WO2021042793A1 - 制冷量确定方法、制冷能效比确定方法和故障提醒方法 - Google Patents

制冷量确定方法、制冷能效比确定方法和故障提醒方法 Download PDF

Info

Publication number
WO2021042793A1
WO2021042793A1 PCT/CN2020/095114 CN2020095114W WO2021042793A1 WO 2021042793 A1 WO2021042793 A1 WO 2021042793A1 CN 2020095114 W CN2020095114 W CN 2020095114W WO 2021042793 A1 WO2021042793 A1 WO 2021042793A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioner
indoor unit
cooling capacity
enthalpy value
Prior art date
Application number
PCT/CN2020/095114
Other languages
English (en)
French (fr)
Inventor
张晓迪
张东
许磊
高强
张铭
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP20860858.8A priority Critical patent/EP4027069A4/en
Publication of WO2021042793A1 publication Critical patent/WO2021042793A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically relates to a method for determining a refrigeration capacity, a method for determining a refrigeration energy efficiency ratio, and a method for reminding a fault for an air conditioner.
  • the air conditioner has become an indispensable device in people's lives.
  • the controller of the air conditioner in order to more accurately control the operation of the air conditioner, the controller of the air conditioner often needs to monitor the various operating parameters of the air conditioner in real time. It is relatively easy to collect the operating parameters that can be directly measured by the sensor. Parameters that cannot be directly measured by sensors, such as cooling capacity and cooling energy efficiency ratio, are more difficult to collect.
  • multi-line air conditioners composed of one outdoor unit and multiple indoor units, in order to facilitate users to manage the operation of multiple indoor units, multi-line air conditioners often need to separately measure the cooling capacity of each indoor unit. Conduct monitoring.
  • the present invention provides a method for determining cooling capacity of air-cooled air conditioners.
  • a method for determining the cooling capacity of an air conditioner includes an indoor unit, and the method for determining the cooling capacity includes: obtaining the indoor air density; obtaining the air supply volume of the indoor unit; obtaining the air inlet enthalpy value of the indoor unit; Obtain the air outlet enthalpy value of the indoor unit; determine the cooling capacity of the air conditioner according to the indoor air density, the air supply volume of the indoor unit, the air inlet enthalpy value, and the air outlet enthalpy value.
  • the step of "obtaining the indoor air density” specifically includes: obtaining the inlet air density of the indoor unit.
  • the step of "obtaining the air supply volume of the indoor unit” specifically includes: determining the air supply volume of the indoor unit according to the model and horsepower of the air conditioner.
  • the step of "obtaining the inlet air enthalpy value of the indoor unit” specifically includes: obtaining the inlet air temperature and the inlet air humidity of the indoor unit; Wind temperature and inlet air humidity determine the inlet air enthalpy value of the indoor unit.
  • the step of "obtaining the outlet enthalpy value of the indoor unit” specifically includes: obtaining the outlet air temperature and outlet humidity of the indoor unit; The wind temperature and the outlet air humidity determine the outlet enthalpy value of the indoor unit.
  • the present invention also provides a method for determining a refrigeration energy efficiency ratio for an air conditioner.
  • the method for determining a refrigeration energy efficiency ratio includes: obtaining the cooling capacity of the air conditioner; obtaining the power of the air conditioner; and calculating the power of the air conditioner.
  • the ratio of the cooling capacity to the power of the air conditioner is recorded as the cooling energy efficiency ratio; wherein the cooling capacity of the air conditioner is determined by the cooling capacity determination method described in any one of the above preferred technical solutions.
  • the step of "obtaining the power of the air conditioner” specifically includes: obtaining the power supply current of the air conditioner; obtaining the power supply voltage of the air conditioner; and calculating the air conditioner The product of the power supply current of and the power supply voltage of the air conditioner is recorded as the power of the air conditioner.
  • the present invention also provides a fault reminding method for an air conditioner.
  • the fault reminding method includes: acquiring the cooling capacity of the air conditioner; comparing the acquired cooling capacity of the air conditioner with a preset cooling capacity If the difference between the preset cooling capacity and the acquired cooling capacity of the air conditioner is greater than the preset difference, the air conditioner is controlled to issue a fault reminder; wherein the cooling capacity of the air conditioner passes the above-mentioned optimization
  • the cooling capacity determination method described in any one of the technical solutions is determined.
  • the present invention also provides a fault reminding method for an air conditioner.
  • the fault reminding method includes: obtaining a refrigeration energy efficiency ratio of the air conditioner; and comparing the obtained refrigeration energy efficiency ratio of the air conditioner with a preset energy efficiency ratio Compare; if the acquired refrigeration energy efficiency ratio of the air conditioner is less than the preset energy efficiency ratio, control the air conditioner to issue a fault reminder; wherein, the refrigeration energy efficiency ratio of the air conditioner passes any of the above-mentioned preferred technical solutions
  • the method for determining the energy efficiency ratio of refrigeration described in one is determined.
  • the air conditioner of the present invention includes an indoor unit
  • the cooling capacity determination method of the present invention includes: obtaining the indoor air density; obtaining the air supply volume of the indoor unit; Obtain the air inlet enthalpy value of the indoor unit; Obtain the air outlet enthalpy value of the indoor unit; Determine the air conditioner according to the indoor air density, the air supply volume of the indoor unit, the air inlet enthalpy value and the air outlet enthalpy value The cooling capacity of the device.
  • the determination method of the present invention estimates the air quality that the indoor unit can perform cooling per second through the indoor air density and the air supply volume of the indoor unit, and the air inlet enthalpy and the outlet air enthalpy can reflect the air contained Therefore, the present invention realizes the accurate calculation of the cooling capacity by combining the indoor air density, the air supply volume of the indoor unit, the air inlet enthalpy value and the air outlet enthalpy value.
  • This determination method involves few basic parameters and obtains The method is simple, and the calculation process is also very simple; in addition, this calculation method can not only be applied to air-cooled air conditioners, but also can calculate the cooling capacity of each indoor unit in the air-cooled multi-line air conditioner separately. In this way, the controller of the air conditioner can realize accurate and effective management of each indoor unit based on the cooling capacity of each indoor unit, so that the air conditioner can always maintain high operating efficiency.
  • Q is the air conditioner’s cooling capacity
  • is the indoor air density
  • is the air supply volume of the indoor unit
  • H 1 is the air inlet enthalpy value of the indoor unit
  • H 2 is the air outlet enthalpy value of the indoor unit.
  • the present invention estimates the air quality that the indoor unit can perform cooling per second by calculating the product of the indoor air density and the air supply volume of the indoor unit, and predicts the air quality by the enthalpy difference between the inlet air enthalpy value and the outlet air enthalpy value
  • the energy change amount of the air after the cooling process of the indoor unit, and then the product of the two is used to estimate the cooling capacity of the air conditioner; it should be noted that many existing cooling capacity determination methods are used in the calculation process. Only the amount of temperature change is used to estimate the amount of heat change in the air, and the total ignorance of the amount of change in cooling capacity and air humidity is also closely related. This application has discovered this problem. Therefore, the present invention is determined
  • the method uses the enthalpy difference to participate in the calculation, so as to fully take the change of humidity into account, thereby greatly improving the accuracy of the calculation.
  • the fault reminding method of the present invention can determine whether there is an abnormality in itself according to the cooling capacity of the air conditioner; it is understandable Yes, the cooling capacity represents the cooling capacity of the air conditioner, so that the cooling capacity can be used to determine whether the cooling capacity of the air conditioner is abnormal.
  • the cooling capacity of the air conditioner is abnormal, a fault reminder is issued in time for the user The abnormal condition of the air conditioner can be grasped timely and accurately, and the air conditioner can be effectively protected.
  • the fault reminding method of the present invention can judge whether there is an abnormal situation in itself according to the cooling energy efficiency ratio of the air conditioner; it is understandable It is that the refrigeration energy efficiency ratio represents the refrigeration efficiency of the air conditioner, so as to determine whether the refrigeration efficiency of the air conditioner is abnormal through the refrigeration energy efficiency ratio, and a fault reminder is issued in time when the refrigeration efficiency of the air conditioner is abnormal , So that the user can timely and accurately grasp the abnormal situation of the air conditioner, and then form an effective protection for the air conditioner.
  • Figure 1 is a flow chart of the main steps of the cooling capacity determination method of the present invention.
  • Fig. 2 is a flow chart of the steps of the fault reminding method of the present invention.
  • the present invention provides a cooling energy efficiency ratio determination method for air conditioners.
  • the method for determining the cooling capacity includes: obtaining the indoor air density; obtaining the air supply volume of the indoor unit; obtaining the air inlet enthalpy value of the indoor unit; obtaining the air outlet enthalpy value of the indoor unit; The density, the air supply volume of the indoor unit, the air inlet enthalpy value and the air outlet enthalpy value are calculated to calculate the cooling capacity of the air conditioner, so that the cooling capacity of the air conditioner can be quickly and accurately calculated.
  • the air conditioner of the present invention includes an indoor unit, the indoor unit is provided with an air inlet and an air outlet, air flows into the indoor unit through the air inlet for heat exchange, and then flows out through the air outlet. It should be noted that the present invention does not limit the specific structure of the air conditioner in any way, and technicians can apply the determination method of the present invention to various types of air conditioners.
  • the air conditioner also includes an inlet air temperature sensor, an outlet air temperature sensor, an inlet air humidity sensor, and an outlet air humidity sensor.
  • the inlet air temperature sensor can detect the inlet air temperature of the indoor unit, and the outlet air temperature sensor can The outlet air temperature of the indoor unit is detected, the inlet air humidity sensor can detect the inlet air humidity of the indoor unit, and the outlet air humidity sensor can detect the outlet air humidity of the indoor unit.
  • the air conditioner further includes a controller that can obtain the inlet air temperature of the indoor unit through the inlet air temperature sensor, and obtain the outlet air temperature of the indoor unit through the outlet air temperature sensor.
  • the inlet air humidity sensor obtains the inlet air humidity of the indoor unit, and the outlet air humidity sensor obtains the outlet air humidity of the indoor unit.
  • the present invention does not impose any restrictions on the specific structure and model of the controller, and the controller may be the original controller of the air conditioner, or it may be used to implement the controller.
  • the invented determining method and fault reminding method of the controller separately provided, technicians can set the structure and model of the controller by themselves according to actual use requirements.
  • FIG. 1 is a flowchart of the main steps of the method for determining the cooling capacity of the present invention.
  • the cooling capacity determination method of the present invention mainly includes the following steps:
  • the controller can obtain the indoor air density where the indoor unit is located; it should be noted that the present invention does not impose any restrictions on the method for the controller to obtain the indoor air density, and the technical staff is both
  • the measurement data can be directly sent to the controller after measurement by a special measuring instrument, or the indoor air density can be calculated by measuring the indoor temperature and indoor pressure, as long as the controller can obtain the indoor air density.
  • the present invention preferably uses the inlet air density of the indoor unit as the basic parameter, that is, State the density of air near the air inlet; of course, this is not restrictive, and technicians can also set it according to actual needs.
  • the controller can obtain the air supply volume of the indoor unit; it should be noted that the present invention does not impose any restriction on the manner in which the controller obtains the air supply volume.
  • the air supply volume of the indoor unit can be directly determined according to the model and the number of horses of the air conditioner, that is, it can be determined by the manufacturer’s original data, or it can be calculated by measuring the area of the air outlet and the air supply speed. Air volume, that is, technicians can set their own acquisition method according to actual use needs.
  • the controller can obtain the inlet air enthalpy value of the indoor unit; as a preferred embodiment, the controller obtains the inlet air of the indoor unit through the inlet air temperature sensor Temperature, the inlet air humidity of the indoor unit is obtained through the inlet air humidity sensor, and after the controller obtains the inlet air temperature and the inlet air humidity of the indoor unit, the controller can be based on the internally stored temperature
  • the wet map determines the air inlet enthalpy value of the indoor unit.
  • the present invention does not impose any restrictions on the manner in which the controller obtains the air inlet enthalpy value, and the technical personnel can set it according to actual use requirements.
  • the change in this specific obtaining method does not deviate from The basic principle of the present invention belongs to the protection scope of the present invention.
  • the controller can obtain the outlet enthalpy of the indoor unit; as a preferred embodiment, the controller obtains the outlet air of the indoor unit through the outlet temperature sensor The temperature, the outlet air humidity of the indoor unit is acquired by the outlet air humidity sensor, and after the controller obtains the outlet air temperature and the outlet air humidity of the indoor unit, the controller can be based on the internally stored temperature The wet map determines the air outlet enthalpy value of the indoor unit.
  • the present invention does not impose any limitation on the manner in which the controller obtains the enthalpy of the wind, and the technical personnel can set it according to actual use requirements.
  • the change in the specific obtaining method does not deviate from The basic principle of the present invention belongs to the protection scope of the present invention.
  • the present invention does not impose any restriction on the acquisition sequence of the above four basic parameters. That is, the controller can acquire these four parameters in a specific acquisition sequence, or acquire these four parameters at the same time. Parameters, this specific acquisition order change does not deviate from the basic principle of the present invention.
  • the controller only needs to calculate the cooling capacity of each indoor unit through the determination method, and then perform a summation to calculate the cooling capacity of each indoor unit. The total cooling capacity of the air conditioner can be obtained.
  • the controller can calculate the cooling capacity of the air conditioner according to the indoor air density, the air supply volume, the air inlet enthalpy value, and the air outlet enthalpy value.
  • the present invention does not impose any restriction on its specific calculation method.
  • the technician can fit the calculation formula through experiments according to the structural characteristics of different air conditioners, as long as the method for determining the cooling capacity only uses indoor air density, The calculation of the four measured values of the air supply volume, the air inlet enthalpy value and the air outlet enthalpy value belongs to the protection scope of the present invention.
  • the present invention can calculate the cooling capacity Q of the air conditioner through the following equation:
  • the technician can also add one or more correction coefficients to the above formula according to actual calculation requirements, so as to further improve the accuracy of the calculation.
  • the present invention also provides a method for determining the cooling energy efficiency ratio.
  • U is the power supply voltage of the air conditioner, that is usually 220V
  • I the power supply current of the air conditioner
  • the controller can obtain the cooling energy efficiency ratio of the air conditioner by calculating the ratio of the cooling capacity to the power, so that the controller can control the air conditioner
  • the refrigeration energy efficiency ratio is calculated in real time.
  • Figure 2 is a flowchart of the steps of the fault reminding method of the present invention.
  • the fault reminding method of the present invention specifically includes the following steps:
  • step S102 the controller can obtain the cooling capacity of the air conditioner; it should be noted that the cooling capacity used in this step is passed through the above Determine the cooling capacity calculated by the method.
  • step S103 is executed, and the controller determines whether the difference between the preset cooling capacity and the acquired cooling capacity is greater than the preset difference, so as to determine whether the cooling capacity of the air conditioner meets the standard.
  • the technician can set the specific value of the preset refrigeration capacity and the preset difference according to actual use requirements, as long as the difference between the preset refrigeration capacity and the refrigeration capacity is When the value is greater than the preset difference, it can represent that the refrigeration capacity of the air conditioner does not meet the standard.
  • step S106 is executed. If the difference between the preset cooling capacity and the acquired cooling capacity is less than or equal to the preset difference, it means that the cooling capacity of the air conditioner has reached the standard. At this time, step S102 is executed again, so that Continue to monitor the cooling capacity of the air conditioner.
  • step S104 the controller obtains the cooling energy efficiency ratio of the air conditioner; it should be noted that the cooling energy efficiency ratio used in this step is passed Refrigeration energy efficiency ratio calculated by the above determination method.
  • step S105 is executed, and the controller determines whether the acquired cooling energy efficiency ratio is less than the preset energy efficiency ratio, so as to determine whether the cooling efficiency of the air conditioner meets the standard.
  • the technical personnel can set the specific value of the preset energy efficiency ratio by themselves according to actual use requirements, as long as the preset energy efficiency ratio can represent the minimum standard of refrigeration efficiency.
  • step S105 Based on the judgment result of step S105, if the obtained refrigeration energy efficiency ratio is less than the preset energy efficiency ratio, it means that the refrigeration efficiency of the air conditioner is insufficient. In this case, step S106 is executed; and if the obtained refrigeration energy efficiency ratio is less than the preset energy efficiency ratio, If the cooling energy efficiency ratio is greater than or equal to the preset energy efficiency ratio, it indicates that the cooling efficiency of the air conditioner has reached the standard. At this time, step S104 is executed again to continue monitoring the cooling efficiency of the air conditioner.
  • step S106 when the refrigeration capacity of the air conditioner does not meet the standard or the refrigeration efficiency does not meet the standard, the controller can control the air conditioner to issue a fault reminder.
  • the present invention does not impose any restrictions on the way the air conditioner issues a fault reminder, and technicians can set it according to actual usage requirements.
  • the air conditioner can issue a voice reminder to the user through a voice device, or Send text reminders through its control terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调器技术领域,具体涉及一种用于空调器的制冷量确定方法、制冷能效比确定方法和故障提醒方法。本发明旨在解决现有用于空调器的制冷量确定方法无法对风冷式空调器的制冷量进行精确计算的问题。为此,本发明的制冷量确定方法包括:获取室内空气密度;获取室内机的送风量;获取室内机的进风焓值;获取室内机的出风焓值;根据室内空气密度、室内机的送风量、进风焓值和出风焓值,确定空调器的制冷量。本发明通过室内空气密度和送风量预估室内机每秒能够进行制冷的空气质量,进风焓值和出风焓值能够体现空气所蕴含的能量,以使本发明能够结合室内空气密度、送风量、进风焓值和出风焓值来实现制冷量的精确计算。

Description

制冷量确定方法、制冷能效比确定方法和故障提醒方法 技术领域
本发明属于空调器技术领域,具体涉及一种用于空调器的制冷量确定方法、制冷能效比确定方法和故障提醒方法。
背景技术
随着人们生活水平的不断提高,人们对生活环境也提出了越来越高的要求。为了维持舒适的环境温度,空调器已经成为人们生活中必不可少的一种设备。近年来,为了更加精准地控制空调器的运行,空调器的控制器往往需要实时对空调器的各项运行参数进行监测,对于通过传感器就能够直接测量到的运行参数还比较容易采集,而对于制冷量和制冷能效比这种无法通过传感器直接测量的参数就比较难采集。特别是对于由一个室外机和多个室内机组成的多联机空调器而言,为了方便用户对多个室内机的运行情况进行管理,多联机空调器往往需要分别对每个室内机的制冷量进行监测。现有技术中虽然已经有少量计算制冷量的方法,但是,这些计算方法往往都需要依赖于测量换热用水的温度改变量来实现制冷量的计算,即这些计算方法仅适用于水冷式多联机空调器,而无法对风冷式多联机空调器中的每个室内机的制冷量进行很好的计算。
相应地,本领域需要一种新的用于空调器的制冷量确定方法、制冷能效比确定方法和故障提醒方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有用于空调器的制冷量确定方法无法对风冷式空调器的制冷量进行简单而精确的计算的问题,本发明提供了一种用于空调器的制冷量确定方法,所述空调器包括室内机,所述制冷量确定方法包括:获取室内空气密度;获取所述室内机的送风量;获取所述室内机的进风焓值;获取所述室内机的出 风焓值;根据所述室内空气密度、所述室内机的送风量、进风焓值和出风焓值,确定所述空调器的制冷量。
在上述制冷量确定方法的优选技术方案中,“根据所述室内空气密度、所述室内机的送风量、进风焓值和出风焓值,确定所述空调器的制冷量”的步骤具体包括通过下列等式计算所述空调器的制冷量:Q=ρ×ν×(H 1-H 2)其中,Q为所述空调器的制冷量,ρ为室内空气密度,ν为所述室内机的送风量,H 1为所述室内机的进风焓值,H 2为所述室内机的出风焓值。
在上述制冷量确定方法的优选技术方案中,“获取室内空气密度”的步骤具体包括:获取所述室内机的进风空气密度。
在上述制冷量确定方法的优选技术方案中,“获取所述室内机的送风量”的步骤具体包括:根据所述空调器的型号和匹数,确定所述室内机的送风量。
在上述制冷量确定方法的优选技术方案中,“获取所述室内机的进风焓值”的步骤具体包括:获取所述室内机的进风温度和进风湿度;根据所述室内机的进风温度和进风湿度,确定所述室内机的进风焓值。
在上述制冷量确定方法的优选技术方案中,“获取所述室内机的出风焓值”的步骤具体包括:获取所述室内机的出风温度和出风湿度;根据所述室内机的出风温度和出风湿度,确定所述室内机的出风焓值。
本发明还提供了一种用于空调器的制冷能效比确定方法,所述制冷能效比确定方法包括:获取所述空调器的制冷量;获取所述空调器的功率;计算所述空调器的制冷量和所述空调器的功率的比值,记为所述制冷能效比;其中,所述空调器的制冷量通过上述优选技术方案中任一项所述的制冷量确定方法确定。
在上述制冷能效比确定方法的优选技术方案中,“获取所述空调器的功率”的步骤具体包括:获取所述空调器的电源电流;获取所述空调器的电源电压;计算所述空调器的电源电流和所述空调器的电源电压的乘积,记为所述空调器的功率。
本发明还提供了一种用于空调器的故障提醒方法,所述故障提醒方法包括:获取所述空调器的制冷量;将获取到的所述空调器的制冷量与预设制冷量进行比较;如果所述预设制冷量与获取到的所述空调器的制冷量的差值大于预设差值,则控制所述空调器发出故障提醒;其中,所述空调器的制冷量通过上述优选技术方案中任一项所述的制冷量确定方法确定。
本发明还提供了一种用于空调器的故障提醒方法,所述故障提醒方法包括:获取所述空调器的制冷能效比;将获取到的所述空调器的制冷能效比与预设能效比进行比较;如果获取到的所述空调器的制冷能效比小于所述预设能效比,则控制所述空调器发出故障提醒;其中,所述空调器的制冷能效比通过上述优选技术方案中任一项所述的制冷能效比确定方法确定。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的空调器包括室内机,本发明的制冷量确定方法包括:获取室内空气密度;获取所述室内机的送风量;获取所述室内机的进风焓值;获取所述室内机的出风焓值;根据室内空气密度、所述室内机的送风量、进风焓值和出风焓值,确定所述空调器的制冷量。本发明的确定方法通过室内空气密度和所述室内机的送风量预估所述室内机每秒能够进行制冷的空气质量,而进风焓值和出风焓值均能够体现空气所蕴含的能量,因此,本发明通过结合室内空气密度、所述室内机的送风量、进风焓值和出风焓值来实现制冷量的精确计算,这种确定方法中涉及的基础参数少且获取方式简单,并且其计算过程也十分简单;此外,这种计算方式不仅能够适用于风冷式空调器,而且还能够对风冷式多联机空调器中的各个室内机的制冷量进行分别计算,以使所述空调器的控制器能够基于各个室内机的制冷量对每个室内机实现精确而有效的管理,进而使得所述空调器始终能够保持高效的运行效率。
进一步地,在本发明的优选技术方案中,本发明通过下列等式计算所述空调器的制冷量:Q=ρ×ν×(H 1-H 2),其中,Q为所述空调器的制冷量,ρ为室内空气密度,ν为所述室内机的送风量,H 1为所述室内机的进风焓值,H 2为所述室内机的出风焓值。本发明通过计算室内空气密度和所述室内机的送风量的乘积来预估所述室内机每秒能够进行 制冷的空气质量,通过进风焓值与出风焓值的焓差来预估空气经过所述室内机的制冷处理后的能量改变量,再通过这两者的乘积来预估所述空调器的制冷量;需要说明的是,现有很多制冷量确定方法在计算过程中都仅使用了温度的改变量来预估空气的热量改变量,而完全忽略了制冷量与空气湿度的改变量也是有很大关系的,本申请正是发现了这个问题,因此,本发明的确定方法采用焓差来参与计算,以便充分将湿度的改变量也考虑进来,进而大幅提高计算的精确性。
进一步地,在本发明的优选技术方案中,在所述空调器运行制冷工况时,本发明的故障提醒方法能够根据所述空调器的制冷量来判断其自身是否出现异常情况;可以理解的是,制冷量代表着所述空调器的制冷能力,以便通过制冷量来判断所述空调器的制冷能力是否出现异常,在所述空调器的制冷能力出现异常情况时及时发出故障提醒,以便用户能够及时而准确地掌握所述空调器的异常情况,进而对所述空调器形成有效保护。
进一步地,在本发明的优选技术方案中,在所述空调器运行制冷工况时,本发明的故障提醒方法能够根据所述空调器的制冷能效比来判断其自身是否出现异常情况;可以理解的是,制冷能效比代表着所述空调器的制冷效率,以便通过制冷能效比来判断所述空调器的制冷效率是否出现异常,在所述空调器的制冷效率出现异常情况时及时发出故障提醒,以便用户能够及时而准确地掌握所述空调器的异常情况,进而对所述空调器形成有效保护。
附图说明
图1是本发明的制冷量确定方法的主要步骤流程图;
图2是本发明的故障提醒方法的步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本 发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
基于背景技术中提出的现有用于空调器的制冷量确定方法无法对风冷式空调器的制冷量进行简单而精确的计算的问题,本发明提供了一种用于空调器的制冷能效比确定方法,所述制冷量确定方法包括:获取室内空气密度;获取所述室内机的送风量;获取所述室内机的进风焓值;获取所述室内机的出风焓值;根据室内空气密度、所述室内机的送风量、进风焓值和出风焓值,计算所述空调器的制冷量,以便对所述空调器的制冷量进行快速而精确的计算。
具体地,本发明的空调器包括室内机,所述室内机上设置有进风口和出风口,空气通过所述进风口流入所述室内机中进行换热,再通过所述出风口流出。需要说明的是,本发明不对所述空调器的具体结构作任何限定,技术人员可以将本发明的确定方法用于各种类型的空调器。所述空调器还包括进风温度传感器、出风温度传感器、进风湿度传感器和出风湿度传感器,所述进风温度传感器能够检测所述室内机的进风温度,所述出风温度传感器能够检测所述室内机的出风温度,所述进风湿度传感器能够检测所述室内机的进风湿度,所述出风湿度传感器能够检测所述室内机的出风湿度。所述空调器还包括控制器,所述控制器能够通过所述进风温度传感器获取所述室内机的进风温度,通过所述出风温度传感器获取所述室内机的出风温度,通过所述进风湿度传感器获取所述室内机的进风湿度,通过所述出风湿度传感器获取所述室内机的出风湿度。此外,本领域技术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是所述空调器原有的控制器,也可以是为执行本发明的确定方法和故障提醒方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。
首先参阅图1,该图是本发明的制冷量确定方法的主要步骤流程图。如图1所示,基于上述实施例中所述的空调器,本发明的制冷量确定方法主要包括下列步骤:
S1:获取室内空气密度;
S2:获取室内机的送风量;
S3:获取室内机的进风焓值;
S4:获取室内机的出风焓值;
S5:根据室内空气密度、送风量、进风焓值和出风焓值,计算空调器的制冷量。
进一步地,在步骤S1中,所述控制器能够获取所述室内机所处的室内空气密度;需要说明的是,本发明不对所述控制器获取室内空气密度的方法作任何限制,技术人员既可以通过专门的测量仪器进行测量后再将测量数据直接输送给所述控制器,也可以通过测量室内温度和室内压强自行计算室内空气密度,只要所述控制器能够获取室内空气密度即可。此外,还需要说明的是,由于室内各处的空气密度可能存在微小差异,为了更好地保证计算结果的准确性,本发明优选采用所述室内机的进风空气密度作为基础参数,即所述进风口附近空气的密度;当然,这并不是限制性的,技术人员也可以根据实际需求自行设定。
进一步地,在步骤S2中,所述控制器能够获取所述室内机的送风量;需要说明的是,本发明不对所述控制器获取送风量的方式作任何限制,所述控制器既可以根据所述空调器的型号和匹数直接确定所述室内机的送风量,即通过厂商的原始数据确定,也可以通过测量出风口的面积以及送风速度来计算所述室内机的送风量,即技术人员可以根据实际使用需求自行设定其获取方式。
进一步地,在步骤S3中,所述控制器能够获取所述室内机的进风焓值;作为一种优选实施例,所述控制器通过所述进风温度传感器获取所述室内机的进风温度,通过所述进风湿度传感器获取所述室内机的进风湿度,在所述控制器获取到所述室内机的进风温度和进风湿度之后,所述控制器能够根据内部存储的温湿图确定所述室内机的进风焓值。当然,本领域技术人员能够理解的是,本发明不对所述控制器获取进风焓值的方式作任何限制,技术人员可以根据实际使用需求自行设定,这种具体获取方式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
进一步地,在步骤S4中,所述控制器能够获取所述室内机的出风焓值;作为一种优选实施例,所述控制器通过所述出风温度传感器获取所述室内机的出风温度,通过所述出风湿度传感器获取所述室内 机的出风湿度,在所述控制器获取到所述室内机的出风温度和出风湿度之后,所述控制器能够根据内部存储的温湿图确定所述室内机的出风焓值。当然,本领域技术人员能够理解的是,本发明不对所述控制器获取出风焓值的方式作任何限制,技术人员可以根据实际使用需求自行设定,这种具体获取方式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
此外,还需要说明的是,本发明不对上述四个基础参数的获取顺序作任何限制,即,所述控制器既可以按照特定的获取顺序来获取这四个参数,也可以同时获取这四个参数,这种具体获取顺序的改变并不偏离本发明的基本原理。同时,本领域技术人员能够理解的是,对于具有多个室内机的空调器而言,所述控制器只需要通过该确定方法将每个室内机的制冷量均计算出来,再进行求和就可以得出所述空调器的总制冷量。
进一步地,在步骤S5中,所述控制器能够根据室内空气密度、送风量、进风焓值和出风焓值计算所述空调器的制冷量。需要说明的是,本发明不对其具体计算方式作任何限制,技术人员可以根据不同空调器的结构特征自行通过实验的方式拟合出计算式,只要其制冷量确定方法中仅采用室内空气密度、送风量、进风焓值和出风焓值四个测量值来进行计算就属于本发明的保护范围。作为一种优选实施例,本发明能够通过下列等式计算所述空调器的制冷量Q:
Q=ρ×ν×(H 1-H 2)
其中,ρ为室内空气密度,其单位为kg/m 3;ν为所述室内机的送风量,其单位m 3/s;H 1为所述室内机的进风焓值,其单位kj/kg;H 2为所述室内机的出风焓值,其单位kj/kg。当然,技术人员还可以根据实际计算需求在上式中增设一个或多个修正系数,以便进一步提高计算的精确度。
此外,本发明还提供了一种制冷能效比确定方法,在通过上述确定方法计算出所述空调器的制冷量之后,所述控制器还能够先通过P=U×I计算出所述空调器的功率;其中,U为所述空调器的电源电压,即通常就为220V,I为所述空调器的电源电流,通常直接在所述空调器的电控箱体的电源端子处设置一个电流传感器就能够测得。当然,这种计 算空调器功率的方式并不是限制性的,技术人员可以根据实际使用需求自行设定。在计算出所述空调器的功率之后,所述控制器能够通过计算所述制冷量与所述功率的比值来得到所述空调器的制冷能效比,以便所述控制器能够对所述空调器的制冷能效比进行实时计算。
接着参阅图2,该图是本发明的故障提醒方法的步骤流程图。如图2所示,基于上述实施例中所述的空调器,本发明的故障提醒方法具体包括下列步骤:
S101:空调器处于制冷工况;
S102:获取空调器的制冷量;
S103:判断预设制冷量与制冷量的差值是否大于预设差值;如果是,则执行步骤S106;如果否,则再次执行步骤S102;
S104:获取空调器的制冷能效比;
S105:判断空调器的制冷能效比是否小于预设能效比;如果是,则执行步骤S106;如果否,则再次执行步骤S104;
S106:控制空调器发出故障提醒。
进一步地,在所述空调器运行制冷工况的情况下,在步骤S102中,所述控制器能够获取所述空调器的制冷量;需要说明的是,该步骤中使用的制冷量为通过上述确定方法计算出的制冷量。接着,执行步骤S103,所述控制器判断所述预设制冷量与获取到的所述制冷量的差值是否大于所述预设差值,以便判断所述空调器的制冷能力是否达标。本领域技术人员能够理解的是,技术人员可以根据实际使用需求自行设定所述预设制冷量和所述预设差值的具体值,只要所述预设制冷量与所述制冷量的差值大于所述预设差值时就能够代表所述空调器的制冷能力未达标即可。基于步骤S103的判断结果,如果所述预设制冷量与获取到的所述制冷量的差值大于所述预设差值,则说明所述空调器的制冷能力不足,此时,执行步骤S106;如果所述预设制冷量与获取到的所述制冷量的差值小于或等于所述预设差值,则说明所述空调器的制冷能力已经达标,此时,再次执行步骤S102,以便继续监测所述空调器的制冷能力。
进一步地,在所述空调器运行制冷工况的情况下,在步骤S104中,所述控制器获取所述空调器的制冷能效比;需要说明的是,该步骤中使用的制冷能效比为通过上述确定方法计算出的制冷能效比。接着,执行步骤S105,所述控制器判断获取到的所述制冷能效比是否小于所述预设能效比,以便判断所述空调器的制冷效率是否达标。本领域技术人员能够理解的是,技术人员可以根据实际使用需求自行设定所述预设能效比的具体值,只要所述预设能效比能够代表制冷效率的最低标准即可。基于步骤S105的判断结果,如果获取到的所述制冷能效比小于所述预设能效比,则说明所述空调器的制冷效率不足,在此情形下,执行步骤S106;而如果获取到的所述制冷能效比大于或等于所述预设能效比,则说明所述空调器的制冷效率已经达标,此时,再次执行步骤S104,以便继续监测所述空调器的制冷效率。
进一步地,在步骤S106中,在所述空调器的制冷能力不达标或制冷效率不达标的情况下,所述控制器能够控制所述空调器发出故障提醒。需要说明的是,本发明不对所述空调器发出故障提醒的方式作任何限制,技术人员可以根据实际使用需求自行设定,例如,所述空调器可以通过语音装置向用户发出语音提醒,也可以通过其控制终端发出文字提醒。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于空调器的制冷量确定方法,其特征在于,所述空调器包括室内机,所述制冷量确定方法包括:
    获取室内空气密度;
    获取所述室内机的送风量;
    获取所述室内机的进风焓值;
    获取所述室内机的出风焓值;
    根据所述室内空气密度、所述室内机的送风量、进风焓值和出风焓值,确定所述空调器的制冷量。
  2. 根据权利要求1所述的制冷量确定方法,其特征在于,“根据所述室内空气密度、所述室内机的送风量、进风焓值和出风焓值,确定所述空调器的制冷量”的步骤具体包括通过下列等式计算所述空调器的制冷量:
    Q=ρ×ν×(H 1-H 2)
    其中,Q为所述空调器的制冷量,ρ为室内空气密度,ν为所述室内机的送风量,H 1为所述室内机的进风焓值,H 2为所述室内机的出风焓值。
  3. 根据权利要求2所述的制冷量确定方法,其特征在于,“获取室内空气密度”的步骤具体包括:
    获取所述室内机的进风空气密度。
  4. 根据权利要求2所述的制冷量确定方法,其特征在于,“获取所述室内机的送风量”的步骤具体包括:
    根据所述空调器的型号和匹数,确定所述室内机的送风量。
  5. 根据权利要求2所述的制冷量确定方法,其特征在于,“获取所述室内机的进风焓值”的步骤具体包括:
    获取所述室内机的进风温度和进风湿度;
    根据所述室内机的进风温度和进风湿度,确定所述室内机的进风焓 值。
  6. 根据权利要求2所述的制冷量确定方法,其特征在于,“获取所述室内机的出风焓值”的步骤具体包括:
    获取所述室内机的出风温度和出风湿度;
    根据所述室内机的出风温度和出风湿度,确定所述室内机的出风焓值。
  7. 一种用于空调器的制冷能效比确定方法,其特征在于,所述制冷能效比确定方法包括:
    获取所述空调器的制冷量;
    获取所述空调器的功率;
    计算所述空调器的制冷量和所述空调器的功率的比值,记为所述制冷能效比;
    其中,所述空调器的制冷量通过权利要求1至6中任一项所述的制冷量确定方法确定。
  8. 根据权利要求7所述的制冷能效比确定方法,其特征在于,“获取所述空调器的功率”的步骤具体包括:
    获取所述空调器的电源电流;
    获取所述空调器的电源电压;
    计算所述空调器的电源电流和所述空调器的电源电压的乘积,记为所述空调器的功率。
  9. 一种用于空调器的故障提醒方法,其特征在于,所述故障提醒方法包括:
    获取所述空调器的制冷量;
    将获取到的所述空调器的制冷量与预设制冷量进行比较;
    如果所述预设制冷量与获取到的所述空调器的制冷量的差值大于预设差值,则控制所述空调器发出故障提醒;
    其中,所述空调器的制冷量通过权利要求1至6中任一项所述的制冷 量确定方法确定。
  10. 一种用于空调器的故障提醒方法,其特征在于,所述故障提醒方法包括:
    获取所述空调器的制冷能效比;
    将获取到的所述空调器的制冷能效比与预设能效比进行比较;
    如果获取到的所述空调器的制冷能效比小于所述预设能效比,则控制所述空调器发出故障提醒;
    其中,所述空调器的制冷能效比通过权利要求7或8所述的制冷能效比确定方法确定。
PCT/CN2020/095114 2019-09-04 2020-06-09 制冷量确定方法、制冷能效比确定方法和故障提醒方法 WO2021042793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20860858.8A EP4027069A4 (en) 2019-09-04 2020-06-09 REFRIGERATION CAPACITY DETERMINATION METHOD, REFRIGERATION ENERGY EFFICIENCY RATIO DETERMINATION METHOD AND FAILURE NOTIFICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910833040.7 2019-09-04
CN201910833040.7A CN112443932A (zh) 2019-09-04 2019-09-04 制冷量确定方法、制冷能效比确定方法和故障提醒方法

Publications (1)

Publication Number Publication Date
WO2021042793A1 true WO2021042793A1 (zh) 2021-03-11

Family

ID=74734505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095114 WO2021042793A1 (zh) 2019-09-04 2020-06-09 制冷量确定方法、制冷能效比确定方法和故障提醒方法

Country Status (3)

Country Link
EP (1) EP4027069A4 (zh)
CN (1) CN112443932A (zh)
WO (1) WO2021042793A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183398B (zh) * 2022-07-29 2023-10-20 青岛海尔空调电子有限公司 一种空调控制方法、装置、设备和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664524A (zh) * 2005-03-28 2005-09-07 杭州家和智能控制有限公司 风机盘管换热量风侧焓差法计量方法
CN104776944A (zh) * 2015-04-16 2015-07-15 广东美的制冷设备有限公司 空调器换热量检测方法及装置
CN106839323A (zh) * 2017-02-28 2017-06-13 青岛海尔空调电子有限公司 一种空调器管理装置和具有该管理装置的空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639225B2 (ja) * 2001-05-31 2005-04-20 三機工業株式会社 空気調和設備
CN106403204A (zh) * 2016-11-28 2017-02-15 广东美的制冷设备有限公司 一种空调制冷量检测方法、***及空调器
CN106871357A (zh) * 2017-02-28 2017-06-20 青岛海尔空调电子有限公司 一种空调器管理装置和具有该管理装置的空调器
CN106949611A (zh) * 2017-02-28 2017-07-14 青岛海尔空调电子有限公司 一种空调器管理装置和具有该管理装置的空调器
CN206724535U (zh) * 2017-04-24 2017-12-08 许小球 一种大型制冷设备的监测***
CN107918072A (zh) * 2017-11-16 2018-04-17 深圳创维空调科技有限公司 空调器的故障检测方法、装置和空调器
CN109210701B (zh) * 2018-08-28 2021-03-16 珠海格力电器股份有限公司 一种空调器管理方法、***和计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664524A (zh) * 2005-03-28 2005-09-07 杭州家和智能控制有限公司 风机盘管换热量风侧焓差法计量方法
CN104776944A (zh) * 2015-04-16 2015-07-15 广东美的制冷设备有限公司 空调器换热量检测方法及装置
CN106839323A (zh) * 2017-02-28 2017-06-13 青岛海尔空调电子有限公司 一种空调器管理装置和具有该管理装置的空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027069A4 *

Also Published As

Publication number Publication date
EP4027069A1 (en) 2022-07-13
EP4027069A4 (en) 2022-11-09
CN112443932A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN108488998B (zh) 用于空调器的室内机防冻结控制方法
CN108317668B (zh) 用于空调器的室内机防冻结控制方法和空调器
TWI504094B (zh) 電力負載監控及預測系統及其方法
CN102207322B (zh) 冰水主机的冰水温度动态调整方法
CN104776943B (zh) 空调器换热量检测方法及装置
CN107062559B (zh) 一种空调器缺氟检测方法、装置及空调***
KR20180132745A (ko) 필터의 교체주기 간 수명의 최적화 방법 및 환기 시스템의 모니터링 시스템
JP2009030820A (ja) 空調制御装置および空調制御方法
CN106885334A (zh) 空调风量控制方法与装置
CN105674491A (zh) 一种基于云平台的室内环境管理***
WO2017004963A1 (zh) 一种温控及热计量的远传通讯***及其方法
WO2021042793A1 (zh) 制冷量确定方法、制冷能效比确定方法和故障提醒方法
CN106594965A (zh) 一种基于空气焓值的新风处理控制方法及***
JP6862130B2 (ja) 異常検知装置、異常検知方法、およびプログラム
CN104089379A (zh) 地下厂房通风空调***效能的评定方法
WO2018188430A1 (zh) 在线检测空调制热能效比和制热量的方法
JP2007212038A (ja) デマンド制御装置、デマンド制御方法およびデマンド制御プログラム
JP4586927B2 (ja) 機器管理システム
CN112032939A (zh) 换热***的控制方法
JP2006162213A (ja) 空調用遠隔制御装置
JP6338684B2 (ja) 診断装置、診断方法、及び、プログラム
JP2014106724A (ja) 空調診断装置およびエネルギー使用量管理装置
JP3877955B2 (ja) 可変制御システムの運用評価装置
CN115789854B (zh) 空调房间气流组织有效系数的测量调节方法及***
JP5410103B2 (ja) 空気調和システムおよび空気調和システムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860858

Country of ref document: EP

Effective date: 20220404