WO2021042740A1 - 体声波谐振器及其制造方法、滤波器和电子设备 - Google Patents

体声波谐振器及其制造方法、滤波器和电子设备 Download PDF

Info

Publication number
WO2021042740A1
WO2021042740A1 PCT/CN2020/086561 CN2020086561W WO2021042740A1 WO 2021042740 A1 WO2021042740 A1 WO 2021042740A1 CN 2020086561 W CN2020086561 W CN 2020086561W WO 2021042740 A1 WO2021042740 A1 WO 2021042740A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
layer
bottom electrode
resonator
inner end
Prior art date
Application number
PCT/CN2020/086561
Other languages
English (en)
French (fr)
Inventor
杨清瑞
庞慰
张孟伦
Original Assignee
天津大学
诺思(天津)微***有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微***有限责任公司 filed Critical 天津大学
Priority to EP20860269.8A priority Critical patent/EP4027519A4/en
Publication of WO2021042740A1 publication Critical patent/WO2021042740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements

Definitions

  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • the series resistance R s will become larger, which increases the electrical energy loss in the electrode and reduces the Q value of the resonator; at the same time, due to the bottom electrode
  • the thickness of 11 is relatively thin, and the process of etching the piezoelectric layer 12 above the bottom electrode 11 to form the metal connection layer 14 on the bottom electrode will cause the bottom electrode to be over-etched and damaged, thereby making the electrical connection of the resonator worse. , which reduces the reliability of the resonator.
  • the resistance R s reduces the electrical loss in the bottom electrode and improves the Q value of the resonator; in addition, by etching the inner end of the barrier layer to form a step at the end of the top electrode, the transverse acoustic mode in the edge of the resonator can be reduced It is reflected back into the effective area and partially converted into a longitudinal acoustic wave mode perpendicular to the surface of the piezoelectric layer, thereby further improving the Q value of the resonator.
  • Using the single structure of the etching barrier layer can simultaneously achieve the effects of improving the reliability of the resonator and improving the Q value of the resonator (from the two aspects of reducing electrical loss and reflecting sound waves).
  • a bulk acoustic wave resonator including:
  • the area where the acoustic mirror, bottom electrode, piezoelectric layer, and top electrode overlap in the thickness direction of the substrate is the effective area of the resonator;
  • the resonator further includes an etch stop layer for the bottom electrode, the etch stop layer is disposed on the top surface of the bottom electrode;
  • the inner end of the etch stop layer is located in the effective area in the top view of the resonator and overlaps the top electrode, and the end of the top electrode forms a step structure based on the overlap.
  • the etch barrier layer includes a first metal layer and a second metal layer, and the first metal layer and the second metal layer are stacked on each other in a manner that the first metal layer is on the bottom and the second metal layer is on the top. Is arranged on the bottom electrode, and the inner end of the first metal layer is closer to the center of the effective area in the radial direction than the inner end of the second metal layer; the bottom electrode of the resonator is electrically connected to the center of the effective area The outer side is directly electrically connected to the second metal layer.
  • the inner end of the first metal layer and the inner end of the second metal layer overlap with the end of the top electrode in the top view of the resonator;
  • the step structure is a double step structure.
  • the resonator further includes a metal extension part extending from the first metal layer and/or the second metal layer along at least a part of the effective area in the same layer; The overlapping portion of the metal extension portion is formed with a stepped extension structure.
  • the inner end of the first metal layer overlaps with the end of the top electrode in the top view of the resonator, and the inner end of the second metal layer is outside the effective area; the end of the top electrode forms a single Step structure.
  • the resonator further includes: a portion from the first metal layer in the effective area, and/or a portion from the first metal layer and the second metal layer in the effective area, along the effective area At least a part of the metal extension part extending in the same layer; the top electrode is formed with a step extension structure in the part where the top electrode overlaps the metal extension part in the top view of the resonator.
  • the thickness of the first metal layer is , And/or the thickness of the second metal layer In the range.
  • the first metal layer is a material with high acoustic impedance; the second metal layer is a material with low electrical loss.
  • the etching barrier layer includes a non-metal layer, the non-metal layer is disposed on the top side of the bottom electrode, and the inner end of the non-metal layer is located in the effective area and overlaps the top electrode, so The end of the top electrode forms a stepped structure based on the overlap, and the bottom electrode electrical connection layer of the resonator is adjacent to the non-metal layer in the radial direction. Further, the bottom electrode electrical connection layer of the resonator is directly electrically connected to the bottom electrode.
  • the etching barrier layer further includes a third metal layer disposed between the bottom electrode and the non-metal layer, the third metal layer is electrically connected to the bottom electrode, and the bottom electrode electrical connection layer is outside the effective area It is directly electrically connected to the third metal layer.
  • the inner end of the third metal layer is located in the effective area, and the inner end of the third metal layer is farther from the effective area in the radial direction than the inner end of the non-metal layer in the plan view of the resonator.
  • the center of the area is based on the inner end of the third metal layer and the inner end of the non-metal layer that are staggered in the radial direction, and the end of the top electrode is formed with a double-step structure.
  • the inner end of the third metal layer is located in the effective area, and the inner end of the third metal layer is closer to the effective area in the radial direction than the inner end of the non-metal layer in the plan view of the resonator.
  • the center of the area is based on the inner end of the third metal layer and the inner end of the non-metal layer that are staggered in the radial direction, and the end of the top electrode is formed with a double-step structure.
  • the etching barrier layer further includes a fourth metal layer disposed between the substrate and the bottom electrode, and the fourth metal layer extends through the bottom electrode electrical connection layer in a radial direction in a plan view of the resonator. .
  • the resonator further includes a non-metallic extension extending from a portion of the non-metal layer that is in contact with the bottom electrode in the effective area along at least a portion of the effective area in the same layer; the top electrode is resonating A stepped extension structure is formed at the portion overlapping the non-metallic extension part in the top view of the device.
  • a filter including the above-mentioned resonator.
  • an electronic device which includes the above-mentioned resonator or the above-mentioned filter.
  • a method for manufacturing a bulk acoustic wave resonator includes a substrate, an acoustic mirror, a bottom electrode, a top electrode, and a piezoelectric layer, and the acoustic mirror and the bottom electrode
  • the area where the piezoelectric layer and the top electrode overlap in the thickness direction of the substrate is the effective area of the resonator, and the method includes the steps:
  • the piezoelectric layer covering the etch stop layer forms a stepped portion of the piezoelectric layer
  • a top electrode is provided on the piezoelectric layer, and the end of the top electrode forms a stepped structure based on the stepped portion of the piezoelectric layer.
  • the etching barrier layer includes a non-metal layer
  • the method includes the steps:
  • the non-metal layer covering a predetermined portion of the top side of the bottom electrode, and the non-metal layer extending radially outward from the inner side of the edge of the effective area;
  • the piezoelectric layer is provided, and the piezoelectric layer covers the bottom electrode and the non-metal layer. Based on the inner end of the non-metal layer in the effective area, the piezoelectric layer forms the piezoelectric layer step unit;
  • a bottom electrode electrical connection layer is deposited in the through hole, and the bottom electrode electrical connection layer is electrically connected to the bottom electrode.
  • the etching barrier layer includes a non-metal layer and a metal layer, and the method includes the steps:
  • the non-metal layer is provided, the non-metal layer is located on the metal layer, the non-metal layer extends radially outward from the inner edge of the effective area, and the inner end of the non-metal layer is greater than the The inner end of the metal layer is closer to the center of the effective area or the inner end of the non-metal layer is farther from the center of the effective area in the radial direction than the inner end of the metal layer;
  • the piezoelectric layer is provided, and the piezoelectric layer covers the bottom electrode and the non-metal layer or the metal layer, based on the inner end of the non-metal layer in the effective area or based on the non-metal layer and the metal layer At the inner end staggered in the radial direction, the piezoelectric layer forms a stepped portion of the piezoelectric layer;
  • a bottom electrode electrical connection layer is deposited in the through hole, and the bottom electrode electrical connection layer is electrically connected to the metal layer.
  • the etching barrier layer includes a first metal layer and a second metal layer, and the method includes the steps:
  • a predetermined portion of the top side of the bottom electrode is provided with the first metal layer and the second metal layer stacked on each other, the first metal layer is electrically connected to the bottom electrode, and the first metal layer is connected to the bottom electrode.
  • the second metal layer is electrically connected, and the inner end of the first metal layer is closer to the center of the effective area in the radial direction than the inner end of the second metal layer;
  • the piezoelectric layer is provided, and the piezoelectric layer covers the bottom electrode and a part of the first metal layer and the second metal layer, and the piezoelectric layer is based on the inner end of the first metal layer or in the diameter
  • the inner ends of the first metal layer and the second metal layer that are staggered in the direction form the stepped portion of the piezoelectric layer;
  • a bottom electrode electrical connection layer is deposited in the through hole, and the bottom electrode electrical connection layer is electrically connected to the second metal layer.
  • Fig. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator in the prior art
  • Fig. 2 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 3 is a schematic partial cross-sectional view taken along line A-A in Fig. 2 according to an exemplary embodiment of the present invention
  • Fig. 4 is a schematic top view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • Fig. 5 is a schematic partial cross-sectional view taken along line A-A in Fig. 4 according to an exemplary embodiment of the present invention
  • Fig. 6 is a schematic top view of a bulk acoustic wave resonator according to still another exemplary embodiment of the present invention.
  • Fig. 7 is a schematic cross-sectional view taken along the line B-B in Fig. 6 according to an exemplary embodiment of the present invention
  • Fig. 8 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • Fig. 9 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • Fig. 10 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • Fig. 11 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • Fig. 12 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • Fig. 2 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • Fig. 3 is a schematic partial cross-sectional view taken along line A-A in Fig. 2 according to an exemplary embodiment of the present invention.
  • FIG. 2 it is a top view of a thin-film bulk acoustic resonator.
  • 10 is the acoustic mirror at the bottom of the resonator
  • 11 is the bottom electrode of the resonator
  • 12 is the piezoelectric layer of the resonator
  • 13 is the top electrode of the resonator
  • 14 is the metal connection layer above the bottom electrode of the resonator
  • 20 It is a metal layer
  • 21 is a first raised structure
  • 22 is a second raised structure.
  • two metal layers are located above the bottom electrode and below the piezoelectric layer, and overlap with the top electrode in the vertical direction, and the two metal layers do not overlap in the overlap area.
  • the structure in the vertical direction is: acoustic mirror structure 10, which can be a cavity structure etched in the substrate or a cavity structure protruding upward, or it can be a Bragg reflection structure, etc.
  • the acoustic reflection form, in Figure 3, is the cavity structure etched in the substrate.
  • the area where the bottom electrode, the piezoelectric layer, the top electrode, and the cavity structure overlap in the vertical direction is the effective area of the resonator.
  • the top electrode is located in the cavity structure and has a distance d2 from the edge of the cavity structure.
  • the range of d2 is 0-10um.
  • the first metal layer and the second metal layer and the top electrode 13 have a partial overlap area in the vertical direction, the width of the overlap area is d1, and the first metal layer and the second metal layer are staggered in the overlap area, so the top electrode 13
  • the first protrusion structure and the second protrusion structure are formed thereon.
  • the thickness of the first metal layer is generally The thickness of the second electrode layer is greater than the thickness of the first metal layer, generally
  • the numerical range can be not only the end value of the given range, but also the mean value or the midpoint value of the numerical range.
  • the bottom electrode since there are the first metal layer and the second metal layer above the bottom electrode, the bottom electrode will not be damaged during the process of etching the piezoelectric layer above the bottom electrode, and the metal layer of the bottom electrode is added.
  • the total thickness can effectively reduce the series resistance R s in the bottom electrode, so that the electrical energy loss in the bottom electrode is reduced, thereby increasing the Q value of the resonator.
  • the existence of the first metal layer and the second metal layer makes the first raised structure and the second raised structure formed on the upper surface of the top electrode, and the impedance formed by the first raised structure and the second raised structure does not match
  • the characteristic can reflect the transverse acoustic wave mode in the edge of the resonator back into the effective area and partially convert it into a longitudinal acoustic wave mode perpendicular to the surface of the piezoelectric layer, thereby further improving the Q value of the resonator.
  • the thickness of the convex structure is related to the performance of the resonator, and there is an optimal thickness range to optimize the performance of the resonator.
  • the optimal thickness of the first protrusion is limited by the stacking thickness of the resonator, while the second protrusion is farther from the center of the resonator than the first protrusion.
  • the thickness of the second protrusion is optional. The range is larger, so that a thicker etch stop layer can be formed in the ineffective area.
  • the first metal layer 20a is made of a high acoustic impedance metal material, such as molybdenum, ruthenium, tungsten, platinum, osmium, iridium, and rhenium And other similar materials can improve the degree of acoustic impedance mismatch in adjacent areas, enhance acoustic reflection, and increase the Q value of the device; and when the second metal layer uses low electrical loss metal materials, such as aluminum, gold, aluminum alloys and other similar materials, it can Greatly reduce the electrical loss of the resonator.
  • a high acoustic impedance metal material such as molybdenum, ruthenium, tungsten, platinum, osmium, iridium, and rhenium And other similar materials can improve the degree of acoustic impedance mismatch in adjacent areas, enhance acoustic reflection, and increase the Q value of the device.
  • the etch barrier layer includes a first metal layer and a second metal layer, and the first metal layer and the second metal layer have the first metal layer underneath and the second metal layer.
  • the layers are stacked on top of each other and arranged on the bottom electrode, and the inner end of the first metal layer is closer to the center of the effective area in the radial direction than the inner end of the second metal layer; the bottom of the resonator
  • the electrode electrical connection layer is directly electrically connected to the second metal layer outside the effective area.
  • the step structure is a double step structure.
  • the inner end refers to the end closer to the center of the effective area in the radial direction or the lateral direction
  • the outer end refers to the end farther from the center of the effective area in the radial direction or the lateral direction.
  • FIGS. 2-3 the inner ends of the first metal layer and the second metal layer are both arranged in the effective area, but it is also possible to make only the inner end of the first metal layer in the effective area.
  • Figure 4-5 shows such a scheme.
  • 4 is a schematic top view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention
  • FIG. 5 is a schematic partial cross-sectional view taken along line AA in FIG. 4 according to an exemplary embodiment of the present invention .
  • Figure 4 is similar to the structure of Figure 2, except that there is only one raised structure in Figure 4, and in the area where the metal layer and the top electrode overlap in the vertical direction, there is only one metal layer, and the other metal layer is located in the effective area. Outside the area.
  • Fig. 5 The structure of Fig. 5 is similar to that of Fig. 3, except that the second metal layer 20b in Fig. 5 is located outside the effective area of the resonator. At this time, the thickness of 20b can be thicker and the range is There is only one convex structure formed in the vertical overlapping area of the first metal layer 20a and the top electrode 13 and its width becomes longer. By increasing the width of the convex structure, the R p value of the resonator can be effectively increased.
  • the inner end of the first metal layer overlaps with the end of the top electrode in the top view of the resonator, and the inner end of the second metal layer is outside the effective area; the end of the top electrode Form a single step structure.
  • the etch barrier layer is a metal layer, but the present invention is not limited to this.
  • the etch stop layer may be a non-metal layer.
  • An exemplary embodiment of this scheme is given in FIG. 8.
  • Fig. 8 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the structure in the vertical direction is as follows: Acoustic mirror structure 10, which can be a cavity structure etched in the substrate or a cavity structure protruding upward, or it can be a Bragg reflection structure, etc.
  • Acoustic mirror structure 10 which can be a cavity structure etched in the substrate or a cavity structure protruding upward, or it can be a Bragg reflection structure, etc.
  • the cavity structure etched in the substrate is shown in FIG. 8.
  • the non-metal layer serves as the etching stop layer, which can prevent the bottom electrode and the metal layer from being etched by the etchant when the piezoelectric layer above the bottom electrode is etched.
  • the material of the non-metal layer is polysilicon, borophosphate glass (BSG), silicon dioxide (SiO2), chromium (Cr) or tellurium oxide (TeO(x)) and other temperature compensation materials, it can play a role in resonance
  • the function of the temperature compensation of the resonator can make the resonator better adapt to the changes of the external temperature and can be used in more environments.
  • the presence of the non-metal layer 51 can electrically isolate the bottom electrode from the piezoelectric layer in the region d1, so that the deterioration of the Kt value of the resonator and the generation of sub-resonance can be effectively avoided in the region d1.
  • the material of the non-metal layer and the material of the sacrificial layer are the same as silicon dioxide (SiO2), phosphosilicate glass (PSG), etc.
  • PSG phosphosilicate glass
  • hydrofluoric acid will pass through
  • the aluminum nitride piezoelectric layer material etches away the non-metal layer to form an air gap into a bridge structure.
  • the existence of the bridge structure can reflect the sound waves in the transverse mode of the resonator back into the effective area of the resonator, thereby further improving the resonance The Q value of the device.
  • the etch barrier layer includes a non-metal layer, the non-metal layer is disposed on the top side of the bottom electrode, and the inner end of the non-metal layer is located in the effective area and overlaps the top electrode, and The end of the top electrode forms a stepped structure based on the overlap, and the bottom electrode electrical connection layer of the resonator is adjacent to the non-metal layer in the radial direction.
  • the bottom electrode electrical connection layer of the resonator is directly electrically connected to the bottom electrode.
  • the end of the top electrode 13 forms a single step structure 21.
  • the etch barrier layer may also be a combination of a non-metal layer and a metal layer.
  • FIG. 9 shows an exemplary embodiment of this solution.
  • Fig. 9 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the structure of FIG. 9 is similar to that of FIG. 8, except that there is a metal layer 50 located above the bottom electrode in FIG. 9.
  • the existence of the metal layer 50 can play a role in reducing the electrical energy loss in the bottom electrode, that is, it can reduce the series resistance R s in the bottom electrode of the resonator.
  • the etch barrier layer includes a non-metal layer 51 and a third metal layer (ie, metal layer 50) disposed between the bottom electrode and the non-metal layer.
  • the third metal layer and the bottom The electrodes are electrically connected, the bottom electrode electrical connection layer is directly electrically connected to the third metal layer outside the effective area, and the bottom electrode electrical connection layer is adjacent to the non-metal layer in the radial direction.
  • the end of the top electrode 13 forms a single step structure 21.
  • Fig. 10 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the structure of FIG. 10 is similar to that of FIG. 9, except that the metal layer 50 in FIG. 10 is located under the bottom electrode 11.
  • the etch stop layer further includes a fourth metal layer (corresponding to the reference numeral 50 in FIG. 10) disposed between the substrate and the bottom electrode, and the fourth metal layer is on the resonator. In the plan view, it extends through the bottom electrode electrical connection layer in the radial direction.
  • the presence of the fourth metal layer 50 can play a role in reducing the electrical energy loss in the bottom electrode, that is, it can reduce the series resistance R s in the bottom electrode of the resonator.
  • Fig. 11 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the structure of FIG. 11 is similar to that of FIG. 9, but the difference is that the metal layer 50 in FIG. 11 is partially located in the effective area and overlaps with the top electrode, and a second convex structure is formed at the top electrode. In this way, more sound waves in the transverse mode can be reflected back into the effective area of the resonator, thereby further improving the performance of the resonator.
  • the inner end of the third metal layer 50 is located in the effective area, and the inner end of the third metal layer is larger than the inner end of the non-metal layer in the radial direction in the plan view of the resonator. The end is farther away from the center of the effective area.
  • the end of the top electrode is formed with a double-step structure.
  • Fig. 12 is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the structure of FIG. 12 is similar to that of FIG. 3, except that the etch stop layer in FIG. 12 includes two layers, namely a first metal layer 51a and a second non-metal layer 51b.
  • the first metal layer and the second non-metal layer are both located in the effective area of the resonator and are staggered from each other. Therefore, two steps are formed at the end of the top electrode, which can confine the acoustic waves of more lateral modes to Within the effective area of the resonator, the performance of the resonator is further improved.
  • FIG. 6 it is a top view of another thin-film bulk acoustic resonator. It is similar to the structure of FIG. 4, except that the metal layer in FIG. 6 extends around the effective area in addition to being located on the bottom electrode connection part, and extends to the top electrode connection part in the vertical direction. The width of the extension is 1-50 ⁇ m.
  • the sound waves in the transverse mode at the edge of the resonator can be further reflected back into the effective area of the resonator, and partly converted into The vertical acoustic wave mode on the surface of the piezoelectric layer further improves the Q value of the resonator.
  • the second metal layer covers more area, which can further reduce the series resistance R s in the bottom electrode.
  • FIG. 7 The structure of FIG. 7 is similar to that of FIG. 5, except that the first metal layer 20a and the second metal layer 20a are provided on both sides of the bottom electrode in FIG. Therefore, the length of the protruding structure surrounding the effective area of the resonator above the top electrode is longer, which can confine more transverse mode acoustic waves within the effective area of the resonator. At the same time, since the area of the second metal layer covering the bottom electrode increases, the electrical energy loss in the bottom electrode can also be effectively reduced.
  • the embodiment of the present invention also proposes a method for manufacturing the bulk acoustic wave resonator.
  • the etching barrier layer includes a first metal layer and a second metal layer, and the method includes step:
  • a predetermined portion of the top side of the bottom electrode is provided with the first metal layer and the second metal layer stacked on each other, the first metal layer is electrically connected to the bottom electrode, and the first metal layer is connected to the bottom electrode.
  • the second metal layer is electrically connected, and the inner end of the first metal layer is closer to the center of the effective area in the radial direction than the inner end of the second metal layer;
  • the piezoelectric layer is provided, and the piezoelectric layer covers the bottom electrode and a part of the first metal layer and the second metal layer, and the piezoelectric layer is based on the inner end of the first metal layer or in the diameter
  • the inner ends of the first metal layer and the second metal layer that are staggered in the direction form the stepped portion of the piezoelectric layer;
  • a bottom electrode electrical connection layer is deposited in the through hole, and the bottom electrode electrical connection layer is electrically connected to the second metal layer.
  • the embodiment of the present invention also proposes a method for manufacturing the bulk acoustic wave resonator.
  • the etching barrier layer includes the first metal layer. The method includes steps:
  • the piezoelectric layer Providing the piezoelectric layer, the piezoelectric layer covering the bottom electrode and the first metal layer, and the piezoelectric layer forms the piezoelectric layer step part based on the inner end of the first metal layer;
  • a bottom electrode electrical connection layer is deposited in the through hole, and the bottom electrode electrical connection layer is electrically connected to the first metal layer.
  • the present invention also proposes a method for manufacturing a bulk acoustic wave resonator.
  • the etching barrier layer includes a non-metal layer. The method includes steps:
  • the non-metal layer covering a predetermined portion of the top side of the bottom electrode, and the non-metal layer extending radially outward from the inner side of the edge of the effective area;
  • the piezoelectric layer is provided, and the piezoelectric layer covers the bottom electrode and the non-metal layer. Based on the inner end of the non-metal layer in the effective area, the piezoelectric layer forms the piezoelectric layer step unit;
  • a bottom electrode electrical connection layer is deposited in the through hole, and the bottom electrode electrical connection layer is electrically connected to the bottom electrode.
  • the present invention also proposes a method for manufacturing a bulk acoustic wave resonator.
  • the etching barrier layer includes a non-metal layer and For a metal layer, the method includes the steps:
  • the non-metal layer is provided, the non-metal layer covers a part of the top side of the bottom electrode and the metal layer, the non-metal layer extends radially outward from the inner edge of the effective area, and the non-metal layer The inner end of the metal layer is closer to the center of the effective area in the radial direction than the inner end of the metal layer;
  • the piezoelectric layer is provided, and the piezoelectric layer covers the bottom electrode and the non-metal layer, based on the inner end of the non-metal layer located in the effective area or based on the non-metal layer and the metal layer in the radial direction The inner end staggered in the direction, the piezoelectric layer forms the stepped portion of the piezoelectric layer;
  • the resonator further includes an etch stop layer for the bottom electrode, the etch stop layer is disposed on the top surface of the bottom electrode;
  • the inner end of the etch stop layer is located in the effective area in the top view of the resonator and overlaps the top electrode, and the end of the top electrode forms a step structure based on the overlap.
  • a filter comprising the above-mentioned resonator.
  • An electronic device comprising the above-mentioned resonator or the above-mentioned filter.
  • the electronic equipment here includes, but is not limited to, intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.
  • a method for manufacturing a bulk acoustic wave resonator comprising a substrate, an acoustic mirror, a bottom electrode, a top electrode, and a piezoelectric layer.
  • the thickness of the acoustic mirror, bottom electrode, piezoelectric layer, and top electrode on the substrate The area where the directions overlap is the effective area of the resonator, and the method includes the steps:
  • a top electrode is provided on the piezoelectric layer, and the end of the top electrode forms a stepped structure based on the stepped portion of the piezoelectric layer.
  • the bottom electrode since the etching barrier layer is provided, the bottom electrode will not be damaged or the damage of the bottom electrode will be reduced during the process of etching the piezoelectric layer above the bottom electrode, and the total thickness of the metal layer of the bottom electrode will be increased.
  • a step structure is formed, which can reflect the transverse acoustic wave mode in the edge of the resonator back into the effective area and partially convert it into a longitudinal acoustic wave mode perpendicular to the surface of the piezoelectric layer, thereby further improving the Q value of the resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种体声波谐振器,包括:基底;声学镜(10);底电极(11);顶电极(13);压电层(12),其中:声学镜(10)、底电极(11)、压电层(12)、顶电极(13)在基底的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括用于底电极(11)的刻蚀阻挡层,所述刻蚀阻挡层设置于所述底电极(11)的顶面;且所述刻蚀阻挡层的内端在谐振器的截面图中位于有效区域内而与所述顶电极(13)重叠,所述顶电极(13)的端部基于所述重叠而形成台阶结构。还涉及一种滤波器与一种电子设备,以及一种体声波谐振器的制造方法。

Description

体声波谐振器及其制造方法、滤波器和电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器,一种滤波器,一种具有上述部件中的一种的电子设备,以及一种体声波谐振器的制造方法。
背景技术
随着无线通讯设备的快速普及,对尺寸小、性能优的高频滤波器的需求越来越大,在硅晶圆上制作的薄膜体声波谐振器已经广泛地被市场接受。薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为一种MEMS芯片在通信领域发挥着重要作用,FBAR滤波器具有尺寸小(μm级)、谐振频率高(GHz)、品质因数高(1000)、功率容量大、滚降效应好等优良特性,正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器。
体声波谐振器的谐振频率由传播路径中各层的厚度和各层中纵向声波的声速所决定。其中,谐振频率主要受压电层和两电极的厚度及其声速的影响。由空腔构成的声反射镜对谐振频率的影响可以忽略不计,因为它可以把几乎所有的声能都反射回压电层。如果声反射镜由高声阻抗层和低声阻抗层相间排列而构成,那么反射镜的最顶层会包含一小部分的声能,从而使反射镜的作用在某种程度上会贡献到谐振频率中。对于薄膜体声波谐振器其谐振频率f、声波声速v和各层厚度D之间的关系为:f=v/2D。由于声波传播的速度一定,所以当谐振器的频率越高时,各层薄膜的厚度则越薄。因此,对于高频(>3GHz)薄膜体声波谐振器而言,其顶电极和底电极的厚度均较薄,从而导致电阻变大,滤波器***损耗等关键电学参数变差。
传统的薄膜体声波谐振器的结构示意图如图1所示,其中,10为谐振器的空腔结构,11为底电极,12为压电层,13为顶电极,14为底电极上方的金属连接层。对于传统的高频谐振器而言,由于电极的厚度较薄,其中的串联电阻R s就会变大,因此增加了电极中的电学能量损耗,使得 谐振器的Q值降低;同时由于底电极11的厚度较薄,而在刻蚀底电极11上方的压电层12形成底电极上的金属连接层14的过程中,会导致底电极过刻而损伤,从而使得谐振器的电学连接变差,降低了谐振器的可靠性。另外,在谐振器的电极和压电层交界的区域会出现声阻抗的不连续,因此其它模式的声波会被激发出来,这些模式的声波不能很好的被限制在谐振器内部,有部分声波能量会传输到谐振器外部损耗掉,从而也会使谐振器的品质因数降低。
发明内容
为解决现有技术中的技术问题的至少一个方面,提出本发明。
在本发明中,通过在谐振器中引入用于底电极的刻蚀阻挡层,可阻止在形成底电极上方金属连接层的过程中对底电极的刻蚀,同时能够减小底电极中的串联电阻R s,降低底电极中的电学损耗,提高谐振器的Q值;此外,通过刻蚀阻挡层的内端而在顶电极的端部形成台阶部,可以将谐振器边缘中的横向声波模式反射回有效区域中,并且部分转化成与压电层表面垂直的纵向声波模式,从而进一步提高了谐振器的Q值。利用刻蚀阻挡层这一单一结构,可以同时实现提高谐振器可靠性和提高谐振器Q值(从降低电学损耗及反射声波两方面)的作用。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;
压电层,
其中:
声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;
所述谐振器还包括用于底电极的刻蚀阻挡层,所述刻蚀阻挡层设置于所述底电极的顶面;且
所述刻蚀阻挡层的内端在谐振器的俯视图中位于有效区域内而与所述顶电极重叠,所述顶电极的端部基于所述重叠而形成台阶结构。
可选的,所述刻蚀阻挡层包括第一金属层与第二金属层,所述第一金属层与第二金属层以第一金属层在下而第二金属层在上的方式彼此层叠的设置在底电极上,且所述第一金属层的内端在径向方向上比第二金属层的内端更靠近有效区域的中心;所述谐振器的底电极电连接层在有效区域的外侧与第二金属层直接电连接。
可选的,所述第一金属层的内端与所述第二金属层的内端在谐振器的俯视图中均与顶电极的端部重叠;所述台阶结构为双台阶结构。更进一步的,所述谐振器还包括自第一金属层和/或第二金属层沿所述有效区域的至少一部分同层延伸的金属延伸部;所述顶电极在谐振器的俯视图中与所述金属延伸部重叠的部分形成有台阶延伸结构。
可选的,所述第一金属层的内端在谐振器的俯视图中与顶电极的端部重叠,而第二金属层的内端处于有效区域的外侧;所述顶电极的端部形成单台阶结构。进一步可选的,所述谐振器还包括:自第一金属层在有效区域内的部分,和/或自第一金属层和第二金属层在有效区域内的部分,沿所述有效区域的至少一部分同层延伸的金属延伸部;所述顶电极在谐振器的俯视图中与所述金属延伸部重叠的部分形成有台阶延伸结构。
可选的,第一金属层的厚度在
Figure PCTCN2020086561-appb-000001
的范围内,和/或第二金属层的厚度在
Figure PCTCN2020086561-appb-000002
的范围内。
可选的,第一金属层为高声阻抗材料;第二金属层为低电损耗材料。
可选的,所述刻蚀阻挡层包括非金属层,所述非金属层设置在底电极的顶侧,且所述非金属层的内端位于有效区域内而与所述顶电极重叠,所述顶电极的端部基于所述重叠而形成台阶结构,且所述谐振器的底电极电连接层在径向方向上与所述非金属层邻接。进一步的,所述谐振器的底电极电连接层与底电极直接电连接。
可选的,所述刻蚀阻挡层还包括设置于底电极与非金属层之间的第三金属层,第三金属层与底电极电连接,所述底电极电连接层在有效区域的外侧与所述第三金属层直接电连接。
可选的,所述第三金属层的内端位于有效区域内,所述第三金属层的内端在谐振器的俯视图中在径向方向上比所述非金属层的内端更远离有效区域的中心,基于在径向方向上错开的所述第三金属层的内端以及所述非金属层的内端,所述顶电极的端部形成有双台阶结构。
可选的,所述第三金属层的内端位于有效区域内,所述第三金属层的内端在谐振器的俯视图中在径向方向上比所述非金属层的内端更靠近有效区域的中心,基于在径向方向上错开的所述第三金属层的内端以及所述非金属层的内端,所述顶电极的端部形成有双台阶结构。
可选的,所述刻蚀阻挡层还包括设置于基底与底电极之间的第四金属层,所述第四金属层在谐振器的俯视图中在径向方向上延伸过底电极电连接层。
可选的,所述谐振器还包括自所述非金属层的在有效区域内与底电极接触的部分沿所述有效区域的至少一部分同层延伸的非金属延伸部;所述顶电极在谐振器的俯视图中与所述非金属延伸部重叠的部分形成有台阶延伸结构。
根据本发明的实施例的再一方面,提出了一种滤波器,包括上述的谐振器。
根据本发明的实施例的还一方面,提出了一种电子设备,包括上述的谐振器,或者上述的滤波器。
根据本发明的实施例的又一方面,提出了一种体声波谐振器的制造方法,所述体声波谐振器包括基底、声学镜、底电极、顶电极和压电层,声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域,所述方法包括步骤:
在底电极顶侧设置用于底电极的刻蚀阻挡层,其中所述刻蚀阻挡层的内端位于所述有效区域内;
基于刻蚀阻挡层的所述内端,覆盖该刻蚀阻挡层的压电层形成压电层台阶部;以及
在压电层上设置顶电极,顶电极的端部基于压电层台阶部而形成台阶结构。
可选的,所述刻蚀阻挡层包括非金属层,所述方法包括步骤:
设置所述非金属层,所述非金属层覆盖所述底电极的顶侧的预定部分,所述非金属层自有效区域的边缘内侧径向向外延伸;
设置所述压电层,所述压电层覆盖所述底电极以及所述非金属层,基于所述非金属层位于有效区域内的内端,所述压电层形成所述压电层台阶部;
在预定位置刻蚀所述压电层以及所述非金属层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与底电极电连接。
可选的,所述刻蚀阻挡层包括非金属层和金属层,所述方法包括步骤:
在所述底电极的预定部分设置所述金属层,所述金属层与底电极电连接;
设置所述非金属层,所述非金属层位于金属层之上,所述非金属层自有效区域的边缘内侧径向向外延伸,所述非金属层的内端在径向方向上比所述金属层的内端更靠近有效区域的中心或者所述非金属层的内端在径向方向上比所述金属层的内端更远离有效区域的中心;
设置所述压电层,所述压电层覆盖所述底电极以及所述非金属层或金属层,基于所述非金属层位于有效区域内的内端或者基于所述非金属层以及金属层在径向方向上错开的内端,所述压电层形成所述压电层台阶部;
在预定位置刻蚀所述压电层以及所述非金属层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述金属层电连接。
可选的,所述刻蚀阻挡层包括第一金属层和第二金属层,所述方法包括步骤:
在所述底电极的顶侧的预定部分设置彼此层叠的所述第一金属层与所述第二金属层,所述第一金属层与底电极电连接,所述第一金属层与所述第二金属层电连接,且第一金属层的内端在径向方向上比第二金属层的内端更靠近有效区域的中心;
设置所述压电层,所述压电层覆盖所述底电极以及所述第一金属层的一部分和所述第二金属层,所述压电层基于第一金属层的内端或者在径向方向上错开的第一金属层与第二金属层的内端而形成所述压电层台阶部;
在预定位置刻蚀所述压电层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述第二金属层电连接。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中 的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为现有技术中的体声波谐振器的示意性剖视图;
图2为根据本发明的一个示例性实施例的体声波谐振器的示意性俯视图;
图3为根据本发明的一个示例性实施例的沿图2中的A-A线截得的示意性局部剖视图;
图4为根据本发明的另一个示例性实施例的体声波谐振器的示意性俯视图;
图5为根据本发明的一个示例性实施例的沿图4中的A-A线截得的示意性局部剖视图;
图6为根据本发明的再一个示例性实施例的体声波谐振器的示意性俯视图;
图7为根据本发明的一个示例性实施例的沿图6中的B-B线截得的示意性剖视图;
图8为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图;
图9为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图;
图10为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图;
图11为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图;
图12为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图2为根据本发明的一个示例性实施例的体声波谐振器的示意性俯视图;图3为根据本发明的一个示例性实施例的沿图2中的A-A线截得的示意性局部剖视图。
图2所示的实施例中,为一薄膜体声波谐振器的俯视图。其中,10为谐振器的底部的声学镜,11为谐振器的底电极,12为谐振器的压电层,13为谐振器的顶电极,14为谐振器底电极上方的金属连接层,20为金属层,21为第一凸起结构,22为第二凸起结构。在本实施例中,金属层有两层位于底电极的上方和压电层的下方,且与顶电极在垂直方向上存在重叠部分,且在重叠区域中两层金属层不重合。
在图3中,在垂直方向上其结构依次为:声反射镜结构10,其可以为在基底中刻蚀出的空腔结构或者为向上凸起的空腔结构,也可以为布拉格反射结构等声波反射形式,在图3中为在基底中刻蚀出的空腔结构。底电极11,以及位于底电极上方的第一金属层20a和第二金属层20b。压电层12,顶电极13,第一凸起结构21和第二凸起结构22,以及底电极金属连接层14。
底电极、压电层和顶电极以及空腔结构在垂直方向重叠的区域为谐振器的有效区域。
顶电极位于空腔结构之内且与空腔结构的边缘距离d2,d2的范围为0-10um。且第一金属层和第二金属层与顶电极13在垂直方向上具有部分重叠区域,重叠区域的宽度为d1,且在重叠区域中第一金属层与第二金属层错开,因此在顶电极上形成了第一凸起结构和第二凸起结构。第一金属层的厚度一般在
Figure PCTCN2020086561-appb-000003
第二电极层的厚度大于第一金属层厚度,一般在
Figure PCTCN2020086561-appb-000004
需要专门指出的是,在本发明中,对于数值范围,不仅可以为给出的范围端点值,而且可以为该数值范围的均值或中点值。
在本实施例中,由于在底电极上方具有第一金属层和第二金属层,因此当刻蚀底电极上方压电层的过程中不会损伤底电极,而且由于增加了底电极的金属层总厚度,可以有效减小底电极中的串联电阻R s,使得底电极中的电学能量损耗减小,进而提高了谐振器的Q值。同时,第一金属层和第二金属层的存在使得在顶电极的上表面形成了第一凸起结构和第二凸起结构,第一凸起结构和第二凸起结构形成的阻抗不匹配特性能够将谐 振器边缘中的横向声波模式反射回有效区域中,并且部分转化成与压电层表面垂直的纵向声波模式,从而进一步提高了谐振器的Q值。通常,凸起结构的厚度与谐振器的性能具有相关性,存在最优厚度范围使谐振器性能最优。且由于第一凸起更接近谐振器中心,因此,第一凸起的最优厚度受谐振器层叠厚度限制,而第二凸起相比第一凸起远离谐振器中心,其厚度的可选范围更大,从而在非有效区域可以形成更厚的刻蚀阻挡层,更进一步的,当第一金属层20a为高声阻抗金属材料时如钼、钌、钨、铂、锇、铱、铼等类似材料,能够提高相邻区域声阻抗不匹配程度,增强声反射,提高器件Q值;而当第二金属层使用低电学损耗金属材料时,如铝、金、铝合金等类似材料,可以大幅减小谐振器的电学损耗。
在本发明中,金属材料的高声阻抗表示金属材料的声阻抗高于30兆瑞利(优选大于50兆瑞利),而低电学损耗金属材料表示金属材料的电阻率低于3.5x10 -8Ohm·m。
在图2-3所示的实施例中,所述刻蚀阻挡层包括第一金属层与第二金属层,所述第一金属层与第二金属层以第一金属层在下而第二金属层在上的方式彼此层叠的设置在底电极上,且所述第一金属层的内端在径向方向上比第二金属层的内端更靠近有效区域的中心;所述谐振器的底电极电连接层在有效区域的外侧与第二金属层直接电连接。
如图3所示,所述第一金属层的内端与所述第二金属层的内端在谐振器的俯视图中均与顶电极的端部重叠;所述台阶结构为双台阶结构。
在本发明中,内端表示在径向方向或横向方向上更靠近有效区域的中心的一端,而外端则指在径向方向或横向方向上远离有效区域的中心的一端。
在图2-3所示的实施例中,第一金属层和第二金属层的内端均设置于有效区域内,但是,也可以使得仅仅第一金属层的内端处于有效区域内,此方案也在本发明的保护范围之内。图4-5示出了这样的方案。图4为根据本发明的另一个示例性实施例的体声波谐振器的示意性俯视图;图5为根据本发明的一个示例性实施例的沿图4中的A-A线截得的示意性局部剖视图。
图4与图2结构相似,不同之处在于,图4中凸起结构只有一个,且金属层与顶电极在垂直方向上重叠的区域中,只有一层金属层,另一层 金属层位于有效区域之外。
图5与图3结构相似,不同之处在于,图5中第二金属层20b位于谐振器的有效区域之外,此时20b的厚度可以更厚,范围为
Figure PCTCN2020086561-appb-000005
由第一金属层20a与顶电极13在垂直方向上重叠区域中形成的凸起结构只有一个且其宽度变长,通过增加凸起结构的宽度可以有效提高谐振器的R p值。
如图5所示,所述第一金属层的内端在谐振器的俯视图中与顶电极的端部重叠,而第二金属层的内端处于有效区域的外侧;所述顶电极的端部形成单台阶结构。
在图2-5的实施例中,刻蚀阻挡层为金属层,但是本发明不限于此。刻蚀阻挡层可以为非金属层。图8中给出了该方案的示例性实施例。
图8为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图。在图8中,在垂直方向上其结构依次为:声反射镜结构10,其可以为在基底中刻蚀出的空腔结构或者为向上凸起的空腔结构,也可以为布拉格反射结构等声波反射形式,在图8中为在基底中刻蚀出的空腔结构。底电极11,以及位于底电极上方的非金属层51。压电层12,顶电极13,凸起结构21,以及底电极金属连接层14。在本实施例中非金属层作为刻蚀阻挡层,能够起到在刻蚀底电极上方的压电层的时候,防止蚀刻剂对底电极及金属层的刻蚀作用。同时,当非金属层的材料为多晶硅、硼磷酸盐玻璃(BSG)、二氧化硅(SiO2)、铬(Cr)或碲氧化物(TeO(x))等温补材料时,可以起到对谐振器温度补偿的作用,从而可以使得谐振器更好的适应外界温度的变化,能够应用在更多的环境中。而且非金属层51的存在能够在区域d1中将底电极与压电层进行电学隔离,从而在区域d1中能够有效避免谐振器Kt值的恶化和次谐振的产生。特别地,当非金属层的材料与牺牲层的材料相同为二氧化硅(SiO2)、磷硅玻璃(PSG)等时,在用氢氟酸释放牺牲层的过程中,氢氟酸会穿过氮化铝压电层材料将非金属层刻蚀掉从而形成空气隙成为桥部结构,桥部结构的存在能够将谐振器中横向模式的声波反射回谐振器的有效区域内,从而进一步提高谐振器的Q值。
相应的,所述刻蚀阻挡层包括非金属层,所述非金属层设置在底电极的顶侧,且所述非金属层的内端位于有效区域内而与所述顶电极重叠,所 述顶电极的端部基于所述重叠而形成台阶结构,且所述谐振器的底电极电连接层在径向方向上与所述非金属层邻接。在图8中,所述谐振器的底电极电连接层与底电极直接电连接。
如图8所示,基于非金属层51的内端,顶电极13的端部形成了单台阶结构21。
刻蚀阻挡层也可以为非金属层与金属层的结合,图9给出了该方案的示例性实施例。
图9为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图。图9与图8结构相似,不同之处在于,图9中位于底电极上方还有一金属层50。金属层50的存在能够起到减小底电极中的电学能量损耗的作用,即能减小谐振器底电极中的串联电阻R s
因此,基于图9的方案,可知:所述刻蚀阻挡层包括非金属层51以及设置于底电极与非金属层之间的第三金属层(即金属层50),第三金属层与底电极电连接,所述底电极电连接层在有效区域的外侧与所述第三金属层直接电连接,底电极电连接层在径向方向上与所述非金属层邻接。
如图9所示,基于非金属层51的内端,顶电极13的端部形成了单台阶结构21。
图10为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图。图10与图9结构相似,不同之处在于,图10中的金属层50位于底电极11的下方。如图10所示,基于非金属层51的内端,顶电极13的端部形成了单台阶结构21。因此,基于图10,所述刻蚀阻挡层还包括设置于基底与底电极之间的第四金属层(对应于图10中的附图标记50),所述第四金属层在谐振器的俯视图中在径向方向上延伸过底电极电连接层。第四金属层50的存在能够起到减小底电极中的电学能量损耗的作用,即能减小谐振器底电极中的串联电阻R s
图11为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图。图11与图9结构相似,不同之处在于,图11中金属层50部分位于有效区域内且与顶电极有重叠部分,在顶电极处形成第二凸起结构。这样能够将更多的横向模式的声波反射回谐振器的有效区域内,从而进一步提升谐振器的性能。
因此,在图11中,所述第三金属层50的内端位于有效区域内,所述 第三金属层的内端在谐振器的俯视图中在径向方向上比所述非金属层的内端更远离有效区域的中心,基于在径向方向上错开的所述第三金属层的内端以及所述非金属层的内端,所述顶电极的端部形成有双台阶结构。
图12为根据本发明的一个示例性实施例的体声波谐振器的示意性局部剖视图。图12与图3结构相似,不同之处在于,图12中的刻蚀阻挡层包括两层,分别为第一金属层51a和第二非金属层51b。其中第一金属层和第二非金属层都位于谐振器的有效区域中,且彼此之间错开,因而在顶电极的末端处即形成了两个台阶,可以将更多横向模式的声波限定在谐振器的有效区域内,进而提升了谐振器的性能。而第一金属层的存在可以减小底电极中的串联电阻R s,使得底电极中的电学能量损耗减小,进而能够提高谐振器的Q值。特别地,第二非金属层也可以位于谐振的有效区域外,由第一非金属层在顶电极末端处只形成一个台阶结构且台阶结构的宽度可以更长,这样能够进一步提升谐振器的Rp值。同时非金属层51a和51b的存在,使得在区域d1中,能够有效避免谐振器Kt值的恶化和次谐振的产生。
在图8-12中,刻蚀阻挡层包括了非金属层51,如图8-12中所示,非金属层51的内端与顶电极的端面之间的径向距离为d1,基于d1区域内的绝缘的非金属层51,能够将压电层与底电极电学间隔开,从而可以避免在区域d1中产生次谐振和谐振器Kt值的恶化。
除了在底电极的电极连接部分处或附近设置的刻蚀阻挡层之外,还可以沿着有效区域(即绕有效区域)自该刻蚀阻挡层延伸出相应的延伸部。该延伸部可以在顶电极的端部形成台阶部。图6-7给出了这样的示例性实施例。
图6为根据本发明的再一个示例性实施例的体声波谐振器的示意性俯视图;图7为根据本发明的一个示例性实施例的沿图6中的B-B线截得的示意性剖视图。
图6所示的实施例中,为一另薄膜体声波谐振器的俯视图。其与图4结构相似,不同之处在于,图6中金属层除了位于底电极连接部分之上外还在有效区域周围延伸,并且扩展到在垂直方向上顶电极连接部分处。延伸部分的宽度在1-50μm。在本实例中,由于凸起结构的长度变长即凸起结构的位置变多,能够进一步将谐振器边缘横向模式的声波更多地的反射 回谐振器的有效区域内,并且部分转化成与压电层表面垂直的纵向声波模式,从而进一步提高了谐振器的Q值。而且第二金属层覆盖的面积更多,能够进一步降低底电极中的串联电阻R s
图7与图5结构相似,不同之处在于,图7中底电极的两侧都有第一金属层20a和第二金属层20a。因此位于顶电极上方包围谐振器有效区域凸起结构的长度更长,能够将更多的横向模式的声波限定在谐振器有效区域内。同时,由于第二金属层覆盖底电极的面积增多,也能有效的减小底电极中的电学能量损耗。
基于图6-7,对于图3和图5,可以获得如下技术方案:所述谐振器还包括自第一金属层在有效区域内的部分(例如参见图5),和/或自第一金属层和第二金属层在有效区域内的部分(例如参见图3),沿所述有效区域的至少一部分同层延伸的金属延伸部,同时,所述顶电极在谐振器的俯视图中与所述金属延伸部重叠的部分形成有台阶延伸结构。
对于仅设置第一金属层作为刻蚀阻挡层的实施例,基于图6-7,可以获得如下技术方案:所述谐振器还包括自第一金属层在有效区域内的部分沿所述有效区域的至少一部分同层延伸的金属延伸部;所述顶电极在谐振器的俯视图中与所述金属延伸部重叠的部分形成有台阶延伸结构。
对于刻蚀阻挡层包括非金属层的实施例,基于图6-7,可以获得如下技术方案:所述谐振器还包括自所述非金属层的在有效区域内与底电极接触的部分沿所述有效区域的至少一部分同层延伸的非金属延伸部;所述顶电极在谐振器的俯视图中与所述非金属延伸部重叠的部分形成有台阶延伸结构。
此外,基于图2-3,本发明的实施例也提出了该种体声波谐振器的制造方法,具体的,所述刻蚀阻挡层包括第一金属层和第二金属层,所述方法包括步骤:
在所述底电极的顶侧的预定部分设置彼此层叠的所述第一金属层与所述第二金属层,所述第一金属层与底电极电连接,所述第一金属层与所述第二金属层电连接,且第一金属层的内端在径向方向上比第二金属层的内端更靠近有效区域的中心;
设置所述压电层,所述压电层覆盖所述底电极以及所述第一金属层的一部分和所述第二金属层,所述压电层基于第一金属层的内端或者在径向 方向上错开的第一金属层与第二金属层的内端而形成所述压电层台阶部;
在预定位置刻蚀所述压电层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述第二金属层电连接。
基于刻蚀阻挡层仅仅包括第一金属层的实施例,本发明的实施例也提出了该种体声波谐振器的制造方法,具体的,所述刻蚀阻挡层包括第一金属层,所述方法包括步骤:
在所述底电极的顶侧的预定部分设置所述第一金属层,所述第一金属层与底电极电连接;
设置所述压电层,所述压电层覆盖所述底电极以及所述第一金属层,所述压电层基于第一金属层的内端而形成所述压电层台阶部;
在预定位置刻蚀所述压电层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述第一金属层电连接。
基于图8示出的刻蚀阻挡层仅仅包括非金属层的实施例,本发明也提出了一种体声波谐振器的制造方法,具体的,所述刻蚀阻挡层包括非金属层,所述方法包括步骤:
设置所述非金属层,所述非金属层覆盖所述底电极的顶侧的预定部分,所述非金属层自有效区域的边缘内侧径向向外延伸;
设置所述压电层,所述压电层覆盖所述底电极以及所述非金属层,基于所述非金属层位于有效区域内的内端,所述压电层形成所述压电层台阶部;
在预定位置刻蚀所述压电层以及所述非金属层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与底电极电连接。
基于图9示出的刻蚀阻挡层包括非金属层和金属层的实施例,本发明也提出了一种体声波谐振器的制造方法,具体的,所述刻蚀阻挡层包括非金属层和金属层,所述方法包括步骤:
在所述底电极的预定部分设置所述金属层,所述金属层与底电极电连接;
设置所述非金属层,所述非金属层覆盖所述底电极的顶侧的一部分以 及所述金属层,所述非金属层自有效区域的边缘内侧径向向外延伸,所述非金属层的内端在径向方向上比所述金属层的内端更靠近有效区域的中心;
设置所述压电层,所述压电层覆盖所述底电极以及所述非金属层,基于所述非金属层位于有效区域内的内端或者基于所述非金属层以及金属层在径向方向上错开的内端,所述压电层形成所述压电层台阶部;
在预定位置刻蚀所述压电层以及所述非金属层以形成通孔;
在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述金属层电连接。
下面示例性的简单说明根据本发明的体声波谐振器的部件的材料。
电极组成材料可以是金(Au)、钨(W)、钼(Mo)、铂(Pt),钌(Ru)、铱(Ir)、钛钨(TiW)、铝(Al)、钛(Ti)等类似金属形成。
压电层材料可以为氮化铝(AlN)、掺杂氮化铝、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO 3)、石英(Quartz)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料。
非金属材料可以为二氧化硅、氮化硅、碳化硅等与压电层材料刻蚀选择比较大的类似材料。
基于以上实施例及其附图,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;
压电层,
其中:
声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;
所述谐振器还包括用于底电极的刻蚀阻挡层,所述刻蚀阻挡层设置于所述底电极的顶面;且
所述刻蚀阻挡层的内端在谐振器的俯视图中位于有效区域内而与所述顶电极重叠,所述顶电极的端部基于所述重叠而形成台阶结构。
2、一种滤波器,包括上述的谐振器。
3、一种电子设备,包括上述的谐振器,或者上述的滤波器。需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
4、一种体声波谐振器的制造方法,所述体声波谐振器包括基底、声学镜、底电极、顶电极和压电层,声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域,所述方法包括步骤:
在底电极顶侧设置用于底电极的刻蚀阻挡层,其中所述刻蚀阻挡层的内端位于所述有效区域内;
基于刻蚀阻挡层的所述内端,覆盖该刻蚀阻挡层的压电层形成压电层台阶部;以及
在压电层上设置顶电极,顶电极的端部基于压电层台阶部而形成台阶结构。
在本发明中,由于设置了刻蚀阻挡层,因此当刻蚀底电极上方压电层的过程中不会损伤底电极或者减少了底电极的损伤,而且由于增加了底电极的金属层总厚度,可以有效减小底电极中的串联电阻R s,使得底电极中的电学能量损耗减小,进而提高了谐振器的Q值;同时,刻蚀阻挡层的内端使得在顶电极的上表面形成了台阶结构,该台阶结构能够将谐振器边缘中的横向声波模式反射回有效区域中,并且部分转化成与压电层表面垂直的纵向声波模式,从而进一步提高了谐振器的Q值。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (21)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;
    压电层,
    其中:
    声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;
    所述谐振器还包括用于底电极的刻蚀阻挡层,所述刻蚀阻挡层设置于所述底电极的顶面;且
    所述刻蚀阻挡层的内端在谐振器的俯视图中位于有效区域内而与所述顶电极重叠,所述顶电极的端部基于所述重叠而形成台阶结构。
  2. 根据权利要求1所述的谐振器,其中:
    所述刻蚀阻挡层包括第一金属层与第二金属层,所述第一金属层与第二金属层以第一金属层在下而第二金属层在上的方式彼此层叠的设置在底电极上,且所述第一金属层的内端在径向方向上比第二金属层的内端更靠近有效区域的中心;
    所述谐振器的底电极电连接层在有效区域的外侧与第二金属层直接电连接。
  3. 根据权利要求2所述的谐振器,其中:
    所述第一金属层的内端与所述第二金属层的内端在谐振器的俯视图中均与顶电极的端部重叠;
    所述台阶结构为双台阶结构。
  4. 根据权利要求3所述的谐振器,其中:
    所述谐振器还包括自第一金属层和/或第二金属层沿所述有效区域的至少一部分同层延伸的金属延伸部;
    所述顶电极在谐振器的俯视图中与所述金属延伸部重叠的部分形成有台阶延伸结构。
  5. 根据权利要求2所述的谐振器,其中:
    所述第一金属层的内端在谐振器的俯视图中与顶电极的端部重叠,而第二金属层的内端处于有效区域的外侧;
    所述顶电极的端部形成单台阶结构。
  6. 根据权利要求5所述的谐振器,其中:
    所述谐振器还包括:自第一金属层在有效区域内的部分,和/或自第一金属层和第二金属层在有效区域内的部分,沿所述有效区域的至少一部分同层延伸的金属延伸部;
    所述顶电极在谐振器的俯视图中与所述金属延伸部重叠的部分形成有台阶延伸结构。
  7. 根据权利要求2-6中任一项所述的谐振器,其中:
    第一金属层的厚度在
    Figure PCTCN2020086561-appb-100001
    的范围内;和/或。
    第二金属层的厚度在
    Figure PCTCN2020086561-appb-100002
    的范围内。
  8. 根据权利要求2-6中任一项所述的谐振器,其中:
    第一金属层为高声阻抗材料;
    第二金属层为低电损耗材料。
  9. 根据权利要求1所述的谐振器,其中:
    所述刻蚀阻挡层包括非金属层,所述非金属层设置在底电极的顶侧,且所述非金属层的内端位于有效区域内而与所述顶电极重叠,所述顶电极的端部基于所述重叠而形成台阶结构,且所述谐振器的底电极电连接层在径向方向上与所述非金属层邻接。
  10. 根据权利要求9所述的谐振器,其中:
    所述谐振器的底电极电连接层与底电极直接电连接。
  11. 根据权利要求9所述的谐振器,其中:
    所述刻蚀阻挡层还包括设置于底电极与非金属层之间的第三金属层,第三金属层与底电极电连接,所述底电极电连接层在有效区域的外侧与所述第三金属层直接电连接。
  12. 根据权利要求11所述的谐振器,其中:
    所述第三金属层的内端位于有效区域内,所述第三金属层的内端在谐振器的俯视图中在径向方向上比所述非金属层的内端更远离有效区域的中心,基于在径向方向上错开的所述第三金属层的内端以及所述非金属层的内端,所述顶电极的端部形成有双台阶结构。
  13. 根据权利要求11所述的谐振器,其中:
    所述第三金属层的内端位于有效区域内,所述第三金属层的内端在谐振器的俯视图中在径向方向上比所述非金属层的内端更靠近有效区域的中心,基于在径向方向上错开的所述第三金属层的内端以及所述非金属层的内端,所述顶电极的端部形成有双台阶结构。
  14. 根据权利要求10所述的谐振器,其中:
    所述刻蚀阻挡层还包括设置于基底与底电极之间的第四金属层,所述第四金属层在谐振器的俯视图中在径向方向上延伸过底电极电连接层。
  15. 根据权利要求9所述的谐振器,其中:
    所述谐振器还包括自所述非金属层的在有效区域内与底电极接触的部分沿所述有效区域的至少一部分同层延伸的非金属延伸部;
    所述顶电极在谐振器的俯视图中与所述非金属延伸部重叠的部分形成有台阶延伸结构。
  16. 一种滤波器,包括:
    根据权利要求1-15中任一项所述的体声波谐振器。
  17. 一种电子设备,包括根据权利要求1-15中任一项所述的体声波谐振器,或者根据权利要求16所述的滤波器。
  18. 一种体声波谐振器的制造方法,所述体声波谐振器包括基底、声学镜、底电极、顶电极和压电层,声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域,所述方法包括步骤:
    在底电极顶侧设置用于底电极的刻蚀阻挡层,其中所述刻蚀阻挡层的内端位于所述有效区域内;
    基于刻蚀阻挡层的所述内端,覆盖该刻蚀阻挡层的压电层形成压电层台阶部;以及
    在压电层上设置顶电极,顶电极的端部基于压电层台阶部而形成台阶结构。
  19. 根据权利要求18所述的方法,其中:
    所述刻蚀阻挡层包括非金属层,所述方法包括步骤:
    设置所述非金属层,所述非金属层覆盖所述底电极的顶侧的预定部分,所述非金属层自有效区域的边缘内侧径向向外延伸;
    设置所述压电层,所述压电层覆盖所述底电极以及所述非金属层,基 于所述非金属层位于有效区域内的内端,所述压电层形成所述压电层台阶部;
    在预定位置刻蚀所述压电层以及所述非金属层以形成通孔;
    在所述通孔中沉积底电极电连接层,所述底电极电连接层与底电极电连接。
  20. 根据权利要求18所述的方法,其中:
    所述刻蚀阻挡层包括非金属层和金属层,所述方法包括步骤:
    在所述底电极的预定部分设置所述金属层,所述金属层与底电极电连接;
    设置所述非金属层,所述非金属层位于金属层之上,所述非金属层自有效区域的边缘内侧径向向外延伸,所述非金属层的内端在径向方向上比所述金属层的内端更靠近有效区域的中心或者所述非金属层的内端在径向方向上比所述金属层的内端更远离有效区域的中心;
    设置所述压电层,所述压电层覆盖所述底电极以及所述非金属层或金属层,基于所述非金属层位于有效区域内的内端或者基于所述非金属层以及金属层在径向方向上错开的内端,所述压电层形成所述压电层台阶部;
    在预定位置刻蚀所述压电层以及所述非金属层以形成通孔;
    在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述金属层电连接。
  21. 根据权利要求18所述的方法,其中:
    所述刻蚀阻挡层包括第一金属层和第二金属层,所述方法包括步骤:
    在所述底电极的顶侧的预定部分设置彼此层叠的所述第一金属层与所述第二金属层,所述第一金属层与底电极电连接,所述第一金属层与所述第二金属层电连接,且第一金属层的内端在径向方向上比第二金属层的内端更靠近有效区域的中心;
    设置所述压电层,所述压电层覆盖所述底电极以及所述第一金属层的一部分和所述第二金属层,所述压电层基于第一金属层的内端或者在径向方向上错开的第一金属层与第二金属层的内端而形成所述压电层台阶部;
    在预定位置刻蚀所述压电层以形成通孔;
    在所述通孔中沉积底电极电连接层,所述底电极电连接层与所述第二金属层电连接。
PCT/CN2020/086561 2019-09-03 2020-04-24 体声波谐振器及其制造方法、滤波器和电子设备 WO2021042740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20860269.8A EP4027519A4 (en) 2019-09-03 2020-04-24 VOLUME WAVE RESONATOR AND METHOD OF ITS MANUFACTURE, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910825808.6A CN111010133A (zh) 2019-09-03 2019-09-03 体声波谐振器及其制造方法、滤波器和电子设备
CN201910825808.6 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021042740A1 true WO2021042740A1 (zh) 2021-03-11

Family

ID=70111366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086561 WO2021042740A1 (zh) 2019-09-03 2020-04-24 体声波谐振器及其制造方法、滤波器和电子设备

Country Status (3)

Country Link
EP (1) EP4027519A4 (zh)
CN (1) CN111010133A (zh)
WO (1) WO2021042740A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备
CN112152585A (zh) * 2020-08-19 2020-12-29 合肥先微企业管理咨询合伙企业(有限合伙) 用于构造5g基站射频滤波器的单晶压电谐振器及制备方法
CN114257198A (zh) * 2020-09-22 2022-03-29 诺思(天津)微***有限责任公司 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备
CN115276589A (zh) * 2021-04-30 2022-11-01 诺思(天津)微***有限责任公司 体声波谐振器、滤波器及电子设备
CN115694399A (zh) * 2021-07-29 2023-02-03 诺思(天津)微***有限责任公司 具有多个底电极层的体声波谐振器、滤波器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607178A (zh) * 2013-09-17 2014-02-26 诺思(天津)微***有限公司 薄膜体波谐振器及提高其品质因数的方法
US20180013397A1 (en) * 2016-07-07 2018-01-11 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave filter device and method of manufacturing the same
CN109167585A (zh) * 2018-07-26 2019-01-08 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN109639251A (zh) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4039322B2 (ja) * 2002-07-23 2008-01-30 株式会社村田製作所 圧電フィルタ、デュプレクサ、複合圧電共振器および通信装置、並びに、圧電フィルタの周波数調整方法
CN100527615C (zh) * 2004-04-20 2009-08-12 株式会社东芝 薄膜压电谐振器及其制造方法
US9577603B2 (en) * 2011-09-14 2017-02-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Solidly mounted acoustic resonator having multiple lateral features
US8896395B2 (en) * 2011-09-14 2014-11-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having multiple lateral features
US11228299B2 (en) * 2017-02-02 2022-01-18 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator with insertion film, filter, and multiplexer
US11171628B2 (en) * 2017-07-04 2021-11-09 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607178A (zh) * 2013-09-17 2014-02-26 诺思(天津)微***有限公司 薄膜体波谐振器及提高其品质因数的方法
US20180013397A1 (en) * 2016-07-07 2018-01-11 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave filter device and method of manufacturing the same
CN109167585A (zh) * 2018-07-26 2019-01-08 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN109639251A (zh) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027519A4 *

Also Published As

Publication number Publication date
CN111010133A (zh) 2020-04-14
EP4027519A4 (en) 2022-11-02
EP4027519A1 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
WO2021042740A1 (zh) 体声波谐振器及其制造方法、滤波器和电子设备
US10727808B2 (en) Bulk acoustic wave resonator comprising a ring
WO2021077712A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
JP3879643B2 (ja) 圧電共振子、圧電フィルタ、通信装置
KR100698985B1 (ko) 필터 및 필터의 제조 방법
CN104811157B (zh) 压电薄膜谐振器、滤波器和双工器
JP6510996B2 (ja) 圧電薄膜共振器、フィルタおよびデュプレクサ
US20080129417A1 (en) Ladder type filter
JP6374653B2 (ja) 弾性波フィルタ及び分波器
JP4791181B2 (ja) 薄膜バルク音響波共振子、それを備えるフィルタおよび通信装置ならびに薄膜バルク音響波共振子の製造方法
WO2021073022A1 (zh) 带不导电***层的体声波谐振器、滤波器和电子设备
CN110611493A (zh) 声波谐振器、包括其的声波谐振器滤波器及其制造方法
CN111082776B (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN102931942A (zh) 声波器件
JP4775445B2 (ja) 薄膜圧電共振器および薄膜圧電フィルタ
WO2024040679A1 (zh) 体声波谐振器及其制作方法、滤波器及电子设备
JP2018037906A (ja) 圧電薄膜共振器、フィルタおよびマルチプレクサ。
US20240171148A1 (en) Surface acoustic wave resonator device and method for manufacturing the same and filter
KR102172638B1 (ko) 음향 공진기 및 그 제조 방법
US20220407494A1 (en) Acoustic wave device and method of manufacturing the same
US20230084409A1 (en) Acoustic resonator
KR102450602B1 (ko) 체적 음향 공진기
JP2008172638A (ja) 薄膜圧電共振器
JP4218672B2 (ja) 圧電共振子、圧電フィルタ、通信装置
KR20210045588A (ko) 체적 음향 공진기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860269

Country of ref document: EP

Effective date: 20220404