WO2021038818A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2021038818A1
WO2021038818A1 PCT/JP2019/034072 JP2019034072W WO2021038818A1 WO 2021038818 A1 WO2021038818 A1 WO 2021038818A1 JP 2019034072 W JP2019034072 W JP 2019034072W WO 2021038818 A1 WO2021038818 A1 WO 2021038818A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor heat
outdoor
control unit
temperature
Prior art date
Application number
PCT/JP2019/034072
Other languages
French (fr)
Japanese (ja)
Inventor
聡 五月女
智大 加藤
駿介 吉村
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2019/034072 priority Critical patent/WO2021038818A1/en
Priority to JP2019565362A priority patent/JP6749507B1/en
Priority to CN201980092898.0A priority patent/CN113474596B/en
Priority to TW109129277A priority patent/TWI734601B/en
Publication of WO2021038818A1 publication Critical patent/WO2021038818A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks

Definitions

  • the present invention relates to an air conditioner.
  • the evaporation temperature of the heat exchanger to be cleaned is adjusted according to the target evaporation temperature of the heat exchanger to be cleaned and the actual evaporation temperature. It is described that the heat exchanger to be cleaned is frosted.
  • an object of the present invention is to provide an air conditioner that keeps the outdoor heat exchanger in a clean state.
  • the control unit makes the outdoor heat exchanger function as an evaporator and freezes or condenses the lower part of the outdoor heat exchanger.
  • FIG. 1 is a configuration diagram of an air conditioner 100 according to the first embodiment.
  • the solid arrow in FIG. 1 indicates the flow of the refrigerant during the heating cycle.
  • the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling cycle.
  • the air conditioner 100 is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor heat exchanger temperature sensor 13, an outdoor fan 14, and an expansion valve 15. Further, the air conditioner 100 includes an indoor heat exchanger 16, an indoor fan 17, and a four-way valve 18 in addition to the above-described configuration.
  • the compressor 11 is a device that compresses a low-temperature low-pressure gas refrigerant and discharges it as a high-temperature high-pressure gas refrigerant, and includes a compressor motor 11a as a drive source.
  • the outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the outside air sent from the outdoor fan 14.
  • the outdoor heat exchanger temperature sensor 13 is a sensor that directly or indirectly detects the temperature of the outdoor heat exchanger 12.
  • the pipe k1 near the upstream end of the outdoor heat exchanger 12 near the lower end in the vertical direction: see FIG. 3).
  • the outdoor heat exchanger temperature sensor 13 is installed in the outdoor heat exchanger.
  • the outdoor fan 14 is a fan that sends outside air to the outdoor heat exchanger 12.
  • the outdoor fan 14 includes an outdoor fan motor 14a as a drive source, and is installed in the vicinity of the outdoor heat exchanger 12.
  • a propeller fan can be used, but the outdoor fan 14 is not limited thereto.
  • the expansion valve 15 is a valve that reduces the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger 12 and the indoor heat exchanger 16). The refrigerant decompressed by the expansion valve 15 is guided to an "evaporator" (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 16).
  • the indoor heat exchanger 16 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air conditioning target space) sent from the indoor fan 17.
  • the indoor fan 17 is a fan that sends indoor air to the indoor heat exchanger 16.
  • the indoor fan 17 includes an indoor fan motor 17a (see FIG. 4) as a drive source, and is installed in the vicinity of the indoor heat exchanger 16.
  • a vertical wind direction plate r for adjusting the vertical wind direction of the air blown from the indoor unit Ui is installed in the indoor unit Ui.
  • a left-right wind direction plate for adjusting the left-right direction of the air blown from the indoor unit Ui is also installed.
  • the four-way valve 18 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling cycle (see the dashed arrow in FIG. 1), in the refrigerant circuit Q, the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 15, and the indoor heat exchanger 16 (evaporator). The refrigerant circulates in sequence.
  • the compressor 11 the indoor heat exchanger 16 (condenser), the expansion valve 15, and the outdoor heat exchanger 12 (evaporator).
  • the refrigerant circulates in sequence.
  • the compressor 11, the outdoor heat exchanger 12, the outdoor heat exchanger temperature sensor 13, the outdoor fan 14, the expansion valve 15, and the four-way valve 18 are installed in the outdoor unit Uo.
  • the vertical wind direction plate r is installed in the indoor unit Ui.
  • FIG. 2 is a perspective view of the outdoor unit Uo with the side plate and top plate removed.
  • the expansion valve 15 see FIG. 1
  • the four-way valve 18 see FIG. 1 are not shown.
  • an outdoor heat exchanger 12 having an L shape in a plan view is installed on the bottom plate d of the housing of the outdoor unit Uo.
  • the outdoor heat exchanger 12 includes a large number of fins f arranged at predetermined intervals, and a plurality of heat transfer tubes g penetrating the fins f. Then, the refrigerant flows through the heat transfer tube g described above while meandering in a predetermined manner.
  • the accumulator 19 (not shown in FIG. 1) is a shell-shaped member for gas-liquid separation of the refrigerant directed to the compressor 11, and is connected to the suction side of the compressor 11.
  • the electrical component box h shown in FIG. 2 is a box that houses a substrate (not shown) on which the outdoor control circuit 32 (see FIG. 4) described later is mounted.
  • the control unit 30 freezes the lower part of the outdoor heat exchanger 12.
  • Such control is referred to as "freeze cleaning” (registered trademark) of the outdoor heat exchanger 12.
  • freeze cleaning registered trademark
  • salt and dust are referred to as “salt, etc.”
  • FIG. 3 is an explanatory diagram showing a path of the outdoor heat exchanger 12 of the air conditioner.
  • the direction of the refrigerant flow during the freeze-cleaning (heating cycle) of the outdoor heat exchanger 12 is indicated by an arrow.
  • the fins f of the outdoor heat exchanger 12 rectangular fins fa and fb elongated in the vertical direction are arranged side by side in the horizontal direction.
  • a large number of fin fas are provided at predetermined intervals in the front and depth directions of the paper surface, and the heat transfer tube g penetrates these fins fa. The same applies to the other fin fb.
  • the refrigerant flows through the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 in a predetermined manner through the heat transfer tube g.
  • the upper portion P1 of the outdoor heat exchanger 12 is, for example, a portion higher than the intermediate position R of the height in the vertical direction of the outdoor heat exchanger 12.
  • the lower portion P2 of the outdoor heat exchanger 12 is, for example, a portion lower than the intermediate position R of the height in the vertical direction of the outdoor heat exchanger 12.
  • the refrigerant decompressed by the expansion valve 15 passes through the pipe k1 and is further divided into the pipes ka and kb by the distributor w1.
  • the refrigerant flowing through these pipes ka and kb is guided to the heat transfer tube g of the lower part P2 of the outdoor heat exchanger 12.
  • the downstream ends v of the pipes ka and kb that guide the refrigerant decompressed by the expansion valve 15 (see FIG. 1) to the outdoor heat exchanger 12 It is connected to the lower part P2 of the outdoor heat exchanger 12.
  • the low-temperature low-pressure refrigerant flows into the heat transfer tube g of the lower part P2 of the outdoor heat exchanger 12, so that the lower part P2 of the outdoor heat exchanger 12 is likely to freeze. Therefore, after that, the frost and ice in the lower part P2 of the outdoor heat exchanger 12 melt, so that the salt content and the like in the lower part P2 are washed away.
  • the refrigerant that sequentially flows through the heat transfer pipe g and the pipe kh of the lower part P2 of the outdoor heat exchanger 12 via the pipe kb is divided into the pipes ki and kj by the distributor w2.
  • the refrigerant flowing through one of the pipes ki is guided to the pipe km via the heat transfer pipe g of the upper part P1 of the outdoor heat exchanger 12.
  • the refrigerant flowing through the other pipe kj is guided to the pipe kn via the heat transfer pipe g of the upper portion P1 of the outdoor heat exchanger 12.
  • the refrigerant that sequentially flows through the heat transfer pipe g and the pipe kc of the lower part P2 of the outdoor heat exchanger 12 through the pipe ka is divided into the pipes kd and ke by the distributor w3.
  • the refrigerant flowing through one of the pipes kd is guided to the pipe kf via the heat transfer pipe g of the upper portion P1 of the outdoor heat exchanger 12.
  • the refrigerant flowing through the other pipe ke is guided to the pipe kg via the heat transfer pipe g of the lower part P2 of the outdoor heat exchanger 12.
  • the refrigerants flowing through the pipes kf, kg, km, and kn described above merge in a predetermined manner and are guided to the suction side of the compressor 11 (see FIG. 1).
  • FIG. 4 is a functional block diagram of the air conditioner 100.
  • the indoor unit Ui shown in FIG. 4 includes a remote controller transmission / reception unit 21, an indoor temperature sensor 22, a left / right wind direction plate motor 23, a vertical wind direction plate motor 24, and an indicator lamp 25. And the indoor control circuit 31.
  • the remote controller transmission / reception unit 21 exchanges predetermined information with the remote controller 40 by infrared communication or the like.
  • the indoor temperature sensor 22 is a sensor that detects the indoor temperature (the temperature of the space subject to air conditioning), and is installed at a predetermined position of the indoor unit Ui.
  • the signal received from the remote controller 40 via the remote controller transmitter / receiver 21, the detection value of the room temperature sensor 22 and the like are output to the room control circuit 31 described later.
  • the indoor fan motor 17a is a drive source for the indoor fan 17 (see FIG. 1).
  • the left / right wind direction plate motor 23 is a motor that adjusts the angle of the left / right wind direction plate (not shown) in the left / right direction.
  • the vertical wind direction plate motor 24 is a motor that adjusts the vertical angle of the vertical wind direction plate r (see FIG. 1).
  • the indicator lamp 25 is a lamp that performs a predetermined display, and is installed at a predetermined position of the indoor unit Ui. For example, during the freeze-cleaning process of the outdoor heat exchanger 12, the control unit 30 lights (or blinks) the indicator lamp 25 in a predetermined manner.
  • the indoor control circuit 31 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
  • the storage unit 31a stores data received via the remote controller transmission / reception unit 21, detection values of each sensor, and the like.
  • the indoor control unit 31b controls the indoor fan motor 17a, the left / right wind direction plate motor 23, the vertical wind direction plate motor 24, the indicator lamp 25, etc., based on the data stored in the storage unit 31a.
  • the outdoor unit Uo includes an outdoor temperature sensor 26 and an outdoor control circuit 32 in addition to the above-described configuration (see FIG. 1).
  • the outdoor temperature sensor 26 is a sensor that detects the outdoor temperature, and is installed at a predetermined position of the outdoor unit Uo.
  • the outdoor heat exchanger temperature sensor 13 (see also FIG. 1) is a sensor that detects the temperature of the outdoor heat exchanger 12 as described above. The detected values of the outdoor temperature sensor 26 and the outdoor heat exchanger temperature sensor 13 are output to the outdoor control circuit 32.
  • the outdoor control circuit 32 includes electronic circuits such as a CPU, ROM, RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line. As shown in FIG. 4, the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
  • the storage unit 32a stores a predetermined program, data received from the indoor control circuit 31 via the communication line, and detection values of each sensor.
  • the outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 14a, the expansion valve 15, the four-way valve 18, and the like based on the data stored in the storage unit 32a.
  • the indoor control circuit 31 and the outdoor control circuit 32 are collectively referred to as a “control unit 30”.
  • the process of the control unit 30 regarding the freeze-cleaning of the outdoor heat exchanger 12 will be described with reference to FIG.
  • FIG. 5 is a flowchart of a process relating to freeze cleaning of the outdoor heat exchanger 12 (see FIGS. 1 and 4 as appropriate).
  • the control unit 30 determines whether or not the conditions for starting freeze cleaning of the outdoor heat exchanger 12 are satisfied.
  • the control unit 30 determines that the conditions for starting the freeze cleaning of the outdoor heat exchanger 12 are satisfied (S101). : Yes), the process proceeds to step S102.
  • control unit 30 determines that the conditions for starting the freeze cleaning of the outdoor heat exchanger 12 are not satisfied (S101: No), and freezes.
  • the process related to cleaning is completed (END).
  • step S102 the control unit 30 freezes the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 (that is, performs the "first process") as the freeze cleaning of the outdoor heat exchanger 12.
  • the control unit 30 circulates the refrigerant in the heating cycle in the refrigerant circuit Q, causes the outdoor heat exchanger 12 to function as an evaporator, and freezes the lower portion P2 of the outdoor heat exchanger 12.
  • the item "freezing the lower part P2 of the outdoor heat exchanger 12" includes the item of freezing the entire lower part 2 and the item of freezing at least a part of the lower part P2. Further, while the lower part P2 of the outdoor heat exchanger 12 is frozen (during the first treatment), the control unit 30 freezes at least a part of the lower part P2 of the outdoor heat exchanger 12 while the upper part P1 of the outdoor heat exchanger 12 is frozen. At least a part of the above may not be frozen.
  • the control unit 30 makes the opening degree of the expansion valve 15 smaller than that during the normal heating operation during freezing (during the first processing) of the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12.
  • the low-pressure refrigerant having a saturation temperature (evaporation temperature) lower than 0 ° C. flows into the lower part P2 of the outdoor heat exchanger 12.
  • the moisture in the air frosts on the lower part P2 of the outdoor heat exchanger 12 and freezes.
  • the frost or ice in the lower part P2 of the outdoor heat exchanger 12 is subsequently melted, the water is used to wash away the salt content in the lower part P2 of the outdoor heat exchanger 12. Therefore, since the lower portion P2 of the outdoor heat exchanger 12 in which salt is particularly likely to remain is washed, corrosion of the lower portion P2 can be suppressed.
  • FIG. 6 is a time chart showing the states of the compressor 11, the four-way valve 18, the expansion valve 15, the outdoor fan 14, and the indoor fan 17 (see FIGS. 1 and 4 as appropriate).
  • the horizontal axis of FIG. 6 is time.
  • the vertical axis of FIG. 6 shows the state of the compressor 11, the four-way valve 18, and the like.
  • the air conditioner 100 is in the stopped state until the time t1.
  • FIG. 6 shows an example in which the control unit 30 sequentially defrosts and dries the outdoor heat exchanger 12 after freezing the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12.
  • the description of thawing / drying of the outdoor heat exchanger 12 is omitted.
  • the control unit 30 switches the four-way valve 18 to the heating cycle at time t1, narrows the expansion valve 15 to a predetermined opening u1, and drives the compressor 11.
  • the predetermined opening u1 is a smaller opening than during the normal heating operation.
  • the low-temperature low-pressure refrigerant flows through the lower part P2 of the outdoor heat exchanger 12, which is an evaporator, and the lower part P2 freezes.
  • the control unit 30 keeps the state in which the detected value of the outdoor heat exchanger temperature sensor 13 (see FIGS. 1 and 3) is below the freezing point for a predetermined time (time t1 to t2).
  • the control unit 30 During freezing of the outdoor heat exchanger 12 (time t1 to t2), the control unit 30 preferably drives the outdoor fan 14 and the indoor fan 17. As a result, heat exchange in the outdoor heat exchanger 12 and the indoor heat exchanger 16 is promoted. During the freeze-cleaning process of the outdoor heat exchanger 12, the control unit 30 preferably rotates the outdoor fan 14 at a lower speed than during normal air conditioning operation. As a result, even when the temperature of the outside air is relatively high, frost and ice are likely to grow when the outdoor heat exchanger 12 is frozen. That is, while making the outdoor heat exchanger 12 function as an evaporator, it is possible to suppress a large amount of high-temperature outside air from being blown into the outdoor heat exchanger 12.
  • the control unit 30 reduces the rotation speed of the outdoor fan 14 as the outdoor temperature increases.
  • the outdoor temperature increases.
  • the matter that the rotation speed of the outdoor fan 14 is reduced as the outdoor temperature is higher includes the matter that the outdoor fan 14 is stopped when the outdoor temperature is relatively high.
  • the control unit 30 rotates the indoor fan 17 at a speed higher than the minimum rotation speed (lower limit value of the rotation speed) during normal air conditioning operation. It is preferable to let it. As a result, the outdoor heat exchanger 12 can be frozen. However, in order to reduce the air volume when warm air is blown from the indoor unit Ui, it is desirable that the indoor fan 17 has a rotation speed lower than the median rotation speed during normal air conditioning operation.
  • the above-mentioned "median rotation speed” means the median value between the minimum rotation speed and the maximum rotation speed during normal air conditioning operation.
  • the control unit 30 sets the vertical wind direction plate r (see FIG. 1) in the horizontal direction. It is preferable to turn it upward. That is, it is preferable that the control unit 30 adjusts the angle of the vertical wind direction plate r so that the direction of the warm air blown from the indoor unit Ui is higher than the horizontal direction. This makes it possible to prevent the warm air from directly hitting the user.
  • the control unit 30 After freezing the lower part P2 of the outdoor heat exchanger 12 at times t1 to t2 in FIG. 6 (after the first treatment), the control unit 30 defrosts the outdoor heat exchanger 12 at times t2 to t3. In the example of FIG. 6, the control unit 30 stops the compressor 11 and also stops the outdoor fan 14 and the indoor fan 17. Further, the control unit 30 makes the opening degree of the expansion valve 15 larger than that when the outdoor heat exchanger 12 is frozen (during the first treatment) to thaw the outdoor heat exchanger 12. In the example of FIG. 6, the expansion valve 15 is fully opened while the outdoor heat exchanger 12 is being thawed.
  • the high-temperature refrigerant of the indoor heat exchanger 16 that was functioning as a condenser during the freezing of the outdoor heat exchanger 12 flows into the outdoor heat exchanger 12 on the low-voltage side via the expansion valve 15.
  • the frost and ice in the lower part P2 of the outdoor heat exchanger 12 are melted, and the outdoor heat exchanger 12 is washed away.
  • the opening degree of the expansion valve 15 is not increased at the time of thawing, the frost and ice of the outdoor heat exchanger 12 are melted by heat exchange with the outside air, but by increasing the opening degree of the expansion valve 15, as described above.
  • thawing of the outdoor heat exchanger 12 is promoted.
  • the control unit 30 drives the outdoor fan 14 at times t3 to t4 to dry the outdoor heat exchanger 12.
  • the control unit 30 drives the outdoor fan 14 at the first rotation speed after thawing the outdoor heat exchanger 12 to dry the outdoor heat exchanger 12.
  • the control unit 30 may drive the compressor 11 in the cooling cycle to dry the outdoor heat exchanger 12.
  • the compressor 11 and the indoor fan 17 are stopped while the outdoor heat exchanger 12 is drying. Further, the four-way valve 18 and the expansion valve 15 are maintained in the state when the outdoor heat exchanger 12 is thawed.
  • FIG. 7 is a Moriel diagram during normal heating operation and during freeze-cleaning of the outdoor heat exchanger (see also FIG. 1 as appropriate).
  • the horizontal axis of FIG. 7 is the specific enthalpy of the refrigerant, and the vertical axis of FIG. 7 is the pressure of the refrigerant.
  • the saturated vapor line ⁇ shown in FIG. 7 is a boundary line between the gas phase and the gas-liquid two-phase in the state of the refrigerant.
  • the saturated liquid line ⁇ is a boundary line between the liquid phase and the gas-liquid two-phase in the state of the refrigerant.
  • the refrigerant is in a gas-liquid two-phase state.
  • the boundary point between the saturated vapor line ⁇ and the saturated liquid line ⁇ is referred to as a critical point ⁇ .
  • the trapezoidal alternate long and short dash line M shown in FIG. 7 is a Moriel diagram during normal heating operation.
  • the trapezoidal solid line N shown in FIG. 7 is a Moriel diagram of the outdoor heat exchanger 12 during freeze cleaning.
  • the refrigerant is used in a refrigeration cycle of compression (state Ma ⁇ Mb), condensation (state Mb ⁇ Mc), expansion (state Mc ⁇ Md), and evaporation (state Md ⁇ Ma). Circulate.
  • the expansion valve 15 is throttled to the opening degree u1 as described above (see FIG. 6).
  • the pressure of the refrigerant expanded by the expansion valve 15 becomes lower than that during the normal heating operation (state Md), and the temperature of the refrigerant becomes lower accordingly.
  • the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is frozen.
  • At least a part of the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is in a gas-liquid two-phase state.
  • at least a part of the upper part P1 (see FIG. 3) of the outdoor heat exchanger 12 is in a gas phase in the state of the refrigerant.
  • the degree of superheat of the refrigerant increases due to heat exchange with the outside air (state Na in FIG. 7).
  • the temperature of the refrigerant becomes substantially equal to the outside air.
  • the degree of superheat of the refrigerant (state Nb) discharged from the compressor 11 is increased during normal heating operation (state Mb). (See also specific enthalpy difference ⁇ H1).
  • the control unit 30 rotates the indoor fan 17. Is preferably higher than at the start of the freeze-washing process.
  • the above-mentioned "second predetermined temperature” is a threshold value that serves as a criterion for determining whether or not to increase the rotation speed of the indoor fan 17 during freeze cleaning, and is set in advance.
  • the expansion valve 15 is throttled to the opening degree u1 (see FIG. 6) during the freeze cleaning of the outdoor heat exchanger 12, the flow rate of the refrigerant in the indoor heat exchanger 16 is also reduced.
  • the temperature of the refrigerant drops to near room temperature, and the state of the refrigerant often becomes a liquid phase.
  • the refrigerant condensed in this way is depressurized by the expansion valve 15 (state Nd). Then, the low-temperature low-pressure refrigerant decompressed by the expansion valve 15 is guided to the outdoor heat exchanger 12, and as described above, the lower portion P2 (see FIG. 3) of the outdoor heat exchanger 12 is frozen.
  • the control unit 30 freezes the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12, so that the salt content and the like in the lower part P2 are washed away.
  • the outdoor heat exchanger 12 can be kept clean.
  • the outdoor unit Uo when installed near the coast where salt damage is likely to occur, it often corrodes at the lower part P2 of the outdoor heat exchanger 12. Corrosion of the lower part P2 of the outdoor heat exchanger 12 can be suppressed by the above-mentioned freeze washing.
  • the water accompanying the subsequent thawing becomes high-concentration salt water in the process of flowing down along the fin f (see FIG. 3), and as a result, Salt may remain in the lower P2.
  • the lower part P2 of the outdoor heat exchanger 12 is frozen as in the first embodiment, the high-concentration salt water does not flow down from the upper part P1, so that the salt content of the lower part P2 can be appropriately washed away.
  • the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is frozen, while the upper part P1 (see FIG. 3) of the outdoor heat exchanger 12 does not need to be frozen. Therefore, as compared with the case where both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen, the time for blowing warm air into the room can be shortened, and the rise in the indoor temperature can be suppressed.
  • the freeze-cleaning of the outdoor heat exchanger 12 is completely different from the freeze-cleaning of the indoor heat exchanger 16 (not particularly described in the first embodiment and the like).
  • the indoor heat exchanger 16 functions as a condenser and warm air is blown from the indoor unit Ui as the outdoor heat exchanger 12 freezes.
  • the freeze cleaning of the indoor heat exchanger 16 there is no particular problem even if warm air is blown from the outdoor unit Uo, but in the freeze cleaning of the outdoor heat exchanger 12, when the warm air is blown from the indoor unit Ui, the user May feel uncomfortable.
  • the lower part P2 is frozen so that the outdoor heat exchanger 12 can be frozen and washed in a short time, and the time for which warm air is blown from the indoor unit Ui is shortened. I am doing it.
  • Such a viewpoint was first discovered by the inventors in their diligent studies regarding the freeze-cleaning of the outdoor heat exchanger 12.
  • the control unit 30 increases the opening degree of the expansion valve 15 and flows a high-temperature refrigerant into the outdoor heat exchanger 12. This facilitates the thawing of frost and ice in the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12. After thawing the outdoor heat exchanger 12, the control unit 30 drives the outdoor fan 14 to dry the outdoor heat exchanger 12. As a result, even if some salt remains in the outdoor heat exchanger 12, corrosion of the outdoor heat exchanger 12 due to the salt dissolved in water can be suppressed.
  • control unit 30 receives a case where the indoor temperature becomes higher than the first predetermined temperature (for example, 32 ° C.) during the first treatment of freezing the lower part P2 of the outdoor heat exchanger 12, or the first treatment described above.
  • the first predetermined temperature for example, 32 ° C.
  • the first treatment may be terminated.
  • the above-mentioned "first predetermined temperature” and the like are threshold values that serve as criteria for determining whether or not to end (stop) the first process, and are set in advance.
  • the second embodiment is different from the first embodiment in that the method of freezing the outdoor heat exchanger 12 is changed based on the indoor temperature.
  • Others (configuration of the air conditioner 100, etc .: see FIGS. 1 to 4) are the same as those in the first embodiment. Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
  • FIG. 8 is a flowchart of a process relating to freeze cleaning of the outdoor heat exchanger 12 (see FIGS. 1 and 4 as appropriate). Since the process of step S201 is the same as that of step S101 of the first embodiment (see FIG. 5), the description thereof will be omitted. If the start condition for freeze-cleaning of the outdoor heat exchanger 12 is satisfied in step S201 (S201: Yes), the process of the control unit 30 proceeds to step S202.
  • step S202 the control unit 30 determines whether or not the indoor temperature T detected by the indoor temperature sensor 22 (see FIG. 4) is equal to or higher than the third predetermined temperature T3.
  • the third predetermined temperature T3 described above is a threshold value that serves as a criterion for determining whether or not to freeze the upper P1 and the lower P2 of the outdoor heat exchanger 12 (S204), and is set in advance.
  • step S202 when the room temperature T is equal to or higher than the third predetermined temperature T3 (S202: Yes), the process of the control unit 30 proceeds to step S203.
  • step S203 the control unit 30 freezes the lower portion P2 (see FIG. 3) of the outdoor heat exchanger 12 as a freeze-cleaning process (first process) of the outdoor heat exchanger 12.
  • the time required for freezing and cleaning the outdoor heat exchanger 12 can be shortened as compared with the case where the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen (S204). Therefore, during the freeze-cleaning of the outdoor heat exchanger 12, the time for blowing warm air into a relatively high-temperature room can be shortened.
  • the opening degree of the expansion valve 15 is smaller in the case of freezing the lower part P2 of the outdoor heat exchanger 12 (S203) than in the case of freezing the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204). Is preferable.
  • the temperature of the refrigerant passing through the pipe k1 (see FIG. 1) on the downstream side of the expansion valve 15 becomes very low, and the circulation amount of the refrigerant decreases.
  • the lower P2 (particularly near the lower end) of the outdoor heat exchanger 12 freezes, while the gas refrigerant at room temperature flows through the upper P1 (particularly near the upper end).
  • the case of freezing the lower part P2 of the outdoor heat exchanger 12 (S203) as the freeze-cleaning process (first process) is better than the case of freezing the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204). It is preferable that the time for keeping the temperature of the outdoor heat exchanger 12 below the freezing point is short. As a result, it is possible to shorten the time for which warm air is blown into the room during freezing of the lower part P2 of the outdoor heat exchanger 12.
  • control unit 30 controls the outdoor heat exchanger as in the first embodiment (see FIG. 6). Twelve may be thawed and dried in sequence. After performing the process of step S203, the control unit 30 ends a series of processes related to freeze cleaning of the outdoor heat exchanger 12 (END).
  • step S202 when the room temperature T is less than the third predetermined temperature T3 (S202: No), the process of the control unit 30 proceeds to step S204.
  • step S204 the control unit 30 freezes both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12.
  • the expansion valve 15 has a better case of freezing both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204) than the case of freezing the lower part P2 of the outdoor heat exchanger 12 (S203).
  • the opening degree is large, but other than that, the process is the same as in step S204 (see also “freezing” in FIG. 6).
  • the item "freezing both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12" includes the item of freezing the entire upper part P1 and the lower part 2, as well as at least a part of the upper part P1 and the lower part. It also includes the matter of freezing at least a part of P2.
  • step S205 the control unit 30 defrosts both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12.
  • the control unit 30 flows a high-temperature refrigerant into the outdoor heat exchanger 12 by increasing the opening degree of the expansion valve 15 as in the “thaw” of FIG.
  • the control unit 30 may stop the compressor 11 and the outdoor fan 14 to maintain the opening degree of the expansion valve 15 as it is at the time of freezing. Even in such a process, the frost and ice of the outdoor heat exchanger 12 are naturally melted by heat exchange with the outside air.
  • step S206 the control unit 30 freezes the lower part P2 of the outdoor heat exchanger 12. Since the control content of step S206 is the same as that of step S203 (see also “freezing" in FIG. 6), the description thereof will be omitted.
  • the control unit 30 causes the outdoor heat exchanger 12 to function as an evaporator, and the upper portion P1 of the outdoor heat exchanger 12 is operated. -Frozen both lower parts P2 (S204). Then, after freezing both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204), the control unit 30 defrosts both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S205). After thawing, the first treatment of freezing the lower part P2 of the outdoor heat exchanger 12 is performed (S206). As a result, even if some salt remains in the lower P2 after freezing of the upper P1 and lower P2 of the outdoor heat exchanger 12 (S204, S205), the salt can be washed away.
  • the indoor temperature T is less than the third predetermined temperature T3 (S202: No), even if the time required for freezing and cleaning (S204 to S206) of the outdoor heat exchanger 12 is relatively long, the warm air into the room can be used. There is almost no risk of user discomfort due to blowing.
  • step S206 After the lower part P2 of the outdoor heat exchanger 12 is frozen in step S206, the control unit 30 sequentially defrosts and dries the outdoor heat exchanger 12 (see FIG. 6). You may do it. After performing the process of step S206, the control unit 30 ends a series of processes related to freeze cleaning of the outdoor heat exchanger 12 (END).
  • the control unit 30 freezes the lower portion P2 of the outdoor heat exchanger 12 (S203).
  • the salt and the like adhering to the lower part P2 of the outdoor heat exchanger 12 can be washed away in a short time.
  • the time for which warm air is blown into a relatively high temperature room can be shortened.
  • the control unit 30 freezes the upper P1 and the lower P2 of the outdoor heat exchanger 12 and then thawes them (S204, S205). Further, the lower part P2 of the outdoor heat exchanger 12 is frozen (S206). As a result, the outdoor heat exchanger 12 can be cleaned as a whole. Further, when water having a high salt concentration flows through the surface of the lower part P2 to the outdoor heat exchanger 12 due to freezing and washing of the upper part P1 and the lower part P2 of the outdoor heat exchanger 12, and salt remains in the lower part P2. However, the salt content is washed away by the treatment in step S206. As a result, the time required for freeze-cleaning can be shortened as compared with repeating freeze-washing of the upper P1 and lower P2 of the outdoor heat exchanger 12 twice.
  • FIG. 9 is an explanatory diagram showing a path of the outdoor heat exchanger 12A of the air conditioner according to the modified example.
  • the outdoor heat exchanger 12A includes vertically elongated rectangular fins f. Then, a plurality of fins f are arranged at predetermined intervals in the front and back directions of the paper surface of FIG. Then, while the outdoor heat exchanger 12A is frozen (during the heating cycle), the refrigerant flows into the lower part P2 of the outdoor heat exchanger 12A via the pipe k1. As a result, the lower part P2 (particularly near the lower end) of the outdoor heat exchanger 12A is frozen.
  • the refrigerant flowing through the lower part P2 of the outdoor heat exchanger 12A is sequentially distributed to the pipes kq and kr via the pipe kp and the distributor w4.
  • the refrigerant flowing through one of the pipes kq is guided to the suction side of the compressor 11 (see FIG. 1) via the pipe ks after passing through the upper part P1 of the outdoor heat exchanger 12A.
  • the refrigerant flowing through the other pipe kr is guided to the suction side of the compressor 11 (see FIG. 1) via the pipe kt after passing through the region including the intermediate position R of the outdoor heat exchanger 12A.
  • the refrigerant flowing through the pipe kt and the pipe ks merges and is guided to the suction side of the compressor 11 (see FIG. 1). Even with such a configuration, the same effect as that of each embodiment is obtained.
  • the paths of the outdoor heat exchangers 12 and 12A described with reference to FIGS. 3 and 9 are examples, and the above-mentioned paths may be changed as appropriate. Further, the outdoor heat exchanger may be provided with fins (not shown) arranged in three or more rows in the left-right direction.
  • the present invention is not limited to this. That is, instead of the process of step S102 shown in FIG. 5, the lower part P2 of the outdoor heat exchanger 12 may be condensed.
  • the control unit 30 sets the temperature of the outdoor heat exchanger 12 to be below the dew point of the outside air and higher than the predetermined freezing temperature.
  • the opening degree of the expansion valve 15 and the like are adjusted, and the state is maintained for a predetermined time.
  • the above-mentioned "freezing temperature” is a temperature at which moisture contained in the air begins to freeze in the outdoor heat exchanger 12 when the temperature of the outdoor heat exchanger 12 is gradually lowered. After dew condensation on the lower part P2 of the outdoor heat exchanger 12 in this way, the control unit 30 may drive the outdoor fan 14 to dry the outdoor heat exchanger 12.
  • the process in which the control unit 30 rotates the outdoor fan 14 at a lower speed than in the normal air-conditioning operation while the outdoor heat exchanger 12 is frozen (during the first process) has been described.
  • the control unit 30 may maintain the outdoor fan 14 in a stopped state while the outdoor heat exchanger 12 is frozen (during the first process).
  • frost and ice of the outdoor heat exchanger 12 are likely to grow even in a high temperature environment. The same can be said for the second embodiment.
  • the control unit 30 when the temperature on the discharge side of the compressor 11 becomes equal to or higher than the second predetermined temperature during freezing of the lower part P2 of the outdoor heat exchanger 12 (during the first processing), the control unit 30 is charged.
  • the process of increasing the rotation speed of the indoor fan 17 has been described, the present invention is not limited to this.
  • the control unit 30 causes the indoor fan 17 to move. You may try to increase the rotation speed of. Even in such a process, the temperature rise of the compressor 11 can be suppressed.
  • the temperature on the discharge side of the compressor 11 and the temperature of the indoor heat exchanger 16 may be combined. That is, when the lower part P2 of the outdoor heat exchanger 12 is frozen (during the first treatment), the temperature on the discharge side of the compressor 11 and / or the temperature of the indoor heat exchanger 16 becomes equal to or higher than the second predetermined temperature. , The control unit 30 may increase the rotation speed of the indoor fan 17.
  • the control unit 30 has described the process of changing the freezing method of the outdoor heat exchanger 12 based on the indoor temperature (S202 in FIG. 8), but the present invention is not limited to this.
  • the outdoor temperature may be used instead of the indoor temperature, or the indoor temperature and the outdoor temperature may be combined. That is, when the indoor temperature and / or the outdoor temperature is equal to or higher than the third predetermined temperature, the control unit 30 performs the first process (S203 in FIG. 8) to freeze the lower portion P2 of the outdoor heat exchanger 12. You may. Further, when the indoor temperature and / or the outdoor temperature is lower than the third predetermined temperature, the control unit 30 may freeze both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (FIG. 8). S204).
  • control unit 30 may freeze both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 regardless of the indoor temperature and the outdoor temperature. That is, after the control unit 30 causes the outdoor heat exchanger 12 to function as an evaporator and freezes both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12, the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen. Both may be thawed, and after the thawing, the lower part P2 of the outdoor heat exchanger 12 may be frozen. As a result, the outdoor heat exchanger 12 can be washed as a whole, and the salt content and the like in the lower portion P2 of the outdoor heat exchanger 12 can be washed away. When performing the above-mentioned "thawing", the control unit 30 may increase the opening degree of the expansion valve 15, or the compressor 11 or the like while maintaining the opening degree of the expansion valve 15 at the time of freezing. Equipment may be stopped.
  • control unit 30 may freeze only the lower part P2 of the outdoor heat exchanger 12 while not freezing the upper part P1. Further, the control unit 30 may dry the outdoor heat exchanger 12 after repeating freezing and thawing of the lower portion P2 of the outdoor heat exchanger 12 a plurality of times. Further, even if the control unit 30 repeats freezing and thawing of the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 a plurality of times without considering the rise in the indoor temperature, the outdoor heat exchanger 12 is dried. Good.
  • the outdoor heat exchanger 12 can be kept clean by each of the above treatments.
  • the fourth predetermined temperature is a threshold value that serves as a criterion for determining whether or not to freeze the outdoor heat exchanger 12, and is set in advance as a value higher than the third predetermined temperature T3 (S202 in FIG. 8). It has been set. As a result, it is possible to prevent warm air from being blown out from the indoor unit Ui when the indoor temperature is considerably high.
  • the outdoor temperature may be used instead of the indoor temperature, or both the indoor temperature and the outdoor temperature may be used. That is, when the indoor temperature and / or the outdoor temperature is equal to or higher than the fourth predetermined temperature, the control unit 30 prevents the outdoor heat exchanger 12 including the first treatment described above from freezing (or dew condensation). May be good.
  • the control unit 30 may stop the process. For example, if the stop button (not shown) of the remote controller 40 is pressed during the first process of freezing or condensing the lower part P2 of the outdoor heat exchanger 12, the control unit 30 stops the first process. It may be. As a result, it is possible to reflect the user's intention to stop the freeze-cleaning of the outdoor heat exchanger 12 and prevent the warm air from being blown out from the indoor unit Ui.
  • a predetermined air conditioning operation start command is received from the remote controller 40 during the freezing (or dew condensation) processing of the outdoor heat exchanger 12
  • the control unit 30 stops the above processing and then performs the predetermined air conditioning operation.
  • a predetermined air conditioning operation start command is received from the remote controller 40 during the first process of freezing or dew condensation on the lower portion P2 of the outdoor heat exchanger 12
  • the control unit 30 stops the first process and then cancels the first process.
  • a predetermined air conditioning operation may be started. This makes it possible to reflect the user's intention to start a predetermined air-conditioning operation such as a cooling operation or a heating operation.
  • the setting in which the outdoor heat exchanger 12 is frozen (or dew condensation) and another setting in which the outdoor heat exchanger 12 is not frozen (or dew condensation) are switched by operating the remote controller 40 at predetermined intervals. It may be possible.
  • the setting in which the first process of freezing or dew condensation on the lower portion P2 of the outdoor heat exchanger 12 is performed at predetermined intervals and another setting in which the above-mentioned first process is not performed can be switched by operating the remote controller 40. It may be set to.
  • the outdoor heat exchanger 12 is set to be periodically freeze-cleaned by the operation of the remote controller 40 by the user. it can.
  • the outdoor heat exchanger 12 can be set not to be frozen and washed by operating the remote controller 40 by the user.
  • the control unit 30 causes the outdoor heat exchanger 12 to perform. May function as a condenser. That is, when the frost or ice of the outdoor heat exchanger 12 is difficult to melt, the control unit 30 may circulate the refrigerant in the cooling cycle to actively thaw the outdoor heat exchanger 12.
  • a component (not shown) for guiding drainage may be provided in the lower part P2 of the outdoor heat exchanger 12 so as not to retain water in the lower part P2 of the outdoor heat exchanger 12.
  • the moisture retained in the lower portion P2 of the outdoor heat exchanger 12 is removed by vibration accompanying the drive of the compressor 11 or the outdoor fan 14 or both. You may do so.
  • the outdoor heat exchanger 12 may be subjected to a predetermined water repellent treatment so as not to retain water in the lower portion P2 of the outdoor heat exchanger 12.
  • control unit 30 may perform the first process of freezing and cleaning the outdoor heat exchanger 12 and the second process of rotating the outdoor fan 14 in the reverse direction while the normal air conditioning operation is stopped.
  • the second process may be performed after the end of the normal air conditioning operation (the end of the normal air conditioning operation is set as the start condition of the second process).
  • the outdoor fan 14 rotates forward, and air flows so as to be sucked from the outdoor heat exchanger 12 into the outdoor fan 14.
  • the outdoor fan 14 rotates in the reverse direction, and air is sent from the outdoor fan 14 to the outdoor heat exchanger 12.
  • relatively large dust adhering to the outdoor heat exchanger 12 is removed.
  • the relatively large dust adhering to the outdoor heat exchanger 12 due to the air conditioning operation is removed by the second treatment of rotating the outdoor fan 14 in the reverse direction, and the small dust and salt are washed by freezing the outdoor heat exchanger 12. can do.
  • the second process of rotating the outdoor fan 14 in the reverse direction does not change the indoor environment, it may be executed every time the normal air conditioning operation is completed.
  • the process of freezing and cleaning the outdoor heat exchanger 12 raises the indoor temperature. Therefore, when the normal air conditioning operation is started and ended a plurality of times, the control unit 30 moves the lower portion of the outdoor heat exchanger 12.
  • the first treatment for freezing P2 may be performed once.
  • the first treatment is performed so as to freeze and wash the outdoor heat exchanger 12 periodically every few weeks or months. It is desirable to do.
  • the indoor temperature becomes the first predetermined temperature or higher during the first treatment of lower P2 of the outdoor heat exchanger 12, or the indoor temperature rises by the predetermined temperature or higher from the start of the first treatment.
  • the above is not limited to the above, although it has been described that the freezing of the outdoor heat exchanger 12 is terminated in this case.
  • the control unit 30 When both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen and the indoor temperature rises above the first predetermined temperature or the indoor temperature rises above the predetermined temperature during freezing, the control unit 30 However, the freezing of the outdoor heat exchanger 12 may be terminated.
  • the control unit 30 drives the outdoor fan 14 at the first rotation speed to dry the outdoor heat exchanger 12, but the present invention is limited to this. Absent.
  • the control unit 30 may temporarily drive the outdoor fan 14 at the second rotation speed during thawing, drying, or after drying of the outdoor heat exchanger 12.
  • the second rotation speed described above is higher than the first rotation speed and is set in advance. This promotes thawing and drying of the outdoor heat exchanger 12.
  • a condition for starting the freeze-cleaning of the outdoor heat exchanger 12 S101 in FIG. 5
  • an example is given in which a predetermined period has passed since the end of the previous freeze-cleaning.
  • the remote controller 40 may be provided with a freeze-cleaning start button (not shown) for the outdoor heat exchanger 12, and when this start button is pressed, the control unit 30 may start the freeze-cleaning.
  • control unit 30 lights or blinks the indicator lamp 25 (see FIG. 4) in a predetermined manner during the freeze-cleaning of the outdoor heat exchanger 12
  • the present invention is not limited to this.
  • the fact that freeze-washing is in progress may be displayed on the remote controller 40 or a mobile terminal (not shown).
  • the air conditioner 100 includes one expansion valve 15 in the outdoor unit Uo has been described, but the present invention is not limited to this.
  • another expansion valve (not shown) may be provided in the vicinity of the indoor heat exchanger 16 in the pipe k1.
  • each embodiment a configuration in which one indoor unit Ui (see FIG. 1) and one outdoor unit Uo (see FIG. 1) are provided has been described, but the present invention is not limited to this. That is, a plurality of indoor units connected in parallel may be provided.
  • each embodiment can be applied to various types of air conditioners such as packaged air conditioners and multi air conditioners for buildings.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.
  • Air conditioner 11 Compressor 12, 12A Outdoor heat exchanger (evaporator / condenser) 13 Outdoor heat exchanger temperature sensor 14 Outdoor fan 15 Expansion valve 16 Indoor heat exchanger (condenser / evaporator) 17 Indoor fan 18 Four-way valve 19 Accumulator 21 Remote control transmitter / receiver 22 Indoor temperature sensor 25 Indicator lamp 26 Outdoor temperature sensor 30 Control unit 40 Remote control k1, ka, kb Piping P1 upper part (upper part of outdoor heat exchanger) Lower part of P2 (lower part of outdoor heat exchanger) Q Refrigerant circuit r Vertical wind direction plate R Intermediate position Ui Indoor unit Uo Outdoor unit v Downstream end

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Provided is an air conditioner that keeps an outdoor heat exchanger clean. The air conditioner (100) comprises: a refrigerant circuit (Q) having a compressor (11), an indoor heat exchanger 16, an expansion valve (15), and an outdoor heat exchanger 12; and a control unit that controls at least the compressor (11) and the expansion valve (15). The control unit performs first processing for freezing or condensing the lower part of the outdoor heat exchanger (12). This ensures that the outdoor heat exchanger (12) of the air conditioner (100) is in a clean state.

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 空気調和機の熱交換器を洗浄する技術として、例えば、特許文献1には、被洗浄熱交換器の目標蒸発温度及び実際の蒸発温度に応じて被洗浄熱交換器の蒸発温度を調節し、被洗浄熱交換器に着霜させることが記載されている。 As a technique for cleaning the heat exchanger of an air conditioner, for example, in Patent Document 1, the evaporation temperature of the heat exchanger to be cleaned is adjusted according to the target evaporation temperature of the heat exchanger to be cleaned and the actual evaporation temperature. It is described that the heat exchanger to be cleaned is frosted.
国際公開第2018/086176号International Publication No. 2018/086176
 ところで、海岸付近等の地域では潮風が吹くため、屋外に設けられた室外熱交換器に塩分が付着しやすい。このように塩分が付着した状態で室外熱交換器が長期間に亘って使用されると、塩分の影響で室外熱交換器が腐食する可能性がある。 By the way, since the sea breeze blows in areas such as near the coast, salt tends to adhere to the outdoor heat exchanger installed outdoors. If the outdoor heat exchanger is used for a long period of time with the salt attached, the outdoor heat exchanger may be corroded due to the influence of the salt.
 例えば、特許文献1の技術に基づいて、室外熱交換器を着霜させた場合、霜の融解に伴う水が室外熱交換器のフィンを伝って流れ落ち、フィンに付着していた塩分が水に溶け込む。その結果、室外熱交換器の下端付近では高濃度の塩水がフィンを伝って流れるため、室外熱交換器の下端付近に塩分が残る可能性がある。このような特許文献1の技術に関して、室外熱交換器をさらに清潔な状態にすることが望まれている。 For example, when the outdoor heat exchanger is frosted based on the technique of Patent Document 1, the water accompanying the melting of the frost flows down along the fins of the outdoor heat exchanger, and the salt adhering to the fins becomes water. It blends in. As a result, high-concentration salt water flows along the fins near the lower end of the outdoor heat exchanger, so that salt may remain near the lower end of the outdoor heat exchanger. With respect to the technique of Patent Document 1, it is desired to further clean the outdoor heat exchanger.
 そこで、本発明は、室外熱交換器を清潔な状態にする空気調和機を提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioner that keeps the outdoor heat exchanger in a clean state.
 前記課題を解決するために、本発明に係る空気調和機は、制御部が、室外熱交換器を蒸発器として機能させ、室外熱交換器の下部を凍結又は結露させることとした。 In order to solve the above problems, in the air conditioner according to the present invention, the control unit makes the outdoor heat exchanger function as an evaporator and freezes or condenses the lower part of the outdoor heat exchanger.
 本発明によれば、室外熱交換器を清潔な状態にする空気調和機を提供できる。 According to the present invention, it is possible to provide an air conditioner that keeps the outdoor heat exchanger in a clean state.
本発明の第1実施形態に係る空気調和機の構成図である。It is a block diagram of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機が備える室外機の筐体の側板・天板を取り外した状態の斜視図である。It is a perspective view of the state in which the side plate and the top plate of the housing of the outdoor unit provided in the air conditioner which concerns on 1st Embodiment of this invention are removed. 本発明の第1実施形態に係る空気調和機の室外熱交換器のパスを示す説明図である。It is explanatory drawing which shows the path of the outdoor heat exchanger of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の機能ブロック図である。It is a functional block diagram of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の室外熱交換器の凍結洗浄に関する処理のフローチャートである。It is a flowchart of the process concerning freeze-cleaning of the outdoor heat exchanger of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機において、圧縮機、四方弁、膨張弁、室外ファン、及び室内ファンの状態を示すタイムチャートである。It is a time chart which shows the state of a compressor, a four-way valve, an expansion valve, an outdoor fan, and an indoor fan in the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の通常の暖房運転時、及び、室外熱交換器の凍結洗浄時のモリエル線図である。It is a Moriel diagram at the time of normal heating operation of the air conditioner which concerns on 1st Embodiment of this invention, and at the time of freeze cleaning of an outdoor heat exchanger. 本発明の第2実施形態に係る空気調和機の室外熱交換器の凍結洗浄に関する処理のフローチャートである。It is a flowchart of the process concerning freeze-cleaning of the outdoor heat exchanger of the air conditioner which concerns on 2nd Embodiment of this invention. 本発明の変形例に係る空気調和機の室外熱交換器のパスを示す説明図である。It is explanatory drawing which shows the path of the outdoor heat exchanger of the air conditioner which concerns on the modification of this invention.
≪第1実施形態≫
<空気調和機の構成>
 図1は、第1実施形態に係る空気調和機100の構成図である。
 なお、図1の実線矢印は、暖房サイクル時の冷媒の流れを示している。
 一方、図1の破線矢印は、冷房サイクル時の冷媒の流れを示している。
 空気調和機100は、冷房運転や暖房運転等の空調を行う機器である。図1に示すように、空気調和機100は、圧縮機11と、室外熱交換器12と、室外熱交換器温度センサ13と、室外ファン14と、膨張弁15と、を備えている。また、空気調和機100は、前記した構成の他に、室内熱交換器16と、室内ファン17と、四方弁18と、を備えている。
<< First Embodiment >>
<Composition of air conditioner>
FIG. 1 is a configuration diagram of an air conditioner 100 according to the first embodiment.
The solid arrow in FIG. 1 indicates the flow of the refrigerant during the heating cycle.
On the other hand, the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling cycle.
The air conditioner 100 is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor heat exchanger temperature sensor 13, an outdoor fan 14, and an expansion valve 15. Further, the air conditioner 100 includes an indoor heat exchanger 16, an indoor fan 17, and a four-way valve 18 in addition to the above-described configuration.
 圧縮機11は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器であり、駆動源である圧縮機モータ11aを備えている。
 室外熱交換器12は、その伝熱管g(図2参照)を通流する冷媒と、室外ファン14から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
The compressor 11 is a device that compresses a low-temperature low-pressure gas refrigerant and discharges it as a high-temperature high-pressure gas refrigerant, and includes a compressor motor 11a as a drive source.
The outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the outside air sent from the outdoor fan 14.
 室外熱交換器温度センサ13は、室外熱交換器12の温度を直接又は間接に検出するセンサである。図1の例では、暖房サイクル(図1の実線矢印を参照)で冷媒が循環している場合において、室外熱交換器12の上流端付近(上下方向の下端付近:図3参照)の配管k1に室外熱交換器温度センサ13が設置されている。 The outdoor heat exchanger temperature sensor 13 is a sensor that directly or indirectly detects the temperature of the outdoor heat exchanger 12. In the example of FIG. 1, when the refrigerant circulates in the heating cycle (see the solid line arrow in FIG. 1), the pipe k1 near the upstream end of the outdoor heat exchanger 12 (near the lower end in the vertical direction: see FIG. 3). The outdoor heat exchanger temperature sensor 13 is installed in the outdoor heat exchanger.
 室外ファン14は、室外熱交換器12に外気を送り込むファンである。室外ファン14は、駆動源である室外ファンモータ14aを備え、室外熱交換器12の付近に設置されている。このような室外ファン14として、例えば、プロペラファンを用いることができるが、これに限定されるものではない。
 膨張弁15は、「凝縮器」(室外熱交換器12及び室内熱交換器16の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁15で減圧された冷媒は、「蒸発器」(室外熱交換器12及び室内熱交換器16の他方)に導かれる。
The outdoor fan 14 is a fan that sends outside air to the outdoor heat exchanger 12. The outdoor fan 14 includes an outdoor fan motor 14a as a drive source, and is installed in the vicinity of the outdoor heat exchanger 12. As such an outdoor fan 14, for example, a propeller fan can be used, but the outdoor fan 14 is not limited thereto.
The expansion valve 15 is a valve that reduces the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger 12 and the indoor heat exchanger 16). The refrigerant decompressed by the expansion valve 15 is guided to an "evaporator" (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 16).
 室内熱交換器16は、その伝熱管(図示せず)を通流する冷媒と、室内ファン17から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン17は、室内熱交換器16に室内空気を送り込むファンである。室内ファン17は、駆動源である室内ファンモータ17a(図4参照)を備え、室内熱交換器16の付近に設置されている。
The indoor heat exchanger 16 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air conditioning target space) sent from the indoor fan 17. Is.
The indoor fan 17 is a fan that sends indoor air to the indoor heat exchanger 16. The indoor fan 17 includes an indoor fan motor 17a (see FIG. 4) as a drive source, and is installed in the vicinity of the indoor heat exchanger 16.
 その他、室内機Uiから吹き出される空気の上下方向の風向きを調整する上下風向板rが、室内機Uiに設置されている。また、図1では省略しているが、室内機Uiから吹き出される空気の左右方向の風向きを調整する左右風向板も設置されている。 In addition, a vertical wind direction plate r for adjusting the vertical wind direction of the air blown from the indoor unit Ui is installed in the indoor unit Ui. Further, although omitted in FIG. 1, a left-right wind direction plate for adjusting the left-right direction of the air blown from the indoor unit Ui is also installed.
 四方弁18は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房サイクル時(図1の破線矢印を参照)には、冷媒回路Qにおいて、圧縮機11、室外熱交換器12(凝縮器)、膨張弁15、及び室内熱交換器16(蒸発器)を順次に介して、冷媒が循環する。 The four-way valve 18 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling cycle (see the dashed arrow in FIG. 1), in the refrigerant circuit Q, the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 15, and the indoor heat exchanger 16 (evaporator). The refrigerant circulates in sequence.
 一方、暖房サイクル時(図1の実線矢印を参照)には、冷媒回路Qにおいて、圧縮機11、室内熱交換器16(凝縮器)、膨張弁15、及び室外熱交換器12(蒸発器)を順次に介して、冷媒が循環する。 On the other hand, during the heating cycle (see the solid arrow in FIG. 1), in the refrigerant circuit Q, the compressor 11, the indoor heat exchanger 16 (condenser), the expansion valve 15, and the outdoor heat exchanger 12 (evaporator). The refrigerant circulates in sequence.
 すなわち、圧縮機11、「凝縮器」、膨張弁15、及び「蒸発器」を順次に介して冷媒が循環する冷媒回路Qにおいて、前記した「凝縮器」及び「蒸発器」の一方は室外熱交換器12であり、他方は室内熱交換器16である。 That is, in the refrigerant circuit Q in which the refrigerant circulates sequentially through the compressor 11, the "condenser", the expansion valve 15, and the "evaporator", one of the above-mentioned "condenser" and "evaporator" is outdoor heat. The exchanger 12 and the other is the indoor heat exchanger 16.
 なお、図1の例では、圧縮機11、室外熱交換器12、室外熱交換器温度センサ13、室外ファン14、膨張弁15、及び四方弁18が、室外機Uoに設置されている。一方、室内熱交換器16や室内ファン17の他、上下風向板rは、室内機Uiに設置されている。 In the example of FIG. 1, the compressor 11, the outdoor heat exchanger 12, the outdoor heat exchanger temperature sensor 13, the outdoor fan 14, the expansion valve 15, and the four-way valve 18 are installed in the outdoor unit Uo. On the other hand, in addition to the indoor heat exchanger 16 and the indoor fan 17, the vertical wind direction plate r is installed in the indoor unit Ui.
 図2は、室外機Uoの筐体の側板・天板を取り外した状態の斜視図である。
 なお、図2では、膨張弁15(図1参照)や四方弁18(図1参照)の図示を省略している。
 図2の例では、平面視でL字状を呈する室外熱交換器12が、室外機Uoの筐体の底板dに設置されている。室外熱交換器12は、所定間隔で配置される多数のフィンfと、これらのフィンfを貫通する複数の伝熱管gと、を備えている。そして、前記した伝熱管gを介して、冷媒が所定に蛇行しながら通流するようになっている。
FIG. 2 is a perspective view of the outdoor unit Uo with the side plate and top plate removed.
In FIG. 2, the expansion valve 15 (see FIG. 1) and the four-way valve 18 (see FIG. 1) are not shown.
In the example of FIG. 2, an outdoor heat exchanger 12 having an L shape in a plan view is installed on the bottom plate d of the housing of the outdoor unit Uo. The outdoor heat exchanger 12 includes a large number of fins f arranged at predetermined intervals, and a plurality of heat transfer tubes g penetrating the fins f. Then, the refrigerant flows through the heat transfer tube g described above while meandering in a predetermined manner.
 アキュムレータ19(図1では図示を省略)は、圧縮機11に向かう冷媒を気液分離するための殻状部材であり、圧縮機11の吸入側に接続されている。
 図2の例では、圧縮機11やアキュムレータ19が設置される空間と、室外ファン14が設置される空間と、が仕切壁eで仕切られている。図2に示す電装品ボックスhは、後記する室外制御回路32(図4参照)が実装された基板(図示せず)を収容する箱である。
The accumulator 19 (not shown in FIG. 1) is a shell-shaped member for gas-liquid separation of the refrigerant directed to the compressor 11, and is connected to the suction side of the compressor 11.
In the example of FIG. 2, the space where the compressor 11 and the accumulator 19 are installed and the space where the outdoor fan 14 is installed are separated by a partition wall e. The electrical component box h shown in FIG. 2 is a box that houses a substrate (not shown) on which the outdoor control circuit 32 (see FIG. 4) described later is mounted.
 前記したように、海岸付近等に室外機Uoが設けられる場合、塩分を含む空気が室外機Uoに取り込まれることが多い。そうすると、自然風や室外ファン14の駆動によって、室外熱交換器12に塩分が付着する。 As described above, when the outdoor unit Uo is provided near the coast or the like, air containing salt is often taken into the outdoor unit Uo. Then, salt adheres to the outdoor heat exchanger 12 due to the natural wind or the drive of the outdoor fan 14.
 そこで、第1実施形態では、後記する制御部30(図4参照)が、室外熱交換器12の下部を凍結させるようにしている。このような制御を、室外熱交換器12の「凍結洗浄」(登録商標)という。これによって、室外熱交換器12の下部を短時間で凍結させ、室外熱交換器12の下部に付着した塩分や塵埃を洗い流すことができる。以下では、塩分や塵埃を「塩分等」という。 Therefore, in the first embodiment, the control unit 30 (see FIG. 4) described later freezes the lower part of the outdoor heat exchanger 12. Such control is referred to as "freeze cleaning" (registered trademark) of the outdoor heat exchanger 12. As a result, the lower part of the outdoor heat exchanger 12 can be frozen in a short time, and the salt and dust adhering to the lower part of the outdoor heat exchanger 12 can be washed away. Hereinafter, salt and dust are referred to as "salt, etc."
 図3は、空気調和機の室外熱交換器12のパスを示す説明図である。
 なお、図3では、室外熱交換器12の凍結洗浄中(暖房サイクル)における冷媒の流れの向きを矢印で示している。
 図3の例では、室外熱交換器12のフィンfとして、上下方向に細長い矩形状のフィンfa,fbが、左右方向に並んで配置されている。一方のフィンfaは、紙面の手前・奥行方向において所定間隔で多数設けられ、これらのフィンfaを伝熱管gが貫通している。なお、他方のフィンfbについても同様である。そして、伝熱管gを介して、室外熱交換器12の上部P1や下部P2を冷媒が所定に通流するようになっている。
FIG. 3 is an explanatory diagram showing a path of the outdoor heat exchanger 12 of the air conditioner.
In FIG. 3, the direction of the refrigerant flow during the freeze-cleaning (heating cycle) of the outdoor heat exchanger 12 is indicated by an arrow.
In the example of FIG. 3, as the fins f of the outdoor heat exchanger 12, rectangular fins fa and fb elongated in the vertical direction are arranged side by side in the horizontal direction. A large number of fin fas are provided at predetermined intervals in the front and depth directions of the paper surface, and the heat transfer tube g penetrates these fins fa. The same applies to the other fin fb. Then, the refrigerant flows through the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 in a predetermined manner through the heat transfer tube g.
 ここで、室外熱交換器12の上部P1とは、例えば、室外熱交換器12の上下方向の高さの中間位置Rよりも高い部分である。一方、室外熱交換器12の下部P2とは、例えば、室外熱交換器12の上下方向の高さの中間位置Rよりも低い部分である。 Here, the upper portion P1 of the outdoor heat exchanger 12 is, for example, a portion higher than the intermediate position R of the height in the vertical direction of the outdoor heat exchanger 12. On the other hand, the lower portion P2 of the outdoor heat exchanger 12 is, for example, a portion lower than the intermediate position R of the height in the vertical direction of the outdoor heat exchanger 12.
 図3の例では、膨張弁15(図1参照)で減圧された冷媒が配管k1を通流し、さらに、分配器w1において配管ka,kbに分流するようになっている。これらの配管ka,kbを通流する冷媒は、室外熱交換器12の下部P2の伝熱管gに導かれる。言い換えると、室外熱交換器12の凍結洗浄の処理(第1処理)において、膨張弁15(図1参照)で減圧された冷媒を室外熱交換器12に導く配管ka,kbの下流端vが、室外熱交換器12の下部P2に接続されている。 In the example of FIG. 3, the refrigerant decompressed by the expansion valve 15 (see FIG. 1) passes through the pipe k1 and is further divided into the pipes ka and kb by the distributor w1. The refrigerant flowing through these pipes ka and kb is guided to the heat transfer tube g of the lower part P2 of the outdoor heat exchanger 12. In other words, in the freeze-cleaning process (first process) of the outdoor heat exchanger 12, the downstream ends v of the pipes ka and kb that guide the refrigerant decompressed by the expansion valve 15 (see FIG. 1) to the outdoor heat exchanger 12 , It is connected to the lower part P2 of the outdoor heat exchanger 12.
 これによって、例えば、室外熱交換器12の凍結洗浄中、低温低圧の冷媒が室外熱交換器12の下部P2の伝熱管gに流れ込むため、室外熱交換器12の下部P2が凍結しやすくなる。したがって、その後に室外熱交換器12の下部P2の霜や氷が溶けることで、下部P2の塩分等が洗い流される。 As a result, for example, during freeze-cleaning of the outdoor heat exchanger 12, the low-temperature low-pressure refrigerant flows into the heat transfer tube g of the lower part P2 of the outdoor heat exchanger 12, so that the lower part P2 of the outdoor heat exchanger 12 is likely to freeze. Therefore, after that, the frost and ice in the lower part P2 of the outdoor heat exchanger 12 melt, so that the salt content and the like in the lower part P2 are washed away.
 また、図3の例では、配管kbを介して、室外熱交換器12の下部P2の伝熱管g及び配管khを順次に通流する冷媒は、分配器w2で配管ki,kjに分流する。一方の配管kiを通流する冷媒は、室外熱交換器12の上部P1の伝熱管gを介して、配管kmに導かれる。他方の配管kjを通流する冷媒は、室外熱交換器12の上部P1の伝熱管gを介して、配管knに導かれる。 Further, in the example of FIG. 3, the refrigerant that sequentially flows through the heat transfer pipe g and the pipe kh of the lower part P2 of the outdoor heat exchanger 12 via the pipe kb is divided into the pipes ki and kj by the distributor w2. The refrigerant flowing through one of the pipes ki is guided to the pipe km via the heat transfer pipe g of the upper part P1 of the outdoor heat exchanger 12. The refrigerant flowing through the other pipe kj is guided to the pipe kn via the heat transfer pipe g of the upper portion P1 of the outdoor heat exchanger 12.
 また、図3の例では、配管kaを介して、室外熱交換器12の下部P2の伝熱管g及び配管kcを順次に通流する冷媒は、分配器w3で配管kd,keに分流する。一方の配管kdを通流する冷媒は、室外熱交換器12の上部P1の伝熱管gを介して、配管kfに導かれる。他方の配管keを通流する冷媒は、室外熱交換器12の下部P2の伝熱管gを介して、配管kgに導かれる。前記した配管kf,kg,km,knを通流する冷媒は、図示はしないが、所定に合流して、圧縮機11(図1参照)の吸入側に導かれる。 Further, in the example of FIG. 3, the refrigerant that sequentially flows through the heat transfer pipe g and the pipe kc of the lower part P2 of the outdoor heat exchanger 12 through the pipe ka is divided into the pipes kd and ke by the distributor w3. The refrigerant flowing through one of the pipes kd is guided to the pipe kf via the heat transfer pipe g of the upper portion P1 of the outdoor heat exchanger 12. The refrigerant flowing through the other pipe ke is guided to the pipe kg via the heat transfer pipe g of the lower part P2 of the outdoor heat exchanger 12. Although not shown, the refrigerants flowing through the pipes kf, kg, km, and kn described above merge in a predetermined manner and are guided to the suction side of the compressor 11 (see FIG. 1).
 図4は、空気調和機100の機能ブロック図である。
 図4に示す室内機Uiは、前記した室内ファンモータ17aの他に、リモコン送受信部21と、室内温度センサ22と、左右風向板用モータ23と、上下風向板用モータ24と、表示ランプ25と、室内制御回路31と、を備えている。
FIG. 4 is a functional block diagram of the air conditioner 100.
In addition to the indoor fan motor 17a described above, the indoor unit Ui shown in FIG. 4 includes a remote controller transmission / reception unit 21, an indoor temperature sensor 22, a left / right wind direction plate motor 23, a vertical wind direction plate motor 24, and an indicator lamp 25. And the indoor control circuit 31.
 リモコン送受信部21は、赤外線通信等によって、リモコン40との間で所定の情報をやり取りする。
 室内温度センサ22は、室内温度(空調対象空間の温度)を検出するセンサであり、室内機Uiの所定箇所に設置されている。
 リモコン送受信部21を介してリモコン40から受信した信号や、室内温度センサ22の検出値等は、後記する室内制御回路31に出力される。
The remote controller transmission / reception unit 21 exchanges predetermined information with the remote controller 40 by infrared communication or the like.
The indoor temperature sensor 22 is a sensor that detects the indoor temperature (the temperature of the space subject to air conditioning), and is installed at a predetermined position of the indoor unit Ui.
The signal received from the remote controller 40 via the remote controller transmitter / receiver 21, the detection value of the room temperature sensor 22 and the like are output to the room control circuit 31 described later.
 室内ファンモータ17aは、前記したように、室内ファン17(図1参照)の駆動源である。
 左右風向板用モータ23は、左右風向板(図示せず)の左右方向の角度を調整するモータである。
 上下風向板用モータ24は、上下風向板r(図1参照)の上下方向の角度を調整するモータである。
 表示ランプ25は、所定の表示を行うランプであり、室内機Uiの所定箇所に設置されている。例えば、室外熱交換器12の凍結洗浄の処理中には、制御部30によって、表示ランプ25が所定に点灯(又は点滅)される。
As described above, the indoor fan motor 17a is a drive source for the indoor fan 17 (see FIG. 1).
The left / right wind direction plate motor 23 is a motor that adjusts the angle of the left / right wind direction plate (not shown) in the left / right direction.
The vertical wind direction plate motor 24 is a motor that adjusts the vertical angle of the vertical wind direction plate r (see FIG. 1).
The indicator lamp 25 is a lamp that performs a predetermined display, and is installed at a predetermined position of the indoor unit Ui. For example, during the freeze-cleaning process of the outdoor heat exchanger 12, the control unit 30 lights (or blinks) the indicator lamp 25 in a predetermined manner.
 室内制御回路31は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。 Although not shown, the indoor control circuit 31 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
 図4に示すように、室内制御回路31は、記憶部31aと、室内制御部31bと、を備えている。
 記憶部31aには、所定のプログラムの他、リモコン送受信部21を介して受信したデータや、各センサの検出値等が記憶される。
 室内制御部31bは、記憶部31aに記憶されたデータに基づいて、室内ファンモータ17a、左右風向板用モータ23、上下風向板用モータ24、表示ランプ25等を制御する。
As shown in FIG. 4, the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
In addition to the predetermined program, the storage unit 31a stores data received via the remote controller transmission / reception unit 21, detection values of each sensor, and the like.
The indoor control unit 31b controls the indoor fan motor 17a, the left / right wind direction plate motor 23, the vertical wind direction plate motor 24, the indicator lamp 25, etc., based on the data stored in the storage unit 31a.
 室外機Uoは、前記した構成(図1参照)の他に、室外温度センサ26と、室外制御回路32と、を備えている。
 室外温度センサ26は、室外温度を検出するセンサであり、室外機Uoの所定箇所に設置されている。
 室外熱交換器温度センサ13(図1も参照)は、前記したように、室外熱交換器12の温度を検出するセンサである。
 室外温度センサ26や室外熱交換器温度センサ13の検出値は、室外制御回路32に出力される。
The outdoor unit Uo includes an outdoor temperature sensor 26 and an outdoor control circuit 32 in addition to the above-described configuration (see FIG. 1).
The outdoor temperature sensor 26 is a sensor that detects the outdoor temperature, and is installed at a predetermined position of the outdoor unit Uo.
The outdoor heat exchanger temperature sensor 13 (see also FIG. 1) is a sensor that detects the temperature of the outdoor heat exchanger 12 as described above.
The detected values of the outdoor temperature sensor 26 and the outdoor heat exchanger temperature sensor 13 are output to the outdoor control circuit 32.
 室外制御回路32は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、通信線を介して室内制御回路31に接続されている。図4に示すように、室外制御回路32は、記憶部32aと、室外制御部32bと、を備えている。 Although not shown, the outdoor control circuit 32 includes electronic circuits such as a CPU, ROM, RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line. As shown in FIG. 4, the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
 記憶部32aには、所定のプログラムや、室内制御回路31から通信線を介して受信したデータの他、各センサの検出値等が記憶される。室外制御部32bは、記憶部32aに記憶されたデータに基づいて、圧縮機モータ11a、室外ファンモータ14a、膨張弁15、四方弁18等を制御する。以下では、室内制御回路31及び室外制御回路32を一括して「制御部30」という。
 次に、室外熱交換器12の凍結洗浄に関する制御部30の処理について、図5を用いて説明する。
The storage unit 32a stores a predetermined program, data received from the indoor control circuit 31 via the communication line, and detection values of each sensor. The outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 14a, the expansion valve 15, the four-way valve 18, and the like based on the data stored in the storage unit 32a. Hereinafter, the indoor control circuit 31 and the outdoor control circuit 32 are collectively referred to as a “control unit 30”.
Next, the process of the control unit 30 regarding the freeze-cleaning of the outdoor heat exchanger 12 will be described with reference to FIG.
<制御部の処理>
 図5は、室外熱交換器12の凍結洗浄に関する処理のフローチャートである(適宜、図1、図4を参照)。
 なお、図5の「START」時には、空気調和機100の空調運転が停止しているものとする。
 図5のステップS101において制御部30は、室外熱交換器12の凍結洗浄の開始条件が満たされているか否かを判定する。その具体例を挙げると、前回の凍結洗浄の終了時から所定期間が経過している場合、制御部30は、室外熱交換器12の凍結洗浄の開始条件が満たされていると判定し(S101:Yes)、ステップS102の処理に進む。
 一方、前回の凍結洗浄の終了時から所定期間が経過していない場合、制御部30は、室外熱交換器12の凍結洗浄の開始条件が満たされていないと判定し(S101:No)、凍結洗浄に関する処理を終了する(END)。
<Processing of control unit>
FIG. 5 is a flowchart of a process relating to freeze cleaning of the outdoor heat exchanger 12 (see FIGS. 1 and 4 as appropriate).
At the time of "START" in FIG. 5, it is assumed that the air conditioning operation of the air conditioner 100 is stopped.
In step S101 of FIG. 5, the control unit 30 determines whether or not the conditions for starting freeze cleaning of the outdoor heat exchanger 12 are satisfied. To give a specific example, when a predetermined period has passed since the end of the previous freeze cleaning, the control unit 30 determines that the conditions for starting the freeze cleaning of the outdoor heat exchanger 12 are satisfied (S101). : Yes), the process proceeds to step S102.
On the other hand, if a predetermined period has not elapsed since the end of the previous freeze cleaning, the control unit 30 determines that the conditions for starting the freeze cleaning of the outdoor heat exchanger 12 are not satisfied (S101: No), and freezes. The process related to cleaning is completed (END).
 ステップS102において制御部30は、室外熱交換器12の凍結洗浄として、室外熱交換器12の下部P2(図3参照)を凍結させる(つまり、「第1処理」を行う)。具体的に説明すると、制御部30は、冷媒回路Qにおいて暖房サイクルで冷媒を循環させ、室外熱交換器12を蒸発器として機能させ、室外熱交換器12の下部P2を凍結させる。 In step S102, the control unit 30 freezes the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 (that is, performs the "first process") as the freeze cleaning of the outdoor heat exchanger 12. Specifically, the control unit 30 circulates the refrigerant in the heating cycle in the refrigerant circuit Q, causes the outdoor heat exchanger 12 to function as an evaporator, and freezes the lower portion P2 of the outdoor heat exchanger 12.
 なお、「室外熱交換器12の下部P2を凍結させる」という事項には、前記した下部2の全体を凍結させるという事項の他、下部P2の少なくとも一部を凍結させるという事項も含まれる。
 また、室外熱交換器12の下部P2の凍結中(第1処理中)、制御部30が、室外熱交換器12の下部P2の少なくとも一部を凍結させつつ、室外熱交換器12の上部P1の少なくとも一部を凍結させないようにしてもよい。
The item "freezing the lower part P2 of the outdoor heat exchanger 12" includes the item of freezing the entire lower part 2 and the item of freezing at least a part of the lower part P2.
Further, while the lower part P2 of the outdoor heat exchanger 12 is frozen (during the first treatment), the control unit 30 freezes at least a part of the lower part P2 of the outdoor heat exchanger 12 while the upper part P1 of the outdoor heat exchanger 12 is frozen. At least a part of the above may not be frozen.
 また、室外熱交換器12の下部P2(図3参照)の凍結中(第1処理中)、制御部30が、通常の暖房運転時よりも膨張弁15の開度を小さくすることが望ましい。これによって、飽和温度(蒸発温度)が0℃よりも低い低圧の冷媒が、室外熱交換器12の下部P2に流入する。その結果、空気中の水分が室外熱交換器12の下部P2に着霜して凍結する。これによって、その後に室外熱交換器12の下部P2の霜や氷が溶けると、その水で、室外熱交換器12の下部P2の塩分等が洗い流される。したがって、塩分が特に残りやすい室外熱交換器12の下部P2が洗浄されるため、この下部P2の腐食を抑制できる。 Further, it is desirable that the control unit 30 makes the opening degree of the expansion valve 15 smaller than that during the normal heating operation during freezing (during the first processing) of the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12. As a result, the low-pressure refrigerant having a saturation temperature (evaporation temperature) lower than 0 ° C. flows into the lower part P2 of the outdoor heat exchanger 12. As a result, the moisture in the air frosts on the lower part P2 of the outdoor heat exchanger 12 and freezes. As a result, when the frost or ice in the lower part P2 of the outdoor heat exchanger 12 is subsequently melted, the water is used to wash away the salt content in the lower part P2 of the outdoor heat exchanger 12. Therefore, since the lower portion P2 of the outdoor heat exchanger 12 in which salt is particularly likely to remain is washed, corrosion of the lower portion P2 can be suppressed.
 図6は、圧縮機11、四方弁18、膨張弁15、室外ファン14、及び室内ファン17の状態を示すタイムチャートである(適宜、図1、図4を参照)。
 なお、図6の横軸は時刻である。また、図6の縦軸は、圧縮機11や四方弁18等の状態を示している。
 図6の例では、時刻t1まで空気調和機100が停止状態になっている。そして、四方弁18の状態に示すように、前記した停止状態の直前には、例えば、冷房運転が行われていたものとする。また、図6では、室外熱交換器12の下部P2(図3参照)の凍結後、制御部30が、室外熱交換器12の解凍・乾燥を順次に行う例を示している。なお、前記した図5のフローチャートでは、室外熱交換器12の解凍・乾燥の記載を省略している。
FIG. 6 is a time chart showing the states of the compressor 11, the four-way valve 18, the expansion valve 15, the outdoor fan 14, and the indoor fan 17 (see FIGS. 1 and 4 as appropriate).
The horizontal axis of FIG. 6 is time. The vertical axis of FIG. 6 shows the state of the compressor 11, the four-way valve 18, and the like.
In the example of FIG. 6, the air conditioner 100 is in the stopped state until the time t1. Then, as shown in the state of the four-way valve 18, it is assumed that, for example, the cooling operation is performed immediately before the stopped state. Further, FIG. 6 shows an example in which the control unit 30 sequentially defrosts and dries the outdoor heat exchanger 12 after freezing the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12. In the flowchart of FIG. 5 described above, the description of thawing / drying of the outdoor heat exchanger 12 is omitted.
 室外熱交換器12を凍結させる際、制御部30は、時刻t1において四方弁18を暖房サイクルに切り替え、膨張弁15を所定開度u1に絞って、圧縮機11を駆動させる。前記したように、所定開度u1は、通常の暖房運転時よりも小さい開度である。これによって、蒸発器である室外熱交換器12の下部P2に低温低圧の冷媒が通流し、この下部P2が凍結する。制御部30は、例えば、室外熱交換器温度センサ13(図1、図3参照)の検出値が氷点下である状態を所定時間(時刻t1~t2)、継続させる。 When freezing the outdoor heat exchanger 12, the control unit 30 switches the four-way valve 18 to the heating cycle at time t1, narrows the expansion valve 15 to a predetermined opening u1, and drives the compressor 11. As described above, the predetermined opening u1 is a smaller opening than during the normal heating operation. As a result, the low-temperature low-pressure refrigerant flows through the lower part P2 of the outdoor heat exchanger 12, which is an evaporator, and the lower part P2 freezes. For example, the control unit 30 keeps the state in which the detected value of the outdoor heat exchanger temperature sensor 13 (see FIGS. 1 and 3) is below the freezing point for a predetermined time (time t1 to t2).
 室外熱交換器12の凍結中(時刻t1~t2)、制御部30は、室外ファン14及び室内ファン17を駆動させることが好ましい。これによって、室外熱交換器12や室内熱交換器16での熱交換が促進される。
 なお、室外熱交換器12の凍結洗浄の処理中、制御部30は、室外ファン14を通常の空調運転時よりも低速で回転させることが好ましい。これによって、外気の温度が比較的高い状況でも、室外熱交換器12の凍結時に霜や氷が成長しやすくなる。つまり、室外熱交換器12を蒸発器として機能させつつ、高温の外気が室外熱交換器12に多量に吹き込むことを抑制できる。
During freezing of the outdoor heat exchanger 12 (time t1 to t2), the control unit 30 preferably drives the outdoor fan 14 and the indoor fan 17. As a result, heat exchange in the outdoor heat exchanger 12 and the indoor heat exchanger 16 is promoted.
During the freeze-cleaning process of the outdoor heat exchanger 12, the control unit 30 preferably rotates the outdoor fan 14 at a lower speed than during normal air conditioning operation. As a result, even when the temperature of the outside air is relatively high, frost and ice are likely to grow when the outdoor heat exchanger 12 is frozen. That is, while making the outdoor heat exchanger 12 function as an evaporator, it is possible to suppress a large amount of high-temperature outside air from being blown into the outdoor heat exchanger 12.
 また、室外熱交換器12の凍結洗浄の処理中、制御部30は、室外温度が高いほど、室外ファン14の回転速度を小さくすることが好ましい。これによって、例えば、室外温度が高い夏季には、室外ファン14の風量が低減されるため、室外熱交換器12の凍結が進みやすくなる。なお、室外温度が高いほど室外ファン14の回転速度を小さくするという事項には、室外温度が比較的高い場合に室外ファン14を停止させるという事項も含まれる。 Further, during the freeze-cleaning process of the outdoor heat exchanger 12, it is preferable that the control unit 30 reduces the rotation speed of the outdoor fan 14 as the outdoor temperature increases. As a result, for example, in the summer when the outdoor temperature is high, the air volume of the outdoor fan 14 is reduced, so that the outdoor heat exchanger 12 is easily frozen. The matter that the rotation speed of the outdoor fan 14 is reduced as the outdoor temperature is higher includes the matter that the outdoor fan 14 is stopped when the outdoor temperature is relatively high.
 また、室外熱交換器12の凍結洗浄の処理中(第1処理中)、制御部30は、室内ファン17を通常の空調運転時の最低回転速度(回転速度の下限値)よりも高速で回転させることが好ましい。これによって、室外熱交換器12の凍結を進めることができる。但し、室内機Uiから温風が吹き出される際の風量を低減するため、室内ファン17を通常の空調運転時の回転速度の中央値よりも低い回転速度にすることが望ましい。前記した「回転速度の中央値」とは、通常の空調運転時の最低回転速度と最高回転速度との間の中央値を意味している。
 また、図6では図示を省略しているが、室外熱交換器12の凍結洗浄の処理中(第1処理中)、制御部30は、上下風向板r(図1参照)を水平方向よりも上向きにすることが好ましい。つまり、室内機Uiから吹き出される温風の向きが水平方向よりも上向きになるように、制御部30が、上下風向板rの角度を調整することが好ましい。これによって、温風がユーザに直接あたることを防止できる。
Further, during the freeze-cleaning process of the outdoor heat exchanger 12 (during the first process), the control unit 30 rotates the indoor fan 17 at a speed higher than the minimum rotation speed (lower limit value of the rotation speed) during normal air conditioning operation. It is preferable to let it. As a result, the outdoor heat exchanger 12 can be frozen. However, in order to reduce the air volume when warm air is blown from the indoor unit Ui, it is desirable that the indoor fan 17 has a rotation speed lower than the median rotation speed during normal air conditioning operation. The above-mentioned "median rotation speed" means the median value between the minimum rotation speed and the maximum rotation speed during normal air conditioning operation.
Further, although not shown in FIG. 6, during the freeze-cleaning process of the outdoor heat exchanger 12 (during the first process), the control unit 30 sets the vertical wind direction plate r (see FIG. 1) in the horizontal direction. It is preferable to turn it upward. That is, it is preferable that the control unit 30 adjusts the angle of the vertical wind direction plate r so that the direction of the warm air blown from the indoor unit Ui is higher than the horizontal direction. This makes it possible to prevent the warm air from directly hitting the user.
 図6の時刻t1~t2において室外熱交換器12の下部P2を凍結させた後(第1処理後)、時刻t2~t3において制御部30は、室外熱交換器12を解凍させる。図6の例では、制御部30は、圧縮機11を停止させるとともに、室外ファン14や室内ファン17を停止させる。また、制御部30は、室外熱交換器12の凍結時(第1処理時)よりも膨張弁15の開度を大きくして、室外熱交換器12を解凍させる。図6の例では、室外熱交換器12の解凍中、膨張弁15が全開になっている。 After freezing the lower part P2 of the outdoor heat exchanger 12 at times t1 to t2 in FIG. 6 (after the first treatment), the control unit 30 defrosts the outdoor heat exchanger 12 at times t2 to t3. In the example of FIG. 6, the control unit 30 stops the compressor 11 and also stops the outdoor fan 14 and the indoor fan 17. Further, the control unit 30 makes the opening degree of the expansion valve 15 larger than that when the outdoor heat exchanger 12 is frozen (during the first treatment) to thaw the outdoor heat exchanger 12. In the example of FIG. 6, the expansion valve 15 is fully opened while the outdoor heat exchanger 12 is being thawed.
 これによって、室外熱交換器12の凍結中に凝縮器として機能していた室内熱交換器16の高温の冷媒が、膨張弁15を介して、低圧側の室外熱交換器12に流れ込む。その結果、室外熱交換器12の下部P2の霜や氷が溶かされ、室外熱交換器12が洗い流される。ちなみに、解凍時に膨張弁15の開度を大きくせずとも、外気との熱交換によって室外熱交換器12の霜や氷は溶けるが、膨張弁15の開度を大きくすることで、前記したように、室外熱交換器12の解凍が促進される。 As a result, the high-temperature refrigerant of the indoor heat exchanger 16 that was functioning as a condenser during the freezing of the outdoor heat exchanger 12 flows into the outdoor heat exchanger 12 on the low-voltage side via the expansion valve 15. As a result, the frost and ice in the lower part P2 of the outdoor heat exchanger 12 are melted, and the outdoor heat exchanger 12 is washed away. By the way, even if the opening degree of the expansion valve 15 is not increased at the time of thawing, the frost and ice of the outdoor heat exchanger 12 are melted by heat exchange with the outside air, but by increasing the opening degree of the expansion valve 15, as described above. In addition, thawing of the outdoor heat exchanger 12 is promoted.
 図6の時刻t2~t3において室外熱交換器12を解凍した後、時刻t3~t4において制御部30は、室外ファン14を駆動させ、室外熱交換器12を乾燥させる。例えば、制御部30は、室外熱交換器12の解凍後、室外ファン14を第1回転速度で駆動させ、室外熱交換器12を乾燥させる。
 これによって、室外熱交換器12の表面の水分が蒸発して、室外熱交換器12が乾燥する。なお、時刻t3~t4において制御部30が、冷房サイクルで圧縮機11を駆動させ、室外熱交換器12を乾燥させてもよい。ちなみに、室外ファン14を駆動させずとも、外気の自然対流によって室外熱交換器12の水分は蒸発するが、室外ファン14を駆動させることで、室外熱交換器12の水分が蒸発しやすくなる。このような水分の蒸発によって、仮に、室外熱交換器12に若干の塩分が残っていたとしても、水に溶けた塩分による室外熱交換器12の腐食を抑制できる。
After thawing the outdoor heat exchanger 12 at times t2 to t3 of FIG. 6, the control unit 30 drives the outdoor fan 14 at times t3 to t4 to dry the outdoor heat exchanger 12. For example, the control unit 30 drives the outdoor fan 14 at the first rotation speed after thawing the outdoor heat exchanger 12 to dry the outdoor heat exchanger 12.
As a result, the moisture on the surface of the outdoor heat exchanger 12 evaporates, and the outdoor heat exchanger 12 dries. At times t3 to t4, the control unit 30 may drive the compressor 11 in the cooling cycle to dry the outdoor heat exchanger 12. By the way, even if the outdoor fan 14 is not driven, the moisture of the outdoor heat exchanger 12 evaporates due to the natural convection of the outside air, but by driving the outdoor fan 14, the moisture of the outdoor heat exchanger 12 is likely to evaporate. Due to such evaporation of water, even if some salt remains in the outdoor heat exchanger 12, corrosion of the outdoor heat exchanger 12 due to the salt dissolved in water can be suppressed.
 なお、図6の例では、室外熱交換器12の乾燥中、圧縮機11や室内ファン17は停止状態になっている。また、四方弁18や膨張弁15は、室外熱交換器12の解凍時の状態で維持されている。 In the example of FIG. 6, the compressor 11 and the indoor fan 17 are stopped while the outdoor heat exchanger 12 is drying. Further, the four-way valve 18 and the expansion valve 15 are maintained in the state when the outdoor heat exchanger 12 is thawed.
 図7は、通常の暖房運転時、及び、室外熱交換器の凍結洗浄時のモリエル線図である(適宜、図1も参照)。
 なお、図7の横軸は、冷媒の比エンタルピであり、図7の縦軸は、冷媒の圧力である。
 図7に示す飽和蒸気線αは、冷媒の状態における気相と気液二相との間の境界線である。飽和液線βは、冷媒の状態における液相と気液二相との間の境界線である。また、飽和蒸気線α及び飽和液線βで囲まれている領域では、冷媒は気液二相の状態になっている。なお、飽和蒸気線αと飽和液線βとの間の境界点を臨界点γという。
FIG. 7 is a Moriel diagram during normal heating operation and during freeze-cleaning of the outdoor heat exchanger (see also FIG. 1 as appropriate).
The horizontal axis of FIG. 7 is the specific enthalpy of the refrigerant, and the vertical axis of FIG. 7 is the pressure of the refrigerant.
The saturated vapor line α shown in FIG. 7 is a boundary line between the gas phase and the gas-liquid two-phase in the state of the refrigerant. The saturated liquid line β is a boundary line between the liquid phase and the gas-liquid two-phase in the state of the refrigerant. Further, in the region surrounded by the saturated vapor line α and the saturated liquid line β, the refrigerant is in a gas-liquid two-phase state. The boundary point between the saturated vapor line α and the saturated liquid line β is referred to as a critical point γ.
 図7に示す台形状の一点鎖線Mは、通常の暖房運転時のモリエル線図である。一方、図7に示す台形状の実線Nは、室外熱交換器12の凍結洗浄時のモリエル線図である。
 図7に示すように、通常の暖房運転時には、圧縮(状態Ma→Mb)、凝縮(状態Mb→Mc)、膨張(状態Mc→Md)、蒸発(状態Md→Ma)という冷凍サイクルで冷媒が循環する。
The trapezoidal alternate long and short dash line M shown in FIG. 7 is a Moriel diagram during normal heating operation. On the other hand, the trapezoidal solid line N shown in FIG. 7 is a Moriel diagram of the outdoor heat exchanger 12 during freeze cleaning.
As shown in FIG. 7, during normal heating operation, the refrigerant is used in a refrigeration cycle of compression (state Ma → Mb), condensation (state Mb → Mc), expansion (state Mc → Md), and evaporation (state Md → Ma). Circulate.
 一方、室外熱交換器12の凍結洗浄時には、前記したように、膨張弁15が開度u1まで絞られる(図6参照)。その結果、膨張弁15で膨張した冷媒(状態Nd)の圧力は、通常の暖房運転時(状態Md)よりも低くなり、それに伴って冷媒の温度も低くなる。これによって、室外熱交換器12の下部P2(図3参照)が凍結される。 On the other hand, during freeze cleaning of the outdoor heat exchanger 12, the expansion valve 15 is throttled to the opening degree u1 as described above (see FIG. 6). As a result, the pressure of the refrigerant expanded by the expansion valve 15 (state Nd) becomes lower than that during the normal heating operation (state Md), and the temperature of the refrigerant becomes lower accordingly. As a result, the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is frozen.
 また、室外熱交換器12の下部P2(図3参照)を通流する氷点下の冷媒と外気との間の温度差が大きいため、冷媒と外気との間の熱交換が進みやすくなる。さらに、膨張弁15が開度u1まで絞られることで(図6参照)、通常の暖房運転時に比べて、単位時間当たりの冷媒の循環量が少なくなる。その結果、室外熱交換器12の下部P2(特に下端付近)には、低温の気液二相の冷媒が流れ、例えば、配管kc(図3参照)や配管kh(同図参照)の付近で、冷媒の状態が気相に変わる(図7の状態Ne)。 Further, since the temperature difference between the refrigerant below the freezing point and the outside air passing through the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is large, the heat exchange between the refrigerant and the outside air becomes easy to proceed. Further, since the expansion valve 15 is narrowed down to the opening degree u1 (see FIG. 6), the circulation amount of the refrigerant per unit time is reduced as compared with the normal heating operation. As a result, a low-temperature gas-liquid two-phase refrigerant flows in the lower part P2 (particularly near the lower end) of the outdoor heat exchanger 12, for example, in the vicinity of the pipe kc (see FIG. 3) and the pipe kh (see the figure). , The state of the refrigerant changes to gas phase (state Ne in FIG. 7).
 このように、室外熱交換器12の凍結洗浄の処理中(第1処理中)、室外熱交換器12の下部P2(図3参照)の少なくとも一部は、冷媒の状態が気液二相であり、室外熱交換器12の上部P1(図3参照)の少なくとも一部は、冷媒の状態が気相になっている。 As described above, during the freeze-cleaning process of the outdoor heat exchanger 12 (during the first process), at least a part of the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is in a gas-liquid two-phase state. Yes, at least a part of the upper part P1 (see FIG. 3) of the outdoor heat exchanger 12 is in a gas phase in the state of the refrigerant.
 さらに、配管kc(図3参照)や配管kh(同図参照)の下流側に向かうにつれて、外気との熱交換で冷媒の過熱度が高くなる(図7の状態Na)。例えば、室外熱交換器12の下流端付近では、冷媒の温度が外気に略等しくなる。このように過熱度が比較的高い冷媒が圧縮機11に吸入されると、それに伴って、圧縮機11から吐出される冷媒(状態Nb)の過熱度が、通常の暖房運転時(状態Mb)よりも高くなる(比エンタルピ差ΔH1も参照)。 Further, as the pipe kc (see FIG. 3) and the pipe kh (see FIG. 3) move toward the downstream side, the degree of superheat of the refrigerant increases due to heat exchange with the outside air (state Na in FIG. 7). For example, in the vicinity of the downstream end of the outdoor heat exchanger 12, the temperature of the refrigerant becomes substantially equal to the outside air. When the refrigerant having a relatively high degree of superheat is sucked into the compressor 11, the degree of superheat of the refrigerant (state Nb) discharged from the compressor 11 is increased during normal heating operation (state Mb). (See also specific enthalpy difference ΔH1).
 したがって、圧縮機11の信頼性を確保するために、以下の制御が行われることが好ましい。すなわち、室外熱交換器12の凍結洗浄の処理中(第1処理中)、制御部30は、圧縮機11の吐出側の温度が第2所定温度以上になった場合、室内ファン17の回転速度を、凍結洗浄の処理の開始時よりも上昇させることが好ましい。 Therefore, in order to ensure the reliability of the compressor 11, it is preferable that the following control is performed. That is, during the freeze-cleaning process of the outdoor heat exchanger 12 (during the first process), when the temperature on the discharge side of the compressor 11 becomes equal to or higher than the second predetermined temperature, the control unit 30 rotates the indoor fan 17. Is preferably higher than at the start of the freeze-washing process.
 なお、前記した「第2所定温度」とは、凍結洗浄中、室内ファン17の回転速度を上昇させるか否かの判定基準となる閾値であり、予め設定されている。このように室内ファン17の回転速度を上昇させることで、室内熱交換器16における熱交換が促進される。その結果、圧縮機11の吐出圧力・吐出温度が下がるため、圧縮機11の過度な温度上昇を抑制し、圧縮機11の信頼性を確保できる。 The above-mentioned "second predetermined temperature" is a threshold value that serves as a criterion for determining whether or not to increase the rotation speed of the indoor fan 17 during freeze cleaning, and is set in advance. By increasing the rotation speed of the indoor fan 17 in this way, heat exchange in the indoor heat exchanger 16 is promoted. As a result, the discharge pressure and the discharge temperature of the compressor 11 are lowered, so that an excessive temperature rise of the compressor 11 can be suppressed and the reliability of the compressor 11 can be ensured.
 また、室外熱交換器12の凍結洗浄中、膨張弁15が開度u1(図6参照)まで絞られるため、室内熱交換器16における冷媒の流量も少なくなる。その結果、室内熱交換器16の下流端付近(図7の状態Nc)では、室温付近まで冷媒の温度が下がり、冷媒の状態が液相になることが多い。このようにして凝縮した冷媒は、膨張弁15で減圧される(状態Nd)。そして、膨張弁15で減圧された低温低圧の冷媒が室外熱交換器12に導かれることで、前記したように、室外熱交換器12の下部P2(図3参照)が凍結される。 Further, since the expansion valve 15 is throttled to the opening degree u1 (see FIG. 6) during the freeze cleaning of the outdoor heat exchanger 12, the flow rate of the refrigerant in the indoor heat exchanger 16 is also reduced. As a result, in the vicinity of the downstream end of the indoor heat exchanger 16 (state Nc in FIG. 7), the temperature of the refrigerant drops to near room temperature, and the state of the refrigerant often becomes a liquid phase. The refrigerant condensed in this way is depressurized by the expansion valve 15 (state Nd). Then, the low-temperature low-pressure refrigerant decompressed by the expansion valve 15 is guided to the outdoor heat exchanger 12, and as described above, the lower portion P2 (see FIG. 3) of the outdoor heat exchanger 12 is frozen.
<効果>
 第1実施形態によれば、制御部30が、室外熱交換器12の下部P2(図3参照)を凍結させることで、この下部P2の塩分等が洗い流される。その結果、室外熱交換器12を清潔な状態にすることができる。特に、塩害が生じやすい海岸付近に室外機Uoが設置されている場合には、室外熱交換器12の下部P2で腐食することが多い。前記した凍結洗浄によって、室外熱交換器12の下部P2の腐食を抑制できる。
<Effect>
According to the first embodiment, the control unit 30 freezes the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12, so that the salt content and the like in the lower part P2 are washed away. As a result, the outdoor heat exchanger 12 can be kept clean. In particular, when the outdoor unit Uo is installed near the coast where salt damage is likely to occur, it often corrodes at the lower part P2 of the outdoor heat exchanger 12. Corrosion of the lower part P2 of the outdoor heat exchanger 12 can be suppressed by the above-mentioned freeze washing.
 なお、仮に、室外熱交換器12の上部P1のみを凍結させた場合、その後の解凍に伴う水がフィンf(図3参照)を伝って流れ落ちる過程で高濃度の塩水になり、その結果として、下部P2に塩分が残る可能性がある。一方、第1実施形態のように、室外熱交換器12の下部P2を凍結させると、上部P1から高濃度の塩水が流れ落ちてこないため、下部P2の塩分を適切に洗い流すことができる。 If only the upper part P1 of the outdoor heat exchanger 12 is frozen, the water accompanying the subsequent thawing becomes high-concentration salt water in the process of flowing down along the fin f (see FIG. 3), and as a result, Salt may remain in the lower P2. On the other hand, when the lower part P2 of the outdoor heat exchanger 12 is frozen as in the first embodiment, the high-concentration salt water does not flow down from the upper part P1, so that the salt content of the lower part P2 can be appropriately washed away.
 また、第1実施形態によれば、室外熱交換器12の下部P2(図3参照)が凍結される一方、室外熱交換器12の上部P1(図3参照)は凍結させる必要がない。したがって、室外熱交換器12の上部P1・下部P2の両方を凍結させる場合に比べて、室内に温風が吹き出される時間を短縮し、ひいては、室内温度の上昇を抑制できる。 Further, according to the first embodiment, the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12 is frozen, while the upper part P1 (see FIG. 3) of the outdoor heat exchanger 12 does not need to be frozen. Therefore, as compared with the case where both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen, the time for blowing warm air into the room can be shortened, and the rise in the indoor temperature can be suppressed.
 ちなみに、室外熱交換器12の凍結洗浄は、室内熱交換器16の凍結洗浄(第1実施形態等では特に説明していない。)とは、全く異質である。室外熱交換器12の凍結に伴い、室内熱交換器16が凝縮器として機能し、室内機Uiから温風が吹き出されるからである。室内熱交換器16の凍結洗浄では、室外機Uoから温風が吹き出されても特に問題はないが、室外熱交換器12の凍結洗浄では、室内機Uiから温風が吹き出されると、ユーザが不快に感じる可能性もある。 By the way, the freeze-cleaning of the outdoor heat exchanger 12 is completely different from the freeze-cleaning of the indoor heat exchanger 16 (not particularly described in the first embodiment and the like). This is because the indoor heat exchanger 16 functions as a condenser and warm air is blown from the indoor unit Ui as the outdoor heat exchanger 12 freezes. In the freeze cleaning of the indoor heat exchanger 16, there is no particular problem even if warm air is blown from the outdoor unit Uo, but in the freeze cleaning of the outdoor heat exchanger 12, when the warm air is blown from the indoor unit Ui, the user May feel uncomfortable.
 そこで、第1実施形態では、ユーザにとっての快適性を考慮し、室外熱交換器12の凍結洗浄が短時間ですむように下部P2を凍結させ、室内機Uiから温風が吹き出される時間が短くなるようにしている。このような観点は、室外熱交換器12の凍結洗浄に関して、発明者らが鋭意検討する中で初めて見出したものである。 Therefore, in the first embodiment, in consideration of comfort for the user, the lower part P2 is frozen so that the outdoor heat exchanger 12 can be frozen and washed in a short time, and the time for which warm air is blown from the indoor unit Ui is shortened. I am doing it. Such a viewpoint was first discovered by the inventors in their diligent studies regarding the freeze-cleaning of the outdoor heat exchanger 12.
 また、室外熱交換器12の凍結後、制御部30は、膨張弁15の開度を大きくして、室外熱交換器12に高温の冷媒を流し込む。これによって、室外熱交換器12の下部P2(図3参照)の霜や氷の解凍が進みやすくなる。
 また、室外熱交換器12の解凍後、制御部30は、室外ファン14を駆動させ、室外熱交換器12を乾燥させる。これによって、室外熱交換器12に若干の塩分が残っていた場合でも、水に溶けた塩分による室外熱交換器12の腐食を抑制できる。
 また、制御部30は、室外熱交換器12の下部P2を凍結させる第1処理中、室内温度が第1所定温度(例えば、32℃)以上になった場合、又は、前記した第1処理の開始時から室内温度が所定温度(例えば、10℃)以上上昇した場合、第1処理を終了させるようにしてもよい。これによって、室内温度の上昇に伴うユーザの不快感を低減できる。なお、前記した「第1所定温度」等は、第1処理を終了(中止)させるか否かの判定基準となる閾値であり、予め設定されている。
Further, after the outdoor heat exchanger 12 is frozen, the control unit 30 increases the opening degree of the expansion valve 15 and flows a high-temperature refrigerant into the outdoor heat exchanger 12. This facilitates the thawing of frost and ice in the lower part P2 (see FIG. 3) of the outdoor heat exchanger 12.
After thawing the outdoor heat exchanger 12, the control unit 30 drives the outdoor fan 14 to dry the outdoor heat exchanger 12. As a result, even if some salt remains in the outdoor heat exchanger 12, corrosion of the outdoor heat exchanger 12 due to the salt dissolved in water can be suppressed.
Further, the control unit 30 receives a case where the indoor temperature becomes higher than the first predetermined temperature (for example, 32 ° C.) during the first treatment of freezing the lower part P2 of the outdoor heat exchanger 12, or the first treatment described above. When the room temperature rises by a predetermined temperature (for example, 10 ° C.) or more from the start, the first treatment may be terminated. As a result, the discomfort of the user due to the rise in the room temperature can be reduced. The above-mentioned "first predetermined temperature" and the like are threshold values that serve as criteria for determining whether or not to end (stop) the first process, and are set in advance.
≪第2実施形態≫
 第2実施形態は、室内温度に基づいて、室外熱交換器12の凍結のさせ方を変更する点が第1実施形態とは異なっている。なお、その他(空気調和機100の構成等:図1~図4参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Second Embodiment >>
The second embodiment is different from the first embodiment in that the method of freezing the outdoor heat exchanger 12 is changed based on the indoor temperature. Others (configuration of the air conditioner 100, etc .: see FIGS. 1 to 4) are the same as those in the first embodiment. Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
 図8は、室外熱交換器12の凍結洗浄に関する処理のフローチャートである(適宜、図1、図4を参照)。
 なお、ステップS201の処理については、第1実施形態(図5参照)のステップS101と同様であるから、説明を省略する。
 ステップS201において室外熱交換器12の凍結洗浄の開始条件が満たされている場合(S201:Yes)、制御部30の処理はステップS202に進む。
FIG. 8 is a flowchart of a process relating to freeze cleaning of the outdoor heat exchanger 12 (see FIGS. 1 and 4 as appropriate).
Since the process of step S201 is the same as that of step S101 of the first embodiment (see FIG. 5), the description thereof will be omitted.
If the start condition for freeze-cleaning of the outdoor heat exchanger 12 is satisfied in step S201 (S201: Yes), the process of the control unit 30 proceeds to step S202.
 ステップS202において制御部30は、室内温度センサ22(図4参照)によって検出される室内温度Tが第3所定温度T3以上であるか否かを判定する。前記した第3所定温度T3とは、室外熱交換器12の上部P1・下部P2の凍結(S204)を行うか否かの判定基準となる閾値であり、予め設定されている。 In step S202, the control unit 30 determines whether or not the indoor temperature T detected by the indoor temperature sensor 22 (see FIG. 4) is equal to or higher than the third predetermined temperature T3. The third predetermined temperature T3 described above is a threshold value that serves as a criterion for determining whether or not to freeze the upper P1 and the lower P2 of the outdoor heat exchanger 12 (S204), and is set in advance.
 ステップS202において、室内温度Tが第3所定温度T3以上である場合(S202:Yes)、制御部30の処理はステップS203に進む。
 ステップS203において制御部30は、室外熱交換器12の凍結洗浄の処理(第1処理)として、室外熱交換器12の下部P2(図3参照)を凍結させる。これによって、室外熱交換器12の上部P1・下部P2の凍結を行う場合(S204)に比べて、室外熱交換器12の凍結洗浄に要する時間を短縮できる。したがって、室外熱交換器12の凍結洗浄中、比較的高温の室内に温風が吹き出す時間を短縮できる。
In step S202, when the room temperature T is equal to or higher than the third predetermined temperature T3 (S202: Yes), the process of the control unit 30 proceeds to step S203.
In step S203, the control unit 30 freezes the lower portion P2 (see FIG. 3) of the outdoor heat exchanger 12 as a freeze-cleaning process (first process) of the outdoor heat exchanger 12. As a result, the time required for freezing and cleaning the outdoor heat exchanger 12 can be shortened as compared with the case where the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen (S204). Therefore, during the freeze-cleaning of the outdoor heat exchanger 12, the time for blowing warm air into a relatively high-temperature room can be shortened.
 なお、室外熱交換器12の上部P1・下部P2を凍結させる場合(S204)よりも、室外熱交換器12の下部P2を凍結させる場合(S203)のほうが、膨張弁15の開度が小さいことが好ましい。このように膨張弁15を十分に絞ることで、膨張弁15の下流側の配管k1(図1参照)を通流する冷媒の温度が非常に低くなり、また、冷媒の循環量が少なくなる。その結果、室外熱交換器12の下部P2(特に下端付近)が凍結する一方、上部P1(特に上端付近)には常温のガス冷媒が流れる。 The opening degree of the expansion valve 15 is smaller in the case of freezing the lower part P2 of the outdoor heat exchanger 12 (S203) than in the case of freezing the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204). Is preferable. By sufficiently narrowing the expansion valve 15 in this way, the temperature of the refrigerant passing through the pipe k1 (see FIG. 1) on the downstream side of the expansion valve 15 becomes very low, and the circulation amount of the refrigerant decreases. As a result, the lower P2 (particularly near the lower end) of the outdoor heat exchanger 12 freezes, while the gas refrigerant at room temperature flows through the upper P1 (particularly near the upper end).
 また、室外熱交換器12の上部P1・下部P2を凍結させる場合(S204)よりも、凍結洗浄の処理(第1処理)として室外熱交換器12の下部P2を凍結させる場合(S203)のほうが、室外熱交換器12の温度を氷点下で保つ時間が短いことが好ましい。これによって、室外熱交換器12の下部P2の凍結中、室内に温風が吹き出す時間を短縮できる。 Further, the case of freezing the lower part P2 of the outdoor heat exchanger 12 (S203) as the freeze-cleaning process (first process) is better than the case of freezing the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204). It is preferable that the time for keeping the temperature of the outdoor heat exchanger 12 below the freezing point is short. As a result, it is possible to shorten the time for which warm air is blown into the room during freezing of the lower part P2 of the outdoor heat exchanger 12.
 また、図8では省略しているが、ステップS203で室外熱交換器12の下部P2を凍結させた後、第1実施形態(図6参照)と同様に、制御部30が、室外熱交換器12の解凍・乾燥を順次に行うようにしてもよい。ステップS203の処理を行った後、制御部30は、室外熱交換器12の凍結洗浄に関する一連の処理を終了する(END)。 Further, although omitted in FIG. 8, after the lower part P2 of the outdoor heat exchanger 12 is frozen in step S203, the control unit 30 controls the outdoor heat exchanger as in the first embodiment (see FIG. 6). Twelve may be thawed and dried in sequence. After performing the process of step S203, the control unit 30 ends a series of processes related to freeze cleaning of the outdoor heat exchanger 12 (END).
 また、ステップS202において、室内温度Tが第3所定温度T3未満である場合(S202:No)、制御部30の処理はステップS204に進む。
 ステップS204において制御部30は、室外熱交換器12の上部P1・下部P2の両方を凍結させる。前記したように、室外熱交換器12の下部P2を凍結させる場合(S203)に比べて、室外熱交換器12の上部P1・下部P2の両方を凍結させる場合(S204)のほうが膨張弁15の開度が大きいが、それ以外についてはステップS204の処理(図6の「凍結」も参照)と同様である。
Further, in step S202, when the room temperature T is less than the third predetermined temperature T3 (S202: No), the process of the control unit 30 proceeds to step S204.
In step S204, the control unit 30 freezes both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12. As described above, the expansion valve 15 has a better case of freezing both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204) than the case of freezing the lower part P2 of the outdoor heat exchanger 12 (S203). The opening degree is large, but other than that, the process is the same as in step S204 (see also “freezing” in FIG. 6).
 なお、「室外熱交換器12の上部P1・下部P2の両方を凍結させる」という事項には、上部P1・下部2の全体を凍結させるという事項の他、上部P1の少なくとも一部、及び、下部P2の少なくとも一部を凍結させるという事項も含まれる。 The item "freezing both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12" includes the item of freezing the entire upper part P1 and the lower part 2, as well as at least a part of the upper part P1 and the lower part. It also includes the matter of freezing at least a part of P2.
 次に、ステップS205において制御部30は、室外熱交換器12の上部P1・下部P2の両方を解凍する。例えば、制御部30は、図6の「解凍」と同様に、膨張弁15の開度を大きくすることで、室外熱交換器12に高温の冷媒を流し込む。これによって、室外熱交換器12の塩分等が洗い流され、室外熱交換器12の略全体が洗浄される。
 なお、ステップS205の解凍時、制御部30が、圧縮機11や室外ファン14を停止させ、膨張弁15の開度を凍結時のままで維持してもよい。このような処理でも、外気との熱交換によって室外熱交換器12の霜や氷が自然に溶ける。
Next, in step S205, the control unit 30 defrosts both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12. For example, the control unit 30 flows a high-temperature refrigerant into the outdoor heat exchanger 12 by increasing the opening degree of the expansion valve 15 as in the “thaw” of FIG. As a result, the salt content of the outdoor heat exchanger 12 and the like are washed away, and substantially the entire outdoor heat exchanger 12 is washed.
At the time of thawing in step S205, the control unit 30 may stop the compressor 11 and the outdoor fan 14 to maintain the opening degree of the expansion valve 15 as it is at the time of freezing. Even in such a process, the frost and ice of the outdoor heat exchanger 12 are naturally melted by heat exchange with the outside air.
 次に、ステップS206において制御部30は、室外熱交換器12の下部P2を凍結させる。なお、ステップS206の制御内容については、ステップS203(図6の「凍結」も参照)と同様であるから、説明を省略する。 Next, in step S206, the control unit 30 freezes the lower part P2 of the outdoor heat exchanger 12. Since the control content of step S206 is the same as that of step S203 (see also "freezing" in FIG. 6), the description thereof will be omitted.
 このように、制御部30は、室内温度Tが第3所定温度T3未満である場合には(S202:No)、室外熱交換器12を蒸発器として機能させ、室外熱交換器12の上部P1・下部P2の両方を凍結させる(S204)。そして、室外熱交換器12の上部P1・下部P2の両方を凍結させた後(S204)、制御部30は、室外熱交換器12の上部P1・下部P2の両方を解凍させ(S205)、当該解凍の後に室外熱交換器12の下部P2を凍結させる第1処理を行う(S206)。これによって、室外熱交換器12の上部P1・下部P2の凍結等(S204、S205)の後に下部P2に塩分が多少残っていても、この塩分を洗い流すことができる。 As described above, when the indoor temperature T is lower than the third predetermined temperature T3 (S202: No), the control unit 30 causes the outdoor heat exchanger 12 to function as an evaporator, and the upper portion P1 of the outdoor heat exchanger 12 is operated. -Frozen both lower parts P2 (S204). Then, after freezing both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S204), the control unit 30 defrosts both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (S205). After thawing, the first treatment of freezing the lower part P2 of the outdoor heat exchanger 12 is performed (S206). As a result, even if some salt remains in the lower P2 after freezing of the upper P1 and lower P2 of the outdoor heat exchanger 12 (S204, S205), the salt can be washed away.
 なお、室内温度Tは第3所定温度T3未満であるため(S202:No)、室外熱交換器12の凍結洗浄(S204~S206)に要する時間が比較的長くても、室内への温風の吹込みでユーザの不快感を生じるおそれはほとんどない。 Since the indoor temperature T is less than the third predetermined temperature T3 (S202: No), even if the time required for freezing and cleaning (S204 to S206) of the outdoor heat exchanger 12 is relatively long, the warm air into the room can be used. There is almost no risk of user discomfort due to blowing.
 また、図8では省略しているが、ステップS206で室外熱交換器12の下部P2を凍結させた後、制御部30が、室外熱交換器12の解凍・乾燥(図6参照)を順次に行うようにしてもよい。ステップS206の処理を行った後、制御部30は、室外熱交換器12の凍結洗浄に関する一連の処理を終了する(END)。 Further, although omitted in FIG. 8, after the lower part P2 of the outdoor heat exchanger 12 is frozen in step S206, the control unit 30 sequentially defrosts and dries the outdoor heat exchanger 12 (see FIG. 6). You may do it. After performing the process of step S206, the control unit 30 ends a series of processes related to freeze cleaning of the outdoor heat exchanger 12 (END).
<効果>
 第2実施形態によれば、室内温度Tが第3所定温度T3以上である場合(S202:Yes)、制御部30は、室外熱交換器12の下部P2を凍結させる(S203)。これによって、室外熱交換器12の下部P2に付着した塩分等を短時間で洗い流すことができる。また、比較的高温の室内に温風が吹き出される時間を短縮できる。
<Effect>
According to the second embodiment, when the indoor temperature T is equal to or higher than the third predetermined temperature T3 (S202: Yes), the control unit 30 freezes the lower portion P2 of the outdoor heat exchanger 12 (S203). As a result, the salt and the like adhering to the lower part P2 of the outdoor heat exchanger 12 can be washed away in a short time. In addition, the time for which warm air is blown into a relatively high temperature room can be shortened.
 一方、室内温度Tが第3所定温度T3未満である場合(S202:No)、制御部30は、室外熱交換器12の上部P1・下部P2を凍結させた後に解凍させ(S204、S205)、さらに、室外熱交換器12の下部P2を凍結させる(S206)。これによって、室外熱交換器12を全体的に洗浄できる。また、室外熱交換器12の上部P1・下部P2の凍結洗浄に伴って、塩分濃度の高い水が室外熱交換器12に下部P2の表面を伝って流れ、この下部P2に塩分が残った場合でも、その塩分がステップS206の処理で洗い流される。その結果、室外熱交換器12の上部P1・下部P2の凍結洗浄を2回繰り返すよりも、凍結洗浄に要する時間を短縮できる。 On the other hand, when the indoor temperature T is lower than the third predetermined temperature T3 (S202: No), the control unit 30 freezes the upper P1 and the lower P2 of the outdoor heat exchanger 12 and then thawes them (S204, S205). Further, the lower part P2 of the outdoor heat exchanger 12 is frozen (S206). As a result, the outdoor heat exchanger 12 can be cleaned as a whole. Further, when water having a high salt concentration flows through the surface of the lower part P2 to the outdoor heat exchanger 12 due to freezing and washing of the upper part P1 and the lower part P2 of the outdoor heat exchanger 12, and salt remains in the lower part P2. However, the salt content is washed away by the treatment in step S206. As a result, the time required for freeze-cleaning can be shortened as compared with repeating freeze-washing of the upper P1 and lower P2 of the outdoor heat exchanger 12 twice.
≪変形例≫
 以上、本発明に係る空気調和機100について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、室外熱交換器12が、左右方向に並ぶフィンfa,fb(図3参照)を備える構成について説明したが、これに限らない。すなわち、図9のように室外熱交換器12Aが構成されていてもよい。
≪Modification example≫
Although the air conditioner 100 according to the present invention has been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in each embodiment, the configuration in which the outdoor heat exchanger 12 includes fins fa and fb (see FIG. 3) arranged in the left-right direction has been described, but the present invention is not limited to this. That is, the outdoor heat exchanger 12A may be configured as shown in FIG.
 図9は、変形例に係る空気調和機の室外熱交換器12Aのパスを示す説明図である。
 図9の例では、室外熱交換器12Aが、縦長矩形状のフィンfを備えている。そして、図9の紙面手前・奥方向において、所定間隔で複数のフィンfが配置されている。そして、室外熱交換器12Aの凍結中(暖房サイクル中)、配管k1を介して室外熱交換器12Aの下部P2に冷媒が流入するようになっている。これによって、室外熱交換器12Aの下部P2(特に下端付近)が凍結される。
FIG. 9 is an explanatory diagram showing a path of the outdoor heat exchanger 12A of the air conditioner according to the modified example.
In the example of FIG. 9, the outdoor heat exchanger 12A includes vertically elongated rectangular fins f. Then, a plurality of fins f are arranged at predetermined intervals in the front and back directions of the paper surface of FIG. Then, while the outdoor heat exchanger 12A is frozen (during the heating cycle), the refrigerant flows into the lower part P2 of the outdoor heat exchanger 12A via the pipe k1. As a result, the lower part P2 (particularly near the lower end) of the outdoor heat exchanger 12A is frozen.
 室外熱交換器12Aの下部P2を通流する冷媒は、配管kp及び分配器w4を順次に介して、配管kq,krに分流する。一方の配管kqを通流する冷媒は、室外熱交換器12Aの上部P1を通流した後、配管ksを介して、圧縮機11(図1参照)の吸入側に導かれる。他方の配管krを通流する冷媒は、室外熱交換器12Aの中間位置Rを含む領域を通流した後、配管ktを介して、圧縮機11(図1参照)の吸入側に導かれる。なお、図示していないが、配管ktと配管ksを通流する冷媒は合流して、圧縮機11(図1参照)の吸入側に導かれる。このような構成でも、各実施形態と同様の効果が奏される。 The refrigerant flowing through the lower part P2 of the outdoor heat exchanger 12A is sequentially distributed to the pipes kq and kr via the pipe kp and the distributor w4. The refrigerant flowing through one of the pipes kq is guided to the suction side of the compressor 11 (see FIG. 1) via the pipe ks after passing through the upper part P1 of the outdoor heat exchanger 12A. The refrigerant flowing through the other pipe kr is guided to the suction side of the compressor 11 (see FIG. 1) via the pipe kt after passing through the region including the intermediate position R of the outdoor heat exchanger 12A. Although not shown, the refrigerant flowing through the pipe kt and the pipe ks merges and is guided to the suction side of the compressor 11 (see FIG. 1). Even with such a configuration, the same effect as that of each embodiment is obtained.
 なお、図3や図9で説明した室外熱交換器12,12Aのパスは一例であり、前記したパスを適宜に変更してもよい。また、左右方向に3列以上に並べたられたフィン(図示せず)を室外熱交換器が備える構成であってもよい。 The paths of the outdoor heat exchangers 12 and 12A described with reference to FIGS. 3 and 9 are examples, and the above-mentioned paths may be changed as appropriate. Further, the outdoor heat exchanger may be provided with fins (not shown) arranged in three or more rows in the left-right direction.
 また、第1実施形態では、室外熱交換器12の下部P2を凍結させる処理(図5のS102)について説明したが、これに限らない。すなわち、図5に示すステップS102の処理に代えて、室外熱交換器12の下部P2を結露させてもよい。このように室外熱交換器12の下部P2を結露させる場合、制御部30は、室外熱交換器12の温度が、外気の露点以下であり、かつ、所定の凍結温度よりも高くなるように、膨張弁15の開度等を調整し、その状態を所定時間継続させる。前記した「凍結温度」とは、室外熱交換器12の温度を徐々に低下させたとき、空気に含まれる水分が室外熱交換器12で凍結し始める温度である。このように室外熱交換器12の下部P2を結露させた後、制御部30が室外ファン14を駆動させ、室外熱交換器12を乾燥させるようにしてもよい。 Further, in the first embodiment, the process of freezing the lower part P2 of the outdoor heat exchanger 12 (S102 in FIG. 5) has been described, but the present invention is not limited to this. That is, instead of the process of step S102 shown in FIG. 5, the lower part P2 of the outdoor heat exchanger 12 may be condensed. When dew condensation occurs on the lower part P2 of the outdoor heat exchanger 12 in this way, the control unit 30 sets the temperature of the outdoor heat exchanger 12 to be below the dew point of the outside air and higher than the predetermined freezing temperature. The opening degree of the expansion valve 15 and the like are adjusted, and the state is maintained for a predetermined time. The above-mentioned "freezing temperature" is a temperature at which moisture contained in the air begins to freeze in the outdoor heat exchanger 12 when the temperature of the outdoor heat exchanger 12 is gradually lowered. After dew condensation on the lower part P2 of the outdoor heat exchanger 12 in this way, the control unit 30 may drive the outdoor fan 14 to dry the outdoor heat exchanger 12.
 なお、室外熱交換器12の下部P2を「凍結」させる場合よりも「結露」の方が膨張弁15の開度が大きい点以外は、「凍結」の場合の制御内容(図6参照)と同様である。また、第2実施形態(図8参照)のステップS203、S204、S206の処理についても同様のことがいえる。 The control contents in the case of "freezing" (see FIG. 6) except that the opening degree of the expansion valve 15 is larger in "condensation" than in the case of "freezing" the lower part P2 of the outdoor heat exchanger 12. The same is true. The same can be said for the processes of steps S203, S204, and S206 of the second embodiment (see FIG. 8).
 また、第1実施形態では、室外熱交換器12の凍結中(第1処理中)、制御部30が、室外ファン14を通常の空調運転時よりも低速で回転させる処理について説明したが、これに限らない。例えば、室外熱交換器12の凍結中(第1処理中)、制御部30が、室外ファン14を停止状態で維持するようにしてもよい。このような処理を行うことで、高温環境下でも、室外熱交換器12の霜や氷が成長しやすくなる。なお、第2実施形態についても同様のことがいえる。 Further, in the first embodiment, the process in which the control unit 30 rotates the outdoor fan 14 at a lower speed than in the normal air-conditioning operation while the outdoor heat exchanger 12 is frozen (during the first process) has been described. Not limited to. For example, the control unit 30 may maintain the outdoor fan 14 in a stopped state while the outdoor heat exchanger 12 is frozen (during the first process). By performing such a treatment, frost and ice of the outdoor heat exchanger 12 are likely to grow even in a high temperature environment. The same can be said for the second embodiment.
 また、第1実施形態では、室外熱交換器12の下部P2の凍結中(第1処理中)、圧縮機11の吐出側の温度が第2所定温度以上になった場合、制御部30が、室内ファン17の回転速度を上昇させる処理について説明したが、これに限らない。例えば、室外熱交換器12の下部P2の凍結中(第1処理中)、室内熱交換器16(凝縮器)の温度が第2所定温度以上になった場合、制御部30が、室内ファン17の回転速度を上昇させるようにしてもよい。このような処理でも、圧縮機11の温度上昇を抑制できる。
 また、前記した制御において、圧縮機11の吐出側の温度と、室内熱交換器16の温度と、が組み合わされてもよい。すなわち、室外熱交換器12の下部P2の凍結中(第1処理中)、圧縮機11の吐出側の温度、及び/又は、室内熱交換器16の温度が第2所定温度以上になった場合、制御部30が、室内ファン17の回転速度を上昇させるようにしてもよい。
Further, in the first embodiment, when the temperature on the discharge side of the compressor 11 becomes equal to or higher than the second predetermined temperature during freezing of the lower part P2 of the outdoor heat exchanger 12 (during the first processing), the control unit 30 is charged. Although the process of increasing the rotation speed of the indoor fan 17 has been described, the present invention is not limited to this. For example, when the temperature of the indoor heat exchanger 16 (condenser) becomes equal to or higher than the second predetermined temperature while the lower part P2 of the outdoor heat exchanger 12 is frozen (during the first treatment), the control unit 30 causes the indoor fan 17 to move. You may try to increase the rotation speed of. Even in such a process, the temperature rise of the compressor 11 can be suppressed.
Further, in the above-mentioned control, the temperature on the discharge side of the compressor 11 and the temperature of the indoor heat exchanger 16 may be combined. That is, when the lower part P2 of the outdoor heat exchanger 12 is frozen (during the first treatment), the temperature on the discharge side of the compressor 11 and / or the temperature of the indoor heat exchanger 16 becomes equal to or higher than the second predetermined temperature. , The control unit 30 may increase the rotation speed of the indoor fan 17.
 また、第2実施形態では、制御部30が、室内温度に基づいて(図8のS202)、室外熱交換器12の凍結の仕方を変更する処理について説明したが、これに限らない。例えば、図8のステップS202に関して、室内温度に代えて、室外温度を用いてもよいし、また、室内温度・室外温度を組み合わせてもよい。すなわち、室内温度及び/又は室外温度が第3所定温度以上である場合には、制御部30が、室外熱交換器12の下部P2を凍結させる第1処理(図8のS203)を行うようにしてもよい。また、室内温度及び/又は室外温度が第3所定温度未満である場合には、制御部30が、室外熱交換器12の上部P1・下部P2の両方を凍結させるようにしてもよい(図8のS204)。 Further, in the second embodiment, the control unit 30 has described the process of changing the freezing method of the outdoor heat exchanger 12 based on the indoor temperature (S202 in FIG. 8), but the present invention is not limited to this. For example, with respect to step S202 of FIG. 8, the outdoor temperature may be used instead of the indoor temperature, or the indoor temperature and the outdoor temperature may be combined. That is, when the indoor temperature and / or the outdoor temperature is equal to or higher than the third predetermined temperature, the control unit 30 performs the first process (S203 in FIG. 8) to freeze the lower portion P2 of the outdoor heat exchanger 12. You may. Further, when the indoor temperature and / or the outdoor temperature is lower than the third predetermined temperature, the control unit 30 may freeze both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 (FIG. 8). S204).
 また、室内温度や室外温度に関わらず、制御部30が、室外熱交換器12の上部P1・下部P2の両方の凍結等を行うようにしてもよい。すなわち、制御部30が、室外熱交換器12を蒸発器として機能させ、室外熱交換器12の上部P1・下部P2の両方を凍結させた後、室外熱交換器12の上部P1・下部P2の両方を解凍させ、当該解凍の後に室外熱交換器12の下部P2を凍結させる処理を行うようにしてもよい。これによって、室外熱交換器12を全体的に洗浄し、さらに、室外熱交換器12の下部P2の塩分等を洗い流すことができる。
 なお、前記した「解凍」を行う際、制御部30が、膨張弁15の開度を大きくしてもよいし、また、凍結時における膨張弁15の開度を保ったまま、圧縮機11等の機器を停止させてもよい。
Further, the control unit 30 may freeze both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 regardless of the indoor temperature and the outdoor temperature. That is, after the control unit 30 causes the outdoor heat exchanger 12 to function as an evaporator and freezes both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12, the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen. Both may be thawed, and after the thawing, the lower part P2 of the outdoor heat exchanger 12 may be frozen. As a result, the outdoor heat exchanger 12 can be washed as a whole, and the salt content and the like in the lower portion P2 of the outdoor heat exchanger 12 can be washed away.
When performing the above-mentioned "thawing", the control unit 30 may increase the opening degree of the expansion valve 15, or the compressor 11 or the like while maintaining the opening degree of the expansion valve 15 at the time of freezing. Equipment may be stopped.
 その他にも、例えば、制御部30が、室外熱交換器12の下部P2のみを凍結させる一方、上部P1を凍結させないようにしてもよい。また、制御部30が、室外熱交換器12の下部P2の凍結及び解凍を複数回繰り返した後、室外熱交換器12を乾燥させるようにしてもよい。また、室内温度の上昇を考慮せず、制御部30が、室外熱交換器12の上部P1及び下部P2の凍結及び解凍を複数回繰り返した後、室外熱交換器12を乾燥させるようにしてもよい。前記した各処理でも、室外熱交換器12を清潔な状態にすることができる。 In addition, for example, the control unit 30 may freeze only the lower part P2 of the outdoor heat exchanger 12 while not freezing the upper part P1. Further, the control unit 30 may dry the outdoor heat exchanger 12 after repeating freezing and thawing of the lower portion P2 of the outdoor heat exchanger 12 a plurality of times. Further, even if the control unit 30 repeats freezing and thawing of the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 a plurality of times without considering the rise in the indoor temperature, the outdoor heat exchanger 12 is dried. Good. The outdoor heat exchanger 12 can be kept clean by each of the above treatments.
 また、室内温度が第4所定温度以上である場合には、制御部30が、室外熱交換器12の下部P2の凍結や、この室外熱交換器12の上部P1・下部P2の凍結を行わないようにしてもよい。なお、前記した第4所定温度は、室外熱交換器12の凍結を行うか否かの判定基準となる閾値であり、前記した第3所定温度T3(図8のS202)よりも高い値として予め設定されている。これによって、室内温度がかなり高い状況で室内機Uiから温風が吹き出されることを防止できる。
 なお、前記した処理において、室内温度に代えて室外温度を用いてもよいし、また、室内温度と室外温度の両方を用いてもよい。すなわち、制御部30は、室内温度及び/又は室外温度が第4所定温度以上である場合には、前記した第1処理を含む室外熱交換器12の凍結(又は結露)を行わないようにしてもよい。
Further, when the indoor temperature is equal to or higher than the fourth predetermined temperature, the control unit 30 does not freeze the lower part P2 of the outdoor heat exchanger 12 or the upper part P1 and the lower part P2 of the outdoor heat exchanger 12. You may do so. The fourth predetermined temperature is a threshold value that serves as a criterion for determining whether or not to freeze the outdoor heat exchanger 12, and is set in advance as a value higher than the third predetermined temperature T3 (S202 in FIG. 8). It has been set. As a result, it is possible to prevent warm air from being blown out from the indoor unit Ui when the indoor temperature is considerably high.
In the above-mentioned treatment, the outdoor temperature may be used instead of the indoor temperature, or both the indoor temperature and the outdoor temperature may be used. That is, when the indoor temperature and / or the outdoor temperature is equal to or higher than the fourth predetermined temperature, the control unit 30 prevents the outdoor heat exchanger 12 including the first treatment described above from freezing (or dew condensation). May be good.
 また、室外熱交換器12の凍結(又は結露)の処理中にリモコン40の停止ボタン(図示せず)が押された場合、制御部30が、前記した処理を中止するようにしてもよい。例えば、室外熱交換器12の下部P2を凍結又は結露させる第1処理中にリモコン40の停止ボタン(図示せず)が押された場合、制御部30が、前記した第1処理を中止するようにしてもよい。これによって、室外熱交換器12の凍結洗浄を中止して、室内機Uiから温風が吹き出されないようにする、というユーザの意図を反映できる。 Further, if the stop button (not shown) of the remote controller 40 is pressed during the process of freezing (or dew condensation) of the outdoor heat exchanger 12, the control unit 30 may stop the process. For example, if the stop button (not shown) of the remote controller 40 is pressed during the first process of freezing or condensing the lower part P2 of the outdoor heat exchanger 12, the control unit 30 stops the first process. It may be. As a result, it is possible to reflect the user's intention to stop the freeze-cleaning of the outdoor heat exchanger 12 and prevent the warm air from being blown out from the indoor unit Ui.
 また、室外熱交換器12の凍結(又は結露)の処理中にリモコン40から所定の空調運転の開始指令を受信した場合、制御部30は、前記した処理を中止した後、所定の空調運転を開始するようにしてもよい。例えば、室外熱交換器12の下部P2を凍結又は結露させる第1処理中にリモコン40から所定の空調運転の開始指令を受信した場合、制御部30が、前記した第1処理を中止した後、所定の空調運転を開始するようにしてもよい。これによって、冷房運転や暖房運転といった所定の空調運転を開始させたいというユーザの意図を反映できる。 Further, when a predetermined air conditioning operation start command is received from the remote controller 40 during the freezing (or dew condensation) processing of the outdoor heat exchanger 12, the control unit 30 stops the above processing and then performs the predetermined air conditioning operation. You may want to start. For example, when a predetermined air conditioning operation start command is received from the remote controller 40 during the first process of freezing or dew condensation on the lower portion P2 of the outdoor heat exchanger 12, the control unit 30 stops the first process and then cancels the first process. A predetermined air conditioning operation may be started. This makes it possible to reflect the user's intention to start a predetermined air-conditioning operation such as a cooling operation or a heating operation.
 また、所定期間ごとに室外熱交換器12の凍結(又は結露)が行われる設定と、室外熱交換器12の凍結(又は結露)が行われない別の設定と、がリモコン40の操作で切替可能であるようにしてもよい。例えば、室外熱交換器12の下部P2を凍結又は結露させる第1処理が所定期間ごとに行われる設定と、前記した第1処理が行われない別の設定と、がリモコン40の操作で切替可能であるようにしてもよい。これによって、例えば、塩害が生じやすい海岸付近の地域に室外機Uoが設置される場合には、ユーザによるリモコン40の操作によって、定期的に室外熱交換器12の凍結洗浄が行われるように設定できる。一方、塩害が生じるおそれがほとんどない地域では、ユーザによるリモコン40の操作によって、室外熱交換器12の凍結洗浄を行わない設定にすることもできる。 Further, the setting in which the outdoor heat exchanger 12 is frozen (or dew condensation) and another setting in which the outdoor heat exchanger 12 is not frozen (or dew condensation) are switched by operating the remote controller 40 at predetermined intervals. It may be possible. For example, the setting in which the first process of freezing or dew condensation on the lower portion P2 of the outdoor heat exchanger 12 is performed at predetermined intervals and another setting in which the above-mentioned first process is not performed can be switched by operating the remote controller 40. It may be set to. As a result, for example, when the outdoor unit Uo is installed in an area near the coast where salt damage is likely to occur, the outdoor heat exchanger 12 is set to be periodically freeze-cleaned by the operation of the remote controller 40 by the user. it can. On the other hand, in an area where there is almost no risk of salt damage, the outdoor heat exchanger 12 can be set not to be frozen and washed by operating the remote controller 40 by the user.
 また、室外熱交換器12の下部P2の凍結終了時から所定時間が経過しても、室外熱交換器12の下部P2付近の温度が氷点下である場合、制御部30が、室外熱交換器12を凝縮器として機能させるようにしてもよい。つまり、室外熱交換器12の霜や氷が溶けにくい場合には、制御部30が冷房サイクルで冷媒を循環させ、室外熱交換器12を積極的に解凍させるようにしてもよい。 Further, if the temperature near the lower part P2 of the outdoor heat exchanger 12 is below the freezing point even after a predetermined time has elapsed from the end of freezing of the lower part P2 of the outdoor heat exchanger 12, the control unit 30 causes the outdoor heat exchanger 12 to perform. May function as a condenser. That is, when the frost or ice of the outdoor heat exchanger 12 is difficult to melt, the control unit 30 may circulate the refrigerant in the cooling cycle to actively thaw the outdoor heat exchanger 12.
 また、室外熱交換器12の下部P2に排水を誘導する部品(図示せず)を設け、室外熱交換器12の下部P2に水分を保持しないようにしてもよい。 Further, a component (not shown) for guiding drainage may be provided in the lower part P2 of the outdoor heat exchanger 12 so as not to retain water in the lower part P2 of the outdoor heat exchanger 12.
 また、室外熱交換器12の下部P2に水分が保持された場合、圧縮機11又は室外ファン14又は両方の駆動に伴う振動によって、室外熱交換器12の下部P2に保持された水分を除去するようにしてもよい。 Further, when moisture is retained in the lower portion P2 of the outdoor heat exchanger 12, the moisture retained in the lower portion P2 of the outdoor heat exchanger 12 is removed by vibration accompanying the drive of the compressor 11 or the outdoor fan 14 or both. You may do so.
 また、室外熱交換器12に所定の撥水処理を施し、室外熱交換器12の下部P2に水分を保持しないようにしてもよい。 Further, the outdoor heat exchanger 12 may be subjected to a predetermined water repellent treatment so as not to retain water in the lower portion P2 of the outdoor heat exchanger 12.
 また、制御部30が、室外熱交換器12を凍結させて洗浄する第1処理を行うとともに、通常の空調運転の停止中に室外ファン14を逆回転させる第2処理を行ってもよい。例えば、通常の空調運転終了後に第2処理を行う(通常の空調運転の終了を第2処理の開始条件とする)ようにしてもよい。
 なお、通常の空調運転中には、室外ファン14が正回転し、室外熱交換器12から室外ファン14に吸い込まれるように空気が流れる。一方、第2処理中には、室外ファン14が逆回転し、室外ファン14から室外熱交換器12に空気が送り込まれる。これによって、室外熱交換器12に付着している比較的大きな塵埃が除去される。このように、空調運転によって室外熱交換器12に付着する比較的大きな塵埃は、室外ファン14を逆回転させる第2処理で除去し、小さな塵埃や塩分は室外熱交換器12を凍結させて洗浄することができる。
Further, the control unit 30 may perform the first process of freezing and cleaning the outdoor heat exchanger 12 and the second process of rotating the outdoor fan 14 in the reverse direction while the normal air conditioning operation is stopped. For example, the second process may be performed after the end of the normal air conditioning operation (the end of the normal air conditioning operation is set as the start condition of the second process).
During normal air conditioning operation, the outdoor fan 14 rotates forward, and air flows so as to be sucked from the outdoor heat exchanger 12 into the outdoor fan 14. On the other hand, during the second treatment, the outdoor fan 14 rotates in the reverse direction, and air is sent from the outdoor fan 14 to the outdoor heat exchanger 12. As a result, relatively large dust adhering to the outdoor heat exchanger 12 is removed. In this way, the relatively large dust adhering to the outdoor heat exchanger 12 due to the air conditioning operation is removed by the second treatment of rotating the outdoor fan 14 in the reverse direction, and the small dust and salt are washed by freezing the outdoor heat exchanger 12. can do.
 室外ファン14を逆回転させる第2処理は室内環境を変化させないので、通常の空調運転が終了するたびに実行するようにしてもよい。一方、室外熱交換器12を凍結させて洗浄する処理は室内温度を上昇させるため、通常の空調運転の開始・終了が複数回行われた場合、制御部30が、室外熱交換器12の下部P2を凍結させる第1処理を1回行うようにしてもよい。また、塩害による腐食は空調運転の有無にかかわらず時間の経過とともに進行するため、数週間又は数か月ごとに定期的に室外熱交換器12を凍結させて洗浄するように第1処理を実行することが望ましい。 Since the second process of rotating the outdoor fan 14 in the reverse direction does not change the indoor environment, it may be executed every time the normal air conditioning operation is completed. On the other hand, the process of freezing and cleaning the outdoor heat exchanger 12 raises the indoor temperature. Therefore, when the normal air conditioning operation is started and ended a plurality of times, the control unit 30 moves the lower portion of the outdoor heat exchanger 12. The first treatment for freezing P2 may be performed once. In addition, since corrosion due to salt damage progresses with the passage of time regardless of the presence or absence of air conditioning operation, the first treatment is performed so as to freeze and wash the outdoor heat exchanger 12 periodically every few weeks or months. It is desirable to do.
 また、各実施形態では、室外熱交換器12の下部P2させる第1処理中、室内温度が第1所定温度以上になった場合、又は、第1処理の開始時から室内温度が所定温度以上上昇した場合に、室外熱交換器12の凍結を終了させることについて説明したが、これに限らない。室外熱交換器12の上部P1と下部P2の両方を凍結させ、凍結中に、室内温度が第1所定温度以上になった場合、又は、室内温度が所定温度以上上昇した場合に、制御部30が、室外熱交換器12の凍結を終了させてもよい。 Further, in each embodiment, when the indoor temperature becomes the first predetermined temperature or higher during the first treatment of lower P2 of the outdoor heat exchanger 12, or the indoor temperature rises by the predetermined temperature or higher from the start of the first treatment. However, the above is not limited to the above, although it has been described that the freezing of the outdoor heat exchanger 12 is terminated in this case. When both the upper part P1 and the lower part P2 of the outdoor heat exchanger 12 are frozen and the indoor temperature rises above the first predetermined temperature or the indoor temperature rises above the predetermined temperature during freezing, the control unit 30 However, the freezing of the outdoor heat exchanger 12 may be terminated.
 また、各実施形態では、室外熱交換器12の解凍後、制御部30が、室外ファン14を第1回転速度で駆動させ、室外熱交換器12を乾燥させる処理について説明したが、これに限らない。例えば、制御部30が、室外熱交換器12の解凍中、乾燥中又は乾燥後に、室外ファン14を一時的に第2回転速度で駆動させるようにしてもよい。前記した第2回転速度は第1回転速度よりも高速であり、予め設定されている。これによって、室外熱交換器12の解凍や乾燥が促進される。
 また、各実施形態では、室外熱交換器12の凍結洗浄の開始条件(図5のS101)として、前回の凍結洗浄の終了時から所定期間が経過しているという例を挙げたが、これに限らない。例えば、リモコン40に室外熱交換器12の凍結洗浄の開始ボタン(図示せず)を設け、この開始ボタンが押された場合、制御部30が、凍結洗浄の開始するようにしてもよい。
Further, in each embodiment, after the outdoor heat exchanger 12 is thawed, the control unit 30 drives the outdoor fan 14 at the first rotation speed to dry the outdoor heat exchanger 12, but the present invention is limited to this. Absent. For example, the control unit 30 may temporarily drive the outdoor fan 14 at the second rotation speed during thawing, drying, or after drying of the outdoor heat exchanger 12. The second rotation speed described above is higher than the first rotation speed and is set in advance. This promotes thawing and drying of the outdoor heat exchanger 12.
Further, in each embodiment, as a condition for starting the freeze-cleaning of the outdoor heat exchanger 12 (S101 in FIG. 5), an example is given in which a predetermined period has passed since the end of the previous freeze-cleaning. Not exclusively. For example, the remote controller 40 may be provided with a freeze-cleaning start button (not shown) for the outdoor heat exchanger 12, and when this start button is pressed, the control unit 30 may start the freeze-cleaning.
 また、各実施形態では、室外熱交換器12の凍結洗浄中、制御部30が表示ランプ25(図4参照)を所定に点灯又は点滅させる処理について説明したが、これに限らない。例えば、凍結洗浄中である旨がリモコン40や携帯端末(図示せず)に表示されるようにしてもよい。 Further, in each embodiment, the process in which the control unit 30 lights or blinks the indicator lamp 25 (see FIG. 4) in a predetermined manner during the freeze-cleaning of the outdoor heat exchanger 12 has been described, but the present invention is not limited to this. For example, the fact that freeze-washing is in progress may be displayed on the remote controller 40 or a mobile terminal (not shown).
 また、各実施形態では、空気調和機100(図1参照)が、室外機Uoに一つの膨張弁15を備える構成について説明したが、これに限らない。例えば、前記した膨張弁15に加えて、配管k1における室内熱交換器16の付近に別の膨張弁(図示せず)が設けられてもよい。 Further, in each embodiment, the configuration in which the air conditioner 100 (see FIG. 1) includes one expansion valve 15 in the outdoor unit Uo has been described, but the present invention is not limited to this. For example, in addition to the expansion valve 15 described above, another expansion valve (not shown) may be provided in the vicinity of the indoor heat exchanger 16 in the pipe k1.
 また、各実施形態では、室内機Ui(図1参照)及び室外機Uo(図1参照)が一台ずつ設けられる構成について説明したが、これに限らない。すなわち、並列接続された複数台の室内機を設けてもよい。また、ルームエアコンの他、パッケージエアコンやビル用マルチエアコンといった様々な種類の空気調和機にも各実施形態を適用できる。 Further, in each embodiment, a configuration in which one indoor unit Ui (see FIG. 1) and one outdoor unit Uo (see FIG. 1) are provided has been described, but the present invention is not limited to this. That is, a plurality of indoor units connected in parallel may be provided. In addition to room air conditioners, each embodiment can be applied to various types of air conditioners such as packaged air conditioners and multi air conditioners for buildings.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Further, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
In addition, the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.
 100 空気調和機
 11  圧縮機
 12,12A 室外熱交換器(蒸発器/凝縮器)
 13  室外熱交換器温度センサ
 14  室外ファン
 15  膨張弁
 16  室内熱交換器(凝縮器/蒸発器)
 17  室内ファン
 18  四方弁
 19  アキュムレータ
 21  リモコン送受信部
 22  室内温度センサ
 25  表示ランプ
 26  室外温度センサ
 30  制御部
 40  リモコン
 k1,ka,kb 配管
 P1  上部(室外熱交換器の上部)
 P2  下部(室外熱交換器の下部)
 Q   冷媒回路
 r   上下風向板
 R   中間位置
 Ui  室内機
 Uo  室外機
 v   下流端
100 Air conditioner 11 Compressor 12, 12A Outdoor heat exchanger (evaporator / condenser)
13 Outdoor heat exchanger temperature sensor 14 Outdoor fan 15 Expansion valve 16 Indoor heat exchanger (condenser / evaporator)
17 Indoor fan 18 Four-way valve 19 Accumulator 21 Remote control transmitter / receiver 22 Indoor temperature sensor 25 Indicator lamp 26 Outdoor temperature sensor 30 Control unit 40 Remote control k1, ka, kb Piping P1 upper part (upper part of outdoor heat exchanger)
Lower part of P2 (lower part of outdoor heat exchanger)
Q Refrigerant circuit r Vertical wind direction plate R Intermediate position Ui Indoor unit Uo Outdoor unit v Downstream end

Claims (21)

  1.  圧縮機、室内熱交換器、膨張弁、及び室外熱交換器を有する冷媒回路と、
     少なくとも前記圧縮機及び前記膨張弁を制御する制御部と、を備え、
     前記制御部は、前記室外熱交換器の下部を凍結又は結露させる第1処理を行う空気調和機。
    Refrigerant circuits with compressors, indoor heat exchangers, expansion valves, and outdoor heat exchangers,
    At least a control unit for controlling the compressor and the expansion valve is provided.
    The control unit is an air conditioner that performs a first process of freezing or condensing the lower part of the outdoor heat exchanger.
  2.  前記第1処理において前記膨張弁で減圧された冷媒を前記室外熱交換器に導く配管の下流端が、前記室外熱交換器の下部に接続されていること
     を特徴とする請求項1に記載の空気調和機。
    The first aspect of claim 1, wherein the downstream end of the pipe that guides the refrigerant decompressed by the expansion valve to the outdoor heat exchanger in the first treatment is connected to the lower part of the outdoor heat exchanger. Air conditioner.
  3.  前記制御部は、前記第1処理中、前記室外熱交換器の下部の少なくとも一部を凍結させつつ、前記室外熱交換器の上部の少なくとも一部を凍結させないこと
     を特徴とする請求項1に記載の空気調和機。
    The first aspect of the present invention is characterized in that, during the first processing, the control unit freezes at least a part of the lower part of the outdoor heat exchanger and does not freeze at least a part of the upper part of the outdoor heat exchanger. The described air conditioner.
  4.  前記第1処理中、前記室外熱交換器の下部の少なくとも一部は、冷媒の状態が気液二相であり、前記室外熱交換器の上部の少なくとも一部は、冷媒の状態が気相であること
     を特徴とする請求項1に記載の空気調和機。
    During the first treatment, at least a part of the lower part of the outdoor heat exchanger is in a gas-liquid two-phase state, and at least a part of the upper part of the outdoor heat exchanger is in a gas phase. The air conditioner according to claim 1, wherein the air conditioner is provided.
  5.  室内温度を検出する室内温度センサを備え、
     前記制御部は、前記第1処理中、前記室内温度が第1所定温度以上になった場合、又は、前記第1処理の開始時から前記室内温度が所定温度以上上昇した場合、前記第1処理を終了させること
     を特徴とする請求項1に記載の空気調和機。
    Equipped with an indoor temperature sensor that detects the indoor temperature
    The control unit performs the first process when the room temperature becomes the first predetermined temperature or higher during the first process, or when the room temperature rises by the predetermined temperature or more from the start of the first process. The air conditioner according to claim 1, wherein the air conditioner is terminated.
  6.  室外ファンを備え、
     通常の空調運転中には前記室外ファンが正回転し、前記室外熱交換器から前記室外ファンに吸い込まれるように空気が流れ、
     前記制御部は、前記室外ファンを逆回転させる第2処理を通常の空調運転の停止中に行うこと
     を特徴とする請求項1に記載の空気調和機。
    Equipped with an outdoor fan
    During normal air conditioning operation, the outdoor fan rotates forward, and air flows from the outdoor heat exchanger so as to be sucked into the outdoor fan.
    The air conditioner according to claim 1, wherein the control unit performs a second process of rotating the outdoor fan in the reverse direction while the normal air conditioning operation is stopped.
  7.  前記制御部は、前記第1処理を定期的に行い、前記第2処理を通常の空調運転終了後に行うこと
     を特徴とする請求項6に記載の空気調和機。
    The air conditioner according to claim 6, wherein the control unit periodically performs the first process and performs the second process after the end of the normal air conditioning operation.
  8.  室外ファンを備え、
     前記制御部は、前記第1処理中、前記室外ファンを通常の空調運転時よりも低速で回転させる、又は、前記室外ファンを停止状態で維持すること
     を特徴とする請求項1に記載の空気調和機。
    Equipped with an outdoor fan
    The air according to claim 1, wherein the control unit rotates the outdoor fan at a lower speed than during normal air conditioning operation during the first process, or keeps the outdoor fan in a stopped state. Harmony machine.
  9.  室内ファンを備え、
     前記制御部は、前記第1処理中、前記室内ファンを通常の空調運転時の最低回転速度よりも高速で回転させること
     を特徴とする請求項1に記載の空気調和機。
    Equipped with an indoor fan
    The air conditioner according to claim 1, wherein the control unit rotates the indoor fan at a speed higher than the minimum rotation speed during normal air conditioning operation during the first process.
  10.  室内機から吹き出される空気の上下方向の風向きを調整する上下風向板を備え、
     前記制御部は、前記第1処理中、前記上下風向板を水平方向よりも上向きにすること
     を特徴とする請求項1に記載の空気調和機。
    Equipped with a vertical wind direction plate that adjusts the vertical wind direction of the air blown from the indoor unit
    The air conditioner according to claim 1, wherein the control unit makes the vertical wind direction plate upward in the horizontal direction during the first process.
  11.  室内ファンを備え、
     前記制御部は、前記第1処理中、前記圧縮機の吐出側の温度、及び/又は、前記室内熱交換器の温度が第2所定温度以上になった場合、前記室内ファンの回転速度を上昇させること
     を特徴とする請求項1に記載の空気調和機。
    Equipped with an indoor fan
    During the first process, the control unit increases the rotation speed of the indoor fan when the temperature on the discharge side of the compressor and / or the temperature of the indoor heat exchanger becomes equal to or higher than the second predetermined temperature. The air conditioner according to claim 1, wherein the air conditioner is made to operate.
  12.  前記制御部は、前記第1処理として前記室外熱交換器の下部を凍結させた後、前記圧縮機を停止させ、さらに、前記第1処理時よりも前記膨張弁の開度を大きくして、前記室外熱交換器を解凍させること
     を特徴とする請求項1に記載の空気調和機。
    The control unit freezes the lower part of the outdoor heat exchanger as the first treatment, then stops the compressor, and further increases the opening degree of the expansion valve as compared with the first treatment. The air conditioner according to claim 1, wherein the outdoor heat exchanger is thawed.
  13.  室外ファンを備え、
     前記制御部は、前記室外熱交換器の解凍後、前記室外ファンを第1回転速度で駆動させ、前記室外熱交換器を乾燥させること
     を特徴とする請求項12に記載の空気調和機。
    Equipped with an outdoor fan
    The air conditioner according to claim 12, wherein the control unit drives the outdoor fan at the first rotation speed after thawing the outdoor heat exchanger to dry the outdoor heat exchanger.
  14.  前記制御部は、前記室外熱交換器の解凍中、乾燥中又は乾燥後に、前記室外ファンを一時的に第2回転速度で駆動させ、
     前記第2回転速度は前記第1回転速度よりも高速であること
     を特徴とする請求項13に記載の空気調和機。
    The control unit temporarily drives the outdoor fan at the second rotation speed during thawing, drying, or after drying of the outdoor heat exchanger.
    The air conditioner according to claim 13, wherein the second rotation speed is higher than the first rotation speed.
  15.  前記制御部は、前記室外熱交換器を蒸発器として機能させ、前記室外熱交換器の上部・下部の両方を凍結させた後、前記室外熱交換器の上部・下部の両方を解凍させ、当該解凍の後に前記第1処理を行うこと
     を特徴とする請求項1に記載の空気調和機。
    The control unit causes the outdoor heat exchanger to function as an evaporator, freezes both the upper part and the lower part of the outdoor heat exchanger, and then defrosts both the upper part and the lower part of the outdoor heat exchanger. The air conditioner according to claim 1, wherein the first treatment is performed after thawing.
  16.  室内温度を検出する室内温度センサと、
     室外温度を検出する室外温度センサと、を備え、
     前記制御部は、
     室内温度及び/又は室外温度が第3所定温度以上である場合には、前記第1処理を行い、
     室内温度及び/又は室外温度が前記第3所定温度未満である場合には、前記室外熱交換器を蒸発器として機能させ、前記室外熱交換器の上部・下部の両方を凍結させること
     を特徴とする請求項1に記載の空気調和機。
    An indoor temperature sensor that detects the indoor temperature and
    Equipped with an outdoor temperature sensor that detects the outdoor temperature,
    The control unit
    When the indoor temperature and / or the outdoor temperature is equal to or higher than the third predetermined temperature, the first treatment is performed.
    When the indoor temperature and / or the outdoor temperature is lower than the third predetermined temperature, the outdoor heat exchanger functions as an evaporator and both the upper part and the lower part of the outdoor heat exchanger are frozen. The air conditioner according to claim 1.
  17.  前記制御部は、室内温度及び/又は室外温度が第4所定温度以上である場合には、前記第1処理を含む前記室外熱交換器の凍結を行わず、
     前記第4所定温度は、前記第3所定温度よりも高いこと
     を特徴とする請求項16に記載の空気調和機。
    When the indoor temperature and / or the outdoor temperature is equal to or higher than the fourth predetermined temperature, the control unit does not freeze the outdoor heat exchanger including the first treatment.
    The air conditioner according to claim 16, wherein the fourth predetermined temperature is higher than the third predetermined temperature.
  18.  前記室外熱交換器の温度を検出する室外熱交換器温度センサを備え、
     前記室外熱交換器の上部・下部の両方を凍結させる場合よりも、前記第1処理として前記室外熱交換器の下部を凍結させる場合のほうが、前記室外熱交換器の温度を氷点下で保つ時間が短いこと
     を特徴とする請求項1に記載の空気調和機。
    The outdoor heat exchanger temperature sensor for detecting the temperature of the outdoor heat exchanger is provided.
    The time to keep the temperature of the outdoor heat exchanger below the freezing point is longer in the case of freezing the lower part of the outdoor heat exchanger as the first treatment than in the case of freezing both the upper part and the lower part of the outdoor heat exchanger. The air conditioner according to claim 1, characterized in that it is short.
  19.  前記制御部は、前記第1処理中にリモコンの停止ボタンが押された場合、前記第1処理を中止すること
     を特徴とする請求項1に記載の空気調和機。
    The air conditioner according to claim 1, wherein the control unit stops the first process when the stop button of the remote controller is pressed during the first process.
  20.  前記制御部は、前記第1処理中にリモコンから所定の空調運転の開始指令を受信した場合、前記第1処理を中止した後、前記所定の空調運転を開始すること
     を特徴とする請求項1に記載の空気調和機。
    Claim 1 is characterized in that, when the control unit receives a predetermined air conditioning operation start command from the remote controller during the first process, the control unit starts the predetermined air conditioning operation after stopping the first process. The air conditioner described in.
  21.  所定期間ごとに前記第1処理が行われる設定と、前記第1処理が行われない別の設定と、がリモコンの操作で切替可能であること
     を特徴とする請求項1に記載の空気調和機。
    The air conditioner according to claim 1, wherein the setting in which the first process is performed and another setting in which the first process is not performed can be switched by operating a remote controller at predetermined intervals. ..
PCT/JP2019/034072 2019-08-30 2019-08-30 Air conditioner WO2021038818A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/034072 WO2021038818A1 (en) 2019-08-30 2019-08-30 Air conditioner
JP2019565362A JP6749507B1 (en) 2019-08-30 2019-08-30 Air conditioner
CN201980092898.0A CN113474596B (en) 2019-08-30 2019-08-30 air conditioner
TW109129277A TWI734601B (en) 2019-08-30 2020-08-27 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034072 WO2021038818A1 (en) 2019-08-30 2019-08-30 Air conditioner

Publications (1)

Publication Number Publication Date
WO2021038818A1 true WO2021038818A1 (en) 2021-03-04

Family

ID=72240821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034072 WO2021038818A1 (en) 2019-08-30 2019-08-30 Air conditioner

Country Status (4)

Country Link
JP (1) JP6749507B1 (en)
CN (1) CN113474596B (en)
TW (1) TWI734601B (en)
WO (1) WO2021038818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113719970A (en) * 2021-08-05 2021-11-30 Tcl空调器(中山)有限公司 Air conditioner, self-cleaning method and device thereof, and computer readable storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210509A (en) * 2021-02-01 2022-10-18 日立江森自控空调有限公司 Air conditioner
JP2023014643A (en) * 2021-07-19 2023-01-31 日立ジョンソンコントロールズ空調株式会社 air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091099A (en) * 1999-09-17 2001-04-06 Sanyo Electric Co Ltd Heat exchanger
US20060080982A1 (en) * 2004-10-20 2006-04-20 Liebert Corporation Self-cleaning condenser
WO2015083399A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Air conditioner
CN104949261A (en) * 2014-03-28 2015-09-30 美的集团股份有限公司 Self-cleaning control method for air conditioners
JP2017227417A (en) * 2016-06-24 2017-12-28 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2018061359A1 (en) * 2016-09-28 2018-04-05 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
JP2018189365A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air-conditioning machine
WO2018216252A1 (en) * 2017-05-26 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2018189351A (en) * 2018-01-10 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2018200128A (en) * 2017-05-26 2018-12-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352512B2 (en) * 2010-03-31 2013-11-27 日立アプライアンス株式会社 Air conditioner
US10302320B2 (en) * 2015-10-20 2019-05-28 Reginald B. Howard Portable solar HVAC system with all-in-one appliances
CN107525220B (en) * 2017-07-31 2020-11-27 青岛海尔空调器有限总公司 Air conditioner and outdoor unit self-cleaning control method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091099A (en) * 1999-09-17 2001-04-06 Sanyo Electric Co Ltd Heat exchanger
US20060080982A1 (en) * 2004-10-20 2006-04-20 Liebert Corporation Self-cleaning condenser
WO2015083399A1 (en) * 2013-12-06 2015-06-11 シャープ株式会社 Air conditioner
CN104949261A (en) * 2014-03-28 2015-09-30 美的集团股份有限公司 Self-cleaning control method for air conditioners
JP2017227417A (en) * 2016-06-24 2017-12-28 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2018061359A1 (en) * 2016-09-28 2018-04-05 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
JP2018189365A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air-conditioning machine
WO2018216252A1 (en) * 2017-05-26 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2018200128A (en) * 2017-05-26 2018-12-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2018189351A (en) * 2018-01-10 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113719970A (en) * 2021-08-05 2021-11-30 Tcl空调器(中山)有限公司 Air conditioner, self-cleaning method and device thereof, and computer readable storage medium

Also Published As

Publication number Publication date
JP6749507B1 (en) 2020-09-02
TWI734601B (en) 2021-07-21
TW202113283A (en) 2021-04-01
CN113474596A (en) 2021-10-01
JPWO2021038818A1 (en) 2021-09-27
CN113474596B (en) 2023-09-26

Similar Documents

Publication Publication Date Title
JP4990221B2 (en) Air conditioner
JP6559923B1 (en) Air conditioner
JP5992089B2 (en) Air conditioner
WO2021038818A1 (en) Air conditioner
JP5992088B2 (en) Air conditioner
JP6157723B2 (en) Air conditioner
JP2015218912A (en) Air conditioner and load adjustment device used for the same
CN103857976A (en) Refrigeration cycle device
JP5160303B2 (en) Air conditioner
JP2010203673A (en) Air conditioner
WO2019224944A1 (en) Air conditioner
WO2018189830A1 (en) Refrigeration cycle device
JP2016133257A (en) Air-conditioner
JP6552773B1 (en) Air conditioner
JP5641636B2 (en) Facility horticulture air heat source heat pump system and operation method thereof
JP2001004254A (en) Refrigeration system
JP6391832B2 (en) Air conditioner and heat source machine
WO2021186490A1 (en) Air conditioner
JPWO2020202246A1 (en) Air conditioner
WO2019159621A1 (en) Air-conditioning apparatus
JP6918258B1 (en) Air conditioner and heat exchanger
JPWO2019229933A1 (en) Air conditioner
JP6990795B1 (en) Indoor unit and outdoor unit
JP7341341B2 (en) air conditioner
JP2008180429A (en) Refrigeration system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565362

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943473

Country of ref document: EP

Kind code of ref document: A1