WO2021044715A1 - スイッチ駆動回路 - Google Patents

スイッチ駆動回路 Download PDF

Info

Publication number
WO2021044715A1
WO2021044715A1 PCT/JP2020/025755 JP2020025755W WO2021044715A1 WO 2021044715 A1 WO2021044715 A1 WO 2021044715A1 JP 2020025755 W JP2020025755 W JP 2020025755W WO 2021044715 A1 WO2021044715 A1 WO 2021044715A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
switch element
drive circuit
load
switch
Prior art date
Application number
PCT/JP2020/025755
Other languages
English (en)
French (fr)
Inventor
慎也 田島
喜多川 聖也
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN202080061547.6A priority Critical patent/CN114303319A/zh
Priority to DE112020004143.3T priority patent/DE112020004143T5/de
Priority to JP2021543633A priority patent/JPWO2021044715A1/ja
Priority to US17/630,789 priority patent/US20220278681A1/en
Publication of WO2021044715A1 publication Critical patent/WO2021044715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches

Definitions

  • the invention disclosed herein relates to a switch drive circuit.
  • Patent Document 1 can be mentioned as an example of the prior art related to the above.
  • the conventional switch drive circuit may cause gate oscillation during low-speed switching.
  • An object of the invention disclosed in the present specification is to provide a switch drive circuit capable of suppressing gate oscillation during low-speed switching in view of the above problems found by the inventors of the present application. To do.
  • the switch drive circuit disclosed in the present specification is a signal source that pulse-drives a gate signal of a switch element connected in series with a load, and a gate connected between the signal source and the gate of the switch element.
  • a configuration having a resistor, a gate capacitance whose first end is connected to the gate of the switch element, and a damping resistor whose first end is connected between the second end of the gate capacitance and the emitter or source of the switch element ( The first configuration).
  • the damping resistance resistance value may be 1/100 to 1/1000 of the gate resistance resistance value (second configuration).
  • the turn-on transition period and the turn-off transition period of the switch element may be 80 ⁇ s to 1 s, respectively (third configuration).
  • the load device disclosed in the present specification includes a load, a switch element connected in series to the load, and a switch drive circuit having any of the first to third configurations (the above). Fourth configuration).
  • the switch element is an IGBT [insulated gate bipolar transistor], a SiC-MOSFET [metal oxide semiconductor field effect transistor], or a Si-MOSFET (a configuration in which the switch element is an IGBT [insulated gate bipolar transistor] or a SiC-MOSFET [metal oxide semiconductor field effect transistor]. It is preferable to use the fifth configuration).
  • the load may be a resistive load (sixth configuration).
  • the vehicle disclosed in the present specification includes a battery and a load device having the above-mentioned fourth to sixth configurations and receiving power from the battery (seventh configuration). Has been done.
  • the load device may have a heater configuration (eighth configuration).
  • the vehicle having the above-mentioned eighth configuration may have a configuration (nineth configuration) that does not have an internal combustion engine as a heat source.
  • the battery may be a drive battery having an output of 100 to 800V (10th configuration).
  • the figure which shows the turn-on characteristic of a switch element in a comparative example The figure which shows the turn-off characteristic of a switch element in a comparative example
  • the figure which shows 1st Embodiment of a switch drive circuit The figure which shows the turn-on characteristic of the switch element in 1st Embodiment
  • the figure which shows the turn-off characteristic of the switch element in 1st Embodiment The figure which shows the 2nd Embodiment of a switch drive circuit
  • the figure which shows the turn-on characteristic of the switch element in 2nd Embodiment The figure which shows the turn-off characteristic of a switch element in 2nd Embodiment
  • FIG. 1 is a diagram showing an overall configuration of a load device including a switch drive circuit.
  • the load device 10 of this configuration example includes a switch drive circuit 1, a switch element SW (IGBT in this figure), and a load RL, and operates by receiving a power supply voltage VDD from the power supply 20.
  • the load RL is a resistive load.
  • the collector of the switch element SW is connected to the second end of the load RL.
  • the collector and emitter of the switch element SW are accompanied by wiring inductances L1 and L2, respectively. Further, a body diode BD having a collector as a cathode and an emitter as an anode is attached between the collector and the emitter of the switch element SW.
  • the switch element SW connected in series between the second end of the load RL and the negative end of the power supply 20 is turned on when the gate signal G is at a high level, and the gate signal G is at a low level. Turn off at some point.
  • IGBT is illustrated as the switch element SW in this figure, for example, SiC-MOSFET or Si-MOSFET can also be used. In that case, the above collector and emitter may be read as drain and source, respectively.
  • the switch drive circuit 1 of this comparative example is a main body that turns on / off the switch element SW, and includes a signal source SG, a gate resistance Rg, and a gate capacitance Cge.
  • the gate signal G of the SW is pulse-driven.
  • the first end of the gate resistor Rg is connected to the output end of the signal source SG.
  • the second end of the gate resistor Rg is connected to the gate of the switch element SW.
  • the first end of the gate capacitance Cge is connected to the gate of the switch element SW.
  • the second end of the gate capacitance Cge is connected to the emitter of the switch element SW.
  • gate oscillation may occur during the turn-on transition period ⁇ on and the turn-off transition period ⁇ off, as shown in FIGS. 2 and 3.
  • the above-mentioned gate oscillation becomes remarkable, which may hinder the on / off of the switch element SW. ..
  • FIG. 4 is a diagram showing a first embodiment of the switch drive circuit 1.
  • the switch drive circuit 1 of the present embodiment includes the components of FIG. 1 (signal source SG, gate resistance Rg, and gate capacitance Cge), and also has a gate capacitance as a means for suppressing gate oscillation during low-speed switching. It further contains Cgc.
  • the gate capacitance Cgt is connected between the gate and collector of the switch element SW.
  • FIG. 5 and 6 are diagrams showing the turn-on characteristic and the turn-off characteristic of the switch element SW in the first embodiment (FIG. 4), respectively, and in order from the top, the switching loss Psw of the switch element SW and the collector-emitter voltage. Vce, collector current Ic, and gate-emitter voltage Vge are depicted.
  • the small broken line in the figure shows the turn-on characteristic and the turn-off characteristic of the switch element SW in the above-mentioned comparative example (FIG. 1).
  • the gate oscillation can be suppressed by appropriately adjusting the resistance value of the gate resistance Rg and the capacitance values of the gate capacitances Cge and Cgc respectively.
  • the turn-on transition period ⁇ on and the turn-off transition period ⁇ off of the switch element SW are longer than those of the above-mentioned comparative example ( ⁇ on ⁇ ⁇ on', ⁇ off ⁇ ⁇ off').
  • ⁇ on ⁇ ⁇ on', ⁇ off ⁇ ⁇ off' are originally set to large values (for example, several hundred ⁇ s to 1s)
  • ⁇ on'and ⁇ off' become extremely large. Therefore, the switching loss Psw may become very large.
  • FIG. 7 is a diagram showing a second embodiment of the switch drive circuit 1.
  • the switch drive circuit 1 of the present embodiment includes the components of FIG. 1 (signal source SG, gate resistor Rg, and gate capacitance Cge), and also has a damping resistor as a means for suppressing gate oscillation during low-speed switching. It further includes Rd.
  • the damping resistor Rd is connected between the second end of the capacitor Cge and the emitter of the switch element SW.
  • the resistance value of the damping resistor Rd may be set to, for example, 1/100 to 1/1000 of the resistance value of the gate resistance Rg.
  • FIGS. 8 and 9 are diagrams showing the turn-on characteristic and the turn-off characteristic of the switch element SW in the second embodiment (FIG. 7), respectively, and in order from the top, the switching loss Psw of the switch element SW and the collector-emitter voltage. Vce, collector current Ic, and gate-emitter voltage Vge are depicted.
  • the small broken line and the large broken line in the figure indicate the turn-on characteristic and the turn-off characteristic of the switch element SW in the above-mentioned comparative example (FIG. 1) and the first embodiment (FIG. 4), respectively.
  • the switch drive circuit 1 of the present embodiment by adding the damping resistor Rd, the turn-on transition period ⁇ on and the turn-off transition period ⁇ off of the switch element SW are maintained at the same length as the comparative example (for example, 120 ⁇ s) at a low speed. Gate oscillation during switching can be suppressed. Therefore, since the switching loss Psw is not unnecessarily increased, thermal destruction of the switch element SW is less likely to occur.
  • FIG. 7 is a diagram showing a configuration example of a vehicle.
  • the vehicle X of this configuration example is an electric vehicle (so-called pure EV [electric vehicle]) that does not have an internal combustion engine (engine), and includes a heater X10, a drive battery X20, an auxiliary battery X30, and a motor X40.
  • engine internal combustion engine
  • the heater X10 is a kind of load device that generates heat by receiving a power supply voltage VDD (for example, 100 to 800 V) from the drive battery X20.
  • VDD power supply voltage
  • the above-mentioned load device 10 (FIG. 4) can be preferably used. ..
  • a PTC [positive temperature coefficient] thermistor whose resistance value increases as the temperature rises, a nichrome wire having a high resistance value, or the like can be preferably used.
  • the heater X10 is provided as a heat source for heating in the vehicle X that cannot utilize the exhaust heat of the internal combustion engine.
  • the drive battery X20 is an HV [high voltage] battery that supplies the power supply voltage VDD to the heater X10 and the motor X40.
  • As the drive battery X20 for example, a nickel hydrogen battery or a lithium ion battery can be preferably used.
  • the auxiliary battery X30 is a lead-acid battery with the same 12V output as a general engine vehicle, and is used as a power source for various electrical components (car navigation system, car audio, air conditioner, lamp, etc.).
  • the motor X40 is a power source for driving the tires (rear wheels in this figure) of the vehicle X, and operates by receiving the supply of the power supply voltage VDD from the drive battery X20.
  • a DC motor or an AC motor for example, a water-cooled synchronous motor
  • a water-cooled synchronous motor for example, a water-cooled synchronous motor
  • the vehicle X has various components (accelerator, brake, brake hydraulic electric pump, ECU [electronic control unit], CAN [controller area network], electric power steering, transmission. , Selector lever, combination meter, air conditioner, charging connector, in-vehicle charger, DC / DC converter, inverter, various lamps, etc.), but their illustration and detailed explanation are omitted.
  • the switch drive circuit of the heater mounted on the electric vehicle is taken as an example, but the application of the present invention is not limited to this, and it is widely applied to the switch drive circuit that performs low-speed switching of the switch element. It is possible to apply.
  • the switch drive circuit disclosed in the present specification can be used, for example, as a means for driving a switch element of a heater mounted on an electric vehicle.
  • Switch drive circuit 10 Load device 20 Power supply BD Body diode Cge, Cgg Gate capacitance L1, L2 Wiring inductance Rd Damping resistance Rg Gate resistance RL Load (resistive load) SG signal source SW switch element (IGBT) X vehicle (pure EV) X10 heater X20 drive battery X30 auxiliary battery X40 motor

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

例えば、スイッチ駆動回路1は、負荷RL(例えば抵抗性負荷)に直列接続されたスイッチ素子SW(例えばIGBT)のゲート信号Gをパルス駆動する信号源SGと、信号源SGとスイッチ素子SWのゲートとの間に接続されたゲート抵抗Rgと、第1端がスイッチ素子SWのゲートに接続されたゲート容量Cgeと、ゲート容量Cgeの第2端とスイッチ素子SWのエミッタとの間に接続されたダンピング抵抗Rdとを有する。例えば、ダンピング抵抗Rdの抵抗値は、ゲート抵抗Rgの抵抗値の1/100~1/1000であるとよい。また、例えば、スイッチ素子SWのターンオン遷移期間τon及びターンオフ遷移期間τoffは、それぞれ、80μs~1s(120μs程度)であるとよい。

Description

スイッチ駆動回路
 本明細書中に開示されている発明は、スイッチ駆動回路に関する。
 従来、スイッチ素子をオン/オフするスイッチ駆動回路が種々提案されている。
 なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。
特開2015-37256号公報
 しかしながら、従来のスイッチ駆動回路は、低速スイッチング時のゲート発振を生じるおそれがあった。
 本明細書中に開示されている発明は、本願の発明者らにより見出された上記の課題に鑑み、低速スイッチング時のゲート発振を抑制することのできるスイッチ駆動回路を提供することを目的とする。
 本明細書中に開示されているスイッチ駆動回路は、負荷に直列接続されたスイッチ素子のゲート信号をパルス駆動する信号源と、前記信号源と前記スイッチ素子のゲートとの間に接続されたゲート抵抗と、第1端が前記スイッチ素子のゲートに接続されたゲート容量と、前記ゲート容量の第2端と前記スイッチ素子のエミッタまたはソースとの間に接続されたダンピング抵抗と、を有する構成(第1の構成)とされている。
 なお、上記第1の構成から成るスイッチ駆動回路において、前記ダンピング抵抗の抵抗値は、前記ゲート抵抗の抵抗値の1/100~1/1000である構成(第2の構成)にするとよい。
 また、上記第1または第2の構成から成るスイッチ駆動回路において、前記スイッチ素子のターンオン遷移期間及びターンオフ遷移期間は、それぞれ、80μs~1sである構成(第3の構成)にするとよい。
 また、本明細書中に開示されている負荷装置は、負荷と、前記負荷に直列接続されたスイッチ素子と、上記第1~第3いずれかの構成から成るスイッチ駆動回路と、を有する構成(第4の構成)とされている。
 なお、上記した第4の構成から成る負荷装置において、前記スイッチ素子は、IGBT[insulated gate bipolar transistor]、または、SiC-MOSFET[metal oxide semiconductor field effect transistor]、若しくは、Si-MOSFETである構成(第5の構成)にするとよい。
 また、上記第4または第5の構成から成る負荷装置において、前記負荷は、抵抗性負荷である構成(第6の構成)にするとよい。
 また、本明細書中に開示されている車両は、バッテリと、上記第4~第6いずれかの構成から成り前記バッテリから電力供給を受ける負荷装置と、を有する構成(第7の構成)とされている。
 なお、上記第7の構成から成る車両において、前記負荷装置は、ヒータである構成(第8の構成)にするとよい。
 また、上記第8の構成から成る車両は、熱源となる内燃機関を持たない構成(第9の構成)にするとよい。
 また、上記第7~第9いずれかの構成から成る車両において、前記バッテリは、100~800V出力の駆動バッテリである構成(第10の構成)にするとよい。
 本明細書中に開示されている発明によれば、低速スイッチング時のゲート発振を抑制することのできるスイッチ駆動回路を提供することが可能となる。
負荷装置の全体構成(スイッチ駆動回路の比較例)を示す図 比較例におけるスイッチ素子のターンオン特性を示す図 比較例におけるスイッチ素子のターンオフ特性を示す図 スイッチ駆動回路の第1実施形態を示す図 第1実施形態におけるスイッチ素子のターンオン特性を示す図 第1実施形態におけるスイッチ素子のターンオフ特性を示す図 スイッチ駆動回路の第2実施形態を示す図 第2実施形態におけるスイッチ素子のターンオン特性を示す図 第2実施形態におけるスイッチ素子のターンオフ特性を示す図 車両の一構成例を示す図
<負荷装置>
 図1は、スイッチ駆動回路を備えた負荷装置の全体構成を示す図である。本構成例の負荷装置10は、スイッチ駆動回路1と、スイッチ素子SW(本図ではIGBT)と、負荷RLと、を有して成り、電源20から電源電圧VDDの供給を受けて動作する。
 負荷RLは、抵抗性負荷である。負荷RLの第1端は、電源20の正極端(=電源電圧VDDの印加端)に接続されている。
 スイッチ素子SWのコレクタは、負荷RLの第2端に接続されている。スイッチ素子SWのエミッタは、電源20の負極端(=接地端)に接続されている。スイッチ素子SWのゲートは、スイッチ駆動回路1の出力端(=ゲート信号Gの印加端)に接続されている。なお、スイッチ素子SWのコレクタ及びエミッタには、それぞれ、配線インダクタンスL1及びL2が付随する。また、スイッチ素子SWのコレクタ・エミッタ間には、コレクタをカソードとしてエミッタをアノードとするボディダイオードBDが付随する。
 このように、負荷RLの第2端と電源20の負極端との間に直列接続されたスイッチ素子SWは、ゲート信号Gがハイレベルであるときにオンして、ゲート信号Gがローレベルであるときにオフする。
 なお、本図では、スイッチ素子SWとしてIGBTを例示したが、例えば、SiC-MOSFET、若しくは、Si-MOSFETを用いることも可能である。その場合には、上記のコレクタ及びエミッタをそれぞれドレイン及びソースと読み替えればよい。
<スイッチ駆動回路(比較例)>
 引き続き、図1を参照しながら、スイッチ駆動回路1について説明する。なお、本図では、スイッチ駆動回路1の新規な実施形態(図4及び図7)の説明に先立ち、これと対比される比較例が示されている。
 本比較例のスイッチ駆動回路1は、スイッチ素子SWをオン/オフする主体であり、信号源SGと、ゲート抵抗Rgと、ゲート容量Cgeと、を含む。
 信号源SGは、例えば、スイッチ素子SWに流れるコレクタ電流Icが目標値と一致するように、若しくは、負荷RLの発熱量(=温度センサの検出値)が目標値と一致するように、スイッチ素子SWのゲート信号Gをパルス駆動する。
 ゲート抵抗Rgの第1端は、信号源SGの出力端に接続されている。ゲート抵抗Rgの第2端は、スイッチ素子SWのゲートに接続されている。ゲート容量Cgeの第1端は、スイッチ素子SWのゲートに接続されている。ゲート容量Cgeの第2端は、スイッチ素子SWのエミッタに接続されている。
 図2及び図3は、それぞれ、本比較例におけるスイッチ素子SWのターンオン特性及びターンオフ特性を示す図であり、上から順に、スイッチ素子SWのスイッチング損失Psw(=Ic×Vce)、コレクタ・エミッタ間電圧Vce、コレクタ電流Ic、ゲート・エミッタ間電圧Vge(=ゲート信号G)が描写されている。
 ゲート・エミッタ間電圧Vgeが上昇してスイッチ素子SWがオンすると、コレクタ・エミッタ間電圧Vceが低下すると共にコレクタ電流Icが増大する(図2を参照)。一方、ゲート・エミッタ間電圧Vgeが低下してスイッチ素子SWがオフすると、コレクタ・エミッタ間電圧Vceが上昇すると共にコレクタ電流Icが減少する(図3を参照)。
 ところで、スイッチ素子SWのオン/オフに伴うスイッチングノイズの発生を抑えるためには、低速(低スルーレート)でスイッチ素子SWをオン/オフすることが望ましい。
 例えば、スイッチ素子SWのターンオン遷移期間τon(=ターンオン開始時点からターンオン完了時点までの所要期間)及びターンオフ遷移期間τoff(=ターンオフ開始時点からターンオフ完了時点までの所要期間)を、それぞれ、80μs~1s(例えば120μs)に設定しておけば、スイッチングノイズの発生を十分に抑えることができるので、スイッチ駆動回路1にノイズフィルタを導入する必要がなくなる。従って、スイッチ駆動回路1(延いては負荷装置10)の低廉化や小型化を図ることが可能となる。
 しかしながら、低速(低スルーレート)でスイッチ素子SWをオン/オフすると、図2及び図3で示したように、ターンオン遷移期間τon及びターンオフ遷移期間τoffにゲート発振を生じる場合がある。特に、スイッチ素子SWのコレクタ及びエミッタそれぞれに付随する配線インダクタンスL1及びL2が大きい負荷装置10では、上記のゲート発振が顕著となるので、スイッチ素子SWのオン/オフに支障を来すおそれがある。
 以下では、低速スイッチング時のゲート発振を抑制することのできるスイッチ駆動回路1の新規な実施形態を提案する。
<スイッチ駆動回路(第1実施形態)>
 図4は、スイッチ駆動回路1の第1実施形態を示す図である。本実施形態のスイッチ駆動回路1は、図1の構成要素(信号源SG、ゲート抵抗Rg、及び、ゲート容量Cge)を含むほか、低速スイッチング時のゲート発振を抑制するための手段として、ゲート容量Cgcをさらに含む。なお、ゲート容量Cgcは、スイッチ素子SWのゲート・コレクタ間に接続されている。
 図5及び図6は、それぞれ、第1実施形態(図4)におけるスイッチ素子SWのターンオン特性及びターンオフ特性を示す図であり、上から順に、スイッチ素子SWのスイッチング損失Psw、コレクタ・エミッタ間電圧Vce、コレクタ電流Ic、ゲート・エミッタ間電圧Vgeが描写されている。なお、図中の小破線は、先出の比較例(図1)におけるスイッチ素子SWのターンオン特性及びターンオフ特性を示している。
 本実施形態のスイッチ駆動回路1であれば、ゲート抵抗Rgの抵抗値、並びに、ゲート容量Cge及びCgcそれぞれの容量値を適宜調整することにより、上記のゲート発振を抑えることが可能である。
 ただし、その背反として、スイッチ素子SWのターンオン遷移期間τon及びターンオフ遷移期間τoffが先出の比較例よりも長くなる(τon→τon’、τoff→τoff’)。特に、ターンオン遷移期間τon及びターンオフ遷移期間τoffが元々大きい値(例えば数百μs~1s)に設定されている場合には、τon’及びτoff’が極めて大きくなる。そのため、スイッチング損失Pswが非常に大きくなるおそれがある。
<スイッチ駆動回路(第2実施形態)>
 図7は、スイッチ駆動回路1の第2実施形態を示す図である。本実施形態のスイッチ駆動回路1は、図1の構成要素(信号源SG、ゲート抵抗Rg、及び、ゲート容量Cge)を含むほか、低速スイッチング時のゲート発振を抑制するための手段として、ダンピング抵抗Rdをさらに含む。
 ダンピング抵抗Rdは、キャパシタCgeの第2端とスイッチ素子SWのエミッタとの間に接続されている。なお、ダンピング抵抗Rdの抵抗値は、例えば、ゲート抵抗Rgの抵抗値の1/100~1/1000に設定しておくとよい。
 図8及び図9は、それぞれ、第2実施形態(図7)におけるスイッチ素子SWのターンオン特性及びターンオフ特性を示す図であり、上から順に、スイッチ素子SWのスイッチング損失Psw、コレクタ・エミッタ間電圧Vce、コレクタ電流Ic、ゲート・エミッタ間電圧Vgeが描写されている。なお、図中の小破線及び大破線は、それぞれ、先出の比較例(図1)及び第1実施形態(図4)におけるスイッチ素子SWのターンオン特性及びターンオフ特性を示している。
 本実施形態のスイッチ駆動回路1であれば、ダンピング抵抗Rdの追加により、スイッチ素子SWのターンオン遷移期間τon及びターンオフ遷移期間τoffを比較例と同等の長さ(例えば120μs)に維持したまま、低速スイッチング時のゲート発振を抑制することができる。従って、スイッチング損失Pswの不必要な増大を招かないので、スイッチ素子SWの熱破壊を生じにくくなる。
<車両>
 図7は、車両の一構成例を示す図である。本構成例の車両Xは、内燃機関(エンジン)を持たない電気自動車(いわゆるピュアEV[electric vehicle])であり、ヒータX10と、駆動バッテリX20と、補機バッテリX30と、モータX40と、を有する。
 ヒータX10は、駆動バッテリX20から電源電圧VDD(例えば100~800V)の供給を受けて発熱する負荷装置の一種であり、例えば、先出の負荷装置10(図4)を好適に用いることができる。その場合、発熱体となる負荷RLとしては、温度上昇に伴って抵抗値が増大するPTC[positive temperature coefficient]サーミスタや高い抵抗値を持つニクロム線などを好適に用いることができる。このように、内燃機関の排熱を利用することのできない車両Xには、暖房用の熱源としてヒータX10が設けられている。
 駆動バッテリX20は、ヒータX10やモータX40に電源電圧VDDを供給するHV[high voltage]バッテリである。なお、駆動バッテリX20としては、例えば、ニッケル水素電池やリチウムイオン電池を好適に用いることができる。
 補機バッテリX30は、一般的なエンジン車と同じ12V出力の鉛蓄電池であり、各種電装品(カーナビゲーションシステム、カーオーディオ、エアコン、及び、ランプなど)の電源として用いられる。
 モータX40は、車両Xのタイヤ(本図では後輪)を駆動する動力源であり、駆動バッテリX20から電源電圧VDDの供給を受けて動作する。なお、モータX40としては、DCモータやACモータ(例えば水冷式の同期モータ)を好適に用いることができる。
 また、車両Xは、上記した構成要素X10~X40以外にも、種々の構成要素(アクセル、ブレーキ、ブレーキ油圧電動ポンプ、ECU[electronic control unit]、CAN[controller area network]、電動パワーステアリング、トランスミッション、セレクタレバー、コンビネーションメータ、エアコン、充電コネクタ、車載充電器、DC/DCコンバータ、インバータ、及び、各種ランプなど)を備えているが、それらの図示及び詳細な説明は割愛する。
<その他の変形例>
 上記では、電気自動車に搭載されるヒータのスイッチ駆動回路を例に挙げたが、本発明の適用対象は何らこれに限定されるものではなく、スイッチ素子の低速スイッチングを行うスイッチ駆動回路全般に広く適用することが可能である。
 このように、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 本明細書中に開示されているスイッチ駆動回路は、例えば、電気自動車に搭載されるヒータのスイッチ素子を駆動するための手段として利用することが可能である。
   1  スイッチ駆動回路
   10  負荷装置
   20  電源
   BD  ボディダイオード
   Cge、Cgc  ゲート容量
   L1、L2  配線インダクタンス
   Rd  ダンピング抵抗
   Rg  ゲート抵抗
   RL  負荷(抵抗性負荷)
   SG  信号源
   SW  スイッチ素子(IGBT)
   X  車両(ピュアEV) 
   X10  ヒータ
   X20  駆動バッテリ
   X30  補機バッテリ
   X40  モータ

Claims (10)

  1.  負荷に直列接続されたスイッチ素子のゲート信号をパルス駆動する信号源と、
     前記信号源と前記スイッチ素子のゲートとの間に接続されたゲート抵抗と、
     第1端が前記スイッチ素子のゲートに接続されたゲート容量と、
     前記ゲート容量の第2端と前記スイッチ素子のエミッタまたはソースとの間に接続されたダンピング抵抗と、
     を有することを特徴とするスイッチ駆動回路。
  2.  前記ダンピング抵抗の抵抗値は、前記ゲート抵抗の抵抗値の1/100~1/1000であることを特徴とする請求項1に記載のスイッチ駆動回路。
  3.  前記スイッチ素子のターンオン遷移期間及びターンオフ遷移期間は、それぞれ、80μs~1sであることを特徴とする請求項1または2に記載のスイッチ駆動回路。
  4.  負荷と、
     前記負荷に直列接続されたスイッチ素子と、
     請求項1~3のいずれかに記載のスイッチ駆動回路と、
     を有することを特徴とする負荷装置。
  5.  前記スイッチ素子は、IGBT、または、SiC-MOSFET、若しくは、Si-MOSFETであることを特徴とする請求項4に記載の負荷装置。
  6.  前記負荷は、抵抗性負荷であることを特徴とする請求項4または5に記載の負荷装置。
  7.  バッテリと、
     前記バッテリから電力供給を受ける請求項4~6のいずれかに記載の負荷装置と、
     を有することを特徴とする車両。
  8.  前記負荷装置は、ヒータであることを特徴とする請求項7に記載の車両。
  9.  熱源となる内燃機関を持たないことを特徴とする請求項8に記載の車両。
  10.  前記バッテリは、100~800V出力の駆動バッテリであることを特徴とする請求項7~9のいずれかに記載の車両。
PCT/JP2020/025755 2019-09-02 2020-07-01 スイッチ駆動回路 WO2021044715A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080061547.6A CN114303319A (zh) 2019-09-02 2020-07-01 开关驱动电路
DE112020004143.3T DE112020004143T5 (de) 2019-09-02 2020-07-01 Schalter-ansteuerschaltung
JP2021543633A JPWO2021044715A1 (ja) 2019-09-02 2020-07-01
US17/630,789 US20220278681A1 (en) 2019-09-02 2020-07-01 Switch driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019159866 2019-09-02
JP2019-159866 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021044715A1 true WO2021044715A1 (ja) 2021-03-11

Family

ID=74853174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025755 WO2021044715A1 (ja) 2019-09-02 2020-07-01 スイッチ駆動回路

Country Status (5)

Country Link
US (1) US20220278681A1 (ja)
JP (1) JPWO2021044715A1 (ja)
CN (1) CN114303319A (ja)
DE (1) DE112020004143T5 (ja)
WO (1) WO2021044715A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225648A (ja) * 2008-03-19 2009-10-01 Toyota Central R&D Labs Inc 半導体素子駆動回路
JP2015171182A (ja) * 2014-03-05 2015-09-28 住友電気工業株式会社 半導体モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282959A (ja) * 2003-03-18 2004-10-07 Nissan Motor Co Ltd 電圧制御型駆動素子の駆動装置
JP4943939B2 (ja) * 2007-05-14 2012-05-30 矢崎総業株式会社 過電流保護装置
JP5293244B2 (ja) * 2009-02-09 2013-09-18 株式会社デンソー 電気ヒータ駆動装置
JP5377049B2 (ja) * 2009-04-16 2013-12-25 矢崎総業株式会社 昇圧装置
JP5809851B2 (ja) * 2011-06-06 2015-11-11 日本電波工業株式会社 恒温槽付水晶発振器
JP2015037256A (ja) 2013-08-14 2015-02-23 日本電波工業株式会社 発振器
KR101970112B1 (ko) * 2015-08-07 2019-04-17 미쓰비시덴키 가부시키가이샤 파워 스위칭 장치
JP6600586B2 (ja) * 2016-03-15 2019-10-30 本田技研工業株式会社 駆動装置、輸送機器及び制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225648A (ja) * 2008-03-19 2009-10-01 Toyota Central R&D Labs Inc 半導体素子駆動回路
JP2015171182A (ja) * 2014-03-05 2015-09-28 住友電気工業株式会社 半導体モジュール

Also Published As

Publication number Publication date
CN114303319A (zh) 2022-04-08
JPWO2021044715A1 (ja) 2021-03-11
DE112020004143T5 (de) 2022-05-12
US20220278681A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US7084590B2 (en) Booster and motor controller
US7652443B2 (en) Method and system for controlling a power inverter in electric drives
US8483897B2 (en) Vehicular propulsion systems and methods for managing the same
US20140307495A1 (en) Driver for target switching element and control system for machine using the same
US20180281600A1 (en) Gate driver with temperature compensated turn-off
US9590619B2 (en) Gate drive circuit with a voltage stabilizer and a method
JP6104660B2 (ja) 短絡電流保護装置
US20130241519A1 (en) Methods and systems for controlling a boost converter
JP2004515196A (ja) 突入電流制限回路、電源装置、および電力変換装置
US20110091190A1 (en) Heater particularly for a motor vehicle hvac system
CN112406555A (zh) 具有轨供电的钳位电路的汽车功率转换器
JP2005027454A (ja) 車両用制御装置
JP5842899B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびエンジンの制御装置
Kashif Bidirectional flyback DC-DC converter for hybrid electric vehicle: Utility, working and PSPICE computer model
WO2021044715A1 (ja) スイッチ駆動回路
JP5682593B2 (ja) スイッチング素子の駆動装置
JP6324696B2 (ja) 負荷駆動装置及びそれを備えた車両用空調装置並びに負荷短絡保護回路
KR102193895B1 (ko) H-브리지 회로 모듈 내에서 복수의 반브리지의 병렬 연결
US20100145561A1 (en) Method for preventing secondary overvoltage-breakage in a hybrid vehicle
JP5169416B2 (ja) 電力変換回路の駆動回路及び電力変換システム
WO2016143541A1 (ja) 自動車用電源装置及び自動車用電源装置の制御方法
US20080291599A1 (en) Ignition device and method of controlling the same
JP2018033259A (ja) 電力変換装置
JP2016108954A (ja) 内燃機関用点火回路装置
US10889200B2 (en) Vehicle electric power supply apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543633

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20859936

Country of ref document: EP

Kind code of ref document: A1