WO2021044964A1 - カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル - Google Patents

カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル Download PDF

Info

Publication number
WO2021044964A1
WO2021044964A1 PCT/JP2020/032598 JP2020032598W WO2021044964A1 WO 2021044964 A1 WO2021044964 A1 WO 2021044964A1 JP 2020032598 W JP2020032598 W JP 2020032598W WO 2021044964 A1 WO2021044964 A1 WO 2021044964A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
cnt
assembly line
less
nanotube assembly
Prior art date
Application number
PCT/JP2020/032598
Other languages
English (en)
French (fr)
Inventor
日方 威
利彦 藤森
大久保 総一郎
順 大塚
藤田 淳一
Original Assignee
住友電気工業株式会社
国立大学法人 筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立大学法人 筑波大学 filed Critical 住友電気工業株式会社
Priority to US17/639,482 priority Critical patent/US20220315427A1/en
Priority to JP2021543736A priority patent/JPWO2021044964A1/ja
Priority to CN202080061114.0A priority patent/CN114341054A/zh
Publication of WO2021044964A1 publication Critical patent/WO2021044964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy

Definitions

  • the present disclosure relates to carbon nanotube assembly lines and carbon nanotube assembly line bundles.
  • This application claims priority based on Japanese Patent Application No. 2019-160768 filed on September 3, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
  • Carbon nanotubes which have a cylindrical structure of a graphene sheet in which carbon atoms are bonded in a hexagon, are 1/5 lighter than copper, 20 times stronger than steel, and have metallic conductivity. It is a material with excellent characteristics. Therefore, electric wires using carbon nanotubes are expected as a material that contributes to weight reduction, miniaturization, and improvement of corrosion resistance of automobile motors.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-330175
  • carbon nanotubes grow carbon nanotubes from a catalyst by supplying a raw material gas containing carbon while heating a fine catalyst such as iron. It is obtained by the vapor phase growth method.
  • the carbon nanotube assembly line is It is a carbon nanotube assembly line containing a plurality of carbon nanotubes.
  • the ratio IB / IA of the integrated intensity IA in the range of Raman shift 120 cm -1 or more and 210 cm -1 or less and the integrated intensity IB in the range of Raman shift 210 cm -1 more than 280 cm -1 or less. Is a carbon nanotube assembly line having a value of 0.1 or more.
  • the carbon nanotube assembly line bundle is A carbon nanotube assembly line bundle having a plurality of the above carbon nanotube assembly lines.
  • IA is 0.1 or more
  • the carbon nanotubes are oriented with an orientation degree of 0.9 or more and 1 or less.
  • the carbon nanotube assembly line is a carbon nanotube assembly line bundle in which the carbon nanotube assembly lines are oriented with an orientation degree of 0.8 or more and 1 or less.
  • FIG. 1 is a diagram illustrating a typical configuration example of a carbon nanotube assembly line according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of carbon nanotubes used in one embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a typical configuration example of the carbon nanotube assembly line bundle according to the embodiment of the present disclosure.
  • FIG. 4 is a diagram showing a Raman spectrum of a carbon nanotube assembly line bundle according to an embodiment of the present disclosure.
  • FIG. 5 is an optical micrograph of the carbon nanotube assembly line bundle of Sample 1 of the example.
  • FIG. 6 is a diagram showing a Raman mapping image in the region A of the Raman spectrum of sample 1.
  • FIG. 7 is a diagram showing a Raman mapping image in region B of the Raman spectrum of sample 1.
  • FIG. 8 is an optical micrograph of the carbon nanotube assembly line bundle of Sample 2 of the example.
  • FIG. 9 is a diagram showing a Raman mapping image in the region A of the Raman spectrum of sample 2.
  • FIG. 10 is a diagram showing a Raman mapping image in region B of the Raman spectrum of sample 2.
  • FIG. 11 is a diagram illustrating a typical configuration example of the carbon nanotube assembly line manufacturing apparatus according to the embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a typical configuration example of the carbon nanotube assembly line bundle manufacturing apparatus according to the embodiment of the present disclosure.
  • the carbon nanotubes obtained by the current carbon nanotube manufacturing technology have a diameter of about 0.4 nm to 20 nm and a maximum length of 55 cm.
  • longer carbon nanotubes are required, and a technique capable of lengthening the carbon nanotubes is being studied.
  • a method of aligning a plurality of carbon nanotubes in the longitudinal direction and collecting them to form an aggregate line can be considered.
  • Non-Patent Document 1 a method of obtaining CNT aggregate lines by mixing a plurality of non-oriented CNTs with a dispersant (surfactant, polymer, etc.) and injection molding them into a fibrous form has been studied.
  • a dispersant surfactant, polymer, etc.
  • a step of removing the dispersant is performed after preparing the CTN assembly line.
  • some of the dispersant remains in the CNT assembly line. Therefore, the mechanical strength of CNTs tends to decrease.
  • the carbon nanotube assembly line according to one aspect of the present disclosure is It is a carbon nanotube assembly line containing a plurality of carbon nanotubes.
  • the ratio IB / IA of the integrated intensity IA in the range of Raman shift 120 cm -1 or more and 210 cm -1 or less and the integrated intensity IB in the range of Raman shift 210 cm -1 more than 280 cm -1 or less. Is a carbon nanotube assembly line having a value of 0.1 or more.
  • the ratio IB / IA is preferably 0.1 or more and 10 or less. According to this, the CNT collecting line can have even better mechanical strength.
  • the plurality of carbon nanotubes are oriented with an orientation degree of 0.9 or more and 1 or less. According to this, the CNT collecting line can have even better mechanical strength.
  • the carbon nanotube assembly line according to another aspect of the present disclosure is A carbon nanotube assembly line bundle having a plurality of the above carbon nanotube assembly lines.
  • IA is 0.1 or more
  • the carbon nanotubes are oriented with an orientation degree of 0.9 or more and 1 or less.
  • the carbon nanotube assembly line is a carbon nanotube assembly line bundle in which the carbon nanotube assembly lines are oriented with an orientation degree of 0.8 or more and 1 or less.
  • the twist angle of the carbon nanotube assembly wire bundle is preferably 0 ° or more and 5 ° or less. According to this, the CNT assembly line bundle can have even better mechanical strength.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same. Further, when the upper limit value of the range is C, it means that the upper limit value of the range is C or less, and when the lower limit value of the range is D, it means that the lower limit value of the range is D or more.
  • FIG. 1 is a diagram illustrating a typical configuration example of a carbon nanotube assembly line (hereinafter, also referred to as “CNT assembly line”) according to an embodiment of the present disclosure.
  • the carbon nanotube assembly line 1 according to the present embodiment is a carbon nanotube assembly line 1 including a plurality of carbon nanotubes 2, and in the Raman spectrum of the carbon nanotube assembly line 1, the Raman shift 120 cm ⁇ .
  • the ratio IB / IA of the integrated intensity IA in the range of 1 or more and 210 cm -1 or less and the integrated intensity IB in the range of Raman shift 210 cm -1 more than 280 cm -1 or less is 0.1 or more.
  • the CNT aggregate line in one embodiment of the present disclosure has an integrated intensity IA in the range of Raman shift 120 cm -1 or more and 210 cm -1 or less, and an integrated intensity in the range of Raman shift 210 cm -1 more than 280 cm -1 or less.
  • the ratio IB / IA to IB (hereinafter, also referred to as “integrated intensity ratio IB / IA”) is 0.1 or more.
  • Integral intensity IA at the range of the Raman shift 120 cm -1 or more 210 cm -1 or less, of the CNT constituting the CNT aggregate line, its diameter is derived from the following CNT 1.2 nm ultra 2.1 nm.
  • the integrated intensity IB in the range of Raman shift 210 cm -1 to more than 280 cm -1 is derived from CNTs having a diameter of 0.9 nm or more and 1.2 nm or less among the CNTs constituting the CNT collecting line.
  • the larger the integrated intensity ratio IB / IA the larger the ratio of CNTs having a diameter of 0.9 nm or more and 1.2 nm or less to CNTs having a diameter of more than 1.2 nm and 2.1 nm or less in the CNT assembly line. ..
  • the CNT set line has excellent breaking strength when the integrated strength ratio IB / IA is 0.1 or more. It is presumed that the reason for this is that the small diameter CNTs are filled in the gaps of the CNT collecting lines to improve the density and suppress the slip generated between the adjacent CNTs.
  • the lower limit of the integrated intensity ratio IB / IA is 0.1, preferably 0.5, and more preferably 1.0.
  • the upper limit of the integrated intensity ratio IB / IA is not particularly limited, but may be, for example, 10.
  • the integrated intensity ratio IB / IA is 0.1 or more, preferably 0.1 or more and 10 or less, more preferably 0.5 or more and 10 or less, and further preferably 1.0 or more and 10 or less.
  • Raman spectrometer "in Via Raman microscope” (trademark) manufactured by Renishaw. Wavelength: 532 nm Laser intensity: 0.3mW Objective lens magnification: 50 times Spot diameter: 1 ⁇ m (A2) Measurement of Integrated Intensity Under the above measurement conditions, the surface of one CNT collecting line is scanned to obtain a Raman spectrum at 300 points or more of measurement points. The Raman spectrum at each measurement point is fitted by the Lorentz function to obtain the signal intensity, position, and full width at half maximum (FWHM).
  • FWHM full width at half maximum
  • a CNT having a known structure As the carbon nanotube, a CNT having a known structure can be used. For example, single-walled carbon nanotubes in which only one carbon layer (graphene) is tubular, double-walled carbon nanotubes or multi-walled carbon nanotubes in which multiple carbon layers are laminated, and bottoms.
  • a cup-stacked nanotube or the like having a structure in which graphene in the shape of a paper cup from which the carbon is removed is laminated can be used.
  • the shape of the carbon nanotube is not particularly limited, and either one with a closed tip or one with a perforated tip can be used.
  • the catalyst P used for producing the carbon nanotubes may be attached to one or both ends of the tube portion T of the carbon nanotubes 2.
  • a cone portion C made of conical graphene may be formed at one or both ends of the tube portion T of the carbon nanotube 2.
  • the length of carbon nanotubes can be appropriately selected depending on the application.
  • the length of the carbon nanotubes is, for example, preferably 10 ⁇ m or more, and more preferably 100 ⁇ m or more. In particular, when the length of the carbon nanotubes is 100 ⁇ m or more, it is preferable from the viewpoint of producing CNT aggregate lines.
  • the upper limit of the length of the carbon nanotube is not particularly limited, but from the viewpoint of manufacturing, 600 mm or less is preferable.
  • the length of the CNT is preferably 10 ⁇ m or more and 600 mm or less, and more preferably 100 ⁇ m or more and 600 mm or less.
  • the length of CNTs can be measured by observing with a scanning electron microscope.
  • the lower limit of the diameter of the carbon nanotube is preferably 0.6 nm, more preferably 0.7 nm, and even more preferably 0.8 nm.
  • the upper limit of the diameter of the CNT is preferably 20 nm, more preferably 10 nm, and even more preferably 5 nm.
  • the diameter of the CNT is preferably 0.6 nm or more and 20 nm or less, more preferably 0.7 nm or more and 10 nm or less, and further preferably 0.8 nm or more and 5 nm or less. In particular, when the diameter of the carbon nanotubes is 0.8 nm or more and 5 nm or less, it is preferable from the viewpoint of improving the breaking strength by increasing the density of the CNT collecting lines.
  • the diameter of carbon nanotubes means the average outer diameter of one CNT.
  • the cross section at any two points of the CNT is directly observed with a transmission electron microscope, and the outer diameter, which is the distance between the two most distant points on the outer circumference of the CNT, is measured in the cross section. It is obtained by calculating the average value of the obtained outer diameters. If the CNT contains a cone at one or both ends, measure the diameter at a location other than the cone.
  • the carbon nanotube assembly line 1 includes a plurality of carbon nanotubes 2.
  • the carbon nanotube assembly line preferably has a thread shape in which a plurality of carbon nanotubes are oriented and aggregated in the longitudinal direction thereof.
  • the length of the carbon nanotube assembly line is not particularly limited and can be appropriately adjusted depending on the application.
  • the length of the CNT collecting line is, for example, preferably 100 ⁇ m or more, more preferably 1000 ⁇ m or more, still more preferably 10 cm or more.
  • the upper limit of the length of the CNT set line is not particularly limited, but from the viewpoint of manufacturing, it is preferably 1 m or less.
  • the length of the CNT collecting line can be 100 ⁇ m or more and 1 m or less, 1000 ⁇ m or more and 1 m or less, and 10 cm or more and 1 m or less.
  • the length of the CNT collecting line can be measured by scanning electron microscope, optical microscope or visual observation.
  • the size of the diameter of the carbon nanotube assembly line is not particularly limited, and can be appropriately adjusted depending on the application.
  • the diameter of the CNT collecting line is, for example, preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the upper limit of the diameter of the CNT collecting wire is not particularly limited, but from the viewpoint of manufacturing, it is preferably 100 ⁇ m or less.
  • the diameter of the CNT collecting line can be 0.1 ⁇ m or more and 100 ⁇ m or less, and 1 ⁇ m or more and 100 ⁇ m or less.
  • the size of the diameter of the CNT collecting line is smaller than the length of the CNT collecting line. That is, the length direction of the CNT assembly line corresponds to the longitudinal direction.
  • the diameter of the carbon nanotube assembly line means the average outer diameter of one CNT assembly line.
  • the average outer diameter of one CNT gathering line is obtained by observing a cross section of one CNT gathering line at any two points with a transmission electron microscope or a scanning electron microscope, and the farthest distance on the outer circumference of the CNT gathering line in the cross section. It is obtained by measuring the outer diameter, which is the distance between two points, and calculating the average value of the obtained outer diameters.
  • the plurality of carbon nanotubes are oriented with an orientation degree of 0.9 or more and 1 or less.
  • the degree of orientation of CNT is a value calculated by the following procedures (a1) to (a6).
  • TEM Transmission electron microscope
  • JEM2100 (trademark) manufactured by JEOL Ltd. Imaging conditions: Magnification 50,000 to 1.2 million times, acceleration voltage 60 kV to 200 kV.
  • Image processing program Non-destructive paper surface fiber orientation analysis program "FiberOri8single03" (http://www.enomae.com/FiberOri/index.html) Processing procedure: 1. 1. Histogram average brightness correction 2. Background removal 3. Binarization with a single threshold 4. Brightness inversion
  • Degree of orientation (180 ° -full width at half maximum) / 180 ° (1) When the degree of orientation is 0, it means completely unoriented. When the degree of orientation is 1, it means complete orientation.
  • a plurality of carbon nanotubes are oriented with an orientation degree of 0.9 or more and 1.0 or less. This means that the orientation of a plurality of CNTs is high in the CNT assembly line of the present embodiment.
  • the CNT collecting wire according to the present embodiment can be lengthened while maintaining the characteristics of the electrical conductivity and the mechanical strength of the CNT.
  • the degree of orientation of CNTs on the CNT assembly line is less than 0.9, the electrical conductivity and mechanical strength tend to decrease.
  • the lower limit of the degree of orientation is preferably 0.93, more preferably 0.94, and even more preferably 0.95.
  • the upper limit of the degree of orientation is preferably 0.99, more preferably 1.
  • the degree of orientation of CNTs in the CNT assembly line is 0.93 or more and 0.99 or less, 0.94 or more and 0.99 or less, 0.95 or more and 0.99 or less, 0.93 or more and 1 or less, 0.94 or more and 1 or less, It can be 0.95 or more and 1 or less.
  • the carbon nanotubes preferably have a D / G ratio of 0.1 or less, which is the ratio of the peak intensity of the G band to the peak intensity of the D band in Raman spectroscopy at a wavelength of 532 nm.
  • the G band is a peak derived from CNTs observed in the vicinity of Raman shift 1590 cm -1 in the Raman spectrum obtained by Raman spectroscopy.
  • the D band is a peak derived from defects of amorphous carbon, graphite, and CNTs found in the vicinity of Raman shift 1350 cm -1 in the Raman spectrum obtained by Raman spectroscopy. Therefore, the smaller the D / G ratio value, the higher the crystallinity of the carbon nanotubes, and the smaller the amount of amorphous carbon and defective graphite contained in the carbon nanotubes.
  • the D / G ratio of CNT When the D / G ratio of CNT is 0.1 or less, there are few defects of amorphous carbon and graphite, and the crystallinity is high. Therefore, the CNT can have high tensile strength and high electrical conductivity. If the D / G ratio of CNTs exceeds 0.1, CNTs may not be able to have sufficient tensile strength and high electrical conductivity.
  • the D / G ratio is preferably 0.1 or less, more preferably 0.01 or less.
  • the lower limit of the D / G ratio is not particularly limited, but can be, for example, 0 or more.
  • the D / G ratio of CNT can be 0 or more and 0.1 or less, and 0 or more and 0.01 or less.
  • the D / G ratio of carbon nanotubes in the carbon nanotube assembly line is a value measured by the following method.
  • Raman spectroscopic analysis is performed on the carbon nanotube aggregate line under the following conditions to obtain a Raman spectrum (hereinafter, also referred to as a Raman spectrum of the CNT aggregate line).
  • a Raman spectrum of the CNT aggregate line the D / G ratio is calculated from the peak intensity of the G band and the peak intensity of the D band.
  • the D / G ratio of the CNT assembly line is regarded as the D / G ratio of the carbon nanotubes in the carbon nanotube assembly line.
  • the present inventors performed Raman spectroscopic analysis on a plurality of carbon nanotubes before being aggregated under the same conditions as above to obtain a Raman spectrum (hereinafter, also referred to as CNT Raman spectrum).
  • CNT Raman spectrum a Raman spectrum
  • the D / G ratio was calculated from the peak intensity of the G band and the peak intensity of the D band.
  • the carbon nanotubes were made into aggregate lines to prepare CNT aggregate lines.
  • the CNT aggregate line was subjected to Raman spectroscopic analysis under the above conditions to obtain a Raman spectrum (hereinafter, also referred to as a CNT aggregate line Raman spectrum).
  • a Raman spectrum hereinafter, also referred to as a CNT aggregate line Raman spectrum.
  • the D / G ratio was calculated from the peak intensity of the G band and the peak intensity of the D band.
  • the D / G ratio of the carbon nanotubes before being aggregated is maintained at the CNTs in the CNTs. Therefore, in the present specification, the D / G ratio of the carbon nanotubes in the CNT assembly line can be regarded as the same as the D / G ratio of the CNTs before the aggregation line.
  • the carbon nanotube assembly line contains at least one metal element selected from the group consisting of iron, nickel, cobalt, molybdenum, gold, silver, copper, yttrium, chromium, palladium, platinum and tungsten, and the metal element is a metal element. It is preferable that the carbon nanotube assembly lines are dispersed in the longitudinal direction.
  • the fact that the metal elements are dispersed in the longitudinal direction of the CNT assembly line means that the metal elements are not unevenly distributed in the longitudinal direction of the CNT assembly line.
  • metal elements are used as catalysts (ferrocene (Fe (C 5 H 5 ) 2 ), nickelocene (Ni (C 5 H 5 ) 2 ), cobalt sen (Co (C 5 H 5 ) 2 ), etc. during the production of CNT aggregates. ) Is derived from these catalysts. If these metal elements are dispersed in the longitudinal direction of the CNT assembly line in the CNT assembly line, the metal elements have electricity in the CNT. The CNT assembly line can be lengthened while maintaining the original electrical conductivity without affecting the conductivity characteristics.
  • the type of metal element contained in the CNT assembly line and its content can be confirmed and measured by energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • the total content of metal elements in the CNT assembly line is preferably 0.1% or more and 50% or less, more preferably 1% or more and 40% or less, and further preferably 5% or more and 20% or less on the basis of the number of atoms.
  • the carbon nanotube assembly line contains a sulfur element, and the sulfur element is dispersed in the longitudinal direction of the carbon nanotube assembly line.
  • the fact that the sulfur elements are dispersed in the longitudinal direction of the CNT assembly line means that the sulfur elements are not unevenly distributed in the longitudinal direction of the CNT assembly line.
  • the sulfur element is derived from the auxiliary catalyst when the auxiliary catalyst (CS 2 ) is used in the production of the CNT assembly line. If the sulfur elements are dispersed in the longitudinal direction of the CNT assembly line in the CNT assembly line, the sulfur elements do not affect the characteristics such as electrical conductivity and mechanical strength of the CNT, and the CNT assembly line does not affect the characteristics. Can be lengthened while maintaining these characteristics.
  • the CNT aggregate line contains sulfur elements and the content of the sulfur element in the CNT aggregate line can be confirmed and measured by EDX, thermogravimetric analysis, and X-ray photoelectron spectroscopy.
  • the content of the sulfur element in the CNT assembly line is preferably 0.1% or more and 20% or less, more preferably 1% or more and 15% or less, and further preferably 2% or more and 10% or less on the basis of the number of atoms.
  • the carbon nanotube assembly line according to the present embodiment can be produced by the following method using, for example, the carbon nanotube assembly line production apparatus 20 shown in FIG.
  • the carbon nanotube assembly line manufacturing apparatus 20 includes a tubular carbon nanotube growing portion (hereinafter, also referred to as a CNT growing portion) 21 and one end of the CNT growing portion 21 (the right end in FIG. 11) in the CNT growing portion 21.
  • the gas supply unit 22 that supplies carbon-containing gas from the CNT growth unit 21, the catalyst supply unit 23 that supplies the catalyst particles P into the CNT growth unit 21, and the other end side of the CNT growth unit 21 (the left end in FIG. 11).
  • a carbon nanotube collecting part 24 (hereinafter, also referred to as a CNT collecting part) is provided, which is arranged in a section) and aligns and aggregates a plurality of carbon nanotubes obtained in the CNT growing section 21 in a direction along the flow of carbon-containing gas. be able to.
  • the catalyst supply unit is heated by the heater 25.
  • the carbon nanotube growth unit 21 is arranged in the electric furnace 28 and is heated by a heater (not shown).
  • a honeycomb structure 29 is provided in the carbon nanotube collecting portion 24.
  • the honeycomb structure 29 is a porous body having a large number of thin tubular through holes 291.
  • the cross-sectional area of each through hole is 0.01 mm 2 or more and 4 mm 2 or less, and the length of each through hole is 10 mm or more and 200 mm or less. I can do this.
  • the catalyst 27 arranged on the catalyst holder 26 collapses and the catalyst particles are released into the CNT growth portion 21.
  • the carbon-containing gas from the gas supply unit 22 to the catalyst particles in the CNT growth unit 21 through the catalyst supply unit 23 the carbon nanotubes 2 grow from the catalyst particles P.
  • the carbon nanotube 2 passes through the through hole 291 of the honeycomb structure 29 provided in the CNT collecting portion 24. At this time, a tensile force acts on the end portion of the CNT 2, so that the CNT extending from the catalyst particles P is pulled, plastically deformed, reduced in diameter, and extended in the longitudinal direction.
  • the tensile force is derived from the change in the flow velocity of the carbon-containing gas.
  • the plurality of CNTs 2 pass through the through holes of the honeycomb structure 29, they are oriented and aggregated in the direction along the flow of the carbon-containing gas to form a carbon nanotube assembly line.
  • FIG. 3 is a diagram illustrating a typical configuration example of the carbon nanotube aggregate line bundle (hereinafter, also referred to as “CNT aggregate line bundle”) according to the embodiment of the present disclosure. As shown in FIG.
  • the carbon nanotube aggregate line bundle 3 includes a plurality of carbon nanotube aggregate line 1, in the Raman spectrum of the carbon nanotube aggregate line bundle, the Raman shift 120 cm -1 or more 210 cm -
  • the ratio IB / IA of the integrated strength IA in the range of 1 or less to the integrated strength IB in the range of Raman shift 210 cm -1 more than 280 cm -1 or less is 0.1 or more
  • the carbon nanotubes in the carbon nanotube assembly line 1 2 is oriented with an orientation degree of 0.9 or more and 1 or less
  • the carbon nanotube assembly line bundle 3 the carbon nanotube assembly line 1 is oriented with an orientation degree of 0.8 or more and 1 or less.
  • the CNT assembly line 1 constituting the carbon nanotube assembly line bundle 3 As the carbon nanotube assembly line 1 constituting the carbon nanotube assembly line bundle 3, the CNT assembly line of the first embodiment can be used. Further, as the carbon nanotube 2 constituting the CNT collecting line 1, the same carbon nanotubes as those described in the first embodiment can be used.
  • the CNT aggregate line bundle in one embodiment of the present disclosure has an integral intensity IA in the range of Raman shift 120 cm -1 or more and 210 cm -1 or less and an integral in the range of Raman shift 210 cm -1 more than 280 cm -1 or less in the Raman spectrum.
  • the ratio IB / IA to the intensity IB (hereinafter, also referred to as “integrated intensity ratio IB / IA”) is 0.1 or more.
  • Integral intensity IA at the range of the Raman shift 120 cm -1 or more 210 cm -1 or less, of the CNT constituting the CNT aggregate line bundle, the diameter is derived from the following CNT 1.2 nm ultra 2.1 nm.
  • the integrated intensity IB in the range of Raman shift 210 cm -1 to more than 280 cm -1 is derived from CNTs having a diameter of 0.9 nm or more and 1.2 nm or less among the CNTs constituting the CNT assembly line bundle.
  • the larger the integrated intensity ratio IB / IA the larger the ratio of CNTs having a diameter of 0.9 or more and 1.2 nm or less to CNTs having a diameter of more than 1.2 nm and 2.1 nm or less in the CNT assembly line bundle. Shown.
  • the CNT set line bundle has excellent breaking strength when the integrated strength ratio IB / IA is 0.1 or more. It is presumed that the reason for this is that the small diameter CNTs are filled in the gaps of the CNT collecting lines to improve the density and suppress the slip generated between the adjacent CNTs.
  • the lower limit of the integrated intensity ratio IB / IA is 0.1, preferably 0.5, and more preferably 1.0.
  • the upper limit of the integrated intensity ratio IB / IA is not particularly limited, but may be, for example, 10.
  • the integrated intensity ratio IB / IA is 0.1 or more, preferably 0.1 or more and 10 or less, more preferably 0.5 or more and 10 or less, and further preferably 1.0 or more and 10 or less.
  • the method for measuring and evaluating the Raman spectrum of the CNT set line bundle in the present specification is the same as the method for measuring and evaluating the Raman spectrum of the CNT set line according to the first embodiment, except that the measurement target is the CNT set line bundle. Therefore, the explanation will not be repeated.
  • FIG. 4 The Raman spectrum of the CNT aggregate line bundle produced in the examples described later is shown in FIG.
  • Sample 2 and Sample 3 are examples, and correspond to the CNT assembly line bundle of the present embodiment.
  • the range of Raman shift 120 cm -1 or more and 210 cm -1 or less is shown as region A
  • the range of Raman shift 210 cm -1 more than 280 cm -1 or less is shown as region B.
  • Three peaks were observed in each of Sample 2 and Sample 3.
  • the integrated intensity ratio IB / IA in the CNT aggregate line bundle can also be regarded as the integrated intensity ratio IB / IA in the CNT aggregate line constituting the CNT aggregate line bundle.
  • the carbon nanotubes are oriented at an orientation degree of 0.9 or more and 1 or less in the carbon nanotube assembly line, and the carbon nanotube assembly line 1 is 0 in the carbon nanotube assembly line bundle. It is oriented with a degree of orientation of 8 or more and 1 or less. This means that the CNTs and the CNTs are highly oriented in the CNTs bundle of the present embodiment. As a result, the CNT assembly line bundle according to the present embodiment can be lengthened while maintaining the characteristics of electrical conductivity and mechanical strength of the CNT.
  • the degree of orientation of CNTs on the CNT assembly line is less than 0.9, the electrical conductivity and mechanical strength tend to decrease.
  • the lower limit of the degree of orientation is 0.9, preferably 0.93, more preferably 0.94, and even more preferably 0.95.
  • the upper limit of the degree of orientation is preferably 0.99, more preferably 1.
  • the degree of orientation of CNTs in the CNT assembly line is 0.93 or more and 0.99 or less, 0.94 or more and 0.99 or less, 0.95 or more and 0.99 or less, 0.93 or more and 1 or less, 0.94 or more and 1 or less, It can be 0.95 or more and 1 or less.
  • the degree of orientation of the CNT collecting lines in the CNT collecting line bundle is less than 0.8, the electrical conductivity and mechanical strength tend to decrease.
  • the lower limit of the degree of orientation is 0.8, preferably 0.83, and more preferably 0.85.
  • the upper limit of the degree of orientation is preferably 0.95, more preferably 1.
  • the degree of orientation of the CNT set line in the CNT set line bundle is 0.8 or more and 0.95 or less, 0.83 or more and 0.95 or less, 0.85 or more and 0.95 or less, 0.8 or more and 1 or less, 0.83 or more. It can be 1 or less, 0.85 or more and 1 or less.
  • the degree of orientation of CNTs on the carbon nanotube assembly line is a value calculated by the same method as the method for calculating the degree of orientation of carbon nanotubes on the carbon nanotube assembly line described in the first embodiment, the description thereof will not be repeated.
  • the degree of orientation of the CNT set line in the carbon nanotube set line bundle is basically a value calculated by the same procedure as the procedure of (a1) to (a6) described in the method of calculating the degree of orientation of the first embodiment. Is. The difference is that in the procedure (a1), the CNT set line bundle is imaged using the following equipment under the following conditions.
  • the shape of the carbon nanotube assembly line bundle is a string shape in which a plurality of carbon nanotube assembly lines are oriented and aggregated in the longitudinal direction thereof. It can be confirmed by observing with an optical microscope or a scanning electron microscope that the CNT gathering line bundle has a string shape in which a plurality of carbon nanotube gathering lines are oriented and aggregated in the longitudinal direction thereof.
  • the length of the carbon nanotube assembly line bundle is not particularly limited and can be adjusted as appropriate depending on the application.
  • the length of the CNT assembly line bundle is, for example, preferably 100 ⁇ m or more, more preferably 1000 ⁇ m or more, still more preferably 10 cm or more.
  • the upper limit of the length of the CNT set line bundle is not particularly limited, but from the viewpoint of manufacturing, it is preferably 1 m or less.
  • the length of the CNT assembly line bundle is preferably 100 ⁇ m or more and 1 m or less, 1000 ⁇ m or more and 1 m or less, and 10 cm or more and 1 m or less.
  • the length of the CNT assembly line bundle can be measured by light microscopy or visual observation.
  • the size of the diameter of the carbon nanotube assembly line bundle is not particularly limited, and can be appropriately adjusted depending on the application.
  • the diameter of the CNT assembly line bundle is, for example, preferably 1 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the upper limit of the diameter of the CNT assembly line bundle is not particularly limited, but from the viewpoint of manufacturing, 1000 ⁇ m or less is preferable.
  • the diameter of the CNT collecting wire bundle is preferably 1 ⁇ m or more and 1000 ⁇ m or less, and more preferably 10 ⁇ m or more and 1000 ⁇ m or less.
  • the size of the diameter of the CNT set line bundle is smaller than the length of the CNT set line bundle.
  • the diameter of the carbon nanotube assembly line bundle means the average outer diameter of one CNT assembly line bundle.
  • the average outer diameter of one CNT gathering line bundle is obtained by observing a cross section of one CNT gathering line bundle at any two points with an optical microscope, and in that cross section, between the two most distant points on the outer circumference of the CNT gathering line bundle. It is obtained by measuring the outer diameter, which is a distance, and calculating the average value of the obtained outer diameters.
  • twist angle of the carbon nanotube assembly wire bundle is preferably 0 ° or more and 5 ° or less. According to this, the CNT assembly line bundle can have even better mechanical strength.
  • the twist angle of the carbon nanotube assembly line bundle means the angle of the carbon nanotube assembly line 1 with respect to the longitudinal direction of the carbon nanotube assembly line bundle 3. The twist angle is measured using an optical microscope, and the measurement is performed by arranging the CNT assembly line bundle so that the longitudinal direction is in a straight line.
  • the twist angle of the carbon nanotube assembly wire bundle is more preferably 0 ° or more and 4 ° or less, and further preferably 0 ° or more and 3 ° or less.
  • the carbon nanotube assembly line bundle according to the present embodiment can be manufactured by using, for example, the carbon nanotube assembly line bundle manufacturing apparatus 500 shown in FIG.
  • the lengths of the plurality of carbon nanotube assembly lines obtained by the carbon nanotube assembly line bundle production apparatus 500, the carbon nanotube assembly wire production apparatus 20 according to the first embodiment, and the plurality of carbon nanotube assembly lines obtained by the carbon nanotube assembly line production apparatus can be provided with a bundling portion 50 which is oriented in a direction along the direction and bundled to obtain a carbon nanotube assembly line bundle.
  • the bundle portion 50 is formed by applying tension to the liquid adhering device 51 for adhering the volatile liquid 53 to the carbon nanotube gathering line 1, the throttle 55 arranged downstream of the liquid adhering device 51, and the plurality of carbon nanotube gathering lines.
  • a winding device 52 for bundling and winding a plurality of carbon nanotube assembly lines oriented in a direction along the longitudinal direction thereof can be provided.
  • the volatile liquid for example, methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, xylene, anisole, toluene, cresol, pyrrolidone, carbitol, carbitol acetate, water, epoxy monomer and acrylic monomer can be used.
  • Volatile liquids include monomers or resins.
  • a plurality of CNT aggregate lines 1 are obtained by the same method as the method for manufacturing the CNT aggregate lines of the first embodiment.
  • the volatile liquid 53 is attached to the plurality of CNT collecting lines 1.
  • the volatile liquid 53 is atomized to form vapor 54, and the vapor 54 is sprayed onto the carbon nanotube assembly line. The volatile liquid then evaporates.
  • the plurality of carbon nanotube assembly lines 1 are passed through the throttle 55 while applying tension by the winding device 52, so that they are oriented in the longitudinal direction and aggregated. As a result, the CNT set line bundle 3 is formed.
  • / IA is preferably 0.1 or more and 10 or less.
  • the ratio IB / IA is preferably 0.5 or more and 10 or less.
  • the ratio IB / IA is preferably 1.0 or more and 10 or less.
  • the length of the carbon nanotube is preferably 10 ⁇ m or more and 600 mm or less.
  • the length of the carbon nanotubes is preferably 100 ⁇ m or more and 600 mm or less.
  • the diameter of the carbon nanotube is preferably 0.6 nm or more and 20 nm or less.
  • the diameter of the carbon nanotubes is preferably 0.7 nm or more and 10 nm or less.
  • the diameter of the carbon nanotubes is preferably 0.8 nm or more and 5 nm or less.
  • the length of the carbon nanotube assembly line of the present disclosure is preferably 100 ⁇ m or more and 1 m or less.
  • the length of the carbon nanotube assembly line is preferably 1000 ⁇ m or more and 1 m or less.
  • the length of the carbon nanotube assembly line is preferably 10 cm or more and 1 m or less.
  • the diameter of the carbon nanotube assembly line of the present disclosure is preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the diameter of the carbon nanotube assembly line is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the carbon nanotubes are oriented with an orientation degree of 0.93 or more and 0.99 or less.
  • the degree of orientation is preferably 0.94 or more and 0.99 or less.
  • the degree of orientation is preferably 0.95 or more and 0.99 or less.
  • the degree of orientation is preferably 0.93 or more and 1 or less.
  • the degree of orientation is preferably 0.94 or more and 1 or less.
  • the degree of orientation is preferably 0.95 or more and 1 or less.
  • the ratio D / G of the peak intensity G in the Raman shift 1590 ⁇ 20 cm -1, the peak intensity D at a Raman shift 1350 ⁇ 20 cm -1 is preferably 0 to 0.1 .
  • the ratio D / G is preferably 0 or more and 0.01 or less.
  • the ratio of the integrated intensity IA in the range of Raman shift 120 cm -1 or more and 210 cm -1 or less and the integrated intensity IB in the range of Raman shift 210 cm -1 more than 280 cm -1 or less is preferably 0.1 or more and 10 or less.
  • the ratio IB / IA is preferably 0.5 or more and 10 or less.
  • the ratio IB / IA is preferably 1.0 or more and 10 or less.
  • the carbon nanotubes are oriented with an orientation degree of 0.93 or more and 0.99 or less.
  • the degree of orientation of the carbon nanotubes is preferably 0.94 or more and 0.99 or less.
  • the degree of orientation of the carbon nanotubes is preferably 0.95 or more and 0.99 or less.
  • the degree of orientation of the carbon nanotubes is preferably 0.93 or more and 1 or less.
  • the degree of orientation of the carbon nanotubes is preferably 0.94 or more and 1 or less.
  • the degree of orientation of the carbon nanotubes is preferably 0.95 or more and 1 or less.
  • the degree of orientation of the carbon nanotube assembly line is preferably 0.8 or more and 0.95 or less.
  • the degree of orientation of the carbon nanotube assembly line is preferably 0.83 or more and 0.95 or less.
  • the degree of orientation of the carbon nanotube assembly line is preferably 0.85 or more and 0.95 or less.
  • the degree of orientation of the carbon nanotube assembly line is preferably 0.8 or more and 1 or less.
  • the degree of orientation of the carbon nanotube assembly line is preferably 0.83 or more and 1 or less.
  • the degree of orientation of the carbon nanotube assembly line is preferably 0.85 or more and 1 or less.
  • the length of the carbon nanotube assembly line bundle of the present disclosure is preferably 100 ⁇ m or more and 1 m or less.
  • the length of the carbon nanotube assembly line bundle is preferably 1000 ⁇ m or more and 1 m or less.
  • the length of the carbon nanotube assembly line bundle is preferably 10 cm or more and 1 m or less.
  • the diameter of the carbon nanotube assembly line bundle of the present disclosure is preferably 1 ⁇ m or more and 1000 ⁇ m or less.
  • the diameter of the carbon nanotube assembly line bundle is preferably 10 ⁇ m or more and 1000 ⁇ m or less.
  • the twist angle of the carbon nanotube assembly wire bundle of the present disclosure is preferably 0 ° or more and 4 ° or less.
  • the twist angle of the carbon nanotube assembly wire bundle is preferably 0 ° or more and 3 ° or less.
  • a carbon nanotube aggregate wire bundle manufacturing apparatus having the same configuration as the carbon nanotube aggregate wire bundle manufacturing apparatus whose outline is shown in FIG. 12 was prepared. Specifically, the carbon nanotube growing portion 21 and the carbon nanotube collecting portion 24 are arranged in the electric furnace 28.
  • the CNT growth portion is composed of a quartz tube having an inner diameter of 20 mm and a length of 800 mm.
  • a honeycomb structure made of ceramics is arranged in a quartz tube continuous with the CNT growth portion.
  • the honeycomb structure has 200 through holes / inch (200 cpsi), and the cross-sectional area of one through hole is 1.96 mm 2 .
  • the catalyst supply unit 23 is arranged on the side opposite to the side continuous with the CNT gathering unit 24 of the CNT growth unit 21.
  • the catalyst supply section 23 is made of a quartz tube having an inner diameter of 20 mm and a length of 200 mm, and is arranged continuously with the CNT growth section. Ferrocene is arranged as a catalyst on the catalyst holder 26 in the catalyst supply unit 23.
  • the catalyst supply unit 23 is heated by the heater 25.
  • the gas supply unit 22 is arranged on the side of the catalyst supply unit 23 opposite to the side connected to the CNT growth unit 21.
  • a liquid adhering device 51 for adhering the volatile liquid 53, a throttle 55, and a winding device 52 are arranged on the downstream side of the CNT collecting unit 24, a liquid adhering device 51 for adhering the volatile liquid 53, a throttle 55, and a winding device 52 are arranged. Ethanol is sealed in the liquid adhering device 51 as a volatile liquid 53.
  • the honeycomb structure has 400 through holes / inch (400 cpsi), and the cross-sectional area of one through hole is 1.21 mm 2 .
  • the honeycomb structure has 600 through holes / inch (600 cpsi), and the cross-sectional area of one through hole is 0.81 mm 2 .
  • methane gas at a flow rate of 50 cc / min (flow rate 0.17 cm / sec) and carbon disulfide (CS 2 ) gas at a flow rate of 1 cccc / min (flow rate 0.003 cm / sec). It was supplied for 120 minutes.
  • the flow velocity of the entire mixed gas (carbon-containing gas) containing argon gas, methane gas, and carbon disulfide is 3.6 cm / sec.
  • the CNT set line (CNT set line of the sample 2 and the sample 3) emitted from the CNT collecting part was also collected.
  • the degree of orientation of the CNT assembly line of sample 2 was 0.93.
  • the degree of orientation of the CNT assembly line of sample 3 was 0.91.
  • breaking strength The breaking strength of the CNT collecting lines of Sample 2 and Sample 3 was measured.
  • the method for measuring the breaking strength is as follows.
  • a CNT assembly line with a length of about 3 cm was prepared, and both ends were pulled and fixed to a jig plate with an adhesive.
  • the tensile stress until the CNT assembly line having a length of 1 cm in the portion not fixed with the adhesive was broken was measured using a load cell (measuring equipment: "ZTS-5N” manufactured by Imada Co., Ltd.).
  • the breaking strength of the CNT assembly line of Sample 2 was 6.8 GPa.
  • the breaking strength of the CNT assembly line of Sample 3 was 7.2 GPa. These have the same breaking strength as conventional carbon fibers. That is, it was confirmed that the CNT collecting lines of Sample 2 and Sample 3 had excellent breaking strength.
  • Raman spectra were measured for the carbon nanotube assembly line bundles of Samples 1 to 3.
  • the Raman spectra of Samples 1 to 3 are shown in FIG. In FIG. 4, the range of Raman shift 120 cm -1 or more and 210 cm -1 or less is shown as region A, and the range of Raman shift 210 cm -1 more than 280 cm -1 or less is shown as region B. In Raman shift 120 cm -1 or more 280 cm -1 or less in the range of two peaks in the sample 1 is observed, in Sample 2 and Sample 3, the three peaks each observed.
  • FIG. 5 is a diagram showing an optical micrograph of the CNT assembly line bundle of Sample 1.
  • the area surrounded by the rectangle corresponds to the area where Raman mapping is performed.
  • FIG. 6 is a diagram showing a Raman mapping image in region A of the Raman spectrum of the CNT set line bundle of sample 1.
  • FIG. 7 is a diagram showing a Raman mapping image in region B of the Raman spectrum of the CNT set line bundle of sample 1. The area surrounded by the rectangle in FIGS. 6 and 7 is the area where Raman mapping is performed.
  • FIG. 8 is a diagram showing an optical micrograph of the CNT assembly line bundle of sample 2.
  • the area surrounded by the rectangle corresponds to the area where Raman mapping is performed.
  • FIG. 9 is a diagram showing a Raman mapping image in the region A of the Raman spectrum of the CNT set line bundle of the sample 2.
  • FIG. 10 is a diagram showing a Raman mapping image in region B of the Raman spectrum of the CNT set line bundle of sample 2.
  • the area surrounded by the rectangle in FIGS. 9 and 10 is the area where Raman mapping is performed.
  • the CNT set line bundle of sample 1 has an integrated intensity ratio IB / IA of less than 0.1, which corresponds to a comparative example.
  • Samples 2 and 3 have an integrated intensity ratio of IB / IA of 0.1 or more, and correspond to Examples. It was confirmed that the breaking strength of Sample 2 and Sample 3 was superior to the breaking strength of Sample 1.

Abstract

複数のカーボンナノチューブを含むカーボンナノチューブ集合線であって、前記カーボンナノチューブ集合線のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上である。

Description

カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル
 本開示は、カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドルに関する。本出願は、2019年9月3日に出願した日本特許出願である特願2019-160768号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 炭素原子が六角形に結合したグラフェンシートを円筒状にした構造のカーボンナノチューブ(以下、CNTとも記す。)は、銅の1/5の軽さで鋼鉄の20倍の強度、金属的な導電性という優れた特性を持つ素材である。このため、カーボンナノチューブを用いた電線は、特に自動車用モータの軽量化、小型化及び耐食性の向上に貢献する素材として期待されている。
 カーボンナノチューブは、例えば、特許文献1(特開2005-330175号公報)に示されるように、鉄などの微細触媒を加熱しつつ、炭素を含む原料ガスを供給することで触媒からカーボンナノチューブを成長させる気相成長法により得られる。
特開2005-330175号公報
Agnieszka Lekawa-Raus et al."Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring",Advanced Functional Materials,Vo.24,p.p.3661-3682(2014).DOI:10.1002/adfm.201303716
 本開示の一態様に係るカーボンナノチューブ集合線は、
 複数のカーボンナノチューブを含むカーボンナノチューブ集合線であって、
 前記カーボンナノチューブ集合線のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上である、カーボンナノチューブ集合線である。
 本開示の他の一態様に係るカーボンナノチューブ集合線バンドルは、
 上記のカーボンナノチューブ集合線を複数備えるカーボンナノチューブ集合線バンドルであって、
 前記カーボンナノチューブ集合線バンドルのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上であり、
 前記カーボンナノチューブ集合線において、前記カーボンナノチューブが0.9以上1以下の配向度で配向し、
 前記カーボンナノチューブ集合線バンドルにおいて、前記カーボンナノチューブ集合線は0.8以上1以下の配向度で配向している、カーボンナノチューブ集合線バンドルである。
図1は、本開示の一実施形態に係るカーボンナノチューブ集合線の代表的な構成例を説明する図である。 図2は、本開示の一実施形態で用いられるカーボンナノチューブの一例を示す図である。 図3は、本開示の一実施形態に係るカーボンナノチューブ集合線バンドルの代表的な構成例を説明する図である。 図4は、本開示の一実施形態に係るカーボンナノチューブ集合線バンドルのラマンスペクトルを示す図である。 図5は、実施例の試料1のカーボンナノチューブ集合線バンドルの光学顕微鏡写真である。 図6は、試料1のラマンスペクトルの領域Aにおけるラマンマッピング像を示す図である。 図7は、試料1のラマンスペクトルの領域Bにおけるラマンマッピング像を示す図である。 図8は、実施例の試料2のカーボンナノチューブ集合線バンドルの光学顕微鏡写真である。 図9は、試料2のラマンスペクトルの領域Aにおけるラマンマッピング像を示す図である。 図10は、試料2のラマンスペクトルの領域Bにおけるラマンマッピング像を示す図である。 図11は、本開示の一実施形態に係るカーボンナノチューブ集合線製造装置の代表的な構成例を説明する図である。 図12は、本開示の一実施形態に係るカーボンナノチューブ集合線バンドル製造装置の代表的な構成例を説明する図である。
 [本開示が解決しようとする課題]
 現在のカーボンナノチューブの作製技術で得られるカーボンナノチューブは、その径が約0.4nm~20nm、かつ、長さが最大55cmである。カーボンナノチューブを高強度材として用いるためには、より長いカーボンナノチューブが必要であり、カーボンナノチューブを長尺化できる技術が検討されている。
 カーボンナノチューブを長尺化する方法として、複数のカーボンナノチューブを長手方向に配向させて集め、集合線とする方法が考えられる。
 そのような方法の一つとして、無配向の複数のCNTを分散剤(界面活性剤やポリマー等)と混合し、繊維状に射出成形することにより、CNT集合線を得る方法が検討されている(非特許文献1)。この方法では、CTN集合線作製後に分散剤を除去する工程を行う。しかし、分散剤の一部は、CNT集合線中に残留する。このため、CNTが有する機械的強度が低下する傾向があった。
 そこで、本開示は、優れた機械的強度を有するCNT集合線及びCNT集合線バンドルを提供することを目的とする。
 [本開示の効果]
 上記態様によれば、優れた機械的強度を有するCNT集合線及びCNT集合線バンドルを提供することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係るカーボンナノチューブ集合線は、
 複数のカーボンナノチューブを含むカーボンナノチューブ集合線であって、
 前記カーボンナノチューブ集合線のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上である、カーボンナノチューブ集合線である。
 上記態様によれば、優れた機械的強度を有するCNT集合線を提供することが可能となる。
 (2)前記比IB/IAが0.1以上10以下であることが好ましい。
 これによると、CNT集合線は更に優れた機械的強度を有することができる。
 (3)前記カーボンナノチューブ集合線において、前記複数のカーボンナノチューブは0.9以上1以下の配向度で配向していることが好ましい。
 これによると、CNT集合線は更に優れた機械的強度を有することができる。
 (4)本開示の他の一態様に係るカーボンナノチューブ集合線は、
 上記のカーボンナノチューブ集合線を複数備えるカーボンナノチューブ集合線バンドルであって、
 前記カーボンナノチューブ集合線バンドルのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上であり、
 前記カーボンナノチューブ集合線において、前記カーボンナノチューブが0.9以上1以下の配向度で配向し、
 前記カーボンナノチューブ集合線バンドルにおいて、前記カーボンナノチューブ集合線は0.8以上1以下の配向度で配向している、カーボンナノチューブ集合線バンドルである。
 上記態様によれば、優れた機械的強度を有するカーボンナノチューブ集合線バンドルを提供することができる。
 (5)前記カーボンナノチューブ集合線バンドルの撚り角度は0°以上5°以下であることが好ましい。
 これによると、CNT集合線バンドルは更に優れた機械的強度を有することができる。
 [本開示の実施形態の詳細]
 本開示の一実施形態にかかるカーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドルの具体例を、以下に図面を参照しつつ説明する。
 本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。また、範囲の上限値がCであるとは、範囲の上限がC以下であることを意味し、範囲の下限値がDであるとは、範囲の下限がD以上であることを意味する。
 [実施の形態1:カーボンナノチューブ集合線]
 <カーボンナノチューブ集合線>
 図1は本開示の一実施形態に係るカーボンナノチューブ集合線(以下、「CNT集合線」とも記す。)の代表的な構成例を説明する図である。図1に示されるように、本実施形態に係るカーボンナノチューブ集合線1は、複数のカーボンナノチューブ2を含むカーボンナノチューブ集合線1であって、カーボンナノチューブ集合線1のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上である。
 (CNT集合線のラマンスペクトル)
 本開示の一実施形態におけるCNT集合線は、そのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IA(以下、「積分強度比IB/IA」とも記す。)が0.1以上である。
 ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAは、CNT集合線を構成するCNTのうち、その径が1.2nm超2.1nm以下のCNTに由来する。ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBは、CNT集合線を構成するCNTのうち、その径が0.9nm以上1.2nm以下のCNTに由来する。従って、積分強度比IB/IAが大きいほど、CNT集合線において、径が1.2nm超2.1nm以下のCNTに対する、径が0.9nm以上1.2nm以下のCNTの割合が大きいことを示す。
 本発明者らが鋭意検討した結果、積分強度比IB/IAが0.1以上であると、CNT集合線は優れた破断強度を有することが新たに見出された。この理由は、細径CNTがCNT集合線の間隙に充填されることで密度が向上し、隣接するCNTの間で生ずるすべりが抑制されるためと推察される。
 積分強度比IB/IAの下限は0.1であり、0.5が好ましく、1.0がより好ましい。積分強度比IB/IAの上限は特に限定されないが、例えば10とすることができる。積分強度比IB/IAは、0.1以上であり、0.1以上10以下が好ましく、0.5以上10以下がより好ましく、1.0以上10以下が更に好ましい。
 本明細書におけるCNT集合線のラマンスペクトルの測定及び評価方法について、下記(A1)~(A3)に説明する。
 (A1)ラマンスペクトルの測定
 下記の装置及び測定条件を用いて、CNT集合線のラマンスペクトルを得る。
 〔ラマン分光分析の測定条件〕
 ラマン分光装置:Renishaw社製「inVia Raman microscope」(商標)
 波長:532nm
 レーザー強度:0.3mW
 対物レンズ倍率:50倍
 スポット径:1μm
 (A2)積分強度の測定
 上記の測定条件において、1本のCNT集合線表面を走査して、測定点300ポイント以上におけるラマンスペクトルを得る。各測定点におけるラマンスペクトルをローレンツ関数でフィッティングし、シグナル強度、位置、半値幅(FWHM)を求める。これらの値を用いて、各測定点のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度Ia、及び、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度Ibを求める。
 (A3)積分強度比IB/IAの算出
 上記(A2)で得られた300ポイント以上の各測定点の積分強度Ia及びIbに基づき、各測定点の積分強度比Ib/Iaを算出する。300ポイント以上の各測定点の積分強度比Ib/Iaの平均値を算出する。該平均値が、積分強度比IB/IAに該当する。
 (カーボンナノチューブの形状)
 カーボンナノチューブとしては、公知の構造のCNTを用いることができる。例えば、炭素の層(グラフェン)が1層だけ筒状になっている単層カーボンナノチューブや、炭素の層が複数層積層した状態で筒状になっている二層カーボンナノチューブ又は多層カーボンナノチューブ、底が抜けた紙コップの形をしたグラフェンが積層をした構造を有するカップスタック型ナノチューブ等を用いることができる。
 カーボンナノチューブの形状はとくに限定されず、先端が閉じているものまたは先端が開孔しているもののいずれも用いることができる。また、図2に示されるように、カーボンナノチューブ2のチューブ部Tの一方又は両方の端部に、カーボンナノチューブの作製時に用いた触媒Pが付着していてもよい。又、カーボンナノチューブ2のチューブ部Tの一方又は両方の端部には円錐状のグラフェンからなるコーン部Cが形成されていてもよい。
 カーボンナノチューブの長さは、用途によって適宜選択することができる。カーボンナノチューブの長さは、例えば、10μm以上が好ましく、100μm以上が更に好ましい。特に、カーボンナノチューブの長さが100μm以上であると、CNT集合線の作製の観点から好適である。カーボンナノチューブの長さの上限値は特に制限されないが、製造上の観点からは、600mm以下が好ましい。CNTの長さは10μm以上600mm以下が好ましく、100μm以上600mm以下が更に好ましい。CNTの長さは、走査型電子顕微鏡で観察することにより測定することができる。
 カーボンナノチューブの径の下限は、0.6nmが好ましく、0.7nmがより好ましく、0.8nmが更に好ましい。CNTの径の上限は20nmが好ましく、10nmがより好ましく、5nmが更に好ましい。CNTの径は0.6nm以上20nm以下が好ましく、0.7nm以上10nm以下がより好ましく、0.8nm以上5nm以下が更に好ましい。特に、カーボンナノチューブの径が0.8nm以上5nm以下であると、CNT集合線の高密度化による破断強度向上の観点から好適である。
 本明細書においてカーボンナノチューブの径とは、一のCNTの平均外径を意味する。CNTの平均外径は、CNTの任意の2カ所における断面を透過型電子顕微鏡により直接観察し、該断面において、CNTの外周上の最も離れた2点間の距離である外径を測定し、得られた外径の平均値を算出することにより得られる。CNTが一方又は両方の端部にコーン部を含む場合は、コーン部を除く場所において径を測定する。
 (カーボンナノチューブ集合線の形状)
 本実施形態に係るカーボンナノチューブ集合線1は、複数のカーボンナノチューブ2を含む。カーボンナノチューブ集合線は、複数のカーボンナノチューブがそれらの長手方向に配向して集合した糸形状であることが好ましい。
 カーボンナノチューブ集合線の長さは特に限定されず、用途によって適宜調節することができる。CNT集合線の長さは、例えば、100μm以上が好ましく、1000μm以上がより好ましく、10cm以上が更に好ましい。CNT集合線の長さの上限値は特に制限されないが、製造上の観点からは、1m以下が好ましい。CNT集合線の長さは、100μm以上1m以下、1000μm以上1m以下、10cm以上1m以下とすることができる。CNT集合線の長さは、走査型電子顕微鏡、光学顕微鏡又は目視で観察することにより測定することができる。
 カーボンナノチューブ集合線の径の大きさは特に限定されず、用途によって適宜調節することができる。CNT集合線の径は、例えば、0.1μm以上が好ましく、1μm以上が更に好ましい。CNT集合線の径の上限値は特に制限されないが、製造上の観点からは、100μm以下が好ましい。CNT集合線の径は、0.1μm以上100μm以下、1μm以上100μm以下とすることができる。本実施形態において、CNT集合線の径の大きさは、CNT集合線の長さよりも小さい。すなわち、CNT集合線の長さ方向が長手方向に該当する。
 本明細書においてカーボンナノチューブ集合線の径とは、一のCNT集合線の平均外径を意味する。一のCNT集合線の平均外径は、一のCNT集合線の任意の2箇所における断面を透過型電子顕微鏡又は走査型電子顕微鏡で観察し、該断面においてCNT集合線の外周上の最も離れた2点間の距離である外径を測定し、得られた外径の平均値を算出することにより得られる。
 (配向度)
 本開示の一実施形態におけるCNT集合線において、複数のカーボンナノチューブは0.9以上1以下の配向度で配向していることが好ましい。
 本明細書において、CNTの配向度とは下記(a1)~(a6)の手順により算出される値である。
 (a1)CNT集合線の撮像
 下記の機器を用いて、下記の条件で、CNT集合線を撮像する。
 透過型電子顕微鏡(TEM):JEOL社製「JEM2100」(商標)
 撮像条件:倍率5万倍~120万倍、加速電圧60kV~200kV。
 なお、出願人が測定した限りでは、同一の試料において測定する限りにおいて、後述する配向度の測定結果を測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどないことが確認された。
 (a2)撮像された画像の二値化処理
 上記(a1)で撮像された画像に対して、下記の画像処理プログラムを用いて、下記の手順に従い二値化処理を施す。
 画像処理プログラム:非破壊による紙の表面繊維配向解析プログラム「FiberOri8single03」(http://www.enomae.com/FiberOri/index.htm)
処理手順:
1.ヒストグラム平均輝度補正
2.バックグラウンド除去
3.単一閾値による二値化
4.輝度反転
 (a3)二値化処理された画像のフーリエ変換
 上記(a2)で得られた画像に対して、上記と同一の画像処理プログラム(非破壊による紙の表面繊維配向解析プログラム「FiberOri8single03」(http://www.enomae.com/FiberOri/index.htm)を用いてフーリエ変換を行う。
 (a4)配向角度と配向強度の計算
 フーリエ変換画像で、X軸正方向を0°として、反時計回りの角度(θ°)に対する平均振幅を計算する。
 フーリエ変換画像から、配向角度と配向強度との関係を示すグラフを得る。
 (a5)半値幅の測定
 上記のグラフに基づき、半値全幅(FWHM:full width at half maximum)を測定する。
 (a6)配向度の算出
 上記の半値全幅に基づき、下記式(1)により、配向度を算出する。
 配向度=(180°-半値全幅)/180°  (1)
 配向度が0の場合は、完全無配向を意味する。配向度が1の場合は完全配向を意味する。
 本実施形態に係るカーボンナノチューブ集合線において、複数のカーボンナノチューブが0.9以上1.0以下の配向度で配向している。これは、本実施形態のCNT集合線において、複数のCNTの配向性が高いことを意味する。これにより、本実施形態に係るCNT集合線はCNTが有する電気伝導度や機械的強度の特性を維持したまま、長尺化することができる。
 CNT集合線におけるCNTの配向度が0.9未満であると、電気伝導度や機械的強度が低下する傾向がある。配向度の下限値は、0.93が好ましく、0.94がより好ましく、0.95が更に好ましい。配向度の上限値は、0.99が好ましく、1がより好ましい。CNT集合線におけるCNTの配向度は0.93以上0.99以下、0.94以上0.99以下、0.95以上0.99以下、0.93以上1以下、0.94以上1以下、0.95以上1以下とすることができる。
 (カーボンナノチューブのD/G比)
 カーボンナノチューブは、波長532nmのラマン分光分析におけるGバンドのピーク強度とDバンドのピーク強度との比であるD/G比が0.1以下であることが好ましい。
 Gバンドとは、ラマン分光分析法により得られるラマンスペクトルにおいて、ラマンシフト1590cm-1付近に見られるCNTに由来するピークである。Dバンドとは、ラマン分光分析法により得られるラマンスペクトルにおいて、ラマンシフト1350cm-1付近に見られるアモルファスカーボンや、グラファイト、CNTの欠陥に由来するピークである。従って、D/G比の値が小さいほど、カーボンナノチューブの結晶性が高く、カーボンナノチューブに含まれるアモルファスカーボンや欠陥を有するグラファイトの量が少ないことを示す。
 CNTのD/G比が0.1以下であると、アモルファスカーボンやグラファイトの欠陥が少なく、結晶性が高い。よって該CNTは、高い引張強度と、高い電気導電率を有することができる。CNTのD/G比が0.1を超えると、CNTが十分な引張強度と高い電気導電率を有することができない場合がある。D/G比は0.1以下が好ましく、0.01以下がより好ましい。D/G比の下限値は特に制限されないが、例えば、0以上とすることができる。CNTのD/G比は、0以上0.1以下、0以上0.01以下とすることができる。
 本明細書中、カーボンナノチューブ集合線中のカーボンナノチューブのD/G比は、下記の方法により測定される値である。
 カーボンナノチューブ集合線について、下記の条件でラマン分光分析を行い、ラマンスペクトル(以下、CNT集合線のラマンスペクトルとも記す。)を得る。該CNT集合線のラマンスペクトルにおいて、Gバンドのピーク強度とDバンドのピーク強度とからD/G比を算出する。該CNT集合線のD/G比を、カーボンナノチューブ集合線中のカーボンナノチューブのD/G比と見做す。
 〔ラマン分光分析の測定条件〕
 ラマン分光装置:Renishaw社製「inVia Raman microscope」(商標)
 波長:532nm
 レーザー強度:17mW
 露光時間:1秒
 平均回数:3回
 対物レンズ倍率:50倍
 本実施形態に係るCNT集合線中のCNTのD/G比を、CNT集合線のD/G比と同一と見做す理由は下記の通りである。
 本発明者らは、集合線化される前の複数のカーボンナノチューブについてラマン分光分析を上記と同一の条件で行い、ラマンスペクトル(以下、CNTラマンスペクトルとも記す。)を得た。得られた複数のCNTラマンスペクトルのそれぞれにおいて、Gバンドのピーク強度とDバンドのピーク強度とからD/G比を算出した。
 次に、該カーボンナノチューブを集合線化させて、CNT集合線を準備した。該CNT集合線について、上記の条件でラマン分光分析を行い、ラマンスペクトル(以下、CNT集合線ラマンスペクトルとも記す。)を得た。該CNT集合線ラマンスペクトルにおいて、Gバンドのピーク強度とDバンドのピーク強度とからD/G比を算出した。
 上記で算出された集合線化される前の複数のカーボンナノチューブのD/G比のデータを平均化した値と、CNT集合線のD/G比の値とはほぼ同一であることが確認された。これは、集合線化される前のカーボンナノチューブのD/G比が、CNT集合線中のCNTにおいて維持されていることを示す。従って、本明細書中、CNT集合線中のカーボンナノチューブのD/G比は、集合線化される前のCNTのD/G比と同一と見做すことができる。
 (触媒由来元素)
 カーボンナノチューブ集合線は、鉄、ニッケル、コバルト、モリブデン、金、銀、銅、イットリウム、クロム、パラジウム、白金及びタングステンからなる群より選択される少なくとも1種の金属元素を含み、該金属元素は、前記カーボンナノチューブ集合線の長手方向に分散していることが好ましい。ここで、金属元素がCNT集合線の長手方向に分散しているとは、金属元素がCNT集合線の長手方向において偏在していないことを意味する。
 これらの金属元素は、CNT集合線の製造時に触媒(フェロセン(Fe(C)、ニッケロセン(Ni(C)、コバルトセン(Co(C等)を使用した場合における、これらの触媒に由来するものである。CNT集合線において、これらの金属元素がCNT集合線の長手方向に分散して存在していると、金属元素がCNTの有する電気伝導度の特性に影響を与えることなく、CNT集合線は本来有する電気伝導度を維持したまま、長尺化することができる。
 CNT集合線に含まれる金属元素の種類、及び、その含有量は、エネルギー分散型X線分析(Energy dispersive X-ray spectrometry、EDX)により確認及び測定することができる。CNT集合線における金属元素の合計含有量は原子数基準で0.1%以上50%以下が好ましく、1%以上40%以下がより好ましく、5%以上20%以下が更に好ましい。
 CNT集合線に含まれる金属元素がカーボンナノチューブ集合線の長手方向に分散していることは、SEMやTEM等の電子顕微鏡と同時計測可能なEDXや、電子エネルギー損失分光分析(Electron energy loss spectrometry、EELS)により確認することができる。
 カーボンナノチューブ集合線は、硫黄元素を含み、該硫黄元素は、前記カーボンナノチューブ集合線の長手方向に分散していることが好ましい。ここで、硫黄元素がCNT集合線の長手方向に分散しているとは、硫黄元素がCNT集合線の長手方向において偏在していないことを意味する。
 硫黄元素は、CNT集合線の製造時に補助触媒(CS)を使用した場合における、該補助触媒に由来するものである。CNT集合線において、硫黄元素がCNT集合線の長手方向に分散して存在していると、硫黄元素がCNTの有する電気伝導度や機械的強度等の特性に影響を与えることなく、CNT集合線はこれらの特性を維持したまま、長尺化することができる。
 CNT集合線が硫黄元素を含むこと、及び、CNT集合線中の硫黄元素の含有量は、EDX、熱重量分析、X線光電子分光法により確認及び測定することができる。CNT集合線における硫黄元素の含有量は、原子数基準で0.1%以上20%以下が好ましく、1%以上15%以下がより好ましく、2%以上10%以下が更に好ましい。
 CNT集合線に含まれる硫黄元素がカーボンナノチューブ集合線の長手方向に分散していることは、SEMやTEM等の電子顕微鏡と同時計測可能なEDXや、EELSにより確認することができる。
 (CNT集合線の製造方法)
 本実施形態に係るカーボンナノチューブ集合線は、例えば、図11に示されるカーボンナノチューブ集合線製造装置20を用いて、下記の方法で製造することができる。
 カーボンナノチューブ集合線製造装置20は、管状のカーボンナノチューブ成長部(以下、CNT成長部とも記す)21と、CNT成長部21の中にCNT成長部21の一方の端部(図11において右側の端部)から炭素含有ガスを供給するガス供給部22と、CNT成長部21内に触媒粒子Pを供給する触媒供給部23と、CNT成長部21の他方の端部側(図11において左側の端部)に配置され、CNT成長部21で得られた複数のカーボンナノチューブを炭素含有ガスの流れに沿う方向に配向して集合させるカーボンナノチューブ集合部24(以下、CNT集合部とも記す)とを備えることができる。
 触媒供給部はヒータ25により加熱される。カーボンナノチューブ成長部21は、電気炉28内に配置され、ヒータ(図示せず)によって加熱される。カーボンナノチューブ集合部24には、ハニカム構造体29が設けられている。ハニカム構造体29は多数の細い筒状の貫通孔291を有する多孔体であり、各貫通孔の断面積は0.01mm以上4mm以下、各貫通孔の長さは10mm以上200mm以下とするこができる。
 ガス供給部22から触媒供給部23内にアルゴンガスを供給しつつ、電気炉内の温度を1000℃まで昇温する。次に、アルゴンガスに加えて、メタンガス、及び、二硫化炭素(CS)ガスを供給する。
 上記のアルゴンガス、メタンガス、二硫化炭素ガスの供給により、触媒保持具26上に配置された触媒27が崩壊して触媒粒子がCNT成長部21内に放出される。ガス供給部22から触媒供給部23を通じてCNT成長部21内触媒粒子に炭素含有ガスを供給することにより、触媒粒子Pから、カーボンナノチューブ2が成長する。
 カーボンナノチューブ2は、CNT集合部24に設けられたハニカム構造体29の貫通孔291を通過する。このとき、CNT2の端部に引張力が作用することで、触媒粒子Pから延びるCNTが引っ張られ、塑性変形して縮径しつつ長手方向に伸長される。なお、引張力は、炭素含有ガスの流速の変化に由来する。
 また、複数のCNT2は、ハニカム構造体29の貫通孔を通過する際に、炭素含有ガスの流れに沿う方向に配向して集合し、カーボンナノチューブ集合線が形成される。
 [実施の形態2:カーボンナノチューブ集合線バンドル]
 図3は、本開示の一実施形態に係るカーボンナノチューブ集合線バンドル(以下、「CNT集合線バンドル」とも記す。)の代表的な構成例を説明する図である。図3に示されるように、本実施形態に係るカーボンナノチューブ集合線バンドル3は、複数のカーボンナノチューブ集合線1を備え、該カーボンナノチューブ集合線バンドルのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上であり、該カーボンナノチューブ集合線1において、カーボンナノチューブ2が0.9以上1以下の配向度で配向し、該カーボンナノチューブ集合線バンドル3において、カーボンナノチューブ集合線1が0.8以上1以下の配向度で配向している。
 (カーボンナノチューブ集合線バンドルの構成)
 カーボンナノチューブ集合線バンドル3を構成するカーボンナノチューブ集合線1としては、実施の形態1のCNT集合線を用いることができる。また、該CNT集合線1を構成するカーボンナノチューブ2としては、実施の形態1に記載したカーボンナノチューブと同一のものを用いることができる。
 (ラマンスペクトル)
 本開示の一実施形態におけるCNT集合線バンドルは、そのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IA(以下、「積分強度比IB/IA」とも記す。)が0.1以上である。
 ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAは、CNT集合線バンドルを構成するCNTのうち、その径が1.2nm超2.1nm以下のCNTに由来する。ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBは、CNT集合線バンドルを構成するCNTのうち、その径が0.9nm以上1.2nm以下のCNTに由来する。従って、積分強度比IB/IAが大きいほど、CNT集合線バンドルにおいて、径が1.2nm超2.1nm以下のCNTに対する、径が0.9以上1.2nm以下のCNTの割合が大きいことを示す。
 本発明者らが鋭意検討した結果、積分強度比IB/IAが0.1以上であると、CNT集合線バンドルは優れた破断強度を有することが新たに見出された。この理由は、細径CNTがCNT集合線の間隙に充填されることで密度が向上し、隣接するCNTの間で生ずるすべりが抑制されるためと推察される。
 積分強度比IB/IAの下限は0.1であり、0.5が好ましく、1.0がより好ましい。積分強度比IB/IAの上限は特に限定されないが、例えば10とすることができる。積分強度比IB/IAは、0.1以上であり、0.1以上10以下が好ましく、0.5以上10以下がより好ましく、1.0以上10以下が更に好ましい。
 本明細書におけるCNT集合線バンドルのラマンスペクトルの測定及び評価方法は、測定対象をCNT集合線バンドルとする以外は、実施の形態1に記載のCNT集合線のラマンスペクトルの測定及び評価方法と同一であるため、その説明は繰り返さない。
 後述の実施例で作製されたCNT集合線バンドルのラマンスペクトルを図4に示す。図4において、試料2及び試料3が実施例であり、本実施形態のCNT集合線バンドルに該当する。図4において、ラマンシフト120cm-1以上210cm-1以下の範囲は領域Aと示され、ラマンシフト210cm-1超280cm-1以下の範囲は領域Bと示される。試料2及び試料3では、それぞれ3つのピークが観察された。
 なお、出願人がCNT集合線バンドルにおける積分強度比IB/IAと、該CNT集合線バンドルを構成するCNT集合線における積分強度比IB/IAとを比較したところ、両者はほぼ同一の値を示すことが確認された。従って、本明細書において、CNT集合線バンドルにおける積分強度比IB/IAは、該CNT集合線バンドルを構成するCNT集合線における積分強度比IB/IAとも見做すことができる。
 (配向度)
 本実施形態に係るカーボンナノチューブ集合線バンドルにおいては、カーボンナノチューブ集合線において、カーボンナノチューブが0.9以上1以下の配向度で配向し、該カーボンナノチューブ集合線バンドルにおいて、カーボンナノチューブ集合線1が0.8以上1以下の配向度で配向している。これは、本実施形態のCNT集合線バンドルにおいて、CNT及びCNT集合線の配向性が高いことを意味する。これにより、本実施形態に係るCNT集合線バンドルはCNTが有する電気伝導度や機械的強度の特性を維持したまま、長尺化することができる。
 CNT集合線におけるCNTの配向度が0.9未満であると、電気伝導度や機械的強度が低下する傾向がある。配向度の下限値は0.9であり、0.93が好ましく、0.94がより好ましく、0.95が更に好ましい。配向度の上限値は、0.99が好ましく、1がより好ましい。CNT集合線におけるCNTの配向度は0.93以上0.99以下、0.94以上0.99以下、0.95以上0.99以下、0.93以上1以下、0.94以上1以下、0.95以上1以下とすることができる。
 CNT集合線バンドルにおけるCNT集合線の配向度が0.8未満であると、電気伝導度や機械的強度が低下する傾向がある。配向度の下限値は0.8であり、0.83が好ましく、0.85がより好ましい。配向度の上限値は0.95が好ましく、1がより好ましい。CNT集合線バンドルにおけるCNT集合線の配向度は0.8以上0.95以下、0.83以上0.95以下、0.85以上0.95以下、0.8以上1以下、0.83以上1以下、0.85以上1以下とすることができる。
 カーボンナノチューブ集合線におけるCNTの配向度は、実施の形態1に記載したカーボンナノチューブ集合線におけるカーボンナノチューブの配向度の算出方法と同様の方法で算出される値であるため、その説明は繰り返さない。
 カーボンナノチューブ集合線バンドルにおけるCNT集合線の配向度は、基本的には実施の形態1の配向度の算出方法に記載された(a1)~(a6)の手順と同様の手順で算出される値である。異なる点は、(a1)の手順において、下記の機器を用いて、下記の条件で、CNT集合線バンドルを撮像する点である。
 走査型電子顕微鏡(SEM:Scanning Electron Microscopy):テクネックス工房社製「Cry-10」(商標)
 撮像条件:倍率40倍~10万倍、加速電圧1kV~17k
 上記以外の工程は、実施の形態1の配向度の算出方法に記載された方法と同一であるため、その説明は繰り返さない。
 (形状)
 カーボンナノチューブ集合線バンドルの形状は、複数のカーボンナノチューブ集合線がそれらの長手方向に配向して集合した紐形状である。CNT集合線バンドルが、複数のカーボンナノチューブ集合線がそれらの長手方向に配向して集合した紐形状であることは、光学顕微鏡又は走査型電子顕微鏡で観察することにより確認することができる。
 カーボンナノチューブ集合線バンドルの長さは特に限定されず、用途によって適宜調節することができる。CNT集合線バンドルの長さは、例えば、100μm以上が好ましく、1000μm以上がより好ましく、10cm以上が更に好ましい。CNT集合線バンドルの長さの上限値は特に制限されないが、製造上の観点からは、1m以下が好ましい。CNT集合線バンドルの長さは、100μm以上1m以下、1000μm以上1m以下、10cm以上1m以下が好ましい。CNT集合線バンドルの長さは、光学顕微鏡又は目視で観察することにより測定することができる。
 カーボンナノチューブ集合線バンドルの径の大きさは特に限定されず、用途によって適宜調節することができる。CNT集合線バンドルの径は、例えば、1μm以上が好ましく、10μm以上が更に好ましい。CNT集合線バンドルの径の上限値は特に制限されないが、製造上の観点からは、1000μm以下が好ましい。CNT集合線バンドルの径は、1μm以上1000μm以下が好ましく、10μm以上1000μm以下が更に好ましい。本実施形態において、CNT集合線バンドルの径の大きさは、CNT集合線バンドルの長さよりも小さい。
 本明細書においてカーボンナノチューブ集合線バンドルの径とは、一のCNT集合線バンドルの平均外径を意味する。一のCNT集合線バンドルの平均外径は、一のCNT集合線バンドルの任意の2箇所における断面を光学顕微鏡で観察し、該断面においてCNT集合線バンドルの外周上の最も離れた2点間の距離である外径を測定し、得られた外径の平均値を算出することにより得られる。
 (撚り角度)
 カーボンナノチューブ集合線バンドルの撚り角度は0°以上5°以下であることが好ましい。これによると、CNT集合線バンドルは更に優れた機械的強度を有することができる。ここでカーボンナノチューブ集合線バンドルの撚り角度とは、カーボンナノチューブ集合線バンドル3の長手方向に対する、カーボンナノチューブ集合線1の角度を意味する。なお、撚り角度は光学顕微鏡を用いて測定し、測定の際は、CNT集合線バンドルの長手方向が一直線となるように配置して測定する。
 カーボンナノチューブ集合線バンドルの撚り角度は0°以上4°以下がより好ましく、0°以上3°以下が更に好ましい。
 (カーボンナノチューブ集合線バンドルの製造方法)
 本実施形態に係るカーボンナノチューブ集合線バンドルは、例えば、図12に示されるカーボンナノチューブ集合線バンドル製造装置500を用いて製造することができる。
 カーボンナノチューブ集合線バンドル製造装置500、実施の形態1に記載のカーボンナノチューブ集合線製造装置20と、カーボンナノチューブ集合線製造装置により得られた複数のカーボンナノチューブ集合線を複数のカーボンナノチューブ集合線の長手方向に沿う方向に配向して束ねてカーボンナノチューブ集合線バンドルを得るバンドル部50とを備えることができる。
 バンドル部50は、カーボンナノチューブ集合線1に揮発性液体53を付着させる液体付着装置51と、液体付着装置51の下流に配置される絞り55と、複数のカーボンナノチューブ集合線に張力を加えながら、複数のカーボンナノチューブ集合線をその長手方向に沿う方向に配向して束ねて巻き取る巻取装置52を備えることができる。揮発性液体としては、例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、メチルエチルケトン、キシレン、アニソール、トルエン、クレゾール、ピロリドン、カルビトール、カルビトールアセテート、水、エポキシモノマー、アクリルモノマーを用いることができる。揮発性液体にはモノマーあるいは樹脂が含まれる。
 まず、実施の形態1のCNT集合線の製造方法と同一の方法で複数のCNT集合線1を得る。該複数のCNT集合線1に揮発性液体53を付着させる。カーボンナノチューブ集合線1に揮発性液体53を付着させる方法としては、例えば、揮発性液体53を霧化して蒸気54とし、該蒸気54をカーボンナノチューブ集合線に噴霧することが挙げられる。なお、揮発性液体はその後蒸発する。
 次に、複数のカーボンナノチューブ集合線1を、巻取装置52で張力を加えながら絞り55に通過させることにより、それらを長手方向に配向して集合させる。これにより、CNT集合線バンドル3が形成される。
 [付記1]
 本開示のカーボンナノチューブ集合線のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAは、0.1以上10以下が好ましい。
 上記比IB/IAは、0.5以上10以下が好ましい。
 上記比IB/IAは、1.0以上10以下が好ましい。
 [付記2]
 本開示のカーボンナノチューブ集合線において、カーボンナノチューブの長さは、10μm以上600mm以下が好ましい。
 上記カーボンナノチューブの長さは、100μm以上600mm以下が好ましい。
 [付記3]
 本開示のカーボンナノチューブ集合線において、カーボンナノチューブの径は、0.6nm以上20nm以下が好ましい。
 上記カーボンナノチューブの径は、0.7nm以上10nm以下が好ましい。
 上記カーボンナノチューブの径は、0.8nm以上5nm以下が好ましい。
 [付記4]
 本開示のカーボンナノチューブ集合線の長さは、100μm以上1m以下が好ましい。
 上記カーボンナノチューブ集合線の長さは、1000μm以上1m以下が好ましい。
 上記カーボンナノチューブ集合線の長さは、10cm以上1m以下が好ましい。
 [付記5]
 本開示のカーボンナノチューブ集合線の径は、0.1μm以上100μm以下が好ましい。
 上記カーボンナノチューブ集合線の径は、1μm以上100μm以下が好ましい。
 [付記6]
 本開示のCNT集合線において、カーボンナノチューブが0.93以上0.99以下の配向度で配向していることが好ましい。
 上記配向度は、0.94以上0.99以下が好ましい。
 上記配向度は、0.95以上0.99以下が好ましい。
 上記配向度は、0.93以上1以下が好ましい。
 上記配向度は、0.94以上1以下が好ましい。
 上記配向度は、0.95以上1以下が好ましい。
 [付記6]
 本開示のカーボンナノチューブのラマンスペクトルにおいて、ラマンシフト1590±20cm-1におけるピーク強度Gと、ラマンシフト1350±20cm-1におけるピーク強度Dとの比D/Gは、0以上0.1以下が好ましい。
 上記比D/Gは、0以上0.01以下が好ましい。
 [付記7]
 本開示のカーボンナノチューブ集合線バンドルのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAは、0.1以上10以下が好ましい。
 上記比IB/IAは、0.5以上10以下が好ましい。
 上記比IB/IAは、1.0以上10以下が好ましい。
 [付記8]
 本開示のカーボンナノチューブ集合線バンドル中のカーボンナノチューブ集合線において、カーボンナノチューブが0.93以上0.99以下の配向度で配向していることが好ましい。
 上記カーボンナノチューブの配向度は、0.94以上0.99以下が好ましい。
 上記カーボンナノチューブの配向度は、0.95以上0.99以下が好ましい。
 上記カーボンナノチューブの配向度は、0.93以上1以下が好ましい。
 上記カーボンナノチューブの配向度は、0.94以上1以下が好ましい。
 上記カーボンナノチューブの配向度は、0.95以上1以下が好ましい。
 [付記9]
 本開示のカーボンナノチューブ集合線バンドルにおいて、カーボンナノチューブ集合線の配向度は0.8以上0.95以下が好ましい。
 上記カーボンナノチューブ集合線の配向度は、0.83以上0.95以下が好ましい。
 上記カーボンナノチューブ集合線の配向度は、0.85以上0.95以下が好ましい。
 上記カーボンナノチューブ集合線の配向度は、0.8以上1以下が好ましい。
 上記カーボンナノチューブ集合線の配向度は、0.83以上1以下が好ましい。
 上記カーボンナノチューブ集合線の配向度は、0.85以上1以下が好ましい。
 [付記10]
 本開示のカーボンナノチューブ集合線バンドルの長さは、100μm以上1m以下が好ましい。
 上記カーボンナノチューブ集合線バンドルの長さは、1000μm以上1m以下が好ましい。
 上記カーボンナノチューブ集合線バンドルの長さは、10cm以上1m以下が好ましい。
 [付記11]
 本開示のカーボンナノチューブ集合線バンドルの径は、1μm以上1000μm以下が好ましい。
 上記カーボンナノチューブ集合線バンドルの径は、10μm以上1000μm以下が好ましい。
 [付記12]
 本開示のカーボンナノチューブ集合線バンドルの撚り角度は0°以上4°以下が好ましい。
 上記カーボンナノチューブ集合線バンドルの撚り角度は0°以上3°以下が好ましい。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 <カーボンナノチューブ集合線バンドル製造装置の準備>
 (装置1)
 装置1として、その概要を図12に示したカーボンナノチューブ集合線バンドル製造装置と同様の構成を有するカーボンナノチューブ集合線バンドル製造装置を準備した。具体的には、電気炉28内にカーボンナノチューブ成長部21及びカーボンナノチューブ集合部24を配置する。CNT成長部は、内径20mm、長さ800mmの石英管からなる。カーボンナノチューブ集合部24としては、セラミックスからなるハニカム構造体がCNT成長部と連続する石英管内に配置されている。ハニカム構造体は、200個/inch(200cpsi)の貫通孔を有し、一の貫通孔の断面積は1.96mmである。
 CNT成長部21のCNT集合部24と連続する側と反対側に触媒供給部23を配置する。触媒供給部23は内径20mm、長さ200mmの石英管からなり、CNT成長部と連続して配置されている。触媒供給部23内の触媒保持具26上に、触媒としてフェロセンが配置されている。触媒供給部23はヒータ25により加熱される。
 触媒供給部23のCNT成長部21と接続している側と反対側に、ガス供給部22が配置されている。
 CNT集合部24の下流側には、揮発性液体53を付着させる液体付着装置51と、絞り55と、巻取装置52が配置されている。液体付着装置51内には、揮発性液体53としてエタノールが封入されている。
 (装置2)
 装置2として、基本的に装置1と同様の構成を有する装置を準備した。装置2では、ハニカム構造体は、400個/inch(400cpsi)の貫通孔を有し、一の貫通孔の断面積は1.21mmである。
 (装置3)
 装置3として、基本的に装置1と同様の構成を有する装置を準備した。装置3では、ハニカム構造体は、600個/inch(600cpsi)の貫通孔を有し、一の貫通孔の断面積は0.81mmである。
 <カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドルの作製>
 装置1~装置3の製造装置を用いて、それぞれ試料1~試料3のカーボンナノチューブ集合線バンドルを作製した。まず、装置1~装置3のそれぞれにおいて、ガス供給部からCNT成長部内にアルゴンガス濃度が100体積%のアルゴンガスを1000cc/minの流量(流速3.4cm/sec)で50分間供給しつつ、電気炉内の温度を1000℃まで昇温した。次に、アルゴンガスに加えて、メタンガスを50cc/minの流量(流速0.17cm/sec)、及び、二硫化炭素(CS)ガスを1cccc/minの流量(流速0.003cm/sec)で120分間供給した。アルゴンガス、メタンガス、二硫化炭素を含む混合ガス(炭素含有ガス)全体の流速は、3.6cm/secである。
 上記のアルゴンガス、メタンガス、二硫化炭素ガスの供給により、触媒が崩壊して触媒粒子がCNT成長部内に放出された。その後、CNT成長部内でCNTが成長した。
 その後、CNT集合部内でCNTが伸長するとともに集合し、CNT集合線が形成された。複数のCNT集合線を巻取装置で巻き取りながら、CNT集合線に揮発性液体(エタノール)を付着させ、その後揮発性液体を蒸発させて、試料1~試料3のCNT集合線バンドルを得た。
 また、装置2及び装置3では、CNT集合部から放出されたCNT集合線(試料2及び試料3のCNT集合線)も採取した。
 <カーボンナノチューブ集合線の測定>
 (配向度)
 試料2及び試料3のカーボンナノチューブ集合線について、配向度を測定した。配向度の算出方法は、実施の形態1に記載した方法と同一の方法であるため、その説明は繰り返さない。
 試料2のCNT集合線の配向度は0.93であった。
 試料3のCNT集合線の配向度は0.91であった。
 (破断強度)
 試料2及び試料3のCNT集合線について、破断強度を測定した。破断強度の測定方法は下記の通りである。
 長さ約3cmのCNT集合線を準備し、その両端を引っ張り治具板に接着剤で固定した。接着剤で固定されていない部分の長さ1cmのCNT集合線が破断するまでの引っ張り応力をロードセル(測定機器:(株)イマダ製「ZTS-5N」)を用いて計測した。
 試料2のCNT集合線の破断強度は6.8GPaであった。試料3のCNT集合線の破断強度は7.2GPaであった。これらは、従来の炭素繊維と同等の破断強度である。すなわち、試料2及び試料3のCNT集合線は優れた破断強度を有することが確認された。
 <カーボンナノチューブ集合線バンドルの測定>
 (配向度)
 試料1~試料3のカーボンナノチューブ集合線バンドルについて、配向度を測定した。CNT集合線におけるCNTの配向度の算出方法は、実施の形態1に記載した方法と同一の方法であるため、その説明は繰り返さない。CNT集合線バンドルにおけるCNT集合線の配向度の算出方法は、実施の形態2に記載した方法と同一の方法であるため、その説明は繰り返さない。結果を表1の「CNT配向度」及び「CNT集合線配向度」に示す。
 (ラマンスペクトル)
 試料1~試料3のカーボンナノチューブ集合線バンドルについて、ラマンスペクトルを測定した。試料1~試料3のラマンスペクトルを図4に示す。図4において、ラマンシフト120cm-1以上210cm-1以下の範囲は領域Aと示され、ラマンシフト210cm-1超280cm-1以下の範囲は領域Bと示される。ラマンシフト120cm-1以上280cm-1以下の範囲において、試料1では2つのピークが観察され、試料2及び試料3では、それぞれ3つのピークが観察された。
 領域A及び領域Bにおいて、各ピークのピーク位置と、該ピーク位置におけるピーク強度、FWHM及び積分強度、並びに、積分強度比IB/IAを測定した。具体的な測定方法は実施の形態1及び実施の形態2に記載した方法と同一の方法であるため、その説明は繰り返さない。結果を表1の「ピーク位置」、「ピーク強度」、「FWHM」及び「積分強度」欄に示す。
Figure JPOXMLDOC01-appb-T000001
 (ラマンマッピング)
 試料1及び試料2のCNT集合線バンドルについて、300ポイントの各測定点における積分強度をプロットし、ラマンマッピングを作成した。結果を図5~図10を用いて説明する。なお、後述の図6、図7、図9及び図10のラマンマッピング像では、積分強度の大きい程、色が薄くなっている。
 図5は、試料1のCNT集合線バンドルの光学顕微鏡写真を示す図である。図5において、矩形で囲まれた領域は、ラマンマッピングが行われた領域に該当する。図6は、試料1のCNT集合線バンドルのラマンスペクトルの領域Aにおけるラマンマッピング像を示す図である。図7は、試料1のCNT集合線バンドルのラマンスペクトルの領域Bにおけるラマンマッピング像を示す図である。図6及び図7において矩形で囲まれた領域が、ラマンマッピングが行われた領域である。
 図6及び図7より、試料1では、領域Aの積分強度が、領域Bの積分強度よりも大きいことが確認された。
 図8は、試料2のCNT集合線バンドルの光学顕微鏡写真を示す図である。図8において、矩形で囲まれた領域は、ラマンマッピングが行われた領域に該当する。図9は、試料2のCNT集合線バンドルのラマンスペクトルの領域Aにおけるラマンマッピング像を示す図である。図10は、試料2のCNT集合線バンドルのラマンスペクトルの領域Bにおけるラマンマッピング像を示す図である。図9及び図10において矩形で囲まれた領域が、ラマンマッピングが行われた領域である。
 図9及び図10より、試料2では、領域Bの積分強度が、領域Aの積分強度よりも大きいことが確認された。
 (撚り角度)
 試料1~試料3のCNT集合線バンドルの撚り角度を、光学顕微鏡で観察することにより測定した。結果を表1の「撚り角度」欄に示す。
 (破断強度)
 試料1~試料3のCNT集合線バンドルの破断強度を測定した。破断強度の測定方法は、上記のCNT集合線の破断強度の測定方法と同一であるため、その説明は繰り返さない。結果を表1の「破断強度」に示す。
 <評価>
 試料1のCNT集合線バンドルは積分強度比IB/IAが0.1未満であり、比較例に該当する。試料2及び試料3は、積分強度比IB/IAが0.1以上であり、実施例に該当する。試料2及び試料3の破断強度は試料1の破断強度よりも優れていることが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 カーボンナノチューブ集合線、2 カーボンナノチューブ、3 カーボンナノチューブ集合線バンドル、20 CNT集合線製造装置、21 CNT成長部、22 ガス供給部、23 触媒供給部、24 カーボンナノチューブ集合部、25 ヒータ、26 触媒保持具、27 触媒、28 電気炉、29 ハニカム構造体、291 貫通孔、50 バンドル部、51 液体付着装置、52 巻取装置、53 揮発性液体、54 蒸気、55 絞り、500 カーボンナノチューブ集合線バンドル製造装置、T チューブ部、C コーン部、P 触媒粒子

Claims (5)

  1.  複数のカーボンナノチューブを含むカーボンナノチューブ集合線であって、
     前記カーボンナノチューブ集合線のラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上である、カーボンナノチューブ集合線。
  2.  前記比IB/IAが0.1以上10以下である、請求項1に記載のカーボンナノチューブ集合線。
  3.  前記カーボンナノチューブ集合線において、前記複数のカーボンナノチューブは0.9以上1以下の配向度で配向している、請求項1又は請求項2に記載のカーボンナノチューブ集合線。
  4.  請求項1から請求項3のいずれか1項に記載のカーボンナノチューブ集合線を複数備えるカーボンナノチューブ集合線バンドルであって、
     前記カーボンナノチューブ集合線バンドルのラマンスペクトルにおいて、ラマンシフト120cm-1以上210cm-1以下の範囲における積分強度IAと、ラマンシフト210cm-1超280cm-1以下の範囲における積分強度IBとの比IB/IAが0.1以上であり、
     前記カーボンナノチューブ集合線において、前記カーボンナノチューブが0.9以上1以下の配向度で配向し、
     前記カーボンナノチューブ集合線バンドルにおいて、前記カーボンナノチューブ集合線は0.8以上1以下の配向度で配向している、カーボンナノチューブ集合線バンドル。
  5.  前記カーボンナノチューブ集合線バンドルの撚り角度は0°以上5°以下である、請求項4に記載のカーボンナノチューブ集合線バンドル。
PCT/JP2020/032598 2019-09-03 2020-08-28 カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル WO2021044964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/639,482 US20220315427A1 (en) 2019-09-03 2020-08-28 Carbon nanotube assembled wire and carbon nanotube assembled wire bundle
JP2021543736A JPWO2021044964A1 (ja) 2019-09-03 2020-08-28
CN202080061114.0A CN114341054A (zh) 2019-09-03 2020-08-28 碳纳米管集合线以及碳纳米管集合线集束

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-160768 2019-09-03
JP2019160768 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021044964A1 true WO2021044964A1 (ja) 2021-03-11

Family

ID=74852914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032598 WO2021044964A1 (ja) 2019-09-03 2020-08-28 カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル

Country Status (4)

Country Link
US (1) US20220315427A1 (ja)
JP (1) JPWO2021044964A1 (ja)
CN (1) CN114341054A (ja)
WO (1) WO2021044964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181692A1 (ja) * 2021-02-25 2022-09-01 住友電気工業株式会社 カーボンナノチューブ集合線の製造方法及びカーボンナノチューブ集合線製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213590A (ja) * 2005-01-04 2006-08-17 National Institute Of Advanced Industrial & Technology 極細単層カーボンナノチューブからなる炭素繊維集合体及びその製造方法
US20070243124A1 (en) * 2004-10-01 2007-10-18 University Of Texas At Dallas Polymer-Free Carbon Nanotube Assemblies (Fibers, Ropes, Ribbons, Films)
JP2015093807A (ja) * 2013-11-12 2015-05-18 独立行政法人産業技術総合研究所 カーボンナノチューブ集合体及びその製造方法
WO2018143466A1 (ja) * 2017-02-03 2018-08-09 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458846B1 (ko) * 2004-11-09 2014-11-07 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 나노섬유 리본과 시트 및 트위스팅 및 논-트위스팅 나노섬유 방적사의 제조 및 애플리케이션
US8329135B2 (en) * 2006-01-06 2012-12-11 National Institute Of Advanced Industrial Science And Technology Aligned carbon nanotube bulk structure having portions different in density
JP5876657B2 (ja) * 2011-03-08 2016-03-02 国立大学法人 筑波大学 カーボンナノ構造体の加工方法ならびに製造方法
EP3409819A4 (en) * 2016-01-29 2019-07-31 Hitachi Zosen Corporation DEVICE FOR PRODUCING A CARBON NANOTUBE THREAD
WO2017164249A1 (ja) * 2016-03-24 2017-09-28 古河電気工業株式会社 カーボンナノチューブ複合体及びカーボンナノチューブ線材
KR102059237B1 (ko) * 2016-10-31 2019-12-30 주식회사 엘지화학 정렬도가 향상된 탄소나노튜브 섬유 집합체 제조 방법
CN109704309A (zh) * 2018-12-07 2019-05-03 深圳烯湾科技有限公司 改性碳纳米管阵列、碳纳米管纤维及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243124A1 (en) * 2004-10-01 2007-10-18 University Of Texas At Dallas Polymer-Free Carbon Nanotube Assemblies (Fibers, Ropes, Ribbons, Films)
JP2006213590A (ja) * 2005-01-04 2006-08-17 National Institute Of Advanced Industrial & Technology 極細単層カーボンナノチューブからなる炭素繊維集合体及びその製造方法
JP2015093807A (ja) * 2013-11-12 2015-05-18 独立行政法人産業技術総合研究所 カーボンナノチューブ集合体及びその製造方法
WO2018143466A1 (ja) * 2017-02-03 2018-08-09 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブの製造方法及びカーボンナノチューブ線材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181692A1 (ja) * 2021-02-25 2022-09-01 住友電気工業株式会社 カーボンナノチューブ集合線の製造方法及びカーボンナノチューブ集合線製造装置

Also Published As

Publication number Publication date
CN114341054A (zh) 2022-04-12
JPWO2021044964A1 (ja) 2021-03-11
US20220315427A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7441799B2 (ja) カーボンナノチューブの製造方法、カーボンナノチューブ集合線の製造方法、カーボンナノチューブ集合線バンドルの製造方法、カーボンナノチューブ製造装置、カーボンナノチューブ集合線製造装置及びカーボンナノチューブ集合線バンドル製造装置
US7754283B2 (en) Continuous production of carbon nanotubes
WO2020138379A1 (ja) カーボンナノチューブ集合線、カーボンナノチューブ集合線バンドル及びカーボンナノチューブ構造体
WO2021044963A1 (ja) カーボンナノチューブ-樹脂複合体及びカーボンナノチューブ-樹脂複合体の製造方法
JP2009221623A (ja) 繊維状集合体及びその製造方法
JP7455805B2 (ja) カーボンナノチューブの製造方法、カーボンナノチューブ集合線の製造方法、カーボンナノチューブ集合線バンドルの製造方法、カーボンナノチューブ製造装置、カーボンナノチューブ集合線製造装置及びカーボンナノチューブ集合線バンドル製造装置
WO2021044964A1 (ja) カーボンナノチューブ集合線及びカーボンナノチューブ集合線バンドル
Sharma et al. Structural and mechanical properties of free-standing multiwalled carbon nanotube paper prepared by an aqueous mediated process
JP5919018B2 (ja) カーボンナノチューブを含有するビニロン繊維およびその製造方法
JP7340527B2 (ja) カーボンナノチューブ複合体集合線、カーボンナノチューブ複合体集合線の熱処理物、カーボンナノチューブ複合体集合線の製造方法、及び、カーボンナノチューブ複合体集合線の熱処理物の製造方法
JP5829544B2 (ja) カーボンナノチューブ集合体およびその製造方法
WO2022181692A1 (ja) カーボンナノチューブ集合線の製造方法及びカーボンナノチューブ集合線製造装置
JP7316822B2 (ja) カーボンナノチューブ線材
TW201043569A (en) Carbon nanotube wire structure and method for making the same
CN117858847A (zh) 碳纳米管集合线的制造方法和碳纳米管集合线制造装置
Sharma et al. Anchoring Effect on the Mechanical Properties of CNTs Grown Carbon Fiber/Polymer Matrix Multi-Scale Composites
Berkmans et al. Nanoscratch technique for aligning multiwalled carbon nanotubes synthesized by the arc discharge method in open air
JP2020164383A (ja) カーボンナノチューブ線材、カーボンナノチューブ線材の製造方法及び電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860604

Country of ref document: EP

Kind code of ref document: A1