WO2021039623A1 - エミッタおよび点滴灌漑用チューブ - Google Patents

エミッタおよび点滴灌漑用チューブ Download PDF

Info

Publication number
WO2021039623A1
WO2021039623A1 PCT/JP2020/031598 JP2020031598W WO2021039623A1 WO 2021039623 A1 WO2021039623 A1 WO 2021039623A1 JP 2020031598 W JP2020031598 W JP 2020031598W WO 2021039623 A1 WO2021039623 A1 WO 2021039623A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedestal
tube
irrigation liquid
emitter
diaphragm portion
Prior art date
Application number
PCT/JP2020/031598
Other languages
English (en)
French (fr)
Inventor
昌宏 木立
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2021039623A1 publication Critical patent/WO2021039623A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the present invention relates to an emitter and a drip irrigation tube having the emitter.
  • the drip irrigation method has been known as one of the plant cultivation methods.
  • the drip irrigation method is a method in which a drip irrigation tube is placed on the soil in which a plant is planted, and an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • an irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • the drip irrigation method has attracted particular attention because it can minimize the consumption of irrigation liquid.
  • the drip irrigation tube is a tube in which a plurality of through holes for discharging the irrigation liquid are formed, and a plurality of emitters (“) for discharging the irrigation liquid from each through hole, which is joined to the inner wall surface of the tube. Also called “dripper").
  • the emitter can keep the discharge amount of irrigation liquid constant even if the pressure inside the tube is different.
  • the pressure inside the tube is high at a position close to the liquid feed pump and low at a position far from the liquid feed pump, but the discharge amount is constant regardless of whether the emitter is installed near or far from the liquid feed pump. Is desired.
  • Patent Document 1 discloses a mechanism for adjusting a flow rate by bending a membrane (diaphragm) toward a recessed outlet (communication hole) according to a water pressure in a conduit (tube).
  • the emitter is formed of a material containing resin, elastomer, rubber, etc., and the above diaphragm is also formed of such a material.
  • the hardness of these materials may change depending on the temperature. Therefore, the degree of deformation of the diaphragm portion changes due to the temperature change, and the pressure of the irrigation liquid, the deformation of the diaphragm portion, and the flow rate adjusting function by the communication holes may be affected.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an emitter capable of appropriately adjusting the flow rate even if the hardness of the diaphragm changes due to a temperature change.
  • the emitter of the present invention is joined to a position on the inner wall surface of a tube through which an irrigation liquid flows, corresponding to a discharge port communicating with the inside and outside of the tube, and the irrigation liquid in the tube is quantitatively discharged from the discharge port.
  • An emitter for discharging the irrigation liquid to the outside of the tube a water intake part for taking in the irrigation liquid, a discharge part for discharging the irrigation liquid taken in from the water intake part, and the water intake part.
  • the flow rate adjusting unit has a flexible accommodating portion for receiving the irrigation liquid taken in from the water intake portion, a pedestal having a communication hole for communicating the accommodating portion and the discharging portion, and a flexible portion.
  • the pedestal has a property and has a diaphragm portion that deforms toward the pedestal when the pressure of the irrigation liquid in the tube is applied, and a flexible diaphragm portion that presses the pedestal.
  • the drip irrigation tube of the present invention has a tube having a discharge port for discharging an irrigation liquid, and the above-mentioned emitter joined at a position corresponding to the discharge port on the inner wall surface of the tube.
  • an emitter capable of appropriately adjusting the flow rate even if the hardness of the diaphragm changes due to a temperature change. Further, according to the present invention, it is possible to provide a drip irrigation tube having the emitter.
  • FIG. 1A shows a vertical cross-sectional view of the tube and the emitter
  • FIG. 1B shows a cross-sectional view of the tube and the emitter
  • 2A is a plan view of the emitter viewed from the front side
  • FIG. 2B is a bottom view of the emitter viewed from the back side
  • FIG. 2C is a sectional view taken along line AA of FIG. 2B
  • FIG. 3 is a cross-sectional view of the pedestal.
  • FIG. 4A shows the operation of the flow rate adjusting unit at low temperature
  • FIG. 4B shows the operation of the flow rate adjusting unit at high temperature
  • FIG. 4C shows the operation of the flow rate adjusting unit at high temperature when the pedestal has a stopper.
  • FIG. 5A shows the relationship between the pressure and the flow rate in the conventional emitter
  • FIG. 5B shows the relationship between the pressure and the flow rate in the emitter according to the embodiment of the present invention.
  • FIG. 1 shows a drip irrigation tube 100 according to an embodiment of the present invention. Note that FIG. 1A shows a vertical cross-sectional view of the tube 110 and the emitter 120, and FIG. 1B shows a cross-sectional view of the tube 110 and the emitter 120.
  • the drip irrigation tube 100 has a tube 110 and an emitter 120.
  • the tube 110 is a tube for flowing an irrigation liquid.
  • irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
  • the direction in which the irrigation liquid flows in the tube 110 is not particularly limited.
  • the material of the tube 110 is not particularly limited. In this embodiment, the material of the tube 110 is polyethylene.
  • a plurality of discharge ports 111 for discharging the irrigation liquid at predetermined intervals (for example, 200 mm or more and 500 mm or less) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
  • the diameter of the opening of the discharge port 111 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 111 is 1.5 mm.
  • Emitters 120 are joined to positions of the inner wall surface 112 of the tube corresponding to the discharge port 111.
  • the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be arranged inside the tube 110 without leakage.
  • the drip irrigation tube 100 is produced by joining the back surface 125 (see FIGS. 2B and C) of the emitter 120 to the inner wall surface 112 of the tube.
  • the method of joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method of joining the tube 110 and the emitter 120 include welding of the resin material constituting the tube 110 or the emitter 120, and bonding with an adhesive.
  • the discharge port 111 may be formed after joining the tube 110 and the emitter 120, or may be formed before joining.
  • FIG. 2A is a plan view of the emitter 120 viewed from the front side
  • FIG. 2B is a bottom view of the emitter 120 viewed from the back side
  • FIG. 2C is a cross-sectional view taken along line AA of FIG. 2B.
  • FIG. 3 is a cross-sectional view of the pedestal 161.
  • the emitter 120 is joined to the inner wall surface 112 of the tube through which the irrigation liquid flows, at a position corresponding to the discharge port 111 communicating with the inside and outside of the tube 110, and the irrigation liquid in the tube 110 is quantitatively discharged from the discharge port 111. Discharge to the outside of the tube 110.
  • the emitter 120 is joined to the inner wall surface 112 of the tube so that the discharge portion 137 covers the discharge port 111 of the tube 110.
  • the outer shape of the emitter 120 is not particularly limited as long as it can be brought into close contact with the inner wall surface 112 of the tube and cover the discharge port 111.
  • the shape of the back surface 125 joined to the inner wall surface in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is convex toward the inner wall surface 112 of the tube so as to be along the inner wall surface 112 of the tube. It has a substantially arc shape.
  • the size of the emitter 120 is not particularly limited and may be appropriately determined based on a desired amount of irrigation liquid discharged from the discharge port 111. In the present embodiment, the length of the emitter 120 in the long side direction is 19 mm, the length in the short side direction is 8 mm, and the height is 2.7 mm.
  • the emitter 120 is preferably formed of an elastic material.
  • materials for the emitter 120 include materials containing resins, elastomers and rubbers.
  • resins include thermoplastic resins, thermosetting resins and the like.
  • thermoplastics include polyethylene.
  • the flexibility of the emitter 120 can be adjusted by using an elastic material.
  • the emitter 120 according to the present embodiment exerts a particularly excellent effect when the diaphragm portion 153 and the pedestal support portion 163, which will be described later, are more easily deformed at a high temperature than at a low temperature. Therefore, when the diaphragm portion 153 and the pedestal support portion 163 contain a thermoplastic resin, the emitter 120 according to the present embodiment exerts a particularly excellent effect.
  • Examples of methods for adjusting the flexibility of the emitter 120 include selecting an elastic resin and adjusting the mixing ratio of the elastic resin to a hard resin material.
  • the index indicating the hardness of the material of the emitter 120 includes the durometer hardness specified in JIS K6253-3 (2012).
  • the durometer hardness includes type A, type D, type E, and the like, depending on the type of durometer used for measurement. For example, when the hardness 40 is shown using a type D durometer, the durometer hardness D40 is obtained. When the numerical value of each type is the same, the durometer hardness is the hardest in type D, and becomes softer in the order of type A and type E.
  • the emitter 120 flows the water intake section 131 for receiving the irrigation liquid and the irrigation liquid taken in from the water intake section 131 into the decompression channel groove 133.
  • It has an accommodating portion 135 for accommodating, a pedestal 161 having a communication hole 151 for communicating the irrigation liquid in the accommodating portion 135 to the discharge portion 137, and a diaphragm portion 153.
  • the connecting groove 132 becomes the connecting flow path 142
  • the decompression flow path groove 133 becomes the decompression flow path 143.
  • a flow path connecting the water intake section 131, the connection flow path 142, the decompression flow path 143, the through hole 134, the accommodating section 135, the communication hole 151, and the discharge section 137 is formed.
  • the flow path allows the irrigation liquid to flow from the intake section 131 to the discharge section 137.
  • the water intake unit 131 is arranged in a region substantially half of the surface 124 of the emitter 120.
  • the number of water intake units 131 is not particularly limited. In the present embodiment, the two intake portions 131 are arranged along the long axis direction of the emitter 120.
  • the flow rate adjusting unit 136 is arranged in the region of the surface 124 where the water intake unit 131 is not arranged.
  • the water intake unit 131 has a water intake side screen unit 171 and a water intake through hole 147.
  • the water intake side screen portion 171 prevents suspended matter in the irrigation liquid taken into the emitter 120 from entering the water intake through hole 147.
  • the water intake side screen portion 171 is open in the tube 110 and has a water intake recess 173 and a ridge 174.
  • the water intake recess 173 is a recess formed on the surface 124 of the emitter 120 in almost the entire region of one half surface on which the diaphragm portion 153 is not arranged.
  • the depth of the water intake recess 173 is not particularly limited, and is appropriately set depending on the size of the emitter 120.
  • a ridge 174 is formed on the bottom surface of the water intake recess 173. Further, a water intake through hole 147 is formed on the bottom surface of the water intake recess 173.
  • the ridge 174 is arranged on the bottom surface of the water intake recess 173.
  • the arrangement and number of the ridges 174 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 173 and the intrusion of suspended matter in the irrigation liquid can be prevented.
  • one long ridge 174 is arranged along the long axis direction of the water intake recess 173, and a plurality of short ridges 174 are arranged along the long axis direction of the water intake recess 173. ing.
  • a water intake through hole 147 is formed on the bottom surface of the water intake recess 173.
  • the ridge 174 may be formed so that the width decreases from the surface 124 of the emitter 120 toward the bottom surface of the water intake recess 173, or the same from the surface 124 of the emitter 120 to the bottom surface of the water intake recess 173. It may be formed in a width.
  • the water intake through hole 147 is formed on the bottom surface of the water intake recess 173.
  • the shape and number of the water intake through holes 147 are not particularly limited as long as the irrigation liquid taken into the water intake recess 173 can be taken into the emitter 120.
  • the water intake through hole 147 is a long hole formed along the long axis direction of the bottom surface of the water intake recess 173. Since the elongated hole is covered with a plurality of ridges 174, the water intake through hole 147 appears to be divided into a large number of through holes when viewed from the front side.
  • the irrigation liquid that has flowed through the tube 110 is taken into the emitter 120 while the water intake side screen portion 171 prevents suspended matter from entering the water intake through hole 147.
  • connection groove 132 (connection flow path 142) connects the water intake through hole 147 (water intake portion 131) and the decompression flow path groove 133 (decompression flow path 143).
  • the connection groove 132 is formed along the outer edge of the back surface 125 of the emitter 120.
  • a decompression flow path groove 133 is connected to one end of the connection groove 132.
  • the decompression flow path groove 133 (decompression flow path 143) connects the connection groove 132 (connection flow path 142) and the through hole 134.
  • the decompression flow path groove 133 communicates with the water intake unit 131 to form a decompression flow path 143 in which the irrigation liquid flows while depressurizing.
  • the decompression flow path groove 133 is arranged at the center of the back surface 125 in the minor axis direction along the major axis direction.
  • the upstream end of the decompression flow path groove 133 is connected to the connection groove 132, and the through hole 134 communicates with the downstream end.
  • the shape of the decompression flow path groove 133 is not particularly limited as long as it can exhibit the function of depressurizing and flowing the irrigation liquid.
  • the plan view shape of the decompression flow path groove 133 is a zigzag shape.
  • substantially triangular prism-shaped protrusions 175 protruding from the inner side surface are alternately arranged along the flow direction of the irrigation liquid.
  • the convex portion 175 is arranged so that the tip thereof does not exceed the central axis of the decompression flow path groove 133 when viewed in a plan view.
  • the through hole 134 communicates the decompression flow path groove 133 (decompression flow path 143) (see FIG. 2B) with the accommodating portion 135 (see FIG. 2A) to accommodate the irrigation liquid flowing through the decompression flow path 143.
  • the upstream end of the through hole 134 is connected to the decompression flow path groove 133, and the downstream end is connected to the accommodating portion 135.
  • the shape of the through hole 134 is not particularly limited as long as it can exhibit the above-mentioned function.
  • the through hole 134 is arranged at the center of the emitter 120 in the minor axis direction.
  • the flow rate adjusting unit 136 is arranged in the flow path and adjusts the flow rate of the irrigation liquid flowing in the flow path according to the pressure of the irrigation liquid in the tube 110.
  • the flow rate adjusting unit 136 is arranged in a region where the water intake unit 131 of the emitter 120, the connecting groove 132 (connecting flow path 142), and the decompression flow path groove 133 (decompression flow path 143) are not arranged.
  • the flow rate adjusting unit 136 includes an accommodating unit 135, a pedestal 161, a communication hole 151, a diaphragm unit 153, a connecting groove 162, and a pedestal support unit 163.
  • FIG. 3 is a cross-sectional view of the pedestal 161.
  • the configuration of the flow rate adjusting unit 136 will be described with reference to FIG.
  • the accommodating unit 135 communicates with the decompression channel groove 133 and receives the irrigation liquid taken in from the water intake unit 131.
  • the irrigation liquid flows into the accommodating portion 135 through the through hole 134.
  • a pedestal 161 is arranged on the lower side (back surface 125 side) with respect to the accommodating portion 135, and a diaphragm portion 153 is arranged on the upper side (front surface 124 side) with respect to the accommodating portion 135. That is, the accommodating portion 135 is arranged between the diaphragm portion 153 and the pedestal 161.
  • the pedestal 161 has a communication hole 151 that communicates the accommodating portion 135 and the discharging portion 137.
  • the pedestal 161 functions as a valve structure that adjusts the flow rate of the irrigation liquid flowing in the flow path according to the pressure of the irrigation liquid in cooperation with the diaphragm portion 153.
  • the pedestal 161 is arranged at a position where the diaphragm portion 153 deformed by the pressure of the irrigation liquid can come into contact with the diaphragm portion 153.
  • the shape of the pedestal 161 is not particularly limited.
  • the shape of the surface of the pedestal 161 facing the diaphragm portion 153 may be a curved surface or a flat surface.
  • the shape of the surface of the pedestal 161 facing the diaphragm portion 153 is a flat surface. Further, when the pedestal 161 is pressed by the diaphragm portion 153 and moves toward the inner wall surface 112 of the tube as described later, the pedestal 161 comes into contact with the inner wall surface 112 of the tube to suppress movement of a predetermined distance or more. It may have a stopper 164 (see FIG. 4C). The stopper 164 is arranged at least a part of the back side of the pedestal 161 (the side opposite to the side facing the diaphragm portion 153) so as to face the inner wall surface 112 of the tube, for example.
  • the shape of the stopper 164 is not particularly limited as long as the movement of the pedestal 161 beyond a predetermined distance can be suppressed.
  • the shape of the stopper 164 is preferably a shape that does not restrict the flow of the irrigation liquid that has passed through the communication hole 151 when the stopper 164 comes into contact with the inner wall surface 112 of the tube.
  • the communication hole 151 communicates the accommodating portion 135 and the discharge portion 137, and allows the irrigation liquid that has flowed into the accommodating portion 135 to flow toward the discharge portion 137.
  • the communication hole 151 is opened in the central portion of the pedestal 161.
  • the size of the opening of the communication hole 151 is not particularly limited and can be appropriately set according to the desired flow rate of the irrigation liquid.
  • the connecting groove 162 is a groove formed in the pedestal 161 for guiding the irrigation liquid in the accommodating portion 135 to the communication hole 151 even when the diaphragm portion 153 is in contact with the pedestal 161.
  • One end of the communication groove 162 communicates with the communication hole 151.
  • the other end of the connecting groove 162 is arranged outside the outer edge of the contact area of the pedestal 161 in a state where the diaphragm portion 153 is in contact with the pedestal 161.
  • the other end of the connecting groove 162 is arranged on the outer edge of the pedestal 161.
  • the pedestal 161 arranged in the accommodating portion 135 and the diaphragm portion 153 facing the pedestal 161 communicate with each other according to the pressure of the irrigation liquid in the tube 110.
  • the flow rate of the irrigation liquid flowing through the hole 151 is adjusted.
  • the diaphragm portion 153 has a circular shape in a plan view (see FIG. 2A).
  • the diaphragm portion 153 is flexible and deforms toward the pedestal 161 when it receives the pressure of the irrigation liquid in the tube 110.
  • the diaphragm portion 153 is more easily deformed at a high temperature than at a low temperature.
  • the diaphragm portion 153 is, for example, a film arranged on the pedestal 161 so as not to come into contact with the pedestal 161 when not under pressure.
  • the shape of the diaphragm portion 153 can be appropriately designed so as to have a flow rate adjusting function according to the shape of the pedestal 161.
  • the pedestal support portion 163 supports the pedestal 161.
  • the pedestal support portion 163 is flexible and deforms so that when the diaphragm portion 153 presses the pedestal 161, the pedestal 161 moves toward the inner wall surface 112 of the tube.
  • the pedestal support portion 163 is more easily deformed at a high temperature than at a low temperature.
  • the pedestal support portion 163 preferably supports the pedestal 161 so as not to come into contact with the inner wall surface 112 of the tube when the diaphragm portion 153 does not press the pedestal 161.
  • the material, thickness, length, etc. of the pedestal support portion 163 are appropriately adjusted so as to have a flow rate adjusting function as described later.
  • the material of the pedestal support portion 163 is preferably a thermoplastic resin from the viewpoint of being easily softened at a high temperature.
  • the thickness of the pedestal support portion 163 is preferably 0.2 mm or more and 1.0 mm or less, and more preferably 0.3 mm or more and 0.7 mm or less, from the viewpoint of having a flow rate adjusting function.
  • the length of the pedestal support portion 163 (the length in the direction perpendicular to the thickness of the pedestal support portion 163) is preferably 3 mm or more and 8 mm or less, and 4 mm or more and 6 mm from the viewpoint of having a flow rate adjusting function.
  • the hardness of the pedestal support portion 163 is preferably A30 or more and D60 or less, and more preferably A40 or more and D50 or less, from the viewpoint of having a flow rate adjusting function.
  • the durometer hardness at 50 ° C. is preferably A10 or more and D50 or less, and more preferably A20 or more and D40 or less.
  • the discharge unit 137 temporarily stores the irrigation liquid from the communication hole 151. As described above, the emitter 120 is joined to the inner wall surface 112 of the tube so that the discharge portion 137 covers the discharge port 111 of the tube 110. The irrigation liquid that has reached the discharge unit 137 is discharged to the outside from the discharge port 111 of the tube 110.
  • the method for manufacturing the emitter is not particularly limited.
  • the emitter of this embodiment can be manufactured, for example, by injection molding.
  • the diaphragm portion and the other portion may be formed separately and joined to each other.
  • the diaphragm portion and the emitter body may be integrally formed via a hinge to rotate the hinge. Both may be joined by moving.
  • the hinge may be cut after joining the diaphragm portion and the emitter body.
  • FIGS. 4A to 4C show an example of the operation of the flow rate adjusting unit 136 according to the pressure of the irrigation liquid in the tube 110.
  • FIG. 4A shows the operation of the flow rate adjusting unit 136 at a low temperature (20 ° C.).
  • FIG. 4B shows the operation of the flow rate adjusting unit 136 at a high temperature (50 ° C.).
  • FIG. 4C shows the operation of the flow rate adjusting unit 136 at a high temperature (50 ° C.) when the pedestal 161 has a stopper 164 that suppresses the movement of the pedestal 161 by a predetermined distance or more.
  • FIG. 4A shows the operation of the flow rate adjusting unit 136 at a low temperature (20 ° C.).
  • the leftmost figure of FIG. 4A shows a state where the pressure of the irrigation liquid in the tube 110 is very low (eg about 0 bar).
  • the diaphragm portion 153 is hardly deformed because it is hardly pressurized, and is not in contact with the pedestal 161.
  • the pedestal support portion 163 is not deformed, and the position of the pedestal 161 is the same as the initial state.
  • the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 mainly flows through the large gap between the diaphragm portion 153 and the pedestal 161 and flows into the communication hole 151.
  • the second figure from the left in FIG. 4A shows a state in which the pressure of the irrigation liquid in the tube 110 is somewhat low (for example, 0.2 bar).
  • the diaphragm portion 153 is deformed and approaches the pedestal 161, but is not in contact with the pedestal 161. Further, since the temperature is low and the diaphragm portion 153 does not press the pedestal 161, the pedestal support portion 163 is not deformed, and the position of the pedestal 161 is the same as the initial state.
  • the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 flows into the communication hole 151 through a small gap between the diaphragm portion 153 and the pedestal 161 and the connecting groove 162.
  • the pressure of the irrigation liquid in the tube 110 increases (that is, the flow velocity of the irrigation liquid increases), and the gap between the diaphragm portion 153 and the pedestal 161 becomes smaller (cross-sectional area through which the irrigation liquid passes). Even if the pressure of the irrigation liquid in the tube 110 increases, the flow rate of the irrigation liquid discharged from the discharge port 111 of the tube 110 is almost unchanged.
  • the third figure from the left in FIG. 4A shows a state in which the pressure of the irrigation liquid in the tube 110 is somewhat high (for example, 0.5 bar).
  • the diaphragm portion 153 is deformed and comes into contact with the pedestal 161.
  • the pedestal 161 is pressed by the diaphragm portion 153, but the pedestal support portion 163 does not deform because the temperature is low, and the position of the pedestal 161 is the same as the initial state.
  • the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 flows into the communication hole 151 only through the connecting groove 162.
  • the fourth figure from the left in FIG. 4A shows a state in which the pressure of the irrigation liquid in the tube 110 is high (for example, 1 bar). Even in this state, the diaphragm portion 153 is deformed and comes into contact with the pedestal 161. The pedestal 161 is pressed by the diaphragm portion 153, but the pedestal support portion 163 does not deform because the temperature is low, and the position of the pedestal 161 is the same as the initial state. Even in this state, since the diaphragm portion 153 is in contact with the pedestal 161, the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 flows into the communication hole 151 only through the connecting groove 162.
  • the contact area between the diaphragm portion 153 and the pedestal 161 is larger than that in the state where the pressure of the irrigation liquid is high to some extent (for example, 0.5 bar), the flow path formed by the diaphragm 153 and the connecting groove 162 The distance becomes longer.
  • the increased pressure of the irrigation liquid in the tube 110 and the longer distance that the irrigation liquid passes only through the connecting groove 162 are offset, and the pressure of the irrigation liquid in the tube 110 increases.
  • the flow rate of the irrigation liquid discharged from the discharge port 111 of the tube 110 is almost the same.
  • FIG. 4B shows the operation of the flow rate adjusting unit 136 at a high temperature (50 ° C.).
  • the leftmost figure of FIG. 4B shows a very low pressure of the irrigation liquid in the tube 110 (eg about 0 bar).
  • the diaphragm portion 153 is hardly deformed because it is hardly pressurized, and is not in contact with the pedestal 161.
  • the pedestal support portion 163 is not deformed, and the position of the pedestal 161 is the same as the initial state.
  • the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 mainly flows through the large gap between the diaphragm portion 153 and the pedestal 161 and flows into the communication hole 151.
  • the second figure from the left in FIG. 4B shows a state in which the pressure of the irrigation liquid in the tube 110 is somewhat low (for example, 0.2 bar).
  • the diaphragm portion 153 is softened because it is under a high temperature, and even with this pressure, the diaphragm portion 153 is greatly deformed and comes into contact with the pedestal 161.
  • the diaphragm portion 153 is not pressed. Therefore, although the pedestal 161 is brought into contact with the diaphragm portion 153, the pedestal support portion 163 is hardly deformed, and the position of the pedestal 161 is almost the same as the initial state.
  • the third figure from the left in FIG. 4B shows a state in which the pressure of the irrigation liquid in the tube 110 is somewhat high (for example, 0.5 bar).
  • the diaphragm portion 153 since the diaphragm portion 153 is under high temperature, it softens and is greatly deformed to come into contact with the entire pedestal 161 and press the pedestal 161.
  • the pedestal support portion 163 When the pedestal 161 is pressed by the diaphragm portion 153, the pedestal support portion 163 is easily deformed due to the high temperature, and the pedestal 161 is moved toward the inner wall surface 112 of the tube. As a result, a part of the diaphragm portion 153 that was in contact with the entire pedestal 161 is separated from the pedestal 161.
  • the distance of the flow path formed by the diaphragm portion 153 and the connecting groove 162 is longer than that in the state where the pressure of the irrigation liquid is low to some extent (for example, 0.2 bar), but the entire diaphragm portion 153 and the pedestal 161 are formed.
  • the distance between the flow path formed by the diaphragm portion 153 and the connecting groove 162 is shorter than that in the case where the two are in contact with each other.
  • the fourth figure from the left in FIG. 4B shows a state in which the pressure of the irrigation liquid in the tube 110 is high (for example, 1 bar).
  • the diaphragm portion 153 is at a high temperature, so it softens and is greatly deformed to strongly press the pedestal 161.
  • the pedestal support portion 163 is deformed to the limit due to the high temperature, and the pedestal 161 is moved to the limit toward the inner wall surface 112 of the tube.
  • the diaphragm portion 153 contacts the entire pedestal 161. Therefore, the irrigation liquid flowing from the decompression flow path 143 to the accommodating portion 135 flows into the communication hole 151 only through the connecting groove 162. ..
  • FIG. 4C shows the operation of the flow rate adjusting unit 136 at a high temperature (50 ° C.) when the pedestal 161 has a stopper 164 that suppresses the movement of the pedestal 161 over a predetermined distance.
  • the leftmost figure of FIG. 4C shows a state where the pressure of the irrigation liquid in the tube 110 is very low (for example, about 0 bar).
  • the irrigation liquid that has flowed from the decompression flow path 143 to the accommodating portion 135 mainly flows through the large gap between the diaphragm portion 153 and the pedestal 161 and flows into the communication hole 151.
  • the pedestal support portion 163 is not deformed, and the stopper 164 is not in contact with the inner wall surface 112 of the tube.
  • the second figure from the left in FIG. 4C shows a state in which the pressure inside the tube 110 is somewhat low (for example, 0.2 bar).
  • the diaphragm portion 153 is softened because it is under a high temperature, and even with this pressure, the diaphragm portion 153 is greatly deformed and comes into contact with the pedestal 161.
  • the diaphragm portion 153 is not pressed enough. Therefore, although the pedestal 161 is brought into contact with the diaphragm portion 153, the pedestal support portion 163 is hardly deformed, and the position of the pedestal 161 is almost the same as the initial state.
  • the third figure from the left in FIG. 4C shows a state in which the pressure of the irrigation liquid in the tube 110 is somewhat high (for example, 0.5 bar).
  • the diaphragm portion 153 since the diaphragm portion 153 is under high temperature, it softens and is greatly deformed to come into contact with the entire pedestal 161 and press the pedestal 161.
  • the pedestal support portion 163 When the pedestal 161 is pressed by the diaphragm portion 153, the pedestal support portion 163 is easily deformed due to the high temperature, and the pedestal 161 is moved toward the inner wall surface 112 of the tube. As a result, a part of the diaphragm portion 153 that was in contact with the entire pedestal 161 is separated from the pedestal 161.
  • the distance of the flow path formed by the diaphragm portion 153 and the connecting groove 162 is longer than that in the state where the pressure of the irrigation liquid is low to some extent (for example, 0.2 bar), but the entire diaphragm portion 153 and the pedestal 161 are formed.
  • the distance between the flow path formed by the diaphragm portion 153 and the connecting groove 162 is shorter than that in the case where the two are in contact with each other.
  • the fourth figure from the left in FIG. 4C shows a state in which the pressure of the irrigation liquid in the tube 110 is high (for example, 1 bar).
  • the diaphragm portion 153 is at a high temperature, so it softens and is greatly deformed to strongly press the pedestal 161.
  • the pedestal support portion 163 is easily deformed due to the high temperature, and the pedestal 161 is moved toward the inner wall surface 112 of the tube.
  • the pedestal 161 is moved until the stopper 164 comes into contact with the inner wall surface 112 of the tube.
  • the diaphragm portion 153 contacts the entire pedestal 161. Therefore, the irrigation liquid flowing from the decompression flow path 143 to the accommodating portion 135 flows into the communication hole 151 only through the connecting groove 162. .. As a result, the movement of the pedestal 161 beyond a predetermined level is suppressed.
  • FIG. 5A shows the relationship between the pressure and the flow rate in the conventional emitter
  • FIG. 5B shows the relationship between the pressure and the flow rate in the emitter 120 according to the embodiment of the present invention.
  • the flow rates are significantly different between 20 ° C and 50 ° C. Specifically, at 50 ° C., the flow rate is too small as compared with 20 ° C., and the flow rate cannot be adjusted appropriately. It is considered that this is because the diaphragm portion 153 softens at a high temperature and deforms more due to the application of pressure, further blocking the communication hole 151 through which the irrigation liquid passes.
  • the emitter 120 according to the embodiment of the present invention is substantially the same when the pressure is about 0.5 bar and the flow rates are 20 ° C and 50 ° C, for example. .. This is because even if the diaphragm portion 153 softens and deforms more due to high temperature, the pedestal support portion 163 also softens and deforms, so that the flow rate of the irrigation liquid flowing between the diaphragm portion 153 and the pedestal 161 is adjusted. It is thought that this is because it is done.
  • the present invention it is possible to provide an emitter capable of appropriately adjusting the flow rate even if the hardness of the diaphragm portion changes due to a temperature change, and a drip irrigation tube having the emitter. Therefore, it is expected that the emitter and the drip irrigation tube having the emitter will be further spread.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Nozzles (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

本発明は、温度変化によりダイヤフラム部の硬度が変化しても、流量を適切に調整することができるエミッタを提供することに関する。エミッタは、灌漑用液体を吐出口に連通するための連通孔を有する台座と、可撓性を有し、チューブ内の灌漑用液体の圧力を受けたときに台座に向かって変形するダイヤフラム部と、可撓性を有し、ダイヤフラム部が台座を押圧したときに台座がチューブの内壁面に向かって移動するように変形する、台座を支持する台座支持部と、を有する。ダイヤフラム部および台座支持部は、低温時に比べて高温時により変形しやすい。

Description

エミッタおよび点滴灌漑用チューブ
 本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。
 以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料等の灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。
 点滴灌漑用チューブは、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、当該チューブの内壁面に接合され、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)とを有する。
 エミッタはチューブ内の圧力が異なっても灌漑用液体の吐出量を一定にできることが望まれる。たとえば、送液ポンプから近い位置ではチューブ内の圧力が高く、遠い位置では圧力は低いが、送液ポンプから近い位置に設置されたエミッタでも遠い位置に設置されたエミッタでも吐出量を一定にすることが望まれる。
 このような吐出量を一定にするための機構として、灌漑用液体が流れる連通孔に対してチューブ内の圧力に応じて変形し流量を調整するためのダイヤフラムが知られている。たとえば、特許文献1は、導管(チューブ)内の水圧に応じて、膜(ダイヤフラム)が凹部出口(連通孔)に向けて曲がることにより、流量を調整する機構を開示している。
特開2010-46094号公報
 一般に、エミッタは樹脂、エラストマー、ゴムなどを含む材料で形成され、上記のダイヤフラムもこのような材料で形成されることになる。ここで、これらの材料は温度によって硬さが変化してしまうことがある。そのため、温度変化によってダイヤフラム部の変形具合が変わってしまい、灌漑用液体の圧力と、ダイヤフラム部の変形と、連通孔とによる流量調整機能も影響を受けることがある。
 本発明は上記事情に鑑みてなされたものであり、温度変化によりダイヤフラムの硬度が変化しても、流量を適切に調整することができるエミッタを提供することを目的とする。
 本発明のエミッタは、灌漑用液体を流通させるチューブの内壁面における、前記チューブの内外を連通する吐出口に対応する位置に接合されて前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記灌漑用液体を取り入れるための取水部と、前記取水部から取り入れられた前記灌漑用液体を吐出するための吐出部と、前記取水部と前記吐出部とを接続する流路と、前記流路内に配置され、前記チューブ内の灌漑用液体の圧力に応じて前記流路内を流れる前記灌漑用液体の量を調整する流量調整部と、を有し、前記流量調整部は、前記取水部から取り入れられた前記灌漑用液体を受け入れるための収容部と、前記収容部と前記吐出部とを連通する連通孔を有する台座と、可撓性を有し、前記チューブ内の灌漑用液体の圧力を受けたときに前記台座に向かって変形するダイヤフラム部と、可撓性を有し、前記ダイヤフラム部が前記台座を押圧したときに前記台座が前記チューブの内壁面に向かって移動するように変形する、前記台座を支持する台座支持部と、を有し、前記ダイヤフラム部および前記台座支持部は、低温時に比べて高温時により変形しやすい。
 本発明の点滴灌漑用チューブは、灌漑用液体を吐出するための吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、上記のエミッタと、を有する。
 本発明によれば、温度変化によりダイヤフラムの硬度が変化しても、流量を適切に調整することができるエミッタを提供することができる。また、本発明によれば当該エミッタを有する点滴灌漑用チューブを提供することができる。
図1Aはチューブおよびエミッタの縦断面図を示し、図1Bはチューブおよびエミッタの横断面図を示す。 図2Aはエミッタを表側からみた平面図であり、図2Bはエミッタを裏側からみた底面図であり、図2Cは、図2Bの線A-Aに沿う断面図である。 図3は台座の断面図である。 図4Aは低温時の流量調整部の動作を示し、図4Bは高温時の流量調整部の動作を示し、図4Cは台座がストッパを有する場合の高温時の流量調整部の動作を示す。 図5Aは従来のエミッタにおける圧力と流量との関係を示し、図5Bは本発明の実施の形態に係るエミッタにおける圧力と流量との関係を示す。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (点滴灌漑用チューブおよびエミッタの構成)
 図1は、本発明の実施の形態に係る点滴灌漑用チューブ100を示す。なお、図1Aはチューブ110およびエミッタ120の縦断面図を示し、図1Bはチューブ110およびエミッタ120の横断面図を示している。
 図1に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。チューブ110は、灌漑用液体を流すための管である。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。チューブ110において、灌漑用液体を流す方向については、特に限定されない。また、チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。
 チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200mm以上500mm以下)で灌漑用液体を吐出するための複数の吐出口111が形成されている。吐出口111の開口部の直径は、灌漑用液体を吐出できれば特に限定されない。本実施の形態では、吐出口111の開口部の直径は、1.5mmである。チューブの内壁面112の吐出口111に対応する位置には、エミッタ120がそれぞれ接合される。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を液漏れなく配置できれば特に限定されない。
 点滴灌漑用チューブ100は、エミッタ120の裏面125(図2B、C参照)をチューブの内壁面112に接合することによって作製される。チューブ110とエミッタ120との接合方法は、特に限定されない。チューブ110とエミッタ120との接合方法の例には、チューブ110またはエミッタ120を構成する樹脂材料の溶着、接着剤による接着が含まれる。吐出口111は、チューブ110とエミッタ120とを接合した後に形成されてもよいし、接合前に形成されてもよい。
 (エミッタの構成)
 図2Aはエミッタ120を表側からみた平面図であり、図2Bはエミッタ120を裏側からみた底面図であり、図2Cは、図2Bの線A-Aに沿う断面図である。図3は台座161の断面図である。
 エミッタ120は、灌漑用液体を流通させるチューブの内壁面112における、チューブ110の内外を連通する吐出口111に対応する位置に接合されて、チューブ110内の灌漑用液体を吐出口111から定量的にチューブ110外に吐出する。エミッタ120は、吐出部137がチューブ110の吐出口111を覆うようにチューブの内壁面112に接合される。エミッタ120の外形は、チューブの内壁面112に密着して吐出口111を覆うようにできれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直なエミッタ120の断面における、内壁面に接合する裏面125の形状は、チューブの内壁面112に沿うように、チューブの内壁面112に向かって凸の略円弧形状である。エミッタ120の大きさは、特に限定されず、吐出口111から吐出される灌漑用液体の所望の量に基づいて、適宜決定されればよい。本実施の形態では、エミッタ120の長辺方向の長さは19mmであり、短辺方向の長さは8mmであり、高さは2.7mmである。
 本実施の形態において、エミッタ120は、弾性を有する材料で形成されることが好ましい。エミッタ120の材料の例には、樹脂、エラストマーおよびゴムを含む材料が挙げられる。樹脂の例には、熱可塑性樹脂および熱硬化性樹脂等が含まれる。熱可塑性樹脂の例には、ポリエチレンが含まれる。エミッタ120の可撓性は、弾性を有する材料の使用によって調整できる。本実施の形態に係るエミッタ120は、後述するダイヤフラム部153および台座支持部163が低温時に比べて高温時により変形しやすい場合に特に優れた効果を発揮する。したがって、ダイヤフラム部153および台座支持部163が熱可塑性樹脂を含む場合に、本実施の形態に係るエミッタ120は特に優れた効果を発揮する。エミッタ120の可撓性の調整方法の例には、弾性を有する樹脂の選択、硬質の樹脂材料に対する弾性を有する樹脂の混合比の調整が含まれる。エミッタ120の材料の硬度を示す指標としては、JIS K6253-3(2012年)において規定されているデュロメータ硬さが含まれる。なお、デュロメータ硬さは、測定に使用するデュロメータの種類によって、タイプA、タイプD、およびタイプEなどがある。例えば、タイプDデュロメータを使用して硬さ40を示した場合、デュロメータ硬さD40となる。そして、デュロメータ硬さは、各タイプにおける数値が同じ場合、タイプDが最も硬く、タイプA、タイプEの順に柔らかくなる。
 図2A、図2B、図2Cに示されているように、エミッタ120は、灌漑用液体を受け入れるための取水部131と、取水部131から取り入れられた灌漑用液体を減圧流路溝133に流す接続溝132と、灌漑用液体を減圧させながら流す減圧流路溝133と、減圧流路溝133からの灌漑用液体を収容部135に導く貫通孔134と、貫通孔134からの灌漑用液体を収容するための収容部135と、収容部135内の灌漑用液体を吐出部137に連通するための連通孔151を有する台座161と、ダイヤフラム部153とを有する。
 エミッタ120がチューブ110に接合されることにより、接続溝132は接続流路142となり、減圧流路溝133は減圧流路143となる。これにより、取水部131、接続流路142、減圧流路143、貫通孔134、収容部135、連通孔151、吐出部137を繋ぐ流路が形成される。流路は、取水部131から吐出部137まで灌漑用液体を流通させる。
 取水部131は、エミッタ120の表面124の略半分の領域に配置されている。取水部131の数は、特に限定されない。本実施の形態では、2つの取水部131が、エミッタ120の長軸方向に沿って配置されている。取水部131が配置されていない表面124の領域には、流量調整部136が配置されている。取水部131は、取水側スクリーン部171および取水用貫通孔147を有する。
 取水側スクリーン部171は、エミッタ120に取り入れられる灌漑用液体中の浮遊物が取水用貫通孔147に侵入することを防止する。取水側スクリーン部171は、チューブ110内に開口しており、取水用凹部173および凸条174を有する。
 取水用凹部173は、エミッタ120の表面124において、ダイヤフラム部153が配置されていない一方の半面の領域のほぼ全体に形成されている凹部である。取水用凹部173の深さは特に限定されず、エミッタ120の大きさによって適宜設定される。取水用凹部173の底面上には凸条174が形成されている。また、取水用凹部173の底面には取水用貫通孔147が形成されている。
 凸条174は、取水用凹部173の底面上に配置されている。凸条174の配置および数は、取水用凹部173の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止できれば特に限定されない。本実施の形態では、1本の長い凸条174が取水用凹部173の長軸方向に沿って配列されており、複数の短い凸条174が取水用凹部173の長軸方向に沿って配列されている。また、取水用凹部173の底面には取水用貫通孔147が形成されている。
 また、凸条174は、エミッタ120の表面124から取水用凹部173の底面に向かうにつれて幅が小さくなるように形成されていてもよいし、エミッタ120の表面124から取水用凹部173の底面まで同じ幅に形成されていてもよい。
 取水用貫通孔147は、取水用凹部173の底面に形成されている。取水用貫通孔147の形状および数は、取水用凹部173の内部に取り込まれた灌漑用液体をエミッタ120内に取り込むことができれば特に限定されない。本実施の形態では、取水用貫通孔147は、取水用凹部173の底面の長軸方向に沿って形成された長孔である。長孔は、複数の凸条174により覆われているため、表側から見た場合、取水用貫通孔147は、多数の貫通孔に分かれているように見える。
 チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部171によって浮遊物が取水用貫通孔147内への侵入が防止されつつ、エミッタ120内に取り込まれる。
 接続溝132(接続流路142)は、取水用貫通孔147(取水部131)と、減圧流路溝133(減圧流路143)とを接続する。接続溝132は、エミッタ120の裏面125の外縁部に沿って形成されている。接続溝132の一方の端部に、減圧流路溝133が接続されている。エミッタ120がチューブ110に接合されることにより、接続溝132とチューブの内壁面112とにより、接続流路142が形成される。取水部131から取り込まれた灌漑用液体は、接続流路142を通って、減圧流路143に流れる。
 減圧流路溝133(減圧流路143)は、接続溝132(接続流路142)と貫通孔134とを接続する。減圧流路溝133は、取水部131に連通し、灌漑用液体を減圧させながら流す減圧流路143を形成する。本実施の形態では、減圧流路溝133は、裏面125の短軸方向の中央に、長軸方向に沿って配置されている。減圧流路溝133の上流端は接続溝132に接続されており、下流端には貫通孔134が連通している。減圧流路溝133の形状は、灌漑用液体を減圧させて流す機能を発揮できれば特に限定されない。本実施の形態では、減圧流路溝133の平面視形状は、ジグザグ形状である。減圧流路溝133では、内側面から突出する略三角柱形状の凸部175が灌漑用液体の流れる方向に沿って交互に配置されている。凸部175は、平面視したときに、先端が減圧流路溝133の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることにより、減圧流路溝133とチューブの内壁面により、減圧流路143が形成される。取水部131から取り込まれた灌漑用液体は、減圧流路143により減圧されて流量調整部136に導かれる。
 貫通孔134は、減圧流路溝133(減圧流路143)(図2B参照)と、収容部135(図2A参照)とを連通させて、減圧流路143を流れてきた灌漑用液体を収容部135に導く。貫通孔134の上流端は減圧流路溝133に接続され、下流端は収容部135に接続される。貫通孔134の形状は前記の機能を発揮できれば特に制限されない。本実施の形態では貫通孔134はエミッタ120の短軸方向の中央に配置されている。
 流量調整部136は、流路内に配置され、チューブ110内の灌漑用液体の圧力に応じて流路内を流れる灌漑用液体の流量を調整する。流量調整部136は、エミッタ120の取水部131、接続溝132(接続流路142)および減圧流路溝133(減圧流路143)が配置されていない領域に配置されている。流量調整部136は、収容部135と、台座161と、連通孔151と、ダイヤフラム部153と、連絡溝162と、台座支持部163とを含む。図3は台座161の断面図である。以下、図3を参照しつつ、流量調整部136の構成について説明する。
 収容部135は減圧流路溝133に連通し、取水部131から取り入れられた灌漑用液体を受け入れる。本実施の形態において、収容部135には貫通孔134から灌漑用液体が流れてくる。収容部135に対して下側(裏面125側)には台座161が配置されており、収容部135に対して上側(表面124側)にはダイヤフラム部153が配置されている。すなわち、収容部135は、ダイヤフラム部153と台座161との間に配置されている。
 台座161は、収容部135と吐出部137とを連通する連通孔151を有する。台座161は、ダイヤフラム部153と協働して、灌漑用液体の圧力に応じて流路内を流れる灌漑用液体の流量を調整する弁構造として機能する。台座161は、灌漑用液体の圧力により変形したダイヤフラム部153が接触できる位置に配置される。台座161の形状は特に限定されない。台座161のダイヤフラム部153に対向する面の形状は、曲面であってもよいし、平面であってもよい。本実施の形態では台座161のダイヤフラム部153に対向する面の形状は平面である。また、台座161は、後述するようにダイヤフラム部153に押圧されてチューブの内壁面112に向かって移動するときに、チューブの内壁面112に当接して所定の距離以上の移動を抑制するためのストッパ164を有していてよい(図4C参照)。ストッパ164は、例えばチューブ内壁面112に対向するように台座161の裏側(ダイヤフラム部153と対向する側と反対側)の少なくとも一部に配置される。ストッパ164の形状は、台座161の所定の距離以上の移動を抑制できれば特に制限されない。ストッパ164の形状は、ストッパ164がチューブの内壁面112に当接したときに連通孔151を通ってきた灌漑用液体の流れを制限しない形状であることが好ましい。
 連通孔151は、収容部135と吐出部137とを連通し、収容部135内に流入した灌漑用液体を吐出部137に向けて流す。本実施の形態では、連通孔151は、台座161の中央部分に開口している。連通孔151の開口部の大きさは、特に限定されず、灌漑用液体の希望する流量に応じて適宜設定できる。
 連絡溝162は、台座161にダイヤフラム部153が接触した状態でも収容部135内の灌漑用液体を連通孔151に導くための、台座161に形成されている溝である。連絡溝162の一方の端部は、連通孔151に連絡している。連絡溝162の他方の端部は、ダイヤフラム部153が台座161に接触している状態における台座161の接触領域の外縁部の外側に配置されている。本実施の形態では、連絡溝162の他方の端部は、台座161の外縁に配置されている。
 エミッタ120がチューブの内壁面112に接合されたとき、収容部135に配置された台座161と、台座161に対向したダイヤフラム部153とによって、チューブ110内の灌漑用液体の圧力に応じて、連通孔151を流れる灌漑用液体の流量が調整される。本実施の形態では、ダイヤフラム部153の平面視形状は円形状である(図2A参照)。
 ダイヤフラム部153は、可撓性を有し、チューブ110内の灌漑用液体の圧力を受けたときに台座161に向かって変形する。ダイヤフラム部153は、低温時に比べて高温時により変形しやすい。ダイヤフラム部153は、例えば、圧力を受けていないときに、台座161に接触しないように台座161上に配置されたフィルムである。ダイヤフラム部153の形状は、台座161の形状に合わせて流量調整機能を有するように適宜設計できる。
 台座支持部163は台座161を支持する。台座支持部163は、可撓性を有し、ダイヤフラム部153が台座161を押圧したときに台座161がチューブの内壁面112に向かって移動するように変形する。台座支持部163は、低温時に比べて高温時により変形しやすい。台座支持部163は、ダイヤフラム部153が台座161を押圧していないときに、チューブの内壁面112に接触しないように台座161を支持することが好ましい。
 台座支持部163は、後述するような流量調整機能を有するように、材料、厚さ、長さ等が適宜調整されることが好ましい。本実施の形態において、台座支持部163の材料は、高温で軟化しやすいという観点から、熱可塑性樹脂であることが好ましい。台座支持部163の厚さは、流量調整機能を有するようにするという観点から、0.2mm以上1.0mm以下であることが好ましく、0.3mm以上0.7mm以下であることがさらに好ましい。台座支持部163の長さ(台座支持部163の厚さに垂直な方向の長さ)は、流量調整機能を有するようにするという観点から、3mm以上8mm以下であることが好ましく、4mm以上6mm以下であることがさらに好ましい。台座支持部163の硬度は、流量調整機能を有するようにするという観点から、20℃のときのデュロメータ硬さがA30以上D60以下であることが好ましく、A40以上D50以下であることがさらに好ましい。また、50℃のときのデュロメータ硬さがA10以上D50以下であることが好ましく、A20以上D40以下であることがさらに好ましい。
 吐出部137は、連通孔151からの灌漑用液体を一時的に貯留する。前述のとおり、エミッタ120は、吐出部137がチューブ110の吐出口111を覆うようにチューブの内壁面112に接合される。吐出部137に到達した灌漑用液体は、チューブ110の吐出口111から外部に排出される。
 本実施形態において、エミッタの製造方法は特に限定されない。本実施形態のエミッタは、例えば、射出成形によって製造できる。この際、ダイヤフラム部とそれ以外の部分(エミッタ本体)とを別々に形成して、両者を接合してもよく、ダイヤフラム部とエミッタ本体を、ヒンジを介して一体で形成して、ヒンジを回動させることで両者を接合させてもよい。なお、ヒンジは、ダイヤフラム部とエミッタ本体とを接合した後に切断してもよい。
 (エミッタの動作)
 図4A~Cは、チューブ110内の灌漑用液体の圧力に応じた流量調整部136の動作の一例を示す。図4Aは低温時(20℃)の流量調整部136の動作を示す。図4Bは高温時(50℃)の流量調整部136の動作を示す。図4Cは、台座161が所定の距離以上の台座161の移動を抑制するストッパ164を有する場合の高温時(50℃)の流量調整部136の動作を示す。
 上述のとおり、図4Aは低温時(20℃)の流量調整部136の動作を示す。図4Aの一番左の図は、チューブ110内の灌漑用液体の圧力が非常に低い状態(例えば約0バール)を示す。この状態では、ダイヤフラム部153はほとんど加圧されていないためほとんど変形しておらず、台座161に接触していない。また、温度が低く、かつダイヤフラム部153が台座161を押圧していないため、台座支持部163も変形しておらず、台座161の位置は初期状態と同じである。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、主としてダイヤフラム部153と台座161との大きな隙間を通って連通孔151に流れる。
 図4Aの左から二番目の図は、チューブ110内の灌漑用液体の圧力がある程度低い状態(例えば0.2バール)を示す。この状態では、ダイヤフラム部153は変形して台座161の近くまで迫るが、台座161には接触していない。また、温度が低く、かつダイヤフラム部153が台座161を押圧していないため、台座支持部163は変形しておらず、台座161の位置は初期状態と同じである。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、ダイヤフラム部153と台座161との小さな隙間および連絡溝162を通って連通孔151に流れる。このとき、チューブ110内の灌漑用液体の圧力が高まること(すなわち灌漑用液体の流速が速くなること)と、ダイヤフラム部153と台座161との隙間が小さくなること(灌漑用液体が通り抜ける断面積が小さくなること)とが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。
 図4Aの左から三番目の図は、チューブ110内の灌漑用液体の圧力がある程度高い状態(例えば0.5バール)を示す。この状態では、ダイヤフラム部153は変形して台座161に接触する。台座161がダイヤフラム部153により押圧されるが、台座支持部163は温度が低いため変形せず、台座161の位置は初期状態と同じである。この状態では、ダイヤフラム部153が台座161に接触しているため、減圧流路143から収容部135に流れてきた灌漑用液体は、連絡溝162のみを通って連通孔151に流れる。このときも、チューブ110内の灌漑用液体の圧力が高まることと、ダイヤフラム部153と台座161との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。
 図4Aの左から四番目の図は、チューブ110内の灌漑用液体の圧力が高い状態(例えば1バール)を示す。この状態でも、ダイヤフラム部153は変形して台座161に接触する。台座161がダイヤフラム部153により押圧されるが、台座支持部163は温度が低いため変形せず、台座161の位置は初期状態と同じである。この状態でも、ダイヤフラム部153が台座161に接触しているため、減圧流路143から収容部135に流れてきた灌漑用液体は、連絡溝162のみを通って連通孔151に流れる。そして、上記灌漑用液体の圧力がある程度高い状態(例えば0.5バール)と比べ、ダイヤフラム部153と台座161との接触面積が大きくなるため、ダイヤフラム153と連絡溝162とで形成させる流路の距離が長くなる。その結果、チューブ110内の灌漑用液体の圧力が高まることと、灌漑用液体が連絡溝162のみを通る距離が長くなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。
 上述のとおり、図4Bは高温時(50℃)の流量調整部136の動作を示す。図4Bの一番左の図は、チューブ110内の灌漑用液体の圧力が非常に低い状態(例えば約0バール)を示す。この状態では、ダイヤフラム部153はほとんど加圧されていないためほとんど変形しておらず、台座161に接触していない。また、ダイヤフラム部153が台座161を押圧していないため、台座支持部163も変形しておらず、台座161の位置は初期状態と同じである。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、主としてダイヤフラム部153と台座161との大きな隙間を通って連通孔151に流れる。
 図4Bの左から二番目の図は、チューブ110内の灌漑用液体の圧力がある程度低い状態(例えば0.2バール)を示す。この状態では、ダイヤフラム部153は、高温下にあるため軟化し、この圧力でも大きく変形して台座161に接触するが、台座161を押圧するほどまでは至らない。したがって、台座161はダイヤフラム部153により接触されるが、台座支持部163はほとんど変形せず、台座161の位置は初期状態とほとんど同じである。このとき、ダイヤフラム部153が台座161に接触しているため、減圧流路143から収容部135に流れてきた灌漑用液体は、連絡溝162のみを通って連通孔151に流れる。そのため、チューブ110内の灌漑用液体の圧力が高まることと、ダイヤフラム部153と台座161との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。
 図4Bの左から三番目の図は、チューブ110内の灌漑用液体の圧力がある程度高い状態(例えば0.5バール)を示す。この状態では、ダイヤフラム部153は、高温下にあるため軟化し、大きく変形して台座161の全体と接触し、台座161を押圧する。台座161がダイヤフラム部153により押圧されると、台座支持部163は温度が高いため容易に変形して、台座161はチューブの内壁面112に向かって移動させられる。これにより、台座161の全体に接触していたダイヤフラム部153の一部が、台座161から離れる。そのため、上記灌漑用液体の圧力がある程度低い状態(例えば0.2バール)よりは、ダイヤフラム部153と連絡溝162とで形成させる流路の距離が長くなるものの、ダイヤフラム部153と台座161の全体が接触している場合よりは、ダイヤフラム部153と連絡溝162とで形成させる流路の距離が短い状態となる。その結果、チューブ110内の灌漑用液体の圧力が高まることと、ダイヤフラム部153と台座161との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。
 図4Bの左から四番目の図は、チューブ110内の灌漑用液体の圧力が高い状態(例えば1バール)を示す。この状態では、ダイヤフラム部153は、高温下にあるため軟化し、大きく変形して台座161を強く押圧する。台座161がダイヤフラム部153により強く押圧されると、台座支持部163は温度が高いため限界まで変形して、台座161はチューブの内壁面112に向かって限界まで移動させられる。台座161が限界まで移動すると、ダイヤフラム部153は台座161の全体に接触するため、減圧流路143から収容部135に流れてきた灌漑用液体は、連絡溝162のみを通って連通孔151に流れる。
 上述のとおり、図4Cは、台座161が所定の距離以上の台座161の移動を抑制するストッパ164を有する場合の高温時(50℃)の流量調整部136の動作を示す。図4Cの一番左の図は、チューブ110内の灌漑用液体の圧力が非常に低い状態(例えば約0バール)を示す。この状態では、減圧流路143から収容部135に流れてきた灌漑用液体は、主としてダイヤフラム部153と台座161との大きな隙間を通って連通孔151に流れる。また、台座支持部163は変形しておらず、ストッパ164はチューブの内壁面112に接触していない。
 図4Cの左から二番目の図は、チューブ110内の圧力がある程度低い状態(例えば0.2バール)を示す。この状態では、ダイヤフラム部153は、高温下にあるため軟化し、この圧力でも大きく変形して台座161に接触するが、台座161を押圧するほどまでには至らない。したがって、台座161はダイヤフラム部153により接触されるが、台座支持部163はほとんど変形せず、台座161の位置は初期状態とほとんど同じである。このとき、チューブ110内の灌漑用液体の圧力が高まることと、ダイヤフラム部153と台座161との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111へ吐出される灌漑用液体の流量は、ほぼ変わらない。また、台座支持部163はほとんど変形しておらず、ストッパ164はチューブの内壁面112に接触していない。
 図4Cの左から三番目の図は、チューブ110内の灌漑用液体の圧力がある程度高い状態(例えば0.5バール)を示す。この状態では、ダイヤフラム部153は、高温下にあるため軟化し、大きく変形して台座161の全体と接触し、台座161を押圧する。台座161がダイヤフラム部153により押圧されると、台座支持部163は温度が高いため容易に変形して、台座161はチューブの内壁面112に向かって移動させられる。これにより、台座161の全体に接触していたダイヤフラム部153の一部が、台座161から離れる。そのため、上記灌漑用液体の圧力がある程度低い状態(例えば0.2バール)よりは、ダイヤフラム部153と連絡溝162とで形成させる流路の距離が長くなるものの、ダイヤフラム部153と台座161の全体が接触している場合よりは、ダイヤフラム部153と連絡溝162とで形成させる流路の距離が短い状態となる。その結果、チューブ110内の灌漑用液体の圧力が高まることと、ダイヤフラム部153と台座161との隙間が小さくなることとが相殺して、チューブ110内の灌漑用液体の圧力が高まっても、チューブ110の吐出口111から吐出される灌漑用液体の流量は、ほぼ変わらない。また、台座支持部163が変形し、ストッパ164はチューブの内壁面112の近くに迫る。
 図4Cの左から四番目の図は、チューブ110内の灌漑用液体の圧力が高い状態(例えば1バール)を示す。この状態では、ダイヤフラム部153は、高温下にあるため軟化し、大きく変形して台座161を強く押圧する。台座161がダイヤフラム部153により強く押圧されると、台座支持部163は温度が高いため容易に変形して、台座161はチューブの内壁面112に向かって移動させられる。台座161は、ストッパ164がチューブの内壁面112に当接するまで移動させられる。台座161が限界まで移動すると、ダイヤフラム部153は台座161の全体に接触するため、減圧流路143から収容部135に流れてきた灌漑用液体は、連絡溝162のみを通って連通孔151に流れる。これにより台座161の所定以上の移動が抑制される。
 (効果)
 本発明の実施の形態に係るエミッタの効果について、図5Aおよび図5Bを参照しつつ説明する。図5Aは従来のエミッタにおける圧力と流量との関係を示し、図5Bは本発明の実施の形態に係るエミッタ120における圧力と流量との関係を示している。
 図5Aから明らかなように、従来のエミッタでは、例えば圧力が約0.5バールのとき、流量が20℃と50℃のときで大きく異なっている。具体的には、50℃のときには、20℃のときと比べて、流量が少なくなりすぎ流量を適切に調整することができていない。これは高温になるとダイヤフラム部153が軟化し、圧力が加わることでより多く変形し、灌漑用液体が通る連通孔151をより塞いでしまうためだと考えられる。
 これに対して、図5Bから明らかなように、本発明の実施の形態に係るエミッタ120では、例えば圧力が約0.5バールのとき、流量が20℃と50℃のときでほぼ同じである。これは、高温によりダイヤフラム部153が軟化してより大きく変形しても、台座支持部163も同様に軟化し変形するので、ダイヤフラム部153と台座161との間を流れる灌漑用液体の流量が調整されるためであると考えられる。
 本出願は、2019年8月29日出願の特願2019-156783に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、温度変化によりダイヤフラム部の硬度が変化しても流量を適切に調整することができるエミッタおよび当該エミッタを有する点滴灌漑用チューブを提供できる。したがって、エミッタおよびエミッタを有する点滴灌漑用チューブのさらなる普及が期待される。
 100 点滴灌漑用チューブ
 110 チューブ
 111 吐出口
 112 チューブの内壁面
 120 エミッタ
 124 表面
 125 裏面
 131 取水部
 132 接続溝
 133 減圧流路溝
 134 貫通孔
 135 収容部
 136 流量調整部
 137 吐出部
 142 接続流路
 143 減圧流路
 147 取水用貫通孔
 151 連通孔
 153 ダイヤフラム部
 161 台座
 162 連絡溝
 163 台座支持部
 164 ストッパ
 171 取水側スクリーン部
 173 取水用凹部
 174 凸条
 175 凸部

Claims (5)

  1.  灌漑用液体を流通させるチューブの内壁面における、前記チューブの内外を連通する吐出口に対応する位置に接合されて前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
     前記灌漑用液体を取り入れるための取水部と、
     前記取水部から取り入れられた前記灌漑用液体を吐出するための吐出部と、
     前記取水部と前記吐出部とを接続する流路と、
     前記流路内に配置され、前記チューブ内の灌漑用液体の圧力に応じて前記流路内を流れる前記灌漑用液体の量を調整する流量調整部と、
     を有し、
     前記流量調整部は、
     前記取水部から取り入れられた前記灌漑用液体を受け入れるための収容部と、
     前記収容部と前記吐出部とを連通する連通孔を有する台座と、
     可撓性を有し、前記チューブ内の灌漑用液体の圧力を受けたときに前記台座に向かって変形するダイヤフラム部と、
     可撓性を有し、前記ダイヤフラム部が前記台座を押圧したときに前記台座が前記チューブの内壁面に向かって移動するように変形する、前記台座を支持する台座支持部と、
     を有し、
     前記ダイヤフラム部および前記台座支持部は、低温時に比べて高温時により変形しやすい、
     エミッタ。
  2.  前記台座支持部は、前記ダイヤフラム部が前記台座を押圧していないときに、前記台座が前記チューブの内壁面に接触しないように前記台座を支持する、請求項1に記載のエミッタ。
  3.  前記ダイヤフラム部および前記台座支持部は、熱可塑性樹脂を含む、請求項1または2に記載のエミッタ。
  4.  前記台座は、前記ダイヤフラム部によって押圧されたとき、前記チューブの内壁面に当接して前記台座の所定以上の移動を抑制するストッパを有する、請求項1~3のいずれか一項に記載のエミッタ。
  5.  灌漑用液体を吐出するための吐出口を有するチューブと、
     前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~4のいずれか一項に記載のエミッタと、
     を有する、点滴灌漑用チューブ。
PCT/JP2020/031598 2019-08-29 2020-08-21 エミッタおよび点滴灌漑用チューブ WO2021039623A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156783A JP2021029222A (ja) 2019-08-29 2019-08-29 エミッタおよび点滴灌漑用チューブ
JP2019-156783 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039623A1 true WO2021039623A1 (ja) 2021-03-04

Family

ID=74675030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031598 WO2021039623A1 (ja) 2019-08-29 2020-08-21 エミッタおよび点滴灌漑用チューブ

Country Status (2)

Country Link
JP (1) JP2021029222A (ja)
WO (1) WO2021039623A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180453A1 (en) 2021-02-25 2022-09-01 Ricoh Company, Ltd. Information processing apparatus, information processing system, information processing method, and recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050284966A1 (en) * 2004-06-23 2005-12-29 Defrank Michael Emitter
WO2015080126A1 (ja) * 2013-11-27 2015-06-04 株式会社エンプラス エミッタおよび点滴灌漑用チューブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050284966A1 (en) * 2004-06-23 2005-12-29 Defrank Michael Emitter
WO2015080126A1 (ja) * 2013-11-27 2015-06-04 株式会社エンプラス エミッタおよび点滴灌漑用チューブ

Also Published As

Publication number Publication date
JP2021029222A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2016190168A1 (ja) エミッタおよび点滴灌漑用チューブ
WO2016190167A1 (ja) エミッタおよび点滴灌漑用チューブ
WO2016194603A1 (ja) エミッタおよび点滴灌漑用チューブ
US9943045B2 (en) Emitter and drip irrigation tube
US20160309669A1 (en) Emitter and drip irrigation tube
JP7349432B2 (ja) エミッタおよび点滴灌漑用チューブ
WO2017057034A1 (ja) エミッタおよび点滴灌漑用チューブ
US11064663B2 (en) Emitter and tube for drip irrigation
JP7101045B2 (ja) エミッタおよび点滴灌漑用チューブ
WO2021039623A1 (ja) エミッタおよび点滴灌漑用チューブ
JP6783089B2 (ja) エミッタおよび点滴灌漑用チューブ
WO2021039831A1 (ja) エミッタおよび点滴灌漑用チューブ
US10806104B2 (en) Emitter, and tube for drip irrigation
WO2018025681A1 (ja) エミッタおよび点滴灌漑用チューブ
JP6444124B2 (ja) エミッタおよび点滴灌漑用チューブ
JP6831738B2 (ja) エミッタおよび点滴灌漑用チューブ
WO2020184419A1 (ja) エミッタおよび点滴灌漑用チューブ
WO2021039624A1 (ja) エミッタおよび点滴灌漑用チューブ
WO2021006225A1 (ja) エミッタおよび点滴灌漑用チューブ
JP2018174789A (ja) エミッタおよび点滴灌漑用チューブ
JP6831741B2 (ja) エミッタおよび点滴灌漑用チューブ
WO2019059186A1 (ja) エミッタおよび点滴灌漑用チューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858763

Country of ref document: EP

Kind code of ref document: A1