WO2021040228A1 - Plate-type heat exchanger - Google Patents

Plate-type heat exchanger Download PDF

Info

Publication number
WO2021040228A1
WO2021040228A1 PCT/KR2020/008993 KR2020008993W WO2021040228A1 WO 2021040228 A1 WO2021040228 A1 WO 2021040228A1 KR 2020008993 W KR2020008993 W KR 2020008993W WO 2021040228 A1 WO2021040228 A1 WO 2021040228A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
flow path
cross
plates
sectional area
Prior art date
Application number
PCT/KR2020/008993
Other languages
French (fr)
Korean (ko)
Inventor
이수경
유상훈
이한춘
최지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021040228A1 publication Critical patent/WO2021040228A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a plate heat exchanger.
  • the heat exchanger is a device that guides heat exchange between at least two fluids, and may include, for example, a plate heat exchanger.
  • the plate heat exchanger includes at least two or more flow paths through which fluids forming different temperatures flow, and the two or more flow paths may be arranged alternately with each other.
  • the plate-type heat exchanger has an advantage in that heat exchange efficiency is higher than that of other heat exchangers, and in its structure, it is possible to reduce size and weight.
  • the plate-type heat exchanger disclosed in the prior literature discloses that a heat exchange plate having two flow paths isolated from each other has an asymmetric cross-sectional shape with respect to a central surface, so that one flow path has a larger cross-sectional flow than the other flow path.
  • the conventional plate heat exchanger does not take into account the difference in physical properties or flow rates between two fluids flowing through the two flow paths, and thus, in the case of fluids having a large difference in physical properties or flow rates, there is a problem in that a pressure loss occurs in either side, thereby deteriorating heat exchange efficiency.
  • the present invention has been proposed to improve the above problems, and an object of the present invention is to provide a plate-type heat exchanger capable of improving heat exchange efficiency by minimizing pressure loss for two fluids having different physical properties or flow rates.
  • Another object of the present invention is to provide a plate heat exchanger capable of simplifying the work process of the heat exchanger and reducing the cost.
  • Another object of the present invention is to provide a plate heat exchanger capable of reducing the total number of stacked heat exchange plates by optimizing the cross-sectional area of each flow path through which two fluids having different physical properties flow.
  • the plate-type heat exchanger for achieving the above object includes a plurality of protrusions protruding upward from the plate body, and a plurality of concave portions that are depressed downward from the plate main body. It includes a first plate and a plurality of second plates having a shape symmetrical in the vertical direction with the first plate.
  • the plurality of first plates and the plurality of second plates are alternately stacked one by one in the vertical direction, and the protrusion of the first plate is coupled to the recess of the second plate, and the recess of the first plate The portion is coupled to the protrusion of the second plate.
  • the radius of curvature R1 of the protrusion formed on the first plate may be larger than the radius of curvature R2 of the depression formed on the first plate to provide a plurality of asymmetric flow paths.
  • the cross-sectional area of the flow path formed by the protrusion of the first plate and the depression of the second plate is larger than the cross-sectional area of the flow path formed by the depression of the first plate and the protrusion of the second plate.
  • a cross-sectional area of a flow path through which water flows may be formed to be as large as 1.1 to 1.15 times a cross-sectional area of a flow path through which the refrigerant flows.
  • the plurality of protrusions formed on the first plate may be spaced apart at a predetermined interval and protrude at the same height, and the plurality of depressions formed on the first plate may be spaced apart at a predetermined interval and depressed to the same depth.
  • a plurality of protrusions protruding upward from the plate body, a plurality of recesses recessed downward from the plate body, and inclined portions connecting the protrusion and the recess are alternately And a plurality of first plates disposed and a plurality of second plates having a shape symmetrical to the first plate in a vertical direction.
  • the plurality of first plates and the plurality of second plates are stacked one by one by alternating in the vertical direction, and the protrusion of the first plate is coupled to the depression of the second plate, The depression is coupled to the protrusion of the second plate.
  • the width L1 of the protrusion formed in the first plate may be larger than the width L2 of the depression formed in the first plate to provide a plurality of asymmetric flow paths.
  • the cross-sectional area of the flow path formed by the protrusion of the first plate and the depression of the second plate is larger than the cross-sectional area of the flow path formed by the depression of the first plate and the protrusion of the second plate.
  • a cross-sectional area of a flow path through which water flows may be formed to be as large as 1.1 to 1.15 times a cross-sectional area of a flow path through which the refrigerant flows.
  • the width L2 of the depression formed in the first plate may be formed as small as 0.3 times to 0.8 times the width L1 of the protrusion formed in the first plate.
  • an angle formed by the inclined portion and the recessed portion may be formed in a range of 50 degrees to 80 degrees.
  • the inclined portion may include a first inclined portion inclined downward from one end of the protrusion to an end of the neighboring first depression and a second inclined portion inclined downward from the other end of the protrusion to an end of the adjacent second depression.
  • first inclined portion and the second inclined portion may have a symmetrical shape.
  • first inclined portion, the protruding portion, and the second inclined portion may have an equilateral trapezoidal shape.
  • a plurality of heat exchange plates are stacked to form an asymmetric flow path having different flow path cross-sectional areas, thereby maximizing heat exchange efficiency between fluids flowing through each flow path.
  • the flow rate of each fluid can be controlled by optimizing the cross-sectional area of each flow path through which two fluids having different physical properties flow. Then, the flow rate flowing through each flow path can be increased, and accordingly, the total number of stacked heat exchange plates can be reduced. Therefore, there is an advantage in that the overall height or volume of the heat exchange plate is reduced.
  • FIG. 1 is a perspective view of a plate heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a plate heat exchanger according to an embodiment of the present invention.
  • FIG. 3 is a view showing a stacking method of a heat exchange plate according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a partial cross-section of a heat exchange plate according to an embodiment of the present invention.
  • FIG. 5 is an enlarged view of the cross section of the heat exchange plate of FIG. 4.
  • FIG. 6 is a schematic cross-sectional view of a part of a heat exchange plate according to another embodiment of the present invention.
  • FIG. 7 is a graph showing a change in heat quantity according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
  • FIG. 8 is a graph showing a pressure loss according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term.
  • FIG. 1 is a perspective view of a plate heat exchanger according to an exemplary embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a plate heat exchanger according to an exemplary embodiment of the present invention
  • FIG. 3 is a method of stacking a heat exchange plate according to an exemplary embodiment of the present invention. It is a drawing showing.
  • a plate heat exchanger 1 according to an embodiment of the present invention includes a plate package P including a plurality of heat exchange plates 30 and 40, and both ends of the plate package P. It includes two end plates 10 and 20 provided in the.
  • the heat exchange plates 30 and 40 and the two end plates 10 and 20 may have a shape of a square panel.
  • the heat exchange plates 30 and 40 may be formed of a metal material having excellent thermal conductivity and excellent pressure resistance to pressure.
  • the heat exchange plates 30 and 40 may be made of stainless steel.
  • the heat exchange plates 30 and 40 include a plurality of first plates 30 and a plurality of second plates 40.
  • the first plate 30 and the second plate 40 may be stacked alternately one by one in the vertical direction based on FIG. 1.
  • the vertical direction may be referred to as "stacking direction”.
  • a flow path through which a fluid flows is formed between the plurality of heat exchange plates 30 and 40.
  • the flow path includes a first flow path through which the first fluid flows (see 41 in FIG. 4) and a second flow path through which the second fluid flows (see 43 in FIG. 4 ).
  • the first and second flow paths 41 and 43 may be alternately arranged with each other.
  • the first and second flow paths 41 and 43 are alternately formed in the stacking direction, so that the first fluid and the second fluid do not meet and may have an independent flow.
  • a refrigerant may flow through the first flow path 41. Since the first flow path 41 is a flow path through which a refrigerant flows, it may be referred to as a “refrigerant flow path”. Water may flow through the second flow path 43. Since the second flow path 43 is a flow path through which water flows, it may be referred to as a “water flow path”.
  • the two end plates 10 and 20 include a first end plate 10 provided above the plate package P and a second end plate 20 provided below the plate package P. Includes. That is, the plate package P may be disposed between the two end plates 10 and 20.
  • the plate heat exchanger (1) provides a first fluid and a second fluid to the inside of the plate package (P), or to be discharged from the inside of the plate package (P) to the outside (61, 65, 71, 75).
  • the sockets 61,65,71,75 may include at least one of a first inlet 61, a second inlet 71, a first outlet 65, and a second outlet 75. I can.
  • the plate-type heat exchanger 1 allows a first inlet 61 and a second fluid to flow into the plate package P, allowing the first fluid to flow into the plate package P. It further includes a second inlet 71 to.
  • the first inlet 61 and the second inlet 71 may be coupled to the first end plate 10.
  • the first and second fluids have a temperature difference and may exchange heat with each other.
  • the first fluid may be a refrigerant
  • the second fluid may be water.
  • the first inlet 61 may be referred to as a “refrigerant inlet”
  • the second inlet 71 may be referred to as a “water inlet”.
  • the plate heat exchanger (1) includes a first outlet (65) for allowing a first fluid to be discharged from the plate package (P) and a second outlet portion (75) for allowing a second fluid to be discharged from the plate package (P). ).
  • the first outlet 65 and the second outlet 75 may be coupled to the first end plate 10.
  • first inlet 61 and the second inlet 71 may be arranged in a diagonal direction among four corners of the first end plate 10.
  • the first outlet 65 and the second outlet 75 may be arranged in a different diagonal direction among the four corners of the first end plate 10. That is, the first inlet 61 and the second outlet 75 may be disposed adjacent to each other, and the second inlet 71 and the second outlet 65 may be disposed adjacent to each other.
  • first inlet 61 and the first outlet 65 are arranged in a diagonal direction among four corners of the first end plate 10, and the second inlet 71 and the second The outlet portion 75 may be arranged in a diagonal direction from among the four corners of the first end plate 10.
  • the heat exchange plates 30 and 40 include a plurality of first plates 30 and a plurality of second plates 40.
  • the first plate 30 and the second plate 40 may have the same shape.
  • the first plate 30 and the second plate 40 may have a symmetrical shape.
  • the first plate 30 includes a plate body 31 having an approximately quadrangular panel shape and an edge portion 32 surrounding the outside of the plate body 31.
  • first plate 30 is arranged at four corners of the plate body 31 and communicates with the first and second inlet portions 61 and 71 and the first and second outlet portions 65 and 75. It further includes a plurality of inlet and outlet ports (33, 34, 35, 36) for guiding the flow of the fluid.
  • the plurality of entry/exit ports 33, 34, 35, and 36 may be formed through at least a portion of the plate body 31.
  • the plurality of inlet ports 33, 34, 35, 36 are formed at positions corresponding to the first inlet part 61, and a first inlet port 33 through which a first fluid (refrigerant) is introduced, and the first It is formed at a position corresponding to the outlet portion 65 and includes a first outlet port 34 through which the first fluid is discharged.
  • the first inlet port 33 may be referred to as a "refrigerant inlet port”, and the first outlet port 34 may be referred to as a "refrigerant outlet port”.
  • the refrigerant flows downward from the first plate 30 through the first inlet port 33 and flows into the first flow path 41 of the plate package P, and the first flow path 41
  • the refrigerant heat-exchanged at is discharged from the plate package P through the first outlet port 34 and may flow upward toward the first outlet portion 65.
  • the plurality of inlet and outlet ports 33, 34, 35, 36 are formed at positions corresponding to the second inlet 71, and a second inlet port 35 through which a second fluid (water) is introduced, and the second It is formed at a position corresponding to the outlet portion 75 and includes a second outlet port 36 through which the second fluid is discharged.
  • the second inlet port 35 may be referred to as a "water inlet port”, and the second outlet port 36 may be referred to as a "water outlet port”.
  • first ports Since the plurality of entry/exit ports 33, 34, 35, and 36 are formed on the first plate 30, they may be referred to as “first ports”.
  • a plurality of entry/exit ports may be formed on the second plate 40 as well. Accordingly, a plurality of entry/exit ports formed on the second plate 40 may be referred to as “second ports”.
  • the outer surface of the plate main body 31 includes irregularities.
  • the irregularities include a protrusion 37 protruding upward from the upper surface of the plate main body 31 and a depression 38 depressing downward from the upper surface of the plate main body 31.
  • a plurality of the protrusions 37 and the depressions 38 may be provided, and may be arranged alternately with each other.
  • the irregularities may also be included in the lower surface of the plate main body 31.
  • a herringbone pattern may be formed on the top and bottom surfaces of the plate body 31 by the plurality of protrusions 37 and the plurality of depressions 38.
  • the unevenness of the plate main body 31 may be provided to contact the unevenness of another adjacent heat exchange plate 40. And, the concave-convex contacted may be joined by a predetermined method.
  • the predetermined method may include welding or bonding by an adhesive.
  • the protrusion of the second plate 40 may be adhered to the depression 38 of the first plate 30.
  • Adjacent plates forming the first and second flow paths 41 and 43 may be alternately disposed with each other.
  • the first and second plates are bonded to form the first flow path 41
  • the second and third plates are bonded to form the second flow path 43.
  • the third and fourth plates may be joined to form the first flow path 41. This arrangement may be repeated to constitute the plate package P.
  • the plate heat exchanger 1 further includes a plurality of copper plates 50 for brazing and bonding a plurality of plates 10, 20, 30, and 40 constituting the plate heat exchanger 1.
  • the copper plate 50 is composed of a plurality of pieces, such that between the first end plate 10 and the first plate 30, between the first plate 30 and the second plate 40, and the second plate After being inserted between the 40 and the second end plate 20, respectively, it may be brazed and welded. That is, the copper plate 50 may be used as a filler metal for brazing welding.
  • a copper plate 50 is disposed between the first end plate 10 and the first plate 30, and a copper plate ( 50) may be disposed, and a copper plate 50 may be disposed between the second plate 40 and the second end plate 20.
  • the copper plate 50 may have a flat surface and may be brazed by sequentially stacking heat exchange plates 30 and 40 in which the first and second flow paths 41 and 43 of a V-shaped (corrugated shape) are formed. At this time, the copper plate 50 is melted as a solvent at a high temperature, and the copper plate 50 is melted by a capillary phenomenon between the stacked heat exchange plates 30 and 40, so that it can be joined to the heat exchange plates 30 and 40 by a cooling process. I can.
  • the copper plate 50 includes a copper plate main body 51 forming a flat surface, and an edge portion 52 surrounding the outside of the copper plate main body 51.
  • the edge portion 52 may extend downward from the edge of the copper plate main body 51.
  • the copper plate main body 51 has a first hole 53 penetrating through a position corresponding to the first inlet portion 61 and a second hole penetrating through a position corresponding to the first outlet portion 65 54 and a third hole 55 penetrating through a position corresponding to the second inlet 71 and a fourth hole 56 penetrating through a position corresponding to the second outlet 75 Includes.
  • the first end plate 10 is disposed above the plate package P, and a portion to which the first and second inlets 61 and 71 and the first and second outlets 65 and 75 are coupled to be.
  • the first end plate 10 includes a base 11 having a flat surface and an edge portion 12 extending from an edge of the base 11.
  • the edge portion 12 may extend downward from the edge of the base 11.
  • the base 11 includes a first insertion hole 13 into which the first inlet 61 is inserted, a second insertion hole 14 into which the first outlet 65 is inserted, and the second inlet It includes a third insertion hole 15 into which the portion 71 is inserted and a fourth insertion hole 16 into which the second outlet 75 is inserted.
  • first to fourth insertion holes 13, 14, 15, and 16 are holes into which a socket is inserted, they may be referred to as "socket holes”.
  • the first insertion hole 13 is aligned with the first hole 53 of the copper plate 50 and the first inlet port 33 of the heat exchange plate 30 in a vertical direction (overlapping direction), and the second The insertion hole 14 is aligned with the second hole 54 of the copper plate 50 and the first outlet port 34 of the heat exchange plate 30 in the vertical direction.
  • the third insertion hole 15 is aligned vertically with the third hole 55 of the copper plate 50 and the second inlet port 35 of the heat exchange plate 30, and the fourth insertion hole 16 ) Is aligned with the fourth hole 56 of the copper plate 50 and the second outlet port 36 of the heat exchange plate 30 in the vertical direction.
  • the refrigerant flows into the plate package P through the first inlet 61 and is discharged to the first outlet 65 while flowing along the first flow path 41.
  • Water flows into the plate package P through the second inlet 71 and is discharged to the second outlet 75 while flowing along the first flow path 43.
  • the refrigerant in the first flow path 41 may exchange heat with water in the second flow path 43. Since the first flow path 41 and the second flow path 43 are alternately arranged in the stacking direction, the refrigerant and water are not mixed and may have an independent flow.
  • FIG. 4 is a cross-sectional view showing a part of a heat exchange plate according to an embodiment of the present invention
  • FIG. 5 is an enlarged view of the cross section of the heat exchange plate of FIG. 4.
  • each of the plurality of first plates 30 includes a plurality of protrusions 37 protruding upward from the plate body, and a plurality of depressions 38 recessed downward from the plate body.
  • the plurality of protrusions 37 and depressions 38 may be provided in a herringbone pattern.
  • Each of the plurality of second plates 40 includes a plurality of protrusions 47 protruding upward from the plate body, and a plurality of depressions 48 recessed downward from the plate body.
  • the plurality of protrusions 47 and depressions 48 may be provided in a herringbone pattern.
  • the first plate 30 has a sine wave cross-sectional shape. That is, the first plate 30 may have a sine wave or wavy longitudinal section.
  • the first plate 30 may have an asymmetric sinusoidal cross-sectional shape due to a difference between the respective curvature radii R1 and R2 of the protrusion 47 and the depression 48.
  • the second plate 40 has a sine wave or wavy cross-sectional shape.
  • the second plate 40 may have a cross-sectional shape of a sine wave that is symmetric vertically with the sine wave of the first plate 30.
  • a plurality of first plates 30 and a plurality of second plates 40 may be stacked and fixed one by one in the vertical direction.
  • each protrusion 37 of the first plate 30 is adjacent to the second plate 40, that is, the depression 48 of the second plate 40 positioned above the first plate 30 It can be fixed in contact with.
  • each depression 38 of the first plate 30 is adjacent to the second plate 40, that is, the protrusion 47 of the second plate 40 located below the first plate 30 It can be fixed in contact with.
  • the second plate 40 may have a shape symmetrical in the vertical direction with the first plate 30 or may be disposed so as to be symmetrical in the vertical direction with the first plate 30.
  • first plate 30 and the second plate 40 are arranged to be symmetrical to each other, the first plate 30 and the second plate 40 can be manufactured to have substantially the same shape. .
  • a plurality of divided flow paths can be provided by symmetric upward/downward one by one. According to this configuration, since a heat exchange plate can be manufactured by stacking one type of plate without using the conventional method of stacking two types of plates, there is an advantage in that the work process is simplified and cost is reduced.
  • heat exchange plates 30 and 40 form flow paths 41 and 43 having different cross-sectional areas.
  • the first flow path 41 and the second flow path 43 are provided, and at this time, the first flow path
  • the cross-sectional areas 41 and the second flow path 43 are configured differently from each other.
  • the cross-sectional area of the second flow path 42 is larger than the cross-sectional area of the first flow path 41.
  • the cross-sectional area of the second flow path 42 may be formed to be 1.1 to 1.15 times larger than the cross-sectional area of the first flow path 41.
  • the difference in Reynold's number depends on the physical properties (e.g. viscosity, specific volume, etc.) and flow rate of each fluid. It can be large, in which case heat transfer can occur inefficiently. Therefore, it is necessary to properly design the cross-sectional area of the flow path through which each fluid flows according to the properties of each fluid and the flow rate.
  • a refrigerant flows through the first flow path 41 and water flows through the second flow path 43.
  • pressure loss may occur when the refrigerant and water exchange heat while flowing through a flow path having the same cross-sectional area.
  • the flow rate decreases, and thus heat exchange performance may be reduced.
  • the cross-sectional area of the first flow path 41 through which the refrigerant flows is designed to be smaller than the cross-sectional area of the second flow path 43 through which the water flows, thereby minimizing pressure loss and improving heat exchange performance.
  • a plurality of protrusions 37 and a plurality of depressions 38 are disposed on the first plate 30 to be spaced apart at regular intervals.
  • the plurality of protrusions 37 are formed to be spaced apart at regular intervals, and are each provided with the same height.
  • the highest points 37a for each of the plurality of protrusions 37 have the same height, and the distance L1 between the highest points 37a for two adjacent protrusions 37 may be kept constant.
  • the plurality of depressions 38 are formed to be spaced apart at regular intervals, and are each provided with the same depth. In other words, the lowest points 38a for each of the plurality of depressions 38 have the same depth, and the distance between the lowest points 38a for the two adjacent depressions 38 may be kept constant.
  • the "protrusion” means a portion (curved surface) corresponding to the upper part of the line bisecting the first plate 30 or the second plate 40 vertically
  • the "depressed part" the It may mean a portion (curved surface) corresponding to a lower portion of a line bisecting the first plate 30 or the second plate 40 vertically.
  • the plurality of protrusions 37 and the plurality of depressions 38 are alternately connected one by one, thereby forming a sine wave.
  • the radius of curvature R1 of the protrusion 37 is larger than the radius of curvature R2 of the depression 38.
  • the curved portion corresponding to the protruding portion 37 may be formed relatively larger than that of the curved portion corresponding to the recessed portion 38.
  • the protrusion 37 of the first plate 30 is fixed in contact with the recessed part 48 of the second plate 40, and the recessed part 38 of the first plate 30 is the second plate ( By being fixed in contact with the protrusion 47 of 40), the first flow path 41 and the second flow path 43, which are asymmetric flow paths, are alternately formed.
  • FIG. 6 is a schematic cross-sectional view of a part of a heat exchange plate according to another embodiment of the present invention.
  • the heat exchange plates 30 and 40 may have a trapezoidal cross section.
  • each of the plurality of first plates 30 includes a plurality of protrusions 37 protruding upward from the plate body, and a plurality of depressions 38 recessed downward from the plate body.
  • the plurality of protrusions 37 and depressions 38 may be provided in a herringbone pattern.
  • Each of the plurality of second plates 40 includes a plurality of protrusions 47 protruding upward from the plate body, and a plurality of depressions 48 recessed downward from the plate body.
  • the plurality of protrusions 47 and depressions 48 may be provided in a herringbone pattern.
  • the first plate 30 may have a trapezoidal or zigzag cross-sectional shape.
  • the second plate 40 may have a trapezoidal or zigzag cross-sectional shape.
  • the second plate 40 may have a cross-sectional shape symmetrical to the cross-sectional shape of the first plate 30 in a vertical direction.
  • a plurality of first plates 30 and a plurality of second plates 40 may be stacked and fixed one by one in the vertical direction.
  • each protrusion 37 of the first plate 30 is adjacent to the second plate 40, that is, the depression 48 of the second plate 40 positioned above the first plate 30 It can be fixed in contact with.
  • each depression 38 of the first plate 30 is adjacent to the second plate 40, that is, the protrusion 47 of the second plate 40 located below the first plate 30 It can be fixed in contact with.
  • the second plate 40 may have a shape symmetrical in the vertical direction with the first plate 30 or may be disposed so as to be symmetrical in the vertical direction with the first plate 30.
  • first plate 30 and the second plate 40 are arranged to be symmetrical to each other, the first plate 30 and the second plate 40 can be manufactured to have substantially the same shape. .
  • the first plate 30 further includes an inclined portion 39 connecting the protruding portion 37 and the recessed portion 38.
  • the inclined portion 39 may be connected to the recessed portion 38 by inclining downward from both ends of the protruding portion 37, respectively.
  • the inclined portion 39 has a first inclined portion 39a that inclines downward from the right end of the protruding portion 37 to an adjacent recessed portion 38, and the protruding portion 37 ) May include a second inclined portion 39b that is inclined downward from the left end portion to the adjacent recessed portion 38.
  • the inclined portion 39 may be understood as a portion connecting the protruding portion 37 and the recessed portions 38 adjacent to the protruding portion 37. 6, the second inclined portion 39b, the protruding portion 37, the first inclined portion 39a, and the recessed portion 38 are sequentially arranged in succession, and the first plate 30 It can form a cross-sectional shape of.
  • first inclined portion 39a and the second inclined portion 39b may have a symmetrical shape. Accordingly, the length and inclination of the first inclined portion 39a is formed to be the same as or corresponding to the length and inclination of the second inclined portion 39b, and the first plate 30 has a cross section of an equilateral trapezoidal shape. Can have.
  • the second plate 40 also includes an inclined portion 49 connecting the protruding portion 47 and the recessed portion 48.
  • the inclined portion 49 may be connected to the recessed portion 48 by inclining downward from both ends of the protruding portion 47, respectively.
  • the inclined portion 49 includes a first inclined portion 49a that is inclined downward from the right end of the protruding portion 47 to an adjacent recessed portion 48, and the protruding portion 47 ) May include a second inclined portion 49b that is inclined downward from the left end portion to the adjacent recessed portion 48.
  • the inclined portion 49 may be understood as a portion connecting the protruding portion 47 and the recessed portions 48 adjacent to the protruding portion 47. 6, the second inclined portion 49b, the protruding portion 47, the first inclined portion 39a, and the recessed portion 48 are sequentially arranged in succession, and the second plate 30 It can form a cross-sectional shape of.
  • first inclined portion 49a and the second inclined portion 49b may have a symmetrical shape. Accordingly, the length and inclination of the first inclined portion 49a is formed to be the same as or corresponding to the length and inclination of the second inclined portion 49b, and the second plate 40 has an equilateral trapezoidal cross section Can have.
  • the plurality of protrusions 37 of the first plate 30 are formed to be spaced apart at regular intervals, and are provided with the same height.
  • the protrusion 37 has a width L1 or a straight section of a predetermined length.
  • the plurality of protrusions 37 are formed to have the same height H2 and width L1 and are spaced apart from each other.
  • the plurality of depressions 38 of the first plate 30 are formed to be spaced apart at regular intervals, and are each provided with the same depth. At this time, the depression 38 has a width L2 or a straight section of a predetermined length. For example, the plurality of depressions 38 are formed to have the same depth H2 and width L2 and are spaced apart from each other.
  • the width L2 of the depression 38 is formed smaller than the width L1 of the protrusion 37. This reason is to form flow paths having different cross-sectional areas when the first plate 30 and the second plate 40 are alternately disposed.
  • the width L2 of the depression 38 may be formed to be 0.3 to 0.8 times smaller than the width L1 of the protrusion 37. If the width L2 of the recessed part 38 is less than 0.3 times the width L1 of the protruding part 37, the flow path width is narrowed, resulting in a pressure loss, resulting in reduced heat exchange efficiency. Can be.
  • the width L2 of the depression 38 should be at least 0.3 times larger than the width L1 of the protrusion 37.
  • the inclination of the inclined portion 39 that is, the angle between the protruding portion 37 or the recessed portion 38 and the inclined portion 39, needs to be appropriately designed.
  • the angle between the protruding portion 37 or the recessed portion 38 and the inclined portion 39 may be designed to be 50 degrees to 80 degrees or less.
  • FIG. 7 is a graph showing a change in heat quantity according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
  • the horizontal axis of the graph represents the ratio of the cross-sectional area of the passage between water and the refrigerant.
  • the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, meaning that the ratio of the cross-sectional area of the passage of water and the cross-sectional area of the refrigerant is 1:1.
  • the ratio of the channel cross-sectional area between water and the refrigerant when the ratio of the channel cross-sectional area between water and the refrigerant is 105%, it means that the ratio of the cross-sectional area of the water channel to the cross-sectional area of the refrigerant is 105:100. That is, it means that the cross-sectional area of the flow path through which water passes is 5% or more larger than the cross-sectional area of the flow path through the refrigerant.
  • the vertical axis of the graph denotes a change in the amount of heat (kW) generated when heat exchange is performed while water and refrigerant pass through each of the water flow path and the refrigerant flow path.
  • the larger the change in the amount of heat the better the heat exchange efficiency between the water/refrigerant, and the smaller the change in the amount of heat, the worse the heat exchange efficiency between the water/refrigerant.
  • the heat exchange efficiency between water and refrigerant improves. That is, when the channel cross-sectional area ratio between water and refrigerant is 100%, the heat amount change is 8.4 kW, whereas when the channel cross-sectional area ratio between water and refrigerant is 110%, the heat amount change is 9.2 kW.
  • the heat exchange efficiency between water and refrigerant can be obtained as much as possible.
  • FIG. 8 is a graph showing a pressure loss according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
  • the horizontal axis of the graph represents the ratio of the cross-sectional area of the passage between water and the refrigerant.
  • the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, meaning that the ratio of the cross-sectional area of the passage of water and the cross-sectional area of the refrigerant is 1: Means 1. That is, when the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, it means that the cross-sectional area of each passage of the passage through which water passes and the passage through which the refrigerant passes is the same.
  • the ratio of the channel cross-sectional area between water and the refrigerant when the ratio of the channel cross-sectional area between water and the refrigerant is 105%, it means that the ratio of the cross-sectional area of the water channel to the cross-sectional area of the refrigerant is 105:100. That is, it means that the cross-sectional area of the flow path through which water passes is 5% or more larger than the cross-sectional area of the flow path through the refrigerant.
  • the vertical axis of the graph denotes a pressure loss (kPa) that occurs when water and refrigerant pass through the water flow path and the refrigerant flow path, respectively.
  • the pressure loss includes a pressure loss that may occur due to the fluid colliding with the flow pipe when the fluid passes through the flow pipe.
  • the amount of pressure loss may vary depending on not only the inner diameter and cross-sectional area of the flow path pipe, but also the physical properties (eg, viscosity, specific volume, etc.) and flow rate of the fluid. If a large amount of pressure loss occurs in the flow path pipe through which the fluid flows, the heat exchange efficiency between fluids may decrease as the pressure of the flowing fluid decreases.
  • the flow path cross-sectional area ratio between water and refrigerant must be properly designed, and in particular, both water-side pressure loss and refrigerant-side pressure loss must be considered.
  • the cross-sectional area of the water flow path should be formed to be 1.1 times to 1.15 times the cross-sectional area of the refrigerant flow path. Suggest. Then, the heat exchange efficiency between water/refrigerant can be improved, but pressure loss in the water flow path and the refrigerant flow path can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A plate-type heat exchanger according to an embodiment of the present invention is characterized in that the curvature radius (R1) of a protrusion part formed in a first plate is larger than the curvature radius (R2) of a depression part formed in the first plate so as to provide a plurality of asymmetric flow paths.

Description

판형 열교환기{PLATE TYPE HEAT EXCHANGER}Plate type heat exchanger{PLATE TYPE HEAT EXCHANGER}
본 발명은 판형 열교환기에 관한 것이다.The present invention relates to a plate heat exchanger.
열교환기는 적어도 2개의 유체 간에 열교환을 가이드 하는 장치로서, 일례로 판형 열교환기를 포함할 수 있다. 상기 판형 열교환기는 서로 다른 온도를 형성하는 유체가 유동하는 적어도 2개 이상의 유로를 포함하며, 상기 2개 이상의 유로는 서로 교번하여 배치될 수 있다.The heat exchanger is a device that guides heat exchange between at least two fluids, and may include, for example, a plate heat exchanger. The plate heat exchanger includes at least two or more flow paths through which fluids forming different temperatures flow, and the two or more flow paths may be arranged alternately with each other.
상기 판형 열교환기는 다른 열교환기에 비하여 열교환 효율이 높고, 그 구조에 있어서 소형화 및 경량화가 가능하다는 장점이 있다.The plate-type heat exchanger has an advantage in that heat exchange efficiency is higher than that of other heat exchangers, and in its structure, it is possible to reduce size and weight.
선행문헌 일본특허 특개평11-270985(공개일:1999년10월5일)에는 플레이트형 열교환기가 개시된다.Prior Document Japanese Patent Unexamined Patent Application Publication No. Hei 11-270985 (published date: October 5, 1999) discloses a plate-type heat exchanger.
상기 선행문헌에 개시된 플레이트형 열교환기에는 서로 격리된 2개의 유로를 갖춘 열교환 플레이트에서, 중심면에 대하여 비대칭의 단면형상을 구비하여 하나의 유로가 다른 유로보다 큰 단면 흐름을 가지는 것이 개시된다.The plate-type heat exchanger disclosed in the prior literature discloses that a heat exchange plate having two flow paths isolated from each other has an asymmetric cross-sectional shape with respect to a central surface, so that one flow path has a larger cross-sectional flow than the other flow path.
그러나, 상기 선행문헌에 개시된 플레이트형 열교환기의 경우, 2가지 종류의 플레이트가 적층되어 열교환기를 제작하므로, 비용이 많이 들고 작업 공정이 복잡하다는 문제가 있었다.However, in the case of the plate-type heat exchanger disclosed in the prior literature, since the heat exchanger is manufactured by stacking two types of plates, there is a problem that the cost is high and the work process is complicated.
또한, 종래의 플레이트형 열교환기는 2개의 유로를 흐르는 두 유체 간의 물성 또는 유량 차이를 고려하지 않아서, 물성 또는 유량 차이가 큰 유체들의 경우 어느 한 쪽에 압력 손실이 발생하여 열교환 효율이 떨어지는 문제가 있다. In addition, the conventional plate heat exchanger does not take into account the difference in physical properties or flow rates between two fluids flowing through the two flow paths, and thus, in the case of fluids having a large difference in physical properties or flow rates, there is a problem in that a pressure loss occurs in either side, thereby deteriorating heat exchange efficiency.
본 발명은 상기와 같은 문제점을 개선하기 위하여 제안된 것으로서, 본 발명의 목적은, 물성 또는 유량이 다른 두 유체에 대하여 압력 손실을 최소화하여 열교환 효율을 향상시킬 수 있는 판형 열교환기를 제공함에 있다.The present invention has been proposed to improve the above problems, and an object of the present invention is to provide a plate-type heat exchanger capable of improving heat exchange efficiency by minimizing pressure loss for two fluids having different physical properties or flow rates.
본 발명의 다른 목적은, 열교환기의 작업 공정을 단순화하고 비용을 줄일 수 있는 판형 열교환기를 제공함에 있다.Another object of the present invention is to provide a plate heat exchanger capable of simplifying the work process of the heat exchanger and reducing the cost.
본 발명의 또 다른 목적은, 물성이 다른 두 유체가 흐르는 각각의 유로 단면적을 최적화함으로써, 열교환 플레이트의 총 적층 수를 줄일 수 있는 판형 열교환기를 제공함에 있다.Another object of the present invention is to provide a plate heat exchanger capable of reducing the total number of stacked heat exchange plates by optimizing the cross-sectional area of each flow path through which two fluids having different physical properties flow.
상기와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 판형 열교환기는, 플레이트 본체에서 상방으로 돌출되는 다수의 돌출부와, 상기 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부가 교번하여 배치되는 다수의 제 1 플레이트 및 상기 제 1 플레이트와 상하 방향으로 대칭되는 형상을 가지는 다수의 제 2 플레이트를 포함한다.The plate-type heat exchanger according to an embodiment of the present invention for achieving the above object includes a plurality of protrusions protruding upward from the plate body, and a plurality of concave portions that are depressed downward from the plate main body. It includes a first plate and a plurality of second plates having a shape symmetrical in the vertical direction with the first plate.
이때, 상기 다수의 제 1 플레이트와 상기 다수의 제 2 플레이트는 상하 방향으로 교번하여 1매씩 적층되고, 상기 제 1 플레이트의 돌출부는 상기 제 2 플레이트의 함몰부에 결합되고, 상기 제 1 플레이트의 함몰부는 상기 제 2 플레이트의 돌출부에 결합된다.At this time, the plurality of first plates and the plurality of second plates are alternately stacked one by one in the vertical direction, and the protrusion of the first plate is coupled to the recess of the second plate, and the recess of the first plate The portion is coupled to the protrusion of the second plate.
특히, 상기 제 1 플레이트에 형성된 돌출부의 곡률 반경(R1)은, 상기 제 1 플레이트에 형성된 함몰부의 곡률 반경(R2)보다 크게 형성되어 복수의 비대칭 유로를 마련할 수 있다. In particular, the radius of curvature R1 of the protrusion formed on the first plate may be larger than the radius of curvature R2 of the depression formed on the first plate to provide a plurality of asymmetric flow paths.
이러한 구성에 의하여, 상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로의 단면적은, 상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로의 단면적보다 크게 형성될 수 있다.With this configuration, the cross-sectional area of the flow path formed by the protrusion of the first plate and the depression of the second plate is larger than the cross-sectional area of the flow path formed by the depression of the first plate and the protrusion of the second plate. Can be.
또한, 상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로에는 물이 유동하고, 상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로에는 냉매가 유동하여 열교환이 이루어짐으로써, 두 유체 간의 열교환 효율이 증대되고 압력손실이 발생하는 것을 최소화할 수 있다. In addition, water flows in the flow path formed by the protrusion of the first plate and the depression of the second plate, and the refrigerant flows through the flow path formed by the depression of the first plate and the protrusion of the second plate to heat exchange. By doing this, the heat exchange efficiency between the two fluids can be increased and the occurrence of pressure loss can be minimized.
예를 들어, 상기 물이 유동하는 유로의 단면적은, 상기 냉매가 유동하는 유로의 단면적의 1.1배 내지 1.15배로 크게 형성될 수 있다.For example, a cross-sectional area of a flow path through which water flows may be formed to be as large as 1.1 to 1.15 times a cross-sectional area of a flow path through which the refrigerant flows.
또한, 상기 제 1 플레이트에 형성된 다수의 돌출부는, 일정 간격으로 이격되고 동일한 높이로 돌출되고, 상기 제 1 플레이트에 형성된 다수의 함몰부는, 일정 간격으로 이격되고 동일한 깊이로 함몰될 수 있다.In addition, the plurality of protrusions formed on the first plate may be spaced apart at a predetermined interval and protrude at the same height, and the plurality of depressions formed on the first plate may be spaced apart at a predetermined interval and depressed to the same depth.
또한, 본 발명의 다른 실시예에 따른 판형 열교환기는, 플레이트 본체에서 상방으로 돌출되는 다수의 돌출부와, 상기 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부, 및 돌출부와 함몰부를 연결하는 경사부가 교번하여 배치되는 다수의 제 1 플레이트 및 상기 제 1 플레이트와 상하 방향으로 대칭되는 형상을 가지는 다수의 제 2 플레이트를 포함한다.In addition, in the plate heat exchanger according to another embodiment of the present invention, a plurality of protrusions protruding upward from the plate body, a plurality of recesses recessed downward from the plate body, and inclined portions connecting the protrusion and the recess are alternately And a plurality of first plates disposed and a plurality of second plates having a shape symmetrical to the first plate in a vertical direction.
이때, 상기 다수의 제 1 플레이트와 상기 다수의 제 2 플레이트는 상하 방향으로 교번하여 1매씩 적층되고, 상기 제 1 플레이트의 돌출부는, 상기 제 2 플레이트의 함몰부에 결합되고, 상기 제 1 플레이트의 함몰부는, 상기 제 2 플레이트의 돌출부에 결합된다. At this time, the plurality of first plates and the plurality of second plates are stacked one by one by alternating in the vertical direction, and the protrusion of the first plate is coupled to the depression of the second plate, The depression is coupled to the protrusion of the second plate.
특히, 상기 제 1 플레이트에 형성된 돌출부의 너비(L1)는, 상기 제 1 플레이트에 형성된 함몰부의 너비(L2)보다 크게 형성되어 복수의 비대칭 유로를 마련할 수 있다. In particular, the width L1 of the protrusion formed in the first plate may be larger than the width L2 of the depression formed in the first plate to provide a plurality of asymmetric flow paths.
이러한 구성에 의하여, 상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로의 단면적은, 상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로의 단면적보다 크게 형성될 수 있다.With this configuration, the cross-sectional area of the flow path formed by the protrusion of the first plate and the depression of the second plate is larger than the cross-sectional area of the flow path formed by the depression of the first plate and the protrusion of the second plate. Can be.
또한, 상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로에는 물이 유동하고, 상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로에는 냉매가 유동하여 열교환이 이루어짐으로써, 두 유체 간의 열교환 효율이 증대되고 압력손실이 발생하는 것을 최소화할 수 있다. In addition, water flows in the flow path formed by the protrusion of the first plate and the depression of the second plate, and the refrigerant flows through the flow path formed by the depression of the first plate and the protrusion of the second plate to heat exchange. By doing this, the heat exchange efficiency between the two fluids can be increased and the occurrence of pressure loss can be minimized.
예를 들어, 상기 물이 유동하는 유로의 단면적은, 상기 냉매가 유동하는 유로의 단면적의 1.1배 내지 1.15배로 크게 형성될 수 있다.For example, a cross-sectional area of a flow path through which water flows may be formed to be as large as 1.1 to 1.15 times a cross-sectional area of a flow path through which the refrigerant flows.
본 실시예에서 상기 제 1 플레이트에 형성된 함몰부의 너비(L2)는, 상기 제 1 플레이트에 형성된 돌출부의 너비(L1)의 0.3배 내지 0.8배로 작게 형성될 수 있다. 또한, 상기 경사부와 상기 함몰부가 이루는 각도는, 50도 내지 80도 범위에서 형성될 수 있다.In this embodiment, the width L2 of the depression formed in the first plate may be formed as small as 0.3 times to 0.8 times the width L1 of the protrusion formed in the first plate. In addition, an angle formed by the inclined portion and the recessed portion may be formed in a range of 50 degrees to 80 degrees.
상기 경사부는, 상기 돌출부의 일 단부로부터 이웃하는 제 1 함몰부의 단부까지 하향 경사지는 제 1 경사부 및 상기 돌출부의 타 단부로부터 이웃하는 제 2 함몰부의 단부까지 하향 경사지는 제 2 경사부를 포함할 수 있다..The inclined portion may include a first inclined portion inclined downward from one end of the protrusion to an end of the neighboring first depression and a second inclined portion inclined downward from the other end of the protrusion to an end of the adjacent second depression. have..
이때, 상기 제 1 경사부와 제 2 경사부는 좌우 대칭되는 형상을 가질 수 있다. 예를 들어, 상기 제 1 경사부와, 상기 돌출부 및 상기 제 2 경사부는, 등변 사다리꼴 형상을 가질 수 있다.In this case, the first inclined portion and the second inclined portion may have a symmetrical shape. For example, the first inclined portion, the protruding portion, and the second inclined portion may have an equilateral trapezoidal shape.
상기와 같은 구성을 이루는 본 발명의 실시예에 따른 판형 열교환기에 의하면 다음과 같은 효과가 있다.According to the plate-type heat exchanger according to the embodiment of the present invention having the configuration as described above has the following effects.
첫째, 다수의 열교환 플레이트가 적층되어 유로 단면적이 서로 다른 비대칭 유로를 형성함으로써, 각 유로를 유동하는 유체 간의 열교환 효율이 극대화되는 장점이 있다.First, a plurality of heat exchange plates are stacked to form an asymmetric flow path having different flow path cross-sectional areas, thereby maximizing heat exchange efficiency between fluids flowing through each flow path.
둘째, 한 종류의 플레이트를 상하 방향으로 적층시켜서 유로를 형성할 수 있으므로, 종래의 2종류의 플레이트가 필요하지 않게 된다. 즉, 작업공정이 단순화되고 비용이 절감되는 장점이 있다.Second, since a flow path can be formed by stacking one type of plate in the vertical direction, conventional two types of plates are not required. That is, there is an advantage in that the work process is simplified and cost is reduced.
셋째, 물성이 다른 두 유체가 흐르는 각각의 유로 단면적을 최적화함으로써, 각 유체의 유량을 제어할 수 있다. 그러면, 각 유로를 흐르는 유량을 증가시킬 수 있고 이에 따라 열교환 플레이트의 총 적층 수를 줄일 수 있다. 따라서, 열교환 플레이트의 전체높이 또는 부피가 작아지는 장점이 있다. Third, the flow rate of each fluid can be controlled by optimizing the cross-sectional area of each flow path through which two fluids having different physical properties flow. Then, the flow rate flowing through each flow path can be increased, and accordingly, the total number of stacked heat exchange plates can be reduced. Therefore, there is an advantage in that the overall height or volume of the heat exchange plate is reduced.
도 1은 본 발명의 실시예에 따른 판형 열교환기의 사시도이다.1 is a perspective view of a plate heat exchanger according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 판형 열교환기의 분해 사시도이다.2 is an exploded perspective view of a plate heat exchanger according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 열교환 플레이트의 적층방법을 보여주는 도면이다.3 is a view showing a stacking method of a heat exchange plate according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 열교환 플레이트의 일부 단면을 도시한 단면도이다.4 is a cross-sectional view showing a partial cross-section of a heat exchange plate according to an embodiment of the present invention.
도 5는 도 4의 열교환 플레이트의 단면을 확대한 도면이다.5 is an enlarged view of the cross section of the heat exchange plate of FIG. 4.
도 6은 본 발명의 다른 실시예에 따른 열교환 플레이트의 일부를 간략히 도시한 단면도이다.6 is a schematic cross-sectional view of a part of a heat exchange plate according to another embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 물과 냉매 간의 유로 단면적 비에 따른 열량 변화를 보여주는 그래프이다. 7 is a graph showing a change in heat quantity according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 물과 냉매 간의 유로 단면적 비에 따른 압력 손실을 보여주는 그래프이다.8 is a graph showing a pressure loss according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to elements in the drawings, it should be noted that the same elements are assigned the same numerals as possible even if they are indicated on different drawings. In addition, in describing an embodiment of the present invention, if it is determined that a detailed description of a related well-known configuration or function interferes with an understanding of an embodiment of the present invention, a detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the constituent elements of an embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term. When a component is described as being "connected", "coupled" or "connected" to another component, the component may be directly connected or connected to that other component, but another component between each component It should be understood that may be “connected”, “coupled” or “connected”.
도 1은 본 발명의 실시예에 따른 판형 열교환기의 사시도이고, 도 2는 본 발명의 실시예에 따른 판형 열교환기의 분해 사시도이고, 도 3은 본 발명의 실시예에 따른 열교환 플레이트의 적층방법을 보여주는 도면이다.1 is a perspective view of a plate heat exchanger according to an exemplary embodiment of the present invention, FIG. 2 is an exploded perspective view of a plate heat exchanger according to an exemplary embodiment of the present invention, and FIG. 3 is a method of stacking a heat exchange plate according to an exemplary embodiment of the present invention. It is a drawing showing.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 판형 열교환기(1)는, 다수의 열교환 플레이트(30,40)를 포함하는 플레이트 패키지(P) 및 상기 플레이트 패키지(P)의 양단에 구비되는 2개의 엔드 플레이트(10,20)를 포함한다. 일례로, 상기 열교환 플레이트(30,40) 및 상기 2개의 엔드 플레이트(10,20)는 4각 패널의 형상을 가질 수 있다. 1 to 3, a plate heat exchanger 1 according to an embodiment of the present invention includes a plate package P including a plurality of heat exchange plates 30 and 40, and both ends of the plate package P. It includes two end plates 10 and 20 provided in the. For example, the heat exchange plates 30 and 40 and the two end plates 10 and 20 may have a shape of a square panel.
상기 열교환 플레이트(30,40)는 열전도율이 우수하고 압력에 대한 내압성이 우수한 금속 소재로 구성될 수 있다. 일례로, 상기 열교환 플레이트(30,40)는 스테인리스 소재로 구성될 수 있다.The heat exchange plates 30 and 40 may be formed of a metal material having excellent thermal conductivity and excellent pressure resistance to pressure. For example, the heat exchange plates 30 and 40 may be made of stainless steel.
상기 열교환 플레이트(30,40)는 다수의 제 1 플레이트(30)와, 다수의 제 2 플레이트(40)를 포함한다. 상기 제 1 플레이트(30) 및 제 2 플레이트(40)는 도 1을 기준으로 상하 방향으로 1매씩 교번하여 적층될 수 있다.The heat exchange plates 30 and 40 include a plurality of first plates 30 and a plurality of second plates 40. The first plate 30 and the second plate 40 may be stacked alternately one by one in the vertical direction based on FIG. 1.
상기 상하 방향을 "적층방향"이라 이름할 수 있다.The vertical direction may be referred to as "stacking direction".
상기 다수의 열교환 플레이트(30,40)의 사이에는, 유체가 유동하는 유로가 형성된다. 상기 유로는 제 1 유체가 유동하는 제 1 유로(도 4의 41 참조)와, 제 2 유체가 유동하는 제 2 유로(도 4의 43 참조)를 포함한다. 상기 제 1,2 유로(41,43)는 서로 교번하여 차례로 배치될 수 있다. 상기 제 1,2 유로(41,43)는 적층방향으로 교대로 형성되어, 제 1 유체 및 제 2 유체가 만나지 않고 독자적인 흐름을 가질 수 있다.A flow path through which a fluid flows is formed between the plurality of heat exchange plates 30 and 40. The flow path includes a first flow path through which the first fluid flows (see 41 in FIG. 4) and a second flow path through which the second fluid flows (see 43 in FIG. 4 ). The first and second flow paths 41 and 43 may be alternately arranged with each other. The first and second flow paths 41 and 43 are alternately formed in the stacking direction, so that the first fluid and the second fluid do not meet and may have an independent flow.
상기 제 1 유로(41)에는 냉매가 흐를 수 있다. 상기 제 1 유로(41)는 냉매가 흐르는 유로이므로 "냉매 유로"라고 이름할 수 있다. 상기 제 2 유로(43)에는 물이 흐를 수 있다. 상기 제 2 유로(43)는 물이 흐르는 유로이므로 "물 유로"라고 이름할 수 있다.A refrigerant may flow through the first flow path 41. Since the first flow path 41 is a flow path through which a refrigerant flows, it may be referred to as a “refrigerant flow path”. Water may flow through the second flow path 43. Since the second flow path 43 is a flow path through which water flows, it may be referred to as a “water flow path”.
상기 2개의 엔드 플레이트(10,20)는, 상기 플레이트 패키지(P)의 상방에 구비되는 제 1 엔드 플레이트(10) 및 상기 플레이트 패키지(P)의 하방에 구비되는 제 2 엔드 플레이트(20)를 포함한다. 즉, 상기 2개의 엔드 플레이트(10,20)의 사이에는 상기 플레이트 패키지(P)가 배치될 수 있다. The two end plates 10 and 20 include a first end plate 10 provided above the plate package P and a second end plate 20 provided below the plate package P. Includes. That is, the plate package P may be disposed between the two end plates 10 and 20.
상기 판형 열교환기(1)는 제 1 유체 및 제 2 유체를 상기 플레이트 패키지(P)의 내부로 제공하거나, 상기 플레이트 패키지(P)의 내부에서 외부로 배출되도록 하는 소켓(61,65,71,75)을 더 포함한다.The plate heat exchanger (1) provides a first fluid and a second fluid to the inside of the plate package (P), or to be discharged from the inside of the plate package (P) to the outside (61, 65, 71, 75).
상기 소켓(61,65,71,75)은 제 1 유입부(61), 제 2 유입부(71), 제 1 유출부(65) 및 제 2 유출부(75) 중 적어도 하나 이상을 포함할 수 있다.The sockets 61,65,71,75 may include at least one of a first inlet 61, a second inlet 71, a first outlet 65, and a second outlet 75. I can.
구체적으로, 상기 판형 열교환기(1)는 제 1 유체가 상기 플레이트 패키지(P)의 내부로 유입되도록 하는 제 1 유입부(61) 및 제 2 유체가 상기 플레이트 패키지(P)의 내부로 유입되도록 하는 제 2 유입부(71)를 더 포함한다.Specifically, the plate-type heat exchanger 1 allows a first inlet 61 and a second fluid to flow into the plate package P, allowing the first fluid to flow into the plate package P. It further includes a second inlet 71 to.
상기 제 1 유입부(61) 및 상기 제 2 유입부(71)는 상기 제 1 엔드 플레이트(10)에 결합될 수 있다. 상기 제 1,2 유체는 온도 차이를 가지며, 서로 열교환 될 수 있다. 일례로, 상기 제 1 유체는 냉매이며, 상기 제 2 유체는 물일 수 있다. 따라서, 상기 제 1 유입부(61)를 "냉매 유입부", 상기 제 2 유입부(71)를 "물 유입부"라 이름할 수 있다.The first inlet 61 and the second inlet 71 may be coupled to the first end plate 10. The first and second fluids have a temperature difference and may exchange heat with each other. For example, the first fluid may be a refrigerant, and the second fluid may be water. Accordingly, the first inlet 61 may be referred to as a “refrigerant inlet” and the second inlet 71 may be referred to as a “water inlet”.
상기 판형 열교환기(1)는 제 1 유체가 상기 플레이트 패키지(P)로부터 배출되도록 하는 제 1 유출부(65) 및 제 2 유체가 상기 플레이트 패키지(P)로부터 배출되도록 하는제 2 유출부(75)를 더 포함한다. 상기 제 1 유출부(65) 및 상기 제 2 유출부(75)는 상기 제 1 엔드 플레이트(10)에 결합될 수 있다.The plate heat exchanger (1) includes a first outlet (65) for allowing a first fluid to be discharged from the plate package (P) and a second outlet portion (75) for allowing a second fluid to be discharged from the plate package (P). ). The first outlet 65 and the second outlet 75 may be coupled to the first end plate 10.
일례로, 상기 제 1 유입부(61) 및 제 2 유입부(71)는 상기 제 1 엔드 플레이트(10)의 네 모서리 중 대각선 방향으로 배열될 수 있다. 상기 제 1 유출부(65) 및 제 2 유출부(75)는 상기 제 1 엔드 플레이트(10)의 네 모서리 중 다른 대각선 방향으로 배열될 수 있다. 즉, 상기 제 1 유입부(61)와 상기 제 2 유출부(75)는 인접하게 배치되고, 상기 제 2 유입부(71)와 상기 제 2 유출부(65)는 인접하게 배치될 수 있다.For example, the first inlet 61 and the second inlet 71 may be arranged in a diagonal direction among four corners of the first end plate 10. The first outlet 65 and the second outlet 75 may be arranged in a different diagonal direction among the four corners of the first end plate 10. That is, the first inlet 61 and the second outlet 75 may be disposed adjacent to each other, and the second inlet 71 and the second outlet 65 may be disposed adjacent to each other.
또는 이와는 다르게, 상기 제 1 유입부(61) 및 제 1 유출부(65)는 상기 제 1 엔드 플레이트(10)의 네 모서리 중 대각선 방향으로 배열되고, 상기 제 2 유입부(71) 및 제 2 유출부(75)는 상기 제 1 엔드 플레이트(10)의 네 모서리 중 다른 대각선 방향으로 배열되는 것이 가능하다.Alternatively, the first inlet 61 and the first outlet 65 are arranged in a diagonal direction among four corners of the first end plate 10, and the second inlet 71 and the second The outlet portion 75 may be arranged in a diagonal direction from among the four corners of the first end plate 10.
상기 열교환 플레이트(30,40)는 다수의 제 1 플레이트(30)와 다수의 제 2 플레이트(40)를 포함한다. 상기 제 1 플레이트(30)와 상기 제 2 플레이트(40)는 동일한 형상을 가질 수 있다. 또는, 상기 제 1 플레이트(30)와 제 2 플레이트(40)는 대칭되는 형상을 가질 수 있다. The heat exchange plates 30 and 40 include a plurality of first plates 30 and a plurality of second plates 40. The first plate 30 and the second plate 40 may have the same shape. Alternatively, the first plate 30 and the second plate 40 may have a symmetrical shape.
본 실시예에서, 상기 제 1 플레이트(30)는 대략 4각 패널의 형상을 가지는 플레이트 본체(31) 및 상기 플레이트 본체(31)의 외측을 둘러싸는 테두리부(32)를 포함한다.In this embodiment, the first plate 30 includes a plate body 31 having an approximately quadrangular panel shape and an edge portion 32 surrounding the outside of the plate body 31.
또한, 상기 제 1 플레이트(30)는 상기 플레이트 본체(31)의 4개 모서리에 배열되며 상기 제 1,2 유입부(61,71) 및 제 1,2 유출부(65,75)에 연통하여 유체의 유동을 가이드 하는 다수의 입출 포트(33,34,35,36)를 더 포함한다. 상기 다수의 입출 포트(33,34,35,36)는 상기 플레이트 본체(31)의 적어도 일부분이 관통하여 형성될 수 있다. In addition, the first plate 30 is arranged at four corners of the plate body 31 and communicates with the first and second inlet portions 61 and 71 and the first and second outlet portions 65 and 75. It further includes a plurality of inlet and outlet ports (33, 34, 35, 36) for guiding the flow of the fluid. The plurality of entry/ exit ports 33, 34, 35, and 36 may be formed through at least a portion of the plate body 31.
상기 다수의 입출 포트(33,34,35,36)는 상기 제 1 유입부(61)와 대응되는 위치에 형성되며 제 1 유체(냉매)가 유입되는 제 1 입구포트(33) 및 상기 제 1 유출부(65)와 대응되는 위치에 형성되며 제 1 유체가 배출되는 제 1 출구포트(34)를 포함한다.The plurality of inlet ports 33, 34, 35, 36 are formed at positions corresponding to the first inlet part 61, and a first inlet port 33 through which a first fluid (refrigerant) is introduced, and the first It is formed at a position corresponding to the outlet portion 65 and includes a first outlet port 34 through which the first fluid is discharged.
상기 제 1 입구포트(33)를 "냉매 입구포트", 상기 제 1 출구포트(34)를 "냉매 출구포트"라 이름할 수 있다.The first inlet port 33 may be referred to as a "refrigerant inlet port", and the first outlet port 34 may be referred to as a "refrigerant outlet port".
냉매는 상기 제 1 입구포트(33)를 통하여 상기 제 1 플레이트(30)의 하방으로 유동하는 과정에서 상기 플레이트 패키지(P)의 제 1 유로(41)로 유입되고, 상기 제 1 유로(41)에서 열교환 된 냉매는 상기 제 1 출구포트(34)를 통하여 상기 플레이트 패키지(P)로부터 배출되며 상기 제 1 유출부(65)를 향하여 상방으로 유동할 수 있다. The refrigerant flows downward from the first plate 30 through the first inlet port 33 and flows into the first flow path 41 of the plate package P, and the first flow path 41 The refrigerant heat-exchanged at is discharged from the plate package P through the first outlet port 34 and may flow upward toward the first outlet portion 65.
상기 다수의 입출 포트(33,34,35,36)는 상기 제 2 유입부(71)와 대응되는 위치에 형성되며 제 2 유체(물)가 유입되는 제 2 입구포트(35) 및 상기 제 2 유출부(75)와 대응되는 위치에 형성되며 제 2 유체가 배출되는 제 2 출구포트(36)를 포함한다.The plurality of inlet and outlet ports 33, 34, 35, 36 are formed at positions corresponding to the second inlet 71, and a second inlet port 35 through which a second fluid (water) is introduced, and the second It is formed at a position corresponding to the outlet portion 75 and includes a second outlet port 36 through which the second fluid is discharged.
상기 제 2 입구포트(35)를 "물 입구포트", 상기 제 2 출구포트(36)를 "물 출구포트"라 이름할 수 있다.The second inlet port 35 may be referred to as a "water inlet port", and the second outlet port 36 may be referred to as a "water outlet port".
물은 상기 제 2 입구포트(35)를 통하여 상기 제 1 플레이트(30)의 하방으로 유동하는 과정에서 플레이트 패키지(P)의 제 1 유로(43)로 유입되고, 상기 제 1 유로(43)에서 열교환 된 물은 상기 제 2 출구포트(36)를 통하여 상기 플레이트 패키지(P)로부터 배출되며 상기 제 2 유출부(75)를 향하여 상방으로 유동할 수 있다.In the process of flowing below the first plate 30 through the second inlet port 35, water flows into the first flow path 43 of the plate package P, and from the first flow path 43 Heat-exchanged water is discharged from the plate package P through the second outlet port 36 and may flow upward toward the second outlet 75.
상기 다수의 입출 포트(33,34,35,36)는 상기 제 1 플레이트(30)에 형성되므로 "제 1 포트"라고 이름할 수 있다. Since the plurality of entry/ exit ports 33, 34, 35, and 36 are formed on the first plate 30, they may be referred to as “first ports”.
또한, 다수의 입출 포트는 상기 제 2 플레이트(40)에도 형성될 수 있다. 따라서, 상기 제 2 플레이트(40)에 형성된 다수의 입출 포트는 "제 2 포트"라 이름할 수 있다. In addition, a plurality of entry/exit ports may be formed on the second plate 40 as well. Accordingly, a plurality of entry/exit ports formed on the second plate 40 may be referred to as “second ports”.
상기 플레이트 본체(31)의 외면에는 요철이 포함된다. 상세히, 상기 요철에는 상기 플레이트 본체(31)의 상면으로부터 상방으로 돌출되는 돌출부(37) 및 상기 플레이트 본체(31)의 상면으로부터 하방으로 함몰되는 함몰부(38)가 포함된다.The outer surface of the plate main body 31 includes irregularities. In detail, the irregularities include a protrusion 37 protruding upward from the upper surface of the plate main body 31 and a depression 38 depressing downward from the upper surface of the plate main body 31.
상기 돌출부(37)와 상기 함몰부(38)는 다수 개가 구비되며, 서로 교번하여 배치될 수 있다. 그리고, 상기 플레이트 본체(31)의 하면에도 상기 요철이 포함될 수 있다. A plurality of the protrusions 37 and the depressions 38 may be provided, and may be arranged alternately with each other. In addition, the irregularities may also be included in the lower surface of the plate main body 31.
일례로, 상기 다수 개의 돌출부(37) 및 다수 개의 함몰부(38)에 의하여, 상기 플레이트 본체(31)의 상면 및 하면에는, 헤링본(herringbone) 무늬가 형성될 수 있다.For example, a herringbone pattern may be formed on the top and bottom surfaces of the plate body 31 by the plurality of protrusions 37 and the plurality of depressions 38.
상기 플레이트 본체(31)의 요철은 인접한 다른 열교환 플레이트(40)에 구비되는 요철에 접촉하도록 구비될 수 있다. 그리고, 접촉된 요철들은 소정의 방식에 의하여 접합될 수 있다. 상기 소정의 방식에는 용접 또는 접착제에 의한 접착이 포함될 수 있다. 일례로, 제 1 플레이트(30)의 함몰부(38)에는 제 2 플레이트(40)의 돌출부가 접착될 수 있다.The unevenness of the plate main body 31 may be provided to contact the unevenness of another adjacent heat exchange plate 40. And, the concave-convex contacted may be joined by a predetermined method. The predetermined method may include welding or bonding by an adhesive. For example, the protrusion of the second plate 40 may be adhered to the depression 38 of the first plate 30.
상기 제 1,2 유로(41,43)를 형성하는 인접한 플레이트들은 서로 교번하여 배치될 수 있다. 일례로, 제 1,2 플레이트가 접합하여 상기 제 1 유로(41)를 형성하고, 제 2,3 플레이트가 접합하여 상기 제 2 유로(43)를 형성한다. 그리고, 제 3,4 플레이트가 접합하여 상기 제 1 유로(41)를 형성할 수 있다. 이러한 배치가 반복하여 상기 플레이트 패키지(P)를 구성할 수 있다.Adjacent plates forming the first and second flow paths 41 and 43 may be alternately disposed with each other. For example, the first and second plates are bonded to form the first flow path 41, and the second and third plates are bonded to form the second flow path 43. In addition, the third and fourth plates may be joined to form the first flow path 41. This arrangement may be repeated to constitute the plate package P.
상기 판형 열교환기(1)는 상기 판형 열교환기(1)를 구성하는 다수의 플레이트들(10,20,30,40)을 브레이징 접합하기 위한 다수의 동판(50)을 더 포함한다.The plate heat exchanger 1 further includes a plurality of copper plates 50 for brazing and bonding a plurality of plates 10, 20, 30, and 40 constituting the plate heat exchanger 1.
상기 동판(50)은 다수 개로 이루어져서 상기 제 1 엔드 플레이트(10)와 상기 제 1 플레이트(30)의 사이, 상기 제 1 플레이트(30)와 상기 제 2 플레이트(40)의 사이 및 상기 제 2 플레이트(40)와 상기 제 2 엔드 플레이트(20)의 사이에 각각 삽입된 후 브레이징 용접될 수 있다. 즉, 상기 동판(50)은 브레이징 용접을 위한 용재(filler metal)로 이용될 수 있다.The copper plate 50 is composed of a plurality of pieces, such that between the first end plate 10 and the first plate 30, between the first plate 30 and the second plate 40, and the second plate After being inserted between the 40 and the second end plate 20, respectively, it may be brazed and welded. That is, the copper plate 50 may be used as a filler metal for brazing welding.
본 실시예에서, 상기 제 1 엔드 플레이트(10) 및 상기 제 1 플레이트(30) 사이에 동판(50)이 배치되고, 상기 제 1 플레이트(30) 및 상기 제 2 플레이트(40) 사이에 동판(50)이 배치되고, 상기 제 2 플레이트(40) 및 상기 제 2 엔드 플레이트(20) 사이에 동판(50)이 배치될 수 있다.In this embodiment, a copper plate 50 is disposed between the first end plate 10 and the first plate 30, and a copper plate ( 50) may be disposed, and a copper plate 50 may be disposed between the second plate 40 and the second end plate 20.
상기 동판(50)은 평평한 면을 가지며, V자 형상(주름진 형상)의 제 1,2 유로(41,43)가 형성된 열교환 플레이트(30,40)를 순차적으로 적층시켜 브레이징할 수 있다. 이때, 상기 동판(50)은 용재로써 고온에서 녹아 상기 열교환 플레이트(30,40)가 적층된 사이로 모세관 현상에 의해 동판(50)이 녹아서 냉각과정에 의해 상기 열교환 플레이트(30,40)에 접합될 수 있다.The copper plate 50 may have a flat surface and may be brazed by sequentially stacking heat exchange plates 30 and 40 in which the first and second flow paths 41 and 43 of a V-shaped (corrugated shape) are formed. At this time, the copper plate 50 is melted as a solvent at a high temperature, and the copper plate 50 is melted by a capillary phenomenon between the stacked heat exchange plates 30 and 40, so that it can be joined to the heat exchange plates 30 and 40 by a cooling process. I can.
상기 동판(50)은 평평한 면을 형성하는 동판 본체(51)와, 상기 동판 본체(51)의 외측을 둘러싸는 테두리부(52)를 포함한다. 상기 테두리부(52)는 상기 동판 본체(51)의 가장자리에서 하방으로 연장될 수 있다.The copper plate 50 includes a copper plate main body 51 forming a flat surface, and an edge portion 52 surrounding the outside of the copper plate main body 51. The edge portion 52 may extend downward from the edge of the copper plate main body 51.
상기 동판 본체(51)는 상기 제 1 유입부(61)와 대응되는 위치에 관통 형성되는 제 1 홀(53)과, 상기 제 1 유출부(65)와 대응되는 위치에 관통 형성되는 제 2 홀(54)과, 상기 제 2 유입부(71)와 대응되는 위치에 관통 형성되는 제 3 홀(55) 및 상기 제 2 유출부(75)와 대응되는 위치에 관통 형성되는 제 4 홀(56)을 포함한다.The copper plate main body 51 has a first hole 53 penetrating through a position corresponding to the first inlet portion 61 and a second hole penetrating through a position corresponding to the first outlet portion 65 54 and a third hole 55 penetrating through a position corresponding to the second inlet 71 and a fourth hole 56 penetrating through a position corresponding to the second outlet 75 Includes.
상기 제 1 엔드 플레이트(10)는 상기 플레이트 패키지(P)의 상방에 배치되며, 상기 제 1,2 유입부(61,71) 및 상기 제 1,2 유출부(65,75)가 결합되는 부분이다. The first end plate 10 is disposed above the plate package P, and a portion to which the first and second inlets 61 and 71 and the first and second outlets 65 and 75 are coupled to be.
상기 제 1 엔드 플레이트(10)는 평평한 면을 가지는 베이스(11)와, 상기 베이스(11)의 가장자리에서 연장되는 테두리부(12)를 포함한다. 상기 테두리부(12)는 상기 베이스(11)의 가장자리에서 하방으로 연장될 수 있다.The first end plate 10 includes a base 11 having a flat surface and an edge portion 12 extending from an edge of the base 11. The edge portion 12 may extend downward from the edge of the base 11.
상기 베이스(11)는 상기 제 1 유입부(61)가 삽입되는 제 1 삽입홀(13)과, 상기 제 1 유출부(65)가 삽입되는 제 2 삽입홀(14)과, 상기 제 2 유입부(71)가 삽입되는 제 3 삽입홀(15) 및 상기 제 2 유출부(75)가 삽입되는 제 4 삽입홀(16)을 포함한다.The base 11 includes a first insertion hole 13 into which the first inlet 61 is inserted, a second insertion hole 14 into which the first outlet 65 is inserted, and the second inlet It includes a third insertion hole 15 into which the portion 71 is inserted and a fourth insertion hole 16 into which the second outlet 75 is inserted.
상기 제 1 내지 제 4 삽입홀(13,14,15,16)은 소켓이 삽입되는 홀이므로, "소켓 홀"이라 이름할 수 있다.Since the first to fourth insertion holes 13, 14, 15, and 16 are holes into which a socket is inserted, they may be referred to as "socket holes".
상기 제 1 삽입홀(13)은 상기 동판(50)의 제 1 홀(53) 및 상기 열교환 플레이트(30)의 제 1 입구포트(33)와 상하 방향(중첩방향)으로 정렬되고, 상기 제 2 삽입홀(14)은 상기 동판(50)의 제 2 홀(54) 및 상기 열교환 플레이트(30)의 제 1 출구포트(34)와 상하 방향으로 정렬된다.The first insertion hole 13 is aligned with the first hole 53 of the copper plate 50 and the first inlet port 33 of the heat exchange plate 30 in a vertical direction (overlapping direction), and the second The insertion hole 14 is aligned with the second hole 54 of the copper plate 50 and the first outlet port 34 of the heat exchange plate 30 in the vertical direction.
상기 제 3 삽입홀(15)은 상기 동판(50)의 제 3 홀(55) 및 상기 열교환 플레이트(30)의 제 2 입구포트(35)와 상하 방향으로 정렬되고, 상기 제 4 삽입홀(16)은 상기 동판(50)의 제 4 홀(56) 및 상기 열교환 플레이트(30)의 제 2 출구포트(36)와 상하방향으로 정렬된다.The third insertion hole 15 is aligned vertically with the third hole 55 of the copper plate 50 and the second inlet port 35 of the heat exchange plate 30, and the fourth insertion hole 16 ) Is aligned with the fourth hole 56 of the copper plate 50 and the second outlet port 36 of the heat exchange plate 30 in the vertical direction.
따라서, 냉매는 상기 제 1 유입부(61)를 통하여 상기 플레이트 패키지(P)의 내부로 유입되고, 상기 제 1 유로(41)를 따라 흐르면서 상기 제 1 유출부(65)로 토출된다. 물은 상기 제 2 유입부(71)를 통하여 상기 플레이트 패키지(P)의 내부로 유입되고, 상기 제 1 유로(43)를 따라 흐르면서 상기 제 2 유출부(75)로 토출된다. Accordingly, the refrigerant flows into the plate package P through the first inlet 61 and is discharged to the first outlet 65 while flowing along the first flow path 41. Water flows into the plate package P through the second inlet 71 and is discharged to the second outlet 75 while flowing along the first flow path 43.
이 과정에서, 상기 제 1 유로(41)의 냉매는 상기 제 2 유로(43)의 물과 열교환될 수 있다. 상기 제 1 유로(41)와 상기 제 2 유로(43)는 적층방향으로 교대로 배치되므로, 냉매와 물이 혼합되지 않고 독자적인 흐름을 가질 수 있다.In this process, the refrigerant in the first flow path 41 may exchange heat with water in the second flow path 43. Since the first flow path 41 and the second flow path 43 are alternately arranged in the stacking direction, the refrigerant and water are not mixed and may have an independent flow.
도 4는 본 발명의 실시예에 따른 열교환 플레이트의 일부를 도시한 단면도이고, 도 5는 도 4의 열교환 플레이트의 단면을 확대한 도면이다.4 is a cross-sectional view showing a part of a heat exchange plate according to an embodiment of the present invention, and FIG. 5 is an enlarged view of the cross section of the heat exchange plate of FIG. 4.
도 4 및 도 5를 참조하면, 앞서 설명된 바와 같이 다수의 열교환 플레이트(30,40)의 사이에는 제 1 유체가 유동하는 제 1 유로(41)와, 제 2 유체가 유동하는 제 2 유로(43)가 형성된다.4 and 5, as described above, a first flow path 41 through which a first fluid flows and a second flow path through which a second fluid flows ( 43) is formed.
구체적으로, 다수의 제 1 플레이트(30) 각각에는 플레이트 본체에서 상방으로 돌출되는 다수의 돌출부(37)와, 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부(38)가 포함된다. 상기 다수의 돌출부(37) 및 함몰부(38)는 헤링본 패턴으로 제공될 수 있다.Specifically, each of the plurality of first plates 30 includes a plurality of protrusions 37 protruding upward from the plate body, and a plurality of depressions 38 recessed downward from the plate body. The plurality of protrusions 37 and depressions 38 may be provided in a herringbone pattern.
다수의 제 2 플레이트(40) 각각에는 플레이트 본체에서 상방으로 돌출되는 다수의 돌출부(47)와, 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부(48)가 포함된다. 상기 다수의 돌출부(47) 및 함몰부(48)는 헤링본 패턴으로 제공될 수 있다.Each of the plurality of second plates 40 includes a plurality of protrusions 47 protruding upward from the plate body, and a plurality of depressions 48 recessed downward from the plate body. The plurality of protrusions 47 and depressions 48 may be provided in a herringbone pattern.
상기 제 1 플레이트(30)는 사인 파형(sine wave)의 단면 형상을 가진다. 즉, 상기 제 1 플레이트(30)는 사인 파형 또는 물결 형상의 종단면을 가질 수 있다. The first plate 30 has a sine wave cross-sectional shape. That is, the first plate 30 may have a sine wave or wavy longitudinal section.
이때, 상기 제 1 플레이트(30)는 상기 돌출부(47) 및 함몰부(48)의 각 곡률 반경(R1,R2)의 차이에 의하여 비대칭 사인 파형의 단면 형상을 가질 수 있다.In this case, the first plate 30 may have an asymmetric sinusoidal cross-sectional shape due to a difference between the respective curvature radii R1 and R2 of the protrusion 47 and the depression 48.
상기 제 2 플레이트(40)는 상기 제 1 플레이트(30)와 마찬가지로 사인 파형 또는 물결 형상의 단면 형상을 가진다.Like the first plate 30, the second plate 40 has a sine wave or wavy cross-sectional shape.
다만, 상기 제 2 플레이트(40)는 상기 제 1 플레이트(30)의 사인 파형과 상하방향으로 대칭되는 사인 파형의 단면 형상을 가질 수 있다.However, the second plate 40 may have a cross-sectional shape of a sine wave that is symmetric vertically with the sine wave of the first plate 30.
구체적으로, 다수의 제 1 플레이트(30) 및 다수의 제 2 플레이트(40)는, 상하 방향으로 1매씩 적층되어 고정될 수 있다. 이때, 상기 제 1 플레이트(30)의 각 돌출부(37)는, 인접한 제 2 플레이트(40), 즉 상기 제 1 플레이트(30)의 상방에 위치된 제 2 플레이트(40)의 함몰부(48)에 접하여 고정될 수 있다.Specifically, a plurality of first plates 30 and a plurality of second plates 40 may be stacked and fixed one by one in the vertical direction. At this time, each protrusion 37 of the first plate 30 is adjacent to the second plate 40, that is, the depression 48 of the second plate 40 positioned above the first plate 30 It can be fixed in contact with.
또한, 상기 제 1 플레이트(30)의 각 함몰부(38)는, 인접한 제 2 플레이트(40), 즉 상기 제 1 플레이트(30)의 하방에 위치된 제 2 플레이트(40)의 돌출부(47)에 접하여 고정될 수 있다.In addition, each depression 38 of the first plate 30 is adjacent to the second plate 40, that is, the protrusion 47 of the second plate 40 located below the first plate 30 It can be fixed in contact with.
따라서, 상기 제 2 플레이트(40)는 상기 제 1 플레이트(30)와 상하방향으로 대칭되는 형상을 가지거나 또는 상기 제 1 플레이트(30)와 상하방향으로 대칭되도록 배치될 수 있다.Accordingly, the second plate 40 may have a shape symmetrical in the vertical direction with the first plate 30 or may be disposed so as to be symmetrical in the vertical direction with the first plate 30.
또한, 상기 제 1 플레이트(30) 및 상기 제 2 플레이트(40)는 서로 대칭되게 배치되므로, 실질적으로 상기 제 1 플레이트(30)와 상기 제 2 플레이트(40)는 동일한 형상으로 제작하는 것이 가능하다.In addition, since the first plate 30 and the second plate 40 are arranged to be symmetrical to each other, the first plate 30 and the second plate 40 can be manufactured to have substantially the same shape. .
즉, 한 종류의 형상의 플레이트를 다수 개로 제작한 후, 1매씩 위/아래로 대칭시킴으로써 구획된 다수의 유로를 마련할 수 있다. 이러한 구성에 의하면, 기존의 2종류의 플레이트를 적층시키는 방법을 사용하지 않고, 한 종류의 플레이트를 적층시켜서 열교환 플레이트를 제작할 수 있으므로, 작업공정이 단순화되고 비용이 절감되는 장점이 있다.That is, after manufacturing a plurality of plates having one type of shape, a plurality of divided flow paths can be provided by symmetric upward/downward one by one. According to this configuration, since a heat exchange plate can be manufactured by stacking one type of plate without using the conventional method of stacking two types of plates, there is an advantage in that the work process is simplified and cost is reduced.
한편, 상기 열교환 플레이트(30,40)들은 서로 다른 단면적을 가지는 유로(41,43)를 형성한다.Meanwhile, the heat exchange plates 30 and 40 form flow paths 41 and 43 having different cross-sectional areas.
구체적으로, 다수의 제 1 플레이트(30)와 다수의 제 2 플레이트(40)가 서로 교번하여 배치되면, 상기 제 1 유로(41)와 상기 제 2 유로(43)가 마련되고 이때 상기 제 1 유로(41)와 상기 제 2 유로(43)의 단면적은 서로 다르게 구성된다.Specifically, when a plurality of first plates 30 and a plurality of second plates 40 are arranged alternately with each other, the first flow path 41 and the second flow path 43 are provided, and at this time, the first flow path The cross-sectional areas 41 and the second flow path 43 are configured differently from each other.
본 실시예에서 상기 제 2 유로(42)의 단면적은, 상기 제 1 유로(41)의 단면적보다 크게 형성된다. 예를 들어, 상기 제 2 유로(42)의 단면적은, 상기 제 1 유로(41)의 단면적의 1.1배 내지 1.15배로 크게 형성될 수 있다. In this embodiment, the cross-sectional area of the second flow path 42 is larger than the cross-sectional area of the first flow path 41. For example, the cross-sectional area of the second flow path 42 may be formed to be 1.1 to 1.15 times larger than the cross-sectional area of the first flow path 41.
상기 제 1 유로(41)와 상기 제 2 유로(43)의 단면적을 서로 다르게 구성하는 이유는, 시스템 운전조건에서 열교환이 필요한 두 유체의 유량 차이가 클 수 있기 때문이다.The reason why the cross-sectional areas of the first flow path 41 and the second flow path 43 are configured to be different from each other is that a difference in flow rate between the two fluids requiring heat exchange may be large under system operating conditions.
만일, 열교환이 필요한 두 유체의 유량 차이가 상대적으로 클 경우, 두 유체가 동일한 단면적의 유로를 흐르면 각 유체의 물성(예: 점도, 비체적 등)과 유량에 따라 레이놀즈수(reynold's number) 차이가 커질 수 있는데, 이 경우 열전달이 비효율적으로 일어날 수 있다. 따라서, 각 유체의 물성과 유량에 따라 각 유체가 흐르는 유로의 단면적은 적절히 설계되어야 할 필요가 있다.If the flow rate difference between the two fluids requiring heat exchange is relatively large, if the two fluids flow through the flow path of the same cross-sectional area, the difference in Reynold's number depends on the physical properties (e.g. viscosity, specific volume, etc.) and flow rate of each fluid. It can be large, in which case heat transfer can occur inefficiently. Therefore, it is necessary to properly design the cross-sectional area of the flow path through which each fluid flows according to the properties of each fluid and the flow rate.
본 실시예에서 상기 제 1 유로(41)에는 냉매가 흐르고, 상기 제 2 유로(43)에는 물이 흐를 수 있다. 이때, 냉매와 물은 물성 및/또는 유량이 다르기 때문에, 상기 냉매와 물이 동일한 단면적의 유로를 흐르면서 열교환할 경우 압력손실이 발생할 수 있다. 압력손실이 발생하면 유속이 떨어지고 이에 따라 열교환 성능이 저감될 수 있다.In this embodiment, a refrigerant flows through the first flow path 41 and water flows through the second flow path 43. In this case, since the refrigerant and water have different physical properties and/or flow rates, pressure loss may occur when the refrigerant and water exchange heat while flowing through a flow path having the same cross-sectional area. When a pressure loss occurs, the flow rate decreases, and thus heat exchange performance may be reduced.
그러나, 본 발명에서는 상기 냉매가 흐르는 제 1 유로(41)의 단면적을, 상기 물이 흐르는 제 2 유로(43)의 단면적보다 작게 설계함으로써, 압력손실을 최소화시켜 열교환 성능을 향상시킬 수 있다.However, in the present invention, the cross-sectional area of the first flow path 41 through which the refrigerant flows is designed to be smaller than the cross-sectional area of the second flow path 43 through which the water flows, thereby minimizing pressure loss and improving heat exchange performance.
이를 위하여, 상기 제 1 플레이트(30)에는 다수의 돌출부(37) 및 다수의 함몰부(38)가 일정 간격으로 이격되어 배치된다.To this end, a plurality of protrusions 37 and a plurality of depressions 38 are disposed on the first plate 30 to be spaced apart at regular intervals.
구체적으로, 다수의 돌출부(37)는 일정 간격으로 이격되어 형성되며, 각각 동일한 높이로 마련된다. 다시 말하면, 다수의 돌출부(37) 각각에 대한 최고점(37a)들은 서로 동일한 높이를 가지며, 인접한 2개의 돌출부(37)에 대한 최고점(37a) 사이의 거리(L1)는 일정하게 유지될 수 있다. Specifically, the plurality of protrusions 37 are formed to be spaced apart at regular intervals, and are each provided with the same height. In other words, the highest points 37a for each of the plurality of protrusions 37 have the same height, and the distance L1 between the highest points 37a for two adjacent protrusions 37 may be kept constant.
또한, 다수의 함몰부(38)는 일정 간격으로 이격되어 형성되며, 각각 동일한 깊이로 마련된다. 다시 말하면, 다수의 함몰부(38) 각각에 대한 최저점(38a)들은 서로 동일한 깊이를 가지며, 인접한 2개의 함몰부(38)에 대한 최저점(38a) 사이의 거리는 일정하게 유지될 수 있다.In addition, the plurality of depressions 38 are formed to be spaced apart at regular intervals, and are each provided with the same depth. In other words, the lowest points 38a for each of the plurality of depressions 38 have the same depth, and the distance between the lowest points 38a for the two adjacent depressions 38 may be kept constant.
한편, 본 실시예에서 "돌출부"는, 상기 제 1 플레이트(30) 또는 제 2 플레이트(40)를 상하로 이등분하는 선의 상부에 해당하는 부분(곡면)을 의미하고, "함몰부"는, 상기 제 1 플레이트(30) 또는 제 2 플레이트(40)를 상하로 이등분하는 선의 하부에 해당하는 부분(곡면)을 의미할 수 있다.On the other hand, in the present embodiment, the "protrusion" means a portion (curved surface) corresponding to the upper part of the line bisecting the first plate 30 or the second plate 40 vertically, and the "depressed part", the It may mean a portion (curved surface) corresponding to a lower portion of a line bisecting the first plate 30 or the second plate 40 vertically.
즉, 상기 제 1 플레이트(30)의 단면 형상을 기준으로, 상기 다수의 돌출부(37)와 다수의 함몰부(38)는 하나씩 교번하여 연결됨으로써, 사인 파형을 이룰 수 있다. That is, based on the cross-sectional shape of the first plate 30, the plurality of protrusions 37 and the plurality of depressions 38 are alternately connected one by one, thereby forming a sine wave.
다만, 상기 돌출부(37)에 대한 곡률 반경(R1)은, 상기 함몰부(38)에 대한 곡률 반경(R2)보다 크게 형성된다. 다시 말해, 상기 돌출부(37)에 해당하는 곡면 부분은, 상기 함몰부(38)에 해당하는 곡면 부분에 비하여 상대적으로 크게 형성될 수 있다.However, the radius of curvature R1 of the protrusion 37 is larger than the radius of curvature R2 of the depression 38. In other words, the curved portion corresponding to the protruding portion 37 may be formed relatively larger than that of the curved portion corresponding to the recessed portion 38.
이러한 구성에 의하여, 상기 제 1 플레이트(30)와 제 2 플레이트(40)가 결합되면, 상기 제 1 플레이트(30)의 돌출부(37) 및 함몰부(38)와, 상기 제 2 플레이트(40)의 함몰부(48) 및 돌출부(47)의 접촉에 의하여, 유로 단면적이 다른 두 개의 유로(41,43)가 형성되는 것이다.With this configuration, when the first plate 30 and the second plate 40 are coupled, the protrusion 37 and the depression 38 of the first plate 30, and the second plate 40 By the contact of the recessed portion 48 and the protruding portion 47, two flow paths 41 and 43 having different flow path cross-sectional areas are formed.
상기 제 1 플레이트(30)의 돌출부(37)는 상기 제 2 플레이트(40)의 함몰부(48)에 접하여 고정되고, 상기 제 1 플레이트(30)의 함몰부(38)는 상기 제 2 플레이트(40)의 돌출부(47)에 접하여 고정됨으로써, 비대칭 유로인 상기 제 1 유로(41) 및 제 2 유로(43)가 교번하여 형성된다. The protrusion 37 of the first plate 30 is fixed in contact with the recessed part 48 of the second plate 40, and the recessed part 38 of the first plate 30 is the second plate ( By being fixed in contact with the protrusion 47 of 40), the first flow path 41 and the second flow path 43, which are asymmetric flow paths, are alternately formed.
도 6은 본 발명의 다른 실시예에 따른 열교환 플레이트의 일부를 간략히 도시한 단면도이다.6 is a schematic cross-sectional view of a part of a heat exchange plate according to another embodiment of the present invention.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 열교환 플레이트(30,40)는 사다리꼴 형상의 단면을 가질 수 있다.Referring to FIG. 6, the heat exchange plates 30 and 40 according to another embodiment of the present invention may have a trapezoidal cross section.
구체적으로, 다수의 제 1 플레이트(30) 각각에는 플레이트 본체에서 상방으로 돌출되는 다수의 돌출부(37)와, 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부(38)가 포함된다. 상기 다수의 돌출부(37) 및 함몰부(38)는 헤링본 패턴으로 제공될 수 있다.Specifically, each of the plurality of first plates 30 includes a plurality of protrusions 37 protruding upward from the plate body, and a plurality of depressions 38 recessed downward from the plate body. The plurality of protrusions 37 and depressions 38 may be provided in a herringbone pattern.
다수의 제 2 플레이트(40) 각각에는 플레이트 본체에서 상방으로 돌출되는 다수의 돌출부(47)와, 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부(48)가 포함된다. 상기 다수의 돌출부(47) 및 함몰부(48)는 헤링본 패턴으로 제공될 수 있다.Each of the plurality of second plates 40 includes a plurality of protrusions 47 protruding upward from the plate body, and a plurality of depressions 48 recessed downward from the plate body. The plurality of protrusions 47 and depressions 48 may be provided in a herringbone pattern.
상기 제 1 플레이트(30)는 사다리꼴 또는 지그재그 형상의 단면 형상을 가질 수 있다. 상기 제 2 플레이트(40)는 사다리꼴 또는 지그재그 형상의 단면 형상을 가질 수 있다.The first plate 30 may have a trapezoidal or zigzag cross-sectional shape. The second plate 40 may have a trapezoidal or zigzag cross-sectional shape.
다만, 상기 제 2 플레이트(40)는 상기 제 1 플레이트(30)의 단면 형상과 상하방향으로 대칭되는 단면 형상을 가질 수 있다.However, the second plate 40 may have a cross-sectional shape symmetrical to the cross-sectional shape of the first plate 30 in a vertical direction.
구체적으로, 다수의 제 1 플레이트(30) 및 다수의 제 2 플레이트(40)는, 상하 방향으로 1매씩 적층되어 고정될 수 있다. 이때, 상기 제 1 플레이트(30)의 각 돌출부(37)는, 인접한 제 2 플레이트(40), 즉 상기 제 1 플레이트(30)의 상방에 위치된 제 2 플레이트(40)의 함몰부(48)에 접하여 고정될 수 있다.Specifically, a plurality of first plates 30 and a plurality of second plates 40 may be stacked and fixed one by one in the vertical direction. At this time, each protrusion 37 of the first plate 30 is adjacent to the second plate 40, that is, the depression 48 of the second plate 40 positioned above the first plate 30 It can be fixed in contact with.
또한, 상기 제 1 플레이트(30)의 각 함몰부(38)는, 인접한 제 2 플레이트(40), 즉 상기 제 1 플레이트(30)의 하방에 위치된 제 2 플레이트(40)의 돌출부(47)에 접하여 고정될 수 있다.In addition, each depression 38 of the first plate 30 is adjacent to the second plate 40, that is, the protrusion 47 of the second plate 40 located below the first plate 30 It can be fixed in contact with.
따라서, 상기 제 2 플레이트(40)는 상기 제 1 플레이트(30)와 상하방향으로 대칭되는 형상을 가지거나 또는 상기 제 1 플레이트(30)와 상하방향으로 대칭되도록 배치될 수 있다.Accordingly, the second plate 40 may have a shape symmetrical in the vertical direction with the first plate 30 or may be disposed so as to be symmetrical in the vertical direction with the first plate 30.
또한, 상기 제 1 플레이트(30) 및 상기 제 2 플레이트(40)는 서로 대칭되게 배치되므로, 실질적으로 상기 제 1 플레이트(30)와 상기 제 2 플레이트(40)는 동일한 형상으로 제작하는 것이 가능하다.In addition, since the first plate 30 and the second plate 40 are arranged to be symmetrical to each other, the first plate 30 and the second plate 40 can be manufactured to have substantially the same shape. .
상기 제 1 플레이트(30)는 상기 돌출부(37)와 상기 함몰부(38)를 연결하는 경사부(39)를 더 포함한다. The first plate 30 further includes an inclined portion 39 connecting the protruding portion 37 and the recessed portion 38.
구체적으로, 상기 경사부(39)는 상기 돌출부(37)의 양단으로부터 각각 하향 경사져서 상기 함몰부(38)에 연결될 수 있다.Specifically, the inclined portion 39 may be connected to the recessed portion 38 by inclining downward from both ends of the protruding portion 37, respectively.
예를 들어, 도 6에 도시된 바와 같이 상기 경사부(39)는 상기 돌출부(37)의 우측 단부에서 인접한 함몰부(38)까지 하향 경사지는 제 1 경사부(39a)와, 상기 돌출부(37)의 좌측 단부에서 인접한 함몰부(38)까지 하향 경사지는 제 2 경사부(39b)를 포함할 수 있다.For example, as shown in FIG. 6, the inclined portion 39 has a first inclined portion 39a that inclines downward from the right end of the protruding portion 37 to an adjacent recessed portion 38, and the protruding portion 37 ) May include a second inclined portion 39b that is inclined downward from the left end portion to the adjacent recessed portion 38.
즉, 상기 경사부(39)는 상기 돌출부(37)와 상기 돌출부(37)에 인접한 함몰부(38)들을 연결하는 부분으로 이해될 수 있다. 도 6을 기준으로, 상기 제 2 경사부(39b), 상기 돌출부(37), 상기 제 1 경사부(39a) 및 상기 함몰부(38)가 순차적으로 연속 배치되어, 상기 제 1 플레이트(30)의 단면 형상을 형성할 수 있다. That is, the inclined portion 39 may be understood as a portion connecting the protruding portion 37 and the recessed portions 38 adjacent to the protruding portion 37. 6, the second inclined portion 39b, the protruding portion 37, the first inclined portion 39a, and the recessed portion 38 are sequentially arranged in succession, and the first plate 30 It can form a cross-sectional shape of.
이때, 상기 제 1 경사부(39a)와 상기 제 2 경사부(39b)는 좌우 대칭되는 형상을 가질 수 있다. 이에 따라, 상기 제 1 경사부(39a)의 길이 및 기울기는, 상기 제 2 경사부(39b)의 길이 및 기울기와 동일 또는 대응되게 형성되고, 상기 제 1 플레이트(30)는 등변 사다리꼴 형상의 단면을 가질 수 있다.In this case, the first inclined portion 39a and the second inclined portion 39b may have a symmetrical shape. Accordingly, the length and inclination of the first inclined portion 39a is formed to be the same as or corresponding to the length and inclination of the second inclined portion 39b, and the first plate 30 has a cross section of an equilateral trapezoidal shape. Can have.
상기 제 2 플레이트(40) 역시 돌출부(47)와 함몰부(48)를 연결하는 경사부(49)를 더 포함한다. The second plate 40 also includes an inclined portion 49 connecting the protruding portion 47 and the recessed portion 48.
구체적으로, 상기 경사부(49)는 상기 돌출부(47)의 양단으로부터 각각 하향 경사져서 상기 함몰부(48)에 연결될 수 있다.Specifically, the inclined portion 49 may be connected to the recessed portion 48 by inclining downward from both ends of the protruding portion 47, respectively.
예를 들어, 도 6에 도시된 바와 같이 상기 경사부(49)는 상기 돌출부(47)의 우측 단부에서 인접한 함몰부(48)까지 하향 경사지는 제 1 경사부(49a)와, 상기 돌출부(47)의 좌측 단부에서 인접한 함몰부(48)까지 하향 경사지는 제 2 경사부(49b)를 포함할 수 있다.For example, as shown in FIG. 6, the inclined portion 49 includes a first inclined portion 49a that is inclined downward from the right end of the protruding portion 47 to an adjacent recessed portion 48, and the protruding portion 47 ) May include a second inclined portion 49b that is inclined downward from the left end portion to the adjacent recessed portion 48.
즉, 상기 경사부(49)는 상기 돌출부(47)와 상기 돌출부(47)에 인접한 함몰부(48)들을 연결하는 부분으로 이해될 수 있다. 도 6을 기준으로, 상기 제 2 경사부(49b), 상기 돌출부(47), 상기 제 1 경사부(39a) 및 상기 함몰부(48)가 순차적으로 연속 배치되어, 상기 제 2 플레이트(30)의 단면 형상을 형성할 수 있다. That is, the inclined portion 49 may be understood as a portion connecting the protruding portion 47 and the recessed portions 48 adjacent to the protruding portion 47. 6, the second inclined portion 49b, the protruding portion 47, the first inclined portion 39a, and the recessed portion 48 are sequentially arranged in succession, and the second plate 30 It can form a cross-sectional shape of.
이때, 상기 제 1 경사부(49a)와 상기 제 2 경사부(49b)는 좌우 대칭되는 형상을 가질 수 있다. 이에 따라, 상기 제 1 경사부(49a)의 길이 및 기울기는, 상기 제 2 경사부(49b)의 길이 및 기울기와 동일 또는 대응되게 형성되고, 상기 제 2 플레이트(40)는 등변 사다리꼴 형상의 단면을 가질 수 있다.In this case, the first inclined portion 49a and the second inclined portion 49b may have a symmetrical shape. Accordingly, the length and inclination of the first inclined portion 49a is formed to be the same as or corresponding to the length and inclination of the second inclined portion 49b, and the second plate 40 has an equilateral trapezoidal cross section Can have.
한편, 상기 제 1 플레이트(30)의 다수의 돌출부(37)는 일정 간격으로 이격되어 형성되며, 각각 동일한 높이로 마련된다. 이때, 상기 돌출부(37)는 일정 길이의 너비(L1) 또는 직선 구간을 가진다. 예를 들어, 다수의 돌출부(37)는 동일한 높이(H2) 및 너비(L1)를 가지도록 형성되어 서로 이격된다. Meanwhile, the plurality of protrusions 37 of the first plate 30 are formed to be spaced apart at regular intervals, and are provided with the same height. At this time, the protrusion 37 has a width L1 or a straight section of a predetermined length. For example, the plurality of protrusions 37 are formed to have the same height H2 and width L1 and are spaced apart from each other.
상기 제 1 플레이트(30)의 다수의 함몰부(38)는 일정 간격으로 이격되어 형성되며, 각각 동일한 깊이로 마련된다. 이때, 상기 함몰부(38)는 일정 길이의 너비(L2) 또는 직선 구간을 가진다. 예를 들어, 다수의 함몰부(38)는 동일한 깊이(H2) 및 너비(L2)를 가지도록 형성되어 서로 이격된다.The plurality of depressions 38 of the first plate 30 are formed to be spaced apart at regular intervals, and are each provided with the same depth. At this time, the depression 38 has a width L2 or a straight section of a predetermined length. For example, the plurality of depressions 38 are formed to have the same depth H2 and width L2 and are spaced apart from each other.
이때, 상기 함몰부(38)의 너비(L2)는, 상기 돌출부(37)의 너비(L1)보다 작게 형성된다. 이러한 이유는, 상기 제 1 플레이트(30)와 제 2 플레이트(40)가 교번하여 배치될 때, 서로 다른 단면적을 가지는 유로를 형성하기 위함이다.In this case, the width L2 of the depression 38 is formed smaller than the width L1 of the protrusion 37. This reason is to form flow paths having different cross-sectional areas when the first plate 30 and the second plate 40 are alternately disposed.
특히, 본 실시예에서 상기 함몰부(38)의 너비(L2)는, 상기 돌출부(37)의 너비(L1)의 0.3배 내지 0.8배 작게 형성될 수 있다. 만일, 상기 함몰부(38)의 너비(L2)가 상기 돌출부(37)의 너비(L1)의 0.3배 미만으로 형성될 경우에는, 유로폭이 좁아져서 압력 손실이 발생하고 결과적으로 열교환 효율이 저감될 수 있다.In particular, in the present embodiment, the width L2 of the depression 38 may be formed to be 0.3 to 0.8 times smaller than the width L1 of the protrusion 37. If the width L2 of the recessed part 38 is less than 0.3 times the width L1 of the protruding part 37, the flow path width is narrowed, resulting in a pressure loss, resulting in reduced heat exchange efficiency. Can be.
따라서, 상기 함몰부(38)의 너비(L2)는 적어도 상기 돌출부(37)의 너비(L1)의 0.3배 이상으로 제작되어야 한다.Therefore, the width L2 of the depression 38 should be at least 0.3 times larger than the width L1 of the protrusion 37.
또한, 본 실시예에서 상기 경사부(39)의 기울기, 즉 상기 돌출부(37) 또는 함몰부(38)와, 상기 경사부(39) 사이의 각도는 적절하게 설계될 필요가 있다. In addition, in this embodiment, the inclination of the inclined portion 39, that is, the angle between the protruding portion 37 or the recessed portion 38 and the inclined portion 39, needs to be appropriately designed.
예를 들어, 상기 경사부(39)의 기울기가 너무 작으면, 유체의 유동 과정에서 저항이 생기고 이에 따라 열교환 효율이 떨어질 수 있다. 뿐만 아니라, 상기 플레이트 패키지(P)를 구성하기 위한 열교환 플레이트의 적층 수가 많이 필요해지므로, 이에 따라 제품 단가가 상승하는 문제가 있다.For example, if the inclination of the inclined portion 39 is too small, resistance may occur during the flow of the fluid, thereby reducing heat exchange efficiency. In addition, since a large number of stacked heat exchange plates for constituting the plate package P is required, there is a problem in that the product cost increases accordingly.
따라서, 본 실시예에서는 상기 돌출부(37) 또는 함몰부(38)와, 상기 경사부(39) 사이의 각도를 50도 내지 80도 이하로 설계할 수 있다. Accordingly, in the present embodiment, the angle between the protruding portion 37 or the recessed portion 38 and the inclined portion 39 may be designed to be 50 degrees to 80 degrees or less.
도 7은 본 발명의 실시예에 따른 물과 냉매 간의 유로 단면적 비에 따른 열량 변화를 보여주는 그래프이다. 7 is a graph showing a change in heat quantity according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
도 7을 참조하면, 그래프의 가로축은 물과 냉매 간의 유로 단면적 비를 나타내는 것으로, 예를 들어 물과 냉매 간의 유로 단면적 비가 100%라는 의미는, 물의 유로 단면적과 냉매의 유로 단면적 비율이 1:1인 것을 의미한다. 즉, 물과 냉매 간의 유로 단면적 비가 100%라는 것은, 물이 통과하는 유로와, 냉매가 통과하는 유로의 각 유로 단면적이 동일하다는 뜻을 의미한다.Referring to FIG. 7, the horizontal axis of the graph represents the ratio of the cross-sectional area of the passage between water and the refrigerant. For example, the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, meaning that the ratio of the cross-sectional area of the passage of water and the cross-sectional area of the refrigerant is 1:1. Means being. That is, when the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, it means that the cross-sectional area of each passage of the passage through which water passes and the passage through which the refrigerant passes is the same.
다른 예를 들어, 물과 냉매 간의 유로 단면적 비가 105%라는 의미는, 물의 유로 단면적과 냉매의 유로 단면적 비율이 105:100인 것을 의미한다. 즉, 물이 통과하는 유로의 단면적이, 냉매를 통과하는 유로의 단면적보다 5%이상 크다는 것을 의미한다.For another example, when the ratio of the channel cross-sectional area between water and the refrigerant is 105%, it means that the ratio of the cross-sectional area of the water channel to the cross-sectional area of the refrigerant is 105:100. That is, it means that the cross-sectional area of the flow path through which water passes is 5% or more larger than the cross-sectional area of the flow path through the refrigerant.
그래프의 세로축은, 물과 냉매가 물 유로 및 냉매 유로를 각각 통과하면서 열교환이 이루어질 때 발생하는 열량 변화(kW)를 의미한다. 열량 변화가 클수록, 물/냉매 간의 열교환 효율이 좋은 것을 의미하고, 열량 변화가 작을수록, 물/냉매 간의 열교환 효율이 나쁜 것을 의미한다.The vertical axis of the graph denotes a change in the amount of heat (kW) generated when heat exchange is performed while water and refrigerant pass through each of the water flow path and the refrigerant flow path. The larger the change in the amount of heat, the better the heat exchange efficiency between the water/refrigerant, and the smaller the change in the amount of heat, the worse the heat exchange efficiency between the water/refrigerant.
도 7의 그래프를 살펴보면, 물과 냉매 간의 유로 단면적 비가 커질수록, 물/냉매 간의 열교환 효율이 좋아지는 것을 확인할 수 있다. 즉, 물과 냉매 간의 유로 단면적 비가 100%일 경우, 열량 변화는 8.4kW인 반면, 물과 냉매 간의 유로 단면적 비가 110%일 경우, 열량 변화는 9.2kW를 보여준다.Looking at the graph of FIG. 7, it can be seen that as the ratio of the cross-sectional area of the flow path between water and refrigerant increases, the heat exchange efficiency between water and refrigerant improves. That is, when the channel cross-sectional area ratio between water and refrigerant is 100%, the heat amount change is 8.4 kW, whereas when the channel cross-sectional area ratio between water and refrigerant is 110%, the heat amount change is 9.2 kW.
다만, 물과 냉매 간의 유로 단면적 비가 110%를 초과할 경우에는, 열량 변화 차이가 크게 없음을 알 수 있다.However, when the ratio of the cross-sectional area of the flow path between the water and the refrigerant exceeds 110%, it can be seen that there is no significant difference in heat quantity change.
따라서, 본 발명에서는 물과 냉매 간의 유로 단면적 비를 110%를 초과하도록 설계함으로써, 물/냉매 간의 열교환 효율을 최대한으로 얻을 수 있다.Accordingly, in the present invention, by designing the flow path cross-sectional area ratio between water and refrigerant to exceed 110%, the heat exchange efficiency between water and refrigerant can be obtained as much as possible.
도 8은 본 발명의 실시예에 따른 물과 냉매 간의 유로 단면적 비에 따른 압력 손실을 보여주는 그래프이다.8 is a graph showing a pressure loss according to a ratio of a cross-sectional area of a flow path between water and a refrigerant according to an embodiment of the present invention.
도 8을 참조하면, 그래프의 가로축은, 물과 냉매 간의 유로 단면적 비를 나타내는 것으로, 예를 들어 물과 냉매 간의 유로 단면적 비가 100%라는 의미는, 물의 유로 단면적과 냉매의 유로 단면적 비율이 1:1인 것을 의미한다. 즉, 물과 냉매 간의 유로 단면적 비가 100%라는 것은, 물이 통과하는 유로와, 냉매가 통과하는 유로의 각 유로 단면적이 동일하다는 뜻을 의미한다.Referring to FIG. 8, the horizontal axis of the graph represents the ratio of the cross-sectional area of the passage between water and the refrigerant. For example, the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, meaning that the ratio of the cross-sectional area of the passage of water and the cross-sectional area of the refrigerant is 1: Means 1. That is, when the ratio of the cross-sectional area of the passage between water and the refrigerant is 100%, it means that the cross-sectional area of each passage of the passage through which water passes and the passage through which the refrigerant passes is the same.
다른 예를 들어, 물과 냉매 간의 유로 단면적 비가 105%라는 의미는, 물의 유로 단면적과 냉매의 유로 단면적 비율이 105:100인 것을 의미한다. 즉, 물이 통과하는 유로의 단면적이, 냉매를 통과하는 유로의 단면적보다 5%이상 크다는 것을 의미한다.For another example, when the ratio of the channel cross-sectional area between water and the refrigerant is 105%, it means that the ratio of the cross-sectional area of the water channel to the cross-sectional area of the refrigerant is 105:100. That is, it means that the cross-sectional area of the flow path through which water passes is 5% or more larger than the cross-sectional area of the flow path through the refrigerant.
그래프의 세로축은, 물과 냉매가 물 유로 및 냉매 유로를 각각 통과할 때 발생하는 압력 손실(kPa)을 의미한다.The vertical axis of the graph denotes a pressure loss (kPa) that occurs when water and refrigerant pass through the water flow path and the refrigerant flow path, respectively.
여기서, 압력 손실이란, 유체가 유로관을 통과할 때 유체가 유로관에 부딪혀서 발생할 수 있는 압력 손실을 포함한다. 이러한 압력 손실량은 유로관의 내경 및 단면적뿐 아니라, 유체의 물성(예: 점도, 비체적 등)과 유량에 따라 달라질 수 있다. 유체가 흐르는 유로관에서 압력 손실이 많이 발생하면, 흐르는 유체의 압력이 낮아짐에 따라 유체간 열교환 효율이 떨어질 수 있다.Here, the pressure loss includes a pressure loss that may occur due to the fluid colliding with the flow pipe when the fluid passes through the flow pipe. The amount of pressure loss may vary depending on not only the inner diameter and cross-sectional area of the flow path pipe, but also the physical properties (eg, viscosity, specific volume, etc.) and flow rate of the fluid. If a large amount of pressure loss occurs in the flow path pipe through which the fluid flows, the heat exchange efficiency between fluids may decrease as the pressure of the flowing fluid decreases.
도 8의 그래프를 살펴보면, 물과 냉매 간의 유로 단면적 비가 커질수록, 물 유로에 대한 압력 손실은 감소되는 것을 알 수 있다. 이러한 이유는, 물이 통과하는 유로 단면적이 커질수록, 물이 물관을 통과할 때 발생하는 저항이 적어지기 때문일 수 있다.Looking at the graph of FIG. 8, it can be seen that as the ratio of the cross-sectional area of the flow path between the water and the refrigerant increases, the pressure loss in the water flow path decreases. This may be because, as the cross-sectional area of the flow path through which water passes increases, the resistance generated when water passes through the water pipe decreases.
반대로, 물과 냉매 간의 유로 단면적 비가 커질수록, 냉매 유로에 대한 압력 손실은 커지는 것을 알 수 있다. 이러한 이유는, 물 유로의 단면적에 비하여 냉매 유로의 단면적이 상대적으로 작아지면, 냉매가 냉매관을 통과할 때 발생하는 저항이 커지기 때문일 수 있다.Conversely, it can be seen that as the ratio of the cross-sectional area of the flow path between the water and the refrigerant increases, the pressure loss to the refrigerant flow path increases. This may be because, when the cross-sectional area of the refrigerant passage is relatively small compared to the cross-sectional area of the water passage, the resistance generated when the refrigerant passes through the refrigerant pipe increases.
따라서, 물과 냉매 간의 유로 단면적 비는 적절하게 설계되어야 하며, 특히 물측 압력 손실과 냉매측 압력 손실을 모두 고려해야 한다.Therefore, the flow path cross-sectional area ratio between water and refrigerant must be properly designed, and in particular, both water-side pressure loss and refrigerant-side pressure loss must be considered.
한편, 도 8의 그래프에서 물과 냉매 간의 유로 단면적 비가 110% 구간에서 물 유로에 대한 압력 손실이 급격히 감소되는 것을 알 수 있다. 또한, 물과 냉매 간의 유로 단면적 비가 115% 구간 이후부터는 물 유로에 대한 압력 손실의 차이가 작아지는 것을 알 수 있다.On the other hand, in the graph of FIG. 8, it can be seen that the pressure loss in the water flow path rapidly decreases in the section where the ratio of the cross-sectional area of the flow path between the water and the refrigerant is 110%. In addition, it can be seen that the difference in pressure loss with respect to the water flow path decreases after the section of the passage cross-sectional area ratio between water and refrigerant is 115%.
따라서, 본 발명에서는 물 유로의 압력 손실이 급격히 떨어지는 구간과, 물 유로의 압력 손실의 차이가 작아지는 구간을 고려하여, 물 유로의 단면적을 냉매 유로의 단면적의 1.1배 내지 1.15배로 크게 형성할 것을 제안한다. 그러면, 물/냉매 간의 열교환 효율은 향상시키되, 물 유로 및 냉매 유로에 대한 압력 손실을 최소화시킬 수 있다.Accordingly, in the present invention, in consideration of a section in which the pressure loss in the water flow path falls sharply and a section in which the difference in the pressure loss in the water flow path decreases, the cross-sectional area of the water flow path should be formed to be 1.1 times to 1.15 times the cross-sectional area of the refrigerant flow path. Suggest. Then, the heat exchange efficiency between water/refrigerant can be improved, but pressure loss in the water flow path and the refrigerant flow path can be minimized.

Claims (17)

  1. 다수의 열교환 플레이트가 적층되어, 유체가 흐르는 유로를 형성하는 플레이트 패키지;A plate package in which a plurality of heat exchange plates are stacked to form a flow path through which a fluid flows;
    상기 플레이트 패키지의 외측에 결합되는 엔드 플레이트; 및An end plate coupled to the outside of the plate package; And
    상기 엔드 플레이트를 관통하여 상기 플레이트 패키지에 연결되는 소켓을 포함하고,And a socket connected to the plate package through the end plate,
    상기 다수의 열교환 플레이트는,The plurality of heat exchange plates,
    플레이트 본체에서 상방으로 돌출되는 다수의 돌출부와, 상기 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부가 교번하여 배치되는 다수의 제 1 플레이트; 및A plurality of first plates in which a plurality of protrusions protruding upwardly from the plate body and a plurality of recesses downwardly from the plate body are alternately disposed; And
    상기 제 1 플레이트와 상하 방향으로 대칭되는 형상을 가지는 다수의 제 2 플레이트를 포함하고,It includes a plurality of second plates having a shape symmetrical in the vertical direction with the first plate,
    상기 다수의 제 1 플레이트와 상기 다수의 제 2 플레이트는 상하 방향으로 교번하여 1매씩 적층되고,The plurality of first plates and the plurality of second plates are stacked one by one by alternating in the vertical direction,
    상기 제 1 플레이트의 돌출부는, 상기 제 2 플레이트의 함몰부에 결합되고,The protruding portion of the first plate is coupled to the recessed portion of the second plate,
    상기 제 1 플레이트의 함몰부는, 상기 제 2 플레이트의 돌출부에 결합되며,The recessed portion of the first plate is coupled to the protruding portion of the second plate,
    상기 제 1 플레이트에 형성된 돌출부의 곡률 반경(R1)은, 상기 제 1 플레이트에 형성된 함몰부의 곡률 반경(R2)보다 크게 형성되어 복수의 비대칭 유로를 마련하는 것을 특징으로 하는 판형 열교환기.A plate heat exchanger, characterized in that the curvature radius R1 of the protrusion formed in the first plate is larger than the curvature radius R2 of the depression formed in the first plate to provide a plurality of asymmetric flow paths.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로의 단면적은, 상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로의 단면적보다 크게 형성되는 판형 열교환기.A cross-sectional area of the flow path formed by the protruding portion of the first plate and the concave portion of the second plate is larger than the cross-sectional area of the flow path formed by the concave portion of the first plate and the protruding portion of the second plate.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로에는 물이 유동하고,Water flows in the flow path formed by the protrusion of the first plate and the depression of the second plate,
    상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로에는 냉매가 유동하여 열교환이 이루어지는 판형 열교환기.A plate-type heat exchanger in which a refrigerant flows through a flow path formed by the recessed portion of the first plate and the protruding portion of the second plate to perform heat exchange.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 물이 유동하는 유로의 단면적은, 상기 냉매가 유동하는 유로의 단면적의 1.1배 내지 1.15배로 크게 형성되는 판형 열교환기.A plate-type heat exchanger in which the cross-sectional area of the flow path through which the water flows is formed as large as 1.1 to 1.15 times the cross-sectional area of the flow path through which the refrigerant flows.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 플레이트에 형성된 다수의 돌출부는, 일정 간격으로 이격되고 동일한 높이로 돌출되는 판형 열교환기.The plurality of protrusions formed on the first plate are spaced apart at regular intervals and protrude to the same height.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 플레이트에 형성된 다수의 함몰부는, 일정 간격으로 이격되고 동일한 깊이로 함몰되는 판형 열교환기.The plurality of depressions formed in the first plate are spaced apart at regular intervals and are depressed to the same depth.
  7. 다수의 열교환 플레이트가 적층되어, 유체가 흐르는 유로를 형성하는 플레이트 패키지;A plate package in which a plurality of heat exchange plates are stacked to form a flow path through which a fluid flows;
    상기 플레이트 패키지의 외측에 결합되는 엔드 플레이트; 및An end plate coupled to the outside of the plate package; And
    상기 엔드 플레이트를 관통하여 상기 플레이트 패키지에 연결되는 소켓을 포함하고,And a socket connected to the plate package through the end plate,
    상기 다수의 열교환 플레이트는,The plurality of heat exchange plates,
    플레이트 본체에서 상방으로 돌출되는 다수의 돌출부와, 상기 플레이트 본체에서 하방으로 함몰되는 다수의 함몰부, 및 돌출부와 함몰부를 연결하는 경사부가 교번하여 배치되는 다수의 제 1 플레이트; 및A plurality of first plates in which a plurality of protrusions protruding upward from the plate body, a plurality of recesses recessed downward from the plate body, and an inclined part connecting the protrusion and the recess are alternately disposed; And
    상기 제 1 플레이트와 상하 방향으로 대칭되는 형상을 가지는 다수의 제 2 플레이트를 포함하고,It includes a plurality of second plates having a shape symmetrical in the vertical direction with the first plate,
    상기 다수의 제 1 플레이트와 상기 다수의 제 2 플레이트는 상하 방향으로 교번하여 1매씩 적층되고,The plurality of first plates and the plurality of second plates are stacked one by one by alternating in the vertical direction,
    상기 제 1 플레이트의 돌출부는, 상기 제 2 플레이트의 함몰부에 결합되고,The protruding portion of the first plate is coupled to the recessed portion of the second plate,
    상기 제 1 플레이트의 함몰부는, 상기 제 2 플레이트의 돌출부에 결합되며,The recessed portion of the first plate is coupled to the protruding portion of the second plate,
    상기 제 1 플레이트에 형성된 돌출부의 너비(L1)는, 상기 제 1 플레이트에 형성된 함몰부의 너비(L2)보다 크게 형성되어 복수의 비대칭 유로를 마련하는 것을 특징으로 하는 판형 열교환기.A plate heat exchanger, characterized in that the width L1 of the protrusion formed in the first plate is larger than the width L2 of the depression formed in the first plate to provide a plurality of asymmetric flow paths.
  8. 제 7 항에 있어서,The method of claim 7,
    상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로의 단면적은, 상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로의 단면적보다 크게 형성되는 판형 열교환기.A cross-sectional area of the flow path formed by the protruding portion of the first plate and the concave portion of the second plate is larger than the cross-sectional area of the flow path formed by the concave portion of the first plate and the protruding portion of the second plate.
  9. 제 7 항에 있어서,The method of claim 7,
    상기 제 1 플레이트의 돌출부와 상기 제 2 플레이트의 함몰부에 의해 형성된 유로에는 물이 유동하고,Water flows in the flow path formed by the protrusion of the first plate and the depression of the second plate,
    상기 제 1 플레이트의 함몰부와 상기 제 2 플레이트의 돌출부에 의해 형성된 유로에는 냉매가 유동하여 열교환이 이루어지는 판형 열교환기.A plate-type heat exchanger in which a refrigerant flows through a flow path formed by the recessed portion of the first plate and the protruding portion of the second plate to perform heat exchange.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 물이 유동하는 유로의 단면적은, 상기 냉매가 유동하는 유로의 단면적의 1.1배 내지 1.15배로 크게 형성되는 판형 열교환기.A plate-type heat exchanger in which the cross-sectional area of the flow path through which the water flows is formed as large as 1.1 to 1.15 times the cross-sectional area of the flow path through which the refrigerant flows.
  11. 제 7 항에 있어서,The method of claim 7,
    상기 제 1 플레이트에 형성된 함몰부의 너비(L2)는, 상기 제 1 플레이트에 형성된 돌출부의 너비(L1)의 0.3배 내지 0.8배로 작게 형성되는 판형 열교환기.A plate heat exchanger having a width L2 of the depression formed in the first plate as small as 0.3 to 0.8 times the width L1 of the protrusion formed in the first plate.
  12. 제 7 항에 있어서,The method of claim 7,
    상기 경사부와 상기 함몰부가 이루는 각도는, 50도 내지 80도 범위에서 형성되는 판형 열교환기.An angle formed by the inclined portion and the recessed portion is a plate-type heat exchanger formed in a range of 50 degrees to 80 degrees.
  13. 제 7 항에 있어서,The method of claim 7,
    상기 경사부는,The inclined portion,
    상기 돌출부의 일 단부로부터 이웃하는 제 1 함몰부의 단부까지 하향 경사지는 제 1 경사부; 및A first inclined portion inclined downward from one end of the protruding portion to an end portion of the adjacent first depression; And
    상기 돌출부의 타 단부로부터 이웃하는 제 2 함몰부의 단부까지 하향 경사지는 제 2 경사부를 포함하는 판형 열교환기.A plate heat exchanger comprising a second inclined portion inclined downward from the other end of the protruding portion to an end portion of the adjacent second recessed portion.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 제 1 경사부와 제 2 경사부는 좌우 대칭되는 형상을 가지는 판형 열교환기. The first inclined portion and the second inclined portion are plate-type heat exchangers having a shape symmetrical to the left.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 제 1 경사부와, 상기 돌출부 및 상기 제 2 경사부는, 등변 사다리꼴 형상을 가지는 판형 열교환기.The first inclined portion, the protruding portion, and the second inclined portion are plate-type heat exchangers having an equilateral trapezoidal shape.
  16. 제 7 항에 있어서,The method of claim 7,
    상기 제 1 플레이트에 형성된 다수의 돌출부는, 일정 간격으로 이격되고 동일한 높이로 돌출되는 판형 열교환기.The plurality of protrusions formed on the first plate are spaced apart at regular intervals and protrude to the same height.
  17. 제 7 항에 있어서,The method of claim 7,
    상기 제 1 플레이트에 형성된 다수의 함몰부는, 일정 간격으로 이격되고 동일한 깊이로 함몰되는 판형 열교환기.The plurality of depressions formed in the first plate are spaced apart at regular intervals and are depressed to the same depth.
PCT/KR2020/008993 2019-08-29 2020-07-09 Plate-type heat exchanger WO2021040228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0106683 2019-08-29
KR1020190106683A KR20210026216A (en) 2019-08-29 2019-08-29 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
WO2021040228A1 true WO2021040228A1 (en) 2021-03-04

Family

ID=74680831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008993 WO2021040228A1 (en) 2019-08-29 2020-07-09 Plate-type heat exchanger

Country Status (3)

Country Link
US (1) US20210063091A1 (en)
KR (1) KR20210026216A (en)
WO (1) WO2021040228A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148367A1 (en) * 2021-09-08 2023-03-15 Valeo Autosystemy SP. Z.O.O. A plate heat exchanger
CN116817640A (en) * 2022-04-28 2023-09-29 浙江三花板换科技有限公司 Plate heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638899A (en) * 1992-01-27 1997-06-17 Alfa-Laval Thermal Ab Welded plate heat exchanger
US5971065A (en) * 1995-10-24 1999-10-26 Alfa Laval Ab Plate heat exchanger
JP2001280887A (en) * 2000-03-30 2001-10-10 Hisaka Works Ltd Plate type heat exchanger
KR20070048707A (en) * 2004-08-28 2007-05-09 스웹 인터네셔널 에이비이 A plate heat exchanger
KR20130031848A (en) * 2010-06-24 2013-03-29 알파 라발 코포레이트 에이비 A heat exchanger plate and a plate heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518276C2 (en) 1997-12-19 2002-09-17 Swep Int Ab plate heat exchangers
JP2008128574A (en) * 2006-11-21 2008-06-05 Toshiba Corp Heat exchanger
DE102010050894A1 (en) * 2010-11-10 2012-05-10 Valeo Klimasysteme Gmbh Plate heat exchanger and air conditioning circuit for a vehicle
DK2508831T3 (en) * 2011-04-07 2016-03-07 Alfa Laval Corp Ab PLATE HEAT EXCHANGE
CN103688128B (en) * 2011-07-13 2015-11-25 三菱电机株式会社 Plate type heat exchanger and heat pump assembly
US20140290921A1 (en) * 2011-11-21 2014-10-02 Mitsubishi Electric Corporation Plate-type heat exchanger and refrigeration cycle apparatus using the same
US20160061531A1 (en) * 2014-08-27 2016-03-03 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger
US20160209119A1 (en) * 2015-01-20 2016-07-21 Energy & Environmental Research Center Foundation Polymer film heat exchanger with integral fluid distribution manifolds and method
JP2019504287A (en) * 2015-12-18 2019-02-14 コア エネルギー リカバリー ソリューションズ インコーポレイテッド Enthalpy exchanger
US10578367B2 (en) * 2016-11-28 2020-03-03 Carrier Corporation Plate heat exchanger with alternating symmetrical and asymmetrical plates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638899A (en) * 1992-01-27 1997-06-17 Alfa-Laval Thermal Ab Welded plate heat exchanger
US5971065A (en) * 1995-10-24 1999-10-26 Alfa Laval Ab Plate heat exchanger
JP2001280887A (en) * 2000-03-30 2001-10-10 Hisaka Works Ltd Plate type heat exchanger
KR20070048707A (en) * 2004-08-28 2007-05-09 스웹 인터네셔널 에이비이 A plate heat exchanger
KR20130031848A (en) * 2010-06-24 2013-03-29 알파 라발 코포레이트 에이비 A heat exchanger plate and a plate heat exchanger

Also Published As

Publication number Publication date
KR20210026216A (en) 2021-03-10
US20210063091A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021040228A1 (en) Plate-type heat exchanger
WO2014058181A1 (en) Heat exchanger
EP0666973B1 (en) Heat exchanger
WO2022045667A1 (en) Heat exchanger and air conditioner using the heat exchanger
WO2015141993A1 (en) Heat exchanger and manufacturing method for unit plate constituting heat exchanger
WO2018008813A1 (en) Gas turbine blade
WO2018110948A1 (en) Battery pack
WO2016144007A1 (en) Heat exchanger for cooling electrical element
WO2015141992A1 (en) Heat exchanger
WO2017003075A1 (en) Outdoor heat exchanger
WO2021221407A1 (en) Heat dissipation device and antenna assembly using same
WO2021020749A1 (en) Plate heat exchanger
US5622304A (en) Tape bonding apparatus
WO2022124780A1 (en) Bonding head and bonding device having same
WO2018221959A1 (en) Heat exchanger for cooling electrical device
WO2017052094A1 (en) Round plate heat exchanger
WO2019124853A1 (en) Heat exchanger
WO2020138850A1 (en) Heat exchanger
WO2023113362A1 (en) Fins and heat exchanger comprising same
WO2019221474A1 (en) Cooling apparatus
WO2021177668A1 (en) Plate-type heat exchanger
WO2017135727A1 (en) Heat exchanger
WO2024075931A1 (en) Heat exchanger
WO2023149643A1 (en) Heat exchanger
WO2023068452A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857001

Country of ref document: EP

Kind code of ref document: A1