WO2021051762A1 - 激光发射电路和激光雷达 - Google Patents

激光发射电路和激光雷达 Download PDF

Info

Publication number
WO2021051762A1
WO2021051762A1 PCT/CN2020/079374 CN2020079374W WO2021051762A1 WO 2021051762 A1 WO2021051762 A1 WO 2021051762A1 CN 2020079374 W CN2020079374 W CN 2020079374W WO 2021051762 A1 WO2021051762 A1 WO 2021051762A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
circuit
storage element
energy storage
diode
Prior art date
Application number
PCT/CN2020/079374
Other languages
English (en)
French (fr)
Inventor
陈俊麟
芮文彬
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2019/111738 external-priority patent/WO2021051466A1/zh
Priority claimed from PCT/CN2019/127055 external-priority patent/WO2021051693A1/zh
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202310280112.6A priority Critical patent/CN116626652A/zh
Priority to CN202080005462.6A priority patent/CN112805587B/zh
Publication of WO2021051762A1 publication Critical patent/WO2021051762A1/zh
Priority to US17/721,319 priority patent/US20220239063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors

Definitions

  • This application relates to the field of laser circuits, in particular to a laser emitting circuit and a laser radar.
  • the laser emitting circuit is used to emit laser light.
  • the working process of the laser emitting circuit is generally divided into three stages: charging stage, energy transfer stage and energy discharging stage.
  • the charging stage includes charging an energy storage element. Storing electric energy in the energy storage element, the energy transfer phase includes transferring the stored electric energy on the energy storage element to the energy transfer element after the charging phase is completed, and the energy discharging phase includes transferring the energy after the transfer of electric energy is completed. The electric energy stored on the energy transfer element is released to drive the laser diode to emit laser light.
  • the inventor found that in the process of reducing the charging time, the original laser emitting circuit will emit laser in advance during the conversion stage. This causes the phenomenon of "laser light leakage", that is, the laser emitting circuit emits light at an unexpected time, which will affect the measurement performance of the lidar.
  • the laser emitting circuit and the lidar provided in the embodiments of the present application can solve the problem of laser light leakage caused by the laser emitting circuit emitting laser in the energy conversion stage in the related art.
  • the technical solution is as follows:
  • an embodiment of the present application provides a laser emitting circuit, including:
  • An energy conversion circuit connected to the charging circuit and the energy discharging circuit, and the energy conversion circuit includes a second energy storage element for utilizing the energy conversion current from the first energy storage element in the energy conversion stage Charging the second energy storage element; wherein, in the energy conversion phase, the energy conversion current maintains a reverse bias state for the laser diode;
  • An energy release circuit is connected to the energy transfer circuit, and the energy release circuit includes the laser diode, which is used to drive the laser diode to emit light by using the energy release current from the second energy storage element during the energy release phase.
  • an embodiment of the present application provides a laser radar, including the above-mentioned laser emitting circuit.
  • the laser emitting circuit is in the energy conversion stage, and the energy transfer current from the energy storage element does not pass through the laser diode, and the laser diode is in a reverse bias state with respect to the energy transfer current, so the energy of the switching element is released.
  • the parasitic capacitance will not cause the laser diode to emit light in advance due to the energy conversion charging process, which prevents the laser diode from emitting light at an unexpected time and solves the problem of laser light leakage.
  • FIG. 1 is a schematic structural diagram of a related technology laser emitting circuit provided by an embodiment of the present application
  • Fig. 2 is a block diagram of a laser emitting circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a laser emitting circuit provided by an embodiment of the present application.
  • FIG. 5 is another schematic diagram of the structure of the laser emitting circuit provided by the embodiment of the present application.
  • FIG. 6 is another schematic diagram of the structure of the laser emitting circuit provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another structure of a laser emitting circuit provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of the structure of the laser emitting circuit in the related art.
  • the working process of the laser emitting circuit is divided into three stages: charging stage, energy transfer stage and energy discharging stage.
  • the three stages will be described in detail below.
  • the gate of the switching tube Q1 is connected to the pulse generator TX_CHG, the pulse generator TX_CHG sends rectangular pulses, and controls the on and off of the switching tube Q1; the pulse generator TX_EN sends rectangular pulses to control the on and off of the switching tube Q2 disconnect.
  • the switch Q1 is in the on state and the switch Q2 is in the off state, the laser emitting circuit is in the charging stage.
  • the current generated by the power supply VCC forms a loop through the inductor L1 and the switch Q1 to charge the inductor L1.
  • the on-time of the switch Q1 is ⁇ t ( ⁇ t is also called the charging time)
  • VCC in formula 1 represents the voltage value of the power supply VCC
  • L1 represents the inductance value of the inductor L1.
  • the pulse generator TX_CHG can control the width of the rectangular pulse to control the on-time of the switch tube Q1, that is, control the charging time of the inductor L1, thereby changing the size of the charging energy and adjusting the laser emission power .
  • the switching tube Q1 and the switching tube Q2 are in the off state, there is a parasitic capacitance between the drain and source of the two switching tubes.
  • the parasitic capacitance between the drain and source of the switch Q2 is CQ2-DS.
  • Loop 1 The current forms a loop from the inductor L1 to the ground GND via the parasitic capacitance CQ1-DS, and the current on the loop is defined as ICQ1.
  • Loop 2 The current forms a loop from the inductor L1 through the boost rectifier diode D1 and the energy storage element C2 to the ground GND, and the current on this loop is defined as IC2.
  • Loop 3 The current flows from L1 through the boost rectifier diode D1, laser diode LD, and CQ2-DS to the ground (GND) to form a loop.
  • the current is defined as ICQ2.
  • loop 1 and loop 3 are both caused by parasitic capacitance.
  • CQ1-DS represents the capacitance value of the parasitic capacitance of the switch Q1
  • CQ2-DS represents the capacitance value of the parasitic capacitance of the switch Q2
  • C2 represents The capacitance value of the energy storage element C2.
  • the current value flowing through each loop is:
  • ILD-TH the current threshold of the laser diode LD
  • Discharging stage When the switching tube Q1 is in the off state and the switching tube Q2 is in the on state, the laser emitting circuit is in the discharging stage.
  • the energy stored on the energy storage element C2 will form a loop through the laser diode LD and the switch Q2 to the ground GND, and drive the laser diode LD to emit laser light, so that the laser diode LD emits laser light at the expected time.
  • an embodiment of the present application provides a laser emitting circuit.
  • the laser emitting circuit of the embodiment of the present application includes: a charging circuit 201, a conversion circuit 202, and a discharging circuit 203.
  • the charging circuit 201 is connected to the energy transfer circuit 202.
  • the charging circuit 201 includes a first energy storage element, which is used to store electrical energy.
  • the first energy storage element may be a capacitor or an inductor, or may include both Capacitance and inductance; the charging circuit 201 uses the charging current from the power supply to charge the first energy storage element during the charging phase.
  • the energy transfer circuit 202 is connected to the charge circuit 201 and the energy release circuit 203.
  • the energy transfer circuit 202 includes a second energy storage element.
  • the energy transfer circuit 202 is used to utilize the energy transfer current from the first energy storage element during the energy transfer phase.
  • the second energy storage element is charged; wherein, during the energy conversion phase, the energy conversion current maintains a reverse bias state for the laser diode, so that the laser diode does not emit light during the entire energy conversion phase.
  • the second energy storage element is used to store electrical energy, and the second energy storage element may be a capacitor or an inductor, or it may include both a capacitor and an inductor.
  • the discharging circuit 203 includes the above-mentioned laser diode, which is used to drive the laser diode to emit light during the discharging stage with the discharging current from the second energy storage element.
  • the discharging stage is the normal light-emitting time of the laser diode.
  • the laser emitting circuit is in the energy conversion stage, and the energy conversion current from the energy storage element does not pass through the laser diode, and the laser diode is in a reverse bias with respect to the energy conversion current. Therefore, the parasitic capacitance of the energy-discharging switch element will not cause the laser diode to emit light in advance due to the energy transfer charging process, which prevents the laser diode from emitting light at an unexpected time, and solves the problem of laser light leakage.
  • the number of energy conversion circuits 202 may be one or more, and the number of energy release circuits 203 may also be one or more; when the number of energy conversion circuits 202 is multiple, the number of energy release circuits 202 may be more than one.
  • the number of circuits 203 is correspondingly multiple, and the conversion circuit 202 and the energy release circuit 203 have a one-to-one mapping relationship; when the number of the energy conversion circuit 202 is one, the number of the energy release circuit 203 can be multiple, that is, There is a one-to-many relationship between the energy transfer circuit 202 and the energy release circuit 203.
  • FIG. 3 is a schematic structural diagram of a laser emitting circuit provided by an embodiment of this application.
  • the charging circuit 201 includes: a power source VCC, an inductor L1, an energy-releasing switch element Q1, and a decoupling capacitor C1; wherein, the first energy storage element is an inductor L1, and the power source VCC may be a DC power source, The positive pole of the power supply VCC is grounded through the decoupling capacitor C1, and the negative pole of the power supply VCC is grounded; the first terminal of the inductor L1 is connected to the positive terminal of the power supply VCC, the second terminal of the inductor L1 is connected to the first terminal of the energy-releasing switching element Q1, and the inductor The second end of L1 is connected to the energy transfer circuit 202; the second end of the energy-releasing switch element Q1 is grounded.
  • the first energy storage element is an inductor L1
  • the power source VCC may be a DC power source
  • the positive pole of the power supply VCC is grounded through the decoupling capacitor C1, and the negative pole of the power supply VCC is grounded
  • the charging switch element Q1 may be a transistor or a MOS tube.
  • the transistor may be a PNP transistor or an NPN transistor
  • the MOS tube may be an NMOS tube, a PMOS tube, or a gallium nitride switch tube.
  • the energy release circuit 203 includes an energy release switch element Q2 and a laser diode LD; the anode of the laser diode LD is connected to the energy conversion circuit 202, and the cathode of the laser diode LD is connected to the first energy release switch element Q2. Terminal is connected, the second terminal of the discharging switch element Q2 is grounded.
  • the energy releasing switch element Q2 may be a transistor or a MOS tube.
  • the transistor may be a PNP transistor or an NPN transistor
  • the MOS tube may be an NMOS tube, a PMOS tube, or a gallium nitride switch tube.
  • the energy-releasing circuit 203 further includes: a dynamic compensation capacitor C3, which is connected across the first end and the second end of the energy-releasing switch element.
  • the energy conversion circuit 202 includes a capacitor C2 and a bypass diode D2, and the second energy storage element is a capacitor C2; wherein, the first end of the capacitor C2 is connected to the first end of the inductor L1, and the capacitor The second end of C2 is grounded; the anode of the bypass diode D2 is connected to the second end of the inductor L1, and the cathode of the bypass diode D2 is connected to the first end of the discharging switch element Q2.
  • the energy conversion circuit 202 further includes a boost rectifier diode D1, the anode of the boost rectifier diode D1 is connected to the second end of the inductor L1, and the cathode of the boost rectifier diode D1 is connected to the first end of the capacitor C2.
  • the boost rectifier diode D1 has a unidirectional conduction function, which prevents the capacitor C2 from discharging in the reverse direction during the energy transfer phase and the energy release phase, causing the electric energy in the capacitor C2 to flow back and causing the electric energy in the capacitor C2 to leak.
  • the boost rectifier diode D1 may be a Schottky diode.
  • the pulse generator TX_CHG sends a rectangular pulse to the gate of the MOS tube Q1 to control the MOS tube Q1 to be in the on state, and at this time the MOS tube Q2 to be in the off state.
  • the power supply VCC charges the inductor L1, and the decoupling capacitor C1 is connected in parallel between the positive and negative electrodes of the power supply VCC to prevent parasitic oscillation caused by the circuit through the positive feedback path formed by the power supply VCC.
  • the pulse generator TX_CHG stops sending rectangular pulses to the MOS tube Q1, the MOS tube Q1 is in the off state, and the MOS tube Q2 is still in the off state at this time. Because the current of the inductor L1 cannot change suddenly, the conversion current generated by the inductor L1 will continue to be divided into two paths at this time. One of them passes through the boost rectifier diode D1 and the capacitor C2 to the ground to form a loop, in which the charging current pairs The energy storage element C2 is charged, and the laser diode LD is in a reverse biased state due to the bypass diode D2, so the laser diode LD does not emit light.
  • the other charging current passes through the bypass diode D2 and the parasitic capacitance CQ2-DS of the MOS transistor Q2 (not shown in the figure) to the ground to form another loop.
  • the charging current does not pass through the laser diode LD, so The laser diode LD does not emit light.
  • the pulse generator TX_EN sends a rectangular pulse to the gate of the MOS tube Q2 to control the MOS tube Q2 to be in the on state, and at this time the MOS tube Q1 is in the off state.
  • the electric energy stored in the capacitor C2 passes through the drain and source of the laser diode LD and the MOS transistor Q2 to form an energy release (discharge) circuit, and drives the laser diode LD to complete the laser emission action.
  • the dynamic compensation capacitor C3 also forms its own discharge circuit through the drain and source of the MOS transistor Q2, which releases the stored electric energy during the energy transfer and prepares for the next cycle of laser emission.
  • FIG. 4 is a schematic structural diagram of a laser emitting circuit provided by an embodiment of this application.
  • the charging circuit 201 includes: a power source VCC, an inductor L1, a decoupling capacitor C1, and a charging switch element Q1, and the inductor L1 is a first energy storage element.
  • the connection relationship between the various components in the charging circuit 201 can be referred to as shown in FIG. 3, which will not be repeated this time.
  • the energy release circuit 203 includes: an energy release switch element Q2 and a laser diode LD.
  • the energy release switch element Q1 can be a transistor or a MOS transistor.
  • the transistor can be a PNP transistor or an NPN transistor
  • the MOS transistor can be an NMOS, PMOS, or gallium nitride switch.
  • the cathode of the laser diode LD is connected to the energy transfer circuit 202, and the anode of the laser diode LD is grounded; the first end of the energy release switch element Q2 is connected to the energy transfer circuit 202, and the second end of the energy release switch element Q2 is connected to the laser diode LD.
  • the anode is connected.
  • the energy-releasing circuit 203 further includes: a dynamic compensation capacitor C3, which is connected across the first end and the second end of the energy-releasing switch element.
  • the energy conversion circuit 202 includes: a capacitor C2 and a bypass diode D2, the capacitor C2 is a second energy storage element; the first end of the capacitor C2 is connected to the second end of the inductor L1, and the capacitor C2 is connected to the second end of the inductor L1.
  • the second end is connected to the cathode of the laser diode LD; the anode of the bypass diode D2 is connected to the cathode of the laser diode LD, and the cathode of the bypass diode D2 is grounded.
  • the energy conversion circuit 202 further includes a boost rectifier diode D1, the anode of the boost rectifier diode D1 is connected to the second end of the inductor L1, and the cathode of the boost rectifier diode D1 is connected to the first end of the capacitor C2.
  • the boost rectifier diode D1 has a unidirectional conduction function, which prevents the capacitor C2 from discharging in the reverse direction during the energy transfer phase and the energy release phase, causing the electric energy in the capacitor C2 to flow back and causing the electric energy in the capacitor C2 to leak.
  • the boost rectifier diode D1 may be a Schottky diode.
  • the charging switch element Q1 and the discharging switch element Q2 in Fig. 4 can be MOS transistors.
  • the working process of the laser emitting circuit is described below:
  • the pulse generator TX_CHG stops sending rectangular pulses to the MOS tube Q1, the MOS tube Q1 is in the off state, and the MOS tube Q2 is still in the off state at this time. Because the current of the inductor L1 cannot change suddenly, the conversion current generated by the inductor L1 will continue ⁇ I after passing through the boost rectifier diode D1 and then divided into two paths, one of which forms a loop through the capacitor C2 and the bypass diode D2 to the ground. The charging current in the loop charges the capacitor C2, and the laser diode LD is in a reverse biased state due to the bypass diode D2, so the laser diode LD does not emit light.
  • the other charging current passes through the parasitic capacitance CQ2-DS of the MOS transistor Q2 (not shown in the figure) to the ground to form another loop.
  • the charging current does not pass through the laser diode LD, so the laser diode LD does not Glow.
  • the pulse generator TX_EN sends a rectangular pulse to the gate of the MOS tube Q2 to control the MOS tube Q2 to be in the on state, and at this time the MOS tube Q1 is in the off state.
  • the electric energy stored in the capacitor C2 passes through the MOS tube Q2, the laser diode LD, and the ground to form an energy release (discharge) circuit, which drives the laser diode LD to complete the laser emission action.
  • the dynamic compensation capacitor C3 also forms its own discharge circuit through the drain and source of the MOS transistor Q2, which releases the stored electric energy during the energy transfer and prepares for the next cycle of laser emission.
  • FIG. 5 is a schematic diagram of the result of a laser emitting circuit provided by an embodiment of this application.
  • the charging circuit 201 includes a power supply VCC, an inductor L1, a decoupling capacitor C1, and a charging switch element Q1; the inductor L1 is the first energy storage element, and the connection relationship of each element in the charging circuit 201 Please refer to the description of FIG. 3, which will not be repeated here.
  • the energy release circuit 203 includes: a laser diode LD and an energy release switch element Q2, the anode of the laser diode LD is connected to the energy conversion circuit 202, and the cathode of the laser diode LD is connected to the second energy release switch element Q2. One end is connected, and the second end of the discharging switch element Q2 is grounded.
  • the energy release switch element Q1 may be a transistor or a MOS tube.
  • the transistor may be a PNP transistor or an NPN transistor
  • the MOS tube may be an NMOS tube, a PMOS tube, or a gallium nitride switch tube.
  • the energy-releasing circuit 203 further includes: a dynamic compensation capacitor C3, which is connected across the first end and the second end of the energy-releasing switch element.
  • the energy conversion circuit 202 includes a capacitor C2 and a bypass diode D2.
  • the capacitor C2 is a second energy storage element, the first end of the capacitor C2 is connected to the anode of the laser diode LD, and the cathode of the capacitor C2 is grounded.
  • the cathode of the bypass diode D2 is connected to the anode of the laser diode LD, and the anode of the bypass diode D2 is connected to the cathode of the laser diode LD.
  • the energy conversion circuit 202 further includes a boost rectifier diode D1, the anode of the boost rectifier diode D1 is connected to the second end of the inductor L1, and the cathode of the boost rectifier diode D1 is connected to the cathode of the laser diode LD.
  • the boost rectifier diode D1 has a unidirectional conduction function, which prevents the capacitor C2 from discharging in the reverse direction during the energy transfer phase and the energy release phase, causing the electric energy in the capacitor C2 to flow back and causing the electric energy in the capacitor C2 to leak.
  • the boost rectifier diode D1 may be a Schottky diode.
  • the charging switch element Q1 and the discharging switch element Q2 in Figure 5 can be MOS tubes.
  • the working process of the laser emitting circuit includes:
  • the pulse generator TX_CHG stops sending rectangular pulses to the MOS tube Q1, the MOS tube Q1 is in the off state, and the MOS tube Q2 is still in the off state at this time. Because the current of the inductor L1 cannot change suddenly, at this time, the transfer current generated by the inductor L1 will continue to pass through the boost rectifier diode D1 and then be divided into two paths. One of them passes through the bypass diode D2 and the capacitor C2 to the ground to form a loop. The charging current in the loop charges the capacitor C2, and the laser diode LD is in a reverse biased state due to the bypass diode D2, so the laser diode LD does not emit light.
  • the other charging current passes through the parasitic capacitance CQ2-DS of the MOS transistor Q2 (not shown in the figure) to the ground to form another loop.
  • the charging current does not pass through the laser diode LD, so the laser diode LD does not Glow.
  • the pulse generator TX_EN sends a rectangular pulse to the gate of the MOS tube Q2 to control the MOS tube Q2 to be in the on state, and at this time the MOS tube Q1 is in the off state.
  • the electric energy stored in the capacitor C2 passes through the laser diode LD, the MOS tube Q2, to the ground to form an energy release (discharge) circuit, and drives the laser diode LD to complete the laser emission action.
  • the dynamic compensation capacitor C3 also forms its own discharge circuit through the drain and source of the MOS transistor Q2, which releases the stored electric energy during the energy transfer and prepares for the next cycle of laser emission.
  • FIG. 6 is a schematic structural diagram of a laser emitting circuit provided by an embodiment of this application.
  • the number of the energy transfer circuit 202 is one, and the number of the energy release circuit 203 is multiple, that is, there is a one-to-many relationship between the energy transfer circuit 202 and the energy release circuit 203, and there is a one-to-many relationship between the energy transfer circuit 202 and the energy release circuit 203.
  • the energy circuits 203 are connected in parallel.
  • the number of bypass diodes D2 in the energy transfer circuit 202 is multiple, and the number of bypass diodes D2 is equal to the number of energy release circuits 203, that is, each energy release circuit 203 is provided with one bypass diode D2; in some embodiments, Multiple discharge circuits 203 can also share one bypass diode D2.
  • one energy transfer circuit 202 corresponds to three energy release circuits 203 for description.
  • connection relationship and working principle of the various components in the charging circuit 201, the energy transfer circuit 202, and the energy discharging circuit 203 in FIG. 6 can be referred to as shown in FIG. 3, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a laser emitting circuit provided by an embodiment of this application.
  • the number of the energy conversion circuit 202 and the energy release circuit 203 is multiple, and the number of the energy conversion circuit 202 and the energy release circuit 203 are equal, that is, the energy conversion circuit 202 and the energy release circuit 203 are one.
  • An energy transfer circuit 202 and an energy release circuit 203 form a circuit unit, and the circuit units are connected in parallel.
  • the laser emission circuit in FIG. 7 includes three circuit units, and each circuit unit includes a transfer circuit 202 and a discharge circuit 203.
  • connection relationship and working principle of the various components in the charging circuit 201, the energy transfer circuit 202, and the energy discharging circuit 203 in FIG. 7 can be referred to as shown in FIG. 3, which will not be repeated here.
  • the decoupling capacitor C1 is connected in parallel between the positive and negative electrodes of the power supply VCC to prevent parasitic oscillation caused by the circuit through the positive feedback path formed by the power supply VCC.
  • the so-called decoupling is to prevent the current fluctuations formed in the power supply circuit from affecting the normal operation of the circuit when the currents of the front and rear circuits change. In other words, the decoupling circuit can effectively eliminate the parasitic coupling between the circuits.
  • the charging switch element Q1 or the discharging switch element Q2 is a transistor, and the collector of the transistor is the first end of the charging switch element Q1 or the discharging switch element Q2,
  • the emitter of the transistor is at the second end, the base of the transistor is at the enable end, and the base of the transistor is connected to the output of the first pulse generator;
  • the first pulse generator controls the crystal to be turned on by outputting a high level, and output The low-level control transistor is in the off state.
  • the charging switch element Q1 or the discharging switch element Q2 may be a transistor, and the emitter of the transistor is the first end of the charging switch element Q1 or the discharging switch element Q2. , The collector of the transistor is the second end of the charging switch element Q1 or the discharging switch element Q2, and the base electrode of the transistor is the enable end connected to the output end of the first pulse generator.
  • the first pulse generator outputs a high voltage
  • the level control crystal is in the off state, and the output low level control transistor is in the on state.
  • the charging switch element Q1 or the discharging switch element Q2 is a MOS tube
  • the drain of the MOS tube is the first terminal
  • the gallium nitride switch tube is the second terminal.
  • the gate of the gallium nitride switch tube is the enable terminal, which is connected to the output terminal of the first pulse generator.
  • the first pulse generator is used to control the on-time of the MOS tube.
  • the charging switch element Q1 or the discharging switch element Q2 can be a MOS tube
  • the source of the MOS tube is the first terminal
  • the drain of the MOS tube is the second terminal
  • the gate of the MOS tube is the enable terminal and the first terminal.
  • the output terminal of the pulse generator is connected.
  • the first pulse generator is used to control the on-time of the MOS tube.
  • the dynamic compensation capacitor C3 can suppress the current resonance caused by the parasitic parameters of the discharge circuit of the capacitor C2, and supplement the dynamic impedance when the discharging switch element Q2 is turned on.
  • the capacitance value of the dynamic compensation capacitor C3 is smaller than the capacitance value of the capacitor C2.
  • the capacitor C2 may be composed of multiple capacitors in parallel to reduce the ESR (Equivalent Series Resistance) of the capacitor C2. It is understandable that the capacitance values of the multiple capacitors may be equal or unequal.
  • the capacitance values of a plurality of capacitors connected in parallel are the same, the ESR consistency of the capacitors with the same capacitance value in parallel is better, and the discharge of each parallel capacitor is more equal, which can better improve the efficiency of the energy storage element.
  • each component in the laser emitting circuit for example: bypass diode D2, laser diode LD, and discharging switch element
  • the negative pole is connected, and the same function of the laser emitting circuit in Fig. 3 to Fig. 7 can also be realized.
  • An embodiment of the present application also provides a laser radar, including the above-mentioned laser emission circuit.
  • the above-mentioned laser emitting circuit can be applied to a laser radar.
  • the laser radar can also include specific structures such as a power supply, a processing device, an optical receiving device, a rotating body, a base, a housing, and a human-computer interaction device.
  • the lidar can be a single-channel lidar, including one of the above-mentioned laser emission circuits, and the lidar can also be a multi-channel lidar, including multiple channels of the above-mentioned laser emission circuit and the corresponding control system. The quantity can be determined according to actual needs.
  • the above-mentioned laser radar by changing the structure of the laser emitting circuit, makes the laser emitting circuit in the energy conversion stage, the energy conversion current from the energy storage element does not pass through the laser diode, and the laser diode is in a reverse bias state with respect to the energy conversion current.
  • the parasitic capacitance of the switchable element will not cause the laser diode to emit light in advance due to the energy transfer charging process, which prevents the laser diode from emitting light at an unexpected time and solves the problem of laser light leakage.
  • the program can be stored in a computer readable storage medium, and the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium can be a magnetic disk, an optical disc, a read-only storage memory or a random storage memory, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请实施例公开了一种激光发射电路和激光雷达,属于激光雷达领域。通过更改激光发射电路的结构,使激光发射电路在转能阶段,来自储能元件的转能电流不经过激光二极管,激光二极管相对于转能电流处于反向偏置状态,因此释能开关元件的寄生电容不会因转能充电过程而造成激光二极管提前发光,避免激光二极管在非预期时间发光,解决了激光漏光的问题。

Description

激光发射电路和激光雷达 技术领域
本申请涉及激光电路领域,尤其涉及一种激光发射电路和激光雷达。
背景技术
在激光雷达中,激光发射电路用于发射激光,激光发射电路的工作过程一般分为三个阶段:充能阶段、转能阶段和释能阶段,充能阶段包括为一个储能元件进行充电,将电能存储在该储能元件中,转能阶段包括在充能阶段完成后,将该储能元件上存储的电能转移到转能元件上,释能阶段包括在完成电能的转移后,将该转能元件上存储的电能释放以驱动激光二极管发射激光。目前随着激光雷达的发展,需要激光雷达在更短的时间内完成充能阶段,但是发明人发现在减小充能时间的过程中,原有激光发射电路会在转能阶段提前发射激光,造成“激光漏光”的现象,即激光发射电路在非预期时间发光,这样会影响激光雷达的测量性能。
发明内容
本申请实施例提供了的激光发射电路及激光雷达,可以解决相关技术中激光发射电路在转能阶段发射激光造成的激光漏光的问题。所述技术方案如下:
第一方面,本申请实施例提供了一种激光发射电路,包括:
充能电路,与释能电路相连,所述充能电路包括第一储能元件,用于在充能阶段,利用来自电源的充能电流对所述第一储能元件进行充电;
转能电路,与所述充能电路和所述释能电路相连,所述转能电路包括第二储能元件,用于在转能阶段,利用来自所述第一储能元件的转能电流对所述第二储能元件进行充电;其中,在所述转能阶段,所述转能电流对激光二极管保持反向偏置状态;
释能电路,与所述转能电路相连,所述释能电路包括所述激光二极管,用于在释能阶段,利用来自所述第二储能元件的释能电流驱动所述激光二极管发光。
第二方面,本申请实施例提供了一种激光雷达,包括上述的激光发射电路。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
通过更改激光发射电路的结构,使激光发射电路在转能阶段,来自储能元件的转能电流不经过激光二极管,激光二极管相对于转能电流处于反向偏置状态,因此释能开关元件的寄生电容不会因转能充电过程而造成激光二极管提前发光,避免激光二极管在非预期时间发光,解决了激光漏光的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种相关技术的激光发射电路的结构示意图;
图2是本申请实施例提供的激光发射电路的框图;
图3是本申请实施例提供的激光发射电路的结构示意图;
图4是本申请实施例提供的激光发射电路的另一结构示意图;
图5是本申请实施例提供的激光发射电路的另一结构示意图;
图6是本申请实施例提供的激光发射电路的另一结构示意图;
图7是本申请实施例提供的激光发射电路的另一结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
图1示出了相关技术中激光发射电路的结构示意图,激光发射电路的工作过程分为三个阶段:充能阶段、转能阶段和释能阶段,下面分别对三个阶段进行详细说明。
充能阶段:开关管Q1的栅极连接脉冲发生器TX_CHG,脉冲发生器TX_CHG发送矩形脉冲,控制开关管Q1的导通和断开;脉冲发生器TX_EN发送矩形脉冲控制开关管Q2的导通和断开。开关管Q1为导通状态,且开关 管Q2为断开状态时,激光发射电路处于充能阶段。电源VCC产生的电流经过电感L1和开关管Q1形成回路,对电感L1进行充电。假设开关管Q1的导通时间为△t(△t也叫充能时间),则电感L1中的电流增量遵守公式:△I=(VCC×△t)/L1(公式1)。
其中,公式1中的VCC表示电源VCC的电压值,L1表示电感L1的电感值。
充能的能量遵守公式
Figure PCTCN2020079374-appb-000001
将公式1代入到公式2得到
Figure PCTCN2020079374-appb-000002
根据公式3可以看出,充能能量W L与电感值L1呈反比,且与开关管Q1的导通时间△t的平方成正比。在保持充能能量WL不变的情况下,如果要减少开关管Q1的导通时间,那么需要减少电感L1的电感值。
由公式1和公式2可知,脉冲发生器TX_CHG可以控制矩形脉冲的宽度来控制开关管Q1的导通时间,即控制电感L1的充能时间,从而改变充能能量的大小,调节激光的发射功率。
转能阶段:当开关管Q1处于断开状态,且开关管Q2也处于断开状态时,激光发射电路处于转能阶段。由于电感L1的电流不能突变,电感L1中存储有充电电能,电感L1通过升压整流二极管D1对储能元件C2进行充电,实现将电感L1上存储的充电电能转移到储能元件C2上。
虽然开关管Q1和开关管Q2处于断开状态,但是两个开关管的漏极和源极之间存在寄生电容,设开关管Q1的漏极和源极之间的寄生电容为CQ1-DS,开关管Q2的漏极和源极之间的寄生电容为CQ2-DS。
那么电感L1的电流增量△I会通过以下的三条支路进行分流:
回路1:电流由电感L1经寄生电容CQ1-DS到地GND形成回路,定义该回路上的电流为ICQ1。
回路2:电流由电感L1经升压整流二极管D1、储能元件C2到地GND形成回路,定义该回路上的电流为IC2。
回路3:电流由L1经升压整流二极管D1、激光二极管LD、CQ2-DS到地(GND)形成回路,定义电流为ICQ2。
以上3条回路只有回路2是主充能回路,实现对储能元件C2的储能作用,回路1和回路3都是由寄生电容引起的。
考虑到升压整流二极管D1和激光二极管LD的正向压降比较小,对各回路的影响较小,为了简化计算忽略升压整流二极管D1和激光二极管LD对回路的压降影响,可得△I=IC2+ICQ1+ICQ2(公式4)。
假设CQ1-DS=CQ2-DS=C2/N,N为大于0的数,CQ1-DS表示开关管Q1的寄生电容的电容值,CQ2-DS表示开关管Q2的寄生电容的电容值,C2表示储能元件C2的电容值。则流过各回路的电流值为:
Figure PCTCN2020079374-appb-000003
Figure PCTCN2020079374-appb-000004
Figure PCTCN2020079374-appb-000005
根据回路3可以看出,ICQ2等于激光二极管LD的电流ILD,即ICQ2=ILD(公式8)。设激光二极管LD发光的电流阈值为ILD-TH,如果ICQ2大于电流阈值大于ILD-TH,则激光二极管LD会在转能阶段发射激光,造成漏光现象,即激光发射电路在非预期时间发光,对激光雷达的测量性能造成影响。
例如:为了满足激光雷达的综合性能,例如:提高***频点、实现双发射和多发射等功能,要求减少充能时间△t。
在保持电感L1的能量WL和电源VCC的电压值不变前提下,根据公式3可以看出,需要相应的减小充能电路中电感L1的电感值。然后根据公式1可以看出,电感L1的电感值减小的话,电感L1产生的充电电流△I相应会增大。最后再根据公式7和公式8可知,在充电电流△I增大的情况下,转能过程流过激光二极管LD的电流也会增大,这样流过激光二极管LD的电流有可能会满足ICQ2=ILD≥ILD-TH的条件,此时激光二极管LD会在非预期时间发光,造成“激光漏光”现象。
释能阶段:当开关管Q1处于断开状态,且开关管Q2处于导通状态时,激光发射电路处于释能阶段。储能元件C2上存储的能量会通过激光二极管LD、开关管Q2到地GND形成回路,驱动激光二极管LD发出激光,从而使激光二极管LD在预期时间发射激光。
为了解决上述技术问题,本申请实施例提供了一种激光发射电路,参见图2所示,本申请实施例的激光发射电路包括:充能电路201、转能电路202和释能电路203。
其中,充能电路201,与转能电路202相连,充能电路201包括第一储能元件,第一储能元件用于存储电能,第一储能元件可以是电容或电感,也可以同时包括电容和电感;充能电路201在充能阶段,利用来自电源的充能电流对第一储能元件进行充电。
转能电路202,与充能电路201和释能电路203相连,转能电路202包括第二储能元件,转能电路202用于在转能阶段,利用来自第一储能元件的转能电流对第二储能元件进行充电;其中,在转能阶段,转能电流对激光二极管保持反向偏置状态,使得激光二极管在整个转能阶段都不会发光。第二储能元件用于存储电能,第二储能元件可以是电容或电感,也可以同时包括电容和电感。
释能电路203,释能电路203包括上述的激光二极管,用于在释能阶段利用来自第二储能元件的释能电流驱动激光二极管发光,释能阶段是激光二极管的正常发光时间。
在本申请的实施例中,通过更改激光发射电路的结构,使激光发射电路在转能阶段,来自储能元件的转能电流不经过激光二极管,激光二极管相对于转能电流处于反向偏置状态,因此释能开关元件的寄生电容不会因转能充电过程而造成激光二极管提前发光,避免激光二极管在非预期时间发光,解决了激光漏光的问题。
在本申请的一些实施例中,转能电路202的数量可以是一个或多个,释能电路203的数量也可以是一个或多个;在转能电路202的数量为多个时,释能电路203的数量也相应为多个,转能电路202和释能电路203为一对一的映射关系;在转能电路202的数量为一个时,释能电路203的数量可以为多个,即转能电路202和释能电路203之间为一对多的关系。
参见图3,为本申请实施例提供的一种激光发射电路的结构示意图、
在本申请的一些实施例中,充能电路201包括:电源VCC、电感L1、释能开关元件Q1和退耦电容C1;其中,第一储能元件为电感L1,电源VCC可以是直流电源,电源VCC的正极通过退耦电容C1接地,电源VCC的负极接地;电感L1的第一端与电源VCC的正极相连,电感L1的第二端与释能开关元件Q1的第一端相连,且电感L1的第二端与转能电路202相连;释能开关元件Q1的第二端接地。充能开关元件Q1可以是晶体管或MOS管,例如:晶体管可以是PNP三极管或NPN三极管,MOS管可以是NMOS管、PMOS管或氮化镓开关管等。
在本申请的一些实施例中,释能电路203包括释能开关元件Q2、激光二极管LD;激光二极管LD的阳极与转能电路202相连,激光二极管LD的阴极与释能开关元件Q2的第一端相连,释能开关元件Q2的第二端接地。释能开关元件Q2可以是晶体管或MOS管,例如:晶体管可以是PNP三极管或NPN三极管,MOS管可以是NMOS管、PMOS管或氮化镓开关管等。
可选的,释能电路203还包括:动态补偿电容C3,动态补偿电容C3跨接在释能开关元件的第一端和第二端之间。
在本申请的一些实施例中,转能电路202包括:电容C2和旁路二极管D2,第二储能元件为电容C2;其中,电容C2的第一端与电感L1的第一端相连,电容C2的第二端接地;旁路二极管D2的阳极与电感L1的第二端相连,旁路二极管D2的阴极与释能开关元件Q2的第一端相连。
可选的,转能电路202还包括升压整流二极管D1,升压整流二极管D1的阳极与电感Ll的第二端相连,升压整流二极管D1的阴极与电容C2的第一端相连。升压整流二极管D1具有单向导通功能,在转能阶段和释能阶段避免电容C2反向放电,造成电容C2中电能的回流,导致电容C2中的电能发生泄漏。其中,可以理解的是,该升压整流二极管D1可以是肖特基二极管。
下面以充能开关元件Q1和释能开关元件Q2均为MOS管为例,对激光发射电路的工作过程进行说明。
1、充能阶段。
脉冲发生器TX_CHG向MOS管Q1的栅极发送矩形脉冲,控制MOS管 Q1处于导通状态,此时MOS管Q2处于断开状态。电源VCC向电感L1进行充电,退耦电容C1并接于电源VCC正负极之间,可防止电路通过电源VCC形成的正反馈通路而引起的寄生振荡。
2、转能阶段。
充能完成后,脉冲发生器TX_CHG停止向MOS管Q1发送矩形脉冲,MOS管Q1处于断开状态,此时MOS管Q2仍处于断开状态。因为电感L1的电流不能突变,此时电感L1会延续ΔI所产生的转能电流分为两路,其中一路经过升压整流二极管D1和电容C2到地形成回路,在该回路中充能电流对储能元件C2进行充电,激光二极管LD由于旁路二极管D2的作用处于反向偏置状态,因此激光二极管LD不会发光。另一路的充能电流经过旁路二极管D2、MOS管Q2的寄生电容CQ2-DS(图中未画出)到地形成另一回路,在该回路中,充能电流不经过激光二极管LD,因此激光二极管LD不会发光。
显然,以上两路转能电流都不会产生流经激光二极管LD,所以不会在非预期时间发光,解决了激光漏光的问题。
3、释能阶段。
脉冲发生器TX_EN向MOS管Q2的栅极发送矩形脉冲,控制MOS管Q2处于导通状态,此时MOS管Q1处于断开状态。电容C2中存储的电能经过激光二极管LD、MOS管Q2的漏极、源极到地形成释能(放电)回路,驱动激光二极管LD完成激光的发射动作。另外,动态补偿电容C3也通过MOS管Q2的漏极和源极形成自身的放电回路,把转能时所存储的电能释放掉,为下一周期的激光发射做准备。
参见图4,为本申请实施例提供的一种激光发射电路的结构示意图。
在本申请的一些实施例中,充能电路201包括:电源VCC、电感L1、退耦电容C1和充能开关元件Q1,电感L1为第一储能元件。充能电路201中各个元件之间的连接关系可以参照图3所示,此次不再赘述。
在本申请的一些实施例中,释能电路203包括:释能开关元件Q2和激光二极管LD。释能开关元件Q1可以是晶体管或MOS管,例如:晶体管可以是PNP三极管或NPN三极管,MOS管可以是NMOS管、PMOS管或氮化镓开 关管等。
其中,激光二极管LD的阴极与转能电路202相连,激光二极管LD的阳极接地;释能开关元件Q2的第一端与转能电路202相连,释能开关元件Q2的第二端与激光二极管LD的阳极相连。
可选的,释能电路203还包括:动态补偿电容C3,动态补偿电容C3跨接在释能开关元件的第一端和第二端之间。
在本申请的一些实施例中,转能电路202包括:电容C2和旁路二极管D2,电容C2为第二储能元件;电容C2的第一端与电感L1的第二端相连,电容C2的第二端与激光二极管LD的阴极相连;旁路二极管D2的阳极与激光二极管LD的阴极相连,旁路二极管D2的阴极接地。
进一步的,转能电路202还包括:升压整流二极管D1,升压整流二极管D1的阳极与电感L1的第二端相连,升压整流二极管D1的阴极与电容C2的第一端相连。升压整流二极管D1具有单向导通功能,在转能阶段和释能阶段避免电容C2反向放电,造成电容C2中电能的回流,导致电容C2中的电能发生泄漏。其中,该升压整流二极管D1可以是肖特基二极管。
图4中充能开关元件Q1和释能开关元件Q2可以MOS管,下面对激光发射电路的工作过程进行说明:
1、充能阶段。
充能阶段的过程可参照图3中充能阶段的描述,此处不再赘述。
2、转能阶段。
充能完成后,脉冲发生器TX_CHG停止向MOS管Q1发送矩形脉冲,MOS管Q1处于断开状态,此时MOS管Q2仍处于断开状态。因为电感L1的电流不能突变,此时电感L1会延续ΔI所产生的转能电流经过升压整流二极管D1之后分为两路,其中一路经过电容C2、旁路二极管D2到地形成回路,在该回路中充能电流对电容C2进行充电,激光二极管LD由于旁路二极管D2的作用处于反向偏置状态,因此激光二极管LD不会发光。另一路的充能电流经过MOS管Q2的寄生电容CQ2-DS(图中未画出)到地形成另一回路,在该回路中,充能电流不经过激光二极管LD,因此激光二极管LD不会发光。
显然,以上两路转能电流都不会产生流经激光二极管LD,所以不会在非 预期时间发光,解决了激光漏光的问题。
3、释能阶段。
脉冲发生器TX_EN向MOS管Q2的栅极发送矩形脉冲,控制MOS管Q2处于导通状态,此时MOS管Q1处于断开状态。电容C2中存储的电能经过MOS管Q2、激光二极管LD、地形成释能(放电)回路,驱动激光二极管LD完成激光的发射动作。另外,动态补偿电容C3也通过MOS管Q2的漏极和源极形成自身的放电回路,把转能时所存储的电能释放掉,为下一周期的激光发射做准备。
参见图5,为本申请实施例提供的一种激光发射电路的结果示意图。
在本申请的一些实施例中,充能电路201包括电源VCC、电感L1、退耦电容C1、充能开关元件Q1;电感L1为第一储能元件,充能电路201中各个元件的连接关系可参照图3的描述,此处不再赘述。
在本申请的一些实施例中,释能电路203包括:激光二极管LD和释能开关元件Q2,激光二极管LD的阳极与转能电路202相连,激光二极管LD的阴极与释能开关元件Q2的第一端相连,释能开关元件Q2的第二端接地。释能开关元件Q1可以是晶体管或MOS管,例如:晶体管可以是PNP三极管或NPN三极管,MOS管可以是NMOS管、PMOS管或氮化镓开关管等。
可选的,释能电路203还包括:动态补偿电容C3,动态补偿电容C3跨接在释能开关元件的第一端和第二端之间。
在本申请的一些实施例中,转能电路202包括电容C2和旁路二极管D2,电容C2为第二储能元件,电容C2的第一端与激光二极管LD的阳极相连,电容C2的阴极接地;旁路二极管D2的阴极与激光二极管LD的阳极相连,旁路二极管D2的阳极与激光二极管LD的阴极相连。
可选的,转能电路202还包括升压整流二极管D1,升压整流二极管D1的阳极与电感L1的第二端相连,升压整流二极管D1的阴极与激光二极管LD的阴极相连。升压整流二极管D1具有单向导通功能,在转能阶段和释能阶段避免电容C2反向放电,造成电容C2中电能的回流,导致电容C2中的电能发生泄漏。其中,该升压整流二极管D1可以是肖特基二极管。
图5中充能开关元件Q1和释能开关元件Q2可以MOS管,激光发射电路的工作过程包括:
1、充能阶段。
充能阶段的过程可参照图3中充能阶段的描述,此处不再赘述。
2、转能阶段。
充能完成后,脉冲发生器TX_CHG停止向MOS管Q1发送矩形脉冲,MOS管Q1处于断开状态,此时MOS管Q2仍处于断开状态。因为电感L1的电流不能突变,此时电感L1会延续ΔI所产生的转能电流经过升压整流二极管D1之后分为两路,其中一路经过旁路二极管D2、电容C2到地形成回路,在该回路中充能电流对电容C2进行充电,激光二极管LD由于旁路二极管D2的作用处于反向偏置状态,因此激光二极管LD不会发光。另一路的充能电流经过MOS管Q2的寄生电容CQ2-DS(图中未画出)到地形成另一回路,在该回路中,充能电流不经过激光二极管LD,因此激光二极管LD不会发光。
显然,以上两路转能电流都不会产生流经激光二极管LD,所以不会在非预期时间发光,解决了激光漏光的问题。
3、释能阶段。
脉冲发生器TX_EN向MOS管Q2的栅极发送矩形脉冲,控制MOS管Q2处于导通状态,此时MOS管Q1处于断开状态。电容C2中存储的电能经过激光二极管LD、MOS管Q2、到地形成释能(放电)回路,驱动激光二极管LD完成激光的发射动作。另外,动态补偿电容C3也通过MOS管Q2的漏极和源极形成自身的放电回路,把转能时所存储的电能释放掉,为下一周期的激光发射做准备。
参见图6,为本申请实施例提供的一种激光发射电路的结构示意图。
在本申请的一些实施例中,转能电路202的数量为一个,释能电路203的数量为多个,即转能电路202和释能电路203之间为一对多的关系,多个释能电路203之间为并联关系。转能电路202中旁路二极管D2的数量为多个,旁路二极管D2的数量和释能电路203的数量相等,即每个释能电路203设置一个旁路二极管D2;在一些实施例中,多个释能电路203也可以共用一个旁 路二极管D2。图6中以一个转能电路202对应三个释能电路203进行说明。
其中,图6中的充能电路201、转能电路202和释能电路203中各个元器件的连接关系和工作原理可参照图3所示,此处不再赘述。
参见图7,为本申请实施例提供的一种激光发射电路的结构示意图。
在本申请的一些实施例中,转能电路202和释能电路203的数量为多个,且转能电路202和释能电路203的数量相等,即转能电路202和释能电路203为一对一的关系。一个转能电路202和一个释能电路203组成一个电路单元,各个电路单元之间为并联关系。图7中的激光发射电路包括三个电路单元,每个电路单元包含一个转能电路202和释能电路203。
其中,图7中的充能电路201、转能电路202和释能电路203中各个元器件的连接关系和工作原理可参照图3所示,此处不再赘述。
需要说明的是,在图3~图7的实施例中,退耦电容C1并接于电源VCC正负极之间,可防止电路通过电源VCC形成的正反馈通路而引起的寄生振荡。所谓退耦,即防止前后电路电流大小变化时,在供电电路中所形成的电流波动对电路的正常工作产生影响,换言之,退耦电路能够有效地消除电路之间的寄生耦合。
需要说明的是,在图3~图7的实施例中,充能开关元件Q1或释能开关元件Q2为晶体管,晶体管的集电极为充能开关元件Q1或释能开关元件Q2第一端,晶体管的发射极为第二端,晶体管的基极为使能端,晶体管的基极与第一脉冲发生器的输出端相连;第一脉冲发生器通过输出高电平控制晶体处于导通状态,以及输出低电平控制晶体管处于断开状态。
需要说明的是,在图3~图7的实施例中,充能开关元件Q1或释能开关元件Q2可以为晶体管,晶体管的发射极为充能开关元件Q1或释能开关元件Q2的第一端,晶体管的集电极为充能开关元件Q1或释能开关元件Q2的第二端,晶体管的基极为使能端,与第一脉冲发生器的输出端相连,第一脉冲发生器通过输出高电平控制晶体处于断开状态,输出低电平控制晶体管处于导通状态。
需要说明的是,在图3~图7的实施例中,充能开关元件Q1或释能开关元 件Q2为MOS管,MOS管的漏极为第一端,氮化镓开关管为第二端,氮化镓开关管的栅极为使能端,与第一脉冲发生器的输出端相连。第一脉冲发生器用于控制MOS管的导通时间。
需要说明的是,充能开关元件Q1或释能开关元件Q2可以为MOS管,MOS管的源极为第一端,MOS管的漏极为第二端,MOS管的栅极为使能端与第一脉冲发生器的输出端相连。第一脉冲发生器用于控制MOS管的导通时间。
需要说明的是,在图3~图7的实施例中,动态补偿电容C3可以抑制电容C2的放电回路的寄生参数带来的电流谐振,以及补充释能开关元件Q2导通时的动态阻抗。可选的,动态补偿电容C3的电容值小于电容C2电容值。可选的,电容C2可以由多个电容并联组成,用于减少电容C2的ESR(Equivalent Series Resistance,等效串联电阻)。可理解的是,该多个电容的电容值可以相等也可以不等。优选的,多个并联的电容的电容值相等,电容值相等的电容并联各自的ESR一致性更好,各并联电容的放电更对等,可以更好的提高储能元件的效率。
可以理解的是,在图3~图7的实施例中,激光发射电路中各个元器件(例如:旁路二极管D2、激光二极管LD和释能开关元件)接地的连接方式可以更改为与电源的负极相连,同样也能实现图3~图7中的激光发射电路相同的功能。
本申请实施例还提供了一种激光雷达,包括上述的激光发射电路。
具体地,上述激光发射电路可以应用在激光雷达中,激光雷达中除了激光发射电路外,还可以包括电源、处理设备、光学接收设备、旋转体、底座、外壳以及人机交互设备等具体结构。可以理解的是,激光雷达可以为单路激光雷达,包括有一路上述激光发射电路,激光雷达也可以为多路激光雷达,包括多路上述激光发射电路以及相应的控制***,其中多路的具体数量可以根据实际需求确定。
上述激光雷达,通过更改激光发射电路的结构,使激光发射电路在转能阶段,来自储能元件的转能电流不经过激光二极管,激光二极管相对于转能电流 处于反向偏置状态,因此释能开关元件的寄生电容不会因转能充电过程而造成激光二极管提前发光,避免激光二极管在非预期时间发光,解决了激光漏光的问题。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (18)

  1. 一种激光发射电路,其特征在于,包括:
    充能电路,与释能电路相连,所述充能电路包括第一储能元件,用于在充能阶段,利用来自电源的充能电流对所述第一储能元件进行充电;
    转能电路,与所述充能电路和所述释能电路相连,所述转能电路包括第二储能元件,用于在转能阶段,利用来自所述第一储能元件的转能电流对所述第二储能元件进行充电;其中,在所述转能阶段,所述转能电流对激光二极管保持反向偏置状态;
    释能电路,与所述转能电路相连,所述释能电路包括所述激光二极管,用于在释能阶段,利用来自所述第二储能元件的释能电流驱动所述激光二极管发光。
  2. 根据权利要求1所述的电路,其特征在于,所述充能电路包括:电源、退耦电容、电感和充能开关元件;所述第一储能元件为电感,所述充能开关元件设置有第一端、使能端和第二端;
    其中,所述电源的负极接地;所述电源的正极通过所述退耦电容接地,且所述电源的正极与所述第一储能元件的第一端相连,所述第一储能元件的第二端与所述充能开关元件的第一端相连,且所述第二储能元件的第二端与所述转能电路相连,所述充能开关元件的第二端接地。
  3. 根据权利要求2所述的电路,其特征在于,所述释能电路还包括:释能开关元件;所述释能开关元件设置有第一端、使能端和第二端;
    其中,所述激光二极管的阳极与所述转能电路相连,所述激光二极管的阴极与所述释能开关元件的第一端相连,所述释能开关元件的第二端接地。
  4. 根据权利要求3所述的电路,其特征在于,所述转能电路还包括:旁路二极管,所述第二储能元件为电容;其中,所述第二储能元件的第一端与所述第一储能元件的第二端相连,且所述第二储能元件的第一端与所述激光二极 管的阳极相连,所述第二储能元件的第二端接地;所述旁路二极管的阳极与所述第一储能元件的第二端相连,所述旁路二极管的阴极与所述释能开关元件的第一端相连。
  5. 根据权利要求4所述的电路,其特征在于,所述转能电路还包括:升压整流二极管,所述升压整流二极管的阳极与所述第一储能元件的第二端相连,且所述升压整流二极管的阳极与所述旁路二极管的阳极相连,所述升压整流二极管的阴极通过所述第二储能元件接地。
  6. 根据权利要求2所述的电路,其特征在于,所述释能电路还包括:释能开关元件,所述释能开关元件设置有第一端、第二端和使能端;
    其中,所述激光二极管的阴极与所述转能电路相连,所述激光二极管的阳极接地;所述释能开关元件的第一端与所述转能电路相连,所述释能开关元件的第二端与所述激光二极管的阳极相连。
  7. 根据权利要求6所述的电路,其特征在于,在所述转能电路中,所述转能电路还包括:旁路二极管,所述第二储能元件为电容;
    其中,所述第二储能元件的第一端与所述第一储能元件的第二端相连,且所述第二储能元件的第一端与所述释能开关元件的第一端相连;所述第二储能元件的第二端与所述激光二极管的阴极相连;所述旁路二极管的阳极与所述激光二极管的阴极相连,所述旁路二极管的阴极接地。
  8. 根据权利要求7所述的电路,其特征在于,所述转能电路还包括:升压整流二极管;其中,所述升压整流二极管的阳极的阳极与所述第一储能元件的第二端相连,所述升压整流二极管的阴极与所述第二储能元件的第一端相连。
  9. 根据权利要求2所述的电路,其特征在于,所述释能电路还包括:释能开关元件;所述释能开关元件设置有第一端、第二端和使能端;
    其中,所述激光二极管的阳极与所述转能电路相连,所述激光二极管的阴极与所述释能开关元件的第一端相连;所述释能开关元件的第二端接地。
  10. 根据权利要求9所述的电路,其特征在于,所述转能电路还包括:旁路二极管,所述第二储能元件为电容;
    其中,所述第二储能元件的第一端与所述激光二极管的阳极相连,所述第二储能元件的第二端接地;所述旁路二极管的阳极与所述激光二极管的阴极相连,所述旁路二极管的阴极与所述激光二极管的阳极相连。
  11. 根据权利要求10所述的电路,其特征在于,所述转能电路还包括:升压整流二极管;
    其中,所述升压整流二极管的阳极与所述第一储能元件的第二端相连,所述升压整流二极管的阴极与所述激光二极管的阴极相连。
  12. 根据权利要求1所述的电路,其特征在于,所述转能电路的数量为一个或多个,所述释能电路的数量为一个或多个。
  13. 根据权利要求2所述的电路,其特征在于,所述充能开关元件为晶体管或金属氧化物半导体MOS管。
  14. 根据权利要求3、6或9所述的电路,其特征在于,所述释能开关元件为晶体管或金属氧化物半导体MOS管。
  15. 根据权利要求14所述的电路,其特征在于,所述释能电路还包括动态补偿电容,所述动态补偿电容跨接在所述释能开关元件的第一端和第二端之间。
  16. 根据权利要求15所述的电路,其特征在于,所述动态补偿电容的电容值小于所述储能元件的电容值。
  17. 根据权利要求1所述的激光发射电路,其特征在于,所述第二储能元件由多个电容并联组成。
  18. 一种激光雷达,其特征在于,包括:如权利要求1至16任意一项所述的激光发射电路。
PCT/CN2020/079374 2019-10-17 2020-03-13 激光发射电路和激光雷达 WO2021051762A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202310280112.6A CN116626652A (zh) 2019-10-17 2020-03-13 激光发射电路和激光雷达
CN202080005462.6A CN112805587B (zh) 2019-10-17 2020-03-13 激光发射电路和激光雷达
US17/721,319 US20220239063A1 (en) 2019-10-17 2022-04-14 Laser emitting circuit and lidar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/111738 WO2021051466A1 (zh) 2019-10-17 2019-10-17 激光发射电路和激光雷达
CNPCT/CN2019/111738 2019-10-17
PCT/CN2019/127055 WO2021051693A1 (zh) 2019-12-20 2019-12-20 激光发射电路和激光雷达
CNPCT/CN2019/127055 2019-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/721,319 Continuation US20220239063A1 (en) 2019-10-17 2022-04-14 Laser emitting circuit and lidar

Publications (1)

Publication Number Publication Date
WO2021051762A1 true WO2021051762A1 (zh) 2021-03-25

Family

ID=74884469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079374 WO2021051762A1 (zh) 2019-10-17 2020-03-13 激光发射电路和激光雷达

Country Status (3)

Country Link
US (1) US20220239063A1 (zh)
CN (2) CN112805587B (zh)
WO (1) WO2021051762A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212326A1 (de) 2020-09-30 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Treiberschaltung mit Strom-Bypass für ein Lidarsystem
EP4142075A1 (de) * 2021-08-25 2023-03-01 RIEGL Laser Measurement Systems GmbH Laserdiodenschaltung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116418057B (zh) * 2021-12-29 2024-02-02 深圳市速腾聚创科技有限公司 阳极可寻址驱动电路、可寻址驱动电路及激光发射电路
CN116413677B (zh) * 2021-12-29 2024-02-06 深圳市速腾聚创科技有限公司 阳极选址驱动电路、可寻址驱动电路及激光发射电路
CN117394135A (zh) * 2022-07-05 2024-01-12 深圳市速腾聚创科技有限公司 激光二极管驱动电路及激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202872168U (zh) * 2012-11-13 2013-04-10 刘琳 一种窄脉冲激光发生器
CN106549301A (zh) * 2015-09-22 2017-03-29 美国亚德诺半导体公司 脉冲激光二极管驱动器
CN206412630U (zh) * 2016-12-01 2017-08-15 武汉万集信息技术有限公司 一种双脉冲控制的半导体激光器驱动电路
US10277007B1 (en) * 2013-09-30 2019-04-30 Waymo Llc Laser diode firing system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2159842A1 (en) * 1994-12-05 1996-06-06 Joe A. Ortiz Diode drive current source
US6697402B2 (en) * 2001-07-19 2004-02-24 Analog Modules, Inc. High-power pulsed laser diode driver
US8564155B2 (en) * 2009-05-06 2013-10-22 Polar Semiconductor, Inc. Multiple output power supply
GB2492833A (en) * 2011-07-14 2013-01-16 Softkinetic Sensors Nv LED boost converter driver circuit for Time Of Flight light sources
CN104660069A (zh) * 2013-11-18 2015-05-27 东林科技股份有限公司 电源转换装置及其转换方法
JP6569236B2 (ja) * 2015-02-18 2019-09-04 株式会社豊田中央研究所 レーザダイオード駆動回路及びレーザレーダ装置
US10048358B2 (en) * 2016-12-30 2018-08-14 Panosense Inc. Laser power calibration and correction
US10574026B2 (en) * 2017-03-23 2020-02-25 Infineon Technologies Ag Circuit and method for driving a laser diode
US10903621B2 (en) * 2018-01-22 2021-01-26 Argo AI, LLC Circuit for driving a laser and method therefor
WO2020142947A1 (zh) * 2019-01-09 2020-07-16 深圳市大疆创新科技有限公司 一种光发射装置及测距装置、移动平台
US20210111533A1 (en) * 2019-03-01 2021-04-15 Gan Systems Inc. Fast pulse, high current laser drivers
US11876346B2 (en) * 2019-06-26 2024-01-16 Analog Devices, Inc. Continuous wave laser driver with energy recycling
WO2021033439A1 (ja) * 2019-08-20 2021-02-25 ソニーセミコンダクタソリューションズ株式会社 半導体レーザ駆動装置、電子機器、および、半導体レーザ駆動装置の製造方法
CN116979368A (zh) * 2019-12-20 2023-10-31 深圳市速腾聚创科技有限公司 激光发射电路的控制方法和激光发射电路
WO2022261835A1 (zh) * 2021-06-15 2022-12-22 深圳市大疆创新科技有限公司 光发射装置及其控制方法、测距装置、可移动平台
US20230041579A1 (en) * 2021-08-03 2023-02-09 Lightcode Photonics Oü Electrical pulse generation by semiconductor opening switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202872168U (zh) * 2012-11-13 2013-04-10 刘琳 一种窄脉冲激光发生器
US10277007B1 (en) * 2013-09-30 2019-04-30 Waymo Llc Laser diode firing system
CN106549301A (zh) * 2015-09-22 2017-03-29 美国亚德诺半导体公司 脉冲激光二极管驱动器
CN206412630U (zh) * 2016-12-01 2017-08-15 武汉万集信息技术有限公司 一种双脉冲控制的半导体激光器驱动电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212326A1 (de) 2020-09-30 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Treiberschaltung mit Strom-Bypass für ein Lidarsystem
EP4142075A1 (de) * 2021-08-25 2023-03-01 RIEGL Laser Measurement Systems GmbH Laserdiodenschaltung

Also Published As

Publication number Publication date
US20220239063A1 (en) 2022-07-28
CN116626652A (zh) 2023-08-22
CN112805587B (zh) 2023-04-04
CN112805587A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2021051762A1 (zh) 激光发射电路和激光雷达
US11768276B2 (en) Laser emitting circuit and lidar
CN110459955B (zh) 一种高大功率高重频的半导体激光器驱动电路
US11238764B2 (en) Light emitting control circuit, driving method thereof, array substrate and display device
WO2021051466A1 (zh) 激光发射电路和激光雷达
US11211005B2 (en) Pixel driving circuit, display device and driving method
TWI405393B (zh) 電荷幫浦驅動電路以及電荷幫浦系統
CN116526961A (zh) 光伏电池旁路电路、光伏接线盒以及光伏组件
US7821329B2 (en) Pumping voltage generating circuit and semiconductor memory apparatus using the same
US12050287B2 (en) Laser emitting circuit and LiDAR
CN110588438B (zh) 汽车电池管理***主动均衡矩阵开关的供电及驱动电路
CN210780723U (zh) 一种基于蜂鸣器稳定驱动管栅极电压的电路
CN210792873U (zh) 汽车电池管理***主动均衡矩阵开关的供电及驱动电路
CN210578247U (zh) 一种保护电路及装置
CN114203096A (zh) 一种像素驱动电路及其驱动方法和显示装置
CN113708603B (zh) 一种晶闸管门极触发电路
JP7231025B2 (ja) 半導体レーザ装置
CN219164772U (zh) 一种笔记本摄像头补光灯控制电路
TWI543503B (zh) 開關電路
US20240021123A1 (en) Driving circuit
CN221380765U (zh) 一种开关管导通时间限制电路及开关电源
CN109495092B (zh) 功率开关管驱动电路及驱动方法
CN112018596A (zh) 一种辐射驱动电路、辐射驱动方法及辐射发射装置
CN116937951A (zh) 一种光耦隔离的可控电荷泵电路
TW202322530A (zh) 電荷泵電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20865755

Country of ref document: EP

Kind code of ref document: A1