WO2021045203A1 - Polymer material and production method therefor - Google Patents

Polymer material and production method therefor Download PDF

Info

Publication number
WO2021045203A1
WO2021045203A1 PCT/JP2020/033642 JP2020033642W WO2021045203A1 WO 2021045203 A1 WO2021045203 A1 WO 2021045203A1 JP 2020033642 W JP2020033642 W JP 2020033642W WO 2021045203 A1 WO2021045203 A1 WO 2021045203A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer material
bis
polysiloxane
formula
Prior art date
Application number
PCT/JP2020/033642
Other languages
French (fr)
Japanese (ja)
Inventor
義徳 ▲高▼島
原田 明
浩靖 山口
基史 大▲崎▼
大地 吉田
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2021544057A priority Critical patent/JPWO2021045203A1/ja
Publication of WO2021045203A1 publication Critical patent/WO2021045203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a polymer material having a polysiloxane skeleton and a method for producing the same.
  • Synthetic polymer compounds having a siloxane bond (Si—O bond) as the main skeleton are known to have unique properties not found in organic polymers, and are used in various fields.
  • a siloxane bond has a stronger bonding force than a carbon-carbon or carbon-oxygen bond existing in a general organic polymer and has chemically stable properties. Therefore, a poly formed by repeatedly having a siloxane bond.
  • Siloxane has, for example, excellent heat resistance and weather resistance.
  • polysiloxane can form a spiral structure in which an inorganic siloxane bond is arranged on the inside and an organic side chain substituent is arranged on the outside, so that it is flexible, has water repellency, and has low biotoxicity. Therefore, polysiloxane is a material having high utility value in various applications such as medical instruments, rubber, paints, and protective films.
  • Non-Patent Document 1 proposes a technique of introducing a hydrogen-bondable functional group into a polysiloxane skeleton and exerting self-repairing property through hydrogen bonding of the functional group.
  • polysiloxane in order to apply polysiloxane to various uses, it is strongly desired to add a further function to polysiloxane.
  • one of the features of polysiloxane is excellent water repellency, but it is difficult to improve hygroscopicity, so that the use of polysiloxane is often limited. Therefore, a polysiloxane having high hygroscopicity is required. From this point of view, if a polysiloxane having excellent mechanical properties and further improved hygroscopicity can be produced, it can be applied to applications that could not be applied with conventional polysiloxanes. Therefore, it can be said that the utility value of such polysiloxane is very high.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a polymer material having a polysiloxane skeleton having excellent mechanical properties and high hygroscopicity, and a method for producing the same.
  • the present inventors have found that the above object can be achieved by introducing a specific functional group capable of host-guest interaction into the polysiloxane skeleton. Has been completed.
  • the present invention includes, for example, the subjects described in the following sections.
  • Item 1 A polymer material with a polysiloxane skeleton
  • the polysiloxane skeleton has the following general formula (1) in the side chain.
  • -R 1- RH (1) (In formula (1), R 1 represents NH or O, and RH represents a host group.)
  • R 1 represents NH or O
  • RH represents a host group.
  • Has a structural unit represented by The host group is a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from a cyclodextrin or a cyclodextrin derivative.
  • the hydrogen atom of at least one hydroxyl group of cyclodextrin is replaced with at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group).
  • Item 2 Item 2.
  • Item 3 Item 2.
  • the polymer material according to Item 1 which has a structure in which polysiloxane penetrates the ring of the host group.
  • Item 4 Item 2.
  • the following general formula (1a) R 2 -R H (1a) (In the formula (1a), R 2 represents a NH 2 or OH, R H is as defined R H in the formula (1))
  • Item 5 Item 4.
  • the polymer material of the present invention has excellent mechanical properties and high hygroscopicity.
  • the polymer material of the present invention has a polysiloxane skeleton, and the polysiloxane skeleton has the following general formula (1) in the side chain.
  • -R 1- RH (1) (In formula (1), R 1 represents NH or O, and RH represents a host group.) It has a structural unit represented by.
  • the host group is a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from a cyclodextrin or a cyclodextrin derivative
  • the cyclodextrin derivative is a hydrogen having at least one hydroxyl group of the cyclodextrin. It has a structure in which an atom is substituted with at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group).
  • hydrocarbon group or the like at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group)
  • R is a methyl group or an ethyl group
  • the polymer material of the present invention is a material formed of a molecular chain having a polysiloxane skeleton.
  • the polysiloxane skeleton is a chain polymer having a siloxane bond and has a "-Si-O-Si-" structure as the smallest structural unit.
  • the polysiloxane skeleton may be linear.
  • the polysiloxane skeleton when the Si atom in the "-Si-O-Si-" structure further has a siloxane bond (-O-Si), the polysiloxane skeleton may have a branched structure. It may have a crosslinked structure.
  • the polysiloxane skeleton is preferably linear from the viewpoint that the polymer material has appropriate mechanical properties and easily exhibits the self-repairing property described later.
  • the polysiloxane skeleton can contain, for example, a structural unit represented by the following formula (2).
  • R 3 and R 4 may be the same or different and may be substituted with a substituent or a linear or branched alkyl group having 1 to 10 carbon atoms, or may be substituted with a substituent. It shows an aryl group having 6 to 20 carbon atoms.
  • the linear or branched alkyl group having 1 to 10 carbon atoms is preferably 1 to 4 carbon atoms, and particularly preferably 1 or 2 carbon atoms.
  • the alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and n-. Examples thereof include a heptyl group, an n-octyl group, an n-nonyl group and an n-decyl group.
  • the number of substituents can be 1 or 2 or more.
  • substituents in this case include a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). And so on.
  • examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, a tetrahydronaphthyl group and the like.
  • the number of substituents can be 1 or 2 or more.
  • the substituent in this case include a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). And so on.
  • R 3 and R 4 can be the same or different.
  • all of R 3 and R 4 are preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and a methyl group is particularly preferable.
  • the polysiloxane skeleton contains polydimethylsiloxane.
  • the polysiloxane skeleton has a structural unit "-R 1- RH " represented by the above formula (1) in the side chain.
  • R 1 can be directly bonded to Si in the polysiloxane skeleton, or can be indirectly bonded (that is, another group is interposed between R 1 and Si). it can.
  • R 1 can be directly attached to the side chain of the vinyl polymer.
  • the polysiloxane skeleton has the following formula.
  • the structural unit represented by (3) can be further included.
  • R 5 is synonymous with R 3 and R 4 in formula (2).
  • R 6 represents a divalent group containing an alkylene having 1 to 10 carbon atoms, and n is a number of 0 or 1. When n is 0, it means that there is no R 6 , that is, R 1 is directly bonded to the silicon atom.
  • R 5 is a methyl group, an ethyl group, n- propyl group, preferably an isopropyl group, a methyl group is particularly preferred.
  • R 6 is not particularly limited as long as it is a divalent group containing an alkylene having 1 to 10 carbon atoms.
  • the number of carbon atoms of the alkylene is preferably 1 to 8, and more preferably 2 to 6.
  • R 6 can also contain, for example, a heteroatom. Examples of the hetero atom include oxygen, nitrogen and the like.
  • R 6 may have an ether bond, an amide bond, an amino group, or the like, and among them, it is preferable to have an ether bond (for example,-(CH 2 ) 3- O- (for example). CH 2 ) 3 -Binding is exemplified).
  • a monovalent group containing an alkylene having 1 to 10 carbon atoms can further have a substituent.
  • the type of the substituent is not particularly limited, and for example, a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine). Atomic) and the like, and a hydroxy group is particularly preferable.
  • examples of the vinyl polymer include known vinyl polymers, and for example, various acrylics.
  • a system polymer can be exemplified. Among them, (meth) acrylic acid ester, N-substituted (meth) acrylamide and the like can be mentioned.
  • R 1 can be attached to the ester moiety of the (meth) acrylic acid ester or the amide moiety of the N-substituted (meth) acrylamide.
  • the polymer of the host group-containing polymerizable monomer described in International Publication No. 2018/159791 can be mentioned. ..
  • R 1 is NH or O, and it is particularly preferable that it is NH.
  • RH is a monovalent group obtained by removing one hydrogen atom or hydroxyl group from a cyclodextrin or cyclodextrin derivative.
  • the host group is preferably a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from the cyclodextrin derivative.
  • the cyclodextrin derivative is selected from the group in which the hydrogen atom of at least one hydroxyl group of cyclodextrin is a hydrocarbon group or the like (that is, a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group). It has a structure substituted with at least one group).
  • the cyclodextrin derivative refers to a molecule having a structure in which a cyclodextrin molecule is substituted with another organic group.
  • the cyclodextrin derivative has at least one hydrogen atom or one hydroxyl group, and preferably has at least one hydroxyl group.
  • the notation cyclodextrin in this specification means at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin. Therefore, the cyclodextrin derivative is at least one selected from the group consisting of ⁇ -cyclodextrin derivative, ⁇ -cyclodextrin derivative and ⁇ -cyclodextrin derivative.
  • the host group is preferably a monovalent group obtained by removing one hydroxyl group from a cyclodextrin or a cyclodextrin derivative.
  • the host group is a monovalent group obtained by removing one hydrogen atom or hydroxyl group from a cyclodextrin or cyclodextrin derivative, whereas the hydrogen atom or hydroxyl group removed from the cyclodextrin or cyclodextrin derivative is cyclodextrin or cyclo. It may be any site of the dextrin derivative.
  • ⁇ -cyclodextrin 18
  • ⁇ -cyclodextrin 21
  • ⁇ -cyclodextrin 24.
  • the cyclodextrin derivative is carbonized with a maximum of N-1 hydroxyl group hydrogen atoms per cyclodextrin molecule. It is formed by being substituted with a hydrogen group or the like.
  • the cyclodextrin derivative has a maximum of N hydroxyl group hydrogen atoms per cyclodextrin molecule as a hydrocarbon. It can be replaced with a group or the like.
  • the host group preferably has a structure in which hydrogen atoms of 70% or more of the total number of hydroxyl groups present in one molecule of cyclodextrin are substituted with the hydrocarbon group or the like.
  • the structural unit represented by the formula (1) can exhibit a higher affinity for the hydrophobic monomer unit.
  • the hydrogen atom of 80% or more of the total number of hydroxyl groups present in one molecule of the cyclodextrin is substituted with the hydrocarbon group or the like, and the total number of hydroxyl groups is the same. It is particularly preferable that the hydrogen atom of 90% or more of the hydroxyl groups is substituted with the hydrocarbon group or the like.
  • the host group preferably has a structure in which the hydrogen atoms of 13 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of ⁇ -cyclodextrin are substituted with the hydrocarbon group or the like.
  • the hydrogen atoms of 15 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of ⁇ -cyclodextrin are substituted with the hydrocarbon group or the like, and 17 of all the hydroxyl groups It is particularly preferable that the hydrogen atoms of the hydroxyl groups are substituted with the hydrocarbon group or the like.
  • the host group preferably has a structure in which hydrogen atoms of 15 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of ⁇ -cyclodextrin are substituted with the hydrocarbon group or the like.
  • the hydrogen atoms of 17 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of ⁇ -cyclodextrin are substituted with the hydrocarbon group or the like, and 19 of all the hydroxyl groups It is particularly preferable that the hydrogen atoms of one or more hydroxyl groups are substituted with the hydrocarbon group or the like.
  • the host group preferably has a structure in which hydrogen atoms of 17 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of ⁇ -cyclodextrin are substituted with the hydrocarbon group or the like.
  • the hydrogen atoms of 19 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of ⁇ -cyclodextrin are substituted with the hydrocarbon group or the like, and 21 of all the hydroxyl groups. It is particularly preferable that the hydrogen atoms of one or more hydroxyl groups are substituted with the hydrocarbon group or the like.
  • the host group has two or more hydrocarbon groups, they may all be the same or some may be different.
  • the type of the hydrocarbon group is not particularly limited.
  • the hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • the number of carbon atoms of the hydrocarbon group is not particularly limited, and for example, the number of carbon atoms of the hydrocarbon group is preferably 1 to 4.
  • hydrocarbon group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and a butyl group.
  • hydrocarbon group When the hydrocarbon group is a butyl group, it may be either a linear chain or a branched chain.
  • the hydrocarbon group may have a substituent as long as the effect of the present invention is not impaired.
  • the acyl group may be an acetyl group, a propionyl group, a formyl group or the like.
  • the acyl group can also have a substituent.
  • the acyl group is preferably an acetyl group from the viewpoint of easily forming a host-guest interaction and easily obtaining a polymer material having excellent toughness and strength and excellent toughness and strength.
  • -CONHR (R is a methyl group or an ethyl group) is a methyl carbamate group or an ethyl carbamate group.
  • -CONHR is preferably an ethyl carbamate group from the viewpoint that a host-guest interaction is easily formed.
  • the hydrocarbon group and the like are preferably a methyl group and an acyl group, more preferably a methyl group, an acetyl group and a propionyl group, and particularly preferably a methyl group and an acetyl group.
  • the polysiloxane skeleton can have other building blocks.
  • Other building blocks include, for example, a siloxane unit in which a reactive functional group is directly or indirectly bonded to a silicon atom.
  • the structural unit represented by the following formula (4) can be further included.
  • R 7 is synonymous with R 3 and R 4 in formula (2).
  • R 8 represents a monovalent group containing an alkylene having 1 to 8 carbon atoms, and A represents a reactive functional group.
  • R 7 is preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and a methyl group is particularly preferable.
  • R 8 is not particularly limited as long as it is a divalent group containing an alkylene having 1 to 8 carbon atoms.
  • the number of carbon atoms of the alkylene is preferably 1 to 8, more preferably 2 to 7, further preferably 2 to 6, and particularly preferably 2 to 5.
  • R 8 can also include, for example, a heteroatom. Examples of the hetero atom include oxygen, nitrogen and the like.
  • R 8 may have, for example, an ether bond, an amide bond, an amino group, etc., and more preferably has an ether bond (for example,-(CH 2 ) 3- O). -(CH 2 ) -binding is exemplified).
  • a monovalent group containing an alkylene having 1 to 8 carbon atoms can further have a substituent.
  • the type of the substituent is not particularly limited, and for example, a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine). Atomic) and the like, and a hydroxy group is particularly preferable.
  • the reactive functional group A can include, for example, an epoxy group, a carboxy group, an amino group, a hydroxyl group, an ester group, etc., and is highly reactive with the guest molecule described later. , Preferably an epoxy group.
  • the content ratio of the structural unit represented by the formula (2) is, for example, 5 to 5 to the total amount of the structural unit represented by the formulas (2), (3) and (4). It can be 95 mol%. From the viewpoint that the hygroscopicity of the polymer material can be easily controlled and the self-repairing performance described later can be easily exhibited, the content ratio of the structural unit represented by the above formula (2) is, for example, the above formula (2).
  • the total amount of the structural units represented by (3) and (4) 20 mol% or more is preferable, 30 mol% or more is more preferable, 40 mol% or more is particularly preferable, and 90 mol% or less is preferable. , 80 mol% or less is more preferable, and 75 mol% or less is particularly preferable.
  • the content ratio of the structural unit represented by the formula (3) is, for example, 0.01 to 30 mol with respect to the total amount of the structural unit represented by the formulas (3) and (4). Can be%. From the viewpoint that the hygroscopicity of the polymer material can be easily controlled and the self-repairing performance described later can be easily exhibited, the content ratio of the structural unit represented by the formula (3) is the above formulas (3) and (4). ), 0.1 mol% or more is preferable, 0.5 mol% or more is more preferable, 1 mol% or more is particularly preferable, and 20 mol% or less is preferable, 15 More preferably mol% or less, and particularly preferably 10 mol% or less.
  • the polysiloxane skeleton can have other structural units in addition to the structural units represented by the above formulas (2), (3) and (4), if necessary. That is, the polymer material of the present invention can be formed of a structural unit represented by the above formulas (2), (3) and (4) and a molecular chain having a structural unit other than these.
  • the other structural units are, for example, 5% by mass or less, preferably 1% by mass or less, more preferably 0.% by mass or less, based on the total amount of the structural units represented by the formulas (2), (3) and (4). It can be 1% by mass or less, particularly preferably 0.05% by mass or less.
  • the polysiloxane skeleton can also be formed only by the structural units represented by the formulas (2), (3) and (4). That is, the polymer material of the present invention can also be formed of a molecular chain having only the structural units represented by the formulas (2), (3) and (4).
  • the polysiloxane skeleton may have any structure such as a random polymer or a block polymer, and is preferably a random polymer because it is easy to produce, for example.
  • the polymer material has a structural unit represented by the formula (1) in the side chain of the polysiloxane skeleton, the hydrophilicity is improved, so that the polymer material has excellent hygroscopicity equal to or higher than that of the conventional silicon material. Can have. Therefore, the polymer material can have excellent hygroscopicity while having a polysiloxane skeleton, and also has flexibility and toughness, which are the characteristics of the polysiloxane skeleton, and thus has excellent mechanical properties.
  • the host group encapsulates a guest group to form an inclusion complex, and the encapsulated guest group chemically bonds (for example, covalently) to the side chain of the polysiloxane skeleton. It may be combined).
  • the guest group is a group derived from the guest molecule, and specifically, is a group formed by removing one or two hydrogen atoms from the guest molecule.
  • Examples of the guest molecule include compounds capable of forming an inclusion complex with the host group.
  • the guest molecule is not particularly limited as long as it can form an inclusion complex with the host group, and is, for example, a compound having 1 or 2 (preferably 1) amino groups, or 1 or 2 (preferably).
  • Compounds with 1 or 2 preferably 1) hydroxyl groups, compounds with 1 or 2 (preferably 1) carboxy groups, compounds with 1 or 2 (preferably 1) epoxy groups, 1 or 2 (preferably 1)
  • Examples thereof include a compound having one or two (preferably one) thiol groups, a compound having one or two (preferably one) thiol groups, and a compound having one or two carboxylated products.
  • Examples of compounds having one or two amino groups include 1-adamantanamine, benzylamine, tert-butylamine, butylamine, 1-aminopyrene, aminoferrocene, 4-aminoazobenzene, 4-aminostylben, cyclohexylamine and hexyl.
  • Examples of the compound having one or two hydroxyl groups include 1-hydroxyadamantan, benzyl alcohol, tert-butyl alcohol, butyl alcohol, 1-hydroxypyrene, 1-hydroxymethylferrocene, 4-hydroxyazobenzene and 4-hydroxystylben.
  • Examples of the compound having one or two carboxy groups include 1-carboxyadamantan, benzoic acid, pivalic acid, butanoic acid, 1-carboxypyrene, 1-carboxyferrocene, 4-carboxyazobenzene, 4-carboxystylben, and cyclohexane.
  • Compounds having one or two carboxylated products include, for example, 1-adamantan carbonyl chloride, terephthaloyl chloride, trimethylacetyl chloride, butyryl chloride, 1-pyrenecarbonyl chloride, 1-ferrocenecarbonyl chloride, 4-.
  • Compounds having one or two epoxy groups include, for example, adamantan oxide, styrene oxide, 1,2-epoxybutane, 1-epoxypyrene, epoxyferrocene, 4-epoxyazobenzene, 4-epoxystylben, cyclohexyl oxide, 1 , 2-Epoxyhexane, 2,2'-bis (4-glycidyloxyphenyl) propane, p-diglycidyloxybenzene, diglycidyl okiisiferocene, 4,4'-diglycidyloxyazobenzene, 4,4'-di Glycidyloxyferrocene, 1,4-diglycidyloxycyclohexane, 1,6-diglycidyloxycyclohexane, ⁇ , ⁇ -diglycidyloxypolyethylene glucol, ⁇ , ⁇ -diglycidyloxypolypropylene glucol, 1,1-bis ( 4-Glysi
  • Examples of the compound having one or two isocyanate groups include 1-adamantan isocyanate, benzyl isocyanate, phenyl isocyanate, tert-butyl isocyanate, butyl isocyanate, 1-pyrene isocyanate, ferrocene isocyanate, azobenzene-4-isocyanate, and stillben-.
  • Examples of compounds having one or two thiol groups include 1-adamantan thiol, benzyl thiol, tert-mercaptan, butane thiol, 1-thiol pyrene, ferrocene thiol, 4-thioazobenzene, 4-thiostylben, cyclohexyl thiol.
  • the guest molecule is preferably at least one of a compound having one amino group and a compound having one hydroxyl group, and more preferably a compound having one amino group.
  • guest molecules include 1-adamantanamine, benzylamine, tert-butylamine, butylamine, 1-aminopyrene, aminoferrocene, 4-aminoazobenzene, 4-aminostylben, cyclohexylamine, hexylamine, 1-hydroxyadamantan, It is preferably benzyl alcohol, tert-butyl alcohol, butyl alcohol, 1-hydroxypyrene, 1-hydroxymethylferrocene, 4-hydroxyazobenzene, 4-hydroxystylben, etc., preferably 1-adamantanamine, 1-hydroxyadamantan, etc. More preferably, 1-adamantanamine is particularly preferable.
  • the guest group is likely to be bonded to the side chain of the polysiloxane skeleton, and self-repairing property is more
  • the guest molecule can be appropriately selected according to the size of the host group cyclodextrin or cyclodextrin derivative in the ring.
  • the host group is preferably ⁇ -cyclodextrin or ⁇ -cyclodextrin derivative. In this case, the guest group is likely to be included in the host group.
  • the guest group encapsulated in the host group can be chemically bonded to the side chain of the polysiloxane skeleton.
  • another functional group is interposed between the guest group and Si of the polysiloxane skeleton.
  • examples of other functional groups include R 6 in the above formula (3).
  • the guest molecule encapsulated in the host group reacts with the reactive functional group in the structural unit represented by the formula (4).
  • a structure in which the guest group is bonded to the polysiloxane skeleton can be formed.
  • the polysiloxane molecular chain to which the guest group is bonded may be a polysiloxane molecular chain to which the host group enclosing the guest group is bonded.
  • the polysiloxane molecular chain may be different from the polysiloxane molecular chain to which the host group enclosing the guest group is bonded.
  • the inclusion ratio is not particularly limited, and for example, 10 mol% or more of the total amount of the host group in the polysiloxane skeleton can be included. It is preferably 20 mol% or more, more preferably 30 mol% or more, further preferably 40 mol% or more, and particularly preferably 50 mol% or more.
  • the polymer material has various structural units represented by the formula (1) in the side chain of the polysiloxane skeleton (specifically, by having the structural unit represented by the formula (3)). It is possible to form the polymer structure of the above, one of which is the structure formed by the introduction of the guest group described above.
  • the guest group is included in the host group and the guest group is bonded to the polysiloxane skeleton, so that the polymer material has an intramolecular or intermolecular reversible host-guest interaction. Can occur (see FIG. 1 below).
  • the polymer material containing such a polysiloxane skeleton has improved toughness and strength, and can exhibit self-repairing property.
  • the cut polymer material can also have self-healing properties.
  • FIG. 1 is a diagram schematically illustrating a form in which a host group of a side chain of a polysiloxane skeleton is formed by including a guest group in the polymer material of the present invention.
  • the polymeric material has a crosslinked structure, i.e., a three-dimensional network structure.
  • the guest group 20 is bonded to the side chain of the polysiloxane skeleton 30. More specifically, the guest group 20 is included in the host group 10 to form an inclusion complex, and one end of the guest group 20 is bonded to the polysiloxane skeleton 30. Moreover, group 40 comprising R 1 bonded to the host group 10 is bonded to the side chain of the polysiloxane skeleton 30.
  • the polymeric material in the form 1, the formula (1) represented by R H -R 1 - is bound to the polysiloxane backbone 30.
  • the polymer material in the form of FIG. 1 has properties as an elastomer, for example.
  • the guest group 20 in the polymer chain and the host group RH may be separated, and the material may be cut.
  • the guest group 20 and the host group RH can be bonded again to form an inclusion complex.
  • the cut surface can be recombined and the polymer material can be repaired.
  • FIG. 2 schematically shows another aspect of the polymer material of the present invention.
  • the polymer material of the form shown in FIG. 2 has a structure in which polysiloxane penetrates the ring of the host group.
  • the polysiloxane penetrating the ring of the host group may be a polysiloxane having a host group, or a polysiloxane having no host group (for example, polydimethylsiloxane).
  • the polymer material in the form of FIG. 2 has a crosslinked structure, that is, a three-dimensional network structure, and also has a structure in which the polysiloxane skeleton 30 penetrates the ring of the host group 10.
  • R 1 bonded to the host group 10 is bonded to the polysiloxane skeleton 30.
  • the host group 10 since the host group 10 can slide while enclosing the polysiloxane skeleton 30, for example, it is excellent in stress relaxation action and can have high toughness and strength, and thus is excellent in mechanical properties. ..
  • Whether or not the polymer material has the form shown in FIG. 2 can be determined from, for example, the result of the swelling test of the polymer material. For example, when a polymer material is prepared without using a chemical cross-linking agent and the obtained polymer material is added to a solvent, a swelling phenomenon is observed without dissolving the polymer material in the form shown in FIG. 2 (so-called). It can be determined that the mobile crosslinked polymer) is formed, and when it is dissolved, it can be determined that the movable crosslinked polymer is not formed.
  • the shape of the polymer material is not particularly limited.
  • the polymer material can take various forms such as a film, a film, a sheet, a particle, a plate, a block, a pellet, a powder, a foamed material, and a liquid.
  • Polymer materials can be used for various purposes.
  • the polymer material can be suitably used for various members such as automobile applications, adhesive applications, electronic component applications, building member applications, food container applications, and transportation container applications.
  • the polymer material since the polymer material has high hygroscopicity, it can also be used for applications such as clothing, medical equipment, and medical equipment (specifically, contact lenses, etc.).
  • the method for producing the polymer material described above is not particularly limited.
  • the above-mentioned polymer material of the present invention has the following general formula (1a).
  • R 2 -R H (1a) A clathrate compound in which a guest molecule is included in the compound represented by Polysiloxane having a reactive functional group in the side chain, Can be provided with a step of reacting.
  • R 2 represents a NH 2 or OH
  • R H is synonymous with R H in the formula (1). That is, RH is the host group.
  • process 1 The process in the above manufacturing method is referred to as "process 1".
  • R 2 is equal to R 2 in the formula (1a), that is, NH 2 or OH
  • R 5 in the formula (21) represents the hydrocarbon group or the like
  • n is 5, 6 or 7.
  • R 5 is one selected from the group consisting of methyl group, an acetyl group, a methyl carbamate group and ethyl carbamate.
  • R 5 is a methyl group or an acetyl group, it is particularly preferable that all of R 5 is a methyl group.
  • Examples of the compound represented by the formula (21) include 6-monodeoxy-6-monoamino-trimethyl-cyclodextrin, 6-monohydroxy-trimethyl-cyclodextrin, and 6-monodeoxy-6-monoamino-triacetyl-cyclodextrin. , 6-Monohydroxy-triacetyl-cyclodextrin, 6-monodeoxy-6-monoamino-triethylcarbamate-cyclodextrin, 6-monohydroxy-triethylcarbamate-cyclodextrin and the like.
  • the type of guest molecule in the clathrate compound is the same as that for forming the guest group described in the above section "1. Polymer material”.
  • the method for producing the clathrate compound used in step 1 is not particularly limited, and a known method for producing the clathrate compound can be widely adopted.
  • the compound represented by the formula (1a) and the guest molecule can be used. It can be produced by a method comprising the steps of mixing to obtain a clathrate compound.
  • the compound: guest molecule represented by the formula (1a) can also be 1: 1 (molar ratio).
  • polysiloxane P The type of polysiloxane having a reactive functional group in the side chain used in step 1 is not particularly limited.
  • polysiloxane P the polysiloxane having a reactive functional group in the side chain used in step 1 will be referred to as "polysiloxane P".
  • the type of polysiloxane P is not particularly limited as long as it has a reactive functional group in the side chain, and for example, known polysiloxanes can be widely used.
  • the reactive functional group is the same as that of the reactive functional group A in the above formula (4). That is, the reactive functional group may be, for example, an epoxy group, a carboxy group, an amino group, a hydroxyl group, an ester group or the like, and is preferably an epoxy group in that the reactivity of the inclusion compound is high.
  • the polysiloxane P preferably has a structural unit represented by the formula (2) and a structural unit represented by the formula (4).
  • the polysiloxane P may have any structure such as a random polymer or a block polymer, and is preferably a random polymer because it is easy to produce, for example.
  • the content ratio of the structural unit represented by the formula (2) is determined by the above formula (2).
  • it can be 5 to 95 mol% with respect to the total amount of the structural units represented by 2) and (4).
  • the content ratio of the structural unit represented by the formula (2) is, for example, the formulas (2) and (4).
  • 20 mol% or more is preferable, 30 mol% or more is more preferable, 40 mol% or more is particularly preferable, 90 mol% or less is preferable, and 80 mol% or less is preferable with respect to the total amount of the structural unit represented by). More preferably, 75 mol% or less is particularly preferable.
  • the number average molecular weight Mn of polysiloxane P is not particularly limited, and can be, for example, 500 to 100,000, preferably 1,000 to 50,000.
  • the method for producing polysiloxane P is not particularly limited, and for example, it can be obtained by a known production method, or it can be obtained from a commercially available product.
  • the method of reacting the clathrate compound with polysiloxane having a reactive functional group in the side chain is not particularly limited.
  • a method of mixing the compound represented by the general formula (1a), a guest molecule, and polysiloxane P at a predetermined mixing ratio can be mentioned.
  • This mixing can be carried out, for example, in a suitable solvent.
  • the type of solvent is not particularly limited, and for example, aliphatic hydrocarbons such as hexane and heptane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; chloroform, 1,2-dichloroethane and the like.
  • Chlorine-based hydrocarbons examples thereof include alcohols such as methanol, ethanol, isopropyl alcohol and t-butanol.
  • the solvent can be used alone or as a mixture of two or more.
  • the reaction temperature in step 1 is also not particularly limited, and can be, for example, 10 to 200 ° C., preferably 50 to 150 ° C., and more preferably 80 to 120 ° C.
  • a polymer material having the desired polysiloxane skeleton can be obtained by performing treatments such as drying as necessary.
  • the polymer material obtained by such a method has, for example, the structure shown in FIG. 1 described above, and has properties as an elastomer.
  • step 2 the step of mixing the compound represented by the formula (1a) with the polysiloxane P (hereinafter referred to as “step 2”) is included.
  • a manufacturing method can be adopted.
  • step 2 of this production method the same conditions as in step 1 described above can be obtained except that the guest molecule is not used.
  • a polysiloxane other than the polysiloxane P that is, a polysiloxane having no reactive functional group A in the side chain
  • a polysiloxane other than the polysiloxane P can be used. It is preferable to use (for example, dimethylpolysiloxane).
  • the method for producing the compound represented by the formula (1a) is not particularly limited, and a known production method can be widely adopted.
  • the compound represented by the formula (1a) is a method for producing a host group-containing polymerizable monomer according to International Publication No. 2018/159791 (specifically, a host group-containing vinyl-based monomer).
  • a production method similar to the production method or the production method of the host group-containing non-vinyl monomer) can be adopted.
  • the obtained solution was dried under reduced pressure with an evaporator, 100 mL of dichloromethane was added, and the mixture was washed with 50 mL of saturated aqueous sodium hydrogen carbonate solution, 50 mL of aqueous solution containing 2.5 g of sodium thiosulfate pentahydrate, and 50 mL of saturated brine.
  • Example 1 The polymer material was synthesized according to the reaction scheme shown in FIG. First, as a polysiloxane P having a reactive functional group in the side chain, Shinetsu Silicone's "epoxy-modified silicone KF-101" (molecular weight of about 1600, epoxy introduction rate of about 33 mol%) was prepared. 360 mg of this polysiloxane P, 72 mg of NH 2- PM ⁇ CD obtained in Production Example 1, and 7.7 mg of 1-adamantanamine (guest molecule) were placed in a sample bottle, and 400 ⁇ L of toluene was added and mixed.
  • Shinetsu Silicone's "epoxy-modified silicone KF-101" molethoxy-modified silicone KF-101" (molecular weight of about 1600, epoxy introduction rate of about 33 mol%) was prepared. 360 mg of this polysiloxane P, 72 mg of NH 2- PM ⁇ CD obtained in Production Example 1, and 7.7 mg of 1-adamantanamine (guest molecule) were placed in
  • FIG. 5 is a 1 H-NMR spectrum (CDCl 3 , 500 MHz, 25 ° C.) of the polymer material obtained in Example 1. From this 1 1 H-NMR spectrum, it was confirmed that the target polymer material was synthesized.
  • Example 2 Same as in Example 1 except that the blending amounts of NH 2- PM ⁇ CD and 1-adamantanamine were both adjusted to 3 mol% with respect to the total number of moles of the epoxy groups of polysiloxane P.
  • a polymer material was obtained by the above method.
  • breaking stress and breaking strain also simply referred to as strain
  • a material showing high values of both breaking stress and breaking strain can be judged to be a material having excellent breaking energy.
  • the polymer material obtained in Example 1 has a breaking stress of 30 kPa, a breaking strain of 28%, a Young's modulus of 120 kPa, and a breaking energy of 5.5 Jm 2 , which are high in the conventional manner. It was a material having excellent toughness and strength as compared with a molecular material.
  • the polymer material obtained in Example 2 has a breaking stress of 19 kPa, a breaking strain of 77%, a Young's modulus of 36 kPa, and a breaking energy of 8.7 Jm 2 , which is similar to that of the conventional polymer material. It was a material with excellent toughness and strength.
  • the polymer material (chemical crosslinked structure) obtained in Comparative Example 1 was a material that was so brittle that a sample for tensile test could not be prepared in the first place, and clearly did not have toughness and strength. ..
  • the polymer material obtained in Comparative Example 1 does not have a crosslinked structure due to the host-guest interaction as in Example 1, but has a conventional chemically crosslinked structure, and thus has a polysiloxane skeleton. It can be said that it is not suitable as a means for improving the mechanical properties of polymer materials.
  • Example 1 (Hygroscopic evaluation) The polymer materials obtained in Example 1 and Comparative Example 1 were placed in sample bottles, respectively, and immersed in 6 mL of water for 20 hours. Then, each elastomer was taken out, the surface water was lightly wiped off, the mass was measured, and the water content was calculated from the mass change before and after immersion in water. As a result, the water content of the polymer material obtained in Example 1 was 8.7%, and the water content of the polymer material obtained in Comparative Example 1 was 0.4%. From this result, it was also found that the polymer material obtained in Example 1 had high hygroscopicity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

Provided are: a polymer material that has a polysiloxane backbone and that has excellent mechanical properties and high hygroscopicity; and a production method for the polymer material. The present invention is a polymer material having a polysiloxane backbone, wherein the polysiloxane backbone has, at a side chain thereof, a constituent unit represented by general formula (1): -R1-RH (in formula (1), R1 represents NH or O, and RH represents a host group). The host group is a monovalent group in which a hydrogen atom or a hydroxy group is removed from a cyclodextrin or a cyclodextrin derivative. The cyclodextrin derivative has a structure obtained by substituting the hydrogen atom of at least one hydroxy group possessed by a cyclodextrin, with at least one group selected from the group consisting of hydrocarbon groups, acyl groups, and -CONHR (R represents a methyl group or an ethyl group).

Description

高分子材料及びその製造方法Polymer material and its manufacturing method
 本発明は、ポリシロキサン骨格を有する高分子材料及びその製造方法に関する。 The present invention relates to a polymer material having a polysiloxane skeleton and a method for producing the same.
 シロキサン結合(Si-O結合)を主骨格に持つ合成高分子化合物(ポリシロキサン)は、有機高分子にはない特有の性質を有することが知られており、様々な分野で利用されている。シロキサン結合は、一般の有機高分子に存在する炭素-炭素あるいは炭素-酸素結合よりも強い結合力をもち、化学的に安定な性質を有することから、シロキサン結合を繰り返し有して形成されるポリシロキサンは、例えば、優れた耐熱性及び耐候性を備える。また、ポリシロキサンは、無機性のシロキサン結合が内側、有機性の側鎖置換基が外側に配置されたらせん構造を形成することができるので、柔軟かつ撥水性を有し、生体毒性も低い。従って、ポリシロキサンは、医用器具、ゴム、塗料、保護フィルム等の各種用途において、利用価値が高い材料である。 Synthetic polymer compounds (polysiloxane) having a siloxane bond (Si—O bond) as the main skeleton are known to have unique properties not found in organic polymers, and are used in various fields. A siloxane bond has a stronger bonding force than a carbon-carbon or carbon-oxygen bond existing in a general organic polymer and has chemically stable properties. Therefore, a poly formed by repeatedly having a siloxane bond. Siloxane has, for example, excellent heat resistance and weather resistance. In addition, polysiloxane can form a spiral structure in which an inorganic siloxane bond is arranged on the inside and an organic side chain substituent is arranged on the outside, so that it is flexible, has water repellency, and has low biotoxicity. Therefore, polysiloxane is a material having high utility value in various applications such as medical instruments, rubber, paints, and protective films.
 一方で、近年では、ポリシロキサンをベースとするような材料に対して、さらに機能性を付与することも求められており、例えば、さらなる機械特性の向上、自己修復性の付与等が要望されている。この観点から、例えば、非特許文献1には、ポリシロキサン骨格中に水素結合可能な官能基を導入し、かかる官能基の水素結合を通じて自己修復性を発揮させる技術が提案されている。 On the other hand, in recent years, it has been required to further impart functionality to a material based on polysiloxane. For example, further improvement of mechanical properties, impartation of self-healing property, and the like have been requested. There is. From this point of view, for example, Non-Patent Document 1 proposes a technique of introducing a hydrogen-bondable functional group into a polysiloxane skeleton and exerting self-repairing property through hydrogen bonding of the functional group.
 しかしながら、最近ではポリシロキサンを様々な用途に適用すべく、更なる機能をポリシロキサンに付加させることが強く望まれている。例えば、ポリシロキサンの一つの特長としては優れた撥水性にあるが、吸湿性を向上させることは難しかったことから、ポリシロキサンの用途が制限されることが多い。このため、吸湿性の高いポリシロキサンが求められている。このような観点から、優れた機械特性を有しつつ、吸湿性をさらに向上させたポリシロキサンを製造することができれば、従来のポリシロキサンでは適用することができなかった用途へ適用することが可能となるので、このようなポリシロキサンの利用価値は非常に高いといえる。 However, recently, in order to apply polysiloxane to various uses, it is strongly desired to add a further function to polysiloxane. For example, one of the features of polysiloxane is excellent water repellency, but it is difficult to improve hygroscopicity, so that the use of polysiloxane is often limited. Therefore, a polysiloxane having high hygroscopicity is required. From this point of view, if a polysiloxane having excellent mechanical properties and further improved hygroscopicity can be produced, it can be applied to applications that could not be applied with conventional polysiloxanes. Therefore, it can be said that the utility value of such polysiloxane is very high.
 本発明は、上記に鑑みてなされたものであり、機械特性に優れ、高い吸湿性を備えたポリシロキサン骨格を有する高分子材料及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a polymer material having a polysiloxane skeleton having excellent mechanical properties and high hygroscopicity, and a method for producing the same.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ポリシロキサン骨格にホスト-ゲスト相互作用可能な特定の官能基を導入することにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by introducing a specific functional group capable of host-guest interaction into the polysiloxane skeleton. Has been completed.
 すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1
ポリシロキサン骨格を有する高分子材料であって、
前記ポリシロキサン骨格は側鎖に下記一般式(1)
-R-R   (1)
(式(1)中、RはNH又はOを示し、Rはホスト基を示す。)
で表される構成単位を有し、
前記ホスト基は、シクロデキストリン又はシクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基であり、
前記シクロデキストリン誘導体は、シクロデキストリンが有する少なくとも1個の水酸基の水素原子が炭化水素基、アシル基及び-CONHR(Rはメチル基又はエチル基)からなる群より選ばれる少なくとも1種の基で置換された構造を有する、高分子材料。
項2
前記ホスト基は、ゲスト基を包接して包接錯体を形成すると共に、包接された前記ゲスト基は、前記ポリシロキサン骨格の側鎖に化学結合している、項1に記載の高分子材料。
項3
前記ホスト基の環内をポリシロキサンが貫通した構造を有する、項1に記載の高分子材料。
項4
項1又は2に記載の高分子材料の製造方法であって、
下記一般式(1a)
-R   (1a)
(式(1a)中、RはNH又はOHを示し、Rは前記式(1)中のRと同義である)
で表される化合物にゲスト分子が包接されてなる包接化合物と、
側鎖に反応性官能基を有するポリシロキサンと、
を反応する工程を備える、高分子材料の製造方法。
項5
前記反応性官能基はエポキシ基である、項4に記載の製造方法。
That is, the present invention includes, for example, the subjects described in the following sections.
Item 1
A polymer material with a polysiloxane skeleton
The polysiloxane skeleton has the following general formula (1) in the side chain.
-R 1- RH (1)
(In formula (1), R 1 represents NH or O, and RH represents a host group.)
Has a structural unit represented by
The host group is a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from a cyclodextrin or a cyclodextrin derivative.
In the cyclodextrin derivative, the hydrogen atom of at least one hydroxyl group of cyclodextrin is replaced with at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group). A polymer material having a structure.
Item 2
Item 2. The polymer material according to Item 1, wherein the host group encapsulates a guest group to form an inclusion complex, and the encapsulated guest group is chemically bonded to the side chain of the polysiloxane skeleton. ..
Item 3
Item 2. The polymer material according to Item 1, which has a structure in which polysiloxane penetrates the ring of the host group.
Item 4
Item 2. The method for producing a polymer material according to Item 1 or 2.
The following general formula (1a)
R 2 -R H (1a)
(In the formula (1a), R 2 represents a NH 2 or OH, R H is as defined R H in the formula (1))
A clathrate compound in which a guest molecule is included in the compound represented by
Polysiloxane having a reactive functional group in the side chain,
A method for producing a polymer material, which comprises a step of reacting with.
Item 5
Item 4. The production method according to Item 4, wherein the reactive functional group is an epoxy group.
 本発明の高分子材料は、機械特性に優れ、高い吸湿性を有する。 The polymer material of the present invention has excellent mechanical properties and high hygroscopicity.
本発明の高分子材料の一例を模式的に説明する図である。It is a figure explaining an example of the polymer material of this invention schematically. 本発明の高分子材料の他例を模式的に説明する図である。It is a figure which schematically explains another example of the polymer material of this invention. (a)及び(b)はそれぞれ、NH-PMβCDのマススペクトル及び、NMRスペクトルの結果を示す。(A) and (b) and mass spectra of each, NH 2 -PMβCD, shows the results of the NMR spectrum. 実施例1で行った反応の反応スキームである。It is a reaction scheme of the reaction carried out in Example 1. 実施例1で得られた高分子材料のH-NMRスペクトル(CDCl、500MHz、25℃)である。 1 1 H-NMR spectrum (CDCl 3 , 500 MHz, 25 ° C.) of the polymer material obtained in Example 1.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in this specification, the expressions "contains" and "includes" include the concepts of "contains", "includes", "substantially consists" and "consists of only".
 1.高分子材料
 本発明の高分子材料は、ポリシロキサン骨格を有し、前記ポリシロキサン骨格は側鎖に下記一般式(1)
-R-R   (1)
(式(1)中、RはNH又はOを示し、Rはホスト基を示す。)
で表される構成単位を有する。ここで、前記ホスト基は、シクロデキストリン又はシクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基であり、前記シクロデキストリン誘導体は、シクロデキストリンが有する少なくとも1個の水酸基の水素原子が炭化水素基、アシル基及び-CONHR(Rはメチル基又はエチル基)からなる群より選ばれる少なくとも1種の基で置換された構造を有する。
1. 1. Polymer Material The polymer material of the present invention has a polysiloxane skeleton, and the polysiloxane skeleton has the following general formula (1) in the side chain.
-R 1- RH (1)
(In formula (1), R 1 represents NH or O, and RH represents a host group.)
It has a structural unit represented by. Here, the host group is a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from a cyclodextrin or a cyclodextrin derivative, and the cyclodextrin derivative is a hydrogen having at least one hydroxyl group of the cyclodextrin. It has a structure in which an atom is substituted with at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group).
 なお、本明細書において、「炭化水素基、アシル基及び-CONHR(Rはメチル基又はエチル基)からなる群より選ばれる少なくとも1種の基」を便宜上、「炭化水素基等」と表記することがある。 In the present specification, "at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group)" is referred to as "hydrocarbon group or the like" for convenience. Sometimes.
 本発明の高分子材料は、ポリシロキサン骨格を有する分子鎖で形成される材料である。ポリシロキサン骨格は、シロキサン結合を有する鎖状高分子であり、最小の構成単位として「-Si-O-Si-」構造を有する。ポリシロキサン骨格は直鎖状であってもよい。また、ポリシロキサン骨格において、「-Si-O-Si-」構造中のSi原子がさらにシロキサン結合(-O-Si)を有する場合は、ポリシロキサン骨格は、分岐構造であってもよいし、架橋構造であってもよい。高分子材料が適度な機械特性を有し、また、後記する自己修復性を発揮しやすいという観点から、ポリシロキサン骨格は直鎖状であることが好ましい。 The polymer material of the present invention is a material formed of a molecular chain having a polysiloxane skeleton. The polysiloxane skeleton is a chain polymer having a siloxane bond and has a "-Si-O-Si-" structure as the smallest structural unit. The polysiloxane skeleton may be linear. Further, in the polysiloxane skeleton, when the Si atom in the "-Si-O-Si-" structure further has a siloxane bond (-O-Si), the polysiloxane skeleton may have a branched structure. It may have a crosslinked structure. The polysiloxane skeleton is preferably linear from the viewpoint that the polymer material has appropriate mechanical properties and easily exhibits the self-repairing property described later.
 ポリシロキサン骨格が直鎖状である場合、ポリシロキサン骨格は、例えば、下記式(2)で表される構成単位を含有することができる。 When the polysiloxane skeleton is linear, the polysiloxane skeleton can contain, for example, a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(2)中、R及びRは同一又は異なって、置換基で置換されていてもよい炭素数1から10の直鎖又は分岐のアルキル基、もしくは置換基で置換されていてもよい炭素数6から20のアリール基を示す。 In formula (2), R 3 and R 4 may be the same or different and may be substituted with a substituent or a linear or branched alkyl group having 1 to 10 carbon atoms, or may be substituted with a substituent. It shows an aryl group having 6 to 20 carbon atoms.
 式(2)において、炭素数1から10の直鎖又は分岐のアルキル基は、炭素数が1から4が好ましく、1又は2が特に好ましい。具体的にはアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 In the formula (2), the linear or branched alkyl group having 1 to 10 carbon atoms is preferably 1 to 4 carbon atoms, and particularly preferably 1 or 2 carbon atoms. Specifically, the alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and n-. Examples thereof include a heptyl group, an n-octyl group, an n-nonyl group and an n-decyl group.
 式(2)において、炭素数1から10の直鎖又は分岐のアルキル基が置換基で置換されている場合、置換基の数は1又は2以上とすることができる。この場合の置換基としては、例えば、ヒドロキシ基、アルコキシ基、エステル基、シアノ基、ニトロ基、スルホ基、カルボキシ基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。 In the formula (2), when a linear or branched alkyl group having 1 to 10 carbon atoms is substituted with a substituent, the number of substituents can be 1 or 2 or more. Examples of the substituent in this case include a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). And so on.
 式(2)において、炭素数6から20のアリール基は、例えば、フェニル基、ナフチル基、テトラヒドロナフチル基等が挙げられる。アリール基が置換基で置換されている場合、置換基の数は1又は2以上とすることができる。この場合の置換基としては、例えば、ヒドロキシ基、アルコキシ基、エステル基、シアノ基、ニトロ基、スルホ基、カルボキシ基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。 In the formula (2), examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, a tetrahydronaphthyl group and the like. When the aryl group is substituted with a substituent, the number of substituents can be 1 or 2 or more. Examples of the substituent in this case include a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). And so on.
 式(2)において、R及びRは同一とすることができ、あるいは、異なっていてもよい。式(2)において、R及びRはいずれも、メチル基、エチル基、n-プロピル基、イソプロピル基であることが好ましく、メチル基が特に好ましい。R及びRはいずれもメチル基である場合、ポリシロキサン骨格はポリジメチルシロキサンを含む。 In formula (2), R 3 and R 4 can be the same or different. In the formula (2), all of R 3 and R 4 are preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and a methyl group is particularly preferable. When both R 3 and R 4 are methyl groups, the polysiloxane skeleton contains polydimethylsiloxane.
 ポリシロキサン骨格は、前述のように、側鎖に前記式(1)で表される構成単位「-R-R」を有する。かかる構成単位中の、Rは、ポリシロキサン骨格中のSiに直接結合することができ、あるいは、間接的に結合(つまり、RとSiとの間に他の基を介在)することもできる。さらに別の態様として、Rは、ビニル系重合体の側鎖に直接結合することができる。 As described above, the polysiloxane skeleton has a structural unit "-R 1- RH " represented by the above formula (1) in the side chain. In such a structural unit, R 1 can be directly bonded to Si in the polysiloxane skeleton, or can be indirectly bonded (that is, another group is interposed between R 1 and Si). it can. In yet another embodiment, R 1 can be directly attached to the side chain of the vinyl polymer.
 Rがポリシロキサン骨格中のSiに直接結合、又は、間接的に結合(つまり、RとSiとの間に他の基を介在)している場合、例えば、ポリシロキサン骨格は、下記式(3)で表される構成単位をさらに含むことができる。 When R 1 is directly or indirectly bonded to Si in the polysiloxane skeleton (that is, another group is interposed between R 1 and Si), for example, the polysiloxane skeleton has the following formula. The structural unit represented by (3) can be further included.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(3)中、Rは前記式(2)のR及びRと同義である。式(3)中、Rは、炭素数1~10のアルキレンを含む2価の基を示し、nは0又は1の数である。nが0のときはRがないことを意味し、つまり、Rがケイ素原子に直接結合していることを意味する。 In formula (3), R 5 is synonymous with R 3 and R 4 in formula (2). In formula (3), R 6 represents a divalent group containing an alkylene having 1 to 10 carbon atoms, and n is a number of 0 or 1. When n is 0, it means that there is no R 6 , that is, R 1 is directly bonded to the silicon atom.
 式(3)において、Rは、メチル基、エチル基、n-プロピル基、イソプロピル基であることが好ましく、メチル基が特に好ましい。 In the formula (3), R 5 is a methyl group, an ethyl group, n- propyl group, preferably an isopropyl group, a methyl group is particularly preferred.
 式(3)において、Rは、炭素数1~10のアルキレンを含む2価の基である限り特に限定されない。Rにおいて、アルキレンの炭素数は1~8が好ましく、2~6がより好ましい。Rは、例えば、ヘテロ原子を含むこともできる。ヘテロ原子としては、例えば、酸素、窒素等を挙げることができる。Rがヘテロ原子を含む場合、Rとしては、エーテル結合、アミド結合、アミノ基等を有することもでき、中でもエーテル結合を有することが好ましい(例えば、-(CH-O-(CH-結合が例示される)。炭素数1~10のアルキレンを含む1価の基はさらに置換基を有することができる。置換基の種類は特に限定されず、例えば、ヒドロキシ基、アルコキシ基、エステル基、シアノ基、ニトロ基、スルホ基、カルボキシ基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられ、ヒドロキシ基であることが特に好ましい。 In the formula (3), R 6 is not particularly limited as long as it is a divalent group containing an alkylene having 1 to 10 carbon atoms. In R 6 , the number of carbon atoms of the alkylene is preferably 1 to 8, and more preferably 2 to 6. R 6 can also contain, for example, a heteroatom. Examples of the hetero atom include oxygen, nitrogen and the like. When R 6 contains a hetero atom, R 6 may have an ether bond, an amide bond, an amino group, or the like, and among them, it is preferable to have an ether bond (for example,-(CH 2 ) 3- O- (for example). CH 2 ) 3 -Binding is exemplified). A monovalent group containing an alkylene having 1 to 10 carbon atoms can further have a substituent. The type of the substituent is not particularly limited, and for example, a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine). Atomic) and the like, and a hydroxy group is particularly preferable.
 一方、前述のようにRがビニル系重合体の側鎖に直接結合している場合、ビニル系重合体としては、例えば、公知のビニル系重合体を挙げることができ、例えば、各種のアクリル系ポリマーを例示することができる。中でも、(メタ)アクリル酸エステル、N置換(メタ)アクリルアミド等を挙げることができる。これらの場合は、Rは、(メタ)アクリル酸エステルのエステル部位、もしくは、N置換(メタ)アクリルアミドのアミド部位に結合することができる。Rがビニル系重合体の側鎖に直接結合してなる場合の例としては、例えば、国際公開第2018/159791号に記載のホスト基含有重合性単量体の重合体を挙げることができる。 On the other hand, when R 1 is directly bonded to the side chain of the vinyl polymer as described above, examples of the vinyl polymer include known vinyl polymers, and for example, various acrylics. A system polymer can be exemplified. Among them, (meth) acrylic acid ester, N-substituted (meth) acrylamide and the like can be mentioned. In these cases, R 1 can be attached to the ester moiety of the (meth) acrylic acid ester or the amide moiety of the N-substituted (meth) acrylamide. As an example of the case where R 1 is directly bonded to the side chain of the vinyl-based polymer, for example, the polymer of the host group-containing polymerizable monomer described in International Publication No. 2018/159791 can be mentioned. ..
 式(1)において、RはNH又はOであり、NHであることが特に好ましい。 In the formula (1), R 1 is NH or O, and it is particularly preferable that it is NH.
 R、つまり、ホスト基は、シクロデキストリン又はシクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基である。中でもホスト基は、シクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基であることが好ましい。前記シクロデキストリン誘導体は、シクロデキストリンが有する少なくとも1個の水酸基の水素原子が炭化水素基等(つまり、炭化水素基、アシル基及び-CONHR(Rはメチル基又はエチル基)からなる群より選ばれる少なくとも1種の基)で置換された構造を有する。つまり、シクロデキストリン誘導体とは、シクロデキストリン分子が他の有機基で置換された構造を有する分子をいう。ただし、シクロデキストリン誘導体は、少なくとも一つの水素原子又は一つの水酸基を有し、好ましくは少なくとも一つの水酸基を有する。 RH , or host group, is a monovalent group obtained by removing one hydrogen atom or hydroxyl group from a cyclodextrin or cyclodextrin derivative. Among them, the host group is preferably a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from the cyclodextrin derivative. The cyclodextrin derivative is selected from the group in which the hydrogen atom of at least one hydroxyl group of cyclodextrin is a hydrocarbon group or the like (that is, a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group). It has a structure substituted with at least one group). That is, the cyclodextrin derivative refers to a molecule having a structure in which a cyclodextrin molecule is substituted with another organic group. However, the cyclodextrin derivative has at least one hydrogen atom or one hydroxyl group, and preferably has at least one hydroxyl group.
 なお、念のための注記に過ぎないが、本明細書でのシクロデキストリンなる表記は、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群より選ばれる少なくとも1種を意味する。従って、シクロデキストリン誘導体は、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体及びγ-シクロデキストリン誘導体からなる群より選ばれる少なくとも1種である。 As a reminder, the notation cyclodextrin in this specification means at least one selected from the group consisting of α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin. Therefore, the cyclodextrin derivative is at least one selected from the group consisting of α-cyclodextrin derivative, β-cyclodextrin derivative and γ-cyclodextrin derivative.
 ホスト基は、シクロデキストリン又はシクロデキストリン誘導体から1個の水酸基が除された1価の基であることが好ましい。 The host group is preferably a monovalent group obtained by removing one hydroxyl group from a cyclodextrin or a cyclodextrin derivative.
 ホスト基は、シクロデキストリン又はシクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基であるが、シクロデキストリン又はシクロデキストリン誘導体において除される水素原子又は水酸基は、シクロデキストリン又はシクロデキストリン誘導体のどの部位であってもよい。 The host group is a monovalent group obtained by removing one hydrogen atom or hydroxyl group from a cyclodextrin or cyclodextrin derivative, whereas the hydrogen atom or hydroxyl group removed from the cyclodextrin or cyclodextrin derivative is cyclodextrin or cyclo. It may be any site of the dextrin derivative.
 ここで、シクロデキストリン1分子が有する水酸基の全個数をNとした場合、α-シクロデキストリンはN=18、β-シクロデキストリンはN=21、γ-シクロデキストリンはN=24である。 Here, assuming that the total number of hydroxyl groups contained in one molecule of cyclodextrin is N, α-cyclodextrin is N = 18, β-cyclodextrin is N = 21, and γ-cyclodextrin is N = 24.
 仮に、ホスト基がシクロデキストリン誘導体から1個の「水酸基」が除された1価の基である場合は、シクロデキストリン誘導体は、シクロデキストリン1分子あたり最大N-1個の水酸基の水素原子が炭化水素基等で置換されて形成される。他方、ホスト基がシクロデキストリン誘導体から1個の「水素原子」が除された1価の基である場合は、シクロデキストリン誘導体は、シクロデキストリン1分子あたり最大N個の水酸基の水素原子が炭化水素基等で置換され得る。 If the host group is a monovalent group obtained by removing one "hydroxyl group" from the cyclodextrin derivative, the cyclodextrin derivative is carbonized with a maximum of N-1 hydroxyl group hydrogen atoms per cyclodextrin molecule. It is formed by being substituted with a hydrogen group or the like. On the other hand, when the host group is a monovalent group obtained by removing one "hydrogen atom" from the cyclodextrin derivative, the cyclodextrin derivative has a maximum of N hydroxyl group hydrogen atoms per cyclodextrin molecule as a hydrocarbon. It can be replaced with a group or the like.
 前記ホスト基は、前記シクロデキストリン1分子中に存在する全水酸基数のうちの70%以上の水酸基の水素原子が前記炭化水素基等で置換された構造を有することが好ましい。この場合、式(1)で表される構成単位は、疎水性の単量体単位に対してより高い親和性を示すことができる。前記ホスト基は、前記シクロデキストリン1分子中に存在する全水酸基数のうちの80%以上の水酸基の水素原子が前記炭化水素基等で置換されていることがより好ましく、全水酸基数のうちの90%以上の水酸基の水素原子が前記炭化水素基等で置換されていることが特に好ましい。 The host group preferably has a structure in which hydrogen atoms of 70% or more of the total number of hydroxyl groups present in one molecule of cyclodextrin are substituted with the hydrocarbon group or the like. In this case, the structural unit represented by the formula (1) can exhibit a higher affinity for the hydrophobic monomer unit. In the host group, it is more preferable that the hydrogen atom of 80% or more of the total number of hydroxyl groups present in one molecule of the cyclodextrin is substituted with the hydrocarbon group or the like, and the total number of hydroxyl groups is the same. It is particularly preferable that the hydrogen atom of 90% or more of the hydroxyl groups is substituted with the hydrocarbon group or the like.
 前記ホスト基は、α-シクロデキストリン1分子中に存在する全水酸基のうちの13個以上の水酸基の水素原子が前記炭化水素基等で置換された構造を有することが好ましい。前記ホスト基は、α-シクロデキストリン1分子中に存在する全水酸基のうちの15個以上の水酸基の水素原子が前記炭化水素基等で置換されていることがより好ましく、全水酸基のうちの17個の水酸基の水素原子が前記炭化水素基等で置換されていることが特に好ましい。 The host group preferably has a structure in which the hydrogen atoms of 13 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of α-cyclodextrin are substituted with the hydrocarbon group or the like. In the host group, it is more preferable that the hydrogen atoms of 15 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of α-cyclodextrin are substituted with the hydrocarbon group or the like, and 17 of all the hydroxyl groups It is particularly preferable that the hydrogen atoms of the hydroxyl groups are substituted with the hydrocarbon group or the like.
 前記ホスト基は、β-シクロデキストリン1分子中に存在する全水酸基のうちの15個以上の水酸基の水素原子が前記炭化水素基等で置換された構造を有することが好ましい。前記ホスト基は、β-シクロデキストリン1分子中に存在する全水酸基のうちの17個以上の水酸基の水素原子が前記炭化水素基等で置換されていることがより好ましく、全水酸基のうちの19個以上の水酸基の水素原子が前記炭化水素基等で置換されていることが特に好ましい。 The host group preferably has a structure in which hydrogen atoms of 15 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of β-cyclodextrin are substituted with the hydrocarbon group or the like. In the host group, it is more preferable that the hydrogen atoms of 17 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of β-cyclodextrin are substituted with the hydrocarbon group or the like, and 19 of all the hydroxyl groups It is particularly preferable that the hydrogen atoms of one or more hydroxyl groups are substituted with the hydrocarbon group or the like.
 前記ホスト基は、γ-シクロデキストリン1分子中に存在する全水酸基のうちの17個以上の水酸基の水素原子が前記炭化水素基等で置換された構造を有することが好ましい。前記ホスト基は、γ-シクロデキストリン1分子中に存在する全水酸基のうちの19個以上の水酸基の水素原子が前記炭化水素基等で置換されていることがより好ましく、全水酸基のうちの21個以上の水酸基の水素原子が前記炭化水素基等で置換されていることが特に好ましい。 The host group preferably has a structure in which hydrogen atoms of 17 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of γ-cyclodextrin are substituted with the hydrocarbon group or the like. In the host group, it is more preferable that the hydrogen atoms of 19 or more hydroxyl groups among all the hydroxyl groups existing in one molecule of γ-cyclodextrin are substituted with the hydrocarbon group or the like, and 21 of all the hydroxyl groups. It is particularly preferable that the hydrogen atoms of one or more hydroxyl groups are substituted with the hydrocarbon group or the like.
 前記ホスト基が2以上の炭化水素基を有する場合は、それらはすべて同一でもよいし、一部が異なっていてもよい。 When the host group has two or more hydrocarbon groups, they may all be the same or some may be different.
 シクロデキストリン誘導体において、前記炭化水素基の種類は特に限定されない。前記炭化水素基としては、例えば、アルキル基、アルケニル基、及びアルキニル基を挙げることができる。 In the cyclodextrin derivative, the type of the hydrocarbon group is not particularly limited. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
 前記炭化水素基の炭素数の数は特に限定されず、例えば、炭化水素基の炭素数は1~4個であることが好ましい。 The number of carbon atoms of the hydrocarbon group is not particularly limited, and for example, the number of carbon atoms of the hydrocarbon group is preferably 1 to 4.
 炭素数が1~4個である炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基を挙げることができる。炭化水素基がブチル基である場合は、直鎖状及び分岐鎖状のいずれであってもよい。 Specific examples of the hydrocarbon group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and a butyl group. When the hydrocarbon group is a butyl group, it may be either a linear chain or a branched chain.
 炭化水素基は、本発明の効果が阻害されない限りは、置換基を有していてもよい。 The hydrocarbon group may have a substituent as long as the effect of the present invention is not impaired.
 シクロデキストリン誘導体において、アシル基は、アセチル基、プロピオニル、ホルミル基等を例示することができる。アシル基は、さらに置換基を有することもできる。ホスト-ゲスト相互作用を形成しやすく、また、靭性及び強度に優れる靭性及び強度に優れる高分子材料を得やすいという観点から、アシル基は、アセチル基であることが好ましい。 In the cyclodextrin derivative, the acyl group may be an acetyl group, a propionyl group, a formyl group or the like. The acyl group can also have a substituent. The acyl group is preferably an acetyl group from the viewpoint of easily forming a host-guest interaction and easily obtaining a polymer material having excellent toughness and strength and excellent toughness and strength.
 シクロデキストリン誘導体において、-CONHR(Rはメチル基又はエチル基)は、メチルカルバメート基又はエチルカルバメート基である。ホスト-ゲスト相互作用が形成されやすいという観点から、-CONHRは、エチルカルバメート基であることが好ましい。 In the cyclodextrin derivative, -CONHR (R is a methyl group or an ethyl group) is a methyl carbamate group or an ethyl carbamate group. -CONHR is preferably an ethyl carbamate group from the viewpoint that a host-guest interaction is easily formed.
 シクロデキストリン誘導体において、炭化水素基等は、メチル基及びアシル基が好ましく、メチル基、アセチル基、プロピオニル基がさらに好ましく、メチル基及びアセチル基が特に好ましい。 In the cyclodextrin derivative, the hydrocarbon group and the like are preferably a methyl group and an acyl group, more preferably a methyl group, an acetyl group and a propionyl group, and particularly preferably a methyl group and an acetyl group.
 ポリシロキサン骨格は、他の構成単位を有することができる。他の構成単位としては、例えば、反応性官能基がケイ素原子に直接又は間接的に結合したシロキサン単位を挙げることができる。具体的には、下記式(4)で表される構成単位をさらに含むことができる。 The polysiloxane skeleton can have other building blocks. Other building blocks include, for example, a siloxane unit in which a reactive functional group is directly or indirectly bonded to a silicon atom. Specifically, the structural unit represented by the following formula (4) can be further included.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(4)中、Rは前記式(2)のR及びRと同義である。式(4)中、Rは、炭素数1~8のアルキレンを含む1価の基を示し、Aは反応性官能基を示す。 In formula (4), R 7 is synonymous with R 3 and R 4 in formula (2). In formula (4), R 8 represents a monovalent group containing an alkylene having 1 to 8 carbon atoms, and A represents a reactive functional group.
 式(4)において、Rは、メチル基、エチル基、n-プロピル基、イソプロピル基であることが好ましく、メチル基が特に好ましい。 In the formula (4), R 7 is preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and a methyl group is particularly preferable.
 式(4)において、Rは、炭素数1~8のアルキレンを含む2価の基である限り特に限定されない。Rにおいて、アルキレンの炭素数は1~8が好ましく、2~7がより好ましく、2~6がさらに好ましく、2~5が特に好ましい。Rは、例えば、ヘテロ原子を含むこともできる。ヘテロ原子としては、例えば、酸素、窒素等を挙げることができる。Rがヘテロ原子を含む場合、Rとしては、例えば、エーテル結合、アミド結合、アミノ基等を有することもでき、中でもエーテル結合を有することが好ましい(例えば、-(CH-O-(CH)-結合が例示される)。炭素数1~8のアルキレンを含む1価の基はさらに置換基を有することができる。置換基の種類は特に限定されず、例えば、ヒドロキシ基、アルコキシ基、エステル基、シアノ基、ニトロ基、スルホ基、カルボキシ基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられ、ヒドロキシ基であることが特に好ましい。 In the formula (4), R 8 is not particularly limited as long as it is a divalent group containing an alkylene having 1 to 8 carbon atoms. In R 8 , the number of carbon atoms of the alkylene is preferably 1 to 8, more preferably 2 to 7, further preferably 2 to 6, and particularly preferably 2 to 5. R 8 can also include, for example, a heteroatom. Examples of the hetero atom include oxygen, nitrogen and the like. When R 8 contains a hetero atom, R 8 may have, for example, an ether bond, an amide bond, an amino group, etc., and more preferably has an ether bond (for example,-(CH 2 ) 3- O). -(CH 2 ) -binding is exemplified). A monovalent group containing an alkylene having 1 to 8 carbon atoms can further have a substituent. The type of the substituent is not particularly limited, and for example, a hydroxy group, an alkoxy group, an ester group, a cyano group, a nitro group, a sulfo group, a carboxy group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine). Atomic) and the like, and a hydroxy group is particularly preferable.
 式(4)において、反応性官能基であるAは、例えば、エポキシ基、カルボキシ基、アミノ基、水酸基、エステル基等を挙げることができ、後記するゲスト分子との反応性が高いという点で、エポキシ基であることが好ましい。 In the formula (4), the reactive functional group A can include, for example, an epoxy group, a carboxy group, an amino group, a hydroxyl group, an ester group, etc., and is highly reactive with the guest molecule described later. , Preferably an epoxy group.
 ポリシロキサン骨格において、前記式(2)で表される構成単位の含有割合は、前記式(2)、(3)及び(4)で表される構成単位の全量に対して、例えば、5~95モル%とすることができる。高分子材料の吸湿性を制御しやすく、また、後記する自己修復性能が発揮されやすいという観点から、前記式(2)で表される構成単位の含有割合は、例えば、前記式(2)、(3)及び(4)で表される構成単位の全量に対して、20モル%以上が好ましく、30モル%以上がより好ましく、40モル%以上が特に好ましく、また、90モル%以下が好ましく、80モル%以下がより好ましく、75モル%以下が特に好ましい。 In the polysiloxane skeleton, the content ratio of the structural unit represented by the formula (2) is, for example, 5 to 5 to the total amount of the structural unit represented by the formulas (2), (3) and (4). It can be 95 mol%. From the viewpoint that the hygroscopicity of the polymer material can be easily controlled and the self-repairing performance described later can be easily exhibited, the content ratio of the structural unit represented by the above formula (2) is, for example, the above formula (2). With respect to the total amount of the structural units represented by (3) and (4), 20 mol% or more is preferable, 30 mol% or more is more preferable, 40 mol% or more is particularly preferable, and 90 mol% or less is preferable. , 80 mol% or less is more preferable, and 75 mol% or less is particularly preferable.
 ポリシロキサン骨格において、前記式(3)で表される構成単位の含有割合は、前記式(3)及び(4)で表される構成単位の全量に対して、例えば、0.01~30モル%とすることができる。高分子材料の吸湿性を制御しやすく、また、後記する自己修復性能が発揮されやすいという観点から、前記式(3)で表される構成単位の含有割合は、前記式(3)及び(4)で表される構成単位の全量に対して、0.1モル%以上が好ましく、0.5モル%以上がより好ましく、1モル%以上が特に好ましく、また、20モル%以下が好ましく、15モル%以下がより好ましく、10モル%以下が特に好ましい。 In the polysiloxane skeleton, the content ratio of the structural unit represented by the formula (3) is, for example, 0.01 to 30 mol with respect to the total amount of the structural unit represented by the formulas (3) and (4). Can be%. From the viewpoint that the hygroscopicity of the polymer material can be easily controlled and the self-repairing performance described later can be easily exhibited, the content ratio of the structural unit represented by the formula (3) is the above formulas (3) and (4). ), 0.1 mol% or more is preferable, 0.5 mol% or more is more preferable, 1 mol% or more is particularly preferable, and 20 mol% or less is preferable, 15 More preferably mol% or less, and particularly preferably 10 mol% or less.
 本発明の高分子材料において、ポリシロキサン骨格は必要に応じて、前記式(2)、(3)及び(4)で表される構成単位以外に他の構成単位を有することができる。つまり、本発明の高分子材料は、前記式(2)、(3)及び(4)で表される構成単位と、これら以外構成単位を有する分子鎖で形成され得る。他の構成単位は、例えば、前記式(2)、(3)及び(4)で表される構成単位の全量に対して5質量%以下、好ましくは1質量%以下、より好ましくは、0.1質量%以下、特に好ましくは0.05質量%以下とすることができる。ポリシロキサン骨格は、前記式(2)、(3)及び(4)で表される構成単位のみで形成することもできる。つまり、本発明の高分子材料は、前記式(2)、(3)及び(4)で表される構成単位のみを有する分子鎖で形成することもできる。 In the polymer material of the present invention, the polysiloxane skeleton can have other structural units in addition to the structural units represented by the above formulas (2), (3) and (4), if necessary. That is, the polymer material of the present invention can be formed of a structural unit represented by the above formulas (2), (3) and (4) and a molecular chain having a structural unit other than these. The other structural units are, for example, 5% by mass or less, preferably 1% by mass or less, more preferably 0.% by mass or less, based on the total amount of the structural units represented by the formulas (2), (3) and (4). It can be 1% by mass or less, particularly preferably 0.05% by mass or less. The polysiloxane skeleton can also be formed only by the structural units represented by the formulas (2), (3) and (4). That is, the polymer material of the present invention can also be formed of a molecular chain having only the structural units represented by the formulas (2), (3) and (4).
 本発明の高分子材料において、ポリシロキサン骨格は、ランダムポリマー、ブロックポリマー等のいずれの構造を有していてもよく、例えば、製造が容易である点で、ランダムポリマーであることが好ましい。 In the polymer material of the present invention, the polysiloxane skeleton may have any structure such as a random polymer or a block polymer, and is preferably a random polymer because it is easy to produce, for example.
 高分子材料は、ポリシロキサン骨格の側鎖に式(1)で表される構成単位を有することで親水性が向上するので、従来のシリコン材料に比べて同等もしくはそれ以上の優れた吸湿性を有することができる。従って、高分子材料は、ポリシロキサン骨格を有しながらも、優れた吸湿性を有することができ、しかも、ポリシロキサン骨格の特長である柔軟性及び強靭性も備えるので、機械特性にも優れる。 Since the polymer material has a structural unit represented by the formula (1) in the side chain of the polysiloxane skeleton, the hydrophilicity is improved, so that the polymer material has excellent hygroscopicity equal to or higher than that of the conventional silicon material. Can have. Therefore, the polymer material can have excellent hygroscopicity while having a polysiloxane skeleton, and also has flexibility and toughness, which are the characteristics of the polysiloxane skeleton, and thus has excellent mechanical properties.
 本発明の高分子材料において、前記ホスト基は、ゲスト基を包接して包接錯体を形成すると共に、包接された前記ゲスト基は、前記ポリシロキサン骨格の側鎖に化学結合(例えば、共有結合)していてもよい。 In the polymer material of the present invention, the host group encapsulates a guest group to form an inclusion complex, and the encapsulated guest group chemically bonds (for example, covalently) to the side chain of the polysiloxane skeleton. It may be combined).
 ゲスト基は、ゲスト分子に由来する基であり、具体的には、ゲスト分子から、1個又は2個の水素原子が除されて形成される基である。ゲスト分子としては、前記ホスト基と包接錯体を形成することが可能な化合物を挙げることができる。 The guest group is a group derived from the guest molecule, and specifically, is a group formed by removing one or two hydrogen atoms from the guest molecule. Examples of the guest molecule include compounds capable of forming an inclusion complex with the host group.
 ゲスト分子としては、前記ホスト基と包接錯体を形成することできる限りは特に限定されず、例えば、1又は2個(好ましくは1個)のアミノ基を有する化合物、1又は2個(好ましくは1個)の水酸基を有する化合物、1又は2個(好ましくは1個)のカルボキシ基を有する化合物、1又は2個(好ましくは1個)のエポキシ基を有する化合物、1又は2個(好ましくは1個)のイソシアネート基を有する化合物、1又は2個(好ましくは1個)のチオール基を有する化合物、1又は2個のカルボン酸塩化物を有する化合物を挙げることができる。 The guest molecule is not particularly limited as long as it can form an inclusion complex with the host group, and is, for example, a compound having 1 or 2 (preferably 1) amino groups, or 1 or 2 (preferably). Compounds with 1 or 2 (preferably 1) hydroxyl groups, compounds with 1 or 2 (preferably 1) carboxy groups, compounds with 1 or 2 (preferably 1) epoxy groups, 1 or 2 (preferably 1) Examples thereof include a compound having one or two (preferably one) thiol groups, a compound having one or two (preferably one) thiol groups, and a compound having one or two carboxylated products.
 1又は2個のアミノ基を有する化合物としては、例えば、1-アダマンタンアミン、ベンジルアミン、tert-ブチルアミン、ブチルアミン、1-アミノピレン、アミノフェロセン、4-アミノアゾベンゼン、4-アミノスチルベン、シクロヘキシルアミン、ヘキシルアミン、4,4’-ジアミノジフェニルメタン、p-キシリレンジアミン、ジアミノフェロセン、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノスチルベン、1,4-ジアミノシクロヘキサン、1,6-ジアミノシクロヘキサン、α、ω-ジアミノポリエチレングルコール、α、ω-ジアミノポリプロピレングルコール、2,2-ビス(4-アミノフェニル)プロパン1,1-ビス(4-アミノフェニル)-1-フェニルエタン、2、2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2、2-ビス(4-アミノフェニル)ブタン、ビス(4-アミノフェニル)ジフェニルメタン、2、2-ビス(3-メチル-4-アミノフェニル)プロパン、ビス(4-アミノフェニル)-2、2-ジクロロエチレン、1、1-ビス(4-アミノフェニル)エタン、2,2-ビス(4-アミノ-3-イソプロピルフェニル)プロパン、1,3-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、ビス(4-アミノフェニル)スルホン、1,4-ビス(2-(4-アミノフェニル)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-アミン]プロパン、1,1-ビス(4-アミノフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-アミノフェニル)シクロヘキサン等を挙げることができる。 Examples of compounds having one or two amino groups include 1-adamantanamine, benzylamine, tert-butylamine, butylamine, 1-aminopyrene, aminoferrocene, 4-aminoazobenzene, 4-aminostylben, cyclohexylamine and hexyl. Amine, 4,4'-diaminodiphenylmethane, p-xylylene diamine, diaminoferrocene, 4,4'-diaminoazobenzene, 4,4'-diaminostylben, 1,4-diaminocyclohexane, 1,6-diaminocyclohexane, α , Ω-Diaminopolyethylene glucol, α, ω-diaminopolypropylene glucol, 2,2-bis (4-aminophenyl) propane 1,1-bis (4-aminophenyl) -1-phenylethane, 2,2- Bis (4-aminophenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) butane, bis (4-aminophenyl) diphenylmethane, 2,2-bis (3-methyl-4-aminophenyl) propane, Bis (4-aminophenyl) -2,2-dichloroethylene, 1,1-bis (4-aminophenyl) ethane, 2,2-bis (4-amino-3-isopropylphenyl) propane, 1,3-bis ( 2- (4-Aminophenyl) -2-propyl) benzene, bis (4-aminophenyl) sulfone, 1,4-bis (2- (4-aminophenyl) -2-propyl) benzene, 5,5'- (1-Methylethylidene) -bis [1,1'-(bisphenyl) -2-amine] propane, 1,1-bis (4-aminophenyl) -3,3,5-trimethylcyclohexane, 1,1- Bis (4-aminophenyl) cyclohexane and the like can be mentioned.
 1又は2個の水酸基を有する化合物としては、例えば、1-ヒドロキシアダマンタン、ベンジルアルコール、tert-ブチルアルコール、ブチルアルコール、1-ヒドロキシピレン、1-ヒドロキシメチルフェロセン、4-ヒドロキシアゾベンゼン、4-ヒドロキシスチルベン、シクロヘキサノール、ヘキサノール、4,4’-ジヒドロキシジフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,4-ベンゼンジメタノール、1,1’-ジヒドロキシメチルフェロセン、4,4’-ジヒドロキシアゾベンゼン、4,4’-ジヒドロキシスチルベン、1,4-シクロヘキノール、1,6-ヘキサンジオール、ポリエチレングルコール、ポリプロピレングルコール、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2、2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2、2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2、2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)-2、2-ジクロロエチレン、1、1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、ビス(4-ヒドロキシフェニル)スルホン、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-ヒドロキシ]プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビスフェノールA等を挙げることができる。 Examples of the compound having one or two hydroxyl groups include 1-hydroxyadamantan, benzyl alcohol, tert-butyl alcohol, butyl alcohol, 1-hydroxypyrene, 1-hydroxymethylferrocene, 4-hydroxyazobenzene and 4-hydroxystylben. , Cyclohexanol, Hexanol, 4,4'-dihydroxydiphenylmethane, 2,2-bis (4-hydroxyphenyl) propane, 1,4-benzenedimethanol, 1,1'-dihydroxymethylferrocene, 4,4'-dihydroxy Azobenzene, 4,4'-dihydroxystilben, 1,4-cyclohexanol, 1,6-hexanediol, polyethylene glucol, polypropylene glucol, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2 , 2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxyphenyl) butane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (3-methyl-4-hydroxyphenyl) ) Propane, bis (4-hydroxyphenyl) -2,2-dichloroethylene, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 1,3 -Bis (2- (4-hydroxyphenyl) -2-propyl) benzene, bis (4-hydroxyphenyl) sulfone, 1,4-bis (2- (4-hydroxyphenyl) -2-propyl) benzene, 5, 5'-(1-methylethylidene) -bis [1,1'-(bisphenyl) -2-hydroxy] propane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1 , 1-bis (4-hydroxyphenyl) cyclohexane, bisphenol A and the like.
 1又は2個のカルボキシ基を有する化合物としては、例えば、1-カルボキシアダマンタン、安息香酸、ピバル酸、ブタン酸、1-カルボキシピレン、1-カルボキシフェロセン、4-カルボキシアゾベンゼン、4-カルボキシスチルベン、シクロヘキサン酸、ヘキサン酸、4,4’-ジカルボキシジフェニルメタン、1,4-ベンゼンジカルボン酸、1,4-フェニレン二酢酸、1,1’-ジカルボキシフェロセン、4,4’-ジカルボキシアゾベンゼン、4,4’-ジカルボキシスチルベン、1,4-シクロヘキサンジカルボン酸、1,6-ヘキサンジカルボン酸、α、ω-ジカルボキシポリエチレングルコール、α、ω-ジカルボキシポリプロピレングルコール、2,2-ビス(4-カルボキシフェニル)プロパン、1,1-ビス(4-カルボキシフェニル)-1-フェニルエタン、2、2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、2、2-ビス(4-カルボキシフェニル)ブタン、ビス(4-カルボキシフェニル)ジフェニルメタン、2、2-ビス(3-メチル-4-カルボキシフェニル)プロパン、ビス(4-カルボキシフェニル)-2、2-ジクロロエチレン、1、1-ビス(4-カルボキシフェニル)エタン、2,2-ビス(4-カルボキシ3-イソプロピルフェニル)プロパン、1,3-ビス(2-(4-カルボキシフェニル)-2-プロピル)ベンゼン、ビス(4-カルボキシフェニル)スルホン、1,4-ビス(2-(4-カルボキシフェニル)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-カルボキシ]プロパン、1,1-ビス(4-カルボキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-カルボキシフェニル)シクロヘキサン等を挙げることができる。 Examples of the compound having one or two carboxy groups include 1-carboxyadamantan, benzoic acid, pivalic acid, butanoic acid, 1-carboxypyrene, 1-carboxyferrocene, 4-carboxyazobenzene, 4-carboxystylben, and cyclohexane. Acid, hexanoic acid, 4,4'-dicarboxydiphenylmethane, 1,4-benzenedicarboxylic acid, 1,4-phenylene diacetic acid, 1,1'-dicarboxyferrocene, 4,4'-dicarboxyazobenzene, 4, 4'-Dicarboxystylbene, 1,4-cyclohexanedicarboxylic acid, 1,6-hexanedicarboxylic acid, α, ω-dicarboxypolyethylene glucol, α, ω-dicarboxypolypropylene glucol, 2,2-bis (4) -Carboxyphenyl) propane, 1,1-bis (4-carboxyphenyl) -1-phenylethane, 2,2-bis (4-carboxyphenyl) hexafluoropropane, 2,2-bis (4-carboxyphenyl) butane , Bis (4-carboxyphenyl) diphenylmethane, 2,2-bis (3-methyl-4-carboxyphenyl) propane, bis (4-carboxyphenyl) -2,2-dichloroethylene, 1,1-bis (4-carboxy) Phenyl) ethane, 2,2-bis (4-carboxy3-isopropylphenyl) propane, 1,3-bis (2- (4-carboxyphenyl) -2-propyl) benzene, bis (4-carboxyphenyl) sulfone, 1,4-bis (2- (4-carboxyphenyl) -2-propyl) benzene, 5,5'-(1-methylethylidene) -bis [1,1'-(bisphenyl) -2-carboxy] propane , 1,1-bis (4-carboxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-carboxyphenyl) cyclohexane and the like.
 1又は2個のカルボン酸塩化物を有する化合物としては、例えば、1-アダマンタンカルボニルクロリド、テレフタロイルクロリド、トリメチルアセチルクロリド、ブチリルクロリド、1-ピレンカルボニルクロリド、1-フェロセンカルボニルクロリド、4-アゾベンゼンカルボニルクロリド、4-スチルベンカルボニルクロリド、シクロヘキサンカルボニルクロリド、ヘキシルクロリド、4,4’-ジフェニルメタンジカルボニルクロリド、1,4-ベンゼンジカルボンニルクロリド、1,4-フェニレンジカルボニルクロリド、1,1’-フェロセンジカルボニルクロリド、4,4’-アゾベンゼンジカルボニルクロリド、4,4’-スチルベンカルボニルクロリド、1,4-シクロヘキサンジカルボニルクロリド、1,6-ヘキサンジカルボニルクロリド、α、ω-ポリエチレングルコールジカルボニルクロリド、α、ω-ポリプロピレングルコールジカルボニルクロリド、2,2-ビス(4-フェニルカルボニルクロリド)プロパン、1,1-ビス(4-フェニルカルボニルクロリド)-1-フェニルエタン、2、2-ビス(4-フェニルカルボニルクロリド)ヘキサフルオロプロパン、2、2-ビス(4-フェニルカルボニルクロリド)ブタン、ビス(4-フェニルカルボニルクロリド)ジフェニルメタン、2、2-ビス(3-メチル-4-フェニルカルボニルクロリド)プロパン、ビス(4-フェニルカルボニルクロリド)-2、2-ジクロロエチレン、1、1-ビス(4-フェニルカルボニルクロリド)エタン、2,2-ビス(3-イソプロピルフェニル-4-カルボニルクロリド)プロパン、1,3-ビス(2-(4-フェニルカルボニルクロリド)-2-プロピル)ベンゼン、ビス(4-フェニルカルボニルクロリド)スルホン、1,4-ビス(2-(4-フェニルカルボニルクロリド)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-カルボニルクロリド]プロパン、1,1-ビス(4-フェニルカルボニルクロリド)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-フェニルカルボニルクロリド)シクロヘキサン等を挙げることができる。 Compounds having one or two carboxylated products include, for example, 1-adamantan carbonyl chloride, terephthaloyl chloride, trimethylacetyl chloride, butyryl chloride, 1-pyrenecarbonyl chloride, 1-ferrocenecarbonyl chloride, 4-. Azobenzenecarbonyl chloride, 4-stylbencarbonyl chloride, cyclohexanecarbonyl chloride, hexyl chloride, 4,4'-diphenylmethanedicarbonyl chloride, 1,4-benzenedicarboxylicyl chloride, 1,4-phenylenedicarbonyl chloride, 1,1'- Ferrocendicarbonyl chloride, 4,4'-azobenzenedicarbonyl chloride, 4,4'-stilbencarbonyl chloride, 1,4-cyclohexanedicarbonyl chloride, 1,6-hexanedicarbonylchloride, α, ω-polyethylene glucoldi Carbonyl chloride, α, ω-polypropylene glucol dicarbonyl chloride, 2,2-bis (4-phenylcarbonyl chloride) propane, 1,1-bis (4-phenylcarbonyl chloride) -1-phenylethane, 2,2- Bis (4-phenylcarbonyl chloride) hexafluoropropane, 2,2-bis (4-phenylcarbonyl chloride) butane, bis (4-phenylcarbonyl chloride) diphenylmethane, 2,2-bis (3-methyl-4-phenylcarbonyl) Chloride) Propane, bis (4-phenylcarbonyl chloride) -2,2-dichloroethylene, 1,1-bis (4-phenylcarbonyl chloride) ethane, 2,2-bis (3-isopropylphenyl-4-carbonyl chloride) propane , 1,3-bis (2- (4-phenylcarbonyl chloride) -2-propyl) benzene, bis (4-phenylcarbonyl chloride) sulfone, 1,4-bis (2- (4-phenylcarbonyl chloride) -2 -Propyl) benzene, 5,5'-(1-methylethylidene) -bis [1,1'-(bisphenyl) -2-carbonyl chloride] propane, 1,1-bis (4-phenylcarbonyl chloride) -3 , 3,5-trimethylcyclohexane, 1,1-bis (4-phenylcarbonylchloride) cyclohexane and the like.
 1又は2個のエポキシ基を有する化合物としては、例えば、アダマンタンオキシド、スチレンオキシド、1,2-エポキシブタン、1-エポキシピレン、エポキシフェロセン、4-エポキシアゾベンゼン、4-エポキシスチルベン、シクロヘキシルオキシド、1,2-エポキシヘキサン、2,2’-ビス(4-グリシジルオキシフェニル)プロパン、p-ジグリシジルオキシベンゼン、ジグリシジルオキイシフェロセン、4,4’-ジグリシジルオキシアゾベンゼン、4,4’-ジグリシジルオキシフェロセン、1,4-ジグリシジルオキシシクロヘキサン、1,6-ジグリシジルオキシシクロヘキサン、α、ω-ジグリシジルオキシポリエチレングルコール、α、ω-ジグリシジルオキシポリプロピレングルコール、1,1-ビス(4-グリシジルオキシフェニル)-1-フェニルエタン、2、2-ビス(4-グリシジルオキシフェニル)ヘキサフルオロプロパン、2、2-ビス(4-グリシジルオキシフェニル)ブタン、ビス(4-グリシジルオキシフェニル)ジフェニルメタン、2、2-ビス(3-メチル-4-グリシジルオキシフェニル)プロパン、ビス(4-グリシジルオキシフェニル)-2、2-ジクロロエチレン、1、1-ビス(4-グリシジルオキシフェニル)エタン、2,2-ビス(4-グリシジルオキシ-3-イソプロピルフェニル)プロパン、1,3-ビス(2-(4-グリシジルオキシフェニル)-2-プロピル)ベンゼン、ビス(4-グリシジルオキシフェニル)スルホン、1,4-ビス(2-(4-グリシジルオキシフェニル)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-グリシジルオキシ]プロパン、1,1-ビス(4-グリシジルオキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-グリシジルオキシフェニル)シクロヘキサン等を挙げることができる。 Compounds having one or two epoxy groups include, for example, adamantan oxide, styrene oxide, 1,2-epoxybutane, 1-epoxypyrene, epoxyferrocene, 4-epoxyazobenzene, 4-epoxystylben, cyclohexyl oxide, 1 , 2-Epoxyhexane, 2,2'-bis (4-glycidyloxyphenyl) propane, p-diglycidyloxybenzene, diglycidyl okiisiferocene, 4,4'-diglycidyloxyazobenzene, 4,4'-di Glycidyloxyferrocene, 1,4-diglycidyloxycyclohexane, 1,6-diglycidyloxycyclohexane, α, ω-diglycidyloxypolyethylene glucol, α, ω-diglycidyloxypolypropylene glucol, 1,1-bis ( 4-Glysidyloxyphenyl) -1-phenylethane, 2,2-bis (4-glycidyloxyphenyl) hexafluoropropane, 2,2-bis (4-glycidyloxyphenyl) butane, bis (4-glycidyloxyphenyl) Diphenylmethane, 2,2-bis (3-methyl-4-glycidyloxyphenyl) propane, bis (4-glycidyloxyphenyl) -2,2-dichloroethylene, 1,1-bis (4-glycidyloxyphenyl) ethane, 2, , 2-bis (4-glycidyloxy-3-isopropylphenyl) propane, 1,3-bis (2- (4-glycidyloxyphenyl) -2-propyl) benzene, bis (4-glycidyloxyphenyl) sulfone, 1, , 4-bis (2- (4-glycidyloxyphenyl) -2-propyl) benzene, 5,5'-(1-methylethylidene) -bis [1,1'-(bisphenyl) -2-glycidyloxy] Examples thereof include propane, 1,1-bis (4-glycidyloxyphenyl) -3,3,5-trimethylcyclohexane, and 1,1-bis (4-glycidyloxyphenyl) cyclohexane.
 1又は2個のイソシアネート基を有する化合物としては、例えば、1-アダマンタンイソシアネート、ベンジルイソシアネート、フェニルイソシアネート、tert-ブチルイソシアネート、ブチルイソシアネート、1-ピレンイソシアネート、フェロセンイソシアネート、アゾベンゼン-4-イソシアネート、スチルベン-4-イソシアネート、シクロヘキサンイソシアネート、ヘキサンイソシアネート、4,4’-ジイソシアネートフェニルメタン、p-ベンゼンジイソシアネート、フェロセン-1,1’-ジイソシアネート、アゾベンゼン-4,4’-ジイソシアネート、スチルベン-4,4’-ジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、シクロヘキサン-1,6-ジイソシアネート、ポリエチレングルコールジイソシアネート、ポリプロピレングルコールジイソシアネート、2,2-ビス(4-フェニルイソシアネート)プロパン、1,1-ビス(4-フェニルイソシアネート)-1-フェニルエタン、2、2-ビス(4-フェニルイソシアネート)ヘキサフルオロプロパン、2、2-ビス(4-フェニルイソシアネート)ブタン、ビス(4-フェニルイソシアネート)ジフェニルメタン、2、2-ビス(3-メチル-4-フェニルイソシアネート)プロパン、ビス(4-フェニルイソシアネート)-2、2-ジクロロエチレン、1、1-ビス(4-フェニルイソシアネート)エタン、2,2-ビス(3-イソプロピル-4-フェニルイソシアネート)プロパン、1,3-ビス(2-(4-フェニルイソシアネート)-2-プロピル)ベンゼン、ビス(4-フェニルイソシアネート)スルホン、1,4-ビス(2-(4-フェニルイソシアネート)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-イソシアネート]プロパン、1,1-ビス(4-フェニルイソシアネート)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-フェニルイソシアネート)シクロヘキサン等を挙げることができる。 Examples of the compound having one or two isocyanate groups include 1-adamantan isocyanate, benzyl isocyanate, phenyl isocyanate, tert-butyl isocyanate, butyl isocyanate, 1-pyrene isocyanate, ferrocene isocyanate, azobenzene-4-isocyanate, and stillben-. 4-isocyanate, cyclohexaneisocyanate, hexaneisocyanate, 4,4'-diisocyanate phenylmethane, p-benzenediisocyanate, ferrocene-1,1'-diisocyanate, azobenzene-4,4'-diisocyanate, stillben-4,4'-diisocyanate , Cyclohexane-1,4-diisocyanate, cyclohexane-1,6-diisocyanate, polyethylene glucol diisocyanate, polypropylene glucol diisocyanate, 2,2-bis (4-phenylisocyanate) propane, 1,1-bis (4-phenylisocyanate) )-1-Phenylethane, 2,2-bis (4-phenylisocyanate) hexafluoropropane, 2,2-bis (4-phenylisocyanate) butane, bis (4-phenylisocyanate) diphenylmethane, 2,2-bis ( 3-Methyl-4-phenylisocyanate) propane, bis (4-phenylisocyanate) -2,2-dichloroethylene, 1,1-bis (4-phenylisocyanate) ethane, 2,2-bis (3-isopropyl-4-4) Phenylisocyanate) Propane, 1,3-bis (2- (4-phenylisocyanate) -2-propyl) benzene, bis (4-phenylisocyanate) sulfone, 1,4-bis (2- (4-phenylisocyanate)- 2-propyl) benzene, 5,5'-(1-methylethylidene) -bis [1,1'-(bisphenyl) -2-isocyanate] propane, 1,1-bis (4-phenylisocyanate) -3, Examples thereof include 3,5-trimethylcyclohexane and 1,1-bis (4-phenylisocyanate) cyclohexane.
 1又は2個のチオール基を有する化合物としては、例えば、1-アダマンタンチオール、ベンジルチオール、tert-メルカプタン、ブタンチオール、1-チオールピレン、フェロセンチオール、4-チオアゾベンゼン、4-チオスチルベン、シクロヘキシルチオール、ヘキサンチオール、4,4’-ジチオフェニルメタン、p-ベンゼンジチオール、1,1’-ジチオフェロセン、4,4’-ジチオアゾベンゼン、4,4’-ジチオスチルベン、1,4-ジチオシクロヘキサン、1,6-ジチオシクロヘキサン、α、ω-ジチオポリエチレングルコール、α、ω-ジチオポリプロピレングルコール、1,1-ビス(4-チオフェニル)-1-フェニルエタン、2、2-ビス(4-チオフェニル)ヘキサフルオロプロパン、2、2-ビス(4-チオフェニル)ブタン、ビス(4-チオフェニル)ジフェニルメタン、2、2-ビス(3-メチル-4-チオフェニル)プロパン、ビス(4-チオフェニル)-2、2-ジクロロエチレン、1、1-ビス(4-チオフェニル)エタン、2,2-ビス(4-チオ3-イソプロピルフェニル)プロパン、1,3-ビス(2-(4-チオフェニル)-2-プロピル)ベンゼン、ビス(4-チオフェニル)スルホン、1,4-ビス(2-(4-チオフェニル)-2-プロピル)ベンゼン、5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-チオール]プロパン、1,1-ビス(4-チオフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-チオフェニル)シクロヘキサン等を挙げることができる。 Examples of compounds having one or two thiol groups include 1-adamantan thiol, benzyl thiol, tert-mercaptan, butane thiol, 1-thiol pyrene, ferrocene thiol, 4-thioazobenzene, 4-thiostylben, cyclohexyl thiol. , Hexanthiol, 4,4'-dithiophenylmethane, p-benzenedithiol, 1,1'-dithioferrocene, 4,4'-dithioazobenzene, 4,4'-dithiostylben, 1,4-dithiocyclohexane, 1 , 6-Dithiocyclohexane, α, ω-dithiopolyethylene glucol, α, ω-dithiopolypropylene glucol, 1,1-bis (4-thiophenyl) -1-phenylethane, 2,2-bis (4-thiophenyl) Hexafluoropropane, 2,2-bis (4-thiophenyl) butane, bis (4-thiophenyl) diphenylmethane, 2,2-bis (3-methyl-4-thiophenyl) propane, bis (4-thiophenyl) -2, -Dichloroethylene, 1,1-bis (4-thiophenyl) ethane, 2,2-bis (4-thio3-isopropylphenyl) propane, 1,3-bis (2- (4-thiophenyl) -2-propyl) benzene , Bis (4-thiophenyl) sulfone, 1,4-bis (2- (4-thiophenyl) -2-propyl) benzene, 5,5'-(1-methylethylidene) -bis [1,1'-(bis) Phenyl) -2-thiol] propane, 1,1-bis (4-thiophenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-thiophenyl) cyclohexane and the like can be mentioned.
 ゲスト分子としては、1個のアミノ基を有する化合物及び1個の水酸基を有する化合物の少なくともいずれか一方であることが好ましく、1個のアミノ基を有する化合物であることがさらに好ましい。具体的にゲスト分子としては、1-アダマンタンアミン、ベンジルアミン、tert-ブチルアミン、ブチルアミン、1-アミノピレン、アミノフェロセン、4-アミノアゾベンゼン、4-アミノスチルベン、シクロヘキシルアミン、ヘキシルアミン、1-ヒドロキシアダマンタン、ベンジルアルコール、tert-ブチルアルコール、ブチルアルコール、1-ヒドロキシピレン、1-ヒドロキシメチルフェロセン、4-ヒドロキシアゾベンゼン及び4-ヒドロキシスチルベン等であることが好ましく、1-アダマンタンアミン及び1-ヒドロキシアダマンタン等であることがさらに好ましく、1-アダマンタンアミンであることが特に好ましい。この場合、ゲスト基はポリシロキサン骨格の側鎖に結合しやすく、自己修復性がより発揮されやすい。 The guest molecule is preferably at least one of a compound having one amino group and a compound having one hydroxyl group, and more preferably a compound having one amino group. Specifically, guest molecules include 1-adamantanamine, benzylamine, tert-butylamine, butylamine, 1-aminopyrene, aminoferrocene, 4-aminoazobenzene, 4-aminostylben, cyclohexylamine, hexylamine, 1-hydroxyadamantan, It is preferably benzyl alcohol, tert-butyl alcohol, butyl alcohol, 1-hydroxypyrene, 1-hydroxymethylferrocene, 4-hydroxyazobenzene, 4-hydroxystylben, etc., preferably 1-adamantanamine, 1-hydroxyadamantan, etc. More preferably, 1-adamantanamine is particularly preferable. In this case, the guest group is likely to be bonded to the side chain of the polysiloxane skeleton, and self-repairing property is more likely to be exhibited.
 ゲスト分子は、ホスト基であるシクロデキストリン又はシクロデキストリン誘導体の環内の大きさに応じて適宜選択することができる。例えば、ゲスト分子が、1-アダマンタンアミン及び1-ヒドロキシアダマンタン等である場合、ホスト基はβ-シクロデキストリン又はβ-シクロデキストリン誘導体であることが好ましい。この場合、ゲスト基はホスト基に包接されやすい。 The guest molecule can be appropriately selected according to the size of the host group cyclodextrin or cyclodextrin derivative in the ring. For example, when the guest molecule is 1-adamantanamine, 1-hydroxyadamantane, etc., the host group is preferably β-cyclodextrin or β-cyclodextrin derivative. In this case, the guest group is likely to be included in the host group.
 本発明の高分子材料において、ホスト基に包接された前記ゲスト基は、前記ポリシロキサン骨格の側鎖に化学結合することができる。この場合、通常、ゲスト基とポリシロキサン骨格のSiとの間には他の官能基が介在する。他の官能基としては、例えば、前記式(3)中のRが挙げられる。 In the polymer material of the present invention, the guest group encapsulated in the host group can be chemically bonded to the side chain of the polysiloxane skeleton. In this case, usually, another functional group is interposed between the guest group and Si of the polysiloxane skeleton. Examples of other functional groups include R 6 in the above formula (3).
 また、ポリシロキサン骨格が前記式(4)で表される構成単位を有する場合、ホスト基に包接されたゲスト分子は式(4)で表される構成単位中の反応性官能基と反応することで、ゲスト基がポリシロキサン骨格に結合した構造が形成され得る。 When the polysiloxane skeleton has a structural unit represented by the formula (4), the guest molecule encapsulated in the host group reacts with the reactive functional group in the structural unit represented by the formula (4). As a result, a structure in which the guest group is bonded to the polysiloxane skeleton can be formed.
 本発明の高分子材料において、ゲスト基が結合するポリシロキサン分子鎖(ポリロタキサン骨格を有する分子鎖)は、該ゲスト基を包接しているホスト基が結合しているポリシロキサン分子鎖であってもよいし、該ゲスト基を包接しているホスト基が結合しているポリシロキサン分子鎖と異なるポリシロキサン分子鎖であってもよい。 In the polymer material of the present invention, the polysiloxane molecular chain to which the guest group is bonded (molecular chain having a polyrotaxane skeleton) may be a polysiloxane molecular chain to which the host group enclosing the guest group is bonded. Alternatively, the polysiloxane molecular chain may be different from the polysiloxane molecular chain to which the host group enclosing the guest group is bonded.
 ポリシロキサン骨格の側鎖のホスト基がゲスト基を包接する場合、その包接割合は特に限定されず、例えば、ポリシロキサン骨格におけるホスト基の全量の内の10モル%以上包接することができ、20モル%以上であることが好ましく、30モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、50モル%以上であることが特に好ましい。 When the host group of the side chain of the polysiloxane skeleton encapsulates the guest group, the inclusion ratio is not particularly limited, and for example, 10 mol% or more of the total amount of the host group in the polysiloxane skeleton can be included. It is preferably 20 mol% or more, more preferably 30 mol% or more, further preferably 40 mol% or more, and particularly preferably 50 mol% or more.
 高分子材料は、ポリシロキサン骨格の側鎖に式(1)で表される構成単位を有することで(具体的には、前記式(3)で表される構成単位を有することで)、種々の高分子構造を形成することが可能となり、その一つが、上述のゲスト基導入によって形成される構造である。ポリシロキサン骨格において、上述のようにゲスト基がホスト基に包接されると共にゲスト基がポリシロキサン骨格に結合することで、高分子材料は分子内又は分子間で可逆的なホスト-ゲスト相互作用が生じ得る(後記する図1参照)。これにより、斯かるポリシロキサン骨格を含む高分子材料は、その靭性及び強度が向上し、しかも、自己修復性を発揮することが可能となる。例えば、高分子材料が切断されたとしても、切断面どうしを再接着等させることで、切断面間で再度、高分子材料どうしのホスト-ゲスト相互作用が生じて再結合し、高分子材料が修復される。つまり、高分子材料が特定の構造に制御された場合、切断された高分子材料が自己修復性を有することもできる。 The polymer material has various structural units represented by the formula (1) in the side chain of the polysiloxane skeleton (specifically, by having the structural unit represented by the formula (3)). It is possible to form the polymer structure of the above, one of which is the structure formed by the introduction of the guest group described above. In the polysiloxane skeleton, as described above, the guest group is included in the host group and the guest group is bonded to the polysiloxane skeleton, so that the polymer material has an intramolecular or intermolecular reversible host-guest interaction. Can occur (see FIG. 1 below). As a result, the polymer material containing such a polysiloxane skeleton has improved toughness and strength, and can exhibit self-repairing property. For example, even if the polymer material is cut, by re-adhering the cut surfaces to each other, a host-guest interaction between the cut surfaces occurs again and the polymer materials are recombined to form a polymer material. It will be repaired. That is, when the polymer material is controlled to a specific structure, the cut polymer material can also have self-healing properties.
 図1は、本発明の高分子材料において、ポリシロキサン骨格の側鎖のホスト基がゲスト基を包接して形成されている場合の形態を模式的に説明する図である。この形態では、高分子材料は、架橋構造、つまり、三次元網目構造を有する。 FIG. 1 is a diagram schematically illustrating a form in which a host group of a side chain of a polysiloxane skeleton is formed by including a guest group in the polymer material of the present invention. In this form, the polymeric material has a crosslinked structure, i.e., a three-dimensional network structure.
 図1の形態の高分子材料では、ゲスト基20は、ポリシロキサン骨格30の側鎖に結合している。より具体的には、ゲスト基20は、ホスト基10に包接されて包接錯体を形成し、ゲスト基20の一端がポリシロキサン骨格30に結合している。さらに、ホスト基10に結合しているRを含む基40がポリシロキサン骨格30の側鎖に結合している。つまり、図1の形態の高分子材料は、前記式(1)で表されるR-R-がポリシロキサン骨格30に結合している。図1の形態の高分子材料は、例えば、エラストマーとしての性質を有する。 In the polymer material of the form shown in FIG. 1, the guest group 20 is bonded to the side chain of the polysiloxane skeleton 30. More specifically, the guest group 20 is included in the host group 10 to form an inclusion complex, and one end of the guest group 20 is bonded to the polysiloxane skeleton 30. Moreover, group 40 comprising R 1 bonded to the host group 10 is bonded to the side chain of the polysiloxane skeleton 30. In other words, the polymeric material in the form 1, the formula (1) represented by R H -R 1 - is bound to the polysiloxane backbone 30. The polymer material in the form of FIG. 1 has properties as an elastomer, for example.
 図1の高分子材料では、高分子材料にせん断等の力が加わると、高分子鎖中のゲスト基20と、ホスト基Rとが分離し、材料の切断等が起こることがある。しかし、切断面を再度接着させることで、再びゲスト基20と、ホスト基Rとが結合して、包接錯体が形成され得る。これにより、切断面が再結合し、高分子材料が修復され得る。 In the polymer material of FIG. 1, when a force such as shearing is applied to the polymer material, the guest group 20 in the polymer chain and the host group RH may be separated, and the material may be cut. However, by adhering the cut surfaces again, the guest group 20 and the host group RH can be bonded again to form an inclusion complex. As a result, the cut surface can be recombined and the polymer material can be repaired.
 図2は、本発明の高分子材料の別の態様を模式的に示している。図2の形態の高分子材料は、前記ホスト基の環内をポリシロキサンが貫通した構造を有する。ホスト基の環内を貫通するポリシロキサンは、ホスト基を有するポリシロキサンであってもよいし、あるいは、ホスト基を有さないポリシロキサン(例えば、ポリジメチルシロキサン等)であってもよい。 FIG. 2 schematically shows another aspect of the polymer material of the present invention. The polymer material of the form shown in FIG. 2 has a structure in which polysiloxane penetrates the ring of the host group. The polysiloxane penetrating the ring of the host group may be a polysiloxane having a host group, or a polysiloxane having no host group (for example, polydimethylsiloxane).
 図2の形態の高分子材料は、架橋構造、つまり、三次元網目構造を有すると共に、ポリシロキサン骨格30がホスト基10の環内を貫通した構造を有する。 The polymer material in the form of FIG. 2 has a crosslinked structure, that is, a three-dimensional network structure, and also has a structure in which the polysiloxane skeleton 30 penetrates the ring of the host group 10.
 図2の形態の高分子材料では、図1の形態の高分子材料と同様、ホスト基10に結合しているRがポリシロキサン骨格30に結合している。この高分子材料では、ホスト基10がポリシロキサン骨格30を包接しながらスライドすることができることから、例えば、応力緩和作用等に優れ、高い靭性及び強度を有し得ることから、機械的特性に優れる。 In the polymer material of the form of FIG. 2, as in the polymer material of the form of FIG. 1, R 1 bonded to the host group 10 is bonded to the polysiloxane skeleton 30. In this polymer material, since the host group 10 can slide while enclosing the polysiloxane skeleton 30, for example, it is excellent in stress relaxation action and can have high toughness and strength, and thus is excellent in mechanical properties. ..
 高分子材料が図2の形態であるか否かについては、例えば、高分子材料の膨潤試験の結果から判定することができる。例えば、高分子材料を、化学架橋剤を使用せずに調製し、得られた高分子材料を溶媒に加えた場合において、溶解せずに膨潤現象が見られた場合を図2の形態(いわゆる可動性架橋重合体)が形成されていると判断でき、溶解した場合を可動性架橋重合体が形成されていないと判断できる。 Whether or not the polymer material has the form shown in FIG. 2 can be determined from, for example, the result of the swelling test of the polymer material. For example, when a polymer material is prepared without using a chemical cross-linking agent and the obtained polymer material is added to a solvent, a swelling phenomenon is observed without dissolving the polymer material in the form shown in FIG. 2 (so-called). It can be determined that the mobile crosslinked polymer) is formed, and when it is dissolved, it can be determined that the movable crosslinked polymer is not formed.
 本発明において、高分子材料の形状は特に限定されない。例えば、高分子材料は、膜状、フィルム状、シート状、粒子状、板状、ブロック状、ペレット状、粉末状、発泡材料状、液状等の各種の形態を取り得る。 In the present invention, the shape of the polymer material is not particularly limited. For example, the polymer material can take various forms such as a film, a film, a sheet, a particle, a plate, a block, a pellet, a powder, a foamed material, and a liquid.
 高分子材料は、各種の用途に使用することができる。例えば、高分子材料は、自動車用途、接着用途、電子部品用途、建築部材用途、食品容器用途、輸送容器用途等の各種の部材に好適に使用することができる。特に、高分子材料は、吸湿性が高いので、衣料、医療機器、医療器具(具体的にはコンタクトレンズなど)等の用途にも使用できる。 Polymer materials can be used for various purposes. For example, the polymer material can be suitably used for various members such as automobile applications, adhesive applications, electronic component applications, building member applications, food container applications, and transportation container applications. In particular, since the polymer material has high hygroscopicity, it can also be used for applications such as clothing, medical equipment, and medical equipment (specifically, contact lenses, etc.).
 2.高分子材料の製造方法
 前記した高分子材料の製造方法は特に限定されない。例えば、前述の本発明の高分子材料は、下記一般式(1a)
-R   (1a)
で表される化合物にゲスト分子が包接されてなる包接化合物と、
側鎖に反応性官能基を有するポリシロキサンと、
を反応する工程を備えることができる。
2. 2. Method for Producing Polymer Material The method for producing the polymer material described above is not particularly limited. For example, the above-mentioned polymer material of the present invention has the following general formula (1a).
R 2 -R H (1a)
A clathrate compound in which a guest molecule is included in the compound represented by
Polysiloxane having a reactive functional group in the side chain,
Can be provided with a step of reacting.
 ここで、式(1a)中、RはNH又はOHを示し、Rは前記式(1)中のRと同義である。つまり、Rは前記ホスト基である。上記製造方法における工程を「工程1」と表記する。 Here, in the formula (1a), R 2 represents a NH 2 or OH, is R H is synonymous with R H in the formula (1). That is, RH is the host group. The process in the above manufacturing method is referred to as "process 1".
 前記式(1a)で表される化合物の具体例としては、下記式(21)で表される化合物を挙げることができる。 Specific examples of the compound represented by the formula (1a) include a compound represented by the following formula (21).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(21)において、Rは、前記式(1a)のRに等しい、つまり、NH又はOHを示し、式(21)式中のRは前記炭化水素基等を示し、nは5、6又は7である。 In the formula (21), R 2 is equal to R 2 in the formula (1a), that is, NH 2 or OH, R 5 in the formula (21) represents the hydrocarbon group or the like, and n is 5, 6 or 7.
 なお、式(21)において、R(炭化水素基等)のすべてがメチル基、アセチル基、メチルカルバメート基及びエチルカルバメート基からなる群より選ばれる1種である場合もある。式(21)において、すべてのRはメチル基又はアセチル基であることが好ましく、すべてのRはメチル基であることが特に好ましい。 In the equation (21), in some cases all of the R 5 (hydrocarbon group) is one selected from the group consisting of methyl group, an acetyl group, a methyl carbamate group and ethyl carbamate. In the formula (21), it is preferable that all of R 5 is a methyl group or an acetyl group, it is particularly preferable that all of R 5 is a methyl group.
 式(21)で表される化合物としては、6-モノデオキシ-6-モノアミノ-トリメチル-シクロデキストリン、6-モノヒドロキシ-トリメチル-シクロデキストリン、6-モノデオキシ-6-モノアミノ-トリアセチル-シクロデキストリン、6-モノヒドロキシ-トリアセチル-シクロデキストリン、6-モノデオキシ-6-モノアミノ-トリエチルカルバメート-シクロデキストリン、6-モノヒドロキシ-トリエチルカルバメート-シクロデキストリン等を挙げることができる。 Examples of the compound represented by the formula (21) include 6-monodeoxy-6-monoamino-trimethyl-cyclodextrin, 6-monohydroxy-trimethyl-cyclodextrin, and 6-monodeoxy-6-monoamino-triacetyl-cyclodextrin. , 6-Monohydroxy-triacetyl-cyclodextrin, 6-monodeoxy-6-monoamino-triethylcarbamate-cyclodextrin, 6-monohydroxy-triethylcarbamate-cyclodextrin and the like.
 包接化合物におけるゲスト分子の種類は、前述の「1.高分子材料」の項で説明したゲスト基を形成するための前記ゲスト分子と同様である。 The type of guest molecule in the clathrate compound is the same as that for forming the guest group described in the above section "1. Polymer material".
 工程1で使用する包接化合物の製造方法も特に限定されず、公知の包接化合物の製造方法を広く採用することができる、例えば、式(1a)で表される化合物と、ゲスト分子とを混合して、包接化合物を得る工程を備える方法によって製造することができる。 The method for producing the clathrate compound used in step 1 is not particularly limited, and a known method for producing the clathrate compound can be widely adopted. For example, the compound represented by the formula (1a) and the guest molecule can be used. It can be produced by a method comprising the steps of mixing to obtain a clathrate compound.
 包接化合物を得る工程において、式(1a)で表される化合物と、ゲスト分子との混合比は、例えば、モル比で、式(1a)で表される化合物:ゲスト分子=10:1~1:10とすることができ、好ましくは3:1~1:3とすることができ、より好ましくは、2:1~1:2とすることができる。式(1a)で表される化合物:ゲスト分子は1:1(モル比)とすることもできる。 In the step of obtaining the clathrate compound, the mixing ratio of the compound represented by the formula (1a) and the guest molecule is, for example, a molar ratio of the compound represented by the formula (1a): guest molecule = 10: 1 to It can be 1:10, preferably 3: 1 to 1: 3, and more preferably 2: 1 to 1: 2. The compound: guest molecule represented by the formula (1a) can also be 1: 1 (molar ratio).
 工程1で使用する側鎖に反応性官能基を有するポリシロキサンの種類は特に限定されない。以下、工程1で使用する側鎖に反応性官能基を有するポリシロキサンを「ポリシロキサンP」と表記する。 The type of polysiloxane having a reactive functional group in the side chain used in step 1 is not particularly limited. Hereinafter, the polysiloxane having a reactive functional group in the side chain used in step 1 will be referred to as "polysiloxane P".
 ポリシロキサンPは、側鎖に反応性官能基を有する限り、その種類は特に限定されず、例えば、公知のポリシロキサンを広く使用することができる。反応性官能基は、前記式(4)における反応性官能基Aと同様である。つまり、反応性官能基は、例えば、エポキシ基、カルボキシ基、アミノ基、水酸基、エステル基等を挙げることができ、包接化合物の反応性が高いという点で、エポキシ基であることが好ましい。 The type of polysiloxane P is not particularly limited as long as it has a reactive functional group in the side chain, and for example, known polysiloxanes can be widely used. The reactive functional group is the same as that of the reactive functional group A in the above formula (4). That is, the reactive functional group may be, for example, an epoxy group, a carboxy group, an amino group, a hydroxyl group, an ester group or the like, and is preferably an epoxy group in that the reactivity of the inclusion compound is high.
 ポリシロキサンPは、前記式(2)で表される構成単位及び前記式(4)で表される構成単位を有することが好ましい。この場合、ポリシロキサンPは、ランダムポリマー、ブロックポリマー等のいずれの構造を有していてもよく、例えば、製造が容易である点で、ランダムポリマーであることが好ましい。 The polysiloxane P preferably has a structural unit represented by the formula (2) and a structural unit represented by the formula (4). In this case, the polysiloxane P may have any structure such as a random polymer or a block polymer, and is preferably a random polymer because it is easy to produce, for example.
 ポリシロキサンPが前記式(2)で表される構成単位及び前記式(4)で表される構成単位を有する場合、前記式(2)で表される構成単位の含有割合は、前記式(2)及び(4)で表される構成単位の全量に対して、例えば、5~95モル%とすることができる。高分子材料の吸湿性を制御しやすく、また、自己修復性能が発揮されやすいという観点から、前記式(2)で表される構成単位の含有割合は、例えば、前記式(2)及び(4)で表される構成単位の全量に対して、20モル%以上が好ましく、30モル%以上がより好ましく、40モル%以上が特に好ましく、また、90モル%以下が好ましく、80モル%以下がより好ましく、75モル%以下が特に好ましい。 When the polysiloxane P has a structural unit represented by the formula (2) and a structural unit represented by the formula (4), the content ratio of the structural unit represented by the formula (2) is determined by the above formula (2). For example, it can be 5 to 95 mol% with respect to the total amount of the structural units represented by 2) and (4). From the viewpoint that the hygroscopicity of the polymer material can be easily controlled and the self-healing performance can be easily exhibited, the content ratio of the structural unit represented by the formula (2) is, for example, the formulas (2) and (4). ), 20 mol% or more is preferable, 30 mol% or more is more preferable, 40 mol% or more is particularly preferable, 90 mol% or less is preferable, and 80 mol% or less is preferable with respect to the total amount of the structural unit represented by). More preferably, 75 mol% or less is particularly preferable.
 ポリシロキサンPの数平均分子量Mnは特に限定されず、例えば、500~100000とすることができ、好ましくは1000~50000である。 The number average molecular weight Mn of polysiloxane P is not particularly limited, and can be, for example, 500 to 100,000, preferably 1,000 to 50,000.
 ポリシロキサンPの製造方法は特に限定されず、例えば、公知の製造方法で得ることができ、また、市販品から入手することも可能である。 The method for producing polysiloxane P is not particularly limited, and for example, it can be obtained by a known production method, or it can be obtained from a commercially available product.
 工程1において、前記包接化合物と、側鎖に反応性官能基を有するポリシロキサンとを反応する方法は特に限定されない。例えば、前記一般式(1a)で表される化合物と、ゲスト分子と、ポリシロキサンPとを所定の混合割合で混合させる方法を挙げることができる。この混合は、例えば、適宜の溶媒中で行うことができる。溶媒の種類は特に限定されず、例えば、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素;クロロホルム、1,2-ジクロロエタン等の塩素系炭化水素;メタノール、エタノール、イソプロピルアルコールおよびt-ブタノール等のアルコール等が挙げられる。溶媒は、単独又は2種以上の混合物として使用することができる。工程1の反応温度も特に限定されず、例えば、10~200℃、好ましくは50~150℃、より好ましくは80~120℃とすることができる。 In step 1, the method of reacting the clathrate compound with polysiloxane having a reactive functional group in the side chain is not particularly limited. For example, a method of mixing the compound represented by the general formula (1a), a guest molecule, and polysiloxane P at a predetermined mixing ratio can be mentioned. This mixing can be carried out, for example, in a suitable solvent. The type of solvent is not particularly limited, and for example, aliphatic hydrocarbons such as hexane and heptane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; chloroform, 1,2-dichloroethane and the like. Chlorine-based hydrocarbons; Examples thereof include alcohols such as methanol, ethanol, isopropyl alcohol and t-butanol. The solvent can be used alone or as a mixture of two or more. The reaction temperature in step 1 is also not particularly limited, and can be, for example, 10 to 200 ° C., preferably 50 to 150 ° C., and more preferably 80 to 120 ° C.
 工程1の反応後、必要に応じて乾燥等の処理をすることで、目的のポリシロキサン骨格を有する高分子材料を得ることができる。斯かる方法で得られる高分子材料は、例えば、前述の図1に示す構造を有するものであり、エラストマーとしての性質を有する。 After the reaction in step 1, a polymer material having the desired polysiloxane skeleton can be obtained by performing treatments such as drying as necessary. The polymer material obtained by such a method has, for example, the structure shown in FIG. 1 described above, and has properties as an elastomer.
 また、前述の図2の形態の高分子材料を製造する場合は、前記式(1a)で表される化合物と、前記ポリシロキサンPとを混合する工程(以下、「工程2」という)を含む製造方法を採用することができる。この製造方法における工程2では、ゲスト分子を使用しないことを除いては、前述の工程1と同様の条件とすることができる。工程2の混合では必要に応じて、前記ポリシロキサンP以外のポリシロキサン(つまり、側鎖に反応性官能基Aを有さないポリシロキサン)を使用することができ、ポリシロキサンP以外のポリシロキサン(例えばジメチルポリシロキサン)を使用することが好ましい。 Further, when the polymer material having the form shown in FIG. 2 is produced, the step of mixing the compound represented by the formula (1a) with the polysiloxane P (hereinafter referred to as “step 2”) is included. A manufacturing method can be adopted. In step 2 of this production method, the same conditions as in step 1 described above can be obtained except that the guest molecule is not used. In the mixing of step 2, a polysiloxane other than the polysiloxane P (that is, a polysiloxane having no reactive functional group A in the side chain) can be used, if necessary, and a polysiloxane other than the polysiloxane P can be used. It is preferable to use (for example, dimethylpolysiloxane).
 ここで、前記式(1a)で表される化合物を製造する方法は特に限定されず、公知の製造方法を広く採用することができる。例えば、前記式(1a)で表される化合物は、国際公開第2018/159791号に記載のホスト基含有重合性単量体の製造方法(具体的には、ホスト基含有ビニル系単量体の製造方法又はホスト基含有非ビニル系単量体の製造方法)と同様の製造方法を採用することができる。 Here, the method for producing the compound represented by the formula (1a) is not particularly limited, and a known production method can be widely adopted. For example, the compound represented by the formula (1a) is a method for producing a host group-containing polymerizable monomer according to International Publication No. 2018/159791 (specifically, a host group-containing vinyl-based monomer). A production method similar to the production method or the production method of the host group-containing non-vinyl monomer) can be adopted.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the aspects of these Examples.
  (製造例1)
 まず、下記式(21-1)のスキームに従って、NH-PMβCDを製造した。
(Manufacturing Example 1)
First, NH 2- PMβCD was produced according to the scheme of the following formula (21-1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 原料のホスト分子の原料として、6-デオキシ-6-モノアジド-β-シクロデキストリン6.9mmolをナスフラスコに加え、さらに、脱水N,N-ジメチルホルムアミド500mLを加え、氷冷下で撹拌し、さらにそこへ水素化ナトリウム150mmol、ヨウ化メチル150mmolを加え、12時間撹拌した。その後、そのナスフラスコにメタノール20mLを加え、更に水20mLを加えてクエンチした。得られた溶液をエバポレーターで減圧乾燥後、ジクロロメタン100mLを加え、飽和炭酸水素ナトリウム水溶液50mL、チオ硫酸ナトリウム五水和物を2.5g含む50mL水溶液、飽和食塩水50mLで洗浄した。 As a raw material for the host molecule of the raw material, 6.9 mmol of 6-deoxy-6-monoazido-β-cyclodextrin was added to the eggplant flask, 500 mL of dehydrated N, N-dimethylformamide was further added, and the mixture was stirred under ice-cooling and further. 150 mmol of sodium hydride and 150 mmol of methyl iodide were added thereto, and the mixture was stirred for 12 hours. Then, 20 mL of methanol was added to the eggplant flask, and 20 mL of water was further added for quenching. The obtained solution was dried under reduced pressure with an evaporator, 100 mL of dichloromethane was added, and the mixture was washed with 50 mL of saturated aqueous sodium hydrogen carbonate solution, 50 mL of aqueous solution containing 2.5 g of sodium thiosulfate pentahydrate, and 50 mL of saturated brine.
 洗浄後のジクロロメタン層に硫酸マグネシウムを10g加え、室温で撹拌した後にろ過し、そのろ液をエバポレーターで乾固した。得られた固形物をテトラヒドロフラン100mLに溶解し、トリフェニルホスフィン15mmolと28%アンモニア水30mLを加えて、室温にて12時間撹拌した。次いで、エバポレーターで減圧乾燥後、得られた乾燥物をジクロロメタン100mLに溶解し、水100mL、飽和食塩水100mLで洗浄した。 10 g of magnesium sulfate was added to the washed dichloromethane layer, stirred at room temperature, filtered, and the filtrate was dried to dryness with an evaporator. The obtained solid was dissolved in 100 mL of tetrahydrofuran, 15 mmol of triphenylphosphine and 30 mL of 28% aqueous ammonia were added, and the mixture was stirred at room temperature for 12 hours. Then, after drying under reduced pressure with an evaporator, the obtained dried product was dissolved in 100 mL of dichloromethane and washed with 100 mL of water and 100 mL of saturated brine.
 洗浄後のジクロロメタン層に硫酸マグネシウムを10g加え、室温で撹拌した後にろ過し、そのろ液をエバポレーターで乾固した。得られた固形物をシリカカラムクロマトグラフィー(溶出液組成ジクロロメタン:メタノール=9:1)により精製した。このホスト基含有重合性単量体をNH-PMβCDと表記した 10 g of magnesium sulfate was added to the washed dichloromethane layer, the mixture was stirred at room temperature, filtered, and the filtrate was dried by an evaporator. The obtained solid was purified by silica column chromatography (eluent composition dichloromethane: methanol = 9: 1). This host group-containing polymerizable monomer was designated as NH 2-PMβCD.
 図3(a)及び(b)はそれぞれ、NH-PMβCDのマススペクトル及び、NMRスペクトルの結果を示す。これらの結果から、目的のNH-PMβCDが生成していることを確認した。NH-PMβCDは、ホスト分子の原料1分子中に存在していた全水酸基数のうちの100%(つまり、N-1個=20個)がメチル基に置換されていることがわかった。 3 (a) and 3 (b) show the results of the mass spectrum and the NMR spectrum of NH 2-PMβCD, respectively. From these results, it was confirmed that the target NH 2-PMβCD was produced. It was found that 100% (that is, N-1 = 20) of the total number of hydroxyl groups present in one raw material molecule of the host molecule of NH 2-PMβCD was replaced with a methyl group.
 (実施例1)
 図4に示す反応スキームに従って、高分子材料を合成した。まず、側鎖に反応性官能基を有するポリシロキサンPとして、信越シリコーン社性「エポキシ変性シリコーンKF-101」(分子量約1600、エポキシ導入率は約33モル%)を準備した。このポリシロキサンPを360mgと、製造例1で得たNH-PMβCDを72mgと、1-アダマンタンアミン(ゲスト分子)7.7mgとをサンプルビンに入れ、トルエン400μLを加えて混合した。この混合では、ポリシロキサンPのエポキシ基の全モル数に対して、NH-PMβCDのモル数及び1-アダマンタンアミンがいずれも5モル%となるように各配合量が調節された。前記混合により、均一溶液が得られ、その後、100℃の油浴で6時間加熱すると粘性が上がった黄色透明オイルが得られた。これを2晩60℃で減圧乾燥させることで高分子材料を得た。
(Example 1)
The polymer material was synthesized according to the reaction scheme shown in FIG. First, as a polysiloxane P having a reactive functional group in the side chain, Shinetsu Silicone's "epoxy-modified silicone KF-101" (molecular weight of about 1600, epoxy introduction rate of about 33 mol%) was prepared. 360 mg of this polysiloxane P, 72 mg of NH 2- PMβCD obtained in Production Example 1, and 7.7 mg of 1-adamantanamine (guest molecule) were placed in a sample bottle, and 400 μL of toluene was added and mixed. This mixture, the total number of moles of epoxy groups of the polysiloxane P, the amount as moles and 1-adamantanamine NH 2 -PMβCD is 5 mol% none has been adjusted. The mixing gave a uniform solution, which was then heated in an oil bath at 100 ° C. for 6 hours to give a clear yellow oil with increased viscosity. This was dried under reduced pressure at 60 ° C. for 2 nights to obtain a polymer material.
 図5は、実施例1で得られた高分子材料のH-NMRスペクトル(CDCl、500MHz、25℃)である。このH-NMRスペクトルから、目的の高分子材料が合成されていることを確認した。 FIG. 5 is a 1 H-NMR spectrum (CDCl 3 , 500 MHz, 25 ° C.) of the polymer material obtained in Example 1. From this 1 1 H-NMR spectrum, it was confirmed that the target polymer material was synthesized.
 (実施例2)
 ポリシロキサンPのエポキシ基の全モル数に対して、NH-PMβCDのモル数及び1-アダマンタンアミンがいずれも3モル%となるように各配合量を調節したこと以外は実施例1と同様の方法で高分子材料を得た。
(Example 2)
Same as in Example 1 except that the blending amounts of NH 2- PMβCD and 1-adamantanamine were both adjusted to 3 mol% with respect to the total number of moles of the epoxy groups of polysiloxane P. A polymer material was obtained by the above method.
 (比較例1)
 ポリシロキサンPとして、信越シリコーン社性「エポキシ変性シリコーンKF-101」(分子量約1600、エポキシ導入率は約33モル%)を1.8g(5.1mmol、1eq.)、エチレンジアミン(EDA)を17μL(0.25mmol、0.05eq.)をサンプルビンに入れ、トルエン2.0mLを加え混合した。この混合では、ポリシロキサンPのエポキシ基の全モル数に対して、EDAのモル数が5モル%となるように各配合量が調節された。前記混合により、均一溶液を得た後、100℃の油浴で17時間加熱した後、2晩にわたって60℃で減圧乾燥させることで高分子材料を得た。
(Comparative Example 1)
As polysiloxane P, 1.8 g (5.1 mmol, 1 eq.) Of Shin-Etsu Silicone's "epoxy-modified silicone KF-101" (molecular weight of about 1600, epoxy introduction rate of about 33 mol%) and 17 μL of ethylenediamine (EDA) were added. (0.25 mmol, 0.05 eq.) Was placed in a sample bottle, 2.0 mL of toluene was added and mixed. In this mixing, each blending amount was adjusted so that the number of moles of EDA was 5 mol% with respect to the total number of moles of epoxy groups of polysiloxane P. After obtaining a uniform solution by the above mixing, the polymer material was obtained by heating in an oil bath at 100 ° C. for 17 hours and then drying under reduced pressure at 60 ° C. for 2 nights.
 (引張り試験)
 実施例及び比較例で得られた高分子材料(厚み1mm)について、「ストローク-試験力曲線」試験(島津製作所社製「AUTOGRAPH」(型番:AGX-plus)を行い、得られた破断応力曲線(応力-歪曲線)から高分子材料の破断点(破断ひずみ)を観測した。また、この破断点を終点として、終点までの最大応力を高分子材料の破断応力とした。また、応力-歪曲線から、高分子材料の破壊エネルギーを算出した。この引張り試験は、高分子材料の下端を固定し上端を引張り速度0.1~1mm/minで稼動させるアップ方式で実施した。
(Tension test)
The polymer materials (thickness 1 mm) obtained in Examples and Comparative Examples were subjected to a "stroke-test force curve" test ("AUTOGRAPH" (model number: AGX-plus) manufactured by Shimadzu Corporation), and the fracture stress curve obtained. The breaking point (breaking strain) of the polymer material was observed from (stress-strain curve). The breaking point (breaking strain) was taken as the end point, and the maximum stress to the end point was taken as the breaking stress of the polymer material. Also, stress-distortion. The fracture energy of the polymer material was calculated from the wire. This tensile test was carried out by an up method in which the lower end of the polymer material was fixed and the upper end was operated at a tensile speed of 0.1 to 1 mm / min.
 なお、「ストローク-試験力曲線」試験において、破断応力及び破断歪(単に歪ともいう)の一方又は両方が高い値を示す材料は、高分子材料の靭性及び強度が優れると判断できる。特に、破断応力及び破断歪(単に歪ともいう)の両方が高い値を示す材料は、破壊エネルギーが優れる材料であると判断できる。 In the "stroke-test force curve" test, it can be judged that a material showing a high value of one or both of breaking stress and breaking strain (also simply referred to as strain) is excellent in toughness and strength of the polymer material. In particular, a material showing high values of both breaking stress and breaking strain (also simply referred to as strain) can be judged to be a material having excellent breaking energy.
 引張り試験の結果、実施例1で得られた高分子材料は、破断応力が30kPa、破断ひずみが28%、ヤング率が120kPaであり、また、破壊エネルギーは5.5Jmであり、従来の高分子材料に比べて靭性及び強度が優れる材料であった。また、実施例2で得られた高分子材料は、破断応力が19kPa、破断ひずみが77%、ヤング率が36kPaであり、また、破壊エネルギーは8.7Jmであり、従来の高分子材料に比べて靭性及び強度が優れる材料であった。これに対し、比較例1で得られた高分子材料(化学架橋構造体)は、そもそも引張り試験用サンプルを作製できないほど脆い材料であり、明らかに靭性及び強度を有していない材料であった。比較例1で得られた高分子材料は、実施例1のようなホスト-ゲスト相互作用により架橋構造は有しておらず、従来の化学架橋構造を有するものであるので、ポリシロキサン骨格を有する高分子材料の機械特性を向上させる手段としては適していないといえる。 As a result of the tensile test, the polymer material obtained in Example 1 has a breaking stress of 30 kPa, a breaking strain of 28%, a Young's modulus of 120 kPa, and a breaking energy of 5.5 Jm 2 , which are high in the conventional manner. It was a material having excellent toughness and strength as compared with a molecular material. The polymer material obtained in Example 2 has a breaking stress of 19 kPa, a breaking strain of 77%, a Young's modulus of 36 kPa, and a breaking energy of 8.7 Jm 2 , which is similar to that of the conventional polymer material. It was a material with excellent toughness and strength. On the other hand, the polymer material (chemical crosslinked structure) obtained in Comparative Example 1 was a material that was so brittle that a sample for tensile test could not be prepared in the first place, and clearly did not have toughness and strength. .. The polymer material obtained in Comparative Example 1 does not have a crosslinked structure due to the host-guest interaction as in Example 1, but has a conventional chemically crosslinked structure, and thus has a polysiloxane skeleton. It can be said that it is not suitable as a means for improving the mechanical properties of polymer materials.
 (自己修復性評価)
 実施例1及び2で得られた高分子材料(厚み1mm)の中央部を切断して2つに分けた後、両者を常温(25℃)で24時間接触させたところ、いずれも再接着することが確認された。また、再接着後の破断応力は切断前の約30%であり、自己修復によって、約30%は回復することがわかった。
(Self-healing evaluation)
After cutting the central portion of the polymer material (thickness 1 mm) obtained in Examples 1 and 2 into two parts, the two were brought into contact with each other at room temperature (25 ° C.) for 24 hours, and both were re-bonded. It was confirmed that. It was also found that the breaking stress after re-bonding was about 30% before cutting, and about 30% was recovered by self-repair.
 (吸湿性評価)
 実施例1及び比較例1で得られた高分子材料をそれぞれサンプルビンに入れ、水6mLに20時間浸漬させた。その後、各エラストマーを取り出し、軽く表面の水をふき取った後で質量を測定し、水に浸漬する前後の質量変化から含水率を算出した。その結果、実施例1で得られた高分子材料の含水率は、8.7%、比較例1で得られた高分子材料の含水率は、0.4%であった。この結果から、実施例1で得られた高分子材料は、高い吸湿性を備えていることもわかった。
(Hygroscopic evaluation)
The polymer materials obtained in Example 1 and Comparative Example 1 were placed in sample bottles, respectively, and immersed in 6 mL of water for 20 hours. Then, each elastomer was taken out, the surface water was lightly wiped off, the mass was measured, and the water content was calculated from the mass change before and after immersion in water. As a result, the water content of the polymer material obtained in Example 1 was 8.7%, and the water content of the polymer material obtained in Comparative Example 1 was 0.4%. From this result, it was also found that the polymer material obtained in Example 1 had high hygroscopicity.

Claims (5)

  1. ポリシロキサン骨格を有する高分子材料であって、
    前記ポリシロキサン骨格は側鎖に下記一般式(1)
    -R-R   (1)
    (式(1)中、RはNH又はOを示し、Rはホスト基を示す。)
    で表される構成単位を有し、
    前記ホスト基は、シクロデキストリン又はシクロデキストリン誘導体から1個の水素原子又は水酸基が除された1価の基であり、
    前記シクロデキストリン誘導体は、シクロデキストリンが有する少なくとも1個の水酸基の水素原子が炭化水素基、アシル基及び-CONHR(Rはメチル基又はエチル基)からなる群より選ばれる少なくとも1種の基で置換された構造を有する、高分子材料。
    A polymer material with a polysiloxane skeleton
    The polysiloxane skeleton has the following general formula (1) in the side chain.
    -R 1- RH (1)
    (In formula (1), R 1 represents NH or O, and RH represents a host group.)
    Has a structural unit represented by
    The host group is a monovalent group obtained by removing one hydrogen atom or a hydroxyl group from a cyclodextrin or a cyclodextrin derivative.
    In the cyclodextrin derivative, the hydrogen atom of at least one hydroxyl group of cyclodextrin is replaced with at least one group selected from the group consisting of a hydrocarbon group, an acyl group and -CONHR (R is a methyl group or an ethyl group). A polymer material having a structure.
  2. 前記ホスト基は、ゲスト基を包接して包接錯体を形成すると共に、包接された前記ゲスト基は、前記ポリシロキサン骨格の側鎖に化学結合している、請求項1に記載の高分子材料。 The polymer according to claim 1, wherein the host group encapsulates a guest group to form an inclusion complex, and the encapsulated guest group is chemically bonded to the side chain of the polysiloxane skeleton. material.
  3. 前記ホスト基の環内をポリシロキサンが貫通した構造を有する、請求項1に記載の高分子材料。 The polymer material according to claim 1, which has a structure in which polysiloxane penetrates the ring of the host group.
  4. 請求項1又は2に記載の高分子材料の製造方法であって、
    下記一般式(1a)
    -R   (1a)
    (式(1a)中、RはNH又はOHを示し、Rは前記式(1)中のRと同義である)
    で表される化合物にゲスト分子が包接されてなる包接化合物と、
    側鎖に反応性官能基を有するポリシロキサンと、
    を反応する工程を備える、高分子材料の製造方法。
    The method for producing a polymer material according to claim 1 or 2.
    The following general formula (1a)
    R 2 -R H (1a)
    (In the formula (1a), R 2 represents a NH 2 or OH, R H is as defined R H in the formula (1))
    A clathrate compound in which a guest molecule is included in the compound represented by
    Polysiloxane having a reactive functional group in the side chain,
    A method for producing a polymer material, which comprises a step of reacting with.
  5. 前記反応性官能基はエポキシ基である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the reactive functional group is an epoxy group.
PCT/JP2020/033642 2019-09-05 2020-09-04 Polymer material and production method therefor WO2021045203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021544057A JPWO2021045203A1 (en) 2019-09-05 2020-09-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162441 2019-09-05
JP2019162441 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021045203A1 true WO2021045203A1 (en) 2021-03-11

Family

ID=74853343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033642 WO2021045203A1 (en) 2019-09-05 2020-09-04 Polymer material and production method therefor

Country Status (2)

Country Link
JP (1) JPWO2021045203A1 (en)
WO (1) WO2021045203A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172463A1 (en) * 2020-02-25 2021-09-02 株式会社 資生堂 Cosmetic containing siloxane linkage-containing polymer compound having host group and/or guest group
WO2021172468A1 (en) * 2020-02-25 2021-09-02 株式会社 資生堂 Resin material including siloxane-bond-containing polymer having host group and/or guest group
CN113388274A (en) * 2021-06-24 2021-09-14 中国科学院兰州化学物理研究所 Wear-resistant water-lubricating self-repairing coating and preparation method thereof
WO2023003043A1 (en) 2021-07-21 2023-01-26 国立大学法人大阪大学 Silicone-based polymer compound and silicone-based polymer material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506554A (en) * 1995-12-22 2000-05-30 ノバルティス アクチエンゲゼルシャフト Polyurethanes made from polysiloxane / polyol macromers
JP2005536653A (en) * 2002-08-23 2005-12-02 ワツカー−ケミー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Organosilicon compounds containing cyclodextrin residues
JP2014047269A (en) * 2012-08-30 2014-03-17 Toshiba Corp Material for forming self-organization pattern and pattern formation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506554A (en) * 1995-12-22 2000-05-30 ノバルティス アクチエンゲゼルシャフト Polyurethanes made from polysiloxane / polyol macromers
JP2005536653A (en) * 2002-08-23 2005-12-02 ワツカー−ケミー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Organosilicon compounds containing cyclodextrin residues
JP2014047269A (en) * 2012-08-30 2014-03-17 Toshiba Corp Material for forming self-organization pattern and pattern formation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RITTER HELMUT, KNUDSEN BERIT, DURNEV VALERIJ: "Linkage of a-cyclodextrrn- terminated poly(dimethylsiloxanes) by inclusion of quasi bifunctional ferrocene", BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, vol. 9, September 2013 (2013-09-01), pages 1278 - 1284 p. 1279, XP055798824 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172463A1 (en) * 2020-02-25 2021-09-02 株式会社 資生堂 Cosmetic containing siloxane linkage-containing polymer compound having host group and/or guest group
WO2021172468A1 (en) * 2020-02-25 2021-09-02 株式会社 資生堂 Resin material including siloxane-bond-containing polymer having host group and/or guest group
CN113388274A (en) * 2021-06-24 2021-09-14 中国科学院兰州化学物理研究所 Wear-resistant water-lubricating self-repairing coating and preparation method thereof
WO2023003043A1 (en) 2021-07-21 2023-01-26 国立大学法人大阪大学 Silicone-based polymer compound and silicone-based polymer material

Also Published As

Publication number Publication date
JPWO2021045203A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2021045203A1 (en) Polymer material and production method therefor
Gnanasekaran et al. Developments of polyhedral oligomeric silsesquioxanes (POSS), possnanocomposites and their applications: A review
Leu et al. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine
Ecochard et al. Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties?
JP6950984B2 (en) Host group-containing polymerizable monomer, polymer material and its production method, and clathrate compound and its production method
Florea et al. Novel nanocomposites based on epoxy resin/epoxy-functionalized polydimethylsiloxane reinforced with POSS
Alexandru et al. Poly (siloxane‐urethane) crosslinked structures obtained by sol‐gel technique
Premkumar et al. Studies on thermal, mechanical and morphological behaviour of caprolactam blocked methylenediphenyl diisocyanate toughened bismaleimide modified epoxy matrices
CN107382710B (en) Polyol grafted with antioxidant molecules
Mohamed et al. Intrinsic water-soluble benzoxazine-functionalized cyclodextrin and its formation of inclusion complex with polymer
CN111040202A (en) Combined hybrid dynamic polymer and application thereof
JP6786081B2 (en) Flexible film using curable resin composition
US8653218B2 (en) Synthesis and characterization of amine terminated cycloaliphatic substituted polysiloxanes
Sugane et al. Self-healing epoxy networks based on cyclodextrin–adamantane host–guest interactions
US10793678B2 (en) Fillers for polymers
JP5901776B2 (en) Conductive polymer materials based on carbonyl functionalized poly-silicones and methods for their preparation
JP2008184583A (en) Pseudo-polyrotaxane, polyrotaxane and method for producing them
JP7074375B2 (en) Polymer material and its manufacturing method
Białkowsk et al. Effect of nonisocyanate polyurethane and nanoclay on the mechanical properties of an epoxy resin
WO2020243835A1 (en) Transient polymer networks
JP6325417B2 (en) Polysiloxane group-containing polymer, method for producing reactive polysiloxane compound, and thermosetting film
WO2023003043A1 (en) Silicone-based polymer compound and silicone-based polymer material
CN108219150B (en) High-temperature-resistant polyalumino-organosiloxane and preparation method thereof
US20230002560A1 (en) Self-healing siloxane elastomers
WO2020256046A1 (en) Polyrotaxane comprising long-chain alkyl group in cyclic molecule, composition comprising said polyrotaxane, and method for producing said polyrotaxane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860317

Country of ref document: EP

Kind code of ref document: A1