WO2021036387A1 - 一种宽角度应用的滤光片 - Google Patents

一种宽角度应用的滤光片 Download PDF

Info

Publication number
WO2021036387A1
WO2021036387A1 PCT/CN2020/094167 CN2020094167W WO2021036387A1 WO 2021036387 A1 WO2021036387 A1 WO 2021036387A1 CN 2020094167 W CN2020094167 W CN 2020094167W WO 2021036387 A1 WO2021036387 A1 WO 2021036387A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
wide
angle
refractive index
substrate
Prior art date
Application number
PCT/CN2020/094167
Other languages
English (en)
French (fr)
Inventor
刘哲
于光龙
郑祖赐
Original Assignee
福州高意光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州高意光学有限公司 filed Critical 福州高意光学有限公司
Publication of WO2021036387A1 publication Critical patent/WO2021036387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to the field of optical filters, in particular to optical filters for wide-angle applications in biological recognition, lidar, environmental monitoring, infrared imaging or other imaging fields.
  • the filter is one of the indispensable parts of the optical inspection system.
  • an infrared cut filter (IR-CUT) is required to achieve the purpose of blocking infrared light and transmitting visible light.
  • the 3D recognition camera is the opposite.
  • the 3D recognition camera emits infrared light through a laser. After the infrared light is reflected by the detected object, it is received by the detector through the imaging system to obtain the imaging effect.
  • infrared light is a useful signal
  • visible light is a noise signal. Therefore, a filter is required to block visible light and transmit infrared light.
  • the typical colored glass is Blue Glass.
  • the metal ions in the colored glass can absorb light of a specific wavelength. By coating the colored glass, a lower spectral shift can be achieved at a large incident angle.
  • colored glass has the characteristics of being brittle and chemically unstable. When the thickness of colored glass is less than 200 ⁇ m, the material is very difficult to process and polish, and it is easy to be damaged and difficult to pass reliability tests such as dropping. This hinders the miniaturization of the camera module.
  • Another solution uses a flexible material as the substrate, and can prepare a filter smaller than 150 ⁇ m.
  • Typical substrate materials are polycarbonate (PC) and the like.
  • Patent application CN107430226A discloses this method in detail, which achieves an absorption effect similar to that of colored glass by arranging a light-absorbing substance in a resin substrate.
  • this solution is not as firm as the glass solution due to the need to coat a film on a flexible material, and it is prone to film release when used in harsh environments.
  • the object of the present invention is to provide a filter that can effectively cut off visible light, which can be applied to a 3D recognition camera.
  • a filter for wide-angle applications which has a pass band that partially overlaps the wavelength range of 800 nm to 1800 nm, and includes a substrate and a filter film layer plated on the surface of the substrate;
  • the filter film layer of the filter includes multiple A high refractive index layer and a plurality of low refractive index layers, wherein the material of the high refractive index layer includes Si:H, and the material of the low refractive index layer includes SiO 2 ;
  • the passband of the filter has a center wavelength, When the angle of the incident light changes from 0 degrees to 30 degrees, the shift of its center wavelength is less than 12nm; the cutoff of the filter in the wavelength range of 380nm to 750nm is greater than OD4; and the peak of the filter passband is transparent The rate is greater than 95%.
  • the thickness of the substrate of the filter is not greater than 150 ⁇ m.
  • the substrate of the filter is made of tempered glass material.
  • the total thickness of the filter film layer is not greater than 20 ⁇ m.
  • both surfaces of the substrate are plated with filter film layers.
  • the filter is an interference filter.
  • the interference filter is a multi-cavity band-pass filter, and the number of cavities is greater than or equal to three.
  • a bonding layer is also provided between the filter film layer and the substrate.
  • the bonding layer is a single layer of SiO 2 material.
  • a 3D recognition camera includes the above-mentioned wide-angle application filter.
  • the present invention has the beneficial effects that: the solution of the present invention can effectively cut off visible light and transmit infrared light, while achieving a lighter and thinner filter and film bonding strength.
  • the technical effect of high and pressure-bearing capacity also makes its application reliability better.
  • Figure 1 is a schematic diagram of a brief hierarchical structure of one of the embodiments of the solution of the present invention
  • Figure 2 is a schematic diagram of the absorption characteristics of Si:H materials, where the abscissa is the wavelength (nm) and the ordinate is the extinction coefficient (dimensionless);
  • Fig. 3 is a transmission spectrum diagram of the filter of this example at an incident angle of 0 degrees and 30 degrees, where the abscissa is the wavelength (nm), and the ordinate is the transmittance (%).
  • the filter 101 of the present invention includes a substrate 102, and filter film layers 104, 106 plated on the surface of the substrate 102; that is, the filter film layers 104, 106 are plated on both surfaces of the substrate 102 , Its spectral performance is the comprehensive effect of the two surface filter layers.
  • the thickness of the substrate 102 of the filter 101 is not greater than 150 ⁇ m and is made of tempered glass. In order to improve the bonding force between the filter film and the tempered glass, a bonding layer is also plated between the filter film and the tempered glass. 103, 105.
  • the bonding layers 103 and 105 generally use a single layer of SiO 2 .
  • the filter film layers 104, 106 are stacked by multiple layers of materials, the filter film layers 104, 106 include multiple high refractive index layers and multiple low refractive index layers, wherein the material of the high refractive index layer includes Si: H, the material of the low refractive index layer includes SiO 2 ; the filter is based on the principle of optical interference, through the stacking of multilayer films, to achieve the purpose of selective transmission of specific wavelengths and suppression of other wavelengths.
  • the total thickness of the filter film layers 104 and 106 is not greater than 20 ⁇ m.
  • the high refractive index material Si:H has visible light absorption properties, which is further conducive to the improvement of visible light cut-off.
  • the extinction coefficient of the coating material is less than 1 ⁇ 10 -4 , the material is transparent and there is no appreciable absorption for the application; when the extinction coefficient is greater than 1 ⁇ 10 -4 and less than 1 ⁇ 10 -3 , the material It has some absorption, but it can be used in most cases.
  • Conventional high-refractive materials such as Ta 2 O 5 , TiO 2 , Nb 2 O 5, etc., all satisfy the extinction coefficient of less than 1 ⁇ 10 -4 in visible light. Therefore, when these materials are used for filters that block visible light, a large amount of material accumulation is required, which is achieved by plating multiple reflective film stacks.
  • Figure 2 is a schematic diagram of the absorption characteristics of Si:H materials, where the abscissa is the wavelength (nm) and the ordinate is the extinction coefficient (dimensionless).
  • the extinction coefficient of Si:H material above 850nm is less than 1 ⁇ 10 -3 , which can be used for the plating of infrared high-transmittance films; the extinction coefficient increases rapidly below 800nm and almost completely absorbs the visible light band, that is, through Si:
  • the absorption performance of H itself can realize the barrier of visible light, which greatly reduces the thickness of the film system.
  • the filter 101 of the embodiment of this solution uses Si:H as a high refractive index material, the cut-off in the visible light range (380nm to 750nm) is greater than OD4, and the peak transmittance of the filter passband is greater than 95%.
  • Fig. 3 is a transmission spectrum diagram of an example filter at an incident angle of 0 degrees and 30 degrees, where the abscissa is the wavelength (nm) and the ordinate is the transmittance (%).
  • the filter of the present invention through the reasonable design of the film material and the substrate material, can realize that when the angle of the incident light is changed from 0 degrees to 30 degrees, the shift of its center wavelength is less than 12nm, which meets the requirements of wide-angle infrared Imaging applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Filters (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

一种宽角度应用的滤光片(101),具有与800nm到1800nm波长范围部分重叠的通带,包括基板(102),以及镀制在基板(102)表面的滤光膜层(104,106);滤光片(101)的滤光膜层(104,106)包含多个高折射率层和多个低折射率层,其中,高折射率层的材料包含Si:H,低折射率层的材料包含SiO2;另外,滤光片(101)的通带具有中心波长,当入射光的角度由0度变为30度时,中心波长的偏移量小于12nm;滤光片(101)在波长为380nm到750nm范围的截止度大于OD4;且滤光片(101)通带的峰值透过率大于95%。本发明方案可以在有效的截止可见光、透过红外光的同时,实现滤光片更轻薄、膜层结合力高、承压能力强的技术效果,也使得其应用可靠性更好。

Description

一种宽角度应用的滤光片 技术领域
本发明涉及滤光片领域,尤其涉及生物识别、激光雷达、环境监测、红外成像或其他成像领域应用的宽角度应用的滤光片。
背景技术
滤光片是光学检测***不可缺少的部件之一。在可见光摄像头中,需要红外截止滤光片(IR-CUT)来实现阻隔红外光、透过可见光的目的。而3D识别摄像头则相反,3D识别摄像头通过激光器发射红外光,红外光在被探测物反射后,经过成像***被探测器接收,获得成像效果。在3D识别摄像头中,红外光为有用信号,可见光为噪声信号,因此需要滤光片实现阻隔可见光、透过红外光的目的。
近年来,手机摄像头呈现了两种发展趋势:1)模组越来越薄,要求器件的尺寸、体积越来越小;2)镜头光学设计的光学入射角范围越来越大,要求器件在大的入射角范围内保持光学性能一致。两种趋势对滤光片也提出了更高的要求:即滤光片保证性能和可靠性的前提下厚度越来越薄,且透射光光谱在宽角度内的漂移量越来越小。
目前市面上在售的手机摄像头,其滤光片大都使用有色玻璃方案。典型的有色玻璃为蓝玻璃(Blue Glass)。有色玻璃中的金属离子可以对特定波长的光进行吸收,通过在有色玻璃上镀膜,还可以实现大入射角时较低的光谱偏移。但有色玻璃有易脆、化学性质不稳定的特点,当有色玻璃厚度小于200μm时,材料非常难以加工、抛光,且易损坏、难以通过跌落等可靠性测试。这阻碍了摄像模组的小型化。
另一种方案采用柔性材料为基材,可以制备小于150μm的滤光片。典型的基板材料是聚碳酸酯(PC)等。专利申请CN107430226A详细公开了这种方法,该方法通过在树脂基材中设置光吸收物质,达到和有色玻璃类似的吸收效果。但是,该方案由于要在柔性材料上镀膜,膜层的牢固度不如玻璃方案,在恶劣环境使用时容易发生脱膜现象。
发明内容
本发明的目的在于提供一种可以有效截止可见光的滤光片,其可应用于3D识别摄像头。
为实现上述目的,本发明采用以下技术方案:
宽角度应用的滤光片,其具有与800nm到1800nm波长范围部分重叠的通带,其包括基板,以及镀制在基板表面的滤光膜层;所述滤光片的滤光膜层包含多个高折射率层和多个低折射率层,其中,高折射率层的材料包含Si:H,低折射率层的材料包含SiO 2;另外,所述滤光片的通带具有中心波长,当入射光的角度由0度变为30度时,其中心波长的偏移量小于12nm;滤光片在波长为380nm到750nm范围的截止度大于OD4;且滤光片通带的峰值透过率大于95%。
进一步,所述滤光片的基板厚度不大于150μm。
进一步,所述滤光片的基板为钢化玻璃材料。
进一步,所述滤光膜层的总厚度不大于20μm。
进一步,所述基板的两个表面上均镀有滤光膜层。
进一步,所述滤光片为干涉滤光片。
优选的,所述的干涉滤光片为多腔式带通滤光片,且其腔的数目大于或等于3。
进一步,所述的滤光膜层与基板之间还设有结合层。
优选的,所述的结合层为单层SiO 2材料。
一种3D识别摄像头,其包括上述所述的宽角度应用的滤光片。
采用上述的技术方案,本发明与现有技术相比,其具有的有益效果为:本发明方案可以在有效的截止可见光、透过红外光的同时,实现滤光片更轻薄、膜层结合力高、承压能力强的技术效果,也使得其应用可靠性更好。
附图说明
下面结合附图和具体实施方式对本发明方案做进一步的阐述:
图1为本发明方案的实施例之一的简要层次结构示意图;
图2为Si:H材料的吸收特性示意图,其中横坐标为波长(nm),纵坐标为消光系数(无量纲);
图3为本示例滤光片在0度和30度入射角时的透射光谱图,其中横坐标为波长(nm),纵坐标为透过率(%)。
具体实施方式
如图1所示,本发明滤光片101包括基板102,以及镀制在基板102表面的滤光膜层104、106;即,滤光膜层104、106镀设在基板102的两表面上,其光谱性能为两个表面滤光膜层的综合效果。所述滤光片101的基板102厚度不大于150μm,且为钢化玻璃材料,为了提高滤光膜层和钢化玻璃的结合力,在滤光膜层和钢化玻璃之间还各镀制了结合层103、105。结合层103、105一般选用单层的SiO 2
其中,滤光膜层104、106由多层材料堆叠而成,滤光膜层104、106包含多个高折射率层和多个低折射率层,其中,高折射率层的材料包含Si:H,低折射率层的材料包含SiO 2;滤光片基于光学干涉原理,通过多层膜的堆叠,实现对特定波长选择性透过、其他波长抑制的目的。
虽然钢化玻璃相对于有色玻璃或者柔性材料,具有稳定性好、承压能力强的特点,但在具体实现上,仍需要对膜系进行合理设计,在基板表面上分配两个面的镀膜厚度,从而实现两端的应力平衡。因此,本发明的滤光片101,滤光膜层104、106的总厚度不大于20μm。
另外,高折射率材料Si:H对可见光具有吸收属性,进一步有利于可见光截止度的提高。
一般认为,当镀膜材料的消光系数小于1×10 -4时,材料是透明的,对应用不存在可觉察的吸收;当消光系数大于1×10 -4、小于1×10 -3时,材料有一定吸收,但多数情况下可以使用。常规的高折射材料如Ta 2O 5、TiO 2、Nb 2O 5等,在可见光均满足消光系数小于1×10 -4。因此,当这些材料用于阻隔可见光的滤光片时,需要大量的材料堆积,通过镀制多个反射膜 堆实现。
图2为Si:H材料的吸收特性示意图,其中,横坐标为波长(nm),纵坐标为消光系数(无量纲)。Si:H材料在850nm以上时的消光系数小于1×10 -3,可以用于红外高透膜系的镀制;在800nm以下消光系数迅速增加,在对可见光波段几乎完全吸收,即通过Si:H本身的吸收性能就可以实现可见光的阻隔,大大减小了膜系的厚度。本方案实施例滤光片101使用Si:H作为高折射率材料,在可见光范围(380nm到750nm)的截止度大于OD4,滤光片通带的峰值透过率大于95%。
Si:H材料的折射率一般大于3.5,远高于常规的镀膜材料。根据薄膜光学理论,膜层材料的折射率越高,膜层光学特性对入射角度越不敏感。图3为示例滤光片在0度和30度入射角时的透射光谱图,其中横坐标为波长(nm),纵坐标为透过率(%)。本发明的滤光片,通过膜系材料和基板材料的合理设计,可以实现当入射光的角度由0度变为30度时,其中心波长的偏移量小于12nm,满足宽角度时的红外成像应用。
以上所述为本发明的实施例,对于本领域的普通技术人员而言,根据本发明的教导,在不脱离本发明的原理和精神的情况下凡依本发明申请专利范围所做的均等变化、修改、替换和变型,皆应属本发明的涵盖范围。

Claims (10)

  1. 宽角度应用的滤光片,其具有与800nm到1800nm波长范围部分重叠的通带,其包括基板,以及镀制在基板表面的滤光膜层;其特征在于:所述滤光片的滤光膜层包含多个高折射率层和多个低折射率层,其中,高折射率层的材料包含Si:H,低折射率层的材料包含SiO 2;另外,所述滤光片的通带具有中心波长,当入射光的角度由0度变为30度时,其中心波长的偏移量小于12nm;滤光片在波长为380nm到750nm范围的截止度大于OD4;且滤光片通带的峰值透过率大于95%。
  2. 根据权利要求1所述的宽角度应用的滤光片,其特征在于:所述滤光片的基板厚度不大于150μm。
  3. 根据权利要求1所述的宽角度应用的滤光片,其特征在于:所述滤光片的基板为钢化玻璃材料。
  4. 根据权利要求1所述的宽角度应用的滤光片,其特征在于:所述滤光膜层的总厚度不大于20μm。
  5. 根据权利要求1所述的宽角度应用的滤光片,其特征在于:所述基板的两个表面上均镀有滤光膜层。
  6. 根据权利要求1所述的宽角度应用的滤光片,其特征在于:所述滤光片为干涉滤光片。
  7. 根据权利要求6所述的宽角度应用的滤光片,其特征在于:所述的干涉滤光片为多腔式带通滤光片,且其腔的数目大于或等于3。
  8. 根据权利要求1所述的宽角度应用的滤光片,其特征在于:所述的滤光膜层与基板之间还设有结合层。
  9. 根据权利要求8所述的宽角度应用的滤光片,其特征在于:所述的结合层为单层SiO 2材料。
  10. 一种3D识别摄像头,其特征在于:其包括权利要求1至9之一所述的宽角度应用的滤光片。
PCT/CN2020/094167 2019-08-30 2020-06-03 一种宽角度应用的滤光片 WO2021036387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910813446.9A CN112444898B (zh) 2019-08-30 2019-08-30 一种宽角度应用的滤光片
CN201910813446.9 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036387A1 true WO2021036387A1 (zh) 2021-03-04

Family

ID=74684079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094167 WO2021036387A1 (zh) 2019-08-30 2020-06-03 一种宽角度应用的滤光片

Country Status (2)

Country Link
CN (1) CN112444898B (zh)
WO (1) WO2021036387A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325910A (zh) * 2021-12-15 2022-04-12 西安北方光电科技防务有限公司 一种阶梯特征通带窄带滤光片
CN114545543A (zh) * 2022-02-11 2022-05-27 湖南麓星光电科技有限公司 一种红外滤光片及其制备方法和在海洋气体遥感探测器中的应用
CN115166886A (zh) * 2022-06-14 2022-10-11 浙江晶驰光电科技有限公司 一种超低角度偏移效应的红外截止滤光器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960709A (zh) * 2021-11-19 2022-01-21 天津津航技术物理研究所 一种大口径宽角谱滤光片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470225A (zh) * 2007-12-27 2009-07-01 汉王科技股份有限公司 用于人脸识别的红外滤光片及制作方法
KR20110130151A (ko) * 2010-05-27 2011-12-05 동우 화인켐 주식회사 흑색 감광성 수지 조성물, 컬러 필터 및 이를 구비한 액정 표시 장치
TWM572460U (zh) * 2018-08-14 2019-01-01 白金科技股份有限公司 紅外帶通濾波器
CN110082849A (zh) * 2019-06-05 2019-08-02 信阳舜宇光学有限公司 近红外窄带滤光片及制作方法
CN110109208A (zh) * 2019-06-05 2019-08-09 信阳舜宇光学有限公司 近红外带通滤光片及光学传感***
CN110109210A (zh) * 2019-06-05 2019-08-09 信阳舜宇光学有限公司 滤光片

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022936A (ja) * 2000-07-03 2002-01-23 Japan Aviation Electronics Industry Ltd 光学多層膜フィルタの成膜方法、成膜装置及び光学式膜厚計
JP2004177658A (ja) * 2002-11-27 2004-06-24 Sun Tec Kk 誘電体多層膜バンドパスフィルタ
CN1828345A (zh) * 2005-03-04 2006-09-06 鸿富锦精密工业(深圳)有限公司 一种滤光装置及其制造方法
CN201378210Y (zh) * 2008-12-01 2010-01-06 杭州科汀光学技术有限公司 超宽截止区的短波通截止滤光片
JP6136356B2 (ja) * 2013-02-25 2017-05-31 セイコーエプソン株式会社 測定装置
CN104155712B (zh) * 2014-08-15 2017-01-25 中国科学院上海技术物理研究所 光通信用近红外滤光片
CN104660896B (zh) * 2015-02-06 2017-12-29 福建福特科光电股份有限公司 免IR‑Cut切换器的日夜两用型镜头的摄像方法及装置
CN108761614A (zh) * 2018-08-06 2018-11-06 信阳舜宇光学有限公司 滤光片及包含该滤光片的红外图像传感***
CN108873135A (zh) * 2018-08-06 2018-11-23 信阳舜宇光学有限公司 一种近红外窄带滤光片及红外成像***
CN108897085B (zh) * 2018-08-06 2024-07-16 信阳舜宇光学有限公司 滤光片及包含该滤光片的红外图像传感***
CN109491004A (zh) * 2018-12-18 2019-03-19 西南技术物理研究所 一种多角度矩形深截止宽带带通滤光片的制作方法
CN109655954B (zh) * 2019-03-05 2024-04-16 浙江水晶光电科技股份有限公司 滤光片及其制备方法、指纹识别模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470225A (zh) * 2007-12-27 2009-07-01 汉王科技股份有限公司 用于人脸识别的红外滤光片及制作方法
KR20110130151A (ko) * 2010-05-27 2011-12-05 동우 화인켐 주식회사 흑색 감광성 수지 조성물, 컬러 필터 및 이를 구비한 액정 표시 장치
TWM572460U (zh) * 2018-08-14 2019-01-01 白金科技股份有限公司 紅外帶通濾波器
CN110082849A (zh) * 2019-06-05 2019-08-02 信阳舜宇光学有限公司 近红外窄带滤光片及制作方法
CN110109208A (zh) * 2019-06-05 2019-08-09 信阳舜宇光学有限公司 近红外带通滤光片及光学传感***
CN110109210A (zh) * 2019-06-05 2019-08-09 信阳舜宇光学有限公司 滤光片

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325910A (zh) * 2021-12-15 2022-04-12 西安北方光电科技防务有限公司 一种阶梯特征通带窄带滤光片
CN114325910B (zh) * 2021-12-15 2024-02-09 西安北方光电科技防务有限公司 一种阶梯特征通带窄带滤光片
CN114545543A (zh) * 2022-02-11 2022-05-27 湖南麓星光电科技有限公司 一种红外滤光片及其制备方法和在海洋气体遥感探测器中的应用
CN115166886A (zh) * 2022-06-14 2022-10-11 浙江晶驰光电科技有限公司 一种超低角度偏移效应的红外截止滤光器
CN115166886B (zh) * 2022-06-14 2024-02-09 浙江晶驰光电科技有限公司 一种超低角度偏移效应的红外截止滤光器

Also Published As

Publication number Publication date
CN112444898A (zh) 2021-03-05
CN112444898B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2021036387A1 (zh) 一种宽角度应用的滤光片
JP5741283B2 (ja) 赤外光透過フィルタ及びこれを用いた撮像装置
JP7150464B2 (ja) 混合金属/誘電体光学フィルタ
JP6119747B2 (ja) 近赤外線カットフィルタ
CN103217730B (zh) 一种渐变光学厚度窄带负滤光片膜系
TW201812348A (zh) 截斷紅外線之濾光器及攝像光學系統
WO2011158635A1 (ja) 赤外線カットフィルタ
US20200200956A1 (en) Optical filter and imaging device
US20060285208A1 (en) Optical multilayer thin-film system
CA2292808C (en) Thin film polarizing device having metal-dielectric films
WO2020103206A1 (zh) 一种偏振无关的滤光片
CN110806612A (zh) 滤光片及具有其的影像传感器
JP6136661B2 (ja) 近赤外線カットフィルタ
CN206133053U (zh) 一种吸收式光学低通滤波器
US8736945B2 (en) Lens module with infrared absorbing filter
WO2020015102A1 (zh) 偏振无关的分束器
JP2014235258A (ja) 可視光透過フィルタ
WO2020015101A1 (zh) 宽角度应用高反射镜
KR102292648B1 (ko) 반사 방지 필름 및 이를 포함한 광학소자
JP2006220872A (ja) 光学フィルタ、光学フィルタの製造方法および撮像装置
WO2018021496A1 (ja) 光学フィルタおよび光学素子用パッケージ
WO2022040912A1 (zh) 一种低角度偏移滤光片
CN111505745B (zh) 一种玻璃材料制作光学棱镜的方法
WO2022052268A1 (zh) 镜片以及镜头组件
TWI629516B (zh) 抗光暈低翹曲之光學低通濾波片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856125

Country of ref document: EP

Kind code of ref document: A1