WO2021045180A1 - 胃がんマーカー、及びこれを用いた検査方法 - Google Patents

胃がんマーカー、及びこれを用いた検査方法 Download PDF

Info

Publication number
WO2021045180A1
WO2021045180A1 PCT/JP2020/033551 JP2020033551W WO2021045180A1 WO 2021045180 A1 WO2021045180 A1 WO 2021045180A1 JP 2020033551 W JP2020033551 W JP 2020033551W WO 2021045180 A1 WO2021045180 A1 WO 2021045180A1
Authority
WO
WIPO (PCT)
Prior art keywords
gastric cancer
protein
biomarker
exosomes
exosome
Prior art date
Application number
PCT/JP2020/033551
Other languages
English (en)
French (fr)
Inventor
幸嗣 植田
なおみ 大西
Original Assignee
公益財団法人がん研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人がん研究会 filed Critical 公益財団法人がん研究会
Priority to JP2021544042A priority Critical patent/JPWO2021045180A1/ja
Priority to US17/639,979 priority patent/US20220291217A1/en
Priority to CN202080075948.7A priority patent/CN114631026A/zh
Publication of WO2021045180A1 publication Critical patent/WO2021045180A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials

Definitions

  • the present invention relates to a gastric cancer marker contained in an exosome and a test method using the marker.
  • CEA cancer epidermal growth factor
  • Exosomes are lipid bilayer vesicles of 40-100 nm and are stably present in body fluids such as blood and urine.
  • Exosomes are secreted by most cells, and the proteins, miRNAs, mRNAs, etc. contained in them are said to reflect the properties of the cells from which they are derived. Therefore, disease-specific markers are contained in exosomes secreted from diseased cells such as cancer. Therefore, exosome analysis is useful in diagnosing diseases, especially cancer.
  • exosomes secreted from cancer cells not only contain molecules involved in cancer development, but also mediate cancer infiltration, metastasis, immunosuppression, and angiogenesis. That is, the exosome also functions as a communication tool between the secreted cell and the uptake cell.
  • exosomes are contained in body fluids such as blood and urine, they can be prepared and diagnosed in a minimally invasive and non-invasive manner. This is a great advantage for patients because it can be a substitute for tissue biopsy when regular examination is required after surgery or when it is difficult to collect the diseased part.
  • exosomes may be a useful resource for early cancer diagnosis because cancer cells are considered to secrete characteristic exosomes. Therefore, it has been studied to use exosomes in body fluids as biomarkers for diseases such as cancer (Patent Documents 1 and 2).
  • exosomes are separated and analyzed from body fluids containing a large amount of proteins such as serum, contamination with serum proteins and the like becomes a problem. Since the amount of exosomes contained in body fluids is very small and the amount of proteins contained therein is very small, it becomes difficult to detect the proteins contained in exosomes due to contamination with serum proteins. In addition, since exosomes are secreted from almost all cells, it is considered that the amount of exosomes secreted from normal cells, which is overwhelmingly large, is larger than that of diseased cells. Therefore, it has not been actually used as a marker in clinical practice because it is necessary to improve the detection accuracy.
  • An object of the present invention is to provide a novel marker for gastric cancer without a good marker. Another subject is to test for gastric cancer using this marker. Furthermore, the present invention relates to a method of purifying an exosome from a body fluid such as serum easily and with good reproducibility, and searching for a marker using the purified exosome.
  • the present invention relates to markers for detecting gastric cancer, testing methods, and methods for searching for novel markers from exosomes in blood.
  • a method for examining gastric cancer which comprises examining the expression of at least one protein shown in Table 1.
  • the method for examining gastric cancer according to (1), wherein the protein expression detects the amount of protein contained in an exosome in a blood sample.
  • the biomarker according to (10), wherein the exosome is a sample derived from blood.
  • the biomarker according to (11), wherein the sample derived from blood is serum or plasma.
  • the biomarker according to any one of (10) to (12), wherein the exosome is purified by size exclusion chromatography.
  • the biomarker according to any one of (9) to (13), wherein the biomarker is CA1.
  • a method for diagnosing gastric cancer which comprises detecting gastric cancer by collecting blood from a subject, detecting at least one biomarker shown in Table 1, and quantifying the amount of the biomarker.
  • exosomes are purified by size exclusion chromatography.
  • the arrows indicate CA1 in which the expression was most different between gastric cancer patients and healthy subjects.
  • the figure which analyzed the CA1 expression in the gastric cancer cell line The figure which forced expression of CA1 in SNU-1 cell which did not express CA1 and analyzed the resistance to the induction of apoptosis.
  • the figure which cultivated MKN7 which forcibly expressed MKN7 and CA1 under the monolayer or suspension condition, and analyzed the effect on the induction of anoikis.
  • exosome markers CD9, CD63, CD81, and the representative serum protein marker haptoglobin were analyzed by Western blotting. These exosome markers are detected in fractions 4 to 7, whereas haptoglobin is detected in fractions 8 and later. Therefore, the EVSecond column showed that exosomes were separated and purified from serum proteins.
  • the antibodies used are as follows.
  • Anti-CD9 antibody Monoclonal antibody (12A12, Shionogi Pharmaceutical)
  • Anti-CD63 antibody Monoclonal antibody (8A12, Shionogi Pharmaceutical)
  • Anti-CD81 antibody Monoclonal antibody (12C4, Shionogi Pharmaceutical)
  • Anti-haptoglobin antibody polyclonal antibody (A0030, DAKO)
  • Exosomes are dissolved in a denaturing solution (HEPES-NaOH, pH 8.0, 12 mM Sodium deoxycholate, 12 mM Sodium N-lauroylsarcosinate), DTT is added to 20 mM, heated at 100 ° C. for 10 minutes, and then 50 mM. Iodoacetamide was added to the mixture, and alkylation was carried out at room temperature for 45 minutes. The obtained exosome-derived protein was digested with immobilized trypsin (Thermo Scientific) at 37 ° C. overnight with shaking.
  • Mass spectrometry was performed by LTQ-Orbitrap-Verocs mass spectrometry by connecting UltraMate 3000 RLSC nano-flow HPLC (Thermo Scientific) equipped with C18 tip-colum (Nikkyo Technos) of 0.075 x 150 mm.
  • the analysis conditions are as follows.
  • Peptides were separated using a 2-step gradient consisting of an acetonitrile concentration of 0.1% formic acid at 250 ln / min for 95 minutes and 35 to 95% for 15 minutes.
  • the HPLC eluate was ionized at a spray voltage of 2 kV and the spectrum in the 350-1500 m / z range was analyzed in full MS ion scan mode with a resolution of 60,000.
  • the CID MS / MS scan was acquired in the Data dependency acquisition (DDA) mode in which the Dynamic exclusion function was enabled.
  • DDA Data dependency acquisition
  • Protein identification and quantification was performed using Proteome Discoverer 2.2 software (Thermo Scientific).
  • the MS / MS data was analyzed by a SEQ (Thermo Scientific) search engine, and the peptide identification threshold was set to less than 1% False Discovery Rate.
  • SEQ Thermo Scientific
  • the default parameters of the Proteome Discoverer 2.2 software were used, the Minora Featur Detector node was used in the processing workflow, and the Precursor Ions Quantifier node followed by the Featur Mapper node in the consensus workflow.
  • exosomes can be easily purified and analyzed from a small amount of blood sample according to the method shown in this example. Therefore, the marker can be searched by the same method for any disease, not limited to gastric cancer. Even for diseases for which it is difficult to obtain a tissue sample, a biomarker in a blood sample can be searched and used for a test, which can be a useful method for searching for a new marker contained in blood.
  • FIG. 2a A Volcano plot comparing exosome proteins detected in exosomes in the sera of gastric cancer patients and healthy subjects is shown in FIG. 2a (p ⁇ 0.05, Effect size> 2.0, effect size> 50%).
  • 816 exosome proteins 40 proteins were significantly upregulated in exosome samples obtained from gastric cancer patients, and 4 proteins were downregulated (Table 1).
  • Forty-four proteins that showed significant differences between gastric cancer patients and healthy subjects were analyzed by the partial least squares regression method (Fig. 2b). As a result, it was clarified that these proteins can clearly distinguish between the gastric cancer patient group and the healthy subject group.
  • Table 1 shows the proteins that showed a significant difference between gastric cancer patients and healthy subjects.
  • 40 types of proteins were found to be upregulated, and 4 types were found to be downregulated. Therefore, gastric cancer patients can be screened by analyzing any exosome protein.
  • CA1 carbonic anhydrase-1
  • Fig. 2a Table 1
  • the sensitivity and specificity of gastric cancer detection by CA1 were examined using the ROC (Receiver operating characteristic) curve (Fig. 2f).
  • the sensitivity of gastric cancer detection by exosome CA1 was 57.6%, the specificity was 88.0%, and the AUC (area under cureve) was 0.761.
  • the AUC of the existing marker CEA was 0.595, indicating that exosome CA1 is a marker having excellent gastric cancer detection ability as compared with the existing marker CEA.
  • Exosome CA1 was specifically detected in the serum of cancer patients.
  • Exosomes were purified using an EVSecondo column, and analysis was performed for the presence of CA1, the exosome marker CD9, and the serum protein marker haptoglobin in each fraction (Fig. 2g).
  • As the serum sample the sera of 6 cancer patients or the sera of 14 healthy subjects were mixed and used.
  • An anti-CA1 monoclonal antibody (ab108367, Abcam) was used to detect CA1.
  • CA1 was detected in the serum sample of gastric cancer patients, but not in the serum sample of healthy subjects. Further, CA1 was detected in the fraction in which the exosome marker CD9 was detected, that is, the exosome fraction, but not in the fraction in which the serum protein haptoglobin was detected. That is, it was shown that CA1 is a specific marker as a gastric cancer marker contained in exosomes. Since it was detected using an antibody in the purified exosome fraction, it is suggested that it can also be detected by a method conventionally used in clinical practice such as ELISA. Moreover, although serum is used here, it is obvious that plasma can be used.
  • CA1 expression can be specifically detected in gastric cancer tissue, it is more useful as a biomarker. Therefore, it was examined whether CA1 expression could be detected in gastric cancer tissue (Fig. 3).
  • tissue microarray US Biomax
  • 304 samples were tissue-stained with CA1 antibody to examine CA1 expression.
  • the tissue classification of the sample is as follows. Adenocarcinoma: 172 cases, undifferentiated cancer: 5 cases, signet ring cell carcinoma: 80 cases, mucinous adenocarcinoma: 12 cases, malignant stromal tumor: 9 cases, carcinoid: 3 cases, squamous epithelial cancer: 1 case
  • 16 cases of normal gastric tissue were used as controls.
  • the sections were deparaffinized, anti-CA1 antibody (LifeSpan BioSience, Inc.) was used as the primary antibody, and detection was performed using EnVision TM + System (DAKO).
  • the staining intensity was classified into 4 stages from 0 to 3, and the staining intensity was examined in adenocarcinoma, undifferentiated cancer, signet ring cell carcinoma, and normal tissue (Fig. 3b). It was shown that the staining intensity of CA1 was significantly higher in adenocarcinoma, undifferentiated cancer, and signet ring cell carcinoma than in normal mucosa. Staining of CA1 in gastric cancer tissue suggests that CA1 contained in exosomes circulating in the blood is secreted from gastric cancer tissue. In addition, the fact that CA1 expression is observed in gastric cancer tissue also in tissue staining indicates that CA1 can be used as a marker in pathological diagnosis.
  • CA1 expression of human gastric cancer cell lines was analyzed by Western blotting using a cell lysate (total cell lysate, TCL) (FIG. 4a, TCL).
  • the histological types of gastric cancer cell lines used were differentiated adenocarcinoma (MKN7, AGS), poorly differentiated adenocarcinoma (MKN45), metastatic gastric cancer (SNU-1, SNU-16), and scirrhous gastric cancer (OCUM-1).
  • MKN7, AGS differentiated adenocarcinoma
  • MKN45 poorly differentiated adenocarcinoma
  • SNU-1, SNU-16 metastatic gastric cancer
  • OCUM-1 scirrhous gastric cancer
  • exosomes were obtained from the culture supernatant of the gastric cancer cell line by ultracentrifugation, and CA1 expression was analyzed by Western blotting (Fig. 4a, Exosomes). It was found that the exosomes obtained from cell lines that endogenously express CA1 contained CA1. This result indicates that exosomes containing CA1 are secreted from cells expressing CA1. CD9, CD63, and CD81 are exosome markers.
  • Exosomes were isolated from SNU-1 cells in which 3'-FLAG-tagged CA1 was forcibly expressed, added to the culture medium of MKN7, and induced apoptosis by staurosporine in the same manner as described above. The effect of the addition was analyzed (Fig. 4c). As a result, it was clarified that the proportion of cells in which apoptosis was induced was significantly reduced in the cells to which exosomes were added. Therefore, it was clarified that apoptosis resistance is also acquired by exosomes containing CA1.
  • Anoikis refers to apoptosis that results from scaffold dependence that cannot adhere to the extracellular matrix or is caused by improper adhesion. In tumors, anoikis resistance is considered to be a property deeply involved in cancer cell infiltration and metastasis.
  • Annexin V, 7AAD was obtained by culturing MKN7 cells or MKN7 cells in which CA1 was forcibly expressed by 3'-FLAG-tagged CA1 under the conditions of monolayer culture or suspension culture, and the proportion of cells in which anoikis was induced was determined. Staining and analysis were performed (Fig. 4d). CA1 expression significantly reduced the proportion of cells in which anoikis was induced in suspension culture.
  • exosomes containing CA1 were added to the culture supernatant of MKN7 cells, and the cells were similarly cultured in a monolayer culture or under suspension culture conditions, and the proportion of cells in which anoikiss was induced was analyzed ( FIG. 4e). It was shown that the addition of exosomes containing CA1 to the culture medium significantly reduced the proportion of cells in which anoikis was induced in suspension culture. From the above results, it was shown that CA1 is also involved in resistance to anoikis.
  • the novel gastric cancer marker CA1 can detect gastric cancer with good sensitivity and specificity. It is also a marker that is deeply related to apoptosis and anoikis resistance related to metastasis. Since the test can be performed using a blood sample, it is a particularly useful marker as a marker for testing recurrence, metastasis, etc. of gastric cancer.
  • CA1 was analyzed in detail including its function, and any of the proteins shown in Table 1 whose expression was significantly different between gastric cancer patients and healthy subjects was used to treat gastric cancer. It is possible to detect. In particular, 40 proteins whose expression has been enhanced in gastric cancer patients can be good markers for detecting gastric cancer. Further, if a plurality of markers shown in Table 1 are used for detection, gastric cancer can be detected more accurately. As shown in this example, it is possible to detect gastric cancer with high sensitivity by a minimally invasive method using blood.

Abstract

胃がん患者、健常者の血清中からサイズ排除クロマトグラフィーを用いてエクソソームを精製し、質量分析によって新規マーカーを得た。胃がん患者で発現増強が認められた40種、発現減少が認められた4種のタンパク質は、胃がんを検出するための良いマーカーとなり得る。特に、CA1についてその機能も含めて詳細に解析を行ったところ、感度良く胃がんを検出できることが示された。

Description

胃がんマーカー、及びこれを用いた検査方法
 本発明は、エクソソームに含まれる胃がんマーカー、及びこれを用いた検査方法に関する。
 本邦では、高齢化が進んだこともあり、生涯でがんに罹患する確率は二人に一人と言われている。中でも胃がんの罹患者数は依然と高く、部位別予測がん罹患数は男性では87,800人と胃が一番多く、女性では40,900人と***、大腸に次いで3番目に罹患数が多い(公益財団法人 がん研究振興財団、がんの統計’18)。
 検診による胃がんの早期発見、治療が進んだことにより、本邦での胃がんによる死亡者数は年々減少する傾向にあるものの、罹患者数が多いことから、再発、転移など、経過を観察する必要のある患者数は多数に登っている。再発など、すでに原発がんで摘出を行っている場合には、再度疾患部位を採取し、検査することは通常行われない。また、早期に転移を検出するためには、血液などの体液中に存在するバイオマーカーを定期的に検査することが有効であると考えられている。
 現在バイオマーカーとして使用されているのは、血清中に含まれるCEA(carcinoembrionic antigen、がん胎児性抗原)である。CEAは代表的な腫瘍マーカーであり、種々のがんで発現増強が認められ、胃がんに特異的なマーカーではない。また、個人差が大きく、腫瘍が認められたすべての患者で、発現増強が認められるわけではない。
 細胞外小胞、とりわけエクソソームは近年精力的に研究され、機能の解明が進んでいる。エクソソームは、40-100nmの脂質二重膜小胞であり、血液、尿などの体液中に安定に存在する。エクソソームは、ほとんどの細胞から分泌され、内包されているタンパク質、miRNA、mRNAなどは、由来する細胞の性質を反映すると言われている。そのため、がんなどの疾患細胞から分泌されたエクソソームには疾患特異的なマーカーが含有されている。したがって、エクソソーム解析は、疾患、特にがんの診断には有用である。
 がん細胞から分泌されたエクソソームは、がん発症に関与する分子が内包されているだけではなく、がんの浸潤、転移、免疫抑制、血管新生などを介在することが知られている。すなわち、エクソソームは、分泌した細胞と取り込んだ細胞との間のコミュニケーションツールとしても機能している。
 また、上述のように、エクソソームは血液、尿などの体液に含まれていることから、低侵襲的、非侵襲的に調製し、診断を行うことができる。これは、手術後、定期的に検査が必要な場合、あるいは疾患部位の採取が困難な場合など、組織生検の代替になり得ることから患者にとって大きいメリットとなる。また、早期がんであっても、がん細胞は特徴的なエクソソームを分泌していると考えられることから、エクソソームは早期がん診断のための有用なリソースとなる可能性がある。そのため、体液中のエクソソームをがんなどの疾患のバイオマーカーとして利用することが検討されている(特許文献1、2)。
特表2016-520803号公報 特表2017-526916号公報
 しかし、血清などタンパク質が多量に含まれている体液からエクソソームを分離し解析する際に、血清タンパク質などの混入が問題となる。体液中に含まれているエクソソームは微量であり、さらに内包されているタンパク質量は非常に少ないことから、血清タンパク質の混入により、エクソソームに内包されているタンパク質の検出が困難となる。また、ほぼ全ての細胞からエクソソームが分泌されていることから、疾患細胞に比べて圧倒的に多い正常細胞から分泌されるエクソソームの方が量が多いと考えられる。そのため、検出精度を高める必要があるなど、実際に臨床現場でマーカーとして使用されるにはいたっていない。
 本発明は、良いマーカーのない胃がんの新規マーカーを提供することを課題とする。また、このマーカーを用いて、胃がんを検査することを課題とする。さらに、血清等の体液から簡便に、かつ再現性良くエクソソームを精製し、精製したエクソソームを用いて、マーカーを探索する方法に関する。
 本発明は、胃がんを検出するためのマーカー、検査方法、及び血液中のエクソソームから新規マーカーを探索する方法に関する。
(1)表1に記載の少なくとも1つのタンパク質の発現を検査することを特徴とする胃がんの検査方法。
(2)前記タンパク質発現は、血液試料中のエクソソームに内包されるタンパク質量を検出するものである(1)記載の胃がんの検査方法。
(3)前記血液試料が血清、又は血漿であることを特徴とする(2)記載の胃がんの検査方法。
(4)前記タンパク質の検出は、質量分析によって行う(1)~(3)いずれか1つ記載の胃がんの検査方法。
(5)前記タンパク質の検出は、抗体を用いて行う(1)~(3)いずれか1つ記載の胃がんの検査方法。
(6)前記タンパク質の検出は組織染色によって行う(1)記載の胃がんの検査方法。
(7)前記タンパク質がcarbonic anhydrase-1(CA1)である(1)~(6)いずれか1つ記載の胃がんの検査方法。
(8)疾患マーカーの探索方法であって、特定の疾患に罹患している患者と、健常者の血液試料からサイズ排除クロマトグラフィーによってそれぞれエクソソームを単離し、質量分析によって前記患者と前記健常者において発現に差が認められるタンパク質を同定し、新規疾患マーカーを探索する方法。
(9)表1に記載の胃がんを検出するためのバイオマーカー。
(10)エクソソームに含まれることを特徴とする(9)記載のバイオマーカー。
(11)前記エクソソームが、血液に由来する試料であることを特徴とする(10)記載のバイオマーカー。
(12)前記血液に由来する試料が血清、又は血漿であることを特徴とする(11)記載のバイオマーカー。
(13)前記エクソソームはサイズ排除クロマトグラフィーによって精製されるものであることを特徴とする(10)~(12)いずれか1つ記載のバイオマーカー。
(14)前記バイオマーカーが、CA1である(9)~(13)いずれか1つ記載のバイオマーカー。
(15)前記バイオマーカーが、アポトーシス、又はアノイキス抵抗性に関与することを示す(14)記載のバイオマーカー。
(16)対象から血液を採取し、表1記載のバイオマーカーを少なくとも1つ検出し、バイオマーカーの量を定量することによって、胃がんを検出することを特徴とする胃がんの診断方法。
(17)前記バイオマーカーがCA1であることを特徴とする(16)記載の胃がんの診断方法。
(18)前記バイオマーカーの検出が、質量分析、又は抗体による免疫学的な検出方法であることを特徴とする(16)、又は(17)記載の胃がんの診断方法。
サイズ排除クロマトグラフィーによりエクソソームが精製されていることを示す。ELISAによる解析結果を示す図。 サイズ排除クロマトグラフィーによりエクソソームが精製されていることを示す。ウェスタンブロッティングによる解析結果を示す図。 胃がん患者、健常者で差が見られたエクソソームタンパク質のvolcano plotを示す図。胃がん患者、健常者間で最も発現に差が認められたCA1を矢印で示している。 胃がん患者、健常者間で発現量に差が認められた44種のタンパク質を部分的最小二乗回帰法により分析した図。 健常者、及び患者のエクソソームの絶対的定量を示す図。 血清エクソソーム中のCA1量を健常者と胃がん患者で比較した図。 健常者、ステージごとの胃がん患者のCA1量の定量結果を示す図。 CA1の感度、及び特異度を示すROC曲線を示す図。 胃がん患者、健常者のエクソソームをサイズ排除クロマトグラフィーで精製し、各分画中のCA1をウェスタンブロッティングにより解析した結果を示す図。 組織におけるCA1発現を解析した図。 抗CA1抗体による染色強度をスコア化し、正常粘膜組織、腺がん、未分化がん、印環細胞がんでの染色強度を示す図。 胃がん細胞株でのCA1発現を解析した図。 CA1を発現していないSNU-1細胞にCA1を強制的に発現させ、アポトーシス誘導に対する抵抗性を解析した図。 CA1の発現量が少ないMKN7細胞の培養液にCA1を内包するエクソソームを添加し、アポトーシス誘導に対する抵抗性を解析した図。 単層、あるいは懸濁条件でMKN7、CA1を強制的に発現させたMKN7を培養し、アノイキス誘導に対する効果を解析した図。 単層、あるいは懸濁条件で、MKN7、CA1を内包するエクソソームを培養液に添加してMKN7を培養し、アノイキス誘導に対する効果を解析した図。
 [新規マーカーの探索]
 新規マーカーの探索方法について説明する。48名の胃がん患者、10名の健常者から常法にしたがって静脈血を採取し、4℃、3,000gで5分間遠心を行い血清を得た。血清は使用時まで-80℃で保存した。各100μlの血清をサイズ排除クロマトグラフィー、EVSecondカラム(ジーエルサイエンス株式会社)を用いて精製した。
 サイズ排除クロマトグラフィーから溶出される分画100μlずつを採取し、各分画のエクソソームと、血清タンパク質量を定量した(図1a)。エクソソームは、CD9/CD9サンドイッチELISAにより検出し、血清タンパク質は、Bradford法によるタンパク定量により行った。その結果、分画4~7は、総タンパク量が低いのにもかかわらず、エクソソームが濃縮されていることが示された。
 さらに、エクソソームマーカーであるCD9、CD63、CD81、及び代表的な血清タンパク質のマーカーであるハプトグロビンをウェスタンブロッティングによって解析した。分画4~7にこれらのエクソソームマーカーが検出されるのに対し、ハプトグロビンは分画8以降で検出される。したがって、EVSecondカラムによって、エクソソームは血清タンパク質と分離精製されたことが示された。なお、用いた抗体は下記のとおりである。抗CD9抗体:モノクローナル抗体(12A12、シオノギ製薬)、抗CD63抗体:モノクローナル抗体(8A12、シオノギ製薬)、抗CD81抗体:モノクローナル抗体(12C4、シオノギ製薬)、抗ハプトグロビン抗体:ポリクローナル抗体(A0030、DAKO)
 精製したエクソソームを用いて、質量分析により新規マーカーの探索を行った。エクソソームは変性溶液(HEPES-NaOH、pH8.0、12mM Sodium deoxycholate、12mM Sodium N-lauroylsarcosinate)に溶解し、20mMになるようにDTTを添加し、100℃で10分間加熱した後、50mMになるようにヨードアセトアミドを添加し、室温で45分間アルキル化を行った。得られたエクソソーム由来のタンパク質は、固相化したトリプシン(Thermo Scinentific)を用い、37℃で一晩、振盪しながら消化した。酢酸エチルで、Sodium deoxycholateとSodium N-lauroylsarcosinateを除去後、得られたペプチドをOasis HLB μ-elution plate(Waters)によって脱塩し質量分析を行った。
 質量分析は0.075×150mmのC18 tip-column(Nikkyo Technos)を備えたUltiMate 3000 RLSC nano-flow HPLC(Thermo Scientific)を接続したLTQ-Orbitrap-Veros質量分析計(Thermo Scientific)によって行った。分析条件は以下のとおりである。
 250nl/minで0.1%ギ酸入りアセトニトリル濃度2~35% 95分間、35~95% 15分間からなる2ステップグラジェントを使用してペプチドの分離を行った。HPLC溶出液を2kVのスプレー電圧でイオン化し、350~1500m/z範囲のスペクトルをフルMSイオンスキャンモードにより分解能60,000で解析した。CID MS/MSスキャンは、Dynamic exclusion機能を有効にしたData dependent acquisition (DDA)モードで取得した。
 タンパク質の同定および定量は、Proteome Discoverer 2.2ソフトウェア(Thermo Scinentific)を用いて実施した。MS/MSデータをSEQUEST(Thermo Scinentific)検索エンジンで解析し、ペプチド同定閾値としてFalse Discovery Rate 1%未満と設定した。タンパク質の定量およびデータの標準化には、Proteome Discoverer 2.2ソフトウェアのデフォルトパラメータを用い、プロセシングワークフローではMinora Feature Detectorノード、コンセンサス・ワークフローではPrecursor Ions Quantifierノードの後にFeature Mapperノードを使用した。
 また、ここでは、胃がんの新規マーカーの探索例を示しているが、本実施例で示した方法によれば、少量の血液試料からエクソソームを簡便に精製し、解析することができる。したがって、胃がんに限らず、どのような疾患であっても、同様の方法でマーカーの探索を行うことができる。組織サンプルを得ることが困難である疾患であっても、血液サンプル中のバイオマーカーを探索し、検査に用いることができるため、血液中に含まれる新規マーカーを探索する有用な方法となり得る。
 胃がん患者48名、健常者10名に由来する血清エクソソームに対する質量分析の結果1281タンパク質が同定され、そのうち816のタンパク質をエクソソーム内タンパク質として抽出した。胃がん患者と健常者の血清中のエクソソームから検出されたエクソソームタンパク質を比較したVolcano plotを図2aに示す(p<0.05、Effect size>2.0、有効値>50%)。816のエクソソームタンパク質のうち、40のタンパク質が胃がん患者から得られたエクソソーム試料で有意に発現増強が認められ、4つのタンパク質に発現減少が認められた(表1)。胃がん患者、健常者間で有意な差が認められた44のタンパク質を部分的最小二乗回帰法により分析した(図2b)。その結果、これらのタンパク質は胃がん患者群と健常者群を明瞭に区別できることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
 表1に胃がん患者と健常者で有意な差が認められたタンパク質を示す。胃がん患者において発現増強が認められたタンパク質は40種、発現減少が認められたタンパク質は4種であった。したがって、いずれのエクソソームタンパク質を解析することによっても、胃がん患者をスクリーニングすることができる。
 これら44のタンパク質のうち、炭酸脱水素酵素1(carbonic anhydrase-1、以下、CA1と記載する。)は、胃がん患者群、健常者群から得られたエクソソームで最も差が認められたバイオマーカーである(図2a、表1)。エクソソームに含まれるCA1量は、p=6.34×10-7、fold change=10.68と有意に胃がん患者、健常者間で差が認められた(図2d)。そこで、胃がんを検出するマーカー、CA1の有用性の検討を行った。
[新規胃がんバイオマーカー、CA1の有用性]
 CA1の定量的な解析を行うために、多重反応モニタリング(multiple reaction monitoring、MRM)によって解析を行った。健常者25名、胃がんステージ分類I~IV(ステージI:67名、II:18名、III:13名、IV:27名)の患者の血清エクソソーム中に含まれるCA1量の絶対的定量を行った(図2c、e)。エクソソームCA1レベルは、早期胃がんであるステージIであっても健常者群と比較して有意に高い値を示しており、さらに病期が進行するにしたがって、高い値を示している。したがって、血液試料中のエクソソームのCA1を定量することによって、胃がんを検査することができる。
 次に、CA1による胃がん検出の感度、特異度をROC(Reciever operating characteristic)曲線によって検討した(図2f)。エクソソームCA1による胃がん検出の感度は57.6%、特異度は88.0%、AUC(area under cureve)は0.761であった。既存のマーカーであるCEAのAUCは0.595であり、エクソソームCA1は、既存のマーカーであるCEAと比較して胃がん検出能力に優れたマーカーであることが示された。
 エクソソームCA1が、がん患者血清中で特異的に検出可能であることを確認するために、ウェスタンブロッティングにより解析を行った。エクソソームはEVSecondカラムを用いて精製し、各分画にCA1、エクソソームマーカーであるCD9、血清タンパク質マーカーであるハプトグロビンが存在するか解析を行った(図2g)。なお、血清試料は、6名のがん患者の血清、あるいは14名の健常者血清を混合して用いた。なお、CA1の検出には、抗CA1モノクローナル抗体(ab108367、Abcam)を用いた。
 ウェスタンブロッティングによる解析では、CA1は胃がん患者血清試料では検出されたが、健常者血清試料では検出されなかった。また、CA1は、エクソソームマーカーであるCD9が検出される画分、すなわちエクソソーム画分で検出されるが、血清タンパク質であるハプトグロビンが検出される画分では検出されなかった。すなわち、CA1はエクソソームに含まれる胃がんマーカーとして特異的なマーカーであることが示された。精製したエクソソーム分画中で抗体を用いて検出されたことから、ELISAなど臨床で従来から用いられている方法でも検出できることが示唆される。また、ここでは血清を用いているが血漿を用いることができることは自明である。
 [胃がん組織におけるCA1の検出]
 胃がん組織においてCA1発現を特異的に検出することができれば、バイオマーカーとしてさらに有用である。そこで、胃がん組織において、CA1発現が検出できるか検討を行った(図3)。
 胃がん組織マイクロアレイ(US Biomax)を用いて、304の試料についてCA1抗体により組織染色を行い、CA1発現を検討した。試料の組織分類は以下のとおりである。
腺がん:172症例、未分化がん:5症例、印環細胞がん:80症例、粘液性腺がん:12症例、悪性間質腫瘍:9症例、カルチノイド:3症例、扁平上皮がん:1症例
また、正常胃組織16例をコントロールとして用いた。切片は脱パラフィンを行い、一次抗体として抗CA1抗体(LifeSpan BioSience、Inc.)を用い、EnVisionTM+ System(DAKO)を用いて検出を行った。
 染色を行うことのできなかった症例を除き、281症例で染色を行うことができた。172症例の胃腺がんのうち、130症例(75.6%)、5症例の未分化がんのうち5症例(100.0%)、85症例の印環細胞がんのうち72症例(84.7%)でCA1の発現が認められた。これに対し、正常粘膜ではCA1の発現は全く検出が認められないか、低レベルの検出が認められるに過ぎなかった(図3a)。
 さらに、組織染色において染色強度を0~3までの4段階に分類し、腺がん、未分化がん、印環細胞がん、及び正常組織で染色強度の検討を行った(図3b)。正常粘膜と比べ、腺がん、未分化がん、印環細胞がんでは、いずれも有意にCA1の染色強度が高いことが示された。胃がん組織においてCA1が染色されることは、血液中を循環しているエクソソームに内包されているCA1は胃がん組織から分泌されていることを示唆している。また、組織染色においても胃がん組織でCA1発現が認められることは、病理診断においてもCA1をマーカーとして使用できることを示している。
[細胞株を用いた検討]
 CA1の発現をヒト胃がん細胞株を用いて検討した。ヒト胃がん細胞株のCA1発現を細胞溶解液(total cell lysate、TCL)を用いてウェスタンブロッティングにより解析した(図4a、TCL)。用いた胃がん細胞株の組織型は、分化腺がん(MKN7、AGS)、低分化腺がん(MKN45)、転移性胃がん(SNU-1、SNU-16)、スキルス胃がん(OCUM-1)の6株である。SNU-16、OCUM-1、AGSでは29kDaの位置にCA1が検出された。さらに、MKN7、MKN45では低レベルのCA1発現が観察されたが、SNU-1では発現が観察されなかった。
 さらに、胃がん細胞株の培養上清から超遠心法によってエクソソームを得て、ウェスタンブロッティングによりCA1発現の解析を行った(図4a、Exosomes)。CA1を内在的に発現している細胞株から得られたエクソソームには、CA1が含まれていることが認められた。この結果は、CA1を発現している細胞から、CA1を内包するエクソソームが分泌されていることを示している。なお、CD9、CD63、CD81はエクソソームマーカーである。
 [CA1の機能解析]
 CA1を発現していなかったSNU-1細胞に、3’末端にFLAGタグを融合したCA1、3’-FLAG-tagged CA1を発現させた細胞を用い解析を行った。キナーゼ阻害剤であるスタウロスポリン(STS)を1.0μMで上記細胞に添加し、アポトーシスを誘導した(図4b)。アポトーシスは、Annexin V、7AADキット(BD Bioscience)によって染色を行い、フローサイトメトリー、BD FACSCalibur(BD Bioscience)によって解析した。
 CA1を発現していないSNU-1細胞では、19.3%がスタウロスポリン処理開始後、3時間以内にアポトーシスが誘導されている。しかしながら、CA1を強制発現させた細胞では、アポトーシスが誘導される細胞が6.1%と有意に減少している。CA1を発現することによって、アポトーシスに対する抵抗性が獲得されることが示された。
 3’-FLAG-tagged CA1を強制発現させたSNU-1細胞から、エクソソームを単離し、MKN7の培養液に添加し、上記と同様にしてスタウロスポリンによりアポトーシスを誘導し、CA1を含むエクソソームの添加による効果を解析した(図4c)。その結果、エクソソームを添加した細胞では、アポトーシスが誘導される細胞の割合が大きく減少していることが明らかとなった。したがって、CA1を内包したエクソソームによっても、アポトーシス抵抗性を獲得することが明らかとなった。
 次に、CA1のアノイキスに対する効果を解析した。アノイキスは、アポトーシスの中でも、細胞外マトリクスに接着することができず、あるいは不適切な接着により生じる足場依存に由来するアポトーシスを指す。腫瘍においては、アノイキス抵抗性は、がん細胞の浸潤、転移に深く関わる性質であると考えられている。
 MKN7細胞、又は3’-FLAG-tagged CA1によりCA1を強制発現させたMKN7細胞を単層培養、あるいは懸濁培養の条件で培養を行い、アノイキスが誘導される細胞の割合を、Annexin V、7AAD染色を行い解析した(図4d)。CA1発現により懸濁培養では有意にアノイキスが誘導される細胞の割合が減少した。
 次に、MKN7細胞の培養上清に、CA1を内包するエクソソームを添加し、同様に単層培養で、あるいは懸濁培養の条件で培養を行い、アノイキスが誘導される細胞の割合を解析した(図4e)。CA1を含むエクソソームを培養液に添加することにより、懸濁培養ではアノイキスが誘導される細胞の割合が有意に減少することが示された。以上の結果から、CA1はアノイキスに対する抵抗性にも関与することが示された。
 以上示したように、新規胃がんマーカーCA1は、胃がんを感度、特異度よく検出することができる。また、転移に関わるアポトーシス、アノイキス抵抗性とも深く関わりのあるマーカーである。血液試料を用いて検査を行うことができることから、特に、胃がんの再発、転移などを検査するマーカーとして有用なマーカーとなる。
 ここでは、CA1について、その機能も含めて詳細に解析を行ったが、表1に示した胃がん患者、健常者間で発現に有意な差が認められたタンパク質は、いずれを用いても胃がんを検出することが可能である。特に、胃がん患者で発現増強が認められた40種のタンパク質は、胃がんを検出する良いマーカーとなり得る。また、表1に示したマーカーを複数用いて検出すれば、より精度良く胃がんの検出を行うことができる。本実施例で示したように、血液を用いる低侵襲な方法で感度良く胃がんの検出を行うことが可能となる。

Claims (15)

  1.  表1に記載の少なくとも1つのタンパク質の発現を検査することを特徴とする胃がんの検査方法。
  2.  前記タンパク質発現は、
     血液試料中のエクソソームに内包されるタンパク質量を検出するものである請求項1記載の胃がんの検査方法。
  3.  前記血液試料が血清、又は血漿であることを特徴とする請求項2記載の胃がんの検査方法。
  4.  前記タンパク質の検出は、
     質量分析によって行う請求項1~3いずれか1項記載の胃がんの検査方法。
  5.  前記タンパク質の検出は、
     抗体を用いて行う請求項1~3いずれか1項記載の胃がんの検査方法。
  6.  前記タンパク質の検出は組織染色によって行う請求項1記載の胃がんの検査方法。
  7.  前記タンパク質がcarbonic anhydrase-1(CA1)である請求項1~6いずれか1項記載の胃がんの検査方法。
  8.  疾患マーカーの探索方法であって、
     特定の疾患に罹患している患者と、健常者の血液試料からサイズ排除クロマトグラフィーによってそれぞれエクソソームを単離し、
     質量分析によって前記患者と前記健常者において発現に差が認められるタンパク質を同定し、
     新規疾患マーカーを探索する方法。
  9.  表1に記載の胃がんを検出するためのバイオマーカー。
  10.  エクソソームに含まれることを特徴とする請求項9記載のバイオマーカー。
  11.  前記エクソソームが、血液に由来する試料であることを特徴とする請求項10記載のバイオマーカー。
  12.  前記血液に由来する試料が血清、又は血漿であることを特徴とする請求項11記載のバイオマーカー。
  13.  前記エクソソームはサイズ排除クロマトグラフィーによって精製されるものであることを特徴とする請求項10~12いずれか1項記載のバイオマーカー。
  14.  前記バイオマーカーが、CA1である請求項9~13いずれか1項記載のバイオマーカー。
  15.  前記バイオマーカーが、
     アポトーシス、又はアノイキス抵抗性に関与することを示す請求項14記載のバイオマーカー。
PCT/JP2020/033551 2019-09-05 2020-09-04 胃がんマーカー、及びこれを用いた検査方法 WO2021045180A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021544042A JPWO2021045180A1 (ja) 2019-09-05 2020-09-04
US17/639,979 US20220291217A1 (en) 2019-09-05 2020-09-04 Gastric cancer marker and examination method using same
CN202080075948.7A CN114631026A (zh) 2019-09-05 2020-09-04 胃癌标志物及使用其的检查方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-161687 2019-09-05
JP2019161687 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021045180A1 true WO2021045180A1 (ja) 2021-03-11

Family

ID=74853203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033551 WO2021045180A1 (ja) 2019-09-05 2020-09-04 胃がんマーカー、及びこれを用いた検査方法

Country Status (4)

Country Link
US (1) US20220291217A1 (ja)
JP (1) JPWO2021045180A1 (ja)
CN (1) CN114631026A (ja)
WO (1) WO2021045180A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190154692A1 (en) * 2016-04-12 2019-05-23 Biocrypton Inc. Compositions and methods for screening, monitoring and treating gastrointestinal diseases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190154692A1 (en) * 2016-04-12 2019-05-23 Biocrypton Inc. Compositions and methods for screening, monitoring and treating gastrointestinal diseases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABRAMOWICZ AGATA, WOJAKOWSKA ANNA, GDOWICZ-KLOSOK AGNIESZKA, POLANSKA JOANNA, RODZIEWICZ PAWEL, POLANOWSKI PAWEL, NAMYSL-KALETKA A: "Identification of serum proteome signatures of locally advanced and metastatic gastric cancer: a pilot study", JOURNAL OF TRANSLATIONAL MEDICINE, vol. 13, no. 304, 17 September 2015 (2015-09-17), pages 1 - 11, XP055799341 *
CHONG, POH-KUAN ET AL.: "Upregulation of plasma C9 protein in gastric cancer patients", PROTEOMICS, vol. 10, no. 18, July 2010 (2010-07-01), pages 3210 - 3221, XP008150316, DOI: 10.1002/pmic.201000127 *
MIZOSHITA TSUTOMU, TSUKAMOTO TETSUYA, TANAKA HARUNARI, TAKENAKA YOSHIHARU, KATO SOSUKE, CAO XUEYUAN, JOH TAKASHI, TATEMATSU MASAE: "Colonic and small-intestinal phenotypes in gastric cancers: Relationships with clinicopathological findings", PATHOLOGY INTERNATIONAL, vol. 55, no. 10, 26 September 2005 (2005-09-26), pages 611 - 618, XP055799344 *

Also Published As

Publication number Publication date
CN114631026A (zh) 2022-06-14
US20220291217A1 (en) 2022-09-15
JPWO2021045180A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7109008B2 (ja) 膵臓がんを検出するための方法および組成物
Chen et al. Elevated level of anterior gradient-2 in pancreatic juice from patients with pre-malignant pancreatic neoplasia
Yao et al. Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis
Yi et al. Autoantibody to tumor antigen, alpha 2-HS glycoprotein: a novel biomarker of breast cancer screening and diagnosis
CN102687011B (zh) 癌症生物标志物及其应用
Camisasca et al. A proteomic approach to compare saliva from individuals with and without oral leukoplakia
WO2015182580A1 (ja) 大腸がんの転移検出方法
van der Watt et al. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers
JP2008014937A (ja) 腫瘍マーカー及び癌疾病の罹患の識別方法
JP6361943B2 (ja) 補体因子bタンパク質に特異的に結合する抗体及び糖鎖抗原19−9タンパク質に特異的に結合する抗体を含む膵臓癌診断用キット
US20150338412A1 (en) Composition for diagnosis of lung cancer and diagnosis kit for lung cancer
US20230055395A1 (en) Marker for pancreatic cancer and intraductal papillary mucinous neoplasms
WO2014183777A1 (en) Methods of detecting colorectal polyps or carcinoma and methods of treating colorectal polyps or carcinoma
WO2021045180A1 (ja) 胃がんマーカー、及びこれを用いた検査方法
JP5548872B2 (ja) 大腸がん肝転移マーカー、及び試料中の大腸がん肝転移マーカーの分析方法
KR20150087580A (ko) Del-1 단백질 양성 엑소좀을 포함하는 암 진단 또는 예후 예측용 조성물
EP2772759B1 (en) Composition for diagnosis of lung cancer
EP2895863A1 (en) New biomarkers for the diagnosis and/or prognosis of clear cell renal cell carcinoma
US20240027461A1 (en) Biomarkers for Detecting Cancer
WO2021045189A1 (ja) 大腸がんマーカー、及びこれを用いた検査方法
TWI682175B (zh) 一種用於診斷胃癌的方法
KR20180117918A (ko) Mfap5 측정 제제를 포함하는 대장암 진단용 조성물, 키트, 및 이를 이용한 대장암 진단 방법
KR101594287B1 (ko) 보체인자 b 단백질에 특이적으로 결합하는 항체를 포함하는 췌장암 진단용 키트
KR20130023308A (ko) 폐암 바이오마커
CN117741153A (zh) 一种用于多癌种早期筛查、诊断和/或监测的生物标志物及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860722

Country of ref document: EP

Kind code of ref document: A1