WO2021039811A1 - スワールブレーカ組立体及び回転機械 - Google Patents

スワールブレーカ組立体及び回転機械 Download PDF

Info

Publication number
WO2021039811A1
WO2021039811A1 PCT/JP2020/032096 JP2020032096W WO2021039811A1 WO 2021039811 A1 WO2021039811 A1 WO 2021039811A1 JP 2020032096 W JP2020032096 W JP 2020032096W WO 2021039811 A1 WO2021039811 A1 WO 2021039811A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirl
circumferential direction
breaker assembly
breakers
flow guide
Prior art date
Application number
PCT/JP2020/032096
Other languages
English (en)
French (fr)
Inventor
亮吉 本坊
壮頼 比留川
健一 藤川
倫平 川下
信博 永田
松本 和幸
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021039811A1 publication Critical patent/WO2021039811A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings

Definitions

  • This disclosure relates to swirl breaker assemblies and rotary machines.
  • Rotating machines such as steam turbines and gas turbines used in power plants are known.
  • This rotating machine has moving blades supported by a turbine rotor (hereinafter, simply referred to as a rotor) that is rotatable with respect to the casing, and stationary blades supported by the casing, and is upstream to downstream in the axial direction of the rotor. It is configured to convert the energy of the working fluid flowing into the rotor into the rotational energy of the rotor.
  • a turbine rotor hereinafter, simply referred to as a rotor
  • the working fluid deviating from the main flow path flows in while having the swirling flow component given when it passes through the nozzle.
  • a swirling flow (so-called swirl flow) is generated in the circumferential direction of the rotor.
  • a sinusoidal pressure distribution having a peak in a direction different from the eccentric direction of the rotor is generated in the circumferential direction of the rotor, and the swirl flow increases with high output operation, for example. In some cases, it may cause self-excited vibration of the rotor. For this reason, various structures for suppressing the swirl flow in the seal portion have been devised.
  • Patent Document 1 a turbine is provided in a stationary portion that opposes a portion on the tip side of a turbine moving blade in the axial direction of a rotating machine.
  • a structure provided with a plurality of protrusions (rectifying portions) protruding toward the moving blade side is disclosed (see Patent Document 1).
  • At least one embodiment of the present invention aims to suppress the occurrence of self-excited vibration in a rotating machine.
  • the swirl breaker assembly is An annular body that extends along the circumferential direction, A flow guide that projects axially from the annular body so as to extend along the circumferential direction. A plurality of swirl breakers provided on the annular body at positions displaced in the radial direction with respect to the flow guide at intervals in the circumferential direction. To be equipped.
  • the swirl breaker assembly having the above configuration (1) is arranged as follows, for example, on the upstream side of the rotor blade of the rotary machine. That is, the swirl breaker assembly having the configuration of (1) above is arranged so that, for example, the flow guide projects radially inward from the outer peripheral surface of the outer shroud in the radial direction so as to project toward the downstream side in the axial direction. Further, the swirl breaker assembly having the configuration of (1) above is arranged so that, for example, a plurality of swirl breakers project radially outward from the flow guide to the downstream side in the axial direction.
  • a working fluid deviating from the main flow path flows into the space between the outer shroud and the inner peripheral surface of the casing of the rotating machine while having a swirling flow component as described above.
  • the swirl breaker assembly having the configuration of (1) above is arranged in the rotating machine as described above, the working fluid deviating from the main flow path flows into the space from the main flow path on the radial outer surface of the flow guide. You will be guided along to multiple swirl breakers. That is, according to the configuration of (1) above, the working fluid deviated from the main flow path can be efficiently guided to the swirl breaker. As a result, the swirling flow component of the working fluid deviated from the main flow path can be efficiently suppressed by the plurality of swirl breakers, so that the self-excited vibration of the rotor due to the swirl flow can be efficiently suppressed.
  • the plurality of swirl breakers have their radial ends connected to the flow guide.
  • the plurality of swirl breakers overlap the flow guide at least partially in the axial direction.
  • the flow guide has the axial position of the axially protruding end along the axial direction. It exists between the base end portion and the tip end portion of the plurality of swirl breakers.
  • the axial position of the flow guide with respect to the protruding end exists between the base end portion and the tip end portion of the plurality of swirl breakers along the axial direction, so that the main flow path The working fluid deviated from the flow guide is efficiently guided to the swirl breaker by the flow guide.
  • the flow guide has a guide surface that points to the plurality of swirl breaker sides in the radial direction.
  • the working fluid deviating from the main flow path is efficiently guided to the swirl breaker by the guide surface.
  • the annular body has an annular body-side facing wall surface that faces the guide surface in the radial direction, and an annular body side wall surface that connects the guide surface and the annular body-side facing wall surface.
  • the plurality of swirl breakers exist in the space between the guide surface, the annular side wall surface, and the annular body side facing wall surface.
  • the working fluid deviating from the main flow path is guided to the space by the flow guide. Then, the swirling flow component of the working fluid guided to the space is suppressed by the plurality of swirl breakers existing in the space. As a result, the effect of suppressing the swirling flow component by the swirl breaker is enhanced.
  • the plurality of swirl breakers have seal fins having a tip portion along the axial direction extending in the circumferential direction. Is connected to.
  • the plurality of swirl breakers have a plate shape extending along the axial direction and the radial direction.
  • the plurality of swirl breakers gradually increase in size in the circumferential direction toward the proximal end in the axial direction. It has a shape that widens the hem.
  • the circumferential dimension of the swirl breaker on the proximal end side in the axial direction is increased, so that the bending strength of the swirl breaker in the circumferential direction is improved.
  • the shape of the swirl breaker on the base end side is a hem-spreading shape, it becomes easy to form the swirl breaker when the swirl breaker is formed by, for example, cutting out in the annular body.
  • the plurality of swirl breakers are said to be said when viewed in the radial direction in a region on the tip side in the axial direction.
  • the flow guide side is thinner in the circumferential direction.
  • the swirl breaker assembly having the above configuration (10) is arranged as follows, for example, on the upstream side of the rotor blade of the rotary machine. That is, the swirl breaker assembly having the configuration (10) is arranged so that, for example, the flow guide projects radially inward from the outer peripheral surface of the outer shroud in the radial direction so as to project toward the downstream side in the axial direction. Further, the swirl breaker assembly having the configuration of (10) above is arranged so that, for example, a plurality of swirl breakers project radially outward from the flow guide.
  • the plurality of swirl breakers are provided at equal intervals in the circumferential direction.
  • the rotary machine is With the swirl breaker assembly having any of the above configurations (1) to (11), A rotor disc that rotates around the axis in the casing, A plurality of rotor blade bodies attached to the rotor disk, An outer shroud connected to the tip of each of the plurality of rotor blade bodies, To be equipped.
  • the flow guide protrudes toward the downstream side in the axial direction on the upstream side in the axial direction from the rotor blade body and on the inner side in the radial direction from the outer peripheral surface on the radial outer side of the outer shroud.
  • the plurality of swirl breakers project outward in the radial direction from the flow guide to the downstream side in the axial direction.
  • the working fluid deviating from the main flow path flows from the main flow path into the space between the outer shroud and the inner peripheral surface of the casing of the rotating machine, the radial outer surface of the flow guide You will be guided to multiple swirl breakers along. That is, according to the configuration (13) above, the working fluid deviated from the main flow path can be efficiently guided to the swirl breaker. As a result, the swirling flow component of the working fluid deviated from the main flow path can be efficiently suppressed by the plurality of swirl breakers, so that the self-excited vibration of the rotor due to the swirl flow can be efficiently suppressed.
  • the flow guide may have a radial inner surface that forms part of a fluid flow path in the rotating machine. Good.
  • the plurality of swirl breakers are radially outside the outer shroud and in the axial direction with the outer shroud. It has overlapping areas of overlap.
  • the projected area of the swirl breaker when viewed from the circumferential direction can be increased as compared with the case where the overlapping region is not provided, and the effect of suppressing the swirling flow component by the swirl breaker can be increased. Will increase.
  • the gap between the plurality of swirl breakers and the outer peripheral surface of the outer shroud in the radial direction in the overlapping region has a diameter larger than that of the outer peripheral surface. It is larger than the gap between the seal fin provided on the outer side in the direction and extending in the circumferential direction and the outer peripheral surface.
  • the swirl breaker assembly is provided on the governor stage of the rotating machine.
  • the swirl breaker assembly is An annular body connected to the radial inner end of the vane and extending along the circumferential direction, A rotating member that can rotate in the circumferential direction with respect to the annular body, A plurality of swirl breakers provided on the annular body at intervals in the circumferential direction, A flow guide that projects axially from the rotating member so as to extend along the circumferential direction at a position displaced outward in the radial direction with respect to the plurality of swirl breakers. To be equipped.
  • the working fluid deviating from the main flow path is described above in the space between the annular body and the surface of the rotor shaft which is a rotating member that can rotate in the circumferential direction with respect to the annular body. It is conceivable that the turbine flows in while having a swirling flow component. According to the configuration (18) above, the working fluid that is about to deviate from the main flow path is guided axially along the radial outer surface of the flow guide before flowing from the main flow path into the space. Therefore, the working fluid is less likely to deviate from the main flow path.
  • the working fluid deviating from the main flow path after being axially guided along the radial outer surface of the flow guide will be directed to the swirl breakers. That is, the working fluid deviated from the main flow path is guided by the swirl breaker.
  • the swirling flow component of the working fluid deviated from the main flow path can be efficiently suppressed by the plurality of swirl breakers, so that the self-excited vibration of the rotor due to the swirl flow can be efficiently suppressed.
  • the swirl breaker assembly is A dummy ring that constitutes at least a part of the dummy seal portion in the turbine and extends along the circumferential direction, A plurality of swirl breakers provided on the inner surface of the dummy ring at intervals in the circumferential direction and projecting in the axial direction, To be equipped.
  • the working fluid deviating from the main flow path creates a gap between the inner surface of the dummy ring and the surface of the rotor shaft facing the inner surface while maintaining the swirling flow component as described above. It is possible that it will flow.
  • the configuration of (19) above it is prevented that the working fluid deviated from the main flow path flows in the circumferential direction by a plurality of swirl breakers provided on the inner surface of the dummy ring at intervals in the circumferential direction and protruding in the axial direction. Will be done.
  • the swirling flow component of the working fluid deviated from the main flow path can be efficiently suppressed by the plurality of swirl breakers, so that the self-excited vibration of the rotor due to the swirl flow can be efficiently suppressed.
  • a rotor shaft that is arranged at a distance from the inner surface and that can rotate in the circumferential direction, A flow guide protruding in the axial direction from the rotor shaft so as to extend along the circumferential direction at a position shifted inward in the radial direction with respect to the plurality of swirl breakers. Further prepare.
  • the rotary machine according to at least one embodiment of the present invention includes a swirl breaker assembly having any of the above configurations (18) to (20).
  • the generation of self-excited vibration in a rotating machine can be suppressed.
  • FIG. 6 is a schematic cross-sectional view of a turbine comprising a swirl breaker assembly according to some embodiments. It is an enlarged perspective view about the part A in FIG. FIG. 3 is a view taken along the line III in FIG. It is a figure for demonstrating the swirl breaker assembly which concerns on one Embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on other embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on still another embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on still another embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on still another embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on still another embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on still another embodiment. It is a figure for demonstrating the swirl breaker assembly which concerns on still another embodiment.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 is a schematic cross-sectional view of a turbine comprising a swirl breaker assembly according to some embodiments.
  • the turbine 1 according to some embodiments is a so-called axial flow turbine, which includes a casing 2, a rotor shaft 4, a rotor disk 6 fixed to the rotor shaft 4, and a speed control stage. It includes a nozzle 8, a moving blade 12, and a stationary blade 14.
  • the extending direction of the rotor shaft 4 is also simply referred to as an axial direction
  • the circumferential direction of the rotor shaft 4 is also simply referred to as a circumferential direction.
  • the direction along the axial direction of the main flow of the working fluid in the casing 2 is also referred to as a downstream direction or a downstream side, and a direction opposite to the downstream direction is also referred to as an upstream direction or an upstream side.
  • the right side in the drawing is the downstream side
  • the left side in the drawing is the upstream side.
  • the radial direction of the rotor shaft 4 is also simply referred to as a radial direction. Of the radial directions, the direction closer to the axis AX of the rotor shaft 4 is the radial inner side, and the direction away from the axis AX of the rotor shaft 4 is the radial outer direction.
  • a plurality of moving blades 12 are attached to the outer peripheral portion of the rotor disk 6 at intervals in the circumferential direction.
  • the moving blade 12 has a moving blade main body 121 and an outer shroud 123 connected to each tip of the plurality of moving blade main bodies 121.
  • the rotor blade stage 30 is formed by the rotor disk 6 and the plurality of moving blades 12 attached to the rotor disk 6.
  • a plurality of stationary blades 14 are arranged at intervals in the circumferential direction, and the inner end in the radial direction is attached to the outer peripheral surface of the inner peripheral ring 16, and the outer end in the radial direction is the inner circumference of the outer ring 18. It is attached to the surface.
  • the stationary blade stage 40 is formed by a stationary blade ring 22 including an inner peripheral ring 16, an outer peripheral ring 18, and a plurality of stationary blades 14 attached to the respective rings 16 and 18.
  • the rotor blade stages 30 and the stationary blade stages 40 are alternately arranged along the axial direction. In FIG.
  • the moving blade stage 31 including the speed controlling stage moving blade 12A arranged on the immediately downstream side of the speed controlling stage nozzle 8 and the first stationary blade arranged on the immediately downstream side of the moving blade stage 31.
  • the stage 41 and the first rotor blade stage 32 arranged immediately downstream of the first stationary blade stage 41 are shown.
  • one stage 7 is formed for each pair of the rotor blade stage 30 and the stationary blade stage 40 arranged adjacent to the rotor blade stage 30 on the upstream side in the axial direction. ing.
  • the most upstream stage 7 of the plurality of stages 7 forms the speed governor stage 7a.
  • the speed governor stage 7a adjusts the rotation speed of the rotor shaft 4 by adjusting the flow rate of the working fluid sent to the stage 7 on the downstream side in the axial direction from the speed control stage 7a.
  • the speed governor nozzle 8 is supported by an inlet portion 54 fixed to the casing 2 and feeds in working fluid (steam, combustion gas).
  • the working fluid flowing into the inlet portion 54 through the working fluid supply pipe 52 fixed to the casing 2 is the speed governing stage nozzle 8 and the speed controlling stage. It flows into the moving blade 12A and performs expansion work. The working fluid then flows into the stationary blade stage 40 and the moving blade stage 30 on the downstream side to perform expansion work. As a result, the rotor shaft 4 is rotationally driven.
  • the working fluid deviated from the main flow path flows toward the downstream side from the gap between the outer peripheral surface 123a of the outer shroud 123 of the rotor blade 12 and the casing 2.
  • a seal fin 81 is provided to suppress this.
  • the radial outer base end portion 81a of the seal fin 81 is fixed to the casing 2 side, and the seal fin 81 is radially outer.
  • the inner tip portion 81b faces the outer peripheral surface of the outer shroud 123 at a distance.
  • the seal portion 80 that seals between the rotor blade 12 and the casing 2 includes a seal fin 81 and an outer shroud 123.
  • the base end 81a of the seal fin 81 in the governor 7a is fixed at the inlet 54 to the inner peripheral surface 54a radially opposed to the outer shroud 123 of the governor blade 12A. However, it may be fixed to a member different from the inlet portion 54.
  • the base end 81a of the seal fin 81 for the first rotor blade stage 32 is fixed to the outer peripheral surface 18a of the outer ring 18 which is radially opposed to the outer shroud 123 of the rotor blade 12. However, it may be fixed to a member different from the outer peripheral ring 18.
  • at least one seal fin 81 is provided with respect to the outer shroud 123. In the embodiment exemplified in FIG. 1, two seal fins 81 are provided so as to be spaced apart from each other along the axial direction with respect to the outer shroud 123.
  • FIG. 2 is an enlarged perspective view of the inlet portion 54 side of the portion A surrounded by the broken line in FIG. 1, that is, the portion where the inlet portion 54 and the speed governor blade 12A face each other.
  • FIG. 2 the description of the speed governor blade 12A is omitted.
  • FIG. 3 is a view taken along the line III in FIG. 2, which is a view of the entrance portion 54 viewed from the downstream side in the axial direction.
  • FIG. 4 is a diagram for explaining a swirl breaker assembly according to an embodiment, and is a diagram for a part A surrounded by a broken line in FIG. FIG.
  • FIG. 5 is a diagram for explaining a swirl breaker assembly according to another embodiment, and is a diagram corresponding to FIG. 4.
  • FIG. 6 is a diagram for explaining a swirl breaker assembly according to still another embodiment, and is a diagram corresponding to FIG. 4.
  • FIG. 7 is a diagram for explaining a swirl breaker assembly according to still another embodiment, and is a diagram corresponding to FIG. 4.
  • FIG. 8 is a diagram for explaining a swirl breaker assembly according to still another embodiment, and is a diagram corresponding to FIG. 4.
  • FIG. 9 is a diagram for explaining a swirl breaker assembly according to still another embodiment, and is a diagram corresponding to FIG.
  • the entrance portion 54 is an annular member extending along the circumferential direction.
  • the portion of the inlet portion 54 including the region downstream of the speed governor nozzle 8 in the axial direction and radially outside the speed governor nozzle 8 is also referred to as an annular body 56.
  • a flow guide 110 projecting from the annular body 56 to the downstream side in the axial direction is formed.
  • the flow guide 110 is axially upstream of the rotor blade body 121 and radially inward of the outer outer peripheral surface 123a of the outer shroud 123 toward the downstream side. It is protruding.
  • the inlet 54 has an inner peripheral surface 54b that forms a fluid flow path 65 through which the working fluid flows.
  • the inner peripheral surface 54b forms a fluid flow path 65 on the radial outer side of the speed governor nozzle 8.
  • the region downstream of the inner peripheral surface 54b is the radial inner inner peripheral surface 111 of the flow guide 110. That is, as shown in FIGS. 2 to 9, in some embodiments, the inner peripheral surface 111 of the flow guide 110 facing inward in the radial direction forms a part of the fluid flow path 65 in the turbine 1.
  • the flow guide 110 has a guide surface 115 that points to a plurality of swirl breaker sides described later in the radial direction.
  • the guide surface 115 points outward in the radial direction.
  • the guide surface 115 has a conical surface that is inclined outward in the radial direction toward the upstream side in the axial direction, but in the region on the upstream side in the axial direction and the region on the downstream side. It may have cylindrical surfaces of equal diameter, or it may have a conical surface that is inclined inward in the radial direction toward the upstream side in the axial direction.
  • the flow guide 110 may be formed over the entire circumference in the circumferential direction, or may have a region that is not formed in a part of the circumferential direction.
  • the annular body 56 connects the annular body side facing wall surface 57 facing the guide surface 115 in the radial direction, and the guide surface 115 and the annular body side facing wall surface 57. It has an annular body side wall surface 58.
  • the annular body-side facing wall surface 57 is an inner peripheral surface 54a that is radially opposed to the outer shroud 123 of the speed governor blade 12A at the inlet portion 54. is there. As shown in FIGS.
  • the annular side wall surface 58 is a surface extending radially and circumferentially between the guide surface 115 and the annular body side facing wall surface 57, but has a diameter. It may be inclined with respect to the radial direction so as to move toward the upstream side or the downstream side in the axial direction toward the outside in the direction.
  • the annular side wall surface 58 is located axially upstream of the axially protruding end 113 of the flow guide 110.
  • a space is formed between the guide surface 115, the annular side wall surface 58, and the annular body side facing wall surface 57, and this space is referred to as a cavity 67.
  • a plurality of swirl breakers 130 are provided on the annular body 56 at positions displaced in the radial direction with respect to the flow guide 110 at intervals in the circumferential direction. More specifically, each of the plurality of swirl breakers 130 projects radially outward from the flow guide 110 on the downstream side in the axial direction. As shown in FIGS. 2-9, in some embodiments, each of the plurality of swirl breakers 130 has a cavity 67, at least in part thereof, between the guide surface 115, the annular side wall surface 58, and the annular side facing wall surface 57. Exists in.
  • each of the plurality of swirl breakers 130 has a plate shape extending along the axial and radial directions. As a result, the shape of the swirl breaker 130 becomes a simple shape, so that it is easy to form.
  • the shape of the swirl breaker 130 is not limited to the plate shape as described above, and may be columnar.
  • the annular body 56 including the above-mentioned flow guide 110 and the plurality of swirl breakers 130 is also referred to as a swirl breaker assembly 100.
  • the swirl breaker assembly 100 is provided in the governor 7a and the governor 7 downstream of the governor 7a.
  • the swirl breaker assembly 100 may be provided at least in any one of the stages 7.
  • a flow guide 110 and a plurality of swirl breakers 130 are provided in the outer peripheral ring 18 instead of the inlet portion 54. ..
  • the swirl breaker assembly 100A provided on the governor stage 7a and the swirl breaker assembly 100B provided on the stage 7 downstream of the speed governor 7a have the same basic configuration. Therefore, the swirl breaker assembly 100A provided in the speed governor stage 7a will be described in detail, and the description of the swirl breaker assembly 100B provided in the stage 7 downstream of the speed governor stage 7a will be omitted. In the following description, it is not necessary to distinguish between the swirl breaker assembly 100A provided on the speed governor stage 7a and the swirl breaker assembly 100B provided on the stage 7 downstream of the speed governor stage 7a. In this case, the description of the alphabet after the number of the code is simply omitted, and it is simply referred to as the swirl breaker assembly 100.
  • the working fluid deviating from the main flow path i.e. the fluid flow path 65
  • the fluid guide 110 When flowing into the space between the inner peripheral surface of the casing 2 and the inner peripheral surface of the casing 2, the fluid guide 110 is guided along the guide surface 115 which is the outer surface in the radial direction as shown by the arrow b in FIG.
  • the working fluid guided along the guide surface 115 is guided toward the plurality of swirl breakers 130 as shown by the arrow c in FIG. That is, in some embodiments shown in FIGS. 2 to 9, the working fluid deviated from the fluid flow path 65 can be efficiently guided to the swirl breaker 130.
  • each of the plurality of swirl breakers 130 projects axially within the cabidi 67 to prevent the working fluid from flowing circumferentially.
  • the working fluid deviated from the fluid flow path 65 can be efficiently guided to the swirl breaker 130, so that the working fluid deviated from the fluid flow path 65 has.
  • the swirl flow component can be efficiently suppressed by a plurality of swirl breakers 130. As a result, the self-excited vibration of the rotor shaft 4 due to the swirl flow can be efficiently suppressed.
  • the flow guide 110 since the flow guide 110 has a guide surface 115, the working fluid deviating from the main flow path is efficiently guided to the swirl breaker 130 by the guide surface 115.
  • the fluid since the flow guide 110 has a guide surface 115, the working fluid deviating from the main flow path is efficiently guided to the swirl breaker 130 by the guide surface 115. The fluid.
  • the swirl breaker 130 according to some embodiments will be further described with reference to the respective drawings of FIGS. 2 to 9.
  • the radially inner end 131 of the swirl breaker 130 is separated from the guide surface 115 of the flow guide 110.
  • the radial inner end 131 is connected to the guide surface 115 of the flow guide 110.
  • the radial outer end 132 is connected to the annular body side facing wall surface 57.
  • the swirl breaker 130 may have a radial outer end 132 separated from the annular body side facing wall surface 57.
  • the swirl breaker 130 according to some embodiments shown in FIGS. 2 to 9 overlaps the flow guide 110 at least partially in the axial direction. In this way, since the swirl breaker 130 overlaps with the flow guide 110 in the axial direction, the working fluid deviated from the main flow path is efficiently guided to the swirl breaker 130 by the flow guide 110.
  • the tip portion 133 along the axial direction of the swirl breaker 130 is located axially upstream of the axially protruding end 113 of the flow guide 110.
  • the tip 133 of the swirl breaker 130 is axially downstream of the protruding end 113 of the flow guide 110. positioned. That is, in some embodiments shown in FIGS. 2-4, 6, 8, and 9, the flow guide 110 swirls the axial position of the axially protruding end 113 with respect to the axial direction. It exists between the base end 134 and the tip 133 of the breaker 130.
  • the swirl breaker 130 is radially outside the protruding end 113. There will be a region between the base end 134 and the tip 133. Therefore, when the working fluid deviating from the main flow path flows radially outward from the protruding end 113 of the flow guide 110 while flowing in the circumferential direction, the side surface of the swirl breaker 130, that is, the base end portion 134 and the tip end portion 133 of the swirl breaker 130. You will reach the area between. Therefore, according to some embodiments shown in FIGS.
  • the working fluid deviating from the main flow path is efficiently guided to the swirl breaker 130 by the flow guide 110.
  • the position of the tip portion 133 in the axial direction may differ depending on the position in the radial direction.
  • the working fluid guided to the cavity 67 is the plurality of swirl breakers present in the cavity 67.
  • the swirling flow component is suppressed by 130.
  • the effect of suppressing the swirling flow component by the swirl breaker 130 is enhanced.
  • the tip 133 of the swirl breaker 130 is separated from the seal fin 81.
  • the swirl breaker 130 is connected to a seal fin 81 having a tip portion 133 extending in the circumferential direction.
  • the tip 133 of the swirl breaker 130 is not connected to the seal fin 81, as in some embodiments shown in FIGS. 2-5 and 7-9, for some of the working fluid deviated from the main flow path. Since the fluid flows in the circumferential direction from between the tip portion 133 and the seal fin 81, the effect of suppressing the swirling flow component by the swirl breaker 130 is reduced as compared with the case where the tip portion 133 and the seal fin 81 are connected.
  • the effect of suppressing the swirling flow component by the swirl breaker 130 is enhanced.
  • the projected area of the swirl breaker 130 when viewed from the circumferential direction can be increased, and the effect of suppressing the swirling flow component by the swirl breaker 130 is enhanced.
  • the swirl breaker 130 has a hem spread in which the circumferential dimension gradually increases toward the proximal end 134 in the axial direction.
  • the circumferential dimension of the swirl breaker 130 on the proximal end 134 side is increased, so that the bending strength of the swirl breaker 130 in the circumferential direction is improved.
  • the shape of the swirl breaker 130 on the base end 134 side is a hem-spreading shape, it becomes easy to form the swirl breaker 130 when the swirl breaker 130 is formed by, for example, cutting out in the annular body 56.
  • the connection portion between the radial outer end portion 132 and the annular body side facing wall surface 57 and the connection portion between the radial inner end portion 131 and the guide surface 115 are described above. It may be formed in the same manner as the connection portion 134a.
  • the swirl breaker 130 does not overlap the outer shroud 123 in the axial direction.
  • the swirl breaker 130 has an overlapping region 137 axially overlapping with the outer shroud 123 on the radial outer side of the outer shroud 123.
  • the projected area of the swirl breaker 130 when viewed from the circumferential direction can be increased as compared with the case where the overlapping region 137 is not provided as in the embodiment shown in FIGS. 5 and 7, and the swirl breaker 130 can be increased.
  • the effect of suppressing the swirling flow component is enhanced.
  • the gap 69a between the swirl breaker 130 and the radial outer outer peripheral surface 123a of the outer shroud 123 in the overlapping region 137 is formed between the seal fin 81 and the outer peripheral surface 123a. It is larger than the gap 69b with. This makes it difficult for the swirl breaker 130 and the outer shroud 123 to come into contact with each other.
  • the swirl breaker 130 is thinner in the circumferential direction on the flow guide 110 side when viewed in the radial direction in the region on the tip side in the axial direction. That is, the swirl breaker 130 according to the embodiment shown in FIG. 9 is a thin portion which is a region on the downstream side in the axial direction and is thinner in the circumferential direction than the other regions in the vicinity of the end portion 131 on the inner side in the radial direction. It has 139. Of the parts of the swirl breaker 130, the part on the flow guide 110 side when viewed in the radial direction in the region on the tip side in the axial direction is located near the outer shroud 123, which is the radial outer end of the rotor blade 12. Be placed.
  • a thin-walled portion 139 is provided at the portion.
  • the thin portion 139 may be formed so as to include the overlapping region 137 along the axial direction.
  • the plurality of swirl breakers 130 may be provided at equal intervals in the circumferential direction.
  • the flow of the working fluid deviating from the main flow path also changes. Therefore, a plurality of swirl breakers 130 provided in the annular body 56 are unevenly arranged along the circumferential direction. It is desirable to arrange them evenly in terms of suppressing swirl flow. Therefore, according to some embodiments shown in FIGS. 2 to 9, the arrangement positions of the plurality of swirl breakers 130 along the circumferential direction are appropriate.
  • the swirl breaker assembly 100 of any of the several embodiments shown in FIGS. 2 to 9 may be provided in the governor stage 7a. As a result, the occurrence of self-excited vibration can be suppressed in the speed governor stage 7a where self-excited vibration due to the swirl flow is likely to occur.
  • the swirl breaker assembly 100 of any of the several embodiments shown in FIGS. 2 to 9 may be attached to the existing turbine 1 when the existing turbine 1 is repaired.
  • the swirl breaker assembly 100 of any of the several embodiments shown in FIGS. 2 to 9 may be arranged on the upstream side of the moving blade 12 of the existing turbine 1 as follows. That is, the swirl breaker assembly 100 of any of the several embodiments shown in FIGS. 2 to 9 is placed on the downstream side in the axial direction, for example, when the flow guide 110 is radially inside the outer peripheral surface 123a of the outer shroud 123. It is preferable to arrange it so that it protrudes toward it. Further, the swirl breaker assembly 100 of any of the several embodiments shown in FIGS. 2 to 9 is provided so that, for example, a plurality of swirl breakers 130 project radially outward from the flow guide 110 to the downstream side in the axial direction. It is good to place it in.
  • the present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
  • the above-mentioned swirl breaker assembly 100 is applied to a sealing portion 80 that seals between the rotor blade 12 and the casing 2.
  • the swirl breaker assembly 100 described above may be applied to the seal portion that seals between the rotor shaft 4 and the casing 2 (between the rotor shaft 4 and the stationary blade 14).
  • the above-mentioned flow guide 110 and a plurality of flow guides 110 are formed on the axially downstream side surface 54c (see FIG.
  • a swirl breaker 130 may be provided.
  • the above-mentioned flow guide 110 and a plurality of swirl breakers 130 are provided on the surface 16c (see FIG. 1) on the downstream side in the axial direction. You may.
  • FIG. 10 is a diagram schematically showing a moving blade 12 in the step 7 on the upstream side in the axial direction and a stationary blade 14 in the step 7 on the downstream side in the axial direction among the two steps 7 adjacent to each other in the axial direction. is there.
  • a flow guide 110A and a swirl breaker 130A are provided in order to suppress a swirl flow flowing through a gap between the inner peripheral ring 16 and the surface 4a of the rotor shaft 4 in the stationary blade stage 40. You may.
  • the working fluid deviating from the main flow path is the inner peripheral surface 16a on the radial inner side of the inner peripheral ring 16 in the stationary blade stage 40 and the inner peripheral surface thereof.
  • a seal fin 83 is provided to prevent the flow from the gap between the surface 4a of the rotor shaft 4 facing the 16a toward the downstream side.
  • the radial outer base end portion 83a is fixed to the inner peripheral surface 16a of the inner peripheral ring 16, and the radial inner tip portion 83b Is opposed to the surface 4a of the rotor shaft 4 at a distance.
  • the flow guide 110A is formed so as to project toward the downstream side in the axial direction on the surface 6a on the downstream side of the rotor disk 6.
  • the flow guide 110A may be formed over the entire circumference in the circumferential direction, or may have a region that is not formed in a part of the circumferential direction.
  • the flow guide 110A may be formed on a platform (not shown) to which the base end portion of the airfoil portion of the moving blade 12 is connected.
  • a plurality of swirl breakers 130A are provided on the axially upstream side surface 16b of the inner peripheral ring 16 at positions deviated in the radial direction with respect to the flow guide 110A at intervals in the circumferential direction. .. More specifically, each of the plurality of swirl breakers 130A projects radially inward and upstream side in the axial direction with respect to the flow guide 110A.
  • the swirl breaker assembly 100 includes an inner peripheral ring 16 which is an annular body connected to the radial inner end of the stationary blade 14 and extending along the circumferential direction. ..
  • the swirl breaker assembly 100 includes a rotor shaft 4 which is a rotating member that can rotate in the circumferential direction with respect to the inner peripheral ring 16.
  • the swirl breaker assembly 100 includes a plurality of swirl breakers 130A provided on the inner peripheral ring 16 at intervals in the circumferential direction.
  • the swirl breaker assembly 100 extends axially from the rotor shaft 4 at positions offset radially outward with respect to the plurality of swirl breakers 130A so as to extend along the circumferential direction.
  • a protruding flow guide 110A is provided.
  • the working fluid that tends to deviate from the main flow path that is, the fluid flow path 65 is the inner peripheral surface 16a on the inner peripheral surface of the inner peripheral ring 16 in the radial direction from the fluid flow path 65 and the surface 4a of the rotor shaft 4.
  • the fluid guide 110A Before flowing into the gap between the fluids, the fluid guide 110A is guided to the downstream side in the axial direction along the guide surface 115A, which is the outer surface in the radial direction, as shown by the arrow d in FIG. Therefore, the working fluid is guided toward the stationary blade 14 in the step 7 on the downstream side in the axial direction, so that it is difficult to deviate from the fluid flow path 65.
  • the working fluid that has been guided downstream along the guide surface 115A and then deviated from the fluid flow path 65 is directed to the plurality of swirl breakers 130A as shown by the arrow e. That is, in the embodiment shown in FIG. 10, the working fluid deviating from the fluid flow path 65 is guided by the swirl breaker 130A.
  • the working fluid guided by the swirl breaker 130A is prevented from flowing in the circumferential direction by each of the plurality of swirl breakers 130A even if it has a swirling flow component flowing in the circumferential direction. ..
  • FIG. 11 is a cross-sectional view schematically showing the structure of the turbine 1 on the upstream side in the axial direction from the speed governor stage 7a.
  • a dummy seal portion 70 is provided on the upstream side in the axial direction from the speed governor stage 7a.
  • the dummy seal portion 70 includes a dummy ring 71 and seal fins 85 and 87.
  • the left direction in the drawing which has been referred to as the upstream side in the axial direction
  • the right direction in the drawing which has been referred to as the downstream side in the axial direction
  • the passenger compartment side is also referred to as the passenger compartment side.
  • the seal fins 85 and 87 are working fluids deviated from the fluid flow path 65 between the speed control stage nozzle 8 and the speed control stage rotor blade 12A. Is provided to prevent the flow from the inner surface 71a on the inner side of the dummy ring 71 in the radial direction and the surface 4a of the rotor shaft 4 facing the inner surface 71a toward the dummy seal side.
  • the seal fins 85, 87 have radial outer base end portions 85a, 87a fixed to the inner surface 71a of the dummy ring 71, and the radial inner tip portion.
  • the diameter of the rotor shaft 4 is larger in the second region 402 facing the inner surface 71a of the dummy ring 71 than in the first region 401 in which the above-mentioned stages 7 are arranged. Further, in the embodiment shown in FIG. 11, the diameter of the rotor shaft 4 is configured to be larger than the second region 402 in the dummy seal side of the second region 402, that is, in the third region 403 on the left side of the drawing. You may be.
  • the seal fin 85 faces the surface 4a in the second region 402 of the rotor shaft 4
  • the seal fin 87 faces the surface 4a in the third region 403 of the rotor shaft 4. ..
  • a plurality of swirl breakers 130B are spaced apart from the inner surface 71a of the dummy ring 71 in the circumferential direction on the vehicle interior side of the seal fin 85 arranged to face the surface 4a in the second region 402. May be placed with a space.
  • a plurality of swirl breakers 130C are provided on the inner surface 71a of the dummy ring 71 in the circumferential direction on the vehicle interior side of the seal fin 87 arranged to face the surface 4a in the third region 403. It may be arranged at intervals.
  • the flow guide 110B may be provided so as to project toward the vehicle interior side in a region where the diameter gradually increases from the first region 401 to the second region 402.
  • the flow guide 110B may be formed over the entire circumference in the circumferential direction, or may have a region that is not formed in a part of the circumferential direction.
  • the flow guide 110B is an annular member provided separately from the rotor shaft 4 and may be attached to the rotor shaft 4, so that the rotor shaft 4 itself has the shape of the flow guide 110B as shown in FIG.
  • the rotor shaft 4 may be formed on the surface.
  • the swirl breaker assembly 100 constitutes at least a part of the dummy seal portion 70 in the turbine 1, and is spaced apart from the dummy ring 71 extending in the circumferential direction in the circumferential direction.
  • a plurality of swirl breakers 130B and 130C which are provided on the inner surface 71a of the dummy ring 71 and project in the axial direction are provided.
  • the swirl breaker assembly 100 is arranged at a distance from the inner surface 71a, and is radially inside with respect to the rotor shaft 4 that is rotatable in the circumferential direction and the plurality of swirl breakers 130B.
  • a flow guide 110B that protrudes in the axial direction from the rotor shaft 4 is provided so as to extend along the circumferential direction at a position shifted to.
  • the working fluid that is about to deviate from the main flow path that is, the fluid flow path 65 is the inner surface 71a on the radial inner side of the dummy ring 71 from the fluid flow path 65 and the rotor shaft 4 facing the inner surface 71a. It flows through the gap between the surface 4a and is guided outward in the radial direction by the flow guide 110B as shown by the arrow f in FIG. 11 toward the plurality of swirl breakers 130B. That is, in the embodiment shown in FIG. 11, the working fluid deviated from the fluid flow path 65 is guided to the swirl breaker 130B by the flow guide 110B.
  • the working fluid guided by the swirl breaker 130B is prevented from flowing in the circumferential direction by each of the plurality of swirl breakers 130B even if it has a swirling flow component flowing in the circumferential direction. ..
  • the working fluid is in the radial direction as shown by the arrow g due to the presence of the step portion 405 generated by the difference in diameter between the second region 402 and the third region 403, for example, as shown in FIG. It will be guided to the outside and head toward a plurality of swirl breakers 130C. That is, in the embodiment shown in FIG. 11, the working fluid deviated from the fluid flow path 65 is guided to the swirl breaker 130C by the step portion 405.
  • the working fluid guided by the swirl breaker 130C is prevented from flowing in the circumferential direction by each of the plurality of swirl breakers 130C even if it has a swirling flow component flowing in the circumferential direction. ..
  • the flow guide 110B described above is used.
  • a flow guide (not shown) may be provided so as to project toward the vehicle interior side in a region where the diameter gradually increases from the second region 402 to the third region 403.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

一実施形態に係るスワールブレーカ組立体は、周方向に沿って延在する環状体と、前記周方向に沿って延在するように、前記環状体から軸方向に突出するフローガイドと、前記フローガイドに対して径方向にずれた位置において、前記周方向に間隔を空けて前記環状体に設けられる複数のスワールブレーカと、を備える。

Description

スワールブレーカ組立体及び回転機械
 本開示は、スワールブレーカ組立体及び回転機械に関する。
 発電プラント等に用いられる蒸気タービンやガスタービン等の回転機械が知られている。この回転機械は、ケーシングに対して回転自在なタービンロータ(以下、単にロータとする)に支持された動翼と、ケーシングに支持された静翼とを有し、ロータの軸線方向の上流から下流へと流れる作動流体のエネルギーをロータの回転エネルギーに変換するように構成されている。
 上記回転機械では、ロータ又は動翼とケーシングとの間をシールするシール部において、主流路から逸れた作動流体がノズルを通過した際に与えられた旋回流成分を有したまま流入することにより、ロータの周方向に旋回流(所謂スワール流)が生ずることが知られている。スワール流により、ロータに偏心が発生した場合にロータの周方向にはロータの偏心方向と異なる方向にピークを有する正弦波状の圧力分布が生じ、例えば高出力の運転に伴ってスワール流が増加した際にはロータの自励振動の原因になることがある。このため、シール部におけるスワール流を抑制するための構造が種々考案されており、例えば、特許文献1には、タービン動翼の先端側の部分と回転機械の軸方向において対抗する静止部にタービン動翼側に突出する複数の突部(整流部)を設けた構造が開示されている(特許文献1参照)。
特開2008-184974号公報
 近年、蒸気タービン、ガスタービンなどの回転機械では、タービン効率の向上化のため、ロータ径が小径化され、翼が多段化される傾向にある。したがって、ロータが小径化及び長軸化するため、ロータの自励振動が発生し易くなる傾向にある。そのため、自励振動をより効果的に抑制する対策案が求められている。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、回転機械における自励振動の発生を抑制することを目的とする。
(1)本発明の少なくとも一実施形態に係るスワールブレーカ組立体は、
 周方向に沿って延在する環状体と、
 前記周方向に沿って延在するように、前記環状体から軸方向に突出するフローガイドと、
 前記フローガイドに対して径方向にずれた位置において、前記周方向に間隔を空けて前記環状体に設けられる複数のスワールブレーカと、
を備える。
 上記(1)の構成のスワールブレーカ組立体を、例えば回転機械の動翼の上流側において、以下のように配置する場合を考える。すなわち、上記(1)の構成のスワールブレーカ組立体を、例えばフローガイドが外側シュラウドの径方向外側の外周面よりも径方向内側において、軸方向下流側に向かって突出するように配置する。また、上記(1)の構成のスワールブレーカ組立体を、例えば複数のスワールブレーカがフローガイドよりも径方向外側において軸方向下流側に突出するように配置する。
 例えば蒸気タービンのような回転機械では、外側シュラウドと回転機械のケーシングの内周面との間の空間に主流路から逸れた作動流体が上述したように旋回流成分を有したまま流れ込む。
 上記(1)の構成のスワールブレーカ組立体を上述のように回転機械に配置した場合、主流路から逸れた作動流体は、主流路から上記空間に流れ込む際にフローガイドの径方向外側の面に沿って複数のスワールブレーカに向かって案内される。すなわち、上記(1)の構成によれば、主流路から逸れた作動流体を効率的にスワールブレーカに案内できる。これにより、主流路から逸れた作動流体が有する旋回流成分を複数のスワールブレーカで効率的に抑制できるので、スワール流によるロータの自励振動を効率的に抑制できる。
(2)幾つかの実施形態では、上記(1)の構成において、前記複数のスワールブレーカは、前記径方向の端部が前記フローガイドに接続されている。
 複数のスワールブレーカの該端部がフローガイドに接続されていない場合、主流路から逸れた作動流体の一部については、該端部とフローガイドとの間から周方向に流れることとなり、該端部とフローガイドとが接続されている場合と比べてスワールブレーカによる旋回流成分の抑制効果が減ぜられてしまう。
 これに対して、上記(2)の構成によれば、スワールブレーカによる旋回流成分の抑制効果が高まる。また、上記(2)の構成によれば、周方向から見たときのスワールブレーカの投影面積を増やすことができ、スワールブレーカによる旋回流成分の抑制効果が高まる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記複数のスワールブレーカは、前記フローガイドと前記軸方向に少なくとも部分的にオーバーラップしている。
 上記(3)の構成によれば、複数のスワールブレーカがフローガイドと軸方向にオーバーラップしていることで、主流路から逸れた作動流体がフローガイドによって効率的にスワールブレーカに案内される。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記フローガイドは、前記軸方向への突出端についての前記軸方向の位置が前記軸方向に沿った前記複数のスワールブレーカの基端部と先端部との間に存在する。
 上記(4)の構成によれば、フローガイドの該突出端についての軸方向の位置が軸方向に沿った複数のスワールブレーカの基端部と先端部との間に存在することで、主流路から逸れた作動流体がフローガイドによって効率的にスワールブレーカに案内される。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記フローガイドは、前記径方向における前記複数のスワールブレーカ側を指向する案内面を有する。
 上記(5)の構成によれば、主流路から逸れた作動流体が上記案内面によって効率的にスワールブレーカに案内される。
(6)幾つかの実施形態では、上記(5)の構成において、
 前記環状体は、前記径方向において前記案内面と対向する環状体側対向壁面と、前記案内面と前記環状体側対向壁面とを接続する環状体側壁面とを有し、
 前記複数のスワールブレーカは、前記案内面と前記環状体側壁面と前記環状体側対向壁面との間の空間に存在する。
 上記(6)の構成によれば、主流路から逸れた作動流体がフローガイドによって上記空間に案内される。そして、上記空間に案内された作動流体は、上記空間に存在する複数のスワールブレーカによって旋回流成分が抑制される。これにより、スワールブレーカによる旋回流成分の抑制効果が高まる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、前記複数のスワールブレーカは、前記軸方向に沿った先端部が前記周方向に延在するシールフィンと接続されている。
 複数のスワールブレーカの上記先端部が周方向に延在するシールフィンに接続されていない場合、主流路から逸れた作動流体の一部については、上記先端部とシールフィンとの間から周方向に流れるため、上記先端部とシールフィンとが接続されている場合と比べてスワールブレーカによる旋回流成分の抑制効果が減ぜられてしまう。
 これに対して、上記(7)の構成によれば、スワールブレーカによる旋回流成分の抑制効果が高まる。また、上記(7)の構成によれば、周方向から見たときのスワールブレーカの投影面積を増やすことができ、スワールブレーカによる旋回流成分の抑制効果が高まる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、前記複数のスワールブレーカは、前記軸方向及び前記径方向に沿って延在する板形状を有する。
 上記(8)の構成によれば、複数のスワールブレーカの形状が単純な形状となるので、形成が容易である。
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、前記複数のスワールブレーカは、前記軸方向において基端部に向かうにつれて前記周方向の寸法が漸増する裾広がりとなる形状を有する。
 上記(9)の構成によれば、軸方向におけるスワールブレーカの基端部側の周方向の寸法が大きくなるので、スワールブレーカの周方向への曲げ強度が向上する。また、スワールブレーカの基端部側の形状が裾広がり形状となるので、環状体においてスワールブレーカを例えば削り出しによって形成する場合に形成し易くなる。
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの構成において、前記複数のスワールブレーカは、前記軸方向における先端側の領域において前記径方向に見たときに前記フローガイド側の方が前記周方向の厚さが薄い。
 上記(10)の構成のスワールブレーカ組立体を、例えば回転機械の動翼の上流側において、以下のように配置する場合を考える。すなわち、上記(10)の構成のスワールブレーカ組立体を、例えばフローガイドが外側シュラウドの径方向外側の外周面よりも径方向内側において、軸方向下流側に向かって突出するように配置する。また、上記(10)の構成のスワールブレーカ組立体を、例えば複数のスワールブレーカがフローガイドよりも径方向外側において軸方向下流側に突出するように配置する。
 上記(10)の構成のスワールブレーカ組立体を上述のように回転機械に配置した場合、スワールブレーカにおいて、軸方向における先端側の領域において径方向に見たときにフローガイド側の部位は、動翼の径方向外側の端部に近い位置に配置される。そのため、回転機械の運転による熱伸び等によって該部位と動翼の径方向外側の端部とが接触するおそれがある。
 上記(10)の構成によれば、該部位の周方向の厚さが他の部位と同等であった場合と比べると、仮に、該部位と動翼の径方向外側の端部とが接触してしまっても、動翼に与える影響を抑制できる。
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、前記複数のスワールブレーカは、前記周方向に等間隔で離間して設けられている。
 回転機械への作動流体の送入量が変動すると、主流路から逸れた作動流体の流れも変化するため、環状体に設けられる複数のスワールブレーカを周方向に沿って不均等に配置するよりも均等に配置することが望ましい。したがって、上記(11)の構成によれば、複数のスワールブレーカにおける周方向に沿った配置位置が適切となる。
(12)本発明の少なくとも一実施形態に係る回転機械は、
 上記(1)乃至(11)の何れかの構成のスワールブレーカ組立体と、
 ケーシング内で軸線周りに回転するロータディスクと、
 前記ロータディスクに取り付けられた複数の動翼本体と、
 前記複数の動翼本体の各々の先端部に連なる外側シュラウドと、
を備える。
 上記(12)の構成によれば、上記(1)乃至(11)の何れかの構成のスワールブレーカ組立体を備えるので、スワール流によるロータの自励振動を効率的に抑制できる。
(13)幾つかの実施形態では、上記(12)の構成において、
 前記フローガイドは、前記動翼本体よりも軸方向上流側、且つ、前記外側シュラウドの径方向外側の外周面よりも径方向内側において、軸方向下流側に向かって突出し、
 前記複数のスワールブレーカは、前記フローガイドよりも前記径方向外側において前記軸方向下流側に突出する。
 上記(13)の構成によれば、主流路から逸れた作動流体は、主流路から外側シュラウドと回転機械のケーシングの内周面との間の空間に流れ込む際にフローガイドの径方向外側の面に沿って複数のスワールブレーカに向かって案内される。すなわち、上記(13)の構成によれば、主流路から逸れた作動流体を効率的にスワールブレーカに案内できる。これにより、主流路から逸れた作動流体が有する旋回流成分を複数のスワールブレーカで効率的に抑制できるので、スワール流によるロータの自励振動を効率的に抑制できる。
(14)幾つかの実施形態では、上記(12)又は(13)の構成において、前記フローガイドは、径方向内側の面が前記回転機械における流体の流路の一部を形成していてもよい。
(15)幾つかの実施形態では、上記(12)乃至(14)の何れかの構成において、前記複数のスワールブレーカは、前記外側シュラウドよりも径方向外側において、該外側シュラウドと前記軸方向に重なる重複領域を有する。
 上記(15)の構成によれば、上記重複領域を有していない場合と比べて、周方向から見たときのスワールブレーカの投影面積を増やすことができ、スワールブレーカによる旋回流成分の抑制効果が高まる。
(16)幾つかの実施形態では、上記(15)の構成において、前記重複領域において前記複数のスワールブレーカと前記外側シュラウドの径方向外側の外周面との隙間は、前記外周面よりも前記径方向外側に設けられていて前記周方向に延在するシールフィンと前記外周面との隙間よりも大きい。
 上記(16)の構成によれば、スワールブレーカと外側シュラウドとが接触し難くなる。
(17)幾つかの実施形態では、上記(12)乃至(16)の何れかの構成において、前記スワールブレーカ組立体は、前記回転機械における調速段に設けられる。
 上記(17)の構成によれば、スワール流による自励振動が発生し易い調速段において、自励振動の発生を抑制できる。
(18)本発明の少なくとも一実施形態に係るスワールブレーカ組立体は、
 静翼の径方向内側の端部に接続されていて周方向に沿って延在する環状体と、
 前記環状体に対して前記周方向に回転可能な回転部材と、
 前記周方向に間隔を空けて前記環状体に設けられる複数のスワールブレーカと、
 前記複数のスワールブレーカに対して径方向外側にずれた位置において、前記周方向に沿って延在するように、前記回転部材から軸方向に突出するフローガイドと、
を備える。
 例えば蒸気タービンのような回転機械では、上記環状体と環状体に対して周方向に回転可能な回転部材であるロータシャフトの表面との間の空間に主流路から逸れた作動流体が上述したような旋回流成分を有したまま流れ込むことが考えられる。
 上記(18)の構成によれば、主流路から逸れようとする作動流体は、主流路から上記空間に流れ込む前にフローガイドの径方向外側の面に沿って軸方向に案内される。そのため、作動流体は、主流路から逸れ難くなる。
 フローガイドの径方向外側の面に沿って軸方向に案内された後に主流路から逸れた作動流体は、複数のスワールブレーカに向かうこととなる。すなわち、主流路から逸れた作動流体はスワールブレーカに案内されることとなる。これにより、主流路から逸れた作動流体が有する旋回流成分を複数のスワールブレーカで効率的に抑制できるので、スワール流によるロータの自励振動を効率的に抑制できる。
(19)本発明の少なくとも一実施形態に係るスワールブレーカ組立体は、
 タービンにおけるダミーシール部の少なくとも一部を構成し、周方向に沿って延在するダミー環と、
 前記周方向に間隔を空けて前記ダミー環の内面に設けられ、軸方向に突出する複数のスワールブレーカと、
を備える。
 例えば蒸気タービンのような回転機械では、主流路から逸れた作動流体が上述したような旋回流成分を有したままダミー環の内面と、この内面と対向するロータシャフトの表面との間の隙間を流れることが考えられる。
 上記(19)の構成によれば、周方向に間隔を空けてダミー環の内面に設けられ、軸方向に突出する複数のスワールブレーカによって主流路から逸れた作動流体が周方向に流れることが阻害される。これにより、主流路から逸れた作動流体が有する旋回流成分を複数のスワールブレーカで効率的に抑制できるので、スワール流によるロータの自励振動を効率的に抑制できる。
(20)幾つかの実施形態では、上記(19)の構成において、
 前記内面と間隔を空けて配置され、前記周方向に回転可能なロータシャフトと、
 前記複数のスワールブレーカに対して径方向内側にずれた位置において、前記周方向に沿って延在するように、前記ロータシャフトから前記軸方向に突出するフローガイドと、
をさらに備える。
 上記(20)の構成によれば、主流路から逸れた作動流体は、ダミー環の内面とロータシャフトの表面との間の隙間を流れると、フローガイドによって径方向外側に案内されて、複数のスワールブレーカに向かうこととなる。これにより、主流路から逸れた作動流体が有する旋回流成分を複数のスワールブレーカで効率的に抑制できるので、スワール流によるロータの自励振動を効率的に抑制できる。
(21)本発明の少なくとも一実施形態に係る回転機械は、上記(18)乃至(20)の何れかの構成のスワールブレーカ組立体を備える。
 上記(21)の構成によれば、上記(18)乃至(20)の何れかの構成のスワールブレーカ組立体を備えるので、スワール流によるロータの自励振動を効率的に抑制できる。
 本発明の少なくとも一実施形態によれば、回転機械における自励振動の発生を抑制できる。
幾つかの実施形態に係るスワールブレーカ組立体を備えるタービンの模式的な断面図である。 図1におけるA部について拡大した斜視図である。 図2におけるIII矢視図である。 一実施形態に係るスワールブレーカ組立体を説明するための図である。 他の実施形態に係るスワールブレーカ組立体を説明するための図である。 さらに他の実施形態に係るスワールブレーカ組立体を説明するための図である。 さらに他の実施形態に係るスワールブレーカ組立体を説明するための図である。 さらに他の実施形態に係るスワールブレーカ組立体を説明するための図である。 さらに他の実施形態に係るスワールブレーカ組立体を説明するための図である。 軸方向に沿って隣り合う2つの段のうち軸方向上流側の段における動翼と、軸方向下流側の段における静翼とを模式的に示した図である。 調速段よりも軸方向上流側におけるタービンの構造を模式的に示した断面図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、幾つかの実施形態に係るスワールブレーカ組立体を備えるタービンの模式的な断面図である。
 図1に示すように、幾つかの実施形態に係るタービン1は、いわゆる軸流タービンであって、ケーシング2と、ロータシャフト4と、ロータシャフト4に固定されたロータディスク6と、調速段ノズル8と、動翼12と、静翼14とを備えている。
 なお、以下の説明では、ロータシャフト4の延在方向を単に軸方向とも呼び、ロータシャフト4の周方向を単に周方向とも呼ぶ。また、軸方向に関し、ケーシング2内での作動流体の主たる流れの軸方向に沿った向きを下流方向、又は下流側とも呼び、該下流方向とは反対方向を上流方向、又は上流側とも呼ぶ。図1においては、図示右側が下流側であり、図示左側が上流側である。
 また、以下の説明では、ロータシャフト4の径方向を単に径方向とも呼ぶ。径方向のうち、ロータシャフト4の軸線AXに近づく方向を径方向内側とし、ロータシャフト4の軸線AXから遠ざかる方向を径方向外側とする。
 ロータディスク6の外周部には、周方向に間隔を空けて複数の動翼12が取り付けられている。動翼12は、動翼本体121と、複数の動翼本体121の各々の先端部に連なる外側シュラウド123とを有する。ロータディスク6と、該ロータディスク6に取り付けられた複数の動翼12とによって動翼段30が形成されている。
 静翼14は、周方向に間隔を空けて複数配置された状態で、径方向内側の端部が内周リング16の外周面に取り付けられ、径方向外側の端部が外周リング18の内周面に取り付けられている。内周リング16と、外周リング18と、各リング16、18に取り付けられた複数の静翼14とを含む静翼環22によって静翼段40が形成されている。
 幾つかの実施形態に係るタービン1では、動翼段30と静翼段40とが軸方向に沿って交互に配置されている。なお、図1では、調速段ノズル8の直下流側に配置された調速段動翼12Aを含む動翼段31と、該動翼段31の直下流側に配置された第1静翼段41と、第1静翼段41の直下流側に配置された第1動翼段32とが図示されている。
 幾つかの実施形態に係るタービン1では、動翼段30と、この動翼段30の軸方向上流側に隣接配置されている静翼段40との組毎に、一つの段7が形成されている。
 幾つかの実施形態に係るタービン1では、複数の段7のうち、最上流の段7が、調速段7aを成している。調速段7aは、この調速段7aよりも軸方向下流側の段7へ送られる作動流体の流量を調節してロータシャフト4の回転数を調整する。
 調速段ノズル8は、ケーシング2に固定された入口部54に支持され、作動流体(蒸気、燃焼ガス)を送入する。
 図1に示した幾つかの実施形態に係るタービン1では、ケーシング2に固定された作動流体供給管52を経て、入口部54内に流入した作動流体は、調速段ノズル8および調速段動翼12Aへ流入し、膨張仕事を行う。次いで作動流体は下流側の静翼段40および動翼段30へ流入し、膨張仕事を行う。これにより、ロータシャフト4が回転駆動される。
 図1に示した幾つかの実施形態に係るタービン1では、主流路から逸れた作動流体が動翼12の外側シュラウド123の外周面123aとケーシング2との間の隙間から下流側に向かって流れることを抑制するためのシールフィン81が設けられている。図1に示した幾つかの実施形態に係るタービン1では、後述する図4~9に示すように、シールフィン81は、径方向外側の基端部81aがケーシング2側に固定され、径方向内側の先端部81bが外側シュラウド123の外周面と間隔を空けて対向している。
 幾つかの実施形態では、動翼12とケーシング2との間をシールするシール部80は、シールフィン81と外側シュラウド123とを含む。
 幾つかの実施形態では、調速段7aにおけるシールフィン81の基端部81aは、入口部54において調速段動翼12Aの外側シュラウド123と径方向で対向する内周面54aに固定されているが、入口部54とは異なる部材に固定されていてもよい。
 幾つかの実施形態では、第1動翼段32についてのシールフィン81の基端部81aは、外周リング18において動翼12の外側シュラウド123と径方向で対向する内周面18aに固定されているが、外周リング18とは異なる部材に固定されていてもよい。
 幾つかの実施形態では、シールフィン81は、外側シュラウド123に対して少なくとも1つ以上設けられている。図1に例示的に示した実施形態では、シールフィン81は、外側シュラウド123に対して軸方向に沿って互いに離間して2つ設けられている。
(タービン1における自励振動について)
 上述したように、タービン1のような軸流回転機械では、ロータシャフト4又は動翼12とケーシング2との間をシールするシール部において、主流路から逸れた作動流体が調速段ノズル8や静翼14を通過した際に与えられた旋回流成分を有したまま流入することにより、周方向に旋回流(所謂スワール流)が生ずることが知られている。スワール流により、ロータシャフト4に偏心が発生した場合にロータシャフト4の周方向にはロータシャフト4の偏心方向と異なる方向にピークを有する正弦波状の圧力分布が生じ、例えば高出力の運転に伴ってスワール流が増加した際にはロータシャフト4の自励振動の原因になることがある。このため、シール部におけるスワール流を抑制するための構造が種々考案されている。
 しかし、近年、蒸気タービン、ガスタービンなどの軸流回転機械では、タービン効率の向上化のため、ロータ径が小径化され、翼が多段化される傾向にある。したがって、ロータシャフト4が小径化及び長軸化するため、ロータシャフト4の自励振動が発生し易くなる傾向にある。そのため、自励振動をより効果的に抑制する対策案が求められている。
 そこで、幾つかの実施形態では、次のようにしてスワール流を抑制することで、ロータシャフト4の自励振動を抑制するようにしている。以下、詳細に説明する。
 図2は、図1において破線で囲んだA部、すなわち、入口部54と調速段動翼12Aとが対向する部位のうち、入口部54側について拡大した斜視図である。なお、図2では、調速段動翼12Aの記載を省略している。
 図3は、図2におけるIII矢視図であり、入口部54を軸方向下流側から見た図である。
 図4は、一実施形態に係るスワールブレーカ組立体を説明するための図であり、図1において破線で囲んだA部についての図である。
 図5は、他の実施形態に係るスワールブレーカ組立体を説明するための図であり、図4に相当する図である。
 図6は、さらに他の実施形態に係るスワールブレーカ組立体を説明するための図であり、図4に相当する図である。
 図7は、さらに他の実施形態に係るスワールブレーカ組立体を説明するための図であり、図4に相当する図である。
 図8は、さらに他の実施形態に係るスワールブレーカ組立体を説明するための図であり、図4に相当する図である。
 図9は、さらに他の実施形態に係るスワールブレーカ組立体を説明するための図であり、図4に相当する図である。
 入口部54は、周方向に沿って延在する環状の部材である。以下の説明では、入口部54のうち、調速段ノズル8よりも軸方向下流側、且つ、調速段ノズル8よりも径方向外側の領域を含む部位を環状体56とも呼ぶ。
 図2~9に示すように、幾つかの実施形態では、環状体56から軸方向下流側に突出するフローガイド110が形成されている。幾つかの実施形態では、フローガイド110は、動翼本体121よりも軸方向上流側、且つ、外側シュラウド123の径方向外側の外周面123aよりも径方向内側において、軸方向下流側に向かって突出している。
 幾つかの実施形態では、入口部54は、作動流体が流れる流体流路65を形成する内周面54bを有する。内周面54bは、調速段ノズル8よりも径方向外側において流体流路65を形成する。
 幾つかの実施形態では、内周面54bの下流側の領域は、フローガイド110における径方向内側の内周面111である。すなわち、図2~9に示すように、幾つかの実施形態では、フローガイド110の径方向内側を向いた内周面111がタービン1における流体流路65の一部を形成する。
 図2~9に示すように、幾つかの実施形態では、フローガイド110は、径方向における後述する複数のスワールブレーカ側を指向する案内面115を有する。なお、図2~9に示す実施形態では、案内面115は、径方向外側を指向する。図2~9に示す実施形態では、案内面115は、軸方向上流側に向かうにつれて径方向外側に向かうように傾斜した円錐面を有するが、軸方向上流側の領域と下流側の領域とで径が等しい円柱面を有していてもよく、軸方向上流側に向かうにつれて径方向内側に向かうように傾斜した円錐面を有していてもよい。なお、フローガイド110は、周方向の全周にわたって形成されていてもよく、周方向の一部において形成されていない領域があってもよい。
 図2~9に示すように、幾つかの実施形態では、環状体56は、径方向において案内面115と対向する環状体側対向壁面57と、案内面115と環状体側対向壁面57とを接続する環状体側壁面58とを有する。
 なお、図2~9に示すように、幾つかの実施形態では、環状体側対向壁面57は、入口部54において調速段動翼12Aの外側シュラウド123と径方向で対向する内周面54aである。
 図2~9に示すように、幾つかの実施形態では、環状体側壁面58は、案内面115と環状体側対向壁面57との間で径方向及び周方向に延在する面であるが、径方向外側に向かうにつれて軸方向上流側又は下流側へ向かうように径方向に対して傾斜いていてもよい。環状体側壁面58は、フローガイド110の軸方向への突出端113よりも軸方向上流側に位置している。
 図2~9に示すように、幾つかの実施形態では、案内面115と環状体側壁面58と環状体側対向壁面57との間に空間が形成されており、この空間をキャビティ67と称する。
 図2~9に示すように、幾つかの実施形態では、フローガイド110に対して径方向にずれた位置において、複数のスワールブレーカ130が周方向に間隔を空けて環状体56に設けられる。より具体的には、複数のスワールブレーカ130のそれぞれは、フローガイド110よりも径方向外側において軸方向下流側に突出している。図2~9に示すように、幾つかの実施形態では、複数のスワールブレーカ130のそれぞれは、少なくともその一部が案内面115と環状体側壁面58と環状体側対向壁面57との間のキャビティ67に存在する。
図2~9に示すように、幾つかの実施形態では、複数のスワールブレーカ130のそれぞれは、軸方向及び径方向に沿って延在する板形状を有する。
 これにより、スワールブレーカ130の形状が単純な形状となるので、形成が容易である。なお、スワールブレーカ130の形状は上述したような板形状に限定されず、柱状であってもよい。
 上述したフローガイド110と、複数のスワールブレーカ130とを含む環状体56をスワールブレーカ組立体100とも呼ぶ。
 図1に示すように、幾つかの実施形態では、スワールブレーカ組立体100は、調速段7a及び調速段7aよりも下流側の段7に設けられている。なお、スワールブレーカ組立体100は、少なくとも各段7のうちの何れか一つに設けられていてもよい。
 なお、調速段7aよりも下流側の段7に設けられたスワールブレーカ組立体100Bでは、入口部54に代えて外周リング18にフローガイド110と、複数のスワールブレーカ130とが設けられている。
 以下の説明では、調速段7aに設けられたスワールブレーカ組立体100Aと、調速段7aよりも下流側の段7に設けられたスワールブレーカ組立体100Bとでは、基本的な構成が同じであるため、調速段7aに設けられたスワールブレーカ組立体100Aについて詳述し、調速段7aよりも下流側の段7に設けられたスワールブレーカ組立体100Bについての説明を省略する。なお、以下の説明では、調速段7aに設けられたスワールブレーカ組立体100Aと、調速段7aよりも下流側の段7に設けられたスワールブレーカ組立体100Bとで特に区別する必要がない場合には、単に符号の数字の後のアルファベットの記載を省略して、単に、スワールブレーカ組立体100と表記する。
 図2~9に示す幾つかの実施形態では、図4における矢印aで示すように、主流路すなわち流体流路65から逸れた作動流体は、流体流路65から上記キャビティ67を含む外側シュラウド123とケーシング2の内周面との間の空間に流れ込む際に、図4における矢印bで示すようにフローガイド110の径方向外側の面である案内面115に沿って案内される。案内面115に沿って案内された作動流体は、図4における矢印cで示すように、複数のスワールブレーカ130に向かって案内される。すなわち、図2~9に示す幾つかの実施形態では、流体流路65から逸れた作動流体を効率的にスワールブレーカ130に案内できる。
 図2~9に示す幾つかの実施形態では、上記キャビティ67に流れ込んだ作動流体は、周方向に流れる旋回流成分を有するため、キャビティ67内で径方向外側に流れつつも周方向に沿って流れる。図2~9に示す幾つかの実施形態では、複数のスワールブレーカ130の各々は、キャビディ67内で軸方向に突出しているので、作動流体が周方向に流れることを阻害する。
 図2~9に示す幾つかの実施形態では、上述したように、流体流路65から逸れた作動流体を効率的にスワールブレーカ130に案内できるので、流体流路65から逸れた作動流体が有する旋回流成分を複数のスワールブレーカ130で効率的に抑制できる。これにより、スワール流によるロータシャフト4の自励振動を効率的に抑制できる。
 上述したように、図2~9に示す幾つかの実施形態では、フローガイド110が案内面115を有するので、主流路から逸れた作動流体が案内面115によって効率的にスワールブレーカ130に案内される。
 以下、図2~9の各図を参照して、幾つかの実施形態に係るスワールブレーカ130についてさらに説明する。
 図2~4、図6、図7、及び図9に示す幾つかの実施形態では、スワールブレーカ130の径方向内側の端部131は、フローガイド110の案内面115から離間している。
 これに対して、図5及び図8に示す実施形態に係るスワールブレーカ130は、径方向内側の端部131がフローガイド110の案内面115に接続されている。
 複数のスワールブレーカ130の端部131がフローガイド110に接続されていない場合、主流路から逸れた作動流体の一部については、端部131とフローガイド110の案内面115との間から周方向に流れることとなる。
 これに対して、図5及び図8に示す実施形態に係るスワールブレーカ130では、上述したように径方向内側の端部131がフローガイド110の案内面115に接続されているので、端部131とフローガイド110の案内面115との間から作動流体の一部が周方向に流れることを抑制でき、スワールブレーカ130による旋回流成分の抑制効果が高まる。また、図5及び図8に示す実施形態に係るスワールブレーカ130では、周方向から見たときのスワールブレーカ130の投影面積を増やすことができ、スワールブレーカ130による旋回流成分の抑制効果が高まる。
 図2~9に示す幾つかの実施形態に係るスワールブレーカ130は、径方向外側の端部132が環状体側対向壁面57に接続されている。なお、図2~9に示す幾つかの実施形態において、スワールブレーカ130は、径方向外側の端部132が環状体側対向壁面57と離間していてもよい。
 図2~9に示す幾つかの実施形態に係るスワールブレーカ130は、フローガイド110と軸方向に少なくとも部分的にオーバーラップしている。
 このように、スワールブレーカ130がフローガイド110と軸方向にオーバーラップしていることで、主流路から逸れた作動流体がフローガイド110によって効率的にスワールブレーカ130に案内される。
 図5及び図7に示す実施形態では、スワールブレーカ130の軸方向に沿った先端部133は、フローガイド110の軸方向への突出端113よりも軸方向上流側に位置している。
 これに対し、図2~4、図6、図8、及び図9に示す幾つかの実施形態では、スワールブレーカ130の先端部133は、フローガイド110の突出端113よりも軸方向下流側に位置している。すなわち、図2~4、図6、図8、及び図9に示す幾つかの実施形態では、フローガイド110は、軸方向への突出端113についての軸方向の位置が軸方向に沿ったスワールブレーカ130の基端部134と先端部133との間に存在する。
 このように、フローガイド110の突出端113についての軸方向の位置がスワールブレーカ130の基端部134と先端部133との間に存在する場合、突出端113の径方向外側にはスワールブレーカ130の基端部134と先端部133との間の領域が存在することとなる。したがって、主流路から逸れた作動流体が周方向に流れながらフローガイド110の突出端113から径方向外側に流れると、スワールブレーカ130の側面、すなわち、スワールブレーカ130の基端部134と先端部133との間の領域に到達することとなる。したがって、図2~4、図6、図8、及び図9に示す幾つかの実施形態によれば、主流路から逸れた作動流体がフローガイド110によって効率的にスワールブレーカ130に案内される。
 なお、図8に示す実施形態のように、先端部133の軸方向における位置が径方向の位置によって異なっていてもよい。
 上述したように、図2~9に示す幾つかの実施形態では、複数のスワールブレーカ130がキャビティ67に存在するので、キャビティ67に案内された作動流体は、キャビティ67に存在する複数のスワールブレーカ130によって旋回流成分が抑制される。これにより、スワールブレーカ130による旋回流成分の抑制効果が高まる。
 図2~5、及び図7~9に示す幾つかの実施形態では、スワールブレーカ130の先端部133は、シールフィン81と離間している。
 これに対して図6に示す実施形態では、スワールブレーカ130は、先端部133が周方向に延在するシールフィン81と接続されている。
 図2~5、及び図7~9に示す幾つかの実施形態のように、スワールブレーカ130の先端部133がシールフィン81に接続されていない場合、主流路から逸れた作動流体の一部については、先端部133とシールフィン81との間から周方向に流れるため、先端部133とシールフィン81とが接続されている場合と比べてスワールブレーカ130による旋回流成分の抑制効果が減ぜられてしまう。
 これに対して、図6に示す実施形態によれば、スワールブレーカ130による旋回流成分の抑制効果が高まる。また、図6に示す実施形態によれば、周方向から見たときのスワールブレーカ130の投影面積を増やすことができ、スワールブレーカ130による旋回流成分の抑制効果が高まる。
 図2~9に示す幾つかの実施形態では、例えば図4及び図9に示すように、スワールブレーカ130は、軸方向において基端部134に向かうにつれて周方向の寸法が漸増する裾広がりとなる形状を有する。すなわち、図2~9に示す幾つかの実施形態では、例えば図4及び図9に示すように、スワールブレーカ130の基端部134には、環状体側壁面58となだらかに接続される曲面を有する接続部134aが形成されている。
 これにより、スワールブレーカ130の基端部134側の周方向の寸法が大きくなるので、スワールブレーカ130の周方向への曲げ強度が向上する。また、スワールブレーカ130の基端部134側の形状が裾広がり形状となるので、環状体56においてスワールブレーカ130を例えば削り出しによって形成する場合に形成し易くなる。
 なお、幾つかの実施形態に係るスワールブレーカ130において、径方向外側の端部132と環状体側対向壁面57との接続部や、径方向内側の端部131と案内面115との接続部を上述した接続部134aと同様に形成してもよい。
 図5及び図7に示す実施形態では、スワールブレーカ130は、軸方向において外側シュラウド123と重なっていない。
 これに対し、図4、図6、図8、及び図9に示す実施形態では、スワールブレーカ130は、外側シュラウド123よりも径方向外側において、該外側シュラウド123と軸方向に重なる重複領域137を有する。
 これにより、図5及び図7に示す実施形態のように重複領域137を有していない場合と比べて、周方向から見たときのスワールブレーカ130の投影面積を増やすことができ、スワールブレーカ130による旋回流成分の抑制効果が高まる。
 図4、図6、図8、及び図9に示す実施形態では、重複領域137においてスワールブレーカ130と外側シュラウド123の径方向外側の外周面123aとの隙間69aは、シールフィン81と外周面123aとの隙間69bよりも大きい。
 これにより、スワールブレーカ130と外側シュラウド123とが接触し難くなる。
 図9に示す実施形態では、スワールブレーカ130は、軸方向における先端側の領域において径方向に見たときにフローガイド110側の方が周方向の厚さが薄い。すなわち、図9に示す実施形態に係るスワールブレーカ130は、軸方向における下流側の領域であって径方向内側の端部131の近傍において、他の領域よりも周方向の厚さが薄い薄肉部139を有する。
 スワールブレーカ130の部位のうち、軸方向における先端側の領域において径方向に見たときにフローガイド110側の部位は、動翼12の径方向外側の端部である外側シュラウド123に近い位置に配置される。そのため、タービン1の運転による熱伸び等によって該部位と外側シュラウド123とが接触するおそれがある。
 その点、図9に示す実施形態に係るスワールブレーカ130では、該部位に薄肉部139が設けられている。これにより、該部位の周方向の厚さが他の部位と同等であった場合と比べると、仮に、該部位と外側シュラウド123とが接触してしまっても、動翼12に与える影響を抑制できる。
 なお、薄肉部139は、軸方向に沿って上記重複領域137を含むように形成されているとよい。
 図2~9に示す幾つかの実施形態では、複数のスワールブレーカ130は、周方向に等間隔で離間して設けられているとよい。
 タービン1への作動流体の送入量が変動すると、主流路から逸れた作動流体の流れも変化するため、環状体56に設けられる複数のスワールブレーカ130を周方向に沿って不均等に配置するよりも均等に配置することがスワール流の抑制の点で望ましい。したがって、図2~9に示す幾つかの実施形態によれば、複数のスワールブレーカ130における周方向に沿った配置位置が適切となる。
 図2~9に示す幾つかの実施形態のうちのいずれかのスワールブレーカ組立体100は、調速段7aに設けられるとよい。
 これにより、スワール流による自励振動が発生し易い調速段7aにおいて、自励振動の発生を抑制できる。
 なお、図2~9に示す幾つかの実施形態のうちのいずれかのスワールブレーカ組立体100は、既設のタービン1の補修時に既設のタービン1に取り付けてもよい。この場合、図2~9に示す幾つかの実施形態のうちのいずれかのスワールブレーカ組立体100を、既設のタービン1の動翼12の上流側において、以下のように配置するとよい。すなわち、図2~9に示す幾つかの実施形態のうちのいずれかのスワールブレーカ組立体100を、例えばフローガイド110が外側シュラウド123の外周面123aよりも径方向内側において、軸方向下流側に向かって突出するように配置するとよい。また、図2~9に示す幾つかの実施形態のうちのいずれかのスワールブレーカ組立体100を、例えば複数のスワールブレーカ130がフローガイド110よりも径方向外側において軸方向下流側に突出するように配置するとよい。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、上述した幾つかの実施形態では、上述したスワールブレーカ組立体100を動翼12とケーシング2との間をシールするシール部80に適用した。しかし、ロータシャフト4とケーシング2との間(ロータシャフト4と静翼14との間)をシールするシール部に上述したスワールブレーカ組立体100を適用してもよい。例えば、入口部54のうち、調速段ノズル8の径方向内側の端部が接続された環状の部位における軸方向下流側の面54c(図1参照)に、上述したフローガイド110及び複数のスワールブレーカ130を設けてもよい。また、例えば、静翼14の径方向内側の端部に接続された内周リング16において、軸方向下流側の面16c(図1参照)に上述したフローガイド110及び複数のスワールブレーカ130を設けてもよい。
 図10は、軸方向に沿って隣り合う2つの段7のうち軸方向上流側の段7における動翼12と、軸方向下流側の段7における静翼14とを模式的に示した図である。
 例えば、図10に示すように、静翼段40における内周リング16とロータシャフト4の表面4aとの間の隙間を流れるスワール流を抑制するために、フローガイド110Aとスワールブレーカ130Aとを設けてもよい。
 図10に示すように、幾つかの実施形態に係るタービン1では、主流路から逸れた作動流体が静翼段40における内周リング16の径方向内側の内周面16aと、この内周面16aと対向するロータシャフト4の表面4aとの間の隙間から下流側に向かって流れることを抑制するためのシールフィン83が設けられている。図10に示した幾つかの実施形態に係るタービン1では、シールフィン83は、径方向外側の基端部83aが内周リング16の内周面16aに固定され、径方向内側の先端部83bがロータシャフト4の表面4aと間隔を空けて対向している。
 図10に示す実施形態では、フローガイド110Aは、ロータディスク6における下流側の面6aにおいて、軸方向下流側に向かって突出するように形成されている。図10に示す実施形態では、フローガイド110Aは、周方向の全周にわたって形成されていてもよく、周方向の一部において形成されていない領域があってもよい。また、図10に示す実施形態では、フローガイド110Aは、動翼12における翼型部の基端部分が接続されている不図示のプラットフォームに形成されていてもよい。
 図10に示す実施形態では、フローガイド110Aに対して径方向にずれた位置において、複数のスワールブレーカ130Aが周方向に間隔を空けて内周リング16の軸方向上流側の側面16bに設けられる。より具体的には、複数のスワールブレーカ130Aのそれぞれは、フローガイド110Aよりも径方向内側において軸方向上流側に突出している。
 すなわち、図10に示す実施形態では、スワールブレーカ組立体100は、静翼14の径方向内側の端部に接続されていて周方向に沿って延在する環状体である内周リング16を備える。図10に示す実施形態では、スワールブレーカ組立体100は、内周リング16に対して周方向に回転可能な回転部材であるロータシャフト4を備える。図10に示す実施形態では、スワールブレーカ組立体100は、周方向に間隔を空けて内周リング16に設けられる複数のスワールブレーカ130Aを備える。図10に示す実施形態では、スワールブレーカ組立体100は、複数のスワールブレーカ130Aに対して径方向外側にずれた位置において、周方向に沿って延在するように、ロータシャフト4から軸方向に突出するフローガイド110Aを備える。
 図10に示す実施形態では、主流路すなわち流体流路65から逸れようとする作動流体は、流体流路65から内周リング16の径方向内側の内周面16aとロータシャフト4の表面4aとの間の隙間に流れ込む前に、図10における矢印dで示すようにフローガイド110Aの径方向外側の面である案内面115Aに沿って軸方向下流側に案内される。そのため、作動流体は、軸方向下流側の段7における静翼14に向かって案内されるので、流体流路65から逸れ難くなる。
 案内面115Aに沿って軸方向下流側に案内された後に流体流路65から逸れた作動流体は、矢印eで示すように、複数のスワールブレーカ130Aに向かうこととなる。すなわち、図10に示す実施形態では、流体流路65から逸れた作動流体はスワールブレーカ130Aに案内されることとなる。
 図10に示す実施形態では、スワールブレーカ130Aに案内された作動流体は、周方向に流れる旋回流成分を有していても、複数のスワールブレーカ130Aの各々によって周方向に流れることが阻害される。
 図11は、調速段7aよりも軸方向上流側におけるタービン1の構造を模式的に示した断面図である。幾つかの実施形態に係るタービン1では、調速段7aよりも軸方向上流側においてダミーシール部70が設けられている。ダミーシール部70は、ダミー環71と、シールフィン85、87とを含む。以下の説明では、これまで軸方向上流側と呼んでいた図示左方向をダミーシール側とも呼び、軸方向下流側と呼んでいた図示右方向を車室側とも呼ぶ。
 図11に示すように、幾つかの実施形態に係るタービン1では、シールフィン85、87は、調速段ノズル8と調速段動翼12Aとの間の流体流路65から逸れた作動流体がダミー環71の径方向内側の内面71aと、この内面71aと対向するロータシャフト4の表面4aとの間の隙間からダミーシール側に向かって流れることを抑制するために設けられている。図11に示した幾つかの実施形態に係るタービン1では、シールフィン85、87は、径方向外側の基端部85a、87aがダミー環71の内面71aに固定され、径方向内側の先端部85b、87bがロータシャフト4の表面4aと間隔を空けて対向している。
 なお、図11に示した実施形態では、ロータシャフト4の直径は、ダミー環71の内面71aと対向する第2領域402において、上述した各段7が配置された第1領域401よりも大きい。また、図11に示した実施形態では、ロータシャフト4の直径は、第2領域402よりもダミーシール側、すなわち図示左側の第3領域403において、第2領域402よりも大きくなるように構成されていてもよい。図11に示した実施形態では、シールフィン85は、ロータシャフト4の第2領域402において表面4aと対向し、シールフィン87は、ロータシャフト4の第3領域403において表面4aと対向している。
 図11に示した実施形態では、第2領域402において表面4aと対向して配置されたシールフィン85よりも車室側において、ダミー環71の内面71aに複数のスワールブレーカ130Bを周方向に間隔を空けて配置してもよい。
 また、図11に示した実施形態では、第3領域403において表面4aと対向して配置されたシールフィン87よりも車室側において、ダミー環71の内面71aに複数のスワールブレーカ130Cを周方向に間隔を空けて配置してもよい。
 図11に示した実施形態では、ロータシャフト4において、第1領域401から第2領域402にかけて径が漸増する領域に車室側に向かって突出するようフローガイド110Bを設けてもよい。図11に示す実施形態では、フローガイド110Bは、周方向の全周にわたって形成されていてもよく、周方向の一部において形成されていない領域があってもよい。フローガイド110Bは、ロータシャフト4とは別に設けられた環状の部材であってロータシャフト4に取り付けられていてもよく、ロータシャフト4自体が図11に示すようなフローガイド110Bの形状を有するようにロータシャフト4を形成してもよい。
 すなわち、図11に示した実施形態では、スワールブレーカ組立体100は、タービン1におけるダミーシール部70の少なくとも一部を構成し、周方向に沿って延在するダミー環71と、周方向に間隔を空けてダミー環71の内面71aに設けられ、軸方向に突出する複数のスワールブレーカ130B、130Cとを備える。
 また、図11に示した実施形態では、スワールブレーカ組立体100は、内面71aと間隔を空けて配置され、周方向に回転可能なロータシャフト4と、複数のスワールブレーカ130Bに対して径方向内側にずれた位置において、周方向に沿って延在するように、ロータシャフト4から軸方向に突出するフローガイド110Bとを備える。
 図11に示す実施形態では、主流路すなわち流体流路65から逸れようとする作動流体は、流体流路65からダミー環71の径方向内側の内面71aと、内面71aと対向するロータシャフト4の表面4aとの間の隙間を流れ、図11における矢印fで示すようにフローガイド110Bによって径方向外側に案内されて、複数のスワールブレーカ130Bに向かうこととなる。すなわち、図11に示す実施形態では、流体流路65から逸れた作動流体はフローガイド110Bによってスワールブレーカ130Bに案内されることとなる。
 図11に示す実施形態では、スワールブレーカ130Bに案内された作動流体は、周方向に流れる旋回流成分を有していても、複数のスワールブレーカ130Bの各々によって周方向に流れることが阻害される。
 図11に示す実施形態では、第2領域402における表面4aとシールフィン85との間を通過した作動流体は、第3領域403において表面4aと対向して配置されたシールフィン87に向かって流れる。その際、作動流体は、例えば図11に示すように、第2領域402と第3領域403との径の大きさの差によって生じる段部405が存在することで矢印gで示すように径方向外側に案内されて複数のスワールブレーカ130Cに向かうこととなる。すなわち、図11に示す実施形態では、流体流路65から逸れた作動流体は段部405によってスワールブレーカ130Cに案内されることとなる。
 図11に示す実施形態では、スワールブレーカ130Cに案内された作動流体は、周方向に流れる旋回流成分を有していても、複数のスワールブレーカ130Cの各々によって周方向に流れることが阻害される。
 なお、図11に示す実施形態において、第2領域402から第3領域403に向かうつれてロータシャフト4の直径が漸増するようにロータシャフト4が形成されている場合には、上述したフローガイド110Bと同様に、第2領域402から第3領域403にかけて径が漸増する領域において車室側に向かって突出するよう不図示のフローガイドを設けてもよい。
1 タービン
2 ケーシング
4 ロータシャフト
6 ロータディスク
7 段
7a 調速段
8 調速段ノズル
12 動翼
12A 調速段動翼
54 入口部
56 環状体
57 環状体側対向壁面
58 環状体側壁面
65 流体流路
81 シールフィン
100 スワールブレーカ組立体
110 フローガイド
113 突出端
115 案内面
121 動翼本体
123 外側シュラウド
130 スワールブレーカ
137 重複領域
139 薄肉部

Claims (21)

  1.  周方向に沿って延在する環状体と、
     前記周方向に沿って延在するように、前記環状体から軸方向に突出するフローガイドと、
     前記フローガイドに対して径方向にずれた位置において、前記周方向に間隔を空けて前記環状体に設けられる複数のスワールブレーカと、
    を備える
    スワールブレーカ組立体。
  2.  前記複数のスワールブレーカは、前記径方向の端部が前記フローガイドに接続されている
    請求項1に記載のスワールブレーカ組立体。
  3.  前記複数のスワールブレーカは、前記フローガイドと前記軸方向に少なくとも部分的にオーバーラップしている
    請求項1又は2に記載のスワールブレーカ組立体。
  4.  前記フローガイドは、前記軸方向への突出端についての前記軸方向の位置が前記軸方向に沿った前記複数のスワールブレーカの基端部と先端部との間に存在する
    請求項1乃至3の何れか一項に記載のスワールブレーカ組立体。
  5.  前記フローガイドは、前記径方向における前記複数のスワールブレーカ側を指向する案内面を有する
    請求項1乃至4の何れか一項に記載のスワールブレーカ組立体。
  6.  前記環状体は、前記径方向において前記案内面と対向する環状体側対向壁面と、前記案内面と前記環状体側対向壁面とを接続する環状体側壁面とを有し、
     前記複数のスワールブレーカは、前記案内面と前記環状体側壁面と前記環状体側対向壁面との間の空間に存在する
    請求項5に記載のスワールブレーカ組立体。
  7.  前記複数のスワールブレーカは、前記軸方向に沿った先端部が前記周方向に延在するシールフィンと接続されている
    請求項1乃至6の何れか一項に記載のスワールブレーカ組立体。
  8.  前記複数のスワールブレーカは、前記軸方向及び前記径方向に沿って延在する板形状を有する
    請求項1乃至7の何れか一項に記載のスワールブレーカ組立体。
  9.  前記複数のスワールブレーカは、前記軸方向において基端部に向かうにつれて前記周方向の寸法が漸増する裾広がりとなる形状を有する
    請求項1乃至8の何れか一項に記載のスワールブレーカ組立体。
  10.  前記複数のスワールブレーカは、前記軸方向における先端側の領域において前記径方向に見たときに前記フローガイド側の方が前記周方向の厚さが薄い
    請求項1乃至9の何れか一項に記載のスワールブレーカ組立体。
  11.  前記複数のスワールブレーカは、前記周方向に等間隔で離間して設けられている
    請求項1乃至10の何れか一項に記載のスワールブレーカ組立体。
  12.  請求項1乃至11の何れか一項に記載のスワールブレーカ組立体と、
     ケーシング内で軸線周りに回転するロータディスクと、
     前記ロータディスクに取り付けられた複数の動翼本体と、
     前記複数の動翼本体の各々の先端部に連なる外側シュラウドと、
    を備える回転機械。
  13.  前記フローガイドは、前記動翼本体よりも軸方向上流側、且つ、前記外側シュラウドの径方向外側の外周面よりも径方向内側において、軸方向下流側に向かって突出し、
     前記複数のスワールブレーカは、前記フローガイドよりも前記径方向外側において前記軸方向下流側に突出する
    請求項12に記載の回転機械。
  14.  前記フローガイドは、径方向内側の面が前記回転機械における流体の流路の一部を形成している
    請求項12又は13に記載の回転機械。
  15.  前記複数のスワールブレーカは、前記外側シュラウドよりも径方向外側において、該外側シュラウドと前記軸方向に重なる重複領域を有する
    請求項12乃至14の何れか一項に記載の回転機械。
  16.  前記重複領域において前記複数のスワールブレーカと前記外側シュラウドの径方向外側の外周面との隙間は、前記外周面よりも前記径方向外側に設けられていて前記周方向に延在するシールフィンと前記外周面との隙間よりも大きい
    請求項15に記載の回転機械。
  17.  前記スワールブレーカ組立体は、前記回転機械における調速段に設けられる
    請求項12乃至16の何れか一項に記載の回転機械。
  18.  静翼の径方向内側の端部に接続されていて周方向に沿って延在する環状体と、
     前記環状体に対して前記周方向に回転可能な回転部材と、
     前記周方向に間隔を空けて前記環状体に設けられる複数のスワールブレーカと、
     前記複数のスワールブレーカに対して径方向外側にずれた位置において、前記周方向に沿って延在するように、前記回転部材から軸方向に突出するフローガイドと、
    を備える
    スワールブレーカ組立体。
  19.  タービンにおけるダミーシール部の少なくとも一部を構成し、周方向に沿って延在するダミー環と、
     前記周方向に間隔を空けて前記ダミー環の内面に設けられ、軸方向に突出する複数のスワールブレーカと、
    を備える
    スワールブレーカ組立体。
  20.  前記内面と間隔を空けて配置され、前記周方向に回転可能なロータシャフトと、
     前記複数のスワールブレーカに対して径方向内側にずれた位置において、前記周方向に沿って延在するように、前記ロータシャフトから前記軸方向に突出するフローガイドと、
    をさらに備える
    請求項19に記載のスワールブレーカ組立体。
  21.  請求項18乃至20の何れか一項に記載のスワールブレーカ組立体
    を備える回転機械。
PCT/JP2020/032096 2019-08-30 2020-08-26 スワールブレーカ組立体及び回転機械 WO2021039811A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-157748 2019-08-30
JP2019157748A JP6924233B2 (ja) 2019-08-30 2019-08-30 回転機械

Publications (1)

Publication Number Publication Date
WO2021039811A1 true WO2021039811A1 (ja) 2021-03-04

Family

ID=74683715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032096 WO2021039811A1 (ja) 2019-08-30 2020-08-26 スワールブレーカ組立体及び回転機械

Country Status (2)

Country Link
JP (1) JP6924233B2 (ja)
WO (1) WO2021039811A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370226B2 (ja) 2019-11-19 2023-10-27 三菱重工業株式会社 蒸気タービン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669403A (en) * 1979-11-12 1981-06-10 Hitachi Ltd Structure for preventing vibration of rotor of axial-flow machine
JP2009243287A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 軸流タービン
JP2011052645A (ja) * 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd タービン
JP2013209989A (ja) * 2009-02-25 2013-10-10 Mitsubishi Heavy Ind Ltd 蒸気タービン発電設備の冷却方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2413655C3 (de) * 1974-03-21 1978-05-03 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Einrichtung zum dynamischen Stabilisieren des Läufers einer Gas- oder Dampfturbine
JPS5316105A (en) * 1976-07-28 1978-02-14 Hitachi Ltd Inner construction at shoulder in fluid machine
JPS58165201U (ja) * 1982-04-30 1983-11-02 三菱重工業株式会社 タ−ビン翼のシ−ル構造
JPH07145707A (ja) * 1993-11-24 1995-06-06 Mitsubishi Heavy Ind Ltd 蒸気タービン
US20080118350A1 (en) * 2006-11-16 2008-05-22 General Electric Turbine seal guards
JP2008184974A (ja) * 2007-01-30 2008-08-14 Toshiba Corp 流体機械のシール装置および蒸気タービン
JP5985351B2 (ja) * 2012-10-25 2016-09-06 三菱日立パワーシステムズ株式会社 軸流タービン
JP2015001180A (ja) * 2013-06-14 2015-01-05 株式会社東芝 軸流タービン
JP2016089768A (ja) * 2014-11-07 2016-05-23 三菱日立パワーシステムズ株式会社 シール装置及びターボ機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669403A (en) * 1979-11-12 1981-06-10 Hitachi Ltd Structure for preventing vibration of rotor of axial-flow machine
JP2009243287A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 軸流タービン
JP2013209989A (ja) * 2009-02-25 2013-10-10 Mitsubishi Heavy Ind Ltd 蒸気タービン発電設備の冷却方法及び装置
JP2011052645A (ja) * 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd タービン

Also Published As

Publication number Publication date
JP6924233B2 (ja) 2021-08-25
JP2021036136A (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2017098960A1 (ja) ステップシール,シール構造,ターボ機械及びステップシールの製造方法
WO2015083588A1 (ja) シール構造、及び回転機械
KR20130114165A (ko) 터빈
US11187097B2 (en) Rotary machine
CN110242360B (zh) 动叶片侧密封装置、静叶片侧密封装置及旋转机械
EP2354465A2 (en) Adverse pressure gradient seal mechanism
EP3330491B1 (en) Fixed blade for a rotary machine and corresponding rotary machine
EP3734020B1 (en) Aircraft gas turbine
WO2021039811A1 (ja) スワールブレーカ組立体及び回転機械
KR101714829B1 (ko) 가스 터빈 및 외측 슈라우드
JP6830999B2 (ja) タービン動翼及びガスタービン
US11136897B2 (en) Seal device and turbomachine
WO2017098944A1 (ja) シールフィン,シール構造及びターボ機械
JP7148273B2 (ja) 蒸気タービン
EP3748130B1 (en) Axial flow rotary machine
JP5852191B2 (ja) 端壁部材及びガスタービン
JP5404187B2 (ja) 端壁部材及びガスタービン
WO2021220950A1 (ja) シール装置及び回転機械
JP6662661B2 (ja) シール構造及びターボ機械
WO2019013178A1 (ja) ターボ機械
JP6986426B2 (ja) タービン
WO2022201932A1 (ja) タービン、及びガスタービン
JP2004027927A (ja) 内周抽気導入装置及びこれを用いた圧縮機
JP5852190B2 (ja) 端壁部材及びガスタービン
JP5591986B2 (ja) 端壁部材及びガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859250

Country of ref document: EP

Kind code of ref document: A1