第2のスイッチがオフ状態であるときに第1の時刻に達すると前記第1のスイッチをオフし、
     前記第1の時刻から第1の経過時間が経過した第2の時刻に前記第2のスイッチをオンし、
     前記第1の時刻から前記第2の時刻までの間における前記コンデンサの電圧値と、前記第2の時刻から第2の経過時間が経過した第3の時刻における前記コンデンサの電圧値とに基づいて前記コンデンサの寿命を診断する、
     寿命診断方法。
PCT/JP2019/036800 2019-09-19 2019-09-19 電源装置及び寿命診断方法 WO2021053798A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020500673A JP6678845B1 (ja) 2019-09-19 2019-09-19 電源装置及び寿命診断方法
DE112019007629.9T DE112019007629T5 (de) 2019-09-19 2019-09-19 Stromversorgungseinrichtung und Lebensdauer-Diagnoseverfahren
PCT/JP2019/036800 WO2021053798A1 (ja) 2019-09-19 2019-09-19 電源装置及び寿命診断方法
CN201980100372.2A CN114375402B (zh) 2019-09-19 2019-09-19 电源装置及寿命诊断方法
TW109109756A TWI748383B (zh) 2019-09-19 2020-03-24 電源裝置及壽命診斷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036800 WO2021053798A1 (ja) 2019-09-19 2019-09-19 電源装置及び寿命診断方法

Publications (1)

Publication Number Publication Date
WO2021053798A1 true WO2021053798A1 (ja) 2021-03-25

Family

ID=70058019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036800 WO2021053798A1 (ja) 2019-09-19 2019-09-19 電源装置及び寿命診断方法

Country Status (5)

Country Link
JP (1) JP6678845B1 (ja)
CN (1) CN114375402B (ja)
DE (1) DE112019007629T5 (ja)
TW (1) TWI748383B (ja)
WO (1) WO2021053798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188960A1 (ja) * 2022-03-28 2023-10-05 パナソニックエナジー株式会社 バックアップ電源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919003A (ja) * 1995-06-27 1997-01-17 Honda Motor Co Ltd 電動車両におけるコンデンサの劣化判定装置
JP2000078851A (ja) * 1998-08-28 2000-03-14 Nissan Motor Co Ltd Dcリンクコンデンサーの強制放電装置
WO2008016050A1 (fr) * 2006-07-31 2008-02-07 Mitsubishi Electric Corporation Dispositif d'alimentation et système de séquenceur
JP2008306850A (ja) * 2007-06-07 2008-12-18 Mitsubishi Electric Corp 電源装置および寿命検出方法
WO2011104848A1 (ja) * 2010-02-25 2011-09-01 三菱電機株式会社 電力変換装置
WO2018117058A1 (ja) * 2016-12-20 2018-06-28 株式会社日立産機システム 放電機能を有する電力変換装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165523A (ja) 1992-11-17 1994-06-10 Fuji Electric Co Ltd インバータ用平滑コンデンサの劣化検出装置
JPH11101832A (ja) * 1997-09-26 1999-04-13 Nissin Electric Co Ltd 静電容量測定器
JP2002281735A (ja) * 2001-03-23 2002-09-27 Hitachi Ltd コンデンサ寿命診断装置付き電源ユニット及びコンデンサ寿命診断装置
CN102193033B (zh) * 2010-03-08 2015-02-18 上海海栎创微电子有限公司 一种具有快速响应的自电容变化测量电路
CN102375093A (zh) * 2010-08-05 2012-03-14 易丰兴业有限公司 整流滤波用电容器的电容值衰减检测电路及其方法
DE112012006146T5 (de) * 2012-03-27 2015-01-08 Mitsubishi Electric Corporation Betriebsdauer-Prüfverfahren für ein Energiespeichergerät
CN107251653B (zh) * 2015-02-10 2019-08-13 飞利浦灯具控股公司 用于向用于发射光的光装置供电的设备以及用于操作该设备的方法
US10345360B2 (en) * 2015-06-04 2019-07-09 Fujitsu Limited Capacitor life diagnosis device, capacitor life diagnosis method, and program
CN104880609B (zh) * 2015-06-12 2018-04-27 上海华岭集成电路技术股份有限公司 利用ate测量线路上寄生电容的方法
CN105911373B (zh) * 2016-04-22 2019-01-29 上海市计量测试技术研究院 一种测量超级电容器静电容量的方法及装置
US9721742B1 (en) * 2016-06-25 2017-08-01 Active-Semi, Inc. Power integrated circuit with autonomous limit checking of ADC channel measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919003A (ja) * 1995-06-27 1997-01-17 Honda Motor Co Ltd 電動車両におけるコンデンサの劣化判定装置
JP2000078851A (ja) * 1998-08-28 2000-03-14 Nissan Motor Co Ltd Dcリンクコンデンサーの強制放電装置
WO2008016050A1 (fr) * 2006-07-31 2008-02-07 Mitsubishi Electric Corporation Dispositif d'alimentation et système de séquenceur
JP2008306850A (ja) * 2007-06-07 2008-12-18 Mitsubishi Electric Corp 電源装置および寿命検出方法
WO2011104848A1 (ja) * 2010-02-25 2011-09-01 三菱電機株式会社 電力変換装置
WO2018117058A1 (ja) * 2016-12-20 2018-06-28 株式会社日立産機システム 放電機能を有する電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188960A1 (ja) * 2022-03-28 2023-10-05 パナソニックエナジー株式会社 バックアップ電源

Also Published As

Publication number Publication date
DE112019007629T5 (de) 2022-05-05
TW202113373A (zh) 2021-04-01
CN114375402A (zh) 2022-04-19
JPWO2021053798A1 (ja) 2021-09-30
JP6678845B1 (ja) 2020-04-08
CN114375402B (zh) 2023-06-20
TWI748383B (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
US8488339B2 (en) Switching power supply
JP4845613B2 (ja) 電力用コンデンサ寿命診断機能付き充電装置
US11346893B2 (en) Method and assessment unit for determining the remaining service life of a capacitor, and system
JP6010163B2 (ja) 順変換器の直流側に接続される直流コンデンサの寿命判定装置
KR20170086687A (ko) Led들 및 전원의 컨디션을 평가하기 위한 기법들
WO2021053798A1 (ja) 電源装置及び寿命診断方法
JP2010259165A (ja) 電力供給装置、電子装置、及び、コンデンサ容量推定方法
JP6880865B2 (ja) Ac/dcコンバータの制御回路
JP2006087235A (ja) 力率改善回路及び力率改善回路の制御回路
JP6274906B2 (ja) Dc/dcコンバータおよびdc/dcコンバータの制御方法
JP2007057368A (ja) 電力用コンデンサの寿命診断機能付き充電装置
JP4259119B2 (ja) 出力電流検出回路および出力電流検出機能を備えたスイッチング電源装置
JP2006310091A (ja) リレー制御装置
JP2009060722A (ja) 突入電流防止回路および電源装置
JP4671590B2 (ja) 電源種別判定方法、電源種別判定装置、及び電源装置
JP2004234926A (ja) 放電ランプ点灯装置
JP2011176986A (ja) 寿命検出回路
JP4147589B2 (ja) バッテリー寿命予測装置とこれを用いた電源装置
JP2011050120A (ja) 電力変換装置
JP2010130792A (ja) 電源保護回路及び電源保護方法
JP4688689B2 (ja) 電源投入検出回路及び放電灯点灯装置
JP7500965B2 (ja) コントロールユニット及び非常用照明装置
JP7030618B2 (ja) 劣化判定装置、及び電源装置
JP2002323522A (ja) 静電容量を持った素子の寿命監視装置
JP2016070831A (ja) 停電検知回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020500673

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945560

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19945560

Country of ref document: EP

Kind code of ref document: A1