JPH01194916A - Production of silicon carbide honeycomb filter - Google Patents

Production of silicon carbide honeycomb filter

Info

Publication number
JPH01194916A
JPH01194916A JP1465188A JP1465188A JPH01194916A JP H01194916 A JPH01194916 A JP H01194916A JP 1465188 A JP1465188 A JP 1465188A JP 1465188 A JP1465188 A JP 1465188A JP H01194916 A JPH01194916 A JP H01194916A
Authority
JP
Japan
Prior art keywords
silicon carbide
honeycomb
weight
molded body
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1465188A
Other languages
Japanese (ja)
Other versions
JP2672545B2 (en
Inventor
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1465188A priority Critical patent/JP2672545B2/en
Publication of JPH01194916A publication Critical patent/JPH01194916A/en
Application granted granted Critical
Publication of JP2672545B2 publication Critical patent/JP2672545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To enhance collection efficiency of fine particles by sealing the end part of prescribed through-hole of a molded honeycomb form consisting of silicon carbide powder having specified particle diameter with a specified stopping material and thereafter sintering it under the nonoxidative atmosphere. CONSTITUTION:A molded honeycomb form is molded of a starting raw material consisting of silicon carbide powder having 1-200mum mean particle diameter as a main body. The end part of a prescribed through-hole of this molded honeycomb form is sealed with a stopping material consisting of a starting raw material which is constituted of silicon carbide powder having mean particle diameter not larger than 5mum and incorporating at least 30wt.% particle of particle diameter not larger than 1mum as a main body. Then a silicon carbide-base honeycomb filter is produced by sintering the sealed molded honeycomb form in the nonoxidative atmosphere. This filter has excellent airtightness and does not allow an effluent such as discharge gas nonpermeative through a partition to flow outside and the collection efficiency of fine particles is extremely enhanced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は炭化ケイ素質ハニカム状フィルターの製造方法
に関し、更に詳しくは、微粒子の捕集効率が極めて高く
、耐熱性・耐酸化性にも優れた炭化ケイ素質ハニカム状
フィルターの製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a silicon carbide honeycomb filter, and more specifically, it has extremely high particle collection efficiency, heat resistance and acid resistance. The present invention relates to a method for manufacturing a silicon carbide honeycomb filter that has excellent chemical properties.

(従来の技術) 薄い隔壁を介して蜂の巣状に連なる無数の貫通孔を有す
るハニカム状成形体の一方の端面を例えば縦横−つおき
に栓材を充填して封止し、この封止した貫通孔に隣接し
ている貫通孔の他端面に栓材を充填して封止した多孔質
隔壁からなるセラミック質のハニカム状フィルターは、
自動車のディーゼルエンジンを初めとして各種燃焼機器
の排ガス中に含まれる微粒子を捕集して浄化する排ガス
浄化装置として知られている。
(Prior art) One end surface of a honeycomb-shaped molded body having numerous through holes connected in a honeycomb shape through thin partition walls is sealed by filling plug material in every vertical and horizontal direction, and the sealed through holes are sealed. A ceramic honeycomb filter consists of a porous partition wall in which the other end surface of the through hole adjacent to the hole is filled with plugging material and sealed.
It is known as an exhaust gas purification device that collects and purifies particulates contained in the exhaust gas of various combustion equipment, including automobile diesel engines.

かかるハニカム状フィルターは、従来は一般にコージェ
ライト、アルミナ、シリカ、ムライトといったセラミッ
ク材により製造されていたが、これらの酸化物は融点が
1300−1600℃と比較的低いため、これらの物質
よりなるハニカム状フィルターは、tooo°C以トの
高温条件下で使用されると変形を生じたり、あるいは、
ディーゼルエンジンの排ガス中に含まれる炭素微粒子が
フィルター内で燃焼された場合に、熱伝導率が低い上記
物質よりなるハニカム状フィルターは、フィルター内に
局部的に蓄熱が生じその部分が溶損してしまうという欠
点がある。そこで、近時は、2300℃以上の高融点を
有し熱的安定性に極めて優れた炭化ケイ素を主成分とし
て製造したハニカム状フィルターが開発されている。
Conventionally, such honeycomb-shaped filters have generally been manufactured using ceramic materials such as cordierite, alumina, silica, and mullite, but since these oxides have relatively low melting points of 1,300 to 1,600 degrees Celsius, honeycombs made of these materials have been manufactured. Shaped filters may deform or become deformed when used under high temperature conditions of too much °C or higher.
When carbon particulates contained in the exhaust gas of a diesel engine are combusted within the filter, honeycomb-shaped filters made of the above-mentioned materials with low thermal conductivity will locally accumulate heat within the filter and melt away in that part. There is a drawback. Therefore, recently, honeycomb filters have been developed that are made mainly of silicon carbide, which has a high melting point of 2300° C. or higher and has excellent thermal stability.

ところで、ハニカム状フィルターは、通常、いずれの場
合であってもハニカム状成形体の貫通孔の端部隔壁に栓
材が密着して目封止されていなければ、隔壁を通過しな
い排ガスがそのまま外部に流出してしまうことになりフ
ィルターとしての機能を損なうことになる。また、フィ
ルター内は、上記したように極めて高温であるため、ハ
ニカム状成形体のみでなく、当然、栓材も優れた耐熱性
が要求される。
By the way, in any case, normally, in a honeycomb filter, if the end partition wall of the through-hole of the honeycomb-shaped body is not plugged with a plug material, the exhaust gas that does not pass through the partition wall will be released directly to the outside. This will impair its function as a filter. Furthermore, since the inside of the filter is extremely hot as described above, not only the honeycomb-shaped molded body but also the plug material are naturally required to have excellent heat resistance.

従来、炭化ケイ素を主成分としたハニカム状成形体の所
定の貫通孔の端部に栓材を密着させる方法としては次の
ような方法がある。
Conventionally, the following method has been used to bring a plug material into close contact with the end of a predetermined through hole of a honeycomb-shaped molded body mainly composed of silicon carbide.

まず、第1の方法として、両者をガラスフリットのよう
な低融点物質あるいは金属シリコン等を結合剤として用
いて密着させる方法、第2の方法として、栓材を粗大粒
の炭化ケイ素粉末と微細な炭化ケイ素粉末とを混合して
成形した後、2000 ’c以上の高温で焼成して製造
する方法、あるいは、第3の方法として、特開昭48−
39515号公報で開示されている「炭化珪素粉に炭素
粉を加え又は加えずに炭素質バインダーを加えると共に
この炭素粉及び焼成時に生成されるバインダーからの遊
離炭素と反応する理論量の珪素質粉を添加して形成し、
しかる後この成形体の炭素粉中で1900〜2400℃
に加熱して成形体中の炭素分を珪素化することを特徴と
する均質多孔性再結晶炭化珪素体の製造方法、」等が知
られている。
Firstly, the first method is to bond them together using a low-melting substance such as glass frit or metal silicon as a binder, and the second method is to bond the two together using a low-melting substance such as glass frit or metal silicon as a binder. A method of manufacturing by mixing with silicon carbide powder, molding, and then firing at a high temperature of 2000'C or more, or as a third method, JP-A-1973-
No. 39515 discloses that ``A carbonaceous binder is added to silicon carbide powder with or without carbon powder, and a stoichiometric amount of siliconaceous powder reacts with the carbon powder and free carbon from the binder produced during firing. formed by adding
After that, the molded body was heated at 1900 to 2400°C in carbon powder.
A method for producing a homogeneous porous recrystallized silicon carbide body is known, which is characterized in that the carbon content in the molded body is silicified by heating to .

(発明が解決しようとする課題) しかしながら、第1の方法の場合には、ガラスフリット
や金属シリコンは融点が1400℃程度と低いため、フ
ィルター内がそれより高温になると溶融してしまい、栓
材と隔壁との密着性が損なわれ、その結果フィルター全
体としての耐熱性が劣ると共に、微粒子捕集効率が低下
してしまうという問題がある。
(Problem to be Solved by the Invention) However, in the case of the first method, glass frit and metal silicon have a low melting point of about 1400°C, so if the temperature inside the filter becomes higher than that, they will melt, and the plug material will melt. There is a problem that the adhesion between the filter and the partition wall is impaired, and as a result, the heat resistance of the filter as a whole is deteriorated, and the particle collection efficiency is reduced.

第2の方法の場合には、粗大粒子を使っているため、焼
成時のハニカム状成形体の収縮量よりも栓材の収縮量の
方が大きくなり、貫通孔を構成している隔壁との間に隙
間を生じ微粒子の捕集効率が劣ってしまうという問題が
ある。
In the case of the second method, since coarse particles are used, the amount of shrinkage of the plug material is greater than the amount of shrinkage of the honeycomb-shaped molded body during firing, and the amount of shrinkage of the plug material is greater than the amount of shrinkage of the honeycomb-shaped formed body during firing. There is a problem in that gaps are created between the two, resulting in poor particle collection efficiency.

第3の方法の場合には、多孔性の再結晶炭化珪素体を成
形体の栓材として使用しているので、珪素化の際に隔壁
の一部が珪素化されてしまい多孔性が損なわれ、その結
果フィルターとしての機能が低下してしまうという問題
がある。
In the case of the third method, since a porous recrystallized silicon carbide body is used as a plug material for the molded body, part of the partition wall is silicified during silicification, resulting in loss of porosity. As a result, there is a problem that the function as a filter is deteriorated.

本発明は、上記した問題点を解消し、ノ1ニカム状成形
体の貫通孔の端部隔壁に栓材を緊密に密着させることに
より微粒子の捕集効率が極めて高く、シかも耐熱性参耐
酸化性にも優れた炭化ケイ素質ハニカム状フィルターの
製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and by tightly adhering the plug material to the end partition wall of the through hole of the comb-shaped molded body, the collection efficiency of fine particles is extremely high. An object of the present invention is to provide a method for manufacturing a silicon carbide honeycomb filter that has excellent chemical properties.

[発明の構成] (課題を解決するための手段) 本発明者は、上記目的を達成するため鋭意研究を重ねた
結果、ハニカム状成形体と栓材とを同時に焼結し、両者
の焼結時における膨張量あるいは収1i!uに差を設け
ることによりきわめて緊密に両者を接合することができ
、しかも耐熱性・耐酸化性に優れた炭化ケイ素質ハニカ
ム状フィルターを得ることができることを見出し本発明
を完成するに到った。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventor sintered a honeycomb-shaped molded body and a plug material at the same time, and succeeded in sintering both of them. Amount of expansion or convergence 1i! The inventors have discovered that by providing a difference in u, they can be bonded extremely tightly, and a silicon carbide honeycomb filter with excellent heat resistance and oxidation resistance can be obtained, and the present invention has been completed. .

すなわち、本発明の炭化ケイ素質ハニカム状フィルター
の製造方法は、平均粒径が1〜200gmの炭化ケイ素
粉末を主体とする出発原料を成形しハニカム状成形体を
得る第1工程;前記ハニカム状成形体の所定の貫通孔の
端部を、平均粒径が5鋳m以下で、かつ、粒径1pm以
下の粒子が少なくとも30重量%含まれている炭化ケイ
素粉末を主体とする出発原料からなる栓材により目封市
する第2工程;前記目封止したハニカム状成形体を非酸
化性雰囲気中で焼結せしめる第3工程;とからなること
を特徴とする。
That is, the method for manufacturing a silicon carbide honeycomb filter of the present invention includes a first step of molding a starting material mainly composed of silicon carbide powder with an average particle size of 1 to 200 gm to obtain a honeycomb molded body; The end of a predetermined through hole of the body is sealed with a plug made of a starting material mainly consisting of silicon carbide powder having an average particle size of 5 mm or less and containing at least 30% by weight of particles with a particle size of 1 pm or less. A second step of plugging with a material; a third step of sintering the plugged honeycomb shaped body in a non-oxidizing atmosphere;

まず、第1工程における/\ニカム状状形形体出発原料
の平均粒径は1〜200g■であることが必要である。
First, it is necessary that the average particle size of the starting material for the nicum-like shape in the first step is 1 to 200 g.

これは、lpmより小さい場合には、高い強度の焼結体
を得ることができるが、焼結の際における粒成長が著し
く、フィルターの目開きを所定の値に制御することが困
難であるからであり、200 p、mより大きい場合に
は、粒子相互の結合箇所が少なくハニカム状成形体の機
械的強度が低くなるからである。また、前記炭化ケイ素
粉末には、平均粒径の±20%以内の粉末が60重量%
以上存在するような粒度分布を有するものが有利である
This is because if it is smaller than lpm, a high-strength sintered body can be obtained, but grain growth during sintering is significant and it is difficult to control the filter opening to a predetermined value. If it is larger than 200 p, m, there will be fewer bonding points between particles and the mechanical strength of the honeycomb shaped body will be lowered. In addition, the silicon carbide powder contains 60% by weight of powder within ±20% of the average particle size.
It is advantageous to have a particle size distribution that exists above.

なお、炭化ケイ素の結晶系にはα型、β型及び非晶質の
ものがあるが、そのいずれか、またはそれらの混合物の
いずれを使用してもよい、なかでも、β型のものは、微
粉末状で取得し易く、特に5pm以下のものを好適に取
得することができ、しかも比較的低温で合成される低温
安定型結晶であり、焼結に際し、その一部が4H,6H
あるいは15R型等の高温安定型のα型結晶に相転移し
て板状結晶を形成し易く、また結晶の成長性にも優れて
いるから有利である。特に60重量%以上がβ型炭化ケ
イ素からなる出発原料を用いることにより本発明の目的
とする多孔質体を好適に製造することができる。なかで
も、70重量%以上のβ型炭化ケイ素を含有する出発原
料を使用することが特に有利である。
In addition, there are α-type, β-type, and amorphous silicon carbide crystal systems, and any of them or a mixture thereof may be used. Among them, the β-type is It is a low-temperature stable crystal that can be easily obtained in the form of a fine powder, especially one with a particle size of 5 pm or less, and is synthesized at a relatively low temperature.
Alternatively, it is advantageous because it easily undergoes a phase transition to a high-temperature stable α-type crystal such as the 15R type to form a plate-shaped crystal, and also has excellent crystal growth properties. In particular, by using a starting material containing 60% by weight or more of β-type silicon carbide, the porous body targeted by the present invention can be suitably produced. Among these, it is particularly advantageous to use starting materials containing 70% by weight or more of β-type silicon carbide.

また、炭化ケイ素を主体とする出発原料に含まれる不純
物であるA1元素、B元素及びFe元素の含有率は、A
1元素、B元素及びFe元素の含有率の合計が1重量%
以下で、遊#炭素の含有率が5重量%以下であることが
好ましい、その理由は、AM、B、Feの各元素は成形
体焼結時に、炭化ケイ素中に含まれる炭素、あるいは熱
分解により分解して存在する炭素と反応すると成形体を
収縮せしめる性質を有するので、あまり多量に含まれる
と焼結時に成形体が著しく収縮してしまうからである。
In addition, the content of A1 element, B element, and Fe element, which are impurities contained in the starting material mainly composed of silicon carbide, is
The total content of 1 element, B element and Fe element is 1% by weight
In the following, it is preferable that the content of free carbon is 5% by weight or less.The reason is that each element of AM, B, and Fe is added to carbon contained in silicon carbide or thermally decomposed during sintering of the compact. This is because when it decomposes and reacts with existing carbon, it causes the molded body to shrink, so if it is included in too large a quantity, the molded body will shrink significantly during sintering.

また、Al、B、Feの各元素は、焼結の際に炭化ケイ
素結晶内に固溶され易いので、これらの元素が多量に含
まれている場合、フィルターを特に高温の酸素雰囲気中
で使用する、!l: S i CカS i 02 トナ
リ、さラニーc7)Si02と一ヒ記元素の酸素化合物
とが溶は合って低融点ガラスを生じ、その結果フィルタ
ーの耐酸化性が低下するからである。
Additionally, the elements Al, B, and Fe tend to dissolve into silicon carbide crystals during sintering, so if these elements are contained in large amounts, the filter should not be used particularly in a high-temperature oxygen atmosphere. do,! This is because Si02 and the oxygen compound of the above element fuse together to form a low melting point glass, resulting in a decrease in the oxidation resistance of the filter.

しかしながら、An、B、Feの各元素の含有率をハニ
カム状成形体よりも栓材の方が少なくなるようにすれば
、上記膨張作用と相俟ってハニカム状成形体の膨張量を
栓材の膨張量よりもより抑えることができるか、あるい
は、転じて栓材の収縮量がハニカム状成形体の収縮量よ
りも小さくなるので、栓材をハニカム状成形体の貫通孔
端部に密着させることができる。
However, if the content of each element of An, B, and Fe is made lower in the plug material than in the honeycomb-shaped molded body, the amount of expansion of the honeycomb-shaped molded body will be reduced by reducing the amount of expansion of the honeycomb-shaped molded body in the plug material. Alternatively, the amount of contraction of the plug material will be smaller than the amount of contraction of the honeycomb-shaped molded body, so the plug material is brought into close contact with the end of the through-hole of the honeycomb-shaped molded body. be able to.

したがって、ハニカム状成形体中の不純物の含有率は、
好ましくは、Anが0.8重量%以下、Bが0.3重量
%以下、Feが0.8重量%以下で、かつそれらの合計
が1重量%以下、さらに好ましくは、A文が0.5重量
%以下、Bが0.2ffi%以下、Feが0.6重量%
以下で、かつそれらの合計が1重量%以下で、また、遊
離炭素の含有量は5重量%以下が好ましい。
Therefore, the content of impurities in the honeycomb shaped body is
Preferably, An is 0.8% by weight or less, B is 0.3% by weight or less, Fe is 0.8% by weight or less, and the total thereof is 1% by weight or less, and more preferably, the A content is 0.8% by weight or less. 5% by weight or less, B 0.2ffi% or less, Fe 0.6% by weight
and the total amount thereof is 1% by weight or less, and the content of free carbon is preferably 5% by weight or less.

そして、例えば、アルミニウム、ホウ素、鉄、炭素等の
結晶成長助剤を必要により添加した後、メチルセルロー
ス、ポリビニルアルコール、水ガラス等の成形用結合剤
を添加し、押出し成形。
Then, for example, after adding a crystal growth aid such as aluminum, boron, iron, or carbon as necessary, a molding binder such as methyl cellulose, polyvinyl alcohol, or water glass is added, and extrusion molding is performed.

シート成形、プレス成形等の方法によりハニカム状の成
形体を得る。
A honeycomb-shaped molded body is obtained by a method such as sheet molding or press molding.

次に第2工程において栓材を得るための出発原料として
用いる炭化ケイ素粉末の平均粒径は、5ル層以下である
ことが好ましい、出発原料の平均粒径はそれが小さいほ
ど焼結時の粒成長を促進せしめるから、出発原料たる炭
化ケイ素粉末の平均粒径をハニカム状成形体のそれより
も栓材の方を小さくすれば、焼結時に、栓材の膨張量を
ハニカム状成形体の膨張量よりもより大きくすることが
でき、あるいは、転じて/1Jlj、B、Feの各元素
の作用と相俟って栓材の収縮量をハニカム状成形体の収
縮量よりも小さくすることができるからである。
Next, the average particle size of the silicon carbide powder used as the starting material to obtain the plug material in the second step is preferably 5 layers or less, and the smaller the average particle size of the starting material, the more To promote grain growth, if the average particle size of the starting silicon carbide powder is made smaller in the plug material than that of the honeycomb-shaped molded body, the amount of expansion of the plug material during sintering can be reduced to that of the honeycomb-shaped molded body. The amount of shrinkage of the plug material can be made larger than the amount of expansion, or in turn, the amount of shrinkage of the plug material can be made smaller than the amount of shrinkage of the honeycomb-shaped formed body by combining the effects of the elements /1Jlj, B, and Fe. Because it can be done.

また、前記炭化ケイ素粉末には、1ILta以下の粒子
が少なくとも30重量%以以上型れていることが好まし
い、その理由は、焼結時に成形体を膨張させるには結晶
の粗大化が不可欠であるが、結晶の粗大化は、結晶の一
部の粒子が粗大化する結晶の核となり、その周囲の微細
粒子を吸収して生じるものであるからである。したがっ
て、微細粒子が少ないと結晶の成長量が少なくなるので
、少なくとも30重量%以上、さらには50重量%以上
含まれていることが好ましい。
Further, it is preferable that the silicon carbide powder contains at least 30% by weight of particles of 1 ILta or less, because coarsening of the crystals is essential for expanding the compact during sintering. However, the coarsening of the crystal is caused by some particles of the crystal becoming the core of the coarsening crystal and absorbing the surrounding fine particles. Therefore, if the amount of fine particles is small, the amount of crystal growth will be reduced, so it is preferable that the content is at least 30% by weight or more, and more preferably 50% by weight or more.

さらに、不純物の各組成は、AMが0.8重量%以下、
Bが0,3重量%以下、Feが0.8重量%以下、かつ
、それらの含有率の合計が1重量%以下で、さらに上記
ハニカム状成形体に含有されるこれらの元素よりも少な
いことが好ましく、A交は0.3〜0,8重量%、Bは
0.05〜0.3重量%、Feは0.4〜0.8重量%
の範囲の差を有していることがより好ましい、また遊離
炭素の含有率は5重量%以下であることが好ましい。上
記した如く、このような組成とすることにより焼結時に
おける栓材の膨張量をハニカム状成形体の膨張量よりも
大きくできるか、栓材の収M+uJをハニカム状成形体
の収縮量よりも小さくすることができるからである。
Furthermore, each composition of the impurities is such that AM is 0.8% by weight or less,
B is 0.3% by weight or less, Fe is 0.8% by weight or less, and the total content thereof is 1% by weight or less, and is further smaller than these elements contained in the honeycomb-shaped formed body. are preferable, A-cross is 0.3-0.8% by weight, B is 0.05-0.3% by weight, and Fe is 0.4-0.8% by weight.
It is more preferable that the free carbon content is 5% by weight or less. As mentioned above, with such a composition, the amount of expansion of the plug material during sintering can be made larger than the amount of expansion of the honeycomb-shaped formed body, or the amount of expansion of the plug material M+uJ can be made larger than the amount of contraction of the honeycomb-shaped formed body. This is because it can be made smaller.

なお、この場合にβ型炭化ケイ素からなる出発原料を用
いることが好ましいことは上記ハニカム状成形体と同様
である。
Note that, in this case, it is preferable to use a starting material made of β-type silicon carbide, as in the case of the honeycomb-shaped molded body described above.

そして、この栓材を上記ハニカム状成形体の所定の貫通
孔の端部に、ハニカム状成形体の端部を前記栓材の組成
を有するスラリー中に浸漬させたり、前記栓材を可塑性
を有するシート状に加工した後圧入するなどして埋め込
む。
Then, the plug material is placed at the end of a predetermined through hole of the honeycomb-shaped molded body, and the end of the honeycomb-shaped molded body is immersed in a slurry having the composition of the plug material, or the plug material is made of plastic. It is processed into a sheet and then embedded by press-fitting.

なお、上記したハニカム状成形体と栓材は、この段階で
炭化ケイ素成分が両者とも、少なくとも40容量%以上
占めていることが好ましい、その理由は、40容量%よ
り小さいと強度的に優れたハニカム状フィルターを得る
ことが困難になるからである。ハニカム状成形体と栓材
とを十分に密着させるためにハニカム状成形体よりも栓
材の炭化ケイ素の占める割合を大きくすることが好まし
い。
In addition, it is preferable that the silicon carbide component of the above-mentioned honeycomb-shaped molded body and the plug material both account for at least 40% by volume at this stage. This is because it becomes difficult to obtain a honeycomb filter. In order to ensure sufficient adhesion between the honeycomb-shaped molded body and the plug material, it is preferable that the proportion of silicon carbide in the plug material is larger than that of the honeycomb-shaped molded body.

次に、第3工程として、かくして栓材により目11止さ
れたハニカム状の生成形体を耐熱性の容器に入れて非酸
化性雰囲気中で焼結する。
Next, as a third step, the honeycomb-shaped formed body sealed with the plug material is placed in a heat-resistant container and sintered in a non-oxidizing atmosphere.

耐熱性の容器に入れて非酸化性雰囲気中で焼結するのは
、炭化ケイ素粒子間における炭化ケイ素の蒸発−再凝縮
および/または表面拡散による移動を促進させることが
でき、その結果、炭化ケイ素粒子の成長が促進されるか
らである。
Sintering in a non-oxidizing atmosphere in a heat-resistant container can promote the movement of silicon carbide between silicon carbide particles by evaporation-recondensation and/or surface diffusion, and as a result, silicon carbide This is because particle growth is promoted.

生成形体を焼結するための耐熱性容器としては、黒鉛、
炭化ケイ素、酸化ジルコニウム、炭化タングステン、炭
化チタン、酸化マグネシウム。
As a heat-resistant container for sintering the formed body, graphite,
Silicon carbide, zirconium oxide, tungsten carbide, titanium carbide, magnesium oxide.

炭化モリブデン、モリブデン、炭化タンタル、タンタル
、炭化ジルコニウム、黒鉛−炭化ケイ素複合体の中から
選ばれるいずれか1種からなる容器を使用することがで
きる。これらの容器は後述する焼結温度範囲内で溶融す
ることがなく、また、炭化ケイ素粒子の蒸気および/ま
たは分解生成物の系外への漏出を抑制できるからである
A container made of any one selected from molybdenum carbide, molybdenum, tantalum carbide, tantalum, zirconium carbide, and graphite-silicon carbide composite can be used. This is because these containers do not melt within the sintering temperature range described below, and can also suppress leakage of vapor and/or decomposition products of silicon carbide particles to the outside of the system.

焼結温度は2000〜2500℃とすることが好ましい
、その理由は、2000 ’O未猫の場合には、粒子の
成長が不十分で焼結が不完全となり、高強度の焼結体を
得ることが困難になるためである。一方、2500℃を
超えると、炭化ケイ素の結晶昇華分解が盛んになり、発
達した結晶が逆にやせ細ってしまい、高強度の焼結体を
得ることが困難であるからである。なかでも、2050
〜2300℃の範囲で焼結することがより好ましい。
The sintering temperature is preferably 2000 to 2500°C.The reason is that if the temperature is 2000'O, the particles will not grow enough and sintering will be incomplete, resulting in a high-strength sintered body. This is because it becomes difficult. On the other hand, if the temperature exceeds 2500° C., the sublimation and decomposition of silicon carbide crystals will become more active, and the developed crystals will become thinner, making it difficult to obtain a high-strength sintered body. Among them, 2050
It is more preferable to sinter at a temperature of 2300°C to 2300°C.

(実施1例) Xム湾」 ハニカム状成形体の出発原料として使用した炭化ケイ素
粉末は、96重量%がβ型結晶からなる炭化ケイ素であ
り、平均粒径が25−で、かつ、平均粒径の±20%以
内の炭化ケイ素粉末が約70重量%存在しており、遊#
炭素が0,30% iA%、鉄が0.03重罎%、アル
ミニウムが0.04重量%、ホウ素が0.01重量%含
まれているにの原Mtoo重量部に対し、メチルセルロ
ース10重量部、水15重量部を配合し、ニーグー中で
5時間混合した。この混合物を適量採取し、ハニカムダ
イスによる押出成形法によりφ150mm、貫通孔が1
.5m5X1.5mmの正方形で、隔壁の壁厚が0.5
mmのハニカム状成形体を得た。なおこのハニカム状成
形体用の炭化ケイ素の占める割合は55容量%であった
(Example 1) The silicon carbide powder used as the starting material for the honeycomb-shaped molded body was silicon carbide consisting of 96% by weight β-type crystals, had an average particle size of 25- Approximately 70% by weight of silicon carbide powder within ±20% of the diameter is present, and free #
10 parts by weight of methyl cellulose per part by weight of the original Mtoo, which contains 0.30% iA% of carbon, 0.03% of iron, 0.04% of aluminum, and 0.01% of boron. , and 15 parts by weight of water were mixed in a Ni-Goo for 5 hours. An appropriate amount of this mixture was taken and extruded using a honeycomb die to form a diameter of 150 mm and 1 through hole.
.. 5m5x1.5mm square, partition wall thickness 0.5
A honeycomb-shaped molded body of mm was obtained. The proportion of silicon carbide for this honeycomb shaped body was 55% by volume.

一方、栓材は、出発原料として97重量%がβ型結晶か
らなる炭化ケイ素粉末で、平均粒径が0.25μ、1μ
m以下の粒子の含有量が95重量%、遊離炭素が0.2
8重量%、鉄が0.04重礒%、アルミニウムが060
3重量%、ホウ素が0.01重量%である炭化ケイ素粉
末lOO爪景品にメチルセルロース5重量部、水20重
量部を配合し、ニーダーで25時間混合した。この混合
物を、l mmX 150mmの押出ダイスにより平板
を得て、これを前記ハニカム状成形体の端面の所定の場
所に埋め込んで、貫通孔の一端を封止した。
On the other hand, the plug material is silicon carbide powder consisting of 97% by weight β-type crystals as a starting material, and has an average particle size of 0.25μ and 1μ.
The content of particles smaller than m is 95% by weight, and the free carbon content is 0.2
8% by weight, 0.04% iron, 0.60% aluminum
5 parts by weight of methylcellulose and 20 parts by weight of water were added to silicon carbide powder lOO nail prize containing 3% by weight and 0.01% by weight of boron, and mixed in a kneader for 25 hours. A flat plate was obtained from this mixture using an extrusion die of 1 mm x 150 mm, and this was embedded in a predetermined position on the end face of the honeycomb-shaped molded body to seal one end of the through hole.

なおこの栓材用の成形体の炭化ケイ素の占める割合は5
6容看%であった。
The proportion of silicon carbide in this molded body for plugging material is 5.
The incidence was 6%.

この生成形体を黒鉛製ルツボに装入し、タンマン型焼成
炉を使用して、1気圧の主としてアルゴンカス雰囲気中
で焼成した。
This formed body was placed in a graphite crucible and fired in a Tanmann type firing furnace mainly in an argon gas atmosphere at 1 atm.

’yJ温過程は、昇温速度400℃/時間で1700℃
まで昇温し、次いで昇温速度30℃/時間で最高温度2
250℃まで昇温し最高温度で4時間保持した。
'yJ temperature process is 1700℃ at a heating rate of 400℃/hour.
and then at a heating rate of 30°C/hour to a maximum temperature of 2.
The temperature was raised to 250°C and maintained at the maximum temperature for 4 hours.

得られたハニカム状フィルターには、アルミニウムが0
.03重工務、鉄が0.03重量%、ホウ素が0.00
1重量%以下含有されており、またMg&炭素は0.4
0重量%であった。
The resulting honeycomb filter contains zero aluminum.
.. 03 heavy engineering, iron 0.03% by weight, boron 0.00
Contains less than 1% by weight, and Mg & carbon is 0.4
It was 0% by weight.

このハニカム状フィルターを1400℃、空容量532
/winの酸化炉で加熱したところ、その100時間後
の酸化増量は4.0%であり、外観に変化はなく、すぐ
れた耐酸化性を有していた。
This honeycomb filter was heated to 1400°C with an empty capacity of 532
When heated in a /win oxidation furnace, the oxidation weight increase after 100 hours was 4.0%, there was no change in appearance, and it had excellent oxidation resistance.

また、前記封止された端面を水中にて空気で加圧したと
ころ、ハニカム状成形体の隔壁の通気が0.3気圧より
起るのに対し、隔壁と栓材との接合部からのリークは0
.50気圧から生じ、すぐれた気密性を有していた。
Furthermore, when the sealed end face was pressurized with air in water, ventilation of the partition walls of the honeycomb-shaped molded body occurred from 0.3 atm, but leakage occurred from the joint between the partition walls and the plug material. is 0
.. It was generated from 50 atmospheres and had excellent airtightness.

見為列」 ハニカム状成形体の出発原料として、94重量%がβ型
結晶からなる炭化ケイ素であり、平均粒径が8.5μs
で、かつ、平均粒径の±20%以内の炭化ケイ素粉末が
約70重量%存在しており、M#炭素が0.29重量%
、鉄が0.04重量%、アルミニウムが0.03重量%
、ホウ素が痕跡着合まれている炭化ケイ素粉末を実施例
1と同様にハこカムダイスによって押出し、実施例1と
同様の形状を有するハニカム状成形体を得た。なおこの
ハニカム状成形体用の炭化ケイ素の占める割合は56容
看%であった。
As a starting material for the honeycomb-shaped molded body, 94% by weight is silicon carbide consisting of β-type crystals, and the average particle size is 8.5 μs.
and there is approximately 70% by weight of silicon carbide powder within ±20% of the average particle size, and 0.29% by weight of M# carbon.
, 0.04% by weight of iron, 0.03% by weight of aluminum
The silicon carbide powder to which a trace of boron was bonded was extruded using a box cam die in the same manner as in Example 1 to obtain a honeycomb-shaped molded body having the same shape as in Example 1. The proportion of silicon carbide for this honeycomb shaped body was 56%.

一方、栓材は、出発原料として96重量%がβ型結晶か
らなる炭化ケイ素であり、平均粒径0.25μ胃、1戸
以下の粒子の含有量が95重量%、′M遊離炭素062
8重量%、鉄が0.04重1%、アルミニウムが0.0
3重量%、ホウ素が0.01重量%である炭化ケイ素粉
末100重量部にメチルセルロース5重量部、水20重
陽部を配合し、ニーダ−で25時間混合した。この混合
物を、1wmX150m麿の押出ダイスにより平板を得
て、これを前記ハニカム状の生成形体の端面の所定の場
所に埋め込んで、貫通孔の一端を封止した。なおこの栓
材用の成形体の炭化ケイ素の占める割合は56容量%で
あった。
On the other hand, the plug material is silicon carbide consisting of 96% by weight of β-type crystals as a starting material, has an average particle size of 0.25μ, has a content of 95% by weight of particles of 1 unit or less, and has free carbon 062
8% by weight, 0.04% by weight of iron, 0.0% by weight of aluminum
5 parts by weight of methylcellulose and 20 parts by weight of water were blended with 100 parts by weight of silicon carbide powder containing 3% by weight and 0.01% by weight of boron, and mixed in a kneader for 25 hours. A flat plate was obtained from this mixture using an extrusion die measuring 1 wm x 150 m, and this was embedded in a predetermined position on the end face of the honeycomb-shaped formed body to seal one end of the through hole. The proportion of silicon carbide in this molded body for plugging material was 56% by volume.

シカル後、これを黒鉛製ルツボに装入し、タンマン型焼
成炉を使用して1気圧の主としてアルゴンガス雰囲気中
で焼成した。
After the calcification, this was placed in a graphite crucible and fired in a Tamman type firing furnace in an atmosphere of mainly argon gas at 1 atm.

昇温め程は、昇温速度400℃/時間で1700°Cま
で昇温し、次いで昇温速度30℃/時間で最高温度22
50℃まで昇温し最高温度で4時間保持した。
The heating process was to raise the temperature to 1700°C at a heating rate of 400°C/hour, and then to a maximum temperature of 22°C at a heating rate of 30°C/hour.
The temperature was raised to 50°C and maintained at the maximum temperature for 4 hours.

?ik例1と同様にこのハニカム状フィルターを評価し
たところ、#酸化性は4.2%で、隔壁の通気が0.3
5気圧に対し接合部のリークは0.60気圧であった。
? When this honeycomb-shaped filter was evaluated in the same manner as in Example 1, the #oxidizing property was 4.2%, and the ventilation of the partition wall was 0.3%.
The leakage at the joint was 0.60 atm compared to 5 atm.

5−    3〜5       1〜5実施例2と同
様であるが、栓材の出発原料としてモ均粒径が0.32
ル惰で、1用1以下の粒子の含有量を60重量%とし、
さらに栓材の炭化ケイ素含有率が57容φ%で、アルミ
ニウム、鉄。
5-3-5 1-5 Same as Example 2, except that the starting material for the plug material had an average particle size of 0.32.
The content of particles of size 1 or less is 60% by weight,
Furthermore, the silicon carbide content of the plug material is 57% by volume and is made of aluminum and iron.

ホウ素が表に示した如き含有率である炭化ケイ素粉末を
使用した場合(実施例3)、ハニカム状成形体の出発原
料として平均粒径8.6gm+のものを使用し、成形体
の炭化ケイ素含有率を46容量%とした場合(実施例4
)、ハニカム状成形体および栓材の出発原料として、ア
ルミニウム、鉄。
When using silicon carbide powder with a boron content as shown in the table (Example 3), the average particle size of 8.6 gm+ was used as the starting material for the honeycomb shaped body, and the silicon carbide content of the shaped body was When the ratio is 46% by volume (Example 4)
), aluminum and iron as starting materials for honeycomb shaped bodies and plugging materials.

ホウ素が表に示した如き含有率である炭化ケイ素粉末を
使用した場合(実施例5)、実施例2と同様であるが、
栓材の出発原料として平均粒径が4.3μmで、1gm
以下の粒子の含有量が12重量%、炭化ケイ素含有率、
アルミニウム、鉄。
When using silicon carbide powder with boron content as shown in the table (Example 5), the same as Example 2, but
As a starting material for plugging material, the average particle size is 4.3μm and 1gm.
The content of the following particles is 12% by weight, silicon carbide content,
aluminum, iron.

ホウ素、遊離炭素の含有率がそれぞれ表に示した如くの
値である炭化ケイ素粉末を使用した場合(比較例1)、
ハニカム状成形体の出発原料として、成形体の炭化ケイ
素含有率を更に少なくした場合(比較例2)、焼結温度
を1800℃とした場合(比較例3)、焼結温度を25
50°Cとした場合(比較例4)、実施例5のハニカム
状成形体および栓材の出発原料を、ハニカム状成形体に
使用した原料を栓材の出発原料として、栓材に使用した
原料をハニカム状成形体の出発原料として取り(+えて
使用した場合(比較例5)のハニカム状フィルターの特
性を表にまとめて示した。
When using silicon carbide powder with boron and free carbon contents as shown in the table (Comparative Example 1),
As a starting material for a honeycomb-shaped compact, when the silicon carbide content of the compact is further reduced (Comparative Example 2), when the sintering temperature is 1800°C (Comparative Example 3), the sintering temperature is 25°C.
When the temperature was 50°C (Comparative Example 4), the starting raw materials for the honeycomb-shaped molded body and the plugging material of Example 5 were changed from the raw materials used for the honeycomb-shaped molded body to the starting raw materials for the plugging material, and the raw materials used for the plugging material. The characteristics of a honeycomb filter obtained by using (comparative example 5) as a starting material for a honeycomb molded body are summarized in a table.

表より明らかなように、本発明のハニカム状フィルター
は、耐酸化性に優れているとともに、クラックを生じる
などの外観変化がなく、気密性に優れていた・ [発明の効果] 本発明のハニカム状フィルターは、ハニカム状成形体と
栓材とあいだで焼結時の膨張量または収量ar)が異な
るため、栓材をハニカム状成形体の貫通孔の隔壁に密着
させることができ、優れた気密性を有している。したが
って、隔壁を通過しない排ガス等の流出物がそのまま外
部に流出することがなく微粒子の捕集効率が極めて高い
As is clear from the table, the honeycomb-shaped filter of the present invention had excellent oxidation resistance, no appearance change such as cracking, and excellent airtightness. [Effects of the Invention] The honeycomb of the present invention The honeycomb shaped filter has a different expansion amount or yield (ar) during sintering between the honeycomb shaped body and the plug material, so the plug material can be brought into close contact with the partition wall of the through hole of the honeycomb shaped body, resulting in excellent airtightness. It has a sexual nature. Therefore, effluents such as exhaust gas that do not pass through the partition walls do not flow out to the outside as they are, and the efficiency of collecting particulates is extremely high.

また、不純物の含有量が少ないため耐酸化性にも優れ、
しかも結合剤を用いることなく両者を接合させているの
で耐熱性にも優れている。
In addition, it has excellent oxidation resistance due to the low content of impurities.
Furthermore, since the two are bonded without using a binder, it also has excellent heat resistance.

Claims (1)

【特許請求の範囲】 平均粒径が1〜200μmの炭化ケイ素粉末を主体とす
る出発原料を成形しハニカム状成形体を得る第1工程; 前記ハニカム状成形体の所定の貫通孔の端部を、平均粒
径が5μm以下で、かつ、粒径1μm以下の粒子が少な
くとも30重量%含まれている炭化ケイ素粉末を主体と
する出発原料からなる栓材により目封止する第2工程; 前記目封止したハニカム状成形体を非酸化性雰囲気中で
焼結せしめる第3工程; とからなることを特徴とする炭化ケイ素質ハニカム状フ
ィルターの製造方法。
[Scope of Claims] A first step of forming a starting material mainly composed of silicon carbide powder with an average particle size of 1 to 200 μm to obtain a honeycomb-shaped formed body; , a second step of plugging with a plug material made of a starting material mainly consisting of silicon carbide powder having an average particle size of 5 μm or less and containing at least 30% by weight of particles with a particle size of 1 μm or less; A method for manufacturing a silicon carbide honeycomb filter, comprising: a third step of sintering the sealed honeycomb molded body in a non-oxidizing atmosphere.
JP1465188A 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter Expired - Lifetime JP2672545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1465188A JP2672545B2 (en) 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1465188A JP2672545B2 (en) 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter

Publications (2)

Publication Number Publication Date
JPH01194916A true JPH01194916A (en) 1989-08-04
JP2672545B2 JP2672545B2 (en) 1997-11-05

Family

ID=11867108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1465188A Expired - Lifetime JP2672545B2 (en) 1988-01-27 1988-01-27 Method for manufacturing silicon carbide honeycomb filter

Country Status (1)

Country Link
JP (1) JP2672545B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061909A (en) * 1999-09-29 2006-03-09 Ibiden Co Ltd Ceramic filter assembly
WO2006095835A1 (en) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
US7112233B2 (en) 1999-09-29 2006-09-26 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
WO2007037222A1 (en) * 2005-09-28 2007-04-05 Ibiden Co., Ltd. Honeycomb filter
WO2021044874A1 (en) * 2019-09-04 2021-03-11 イビデン株式会社 Honeycomb filter and method for manufacturing honeycomb filter
CN114634354A (en) * 2022-03-15 2022-06-17 深圳市基克纳科技有限公司 Method for improving stability of comprehensive performance of porous ceramic atomizing core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061909A (en) * 1999-09-29 2006-03-09 Ibiden Co Ltd Ceramic filter assembly
US7112233B2 (en) 1999-09-29 2006-09-26 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
WO2006095835A1 (en) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
JPWO2006095835A1 (en) * 2005-03-10 2008-08-21 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
US7897237B2 (en) 2005-03-10 2011-03-01 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
JP5185616B2 (en) * 2005-03-10 2013-04-17 日本碍子株式会社 Honeycomb structure
WO2007037222A1 (en) * 2005-09-28 2007-04-05 Ibiden Co., Ltd. Honeycomb filter
US7550026B2 (en) 2005-09-28 2009-06-23 Ibiden Co., Ltd. Honeycomb filter
JP5209315B2 (en) * 2005-09-28 2013-06-12 イビデン株式会社 Honeycomb filter
WO2021044874A1 (en) * 2019-09-04 2021-03-11 イビデン株式会社 Honeycomb filter and method for manufacturing honeycomb filter
CN114634354A (en) * 2022-03-15 2022-06-17 深圳市基克纳科技有限公司 Method for improving stability of comprehensive performance of porous ceramic atomizing core

Also Published As

Publication number Publication date
JP2672545B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP4136319B2 (en) Honeycomb structure and manufacturing method thereof
EP1364928B1 (en) Honeycomb structure
US6777114B2 (en) Silicon carbide-based porous body and process for production thereof
JP4464568B2 (en) Honeycomb structure and manufacturing method thereof
JP5478259B2 (en) Silicon carbide based porous material
EP1493724B1 (en) Porous material and method for production thereof
JP4455708B2 (en) Honeycomb structure and manufacturing method thereof
US6746748B2 (en) Honeycomb structure and process for production thereof
JP2014031317A (en) Mullite bodies and methods of forming mullite bodies
WO2012105478A1 (en) Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
JPH06100381A (en) Porous mullite article resistive to heat shock and creep produced from topaz and method of producing the same
US6770111B2 (en) Pollucite-based ceramic with low CTE
EP1499571A1 (en) Fabrication of low thermal expansion calcium aluminate articles
JPH01194916A (en) Production of silicon carbide honeycomb filter
JP2634612B2 (en) Silicon carbide honeycomb filter and method for producing the same
JPH1192215A (en) Cordierite-based ceramic sintered product, composition therefor and production
JPS61259763A (en) Catalyst carrier made of porous silicon carbide sintered body
JPH0881259A (en) Mullite-based ceramics and their production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11