WO2021044874A1 - Honeycomb filter and method for manufacturing honeycomb filter - Google Patents

Honeycomb filter and method for manufacturing honeycomb filter Download PDF

Info

Publication number
WO2021044874A1
WO2021044874A1 PCT/JP2020/031601 JP2020031601W WO2021044874A1 WO 2021044874 A1 WO2021044874 A1 WO 2021044874A1 JP 2020031601 W JP2020031601 W JP 2020031601W WO 2021044874 A1 WO2021044874 A1 WO 2021044874A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
honeycomb
honeycomb filter
particles
measured
Prior art date
Application number
PCT/JP2020/031601
Other languages
French (fr)
Japanese (ja)
Inventor
広和 五十嵐
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2021044874A1 publication Critical patent/WO2021044874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01J35/56
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a honeycomb filter and a method for manufacturing a honeycomb filter.
  • Exhaust gas emitted from an internal combustion engine of an automobile or the like contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC), and particulate matter (PM).
  • An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by wash-coating a slurry containing noble metal particles having catalytic activity on a honeycomb-shaped monolithic substrate made of cordierite or the like. Those are common and are used with a honeycomb filter for removing PM.
  • Patent Document 1 contains at least one co-catalyst selected from the group consisting of ceria, zirconia, and ceria-zirconia solid solution as a component of the cell wall as a filter for simultaneously removing the harmful gas and PM.
  • an exhaust gas filter in which pores communicating with adjacent cell holes are formed on the cell wall is disclosed.
  • the cell wall In order to remove PM in the exhaust gas filter, the cell wall is required to have pores having a size suitable for passing exhaust gas and collecting PM.
  • the pore size distribution of the cell wall is affected by the particle size distribution of the particles used as the raw material.
  • Patent Document 1 does not mention the particle size of the ceria-zirconia solid solution, alumina, and the pore-forming material which are the raw materials of the filter. Therefore, in Patent Document 1, there is room for improving the filter performance by changing the pore size distribution of the cell wall.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a honeycomb filter having high filter performance. Another object of the present invention is to provide a method for manufacturing a honeycomb filter having high filter performance.
  • the honeycomb filter of the present invention has a porous cell partition that partitions a plurality of cells serving as an exhaust gas flow path, and an exhaust gas in which an end on the exhaust gas inlet side is opened and an end on the exhaust gas outlet side is sealed.
  • a honeycomb filter including an introduction cell and an exhaust gas discharge cell having an exhaust gas outlet side end open and an exhaust gas inlet side end sealed, wherein the honeycomb fired body is ceria.
  • the average particle size of the ceria-zirconia composite oxide particles including zirconia composite oxide particles and alumina particles is 5 ⁇ m or more and 30 ⁇ m or less, and the average particle size of the alumina particles is measured by SEM. Is 10 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size measured by SEM of the ceria-zirconia composite oxide particles (hereinafter, also referred to as CZ particles) and alumina particles (hereinafter, collectively referred to as raw material particles) constituting the honeycomb fired body is in the above range.
  • the raw material composition for molding the honeycomb molded body to be the honeycomb filter gaps having pores having a size suitable for PM collection after firing are likely to be formed between the raw material particles.
  • pores having a cumulative 50% pore diameter D50 of 5 to 20 ⁇ m in the pore diameter distribution of macropores are likely to be formed.
  • the macropores refer to pores having a pore diameter of 0.1 ⁇ m to 100 ⁇ m measured by the mercury intrusion method. Therefore, the honeycomb filter has high filter performance.
  • the D50 in the pore size distribution of the macropores constituting the honeycomb fired body is preferably 5 to 20 ⁇ m.
  • D50 in the pore size distribution of macropores is 5 to 20 ⁇ m, it has many pores (pores) having a size suitable for collecting PM, so that the collection efficiency of PM is high and the pressure loss is low. can do.
  • D50 in the pore size distribution of macropores is a cumulative 50% pore size obtained from the pore size distribution curve of the honeycomb filter obtained in the range of 0.1 ⁇ m to 100 ⁇ m.
  • a porous cell partition wall that partitions a plurality of cells serving as an exhaust gas flow path, an end portion on the exhaust gas inlet side is opened, and an end portion on the exhaust gas outlet side is sealed.
  • a method for manufacturing a honeycomb filter which comprises a fired exhaust gas cell including an exhaust gas introduction cell and an exhaust gas discharge cell in which the end on the exhaust gas outlet side is opened and the end on the exhaust gas inlet side is sealed.
  • the d50 CZ to be produced is 5 ⁇ m or more and 30 ⁇ m or less
  • the d50 Al measured by laser diffraction of the alumina particles is 10 ⁇ m or more and 30 ⁇ m or less.
  • CZ particles having a d50 CZ of 5 ⁇ m or more and 30 ⁇ m measured by laser diffraction and alumina particles having a d50 Al of 10 ⁇ m or more and 30 ⁇ m or less measured by laser diffraction are used.
  • d50 measured by laser diffraction of CZ particles and alumina particles is in the above range, it is suitable for collecting PM after firing between the raw material particles in the raw material composition for molding the honeycomb molded body to be the honeycomb filter. Gap that becomes pores of a large size is likely to be formed. Therefore, a honeycomb filter having high filter performance can be manufactured.
  • the cumulative 10% particle diameter d10 CZ measured by laser diffraction of the ceria-zirconia composite oxide particles is 1.5 ⁇ m or more, and is measured by laser diffraction of the alumina particles.
  • the cumulative 10% particle diameter d10 Al is preferably 3 ⁇ m or more.
  • FIG. 1A is a perspective view schematically showing an example of the honeycomb filter of the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A
  • FIG. 2 is an SEM photograph of the cut surface of the honeycomb filter produced in Example 1.
  • FIG. 3 is an SEM photograph of the cut surface of the honeycomb filter produced in Comparative Example 1.
  • the honeycomb filter of the present invention has a porous cell partition that partitions a plurality of cells serving as an exhaust gas flow path, and an exhaust gas in which the end on the exhaust gas inlet side is opened and the end on the exhaust gas outlet side is sealed. It is composed of a honeycomb fired body including an introduction cell and an exhaust gas discharge cell in which the end on the exhaust gas outlet side is opened and the end on the exhaust gas inlet side is sealed. In the honeycomb fired body, a plurality of cells are arranged side by side in the longitudinal direction of the honeycomb fired body with the cell partition wall interposed therebetween.
  • the honeycomb fired body contains ceria-zirconia composite oxide particles and alumina particles.
  • the honeycomb fired body is produced by extrusion-molding a raw material composition containing CZ particles, alumina particles, and an inorganic binder, and then firing the mixture. Whether or not the honeycomb filter of the present invention has the above-mentioned components can be confirmed by X-ray diffraction (XRD).
  • the honeycomb filter of the present invention may include a single honeycomb fired body, a plurality of honeycomb fired bodies, or a plurality of honeycomb fired bodies may be bonded by an adhesive. ..
  • an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
  • FIG. 1A is a perspective view schematically showing an example of the honeycomb filter of the present invention
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • a porous cell partition wall 20 for partitioning a plurality of cells 12 and 13 serving as an exhaust gas flow path and an end portion 11a on the exhaust gas inlet side are opened and the exhaust gas outlet side.
  • It is composed of a single honeycomb fired body 11 including an exhaust gas discharge cell 13.
  • the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 are arranged along the longitudinal direction of the honeycomb fired body (direction indicated by the double-headed arrow a in FIG. 1A) with the cell partition wall 20 interposed therebetween.
  • the exhaust gas enters the exhaust gas introduction cell 12 that opens at the end portion 11a on the exhaust gas inlet side, passes through the cell partition wall 20, and then on the exhaust gas outlet side. It is discharged from the exhaust gas discharge cell 13 that opens to the end portion 11b.
  • the honeycomb filter 10 is composed of a single honeycomb fired body 11
  • the honeycomb fired body 11 is also the honeycomb filter itself.
  • the average particle size of CZ particles measured by SEM is 5 ⁇ m or more and 30 ⁇ m or less, and the average particle size of alumina particles measured by SEM is 10 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size of the CZ particles and alumina particles constituting the honeycomb fired body is determined by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, for example, S-4800 manufactured by Hitachi High-Tech). be able to. First, a region of 200 ⁇ m ⁇ 500 ⁇ m was randomly selected from an image obtained by magnifying the cut surface of the cell partition wall obtained by cutting the honeycomb fired body 250 times with SEM (acceleration voltage: 15 kV), and all CZs existing in this region were selected. Count the number and area of particles and alumina particles. The projected area equivalent diameter (diameter) is calculated from the area of each particle, and the average value is taken as the average particle diameter. However, due to the resolution of SEM, particles with an area of 0.1 ⁇ m 2 or less are excluded from the measurement range. In SEM observation, the CZ particles and the alumina particles have different shades of color, so that they can be easily distinguished.
  • SEM scanning electron microscope
  • the porosity of the cell partition wall of the honeycomb fired body is 40 to 80% by volume.
  • the porosity of the cell partition wall of the honeycomb fired body is 40 to 80% by volume, both high mechanical strength and exhaust gas purification performance can be achieved at the same time.
  • the porosity of the cell partition wall of the honeycomb fired body can be measured by the mercury press-fitting method.
  • the porosity of the cell bulkhead of the honeycomb fired body is less than 40% by volume, the proportion of pores that can contribute to gas passage in the cell bulkhead is reduced, and the pressure loss may be improved.
  • the porosity of the cell partition wall of the honeycomb fired body exceeds 80% by volume, the porosity of the cell partition wall becomes too high, so that the mechanical properties of the honeycomb filter deteriorate and cracks occur during use of the honeycomb filter. Destruction is likely to occur.
  • the fired honeycomb body contains macropores having a pore diameter of 0.1 to 100 ⁇ m.
  • the ratio of the volume occupied by the macropores is preferably 80% by volume or more of the total volume of the pores.
  • the ratio of the volume occupied by the macropores and the total volume of the pores can be obtained by measuring the pore diameter of the cell partition wall of the fired honeycomb body by the mercury press-fitting method.
  • the D50 in the pore size distribution of the macropores constituting the honeycomb fired body is preferably 5 to 20 ⁇ m.
  • D50 in the pore size distribution of macropores is 5 to 20 ⁇ m, it has many pores (pores) having a size suitable for collecting PM, so that the collection efficiency of PM is high and the pressure loss is low. can do.
  • D50 in the pore size distribution of the macropores constituting the honeycomb fired body is the pore size distribution curve measured by the mercury intrusion method [horizontal axis: pore diameter ( ⁇ m), vertical axis: log differential pore volume (mL / g). ] Can be obtained from.
  • a honeycomb fired body is cut into cubes having a side of about 0.8 cm, ultrasonically washed with ion-exchanged water, sufficiently dried, and used as a measurement sample.
  • the pore size is measured by the mercury press-fitting method (according to JISR1655: 2003).
  • the pore size of the obtained sample is measured using a Micromeritix automatic porosimeter Autopore III9405 manufactured by Shimadzu Corporation.
  • the measurement range is 0.006 to 500 ⁇ m.
  • the measurement is performed at every 0.1 psia pressure, and at 0.006 to 100 ⁇ m, the measurement is performed at every 0.25 psia pressure.
  • the D50 of the macropore is calculated with the pore diameter as the macropore.
  • the contact angle is 130 ° and the surface tension is 485 mN / m.
  • the alumina particles constituting the honeycomb filter of the present invention are preferably ⁇ -phase alumina particles. Since the alumina particles are ⁇ -phase alumina particles, they have high heat resistance, so that they can support a noble metal and exhibit high exhaust gas purification performance even after long-term use.
  • the content ratio of alumina particles is preferably 15 to 35% by weight. Further, in the honeycomb filter of the present invention, the content ratio of CZ particles is preferably 35 to 65% by weight.
  • the honeycomb filter of the present invention further contains an alumina fiber. This is because the mechanical properties of the honeycomb filter can be improved by including the alumina fiber.
  • the binder content is preferably 0.1 to 10% by weight, and the alumina fiber content is preferably 10 to 40% by weight.
  • the shape of the honeycomb filter of the present invention is not limited to a columnar shape, and examples thereof include a prismatic column, an elliptical columnar shape, an oblong columnar shape, and a round chamfered prismatic shape (for example, a round chamfered triangular columnar shape).
  • the shape of the cells of the honeycomb fired body is not limited to the square columnar shape, and examples thereof include a triangular columnar column and a hexagonal columnar column.
  • the density of cells having a cross section perpendicular to the longitudinal direction of the honeycomb fired body is 31 to 155 cells / cm 2.
  • the thickness of the cell partition wall of the honeycomb fired body is preferably 0.05 to 0.50 mm, and more preferably 0.10 to 0.30 mm.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • honeycomb filter of the present invention it is desirable that a precious metal is supported on the fired honeycomb body.
  • a noble metal that functions as a catalyst is supported on the honeycomb fired body, it can also be used as a honeycomb catalyst for exhaust gas purification.
  • the noble metal include platinum, palladium, rhodium and the like.
  • the amount of the noble metal supported is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
  • the amount of noble metal supported refers to the weight of the noble metal per apparent volume of the honeycomb filter.
  • the apparent volume of the honeycomb filter is a volume including the volume of the voids, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
  • a porous cell partition wall forming a plurality of cells serving as an exhaust gas flow path and an end portion on the exhaust gas inlet side are opened and an end portion on the exhaust gas outlet side is sealed.
  • a method for manufacturing a honeycomb filter comprising a fired exhaust gas cell including an exhaust gas introduction cell and an exhaust gas discharge cell having an exhaust gas outlet side end opened and an exhaust gas inlet side end sealed.
  • a raw material composition preparation step for preparing a raw material composition containing zirconia composite oxide particles and alumina particles and molding the above raw material composition, a plurality of cells are arranged side by side in the longitudinal direction across the cell partition wall.
  • Measured by laser diffraction of the ceria-zirconia composite oxide particles contained in the raw material composition including a molding step of producing a honeycomb molded body and a firing step of firing the honeycomb molded body to obtain a honeycomb fired body.
  • the d50 CZ to be produced is 5 ⁇ m or more and 30 ⁇ m or less
  • the d50 Al measured by laser diffraction of the alumina particles is 10 ⁇ m or more and 30 ⁇ m or less.
  • the ceria-zirconia composite oxide particles and alumina particles are mixed to prepare a raw material composition.
  • the d50 CZ measured by laser diffraction of the CZ particles used when preparing the raw material composition is 5 ⁇ m or more and 30 ⁇ m or less
  • the d50 Al measured by laser diffraction of the alumina particles is 10 ⁇ m or more and 30 ⁇ m or less.
  • the cumulative 10% particle diameter d10 CZ measured by laser diffraction of CZ particles is preferably 1.5 ⁇ m or more.
  • the cumulative 10% particle diameter d10 Al measured by laser diffraction of the alumina particles is preferably 3 ⁇ m or more.
  • a laser diffraction type particle size distribution measuring device (for example, MASTERSIER2000 manufactured by MALVERN) is used for measuring d50 and d10 of the alumina particles and CZ particles which are the raw material particles. Specifically, in the cumulative volume distribution curve of the particles obtained by the above measuring device, the particle diameters corresponding to the cumulative volume of 50% by volume from the smallest particle diameter are d50 CZ and d50 Al . Further, the particle diameters corresponding to the cumulative volume of 10% by volume from the smaller particle diameter are the cumulative 10% particle diameters d10 CZ and d10 Al .
  • the weight ratio of the ceria-zirconia composite oxide particles (ceria-zirconia composite oxide particles / alumina particles) to the alumina particles used when preparing the raw material composition shall be 1.0 to 3.0. Is desirable.
  • the weight ratio (ceria-zirconia composite oxide particles / alumina particles) is 1.0 to 3.0, the content of the ceria-zirconia composite oxide particles is high, and the ceria-zirconia composite oxide particles are: Since it is used as a co-catalyst, the purification performance of exhaust gas is improved.
  • ⁇ -phase alumina particles are desirable.
  • a pore-forming material may be added to the raw material composition.
  • pore-forming material examples include acrylic resin, starch, carbon and the like, and among these, it is desirable to use acrylic resin.
  • raw materials used in preparing the raw material composition include inorganic fibers, inorganic binders, organic binders, molding aids, dispersion media and the like.
  • the material constituting the inorganic fiber is not particularly limited, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, aluminum borate, and the like, and two or more of them may be used in combination. Of these, alumina fiber is desirable.
  • the aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and even more preferably 10 to 100.
  • the inorganic binder is not particularly limited, and examples thereof include solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulsite, boehmite, and the like, and two or more of these inorganic binders may be used in combination. Of these, boehmite is desirable.
  • Boehmite is an alumina monohydrate represented by the composition of AlOOH and disperses well in a medium such as water. Therefore, it is desirable to use boehmite as a binder in the method for producing a honeycomb filter of the present invention.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin, and the like, and two or more kinds may be used in combination.
  • the dispersion medium is not particularly limited, and examples thereof include water, an organic solvent such as benzene, an alcohol such as methanol, and two or more thereof may be used in combination.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol, and two or more of them may be used in combination.
  • CZ particles, alumina particles, alumina fibers and boehmite were used as the above-mentioned raw materials, the blending ratio of these was CZ particles: 40 to 60% by weight, alumina particles, based on the total solid content remaining after the firing step in the raw materials. : 15 to 35% by weight, alumina fiber: 10 to 40% by weight, boehmite: 0.1 to 10% by weight is desirable.
  • the mixture When preparing the raw material composition, it is desirable to mix and knead, and the mixture may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • a honeycomb molded body in which a plurality of cells are arranged side by side in the longitudinal direction with the cell partition wall interposed therebetween is produced. Specifically, a continuous body of a honeycomb molded body having cells having a predetermined shape is formed by passing through a mold having a predetermined shape, and the honeycomb molded body is formed by cutting into a predetermined length.
  • the honeycomb molded body can be dried to produce a honeycomb dried body using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer. desirable.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer.
  • honeycomb molded body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb molded body.
  • a predetermined amount of a sealing material paste is filled in any end of the cell constituting the dried body of the honeycomb molded product, and the cell is sealed.
  • a mask for cell sealing is applied to the end surface of the honeycomb molded body (that is, the cut surface after cutting both ends), and the sealing material is applied only to the cells that need to be sealed. Fill the paste and allow the encapsulant paste to dry. Through such a process, a dried honeycomb body in which one end of the cell is sealed is produced.
  • the encapsulant paste the above raw material composition can be used.
  • the step of sealing the cells with the sealing material paste may be performed after the firing step described later, or may be re-baked after the sealing step.
  • a honeycomb fired body is produced by firing the molded body dried in the drying step. Since this step is degreasing and firing of the honeycomb molded body, it can be referred to as a “degreasing / firing step”, but for convenience, it is referred to as a "baking step”.
  • the temperature of the firing step is preferably 800 to 1300 ° C, more preferably 900 to 1200 ° C.
  • the firing step time is preferably 1 to 24 hours, more preferably 3 to 18 hours.
  • the atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20%.
  • the honeycomb filter of the present invention can be manufactured.
  • the method for producing a honeycomb filter of the present invention may further include a supporting step of supporting the noble metal on the fired honeycomb body, if necessary.
  • Examples of the method of supporting the precious metal on the honeycomb fired body include a method of immersing the honeycomb fired body or the honeycomb filter in a solution containing noble metal particles or a complex, and then pulling up and heating the honeycomb filter.
  • the honeycomb filter includes the outer peripheral coat layer
  • the noble metal may be supported on the honeycomb fired body before the outer peripheral coat layer is formed, or the noble metal may be supported on the honeycomb fired body or the honeycomb filter after the outer peripheral coat layer is formed. You may.
  • the amount of the noble metal supported in the supporting step is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
  • the outer peripheral coat layer is formed on the outer peripheral surface of the fired honeycomb body, the outer peripheral coat layer is formed after the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end faces of the fired honeycomb body.
  • the paste for the outer peripheral coat layer include those having the same composition as the raw material composition.
  • Example 1 16.7% by weight of CZ particles (d50 CZ : 8.0 ⁇ m, d10 CZ : 1.8 ⁇ m), 8.4% by weight of alumina particles (d50 CZ : 20 ⁇ m, d10 Al: 4.4 ⁇ m), boehmite as an inorganic binder 2.8% by weight, 10.4% by weight of alumina fiber having an average fiber diameter of 3 ⁇ m and 100 ⁇ m of average fiber length, 3.9% by weight of methylcellulose as an organic binder, and acrylic resin (d50: 32 ⁇ m) as a pore-forming material.
  • CZ particles d50 CZ : 8.0 ⁇ m, d10 CZ : 1.8 ⁇ m
  • alumina particles d50 CZ : 20 ⁇ m, d10 Al: 4.4 ⁇ m
  • boehmite as an inorganic binder 2.8% by weight
  • the cumulative 50% particle size (d50 CZ and d50 Al ) of the alumina particles and CZ particles, the cumulative 10% particle size (d10 CZ and d10 Al ), and the d50 of the pore-forming material are the laser diffraction type particle size distribution measuring device (MALVERN). It was measured using MASTERSIZER2000) manufactured by the company.
  • the raw material composition was extruded using an extrusion molding machine to prepare a columnar honeycomb molded body. Then, the honeycomb molded body is dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then a sealing material is applied to one end of the cells constituting the honeycomb molded body.
  • a sealing material paste having the same composition as the raw material composition used to prepare the honeycomb molded body is filled in a predetermined cell of the honeycomb molded body so that the paste is filled, and further at 120 ° C. under atmospheric pressure. It was dried for 10 minutes. Then, by degreasing and firing at 1150 ° C.
  • honeycomb fired body honeycomb filter
  • the honeycomb fired body had a columnar shape having a diameter of 118 mm and a length of 122 mm, a cell density of 46.5 cells / cm 2 (300 cpsi), and a cell partition wall thickness of 0.203 mm (8 mil).
  • Example 2 The honeycomb structure according to Example 2 was produced in the same procedure as in Example 1 except that the particle diameters of CZ and alumina in the raw material composition were changed as shown in Table 1, respectively.
  • Comparative Example 1 The honeycomb structure according to Comparative Example 1 was produced in the same procedure as in Example 1 except that the particle diameters of CZ and alumina in the raw material composition were changed as shown in Table 1, respectively.
  • FIG. 2 is an SEM photograph of the cut surface of the honeycomb filter produced in Example 1
  • FIG. 3 is an SEM photograph of the cut surface of the honeycomb filter produced in Comparative Example 1.
  • the average particle size of the CZ particles in the honeycomb filter produced in Example 1 was 5.3 ⁇ m.
  • the average particle size of the alumina particles in the honeycomb filter produced in Example 1 was 12.2 ⁇ m.
  • the average particle size of the CZ particles in the honeycomb filter produced in Comparative Example 1 was 1.2 ⁇ m, respectively.
  • the average particle size of the alumina particles in the honeycomb filter produced in Comparative Example 1 was 1.4 ⁇ m, respectively. From this result, the particle diameters of the CZ particles and alumina particles used as raw materials (average particle diameter measured by laser diffraction) and the particle diameters of the CZ particles and alumina particles constituting the honeycomb fired body (average particles measured by SEM). It was confirmed that the diameter) corresponds.
  • the pore size distribution of the cell partition wall was measured by the mercury intrusion method to obtain D50.
  • the D50 of the honeycomb filter produced in Example 1 was 9.4 ⁇ m.
  • the D50 of the honeycomb filter produced in Example 2 was 15.8 ⁇ m, and the D50 of the honeycomb filter produced in Comparative Example was 1.8 ⁇ m. From this result, it can be seen that D50 is in the range of the preferable pore diameter of 5 to 20 ⁇ m, and the pore diameter distribution of the honeycomb filter produced in the example is suitable for PM collection.
  • the honeycomb structure of the present invention can reduce the pressure loss and has a macropore D50 of 5 to 20 ⁇ m, which is suitable for collecting PM. Therefore, one end of the cell is used. It can be seen that excellent filter performance is exhibited when the portion is sealed and used as a filter for removing PM.

Abstract

The present invention pertains to a honeycomb filter comprising a honeycomb fired body provided with: porous cell partition walls that form, by segmentation, a plurality of cells serving as flow passages for exhaust gas; exhaust gas introduction cells each having an end part on the exhaust gas inlet side open and an end part on the exhaust gas outlet side plugged; and exhaust gas discharge cells each having an end part on the exhaust gas outlet side open and an end part on the exhaust gas inlet side plugged. The honeycomb filter is characterized in that the honeycomb fired body contains ceria-zirconia composite oxide particles and alumina particles, the average particle diameter of the ceria-zirconia composite oxide particles measured by a SEM is 5-30 µm, and the average particle diameter of the alumina particles measured by the SEM is 10-30 µm.

Description

ハニカムフィルタ及びハニカムフィルタの製造方法Honeycomb filter and manufacturing method of honeycomb filter
本発明は、ハニカムフィルタ及びハニカムフィルタの製造方法に関する。 The present invention relates to a honeycomb filter and a method for manufacturing a honeycomb filter.
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガス及び粒子状物質(PM)が含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的であり、PMを除去するためのハニカム状のフィルタとともに使用されている。 Exhaust gas emitted from an internal combustion engine of an automobile or the like contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC), and particulate matter (PM). An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by wash-coating a slurry containing noble metal particles having catalytic activity on a honeycomb-shaped monolithic substrate made of cordierite or the like. Those are common and are used with a honeycomb filter for removing PM.
一方、特許文献1には、上記有害ガスおよびPMを同時に除去するフィルタとして、セル壁の構成成分に、セリア、ジルコニア、及びセリア-ジルコニア固溶体からなるグループより選ばれる少なくとも1種の助触媒を含有し、隣り合うセル孔を連通する細孔がセル壁に形成された排ガスフィルタが開示されている。 On the other hand, Patent Document 1 contains at least one co-catalyst selected from the group consisting of ceria, zirconia, and ceria-zirconia solid solution as a component of the cell wall as a filter for simultaneously removing the harmful gas and PM. However, an exhaust gas filter in which pores communicating with adjacent cell holes are formed on the cell wall is disclosed.
特開2017-115786号公報JP-A-2017-115786
排ガスフィルタにおいてPMを除去するためには、セル壁が、排ガスの通過及びPMの捕集に適した大きさの細孔を有することが求められる。セル壁の細孔径分布は、原料に用いる粒子の粒子径分布に影響される。 In order to remove PM in the exhaust gas filter, the cell wall is required to have pores having a size suitable for passing exhaust gas and collecting PM. The pore size distribution of the cell wall is affected by the particle size distribution of the particles used as the raw material.
特許文献1は、フィルタの原料となるセリア-ジルコニア固溶体、アルミナ及び造孔材の粒子径について何ら言及していない。そのため、特許文献1には、セル壁の細孔径分布を変更してフィルタ性能を向上させる余地があった。 Patent Document 1 does not mention the particle size of the ceria-zirconia solid solution, alumina, and the pore-forming material which are the raw materials of the filter. Therefore, in Patent Document 1, there is room for improving the filter performance by changing the pore size distribution of the cell wall.
本発明は、上記課題を解決するためになされたものであり、高いフィルタ性能を有するハニカムフィルタを提供することを目的とする。また本発明は、高いフィルタ性能を有するハニカムフィルタを製造する方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a honeycomb filter having high filter performance. Another object of the present invention is to provide a method for manufacturing a honeycomb filter having high filter performance.
本発明のハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタであって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子及びアルミナ粒子を含み、上記セリア-ジルコニア複合酸化物粒子のSEMにより測定される平均粒子径が、5μm以上30μm以下であり、上記アルミナ粒子のSEMにより測定される平均粒子径が、10μm以上30μm以下であることを特徴とする。 The honeycomb filter of the present invention has a porous cell partition that partitions a plurality of cells serving as an exhaust gas flow path, and an exhaust gas in which an end on the exhaust gas inlet side is opened and an end on the exhaust gas outlet side is sealed. A honeycomb filter including an introduction cell and an exhaust gas discharge cell having an exhaust gas outlet side end open and an exhaust gas inlet side end sealed, wherein the honeycomb fired body is ceria. -The average particle size of the ceria-zirconia composite oxide particles including zirconia composite oxide particles and alumina particles is 5 μm or more and 30 μm or less, and the average particle size of the alumina particles is measured by SEM. Is 10 μm or more and 30 μm or less.
ハニカム焼成体を構成しているセリア-ジルコニア複合酸化物粒子(以下、CZ粒子ともいう)及びアルミナ粒子(以下、まとめて原料粒子ともいう)のSEMにより測定される平均粒子径が上記範囲であると、ハニカムフィルタとなるハニカム成形体を成形する際の原料組成物において、原料粒子の間に、焼成後にPM捕集に適したサイズの気孔となる隙間が形成されやすい。具体的には、マクロ気孔の気孔径分布における累積50%気孔径D50が5~20μmの気孔が形成されやすい。
なお、マクロ気孔は、水銀圧入法で測定した気孔径が0.1μm~100μmの気孔を指す。
そのため、フィルタ性能の高いハニカムフィルタとなる。
The average particle size measured by SEM of the ceria-zirconia composite oxide particles (hereinafter, also referred to as CZ particles) and alumina particles (hereinafter, collectively referred to as raw material particles) constituting the honeycomb fired body is in the above range. In addition, in the raw material composition for molding the honeycomb molded body to be the honeycomb filter, gaps having pores having a size suitable for PM collection after firing are likely to be formed between the raw material particles. Specifically, pores having a cumulative 50% pore diameter D50 of 5 to 20 μm in the pore diameter distribution of macropores are likely to be formed.
The macropores refer to pores having a pore diameter of 0.1 μm to 100 μm measured by the mercury intrusion method.
Therefore, the honeycomb filter has high filter performance.
本発明のハニカムフィルタにおいて、ハニカム焼成体を構成するマクロ気孔の気孔径分布におけるD50は、5~20μmであることが好ましい。
マクロ気孔の気孔径分布におけるD50が5~20μmであると、PMの捕集に適した大きさの気孔(細孔)を多く有することとなり、PMの捕集効率を高くし、圧力損失を低くすることができる。
マクロ気孔の気孔径分布におけるD50は、0.1μm~100μmの範囲で得られたハニカムフィルタの気孔径分布曲線から求めた累積50%気孔径である。
In the honeycomb filter of the present invention, the D50 in the pore size distribution of the macropores constituting the honeycomb fired body is preferably 5 to 20 μm.
When D50 in the pore size distribution of macropores is 5 to 20 μm, it has many pores (pores) having a size suitable for collecting PM, so that the collection efficiency of PM is high and the pressure loss is low. can do.
D50 in the pore size distribution of macropores is a cumulative 50% pore size obtained from the pore size distribution curve of the honeycomb filter obtained in the range of 0.1 μm to 100 μm.
本発明のハニカムフィルタの製造方法は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、セリア-ジルコニア複合酸化物粒子及びアルミナ粒子を含む原料組成物を調製する原料組成物調製工程と、上記原料組成物を成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成してハニカム焼成体を得る焼成工程と、を含み、上記原料組成物に含まれる上記セリア-ジルコニア複合酸化物粒子のレーザー回折により測定されるd50CZが5μm以上30μm以下であり、上記アルミナ粒子のレーザー回折により測定されるd50Alが10μm以上30μm以下であることを特徴とする。 In the method for manufacturing a honeycomb filter of the present invention, a porous cell partition wall that partitions a plurality of cells serving as an exhaust gas flow path, an end portion on the exhaust gas inlet side is opened, and an end portion on the exhaust gas outlet side is sealed. A method for manufacturing a honeycomb filter, which comprises a fired exhaust gas cell including an exhaust gas introduction cell and an exhaust gas discharge cell in which the end on the exhaust gas outlet side is opened and the end on the exhaust gas inlet side is sealed. -By forming a raw material composition preparation step for preparing a raw material composition containing zirconia composite oxide particles and alumina particles and molding the above raw material composition, a plurality of cells are arranged side by side in the longitudinal direction across the cell partition wall. Measured by laser diffraction of the ceria-zirconia composite oxide particles contained in the raw material composition, including a molding step of producing a honeycomb molded body and a firing step of firing the honeycomb molded body to obtain a honeycomb fired body. The d50 CZ to be produced is 5 μm or more and 30 μm or less, and the d50 Al measured by laser diffraction of the alumina particles is 10 μm or more and 30 μm or less.
本発明のハニカムフィルタの製造方法では、レーザー回折により測定されるd50CZが5μm以上30μmのCZ粒子と、レーザー回折により測定されるd50Alが10μm以上30μm以下のアルミナ粒子を用いる。
CZ粒子及びアルミナ粒子のレーザー回折により測定されるd50が上記範囲であると、ハニカムフィルタとなるハニカム成形体を成形する際の原料組成物において、原料粒子の間に、焼成後にPM捕集に適したサイズの気孔となる隙間が形成されやすい。
そのため、フィルタ性能の高いハニカムフィルタを製造することができる。
In the method for producing a honeycomb filter of the present invention, CZ particles having a d50 CZ of 5 μm or more and 30 μm measured by laser diffraction and alumina particles having a d50 Al of 10 μm or more and 30 μm or less measured by laser diffraction are used.
When d50 measured by laser diffraction of CZ particles and alumina particles is in the above range, it is suitable for collecting PM after firing between the raw material particles in the raw material composition for molding the honeycomb molded body to be the honeycomb filter. Gap that becomes pores of a large size is likely to be formed.
Therefore, a honeycomb filter having high filter performance can be manufactured.
本発明のハニカムフィルタの製造方法において、上記セリア-ジルコニア複合酸化物粒子のレーザー回折により測定される累積10%粒子径d10CZは、1.5μm以上であり、上記アルミナ粒子のレーザー回折により測定される累積10%粒子径d10Alは、3μm以上であることが好ましい。
CZ粒子及びアルミナ粒子のレーザー回折により測定される累積10%粒子径がいずれも上記数値範囲内であると、原料粒子同士の隙間を埋める微小粒子が少ないため、PM捕集に適したサイズの気孔が形成されやすい。
In the method for producing a honeycomb filter of the present invention, the cumulative 10% particle diameter d10 CZ measured by laser diffraction of the ceria-zirconia composite oxide particles is 1.5 μm or more, and is measured by laser diffraction of the alumina particles. The cumulative 10% particle diameter d10 Al is preferably 3 μm or more.
When the cumulative 10% particle diameter measured by laser diffraction of CZ particles and alumina particles is within the above numerical range, there are few fine particles that fill the gaps between the raw material particles, so that the pores have a size suitable for PM collection. Is easy to form.
図1Aは、本発明のハニカムフィルタの一例を模式的に示す斜視図であり、図1Bは、図1AにおけるA-A線断面図である。FIG. 1A is a perspective view schematically showing an example of the honeycomb filter of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A. 図2は、実施例1で作製したハニカムフィルタの切断面のSEM写真である。FIG. 2 is an SEM photograph of the cut surface of the honeycomb filter produced in Example 1. 図3は、比較例1で作製したハニカムフィルタの切断面のSEM写真である。FIG. 3 is an SEM photograph of the cut surface of the honeycomb filter produced in Comparative Example 1.
(発明の詳細な説明)
[ハニカムフィルタ]
まず、本発明のハニカムフィルタについて説明する。
(Detailed description of the invention)
[Honeycomb filter]
First, the honeycomb filter of the present invention will be described.
本発明のハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなる。
上記ハニカム焼成体において、複数のセルはセル隔壁を隔ててハニカム焼成体の長手方向に並設されている。
The honeycomb filter of the present invention has a porous cell partition that partitions a plurality of cells serving as an exhaust gas flow path, and an exhaust gas in which the end on the exhaust gas inlet side is opened and the end on the exhaust gas outlet side is sealed. It is composed of a honeycomb fired body including an introduction cell and an exhaust gas discharge cell in which the end on the exhaust gas outlet side is opened and the end on the exhaust gas inlet side is sealed.
In the honeycomb fired body, a plurality of cells are arranged side by side in the longitudinal direction of the honeycomb fired body with the cell partition wall interposed therebetween.
本発明のハニカムフィルタにおいて、ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む。
後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子と無機バインダとを含む原料組成物を押出成形した後、焼成することにより作製されている。
本発明のハニカムフィルタが上記した成分を有しているか否かについては、X線回折(XRD)にて確認できる。
In the honeycomb filter of the present invention, the honeycomb fired body contains ceria-zirconia composite oxide particles and alumina particles.
As will be described later, the honeycomb fired body is produced by extrusion-molding a raw material composition containing CZ particles, alumina particles, and an inorganic binder, and then firing the mixture.
Whether or not the honeycomb filter of the present invention has the above-mentioned components can be confirmed by X-ray diffraction (XRD).
本発明のハニカムフィルタは、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよい。 The honeycomb filter of the present invention may include a single honeycomb fired body, a plurality of honeycomb fired bodies, or a plurality of honeycomb fired bodies may be bonded by an adhesive. ..
本発明のハニカムフィルタにおいて、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。 In the honeycomb filter of the present invention, an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
図1Aは、本発明のハニカムフィルタの一例を模式的に示す斜視図であり、図1Bは、図1AにおけるA-A線断面図である。
図1A及び図1Bに示すハニカムフィルタ10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁20と、排ガス入口側の端部11aが開口され且つ排ガス出口側の端部11bが封止材14により目封止された排ガス導入セル12と、排ガス出口側の端部11bが開口され且つ排ガス入口側の端部11aが封止材14により目封止された排ガス排出セル13とを備える単一のハニカム焼成体11からなる。
排ガス導入セル12及び排ガス排出セル13はセル隔壁20を隔ててハニカム焼成体の長手方向(図1A中、両矢印aで示す方向)に沿って配設されている。
図1Bに示すように、排ガス(図1B中、矢印Gで示す)は排ガス入口側の端部11aに開口する排ガス導入セル12に侵入し、セル隔壁20内を通過した後、排ガス出口側の端部11bに開口する排ガス排出セル13から排出される。
図1A及び図1Bに示すように、ハニカムフィルタ10が単一のハニカム焼成体11からなる場合、ハニカム焼成体11はハニカムフィルタそのものでもある。
FIG. 1A is a perspective view schematically showing an example of the honeycomb filter of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.
In the honeycomb filter 10 shown in FIGS. 1A and 1B, a porous cell partition wall 20 for partitioning a plurality of cells 12 and 13 serving as an exhaust gas flow path and an end portion 11a on the exhaust gas inlet side are opened and the exhaust gas outlet side. The exhaust gas introduction cell 12 in which the end portion 11b of the honeycomb is sealed with the sealing material 14 and the end portion 11b on the exhaust gas outlet side are opened and the end portion 11a on the exhaust gas inlet side is sealed with the sealing material 14. It is composed of a single honeycomb fired body 11 including an exhaust gas discharge cell 13.
The exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 are arranged along the longitudinal direction of the honeycomb fired body (direction indicated by the double-headed arrow a in FIG. 1A) with the cell partition wall 20 interposed therebetween.
As shown in FIG. 1B, the exhaust gas (indicated by the arrow G in FIG. 1B) enters the exhaust gas introduction cell 12 that opens at the end portion 11a on the exhaust gas inlet side, passes through the cell partition wall 20, and then on the exhaust gas outlet side. It is discharged from the exhaust gas discharge cell 13 that opens to the end portion 11b.
As shown in FIGS. 1A and 1B, when the honeycomb filter 10 is composed of a single honeycomb fired body 11, the honeycomb fired body 11 is also the honeycomb filter itself.
本発明のハニカムフィルタは、SEMにより測定されるCZ粒子の平均粒子径が5μm以上30μm以下であり、SEMにより測定されるアルミナ粒子の平均粒子径が10μm以上30μm以下である。 In the honeycomb filter of the present invention, the average particle size of CZ particles measured by SEM is 5 μm or more and 30 μm or less, and the average particle size of alumina particles measured by SEM is 10 μm or more and 30 μm or less.
ハニカム焼成体を構成するCZ粒子及びアルミナ粒子の平均粒子径は、走査型電子顕微鏡(SEM、例えば日立ハイテク社製、S-4800)を用いて、ハニカム焼成体のSEM写真を撮影することにより求めることができる。
まず、ハニカム焼成体を切断したセル隔壁の切断面をSEM(加速電圧:15kV)で250倍に拡大した画像から、無作為に200μm×500μmの領域を選択し、この領域に存在する全てのCZ粒子及びアルミナ粒子の個数及び面積をカウントする。各粒子の面積から投影面積相当径(直径)を算出し、その平均値を平均粒子径とする。ただし、SEMの解像度の関係で、面積が0.1μm以下の粒子については、測定範囲から除外する。
なお、SEM観察において、CZ粒子とアルミナ粒子は色の濃淡が異なるため区別は容易である。
The average particle size of the CZ particles and alumina particles constituting the honeycomb fired body is determined by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, for example, S-4800 manufactured by Hitachi High-Tech). be able to.
First, a region of 200 μm × 500 μm was randomly selected from an image obtained by magnifying the cut surface of the cell partition wall obtained by cutting the honeycomb fired body 250 times with SEM (acceleration voltage: 15 kV), and all CZs existing in this region were selected. Count the number and area of particles and alumina particles. The projected area equivalent diameter (diameter) is calculated from the area of each particle, and the average value is taken as the average particle diameter. However, due to the resolution of SEM, particles with an area of 0.1 μm 2 or less are excluded from the measurement range.
In SEM observation, the CZ particles and the alumina particles have different shades of color, so that they can be easily distinguished.
本発明のハニカムフィルタにおいて、上記ハニカム焼成体のセル隔壁の気孔率は、40~80体積%であることが望ましい。
ハニカム焼成体のセル隔壁の気孔率が40~80体積%であると、高い機械的強度と排ガス浄化性能を両立させることができる。
In the honeycomb filter of the present invention, it is desirable that the porosity of the cell partition wall of the honeycomb fired body is 40 to 80% by volume.
When the porosity of the cell partition wall of the honeycomb fired body is 40 to 80% by volume, both high mechanical strength and exhaust gas purification performance can be achieved at the same time.
ハニカム焼成体のセル隔壁の気孔率は、水銀圧入法にて測定することができる。 The porosity of the cell partition wall of the honeycomb fired body can be measured by the mercury press-fitting method.
上記ハニカム焼成体のセル隔壁の気孔率が40体積%未満であると、セル隔壁のうちガス通過に寄与することができる気孔の割合が少なくなり、圧力損失が向上してしまうことがある。一方、上記ハニカム焼成体のセル隔壁の気孔率が80体積%を超えると、セル隔壁の気孔率が高くなりすぎるため、ハニカムフィルタの機械的特性が劣化し、ハニカムフィルタを使用中に、クラックや破壊等が発生し易くなる。 If the porosity of the cell bulkhead of the honeycomb fired body is less than 40% by volume, the proportion of pores that can contribute to gas passage in the cell bulkhead is reduced, and the pressure loss may be improved. On the other hand, if the porosity of the cell partition wall of the honeycomb fired body exceeds 80% by volume, the porosity of the cell partition wall becomes too high, so that the mechanical properties of the honeycomb filter deteriorate and cracks occur during use of the honeycomb filter. Destruction is likely to occur.
本発明のハニカムフィルタにおいて、ハニカム焼成体には、気孔径が0.1~100μmのマクロ気孔が含まれている。
マクロ気孔が占める体積の割合は、気孔の総体積の80体積%以上であることが好ましい。
マクロ気孔が占める体積の割合、及び、気孔の総体積は、ハニカム焼成体のセル隔壁の気孔径を水銀圧入法により測定することで得られる。
In the honeycomb filter of the present invention, the fired honeycomb body contains macropores having a pore diameter of 0.1 to 100 μm.
The ratio of the volume occupied by the macropores is preferably 80% by volume or more of the total volume of the pores.
The ratio of the volume occupied by the macropores and the total volume of the pores can be obtained by measuring the pore diameter of the cell partition wall of the fired honeycomb body by the mercury press-fitting method.
本発明のハニカムフィルタにおいて、ハニカム焼成体を構成するマクロ気孔の気孔径分布におけるD50は、5~20μmであることが好ましい。
マクロ気孔の気孔径分布におけるD50が5~20μmであると、PMの捕集に適した大きさの気孔(細孔)を多く有することとなり、PMの捕集効率を高くし、圧力損失を低くすることができる。
In the honeycomb filter of the present invention, the D50 in the pore size distribution of the macropores constituting the honeycomb fired body is preferably 5 to 20 μm.
When D50 in the pore size distribution of macropores is 5 to 20 μm, it has many pores (pores) having a size suitable for collecting PM, so that the collection efficiency of PM is high and the pressure loss is low. can do.
ハニカム焼成体を構成するマクロ気孔の気孔径分布におけるD50は、水銀圧入法により測定された気孔径分布曲線[横軸:気孔径(μm)、縦軸:log微分細孔容積(mL/g)]から求めることができる。
水銀圧入法による具体的な測定手順としては、ハニカム焼成体を一辺0.8cm程度の立方体に切断し、イオン交換水で超音波洗浄し、充分乾燥して測定用サンプルとして、測定用サンプルの気孔径を水銀圧入法(JISR1655:2003に準じる)によって測定する。すなわち、例えば、得られたサンプルを、島津製作所製、マイクロメリティックス自動ポロシメータオートポアIII9405を用いて気孔径の測定を行う。測定範囲は、0.006~500μmとし、100~500μmでは、0.1psiaの圧力毎に測定し、0.006~100μmでは、0.25psiaの圧力毎に測定し、0.1~100μmの気孔径をマクロ気孔としてマクロ気孔のD50を算出する。その際、接触角を130°、表面張力を485mN/mとする。
D50 in the pore size distribution of the macropores constituting the honeycomb fired body is the pore size distribution curve measured by the mercury intrusion method [horizontal axis: pore diameter (μm), vertical axis: log differential pore volume (mL / g). ] Can be obtained from.
As a specific measurement procedure by the mercury press-fitting method, a honeycomb fired body is cut into cubes having a side of about 0.8 cm, ultrasonically washed with ion-exchanged water, sufficiently dried, and used as a measurement sample. The pore size is measured by the mercury press-fitting method (according to JISR1655: 2003). That is, for example, the pore size of the obtained sample is measured using a Micromeritix automatic porosimeter Autopore III9405 manufactured by Shimadzu Corporation. The measurement range is 0.006 to 500 μm. At 100 to 500 μm, the measurement is performed at every 0.1 psia pressure, and at 0.006 to 100 μm, the measurement is performed at every 0.25 psia pressure. The D50 of the macropore is calculated with the pore diameter as the macropore. At that time, the contact angle is 130 ° and the surface tension is 485 mN / m.
本発明のハニカムフィルタを構成するアルミナ粒子は、θ相のアルミナ粒子であることが望ましい。
アルミナ粒子がθ相のアルミナ粒子であると耐熱性が高いため、貴金属を担持させ、長時間使用した後であっても高い排ガス浄化性能を発揮することができる。
The alumina particles constituting the honeycomb filter of the present invention are preferably θ-phase alumina particles.
Since the alumina particles are θ-phase alumina particles, they have high heat resistance, so that they can support a noble metal and exhibit high exhaust gas purification performance even after long-term use.
本発明のハニカムフィルタにおいて、アルミナ粒子の含有割合は、15~35重量%であることが望ましい。
また、本発明のハニカムフィルタにおいて、CZ粒子の含有割合は、35~65重量%であることが望ましい。
In the honeycomb filter of the present invention, the content ratio of alumina particles is preferably 15 to 35% by weight.
Further, in the honeycomb filter of the present invention, the content ratio of CZ particles is preferably 35 to 65% by weight.
本発明のハニカムフィルタには、さらに、アルミナファイバを含んでいることが望ましい。
アルミナファイバを含んでいると、ハニカムフィルタの機械的特性を改善することができるからである。
It is desirable that the honeycomb filter of the present invention further contains an alumina fiber.
This is because the mechanical properties of the honeycomb filter can be improved by including the alumina fiber.
バインダの含有割合は、0.1~10重量%であること望ましく、アルミナファイバの含有割合は、10~40重量%であることが望ましい。 The binder content is preferably 0.1 to 10% by weight, and the alumina fiber content is preferably 10 to 40% by weight.
本発明のハニカムフィルタの形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 The shape of the honeycomb filter of the present invention is not limited to a columnar shape, and examples thereof include a prismatic column, an elliptical columnar shape, an oblong columnar shape, and a round chamfered prismatic shape (for example, a round chamfered triangular columnar shape).
本発明のハニカムフィルタにおいて、ハニカム焼成体のセルの形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。 In the honeycomb filter of the present invention, the shape of the cells of the honeycomb fired body is not limited to the square columnar shape, and examples thereof include a triangular columnar column and a hexagonal columnar column.
本発明のハニカムフィルタにおいて、ハニカム焼成体の長手方向に垂直な断面のセルの密度は、31~155個/cmであることが望ましい。 In the honeycomb filter of the present invention, it is desirable that the density of cells having a cross section perpendicular to the longitudinal direction of the honeycomb fired body is 31 to 155 cells / cm 2.
本発明のハニカムフィルタにおいて、ハニカム焼成体のセル隔壁の厚さは、0.05~0.50mmであることが望ましく、0.10~0.30mmであることがより望ましい。 In the honeycomb filter of the present invention, the thickness of the cell partition wall of the honeycomb fired body is preferably 0.05 to 0.50 mm, and more preferably 0.10 to 0.30 mm.
本発明のハニカムフィルタにおいて、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。 In the honeycomb filter of the present invention, when the outer peripheral coat layer is formed on the outer peripheral surface of the honeycomb fired body, the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
本発明のハニカムフィルタにおいて、上記ハニカム焼成体に貴金属が担持されていることが望ましい。
上記ハニカムフィルタにおいて、上記ハニカム焼成体に触媒として機能する貴金属が担持されていると、排ガス浄化用のハニカム触媒としても使用することができる。
貴金属としては、例えば、白金、パラジウム、ロジウム等が挙げられる。
In the honeycomb filter of the present invention, it is desirable that a precious metal is supported on the fired honeycomb body.
In the honeycomb filter, if a noble metal that functions as a catalyst is supported on the honeycomb fired body, it can also be used as a honeycomb catalyst for exhaust gas purification.
Examples of the noble metal include platinum, palladium, rhodium and the like.
本発明のハニカムフィルタにおいて、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカムフィルタの見掛けの体積当たりの貴金属の重量をいう。なお、ハニカムフィルタの見掛けの体積とは、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
In the honeycomb filter of the present invention, the amount of the noble metal supported is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
As used herein, the amount of noble metal supported refers to the weight of the noble metal per apparent volume of the honeycomb filter. The apparent volume of the honeycomb filter is a volume including the volume of the voids, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
[ハニカムフィルタの製造方法]
次に、本発明のハニカムフィルタの製造方法について説明する。
本発明のハニカムフィルタの製造方法は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、セリア-ジルコニア複合酸化物粒子及びアルミナ粒子を含む原料組成物を調製する原料組成物調製工程と、上記原料組成物を成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成してハニカム焼成体を得る焼成工程と、を含み、上記原料組成物に含まれる上記セリア-ジルコニア複合酸化物粒子のレーザー回折により測定されるd50CZが5μm以上30μm以下であり、上記アルミナ粒子のレーザー回折により測定されるd50Alが10μm以上30μm以下であることを特徴とする。
[Honeycomb filter manufacturing method]
Next, the method for manufacturing the honeycomb filter of the present invention will be described.
In the method for manufacturing a honeycomb filter of the present invention, a porous cell partition wall forming a plurality of cells serving as an exhaust gas flow path and an end portion on the exhaust gas inlet side are opened and an end portion on the exhaust gas outlet side is sealed. A method for manufacturing a honeycomb filter comprising a fired exhaust gas cell including an exhaust gas introduction cell and an exhaust gas discharge cell having an exhaust gas outlet side end opened and an exhaust gas inlet side end sealed. -By forming a raw material composition preparation step for preparing a raw material composition containing zirconia composite oxide particles and alumina particles and molding the above raw material composition, a plurality of cells are arranged side by side in the longitudinal direction across the cell partition wall. Measured by laser diffraction of the ceria-zirconia composite oxide particles contained in the raw material composition, including a molding step of producing a honeycomb molded body and a firing step of firing the honeycomb molded body to obtain a honeycomb fired body. The d50 CZ to be produced is 5 μm or more and 30 μm or less, and the d50 Al measured by laser diffraction of the alumina particles is 10 μm or more and 30 μm or less.
(原料組成物調製工程)
原料組成物調製工程では、セリア-ジルコニア複合酸化物粒子及びアルミナ粒子とを混合して原料組成物を調製する。
(Raw material composition preparation process)
In the raw material composition preparation step, the ceria-zirconia composite oxide particles and alumina particles are mixed to prepare a raw material composition.
原料組成物を調製する際に使用するCZ粒子のレーザー回折により測定されるd50CZは、5μm以上30μm以下であり、アルミナ粒子のレーザー回折により測定されるd50Alは、10μm以上30μm以下である。 The d50 CZ measured by laser diffraction of the CZ particles used when preparing the raw material composition is 5 μm or more and 30 μm or less, and the d50 Al measured by laser diffraction of the alumina particles is 10 μm or more and 30 μm or less.
CZ粒子のレーザー回折により測定される累積10%粒子径d10CZは1.5μm以上であることが好ましい。
アルミナ粒子のレーザー回折により測定される累積10%粒子径d10Alは、3μm以上であることが好ましい。
The cumulative 10% particle diameter d10 CZ measured by laser diffraction of CZ particles is preferably 1.5 μm or more.
The cumulative 10% particle diameter d10 Al measured by laser diffraction of the alumina particles is preferably 3 μm or more.
原料粒子であるアルミナ粒子及びCZ粒子のd50、d10の測定には、レーザー回折式粒度分布測定装置(例えば、MALVERN社製 MASTERSIZER2000)を用いる。
具体的には、上記測定装置により得られる粒子の累積体積分布曲線において、粒子径の小さい方から累積体積が50体積%にあたる粒子径がd50CZ及びd50Alである。また、粒子径の小さい方から累積体積が10体積%にあたる粒子径が累積10%粒子径d10CZ及びd10Alである。
A laser diffraction type particle size distribution measuring device (for example, MASTERSIER2000 manufactured by MALVERN) is used for measuring d50 and d10 of the alumina particles and CZ particles which are the raw material particles.
Specifically, in the cumulative volume distribution curve of the particles obtained by the above measuring device, the particle diameters corresponding to the cumulative volume of 50% by volume from the smallest particle diameter are d50 CZ and d50 Al . Further, the particle diameters corresponding to the cumulative volume of 10% by volume from the smaller particle diameter are the cumulative 10% particle diameters d10 CZ and d10 Al .
上記原料組成物を調製する際に使用する上記アルミナ粒子に対する上記セリア-ジルコニア複合酸化物粒子の重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
上記重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)が1.0~3.0であると、セリア-ジルコニア複合酸化物粒子の含有率が高く、このセリア-ジルコニア複合酸化物粒子は、助触媒として使用されるものであるので、排ガスの浄化性能が向上する。
The weight ratio of the ceria-zirconia composite oxide particles (ceria-zirconia composite oxide particles / alumina particles) to the alumina particles used when preparing the raw material composition shall be 1.0 to 3.0. Is desirable.
When the weight ratio (ceria-zirconia composite oxide particles / alumina particles) is 1.0 to 3.0, the content of the ceria-zirconia composite oxide particles is high, and the ceria-zirconia composite oxide particles are: Since it is used as a co-catalyst, the purification performance of exhaust gas is improved.
原料組成物を調製する際に用いるアルミナ粒子としては、θ相のアルミナ粒子が望ましい。 As the alumina particles used when preparing the raw material composition, θ-phase alumina particles are desirable.
原料組成物には、必要に応じて、造孔材を添加してもよい。 If necessary, a pore-forming material may be added to the raw material composition.
造孔材としては、アクリル樹脂、でんぷん、カーボン等が挙げられ、これらのなかでは、アクリル樹脂を用いることが望ましい。 Examples of the pore-forming material include acrylic resin, starch, carbon and the like, and among these, it is desirable to use acrylic resin.
原料組成物を調製する際に用いる他の原料としては、無機ファイバ、無機バインダ、有機バインダ、成形助剤、分散媒等が挙げられる。 Other raw materials used in preparing the raw material composition include inorganic fibers, inorganic binders, organic binders, molding aids, dispersion media and the like.
上記無機ファイバを構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらのなかでは、アルミナファイバが望ましい。 The material constituting the inorganic fiber is not particularly limited, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, aluminum borate, and the like, and two or more of them may be used in combination. Of these, alumina fiber is desirable.
上記無機ファイバのアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。 The aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and even more preferably 10 to 100.
上記無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられ、これらの無機バインダは、二種以上併用してもよい。これらのなかでは、ベーマイトが望ましい。 The inorganic binder is not particularly limited, and examples thereof include solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulsite, boehmite, and the like, and two or more of these inorganic binders may be used in combination. Of these, boehmite is desirable.
ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、本発明のハニカムフィルタの製造方法では、ベーマイトをバインダとして用いることが望ましい。 Boehmite is an alumina monohydrate represented by the composition of AlOOH and disperses well in a medium such as water. Therefore, it is desirable to use boehmite as a binder in the method for producing a honeycomb filter of the present invention.
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。 The organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin, and the like, and two or more kinds may be used in combination.
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。 The dispersion medium is not particularly limited, and examples thereof include water, an organic solvent such as benzene, an alcohol such as methanol, and two or more thereof may be used in combination.
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。 The molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol, and two or more of them may be used in combination.
上記した原料としてCZ粒子、アルミナ粒子、アルミナファイバ及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:40~60重量%、アルミナ粒子:15~35重量%、アルミナファイバ:10~40重量%、ベーマイト:0.1~10重量%が望ましい。 When CZ particles, alumina particles, alumina fibers and boehmite were used as the above-mentioned raw materials, the blending ratio of these was CZ particles: 40 to 60% by weight, alumina particles, based on the total solid content remaining after the firing step in the raw materials. : 15 to 35% by weight, alumina fiber: 10 to 40% by weight, boehmite: 0.1 to 10% by weight is desirable.
原料組成物を調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。 When preparing the raw material composition, it is desirable to mix and knead, and the mixture may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
(成形工程)
成形工程では、原料組成物を成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
具体的には、所定の形状の金型を通過させることにより、所定の形状のセルを有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体とする。
(Molding process)
In the molding step, by molding the raw material composition, a honeycomb molded body in which a plurality of cells are arranged side by side in the longitudinal direction with the cell partition wall interposed therebetween is produced.
Specifically, a continuous body of a honeycomb molded body having cells having a predetermined shape is formed by passing through a mold having a predetermined shape, and the honeycomb molded body is formed by cutting into a predetermined length.
続いて、上記成形工程により成形された成形体を乾燥する。
この際、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥し、ハニカム乾燥体を作製することが望ましい。
Subsequently, the molded product molded by the above molding step is dried.
At this time, the honeycomb molded body can be dried to produce a honeycomb dried body using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, or a freeze dryer. desirable.
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。 In the present specification, the honeycomb molded body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb molded body.
次いで、ハニカム成形体の乾燥体を構成するセルのいずれかの端部に、封止材ペーストを所定量充填し、セルを目封止する。セルを目封止する際には、例えば、ハニカム成形体の端面(すなわち両端を切断した後の切断面)にセル封止用のマスクを当てて、封止の必要なセルにのみ封止材ペーストを充填し、封止材ペーストを乾燥させる。このような工程を経て、セルの一端部が目封止されたハニカム乾燥体を作製する。
封止材ペーストとしては、上記原料組成物を用いることができる。
ただし、封止材ペーストを用いてセルを目封止する工程は、後述する焼成工程の後に行ってもよく、封止工程後に再焼成を行ってもよい。
Next, a predetermined amount of a sealing material paste is filled in any end of the cell constituting the dried body of the honeycomb molded product, and the cell is sealed. When sealing the cells, for example, a mask for cell sealing is applied to the end surface of the honeycomb molded body (that is, the cut surface after cutting both ends), and the sealing material is applied only to the cells that need to be sealed. Fill the paste and allow the encapsulant paste to dry. Through such a process, a dried honeycomb body in which one end of the cell is sealed is produced.
As the encapsulant paste, the above raw material composition can be used.
However, the step of sealing the cells with the sealing material paste may be performed after the firing step described later, or may be re-baked after the sealing step.
(焼成工程)
焼成工程では、乾燥工程により乾燥された成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
(Baking process)
In the firing step, a honeycomb fired body is produced by firing the molded body dried in the drying step. Since this step is degreasing and firing of the honeycomb molded body, it can be referred to as a "degreasing / firing step", but for convenience, it is referred to as a "baking step".
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。 The temperature of the firing step is preferably 800 to 1300 ° C, more preferably 900 to 1200 ° C. The firing step time is preferably 1 to 24 hours, more preferably 3 to 18 hours. The atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20%.
以上の工程により、本発明のハニカムフィルタを製造することができる。 By the above steps, the honeycomb filter of the present invention can be manufactured.
(その他の工程)
本発明のハニカムフィルタの製造方法は、必要に応じて、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含んでいてもよい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子もしくは錯体を含む溶液にハニカム焼成体又はハニカムフィルタを浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカムフィルタが外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカムフィルタに貴金属を担持してもよい。
(Other processes)
The method for producing a honeycomb filter of the present invention may further include a supporting step of supporting the noble metal on the fired honeycomb body, if necessary.
Examples of the method of supporting the precious metal on the honeycomb fired body include a method of immersing the honeycomb fired body or the honeycomb filter in a solution containing noble metal particles or a complex, and then pulling up and heating the honeycomb filter.
When the honeycomb filter includes the outer peripheral coat layer, the noble metal may be supported on the honeycomb fired body before the outer peripheral coat layer is formed, or the noble metal may be supported on the honeycomb fired body or the honeycomb filter after the outer peripheral coat layer is formed. You may.
本発明のハニカムフィルタの製造方法において、上記担持工程で担持した貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。 In the method for producing a honeycomb filter of the present invention, the amount of the noble metal supported in the supporting step is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
本発明のハニカムフィルタの製造方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料組成物と同じ組成のものが挙げられる。 In the method for producing a honeycomb filter of the present invention, when the outer peripheral coat layer is formed on the outer peripheral surface of the fired honeycomb body, the outer peripheral coat layer is formed after the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end faces of the fired honeycomb body. , Can be formed by drying and solidifying. Examples of the paste for the outer peripheral coat layer include those having the same composition as the raw material composition.
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
(Example)
Hereinafter, examples in which the present invention is disclosed more specifically will be shown. The present invention is not limited to the following examples.
[評価用サンプルの作製]
(実施例1)
CZ粒子(d50CZ:8.0μm、d10CZ:1.8μm)を16.7重量%、アルミナ粒子(d50CZ:20μm、d10Al:4.4μm)を8.4重量%、無機バインダとしてベーマイトを2.8重量%、平均繊維径が3μm、平均繊維長が100μmのアルミナファイバを10.4重量%、有機バインダとしてメチルセルロースを3.9重量%、造孔材として、アクリル樹脂(d50:32μm)を27.7重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを2.9重量%及びイオン交換水を27.1重量%を混合混練して、原料組成物を調製した。
[Preparation of evaluation sample]
(Example 1)
16.7% by weight of CZ particles (d50 CZ : 8.0 μm, d10 CZ : 1.8 μm), 8.4% by weight of alumina particles (d50 CZ : 20 μm, d10 Al: 4.4 μm), boehmite as an inorganic binder 2.8% by weight, 10.4% by weight of alumina fiber having an average fiber diameter of 3 μm and 100 μm of average fiber length, 3.9% by weight of methylcellulose as an organic binder, and acrylic resin (d50: 32 μm) as a pore-forming material. ) Was mixed and kneaded with 27.7% by weight, 2.9% by weight of polyoxyethylene oleyl ether as a surfactant as a molding aid, and 27.1% by weight of ion-exchanged water were mixed and kneaded to prepare a raw material composition. ..
なお、アルミナ粒子及びCZ粒子の累積50%粒子径(d50CZ及びd50Al)及び累積10%粒子径(d10CZ及びd10Al)並びに造孔材のd50は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)を用いて測定した。 The cumulative 50% particle size (d50 CZ and d50 Al ) of the alumina particles and CZ particles, the cumulative 10% particle size (d10 CZ and d10 Al ), and the d50 of the pore-forming material are the laser diffraction type particle size distribution measuring device (MALVERN). It was measured using MASTERSIZER2000) manufactured by the company.
押出成形機を用いて、原料組成物を押出成形して、円柱状のハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、ハニカム成形体を構成するセルのいずれか一方の端部に封止材ペーストが充填されるように、ハニカム成形体を作製するのに用いられた原料組成物と同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填し、さらに大気圧下120℃で10分間乾燥させた。その後、1150℃で10時間脱脂・焼成することにより、ハニカム焼成体(ハニカムフィルタ)を作製した。ハニカム焼成体は、直径が118mm、長さが122mmの円柱状であり、セルの密度が46.5個/cm(300cpsi)、セル隔壁の厚さが0.203mm(8mil)であった。 The raw material composition was extruded using an extrusion molding machine to prepare a columnar honeycomb molded body. Then, the honeycomb molded body is dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then a sealing material is applied to one end of the cells constituting the honeycomb molded body. A sealing material paste having the same composition as the raw material composition used to prepare the honeycomb molded body is filled in a predetermined cell of the honeycomb molded body so that the paste is filled, and further at 120 ° C. under atmospheric pressure. It was dried for 10 minutes. Then, by degreasing and firing at 1150 ° C. for 10 hours, a honeycomb fired body (honeycomb filter) was produced. The honeycomb fired body had a columnar shape having a diameter of 118 mm and a length of 122 mm, a cell density of 46.5 cells / cm 2 (300 cpsi), and a cell partition wall thickness of 0.203 mm (8 mil).
(実施例2)
原料組成物中のCZ及びアルミナの粒子径をそれぞれ表1の通りに変更したほかは、実施例1と同様の手順で、実施例2に係るハニカム構造体を作製した。
(Example 2)
The honeycomb structure according to Example 2 was produced in the same procedure as in Example 1 except that the particle diameters of CZ and alumina in the raw material composition were changed as shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1)
原料組成物中のCZ及びアルミナの粒子径をそれぞれ表1の通りに変更したほかは、実施例1と同様の手順で、比較例1に係るハニカム構造体を作製した。
(Comparative Example 1)
The honeycomb structure according to Comparative Example 1 was produced in the same procedure as in Example 1 except that the particle diameters of CZ and alumina in the raw material composition were changed as shown in Table 1, respectively.
[SEMによるCZ粒子及びアルミナ粒子の平均粒子径の測定]
実施例1及び比較例1で作製したハニカムフィルタの切断面をSEMにより観察し、上述した方法により、CZ粒子及びアルミナ粒子の平均粒子径を求めた。
図2は、実施例1で作製したハニカムフィルタの切断面のSEM写真であり、図3は、比較例1で作製したハニカムフィルタの切断面のSEM写真である。
実施例1で作製したハニカムフィルタにおけるCZ粒子の平均粒子径は、5.3μmであった。また、実施例1で作製したハニカムフィルタにおけるアルミナ粒子の平均粒子径は、12.2μmであった。
比較例1で作製したハニカムフィルタにおけるCZ粒子の平均粒子径は、それぞれ1.2μmであった。また、比較例1で作製したハニカムフィルタにおけるアルミナ粒子の平均粒子径は、それぞれ1.4μmであった。
この結果より、原料に用いられたCZ粒子及びアルミナ粒子の粒子径(レーザー回折により測定した平均粒子径)と、ハニカム焼成体を構成するCZ粒子及びアルミナ粒子の粒子径(SEMにより測定した平均粒子径)とが対応していることを確認した。
[Measurement of average particle size of CZ particles and alumina particles by SEM]
The cut surfaces of the honeycomb filters produced in Example 1 and Comparative Example 1 were observed by SEM, and the average particle diameters of CZ particles and alumina particles were determined by the above-mentioned method.
FIG. 2 is an SEM photograph of the cut surface of the honeycomb filter produced in Example 1, and FIG. 3 is an SEM photograph of the cut surface of the honeycomb filter produced in Comparative Example 1.
The average particle size of the CZ particles in the honeycomb filter produced in Example 1 was 5.3 μm. The average particle size of the alumina particles in the honeycomb filter produced in Example 1 was 12.2 μm.
The average particle size of the CZ particles in the honeycomb filter produced in Comparative Example 1 was 1.2 μm, respectively. The average particle size of the alumina particles in the honeycomb filter produced in Comparative Example 1 was 1.4 μm, respectively.
From this result, the particle diameters of the CZ particles and alumina particles used as raw materials (average particle diameter measured by laser diffraction) and the particle diameters of the CZ particles and alumina particles constituting the honeycomb fired body (average particles measured by SEM). It was confirmed that the diameter) corresponds.
[D50の測定]
各実施例及び比較例で作製したハニカムフィルタについて、水銀圧入法でセル隔壁の気孔径分布を測定して、D50を求めたところ、実施例1で作製したハニカムフィルタのD50は9.4μm、実施例2で作製したハニカムフィルタのD50は15.8μmであり、比較例で作製したハニカムフィルタのD50は1.8μmであった。
この結果から、D50が好ましい気孔径の範囲である5~20μmにあり、実施例で作製したハニカムフィルタの気孔径分布がPM捕集に適していることがわかる。
[Measurement of D50]
For the honeycomb filters produced in each Example and Comparative Example, the pore size distribution of the cell partition wall was measured by the mercury intrusion method to obtain D50. As a result, the D50 of the honeycomb filter produced in Example 1 was 9.4 μm. The D50 of the honeycomb filter produced in Example 2 was 15.8 μm, and the D50 of the honeycomb filter produced in Comparative Example was 1.8 μm.
From this result, it can be seen that D50 is in the range of the preferable pore diameter of 5 to 20 μm, and the pore diameter distribution of the honeycomb filter produced in the example is suitable for PM collection.
以上の結果より、本発明のハニカム構造体は、圧力損失を低くすることができ、PMの捕集に適当な、マクロ気孔のD50が5~20μmであることから、セルのいずれか一方の端部を封止してPM除去用のフィルタとして用いる場合に、優れたフィルタ性能を発揮することがわかる。 From the above results, the honeycomb structure of the present invention can reduce the pressure loss and has a macropore D50 of 5 to 20 μm, which is suitable for collecting PM. Therefore, one end of the cell is used. It can be seen that excellent filter performance is exhibited when the portion is sealed and used as a filter for removing PM.
10 ハニカムフィルタ
11 ハニカム焼成体
11a 排ガス入口側の端部
11b 排ガス出口側の端部
12 排ガス導入セル
13 排ガス排出セル
14 封止材
20 セル隔壁
10 Honeycomb filter 11 Honeycomb fired body 11a Exhaust gas inlet side end 11b Exhaust gas outlet side end 12 Exhaust gas introduction cell 13 Exhaust gas discharge cell 14 Encapsulant 20 Cell partition wall

Claims (4)

  1. 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタであって、
    前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子及びアルミナ粒子を含み、
    前記セリア-ジルコニア複合酸化物粒子のSEMにより測定される平均粒子径が、5μm以上30μm以下であり、
    前記アルミナ粒子のSEMにより測定される平均粒子径が、10μm以上30μm以下であることを特徴とする、ハニカムフィルタ。
    A porous cell partition that divides a plurality of cells that serve as an exhaust gas flow path, an exhaust gas introduction cell in which an end on the exhaust gas inlet side is opened and an end on the exhaust gas outlet side is sealed, and an exhaust gas outlet side. A honeycomb filter made of a honeycomb fired body having an exhaust gas discharge cell having an open end and a sealed end on the exhaust gas inlet side.
    The honeycomb fired body contains ceria-zirconia composite oxide particles and alumina particles, and contains
    The average particle size of the ceria-zirconia composite oxide particles measured by SEM is 5 μm or more and 30 μm or less.
    A honeycomb filter having an average particle diameter of 10 μm or more and 30 μm or less as measured by SEM of the alumina particles.
  2. 前記ハニカム焼成体を構成する、マクロ気孔の気孔径分布におけるD50は、5~20μmである請求項1に記載のハニカムフィルタ。 The honeycomb filter according to claim 1, wherein D50 in the pore size distribution of macropores constituting the honeycomb fired body is 5 to 20 μm.
  3. 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、
    セリア-ジルコニア複合酸化物粒子及びアルミナ粒子を含む原料組成物を調製する原料組成物調製工程と、
    前記原料組成物を成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、
    前記ハニカム成形体を焼成してハニカム焼成体を得る焼成工程と、を含み、
    前記原料組成物に含まれる前記セリア-ジルコニア複合酸化物粒子のレーザー回折により測定されるd50CZが5μm以上30μm以下であり、前記アルミナ粒子のレーザー回折により測定されるd50Alが10μm以上30μm以下であることを特徴とする、ハニカムフィルタの製造方法。
    A porous cell partition that divides a plurality of cells that serve as an exhaust gas flow path, an exhaust gas introduction cell in which an end on the exhaust gas inlet side is opened and an end on the exhaust gas outlet side is sealed, and an exhaust gas outlet side. It is a method of manufacturing a honeycomb filter made of a honeycomb fired body provided with an exhaust gas discharge cell in which the end portion of the exhaust gas is opened and the end portion on the exhaust gas inlet side is sealed.
    A raw material composition preparation step for preparing a raw material composition containing ceria-zirconia composite oxide particles and alumina particles, and
    A molding step of forming a honeycomb molded body in which a plurality of cells are arranged side by side in the longitudinal direction with a cell partition wall separated by molding the raw material composition.
    Including a firing step of firing the honeycomb molded body to obtain a honeycomb fired body.
    The d50 CZ measured by laser diffraction of the ceria-zirconia composite oxide particles contained in the raw material composition is 5 μm or more and 30 μm or less, and the d50 Al measured by laser diffraction of the alumina particles is 10 μm or more and 30 μm or less. A method for manufacturing a honeycomb filter, which is characterized by being present.
  4. 前記セリア-ジルコニア複合酸化物粒子のレーザー回折により測定される累積10%粒子径d10CZは、1.5μm以上であり、
    前記アルミナ粒子のレーザー回折により測定される累積10%粒子径d10Alは、3μm以上である請求項3に記載のハニカムフィルタの製造方法。
    The cumulative 10% particle diameter d10 CZ measured by laser diffraction of the ceria-zirconia composite oxide particles is 1.5 μm or more.
    The method for manufacturing a honeycomb filter according to claim 3, wherein the cumulative 10% particle diameter d10 Al measured by laser diffraction of the alumina particles is 3 μm or more.
PCT/JP2020/031601 2019-09-04 2020-08-21 Honeycomb filter and method for manufacturing honeycomb filter WO2021044874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-161411 2019-09-04
JP2019161411A JP2021037485A (en) 2019-09-04 2019-09-04 Honeycomb filter and manufacturing method for honeycomb filter

Publications (1)

Publication Number Publication Date
WO2021044874A1 true WO2021044874A1 (en) 2021-03-11

Family

ID=74847948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031601 WO2021044874A1 (en) 2019-09-04 2020-08-21 Honeycomb filter and method for manufacturing honeycomb filter

Country Status (2)

Country Link
JP (1) JP2021037485A (en)
WO (1) WO2021044874A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194916A (en) * 1988-01-27 1989-08-04 Ibiden Co Ltd Production of silicon carbide honeycomb filter
JPH1129360A (en) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd Production of ceramic plastic kneaded soil and ceramic plastic kneaded soil and exhaust gas filter using the
JP2011506237A (en) * 2007-11-30 2011-03-03 コーニング インコーポレイテッド Zeolite honeycomb body
JP2017115786A (en) * 2015-12-25 2017-06-29 株式会社デンソー Exhaust gas filter
WO2018164069A1 (en) * 2017-03-06 2018-09-13 イビデン 株式会社 Honeycomb filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194916A (en) * 1988-01-27 1989-08-04 Ibiden Co Ltd Production of silicon carbide honeycomb filter
JPH1129360A (en) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd Production of ceramic plastic kneaded soil and ceramic plastic kneaded soil and exhaust gas filter using the
JP2011506237A (en) * 2007-11-30 2011-03-03 コーニング インコーポレイテッド Zeolite honeycomb body
JP2017115786A (en) * 2015-12-25 2017-06-29 株式会社デンソー Exhaust gas filter
WO2018164069A1 (en) * 2017-03-06 2018-09-13 イビデン 株式会社 Honeycomb filter

Also Published As

Publication number Publication date
JP2021037485A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6998870B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
US9981255B2 (en) Ceramic honeycomb structure and its production method
EP2008712B1 (en) Catalyst supporting honeycomb
US10603658B1 (en) Honeycomb structured body
US20060254231A1 (en) Filter and filter assembly
US11433382B2 (en) Honeycomb filter and method for manufacturing honeycomb filters
JPWO2006041174A1 (en) Ceramic honeycomb structure
JP6081831B2 (en) Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure
WO2008044269A1 (en) Honeycomb structure
US9346043B2 (en) Honeycomb structure and honeycomb catalyst
EP2108448B1 (en) Honeycomb catalyst body
JP6726148B2 (en) Honeycomb catalyst for exhaust gas purification
WO2021044874A1 (en) Honeycomb filter and method for manufacturing honeycomb filter
JP2020040035A (en) Method for producing honeycomb structure
WO2021044875A1 (en) Method for producing honeycomb filter
JP2021037486A (en) Honeycomb filter
CN113332807A (en) Honeycomb filter
JP2021037484A (en) Honeycomb structure body
JP2021038122A (en) Method for producing honeycomb structure body
JP2021037488A (en) Method of producing honeycomb filter
JP2019155277A (en) Honeycomb filter
JP2012197186A (en) Method for manufacturing honeycomb structure
JP2021037489A (en) Honeycomb structure and manufacturing method of honeycomb structure
WO2020105666A1 (en) Honeycomb structured body
WO2020075605A1 (en) Honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860287

Country of ref document: EP

Kind code of ref document: A1