WO2021035734A1 - 数据传输方法、装置及存储介质 - Google Patents

数据传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2021035734A1
WO2021035734A1 PCT/CN2019/103856 CN2019103856W WO2021035734A1 WO 2021035734 A1 WO2021035734 A1 WO 2021035734A1 CN 2019103856 W CN2019103856 W CN 2019103856W WO 2021035734 A1 WO2021035734 A1 WO 2021035734A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
indication information
terminal
configuration information
bwp configuration
Prior art date
Application number
PCT/CN2019/103856
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2019/103856 priority Critical patent/WO2021035734A1/zh
Priority to US17/637,041 priority patent/US20220345280A1/en
Priority to CN201980001862.7A priority patent/CN110731113B/zh
Publication of WO2021035734A1 publication Critical patent/WO2021035734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a data transmission method, device and storage medium.
  • the New Radio (NR) standard defines a partial bandwidth (Bandwidth Part, BWP).
  • the configured BWP is a fixed number of continuous physical resource blocks (Physical Resource Block, PRB) determined by high-level parameters.
  • the present disclosure provides a data transmission method, device and storage medium.
  • the technical solution is as follows:
  • a data transmission method the method is executed by a base station, and the method includes:
  • the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • the BWP configuration information further includes frequency domain indication information, and the frequency domain indication information is used to indicate the BWP of the terminal;
  • the performing data transmission with the terminal on the time domain resource indicated by the time domain indication information includes:
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the sending the bandwidth part BWP configuration information to the terminal includes:
  • the performing data transmission with the terminal on the time-frequency resources jointly indicated by the frequency domain indication information and the time domain indication information includes:
  • the uplink data sent by the terminal is received on the time domain resource indicated by the time domain indication information.
  • the downlink data is sent to the terminal on the time domain resource indicated by the time domain indication information.
  • a data transmission method is provided, the method is executed by a terminal, and the method includes:
  • the BWP configuration information further includes frequency domain indication information, and the frequency domain indication information is used to indicate the BWP of the terminal;
  • the performing data transmission with the base station on the time domain resource indicated by the time domain indication information includes:
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the receiving bandwidth part BWP configuration information sent by the base station includes:
  • the performing data transmission with the base station on the time domain resource indicated by the time domain indication information includes:
  • the uplink data is sent to the base station on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information is used to configure the downlink BWP of the terminal.
  • the downlink data sent by the base station is received on the time domain resource indicated by the time domain indication information.
  • a data transmission device is provided, the device is used in a base station, and the device includes:
  • a sending module configured to send bandwidth part BWP configuration information to the terminal, where the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • the data transmission module is configured to perform data transmission with the terminal on the time domain resource indicated by the time domain indication information.
  • the sending module and the data transmission module include:
  • the first transmission sub-module is configured to perform data transmission with the terminal on the time-frequency resource jointly indicated by the frequency domain indication information and the time domain indication information.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the sending module includes: a first sending submodule or a second sending submodule;
  • the first sending submodule is configured to send the BWP configuration information to the terminal through radio resource control RRC signaling;
  • the second sending submodule is configured to send the BWP configuration information to the terminal through downlink control information DCI.
  • the data transmission module includes:
  • An uplink data receiving submodule configured to receive uplink data sent by the terminal on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the uplink BWP of the terminal;
  • the downlink data sending submodule is configured to send downlink data to the terminal on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the downlink BWP of the terminal.
  • a data transmission device the device is used in a terminal, and the device includes:
  • a receiving module configured to receive bandwidth part BWP configuration information sent by a base station, where the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • the data transmission module is configured to perform data transmission with the base station on the time domain resource indicated by the time domain indication information.
  • the receiving module and the data transmission module include:
  • the second transmission sub-module is configured to perform data transmission with the base station on the time-frequency resources jointly indicated by the frequency domain indication information and the time domain indication information.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the receiving module includes: a first receiving submodule, or a second receiving submodule;
  • the first receiving submodule is configured to receive the BWP configuration information sent by the base station through radio resource control RRC signaling;
  • the second receiving submodule is configured to receive the BWP configuration information sent by the base station through downlink control information DCI.
  • the data transmission module includes:
  • the uplink data sending submodule is configured to send uplink data to the base station on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the uplink BWP of the terminal.
  • the downlink data receiving submodule is configured to receive the downlink data sent by the base station on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the downlink BWP of the terminal.
  • a data transmission device used in a base station includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • a data transmission device used in a terminal includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • a computer-readable storage medium contains executable instructions, and a processor in a base station invokes the executable instructions to implement the above-mentioned first aspect Or the data transmission method described in any optional implementation of the first aspect.
  • a computer-readable storage medium contains executable instructions, and a processor in a terminal invokes the executable instructions to implement the above-mentioned second aspect Or the data transmission method described in any optional implementation of the second aspect.
  • the BWP configuration information sent by the base station to the terminal includes time domain indication information.
  • the base station transmits data with the terminal on the time domain resources indicated by the time domain indication information, thereby realizing BWP for the terminal through the BWP configuration information
  • the time domain is configured flexibly to avoid the problem of insufficient flexibility of BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain, thereby improving the utilization of system resources.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a method flowchart of a data transmission method provided by an embodiment of the present disclosure
  • FIG. 3 is a method flowchart of a data transmission method provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of resource indication involved in the embodiment shown in FIG. 4;
  • FIG. 6 is a schematic diagram of another resource indication involved in the embodiment shown in FIG. 4;
  • FIG. 7 is a block diagram of a data transmission device provided by an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a data transmission device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • 5G fifth-generation mobile communication technology
  • 5G fifth-generation mobile communication technology
  • NR new air interface
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the mobile communication system is a communication system based on cellular mobile communication technology, and the mobile communication system may include: Several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 110 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer built-in device, or a vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access terminal access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • user terminal user equipment
  • UE user terminal
  • the terminal 110 may also be a device of an unmanned aerial vehicle.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be a 5G system, also known as a new radio (NR) system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the base station 120 may be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • PHY physical
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a next-generation mobile based on 5G.
  • 5G fifth-generation mobile communication network technology
  • the wireless air interface of the communication network technology standard is a wireless air interface based on the fifth-generation mobile communication network technology standard.
  • the foregoing wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • BWP Bandwidth Part
  • the receiving broadband adaptive technology is introduced.
  • the terminal monitors the downlink control channel on a smaller bandwidth, and Receive a small amount of downlink data transmission, when the terminal has a large amount of data reception, the entire bandwidth is opened for reception.
  • the NR standard defines the bandwidth part BWP.
  • BWP defines a group of continuous resource blocks starting from a certain position of the common resource block.
  • each BWP may correspond to a parameter set, and the parameter set may include Sub-Carrier Spacing (SCS) and Cyclic Prefix (CP), etc.
  • SCS Sub-Carrier Spacing
  • CP Cyclic Prefix
  • BWP can be regarded as the working bandwidth of the terminal.
  • the following functions can be achieved:
  • Discontinuous frequency bands can be configured in the carrier.
  • Frequency bands can be reserved in the carrier to support undefined transmission formats.
  • the terminal when a terminal enters a connected state, the terminal obtains a control resource set (Control Resource Set, CORESET) through a physical broadcast channel (PBCH). Through CORESET, the terminal can find the control channel information for scheduling the remaining system information. Obtain the CORESET from the PBCH and activate the initial downstream BWP.
  • the initial uplink BWP is obtained from the system information scheduled by the downlink Physical Downlink Control Channel (PDCCH).
  • PDCH downlink Physical Downlink Control Channel
  • a maximum of 4 downlink BWPs and a maximum of 4 uplink BWPs can be configured. At any particular moment, only one configured downstream BWP is activated, and only one configured upstream BWP is activated.
  • the base station can send the BWP configuration information to the terminal.
  • the BWP configuration information instructs the terminal to switch to the configured BWP.
  • the system also defines the number of continuous physical resource blocks (Physical Resource Block, PRB) corresponding to a BWP through high-level signaling other than the BWP configuration information.
  • PRB Physical Resource Block
  • the system can define the number of consecutive PRBs corresponding to a BWP through high-level signaling locationAndBandWidth.
  • the information in the locationAndBandWidth can be regarded as a resource indication value (RIV).
  • RIV resource indication value
  • the RIV can be set to 275. In other words, one BWP corresponds to 275 consecutive PRBs.
  • the system can also define the parameter set corresponding to the BWP through high-level signaling, for example, define the subcarrier spacing of the BWP through subcarrierSpacing, and define the cyclic prefix of the BWP through cyclicPrefix.
  • the BWP configuration information only indicates the BWP that the terminal needs to switch to, and the time domain information of each BWP is fixed by another high-level signaling, and the time domain is continuous, resulting in insufficient flexibility in BWP configuration. Affect the utilization of system resources.
  • An embodiment of the present disclosure provides a data transmission method. Please refer to FIG. 2, which shows a method flowchart of a data transmission method provided by an embodiment of the present disclosure.
  • the data transmission method can be applied to the wireless communication system shown in FIG. 1 and executed by the base station in FIG. 1.
  • the method may include the following steps.
  • the bandwidth part of the BWP configuration information is sent to the terminal, the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resource for which the BWP configuration information takes effect;
  • step 202 data transmission is performed with the terminal on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information further includes frequency domain indication information, and the frequency domain indication information is used to indicate the BWP of the terminal;
  • the data transmission with the terminal on the time domain resource indicated by the time domain indication information includes:
  • Data transmission is performed with the terminal on the time-frequency resource jointly indicated by the frequency domain indication information and the time domain indication information.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the sending bandwidth part BWP configuration information to the terminal includes:
  • the BWP configuration information is sent to the terminal through the downlink control information DCI.
  • the performing data transmission with the terminal on the time domain resource indicated by the time domain indication information includes:
  • the uplink data sent by the terminal is received on the time domain resource indicated by the time domain indication information.
  • the downlink data is sent to the terminal on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information sent by the base station to the terminal includes time domain indication information.
  • the base station compares the time domain resources indicated by the above time domain indication information with The terminal performs data transmission, so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the problem of insufficient flexibility of the BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain. , Thereby improving the utilization of system resources.
  • FIG. 3 shows a method flowchart of a data transmission method provided by an embodiment of the present disclosure.
  • the data transmission method may be applied to the wireless communication system shown in FIG. 1 and executed by the terminal in FIG. 1.
  • the method may include the following steps.
  • step 301 receiving the bandwidth part BWP configuration information sent by the base station, the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • step 302 data transmission is performed with the base station on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information further includes frequency domain indication information, and the frequency domain indication information is used to indicate the BWP of the terminal;
  • the data transmission with the base station on the time domain resource indicated by the time domain indication information includes:
  • Data transmission is performed with the base station on the time domain resources jointly indicated by the frequency domain indication information and the time domain indication information.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the receiving bandwidth part BWP configuration information sent by the base station includes:
  • the performing data transmission with the base station on the time domain resource indicated by the time domain indication information includes:
  • the uplink data is sent to the base station on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information is used to configure the downlink BWP of the terminal.
  • the downlink data sent by the base station is received on the time domain resource indicated by the time domain indication information.
  • the terminal receives the BWP configuration information sent by the base station and contains the time domain indication information.
  • the terminal is on the time domain resource indicated by the above time domain indication information. Data transmission with the terminal, so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the insufficient flexibility of the BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain Problems, thereby improving the utilization of system resources.
  • FIG. 4 shows a method flowchart of a data transmission method provided by an embodiment of the present disclosure.
  • the data transmission method can be applied to the wireless communication system shown in FIG. Execution, the method may include the following steps.
  • step 401 the base station sends bandwidth part BWP configuration information to the terminal, and accordingly, the terminal receives the BWP configuration information.
  • the BWP configuration information includes frequency domain indication information and time domain indication information; the frequency domain indication information is used to indicate the working bandwidth of the terminal, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect.
  • the above-mentioned BWP configuration information may be uplink BWP configuration information or downlink BWP configuration information. That is to say, the solutions shown in the embodiments of the present disclosure are also applicable to the uplink and downlink configuration of the BWP of the terminal.
  • the base station configures at least two uplink BWPs and at least two downlink BWPs for the terminal in advance.
  • BWP configuration information can be sent to the terminal to control the terminal to switch the activated uplink BWP or downlink BWP.
  • the above-mentioned frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the 4 uplink BWPs are identified as u1, u2, u3, and u4, and the 4 downlink BWPs are identified as d1, d2, d3, and d4. .
  • the base station judges that the subsequent uplink data sent by the terminal is less and does not require too much uplink bandwidth.
  • the terminal can be controlled to switch To an uplink BWP with a narrow bandwidth, for example, the uplink BWP corresponding to u3, the base station may send the BWP configuration information including the time domain indication information "u3" to the terminal.
  • the base station judges that the terminal will receive more data in subsequent downlinks, and a wider downlink bandwidth is needed.
  • the downlink bandwidth can be increased to increase the transmission speed.
  • the base station may send the BWP configuration information including the time domain indication information "d2" to the terminal.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource; or, the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the base station can indicate the subsequent time domain resources on which time domain resources the terminal will perform data transmission through the time domain indication information according to the transmission demand within a subsequent period of time.
  • FIG. 5 shows a schematic diagram of resource indication involved in an embodiment of the present disclosure.
  • Each filled square in Figure 5 is a PRB.
  • the BWP configuration information sent by the base station can be used to indicate the subsequent continuous Multiple PRBs (10 RRBs shown in Figure 5) are indicated as the uplink BWP of the terminal; as shown in part (b) of Figure 5, when the subsequent uplink transmission data is less and the transmission time is relatively scattered, the base station sends
  • the BWP configuration information can indicate the subsequent non-contiguous multiple PRBs (shown as the first, fifth, sixth, eighth, and tenth PRB in Figure 5) as the BWP of the terminal through the time domain indication information, and
  • the second, third, fourth, seventh, and ninth PRBs may be indicated as the downlink BWP of the terminal, or indicated as the uplink or downlink BWP of other terminals other than the current terminal.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the BWP indicated by the base station uses a time slot as the smallest granularity in the time domain.
  • the indication may be performed in a smaller unit (such as an OFDM symbol).
  • FIG. 6 shows a schematic diagram of another resource indication involved in an embodiment of the present disclosure.
  • the base station in a time slot (including 12 OFDM symbols as an example), can indicate the first 6 OFDM symbols as the uplink BWP of terminal A through the above-mentioned time-domain indication information, and set the same time slot The last 6 OFDM symbols are indicated as the downlink BWP of terminal A. That is to say, in the embodiments of the present disclosure, for the time slots that have both uplink and downlink symbols, the time domain information in the BWP can be refined to the OFDM symbols.
  • the above-mentioned time-domain information can be expressed as a combination of an offset and a time-domain length.
  • the offset may be the offset of the time domain resource of the BWP relative to the end time domain position of the signaling where the BWP configuration information is located, and the time domain length represents the continuous resource length after the corresponding offset.
  • the time domain indication information in the BWP configuration information sent by the base station can be expressed as (2, 1), (7, 2), (10, 1) and (12, 1), respectively indicate that the end positions of the corresponding BWP and BWP configuration information are separated by 2 time slots, 7 time slots, 10 time slots, and 12 time slots. Slots, and the corresponding time domain lengths are 1 time slot, 2 time slots, 1 time slot, and 1 time slot respectively.
  • the time domain indication information in the BWP configuration information may be expressed as (12, 6), indicating the corresponding BWP and BWP configuration information. Let the end positions be separated by 12 OFDM symbols, and the time domain length is 6 OFDM symbols.
  • the base station when sending the bandwidth part of the BWP configuration information to the terminal, may send the BWP configuration information to the terminal through radio resource control RRC signaling, and correspondingly, the terminal receives the BWP configuration information sent by the base station through the RRC signaling Or, the base station may send the BWP configuration information to the terminal through downlink control information DCI, and accordingly, the terminal may receive the BWP configuration information sent by the base station through the DCI.
  • the base station may send the BWP configuration information to the terminal through RRC signaling to configure the terminal to perform data transmission with the base station through the initial BWP.
  • the base station when the base station determines that the terminal needs to switch BWP, it can send the above-mentioned BWP configuration information to the terminal through DCI to control the terminal to switch to the new BWP Perform data transfer.
  • step 402 the terminal extracts frequency domain indication information and time domain indication information in the BWP configuration information.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the time domain indication in the BWP configuration information can be applied to various data transmitted through the BWP between the terminal and the base station. Therefore, the time domain indication information in the BWP configuration information can be set in the BWP configuration information. In the first level, there is no need to configure different time domain indication information for various different data.
  • the terminal when the terminal extracts the time domain indication information in the BWP configuration information, it can extract the time domain indication information from the first level in the BWP configuration information.
  • step 403 the terminal determines the time-frequency resource jointly indicated by the frequency domain indication information and the time domain indication information according to the frequency domain indication information and the time domain indication information in the extracted BWP configuration information.
  • the terminal extracts the frequency domain indication information (such as the identification of the target bandwidth part) and the time domain indication information from the BWP configuration information, it determines the bandwidth part of the subsequent work (ie, the frequency domain) according to the identification of the target working bandwidth. Resource), and determine the time slot or OFDM symbol (immediate domain resource) for subsequent work according to the time domain indication information, and combine the frequency domain resource and the time domain resource to obtain the time domain resource set where the subsequent data transmission is located.
  • the frequency domain indication information such as the identification of the target bandwidth part
  • the time domain indication information from the BWP configuration information
  • step 404 when the above-mentioned BWP configuration information is used to configure the uplink BWP of the terminal, the terminal and the base station perform uplink transmission on the time-frequency resources jointly indicated by the frequency domain indication information and the time domain indication information.
  • the terminal When the BWP configuration information is used to configure the uplink BWP of the terminal, the terminal sends uplink data to the base station on the time-frequency resource indicated by the frequency domain indication information and the time domain indication information; accordingly, the base station is at this time On the frequency resource, the uplink data sent by the terminal is received.
  • the terminal may subsequently send the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) and the physical uplink control channel (Physical Uplink Control Channel) to the base station on the uplink BWP. Control Channel, PUCCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the base station receives the PUSCH and PUCCH sent by the terminal on the uplink BWP configured by the above-mentioned BWP configuration information.
  • step 405 when the above-mentioned BWP configuration information is used to configure the downlink BWP of the terminal, the terminal and the base station perform downlink transmission on the time-frequency resources jointly indicated by the frequency domain indication information and the time domain indication information.
  • the base station When the BWP configuration information is used to configure the downlink BWP of the terminal, the base station sends the downlink data to the terminal on the time-frequency resource indicated by the frequency domain indication information and the time domain indication information; accordingly, the terminal is at this time The downlink data sent by the base station is received on the frequency resource.
  • the base station may subsequently send a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) and a physical downlink control channel (Physical Downlink Control Channel) to the terminal on the downlink BWP.
  • PDSCH Physical Downlink Shared Channel
  • Physical Downlink Control Channel Physical Downlink Control Channel
  • Control Channel, PDCCH Physical Downlink Control Channel
  • channel-state information reference signal channel-state information-Reference Signal, CSI-RS
  • the BWP configuration information sent by the base station to the terminal includes time domain indication information.
  • the base station compares the time domain resources indicated by the above time domain indication information with The terminal performs data transmission, so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the problem of insufficient flexibility of the BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain. , Thereby improving the utilization of system resources.
  • FIG. 7 is a block diagram of a data transmission device provided by an embodiment of the present disclosure.
  • the data transmission device can be implemented as all the base stations in the wireless communication system shown in FIG. 1 through hardware or a combination of software and hardware. Or partly, to execute the steps executed by the base station in any of the embodiments shown in FIG. 2 or FIG. 4.
  • the data transmission device may include:
  • the sending module 701 is configured to send bandwidth part BWP configuration information to the terminal, where the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • the data transmission module 702 is configured to perform data transmission with the terminal on the time domain resource indicated by the time domain indication information.
  • the sending module 701 and the data transmission module 702 include:
  • the first transmission sub-module is configured to perform data transmission with the terminal on the time domain resources jointly indicated by the frequency domain indication information and the time domain indication information.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the sending module 701 includes: a first sending sub-module or a second sending sub-module;
  • the first sending submodule is configured to send the BWP configuration information to the terminal through radio resource control RRC signaling;
  • the second sending submodule is configured to send the BWP configuration information to the terminal through downlink control information DCI.
  • the data transmission module 702 includes:
  • the uplink data receiving submodule is configured to receive uplink data sent by the terminal on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the uplink BWP of the terminal.
  • the downlink data sending submodule is configured to send downlink data to the terminal on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the downlink BWP of the terminal.
  • the BWP configuration information sent by the base station to the terminal includes time domain indication information.
  • the base station compares the time domain resources indicated by the above time domain indication information with The terminal performs data transmission, so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the problem of insufficient flexibility of the BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain. , Thereby improving the utilization of system resources.
  • FIG. 8 is a block diagram of a data transmission device provided by an embodiment of the present disclosure.
  • the data transmission device can be implemented as all of the terminals in the wireless communication system shown in FIG. 1 through hardware or a combination of software and hardware. Or partly, to execute the steps executed by the terminal in any one of the embodiments shown in FIG. 3 or FIG. 4.
  • the data transmission device may include:
  • the receiving module 801 is configured to receive bandwidth part BWP configuration information sent by a base station, where the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • the data transmission module 802 is configured to perform data transmission with the base station on the time domain resource indicated by the time domain indication information.
  • the receiving module 801 and the data transmission module 802 include:
  • the second transmission sub-module is configured to perform data transmission with the base station on the time-frequency resources jointly indicated by the frequency domain indication information and the time domain indication information.
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the receiving module 801 includes: a first receiving sub-module, or a second receiving sub-module;
  • the first receiving submodule is configured to receive the BWP configuration information sent by the base station through radio resource control RRC signaling;
  • the second receiving submodule is configured to receive the BWP configuration information sent by the base station through downlink control information DCI.
  • the data transmission module 802 includes:
  • the uplink data sending submodule is configured to send uplink data to the base station on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the uplink BWP of the terminal.
  • the downlink data receiving submodule is configured to receive the downlink data sent by the base station on the time domain resource indicated by the time domain indication information when the BWP configuration information is used to configure the downlink BWP of the terminal.
  • the terminal receives the BWP configuration information sent by the base station and contains time domain indication information.
  • the terminal is on the time domain resource indicated by the above time domain indication information.
  • Perform data transmission with the terminal so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the insufficient flexibility of the BWP configuration due to the fixed and continuous configuration of the time domain information of each BWP of the terminal Problems, thereby improving the utilization of system resources.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example for illustration. In actual applications, the above-mentioned functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides a data transmission device that can implement all or part of the steps performed by a base station in the embodiment shown in FIG. 2 or FIG. 4 of the disclosure.
  • the data transmission device includes: a processor, A memory storing processor executable instructions;
  • the processor is configured to:
  • the BWP configuration information includes time domain indication information, and the time domain indication information is used to indicate the time domain resources for which the BWP configuration information takes effect;
  • the BWP configuration information further includes frequency domain indication information, and the frequency domain indication information is used to indicate the BWP of the terminal;
  • the performing data transmission with the terminal on the time domain resource indicated by the time domain indication information includes:
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the sending the bandwidth part BWP configuration information to the terminal includes:
  • the performing data transmission with the terminal on the time domain resource indicated by the time domain indication information includes:
  • the uplink data sent by the terminal is received on the time domain resource indicated by the time domain indication information.
  • the downlink data is sent to the terminal on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information sent by the base station to the terminal includes time domain indication information.
  • the base station compares the time domain resources indicated by the above time domain indication information with The terminal performs data transmission, so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the problem of insufficient flexibility of the BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain. , Thereby improving the utilization of system resources.
  • An exemplary embodiment of the present disclosure provides a data transmission device that can implement all or part of the steps executed by a terminal in the embodiment shown in FIG. 3 or FIG. 4 of the present disclosure.
  • the data transmission device includes: a processor, A memory storing processor executable instructions;
  • the processor is configured to:
  • the BWP configuration information further includes frequency domain indication information, and the frequency domain indication information is used to indicate the BWP of the terminal;
  • the performing data transmission with the base station on the time domain resource indicated by the time domain indication information includes:
  • the time domain resource indicated by the time domain indication information is a non-contiguous time domain resource
  • the time domain resource indicated by the time domain indication information is a continuous time domain resource.
  • the minimum time domain unit of the time domain resource indicated by the time domain indication information is an orthogonal frequency division multiplexing OFDM symbol.
  • the time domain indication information is located at the first level of the BWP configuration information.
  • the frequency domain indication information includes an identifier of a target bandwidth part, and the target bandwidth part is one of at least two bandwidth parts pre-configured for the terminal.
  • the receiving bandwidth part BWP configuration information sent by the base station includes:
  • the performing data transmission with the base station on the time domain resource indicated by the time domain indication information includes:
  • the uplink data is sent to the base station on the time domain resource indicated by the time domain indication information.
  • the BWP configuration information is used to configure the downlink BWP of the terminal.
  • the downlink data sent by the base station is received on the time domain resource indicated by the time domain indication information.
  • the terminal receives the BWP configuration information sent by the base station and contains the time domain indication information.
  • the terminal is on the time domain resource indicated by the above time domain indication information. Data transmission with the terminal, so as to realize the flexible configuration of the time domain of the BWP of the terminal through the BWP configuration information, and avoid the insufficient flexibility of the BWP configuration due to the fixed time domain information of each BWP of the terminal and the continuous configuration of the time domain Problems, thereby improving the utilization of system resources.
  • the terminal and the base station include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure. As shown in Figure 9:
  • the base station 900 includes a communication unit 904 and a processor 902.
  • the processor 902 may also be a controller, which is represented as "controller/processor 902" in FIG. 9.
  • the communication unit 904 is used to support the base station to communicate with other network devices (for example, a terminal or other base stations, etc.).
  • the base station 900 may further include a memory 903, and the memory 903 is used to store program codes and data of the base station 900.
  • FIG. 9 only shows a simplified design of the base station 900.
  • the base station 900 may include any number of processors, controllers, memories, communication units, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in Figure 10:
  • the terminal 1000 includes a communication unit 1004 and a processor 1002.
  • the processor 1002 may also be a controller, which is represented as "controller/processor 1002" in FIG. 10.
  • the communication unit 1004 is used to support the terminal to communicate with other network devices (such as base stations, etc.).
  • the terminal 1000 may further include a memory 1003, and the memory 1003 is configured to store program codes and data of the terminal 1000.
  • FIG. 10 only shows a simplified design of the terminal 1000.
  • the terminal 1000 may include any number of processors, controllers, memories, communication units, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Computer-readable media include computer storage media and communication media, where communication media includes any media that facilitates the transfer of computer programs from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure also provide a computer storage medium, the readable storage medium contains executable instructions, and the executable instructions are invoked and executed by a processor in a terminal, so as to implement the above-mentioned various method embodiments executed by the terminal Data transmission method; or, the executable instruction is invoked and executed by the processor in the base station, so as to realize the data transmission method executed by the base station in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭示了一种数据传输方法,属于无线通信技术领域。所述方法由基站执行,所述方法包括:向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。本方案实现了通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。

Description

数据传输方法、装置及存储介质 技术领域
本公开涉及无线通信技术领域,特别涉及一种数据传输方法、装置及存储介质。
背景技术
在无线通信技术中,为了更好地支持没有能力处理整个载波带宽的终端以及接收带宽自适应功能,新空口(New Radio,NR)标准定义了部分带宽(Bandwidth Part,BWP)。
当终端连接网络后,最多可以被配置4个下行BWP和最多4个上行BWP。在任意一个特定时刻,只会有一个配置的BWP被激活。配置的BWP是通过高层参数确定的固定个数的连续物理资源块(Physical Resource Block,PRB)。
发明内容
本公开提供一种数据传输方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种数据传输方法,所述方法由基站执行,所述方法包括:
向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述BWP配置信息中还包含频域指示信息,所述频域指示信息用于指示所述终端的BWP;
所述在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输,包括:
在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述向终端发送带宽部分BWP配置信息,包括:
通过无线资源控制RRC信令向所述终端发送所述BWP配置信息;
或者,
通过下行控制信息DCI向所述终端发送所述BWP配置信息。
在一种可能的实现方案中,所述在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述终端之间进行数据传输,包括:
当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,接收所述终端发送的上行数据。
当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,向所述终端发送下行数据。
根据本公开实施例的第二方面,提供了一种数据传输方法,所述方法由终端执行,所述方法包括:
接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述BWP配置信息中还包含频域指示信息,所述频域指示信息用于指示所述终端的BWP;
所述在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输,包括:
在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的 时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述接收基站发送的带宽部分BWP配置信息,包括:
接收所述基站通过无线资源控制RRC信令发送的所述BWP配置信息;
或者,
接收所述基站通过下行控制信息DCI发送的所述BWP配置信息。
在一种可能的实现方案中,所述在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输,包括:
当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,向所述基站发送上行数据。
当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,接收所述基站发送的下行数据。
根据本公开实施例的第三方面,提供了一种数据传输装置,所述装置用于基站中,所述装置包括:
发送模块,用于向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
数据传输模块,用于在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述发送模块和所述数据传输模块,包括:
第一传输子模块,用于在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述发送模块,包括:第一发送子模块或者第二发送子模块;
所述第一发送子模块,用于通过无线资源控制RRC信令向所述终端发送所述BWP配置信息;
所述第二发送子模块,用于通过下行控制信息DCI向所述终端发送所述BWP配置信息。
在一种可能的实现方案中,所述数据传输模块,包括:
上行数据接收子模块,用于当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,接收所述终端发送的上行数据;
下行数据发送子模块,用于当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,向所述终端发送下行数据。
根据本公开实施例的第四方面,提供了一种数据传输装置,所述装置用于终端中,所述装置包括:
接收模块,用于接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
数据传输模块,用于在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述接收模块和所述数据传输模块,包括:
第二传输子模块,用于在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述接收模块,包括:第一接收子模块,或者,第二接收子模块;
所述第一接收子模块,用于接收所述基站通过无线资源控制RRC信令发送的所述BWP配置信息;
所述第二接收子模块,用于接收所述基站通过下行控制信息DCI发送的所述BWP配置信息。
在一种可能的实现方案中,所述数据传输模块,包括:
上行数据发送子模块,用于当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,向所述基站发送上行数据。
下行数据接收子模块,用于当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,接收所述基站发送的下行数据。
根据本公开实施例的第五方面,提供了一种数据传输装置,所述装置用于基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示 信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
根据本公开实施例的第六方面,提供了一种数据传输装置,所述装置用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
根据本公开实施例的第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,基站中的处理器调用所述可执行指令以实现上述第一方面或者第一方面的任一可选实现方式所述的数据传输方法。
根据本公开实施例的第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,终端中的处理器调用所述可执行指令以实现上述第二方面或者第二方面的任一可选实现方式所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
基站向终端发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,基站在时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种无线通信***的结构示意图;
图2是本公开实施例提供的一种数据传输方法的方法流程图;
图3是本公开实施例提供的一种数据传输方法的方法流程图;
图4是本公开实施例提供的一种数据传输方法的方法流程图;
图5是图4所示实施例涉及的资源指示的示意图;
图6是图4所示实施例涉及的另一种资源指示的示意图;
图7是本公开实施例提供的一种数据传输装置的框图;
图8是本公开实施例提供的一种数据传输装置的框图;
图9是本公开实施例提供的一种基站的结构示意图;
图10是本公开实施例提供的一种终端的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
随着无线通信技术领域的发展,移动数据日益增长迅速,为了满足迅速增长的移动数据的通信需求,业内开展了对第五代移动通信技术(Fifth-generation,5G)技术,也称新空口NR技术两步随机接入的标准化研究。
请参考图1,其示出了本公开实施例提供的一种无线通信***的结构示意图,如图1所示,移动通信***是基于蜂窝移动通信技术的通信***,该移动 通信***可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端110也可以是无人飞行器的设备。
基站120可以是无线通信***中的网络侧设备。其中,该无线通信***可以是5G***,又称新空口(new radio,NR)***。或者,该无线通信***也可以是5G***的再下一代***。
其中,基站120可以是5G***中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
可选的,上述无线通信***还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信***中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network  GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
由于5G的应用场景非常广泛,在很多场景下,需要部分数量庞大但性能要求较低的终端,因此,低成本终端成为5G研究中的重要课题之一。
目前,业界对于低成本终端有几个共识:1、支持的天线少,同时MIMO功能简化;2、发射功率低;3、峰值吞吐量不高;4、支持的带宽是非宽带等等。
在上述共识中,天线少同时MIMO功能简化,以及较低的发射功率都严重影响***的上行覆盖(对下行覆盖影响较小),综合来看,低成本终端的上行覆盖与下行覆盖的差距达到10个dB左右,如果不解决上行覆盖的问题,则会造成运营商投资增大,或者低成本终端的工作范围受限的情况,导致低成本终端将无法被标准所接受。而带宽部分(Bandwidth Part,BWP)是解决低成本终端上行覆盖问题的有效手段之一。
在NR***中,由于NR需要支持较大的载波带宽,因此在NR标准设计中,引入接收宽带自适应技术,通过接收宽带自适应技术,终端在一个较小的宽带上监听下行控制信道,以及接收少量下行数据传输,当终端有大量的数据接收的时候,则打开整个带宽进行接收。为了更好地支持没有能力处理整个载波带宽的终端以及兼容带宽自适应功能,NR标准定义了带宽部分BWP。其中,BWP定义了从公共资源块的某个位置起始的,一组连续的资源块。并且,每个BWP都可以对应一种参数集,参数集可以包括子载波间隔(Sub-Carrier Spacing,SCS)和循环前缀长度(Cyclic Prefix,CP)等。
从某种意义上来说,BWP可以视为终端的工作带宽。通过对终端进行BWP配置,可以实现以下功能:
1)对接收机支持带宽(比如20MHz)小于整个***带宽(比如100MHz)的终端提供支持。
2)通过不同带宽大小的BWP之间的切换和自适应来降低终端的功耗。
3)通过改变终端的BWP来切换空口的参数集。
4)根据需求来优化无线资源的利用,并降低***间的干扰。
5)可以在载波中配置不连续的频段。
6)可以在载波中预留频段,用于支持尚未定义的传输格式。
在支持BWP的场景下,当一个终端进入连接态,终端会通过物理广播信道 (Physical Broadcast Channel,PBCH)获得控制资源集(Control Resource Set,CORESET)。通过CORESET,终端可以找到调度剩余***信息的控制信道信息。从PBCH中获得CORESET并激活了下行的初始BWP。上行的初始BWP是从下行的物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度的***信息中获得。
当终端连接网络后,在每个服务小区中,最多可以被配置4个下行BWP和最多4个上行BWP。在任意一个特定时刻,只会有一个配置的下行BWP被激活,也只会有一个配置的上行BWP被激活。
在一种可能的实现方案中,终端接入基站后,***通过感知终端的业务量给终端配置适合的BWP时,基站可以向终端发送BWP配置信息,该BWP配置信息指示终端切换至已经配置的多个BWP中的一个BWP。
此外,***还通过BWP配置信息之外的高层信令定义一个BWP对应的连续的物理资源块(Physical Resource Block,PRB)的个数。例如,***可以通过高层信令locationAndBandWidth定义一个BWP对应的连续的PRB数量,该locationAndBandWidth中的信息可以视为一个资源指示值(resource indication value,RIV),通常情况下,该RIV可以设置为275,也就是说,一个BWP对应275个连续的PRB。
除了上述locationAndBandWidth之外,***还可以通过高层信令定义BWP对应的参数集,比如,通过subcarrierSpacing定义BWP的子载波间隔,以及,通过cyclicPrefix定义BWP的循环前缀。
然而,上述BWP的配置方案中,BWP配置信息只指示终端需要切换到的BWP,而各个BWP的时域信息由另外的高层信令指示固定,且时域连续,导致BWP配置的灵活性不够,影响***资源的利用率。
本公开实施例提供了一种数据传输方法,请参考图2,其示出了本公开实施例提供的一种数据传输方法的方法流程图。该数据传输方法可以应用于图1所示的无线通信***中,由图1中的基站执行,该方法可以包括以下步骤。
在步骤201中,向终端发送带宽部分BWP配置信息,该BWP配置信息中包含时域指示信息,该时域指示信息用于指示该BWP配置信息生效的时域资源;
在步骤202中,在该时域指示信息指示的时域资源上,与该终端之间进行数据传输。
在一种示例性的方案中,该BWP配置信息中还包含频域指示信息,该频域指示信息用于指示该终端的BWP;
该在该时域指示信息指示的时域资源上,与该终端之间进行数据传输,包括:
在该频域指示信息以及该时域指示信息共同指示的时频资源上,与该终端之间进行数据传输。
在一种示例性的方案中,该时域指示信息指示的时域资源是非连续的时域资源;
或者,
该时域指示信息指示的时域资源是连续的时域资源。
在一种示例性的方案中,该时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种示例性的方案中,该时域指示信息位于该BWP配置信息的第一级。
在一种示例性的方案中,该频域指示信息包括目标带宽部分的标识,该目标带宽部分是预先配置给该终端的至少两个带宽部分中的一个。
在一种示例性的方案中,该向终端发送带宽部分BWP配置信息,包括:
通过无线资源控制RRC信令向该终端发送该BWP配置信息;
或者,
通过下行控制信息DCI向该终端发送该BWP配置信息。
在一种示例性的方案中,该在该时域指示信息指示的时域资源上,与该终端之间进行数据传输,包括:
当该BWP配置信息用于配置该终端的上行BWP时,在该时域指示信息指示的时域资源上,接收该终端发送的上行数据。
当该BWP配置信息用于配置该终端的下行BWP时,在该时域指示信息指示的时域资源上,向该终端发送下行数据。
综上所述,本公开实施例所示的方案,基站向终端发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,基站在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
请参考图3,其示出了本公开实施例提供的一种数据传输方法的方法流程图。该数据传输方法可以应用于图1所示的无线通信***中,由图1中的终端执行,该方法可以包括以下步骤。
在步骤301中,接收基站发送的带宽部分BWP配置信息,该BWP配置信息中包含时域指示信息,该时域指示信息用于指示该BWP配置信息生效的时域资源;
在步骤302中,在该时域指示信息指示的时域资源上,与该基站之间进行数据传输。
在一种示例性的方案中,该BWP配置信息中还包含频域指示信息,该频域指示信息用于指示该终端的BWP;
该在该时域指示信息指示的时域资源上,与该基站之间进行数据传输,包括:
在该频域指示信息以及该时域指示信息共同指示的时域资源上,与该基站之间进行数据传输。
在一种示例性的方案中,该时域指示信息指示的时域资源是非连续的时域资源;
或者,
该时域指示信息指示的时域资源是连续的时域资源。
在一种示例性的方案中,该时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种示例性的方案中,该时域指示信息位于该BWP配置信息的第一级。
在一种示例性的方案中,该频域指示信息包括目标带宽部分的标识,该目标带宽部分是预先配置给该终端的至少两个带宽部分中的一个。
在一种示例性的方案中,该接收基站发送的带宽部分BWP配置信息,包括:
接收该基站通过无线资源控制RRC信令发送的该BWP配置信息;
或者,
接收该基站通过下行控制信息DCI发送的该BWP配置信息。
在一种示例性的方案中,该在该时域指示信息指示的时域资源上,与该基站之间进行数据传输,包括:
当该BWP配置信息用于配置该终端的上行BWP时,在该时域指示信息指示的时域资源上,向该基站发送上行数据。
当该BWP配置信息用于配置该终端的下行BWP时,在该时域指示信息指示的时域资源上,接收该基站发送的下行数据。
综上所述,本公开实施例所示的方案,终端接收到基站发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,终端在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
请参考图4,其示出了本公开实施例提供的一种数据传输方法的方法流程图,该数据传输方法可以应用于图1所示的无线通信***中,由图1中的终端和基站执行,该方法可以包括以下步骤。
在步骤401中,基站向终端发送带宽部分BWP配置信息,相应的,终端接收该BWP配置信息。
其中,BWP配置信息中包含频域指示信息以及时域指示信息;该频域指示信息用于指示该终端的工作带宽,该时域指示信息用于指示该BWP配置信息生效的时域资源。
其中,上述BWP配置信息可以是上行BWP配置信息,也可以是下行BWP配置信息。也就是说,本公开实施例所示的方案同时适用于对终端的BWP的上下行配置。
在本公开实施例中,基站预先为终端配置至少两个上行BWP以及至少两个下行BWP,当基站根据终端的上报的测量信息或者业务需求信息判断需要调整终端当前激活的上行BWP或者下行BWP时,可以向终端发送BWP配置信息,以控制终端切换激活的上行BWP或者下行BWP。
在一种可能的实现方案中,上述频域指示信息包括目标带宽部分的标识,该目标带宽部分是预先配置给该终端的至少两个带宽部分中的一个。
比如,以基站为终端配置4个上行BWP和4个下行BWP为例,4个上行BWP的标识分别为u1、u2、u3和u4,4个下行BWP的标识分别是d1、d2、d3和d4。
在一个示例中,若终端当前激活的上行BWP为u1对应的BWP,基站判断终端后续上行发送的数据较少,不需要太大的上行带宽,可以减少上行带宽以 节约资源时,可以控制终端切换到带宽较窄的上行BWP,比如,u3对应的上行BWP,则基站可以向终端发送包含的时域指示信息为“u3”的BWP配置信息。
或者,在另一示例中,若终端当前激活的下行BWP为d1对应的BWP,基站判断终端后续下行接收的数据较多,需要更宽的下行带宽,可以增加下行带宽以提高传输速度时,可以控制终端切换到带宽较宽的下行BWP,比如,d2对应的下行BWP,则基站可以向终端发送包含的时域指示信息为“d2”的BWP配置信息。
在一种可能的实现方案中,该时域指示信息指示的时域资源是非连续的时域资源;或者,该时域指示信息指示的时域资源是连续的时域资源。
在本公开实施例中,基站可以根据后续一段时间内的传输需求,通过时域指示信息指示终端在后续哪些时域资源上进行数据传输。
比如,请参考图5,其示出了本公开实施例涉及的资源指示的示意图。图5中每个有填充的方格是一个PRB,如图5中的(a)部分所示,当后续上行传输数据较多时,基站发送的BWP配置信息可以通过时域指示信息将后续的连续多个PRB(图5中示出为10个RRB)指示为终端的上行BWP;如图5中的(b)部分所示,当后续上行传输数据较少,且传输时间较为分散时,基站发送的BWP配置信息可以通过时域指示信息将后续的非连续的多个PRB(图5中示出为第1、第5、第6、第8和第10个PRB)指示为终端的BWP,而其中第2、第3、第4、第7和第9个PRB可以指示为该终端的下行BWP,或者,指示为当前终端之外的其它终端的上行或者下行BWP。
在一种可能的实现方案中,该时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在图5所示的示例中,基站指示的BWP以时隙为时域上的最小粒度。可选的,为了进一步的提高***资源的利用率,基站为终端指示BWP时,可以按照更小的单位(比如OFDM符号)进行指示。
比如,请参考图6,其示出了本公开实施例涉及的另一种资源指示的示意图。如图6所示,在一个时隙(以包括12个OFDM符号为例)中,基站可以通过上述时域指示信息,将前6个OFDM符号指示为终端A的上行BWP,并将同时隙内的后6个OFDM符号指示为终端A的下行BWP。也就是说,在本公开实施例中,对于上下行符号都有的时隙,BWP中的时域信息可以细化到OFDM符号。
其中,上述时域信息可以表现为偏移量与时域长度的组合。其中,偏移量可以是BWP的时域资源相对于BWP配置信息所在信令的结束时域位置的偏移量,而时域长度表示对应的偏移量之后的连续资源长度。
比如,以图5所示的方案为例,对于图5中的(b)部分的BWP指示情况,基站发送的BWP配置信息中的时域指示信息可以表现为(2,1)、(7,2)、(10,1)以及(12,1),分别表示各自对应的BWP与BWP配置信息所在信令的结束位置相隔2个时隙、7个时隙、10个时隙以及12个时隙,且各自对应的时域长度分别为1个时隙、2个时隙、1个时隙和1个时隙。
再比如,以图6所示的方案为例,对于终端A的BWP配置信息,该BWP配置信息中的时域指示信息可以表现为(12,6),表示对应的BWP与BWP配置信息所在信令的结束位置相隔12个OFDM符号,且时域长度为6个OFDM符号。
在一种可能的实现方案中,在向终端发送带宽部分BWP配置信息时,基站可以通过无线资源控制RRC信令向该终端发送该BWP配置信息,相应的,终端接收基站通过该RRC信令发送的BWP配置信息;或者,基站可以通过下行控制信息DCI向该终端发送该BWP配置信息,相应的,终端可以接收基站通过该DCI发送的BWP配置信息。
比如,在一种示例性的方案中,当终端初始接入基站时,基站可以通过RRC信令向终端发送该BWP配置信息,以配置该终端通过初始的BWP与基站进行数据传输。
再比如,在另一种示例性的方案中,终端与基站进行数据传输过程中,基站判断终端需要切换BWP时,可以通过DCI向终端发送上述BWP配置信息,以控制终端切换至新的BWP上进行数据传输。
在步骤402中,终端提取BWP配置信息中的频域指示信息以及时域指示信息。
在一种可能的实现方案中,该时域指示信息位于该BWP配置信息的第一级。
在本公开实施例中,BWP配置信息中的时域指示可以对终端与基站之间各种通过BWP进行传输的数据适用,因此,该BWP配置信息中的时域指示信息可以设置在BWP配置信息第一级中,不需要对各种不同的数据分别配置不同的时域指示信息。
相应的,终端在提取BWP配置信息中的时域指示信息时,可以从BWP配 置信息中的第一级中提取该时域指示信息。
在步骤403中,终端根据提取的BWP配置信息中的频域指示信息以及时域指示信息,确定该频域指示信息以及时域指示信息共同指示的时频资源。
在本公开实施例中,终端从BWP配置信息中提取出频域指示信息(比如目标带宽部分的标识)以及时域指示信息后,根据目标工作带宽的标识确定后续工作的带宽部分(即频域资源),并根据时域指示信息确定后续工作的时隙或OFDM符号(即时域资源),结合频域资源和时域资源即可以获得后续数据传输所在的时域资源集合。
在步骤404中,当上述BWP配置信息用于配置终端的上行BWP时,终端和基站之间在频域指示信息以及该时域指示信息共同指示的时频资源上进行上行传输。
当该BWP配置信息用于配置该终端的上行BWP时,终端在该频域指示信息以及该时域指示信息共同指示的时频资源上,向该基站发送上行数据;相应的,基站在该时频资源上,接收该终端发送的上行数据。
在本公开实施例中,对于上述BWP配置信息配置的上行BWP,终端后续可以在该上行BWP上,向基站上行发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)。相应的,基站在上述BWP配置信息配置的上行BWP上,接收终端发送的PUSCH以及PUCCH。
在步骤405中,当上述BWP配置信息用于配置终端的下行BWP时,终端和基站之间在频域指示信息以及该时域指示信息共同指示的时频资源上进行下行传输。
当该BWP配置信息用于配置该终端的下行BWP时,基站在该频域指示信息以及该时域指示信息共同指示的时频资源上,向该终端发送下行数据;相应的,终端在该时频资源上接收该基站发送的下行数据。
在本公开实施例中,对于上述BWP配置信息配置的下行BWP,基站后续可以在该下行BWP上,向终端下行发送物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)以及信道状态信息参考信号(channel-state information-Reference Signal,CSI-RS),相应的,终端在上述下行BWP上接收基站发送的PDSCH、PDCCH以及CSI-RS。
综上所述,本公开实施例所示的方案,基站向终端发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,基站在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图7是本公开实施例提供的一种数据传输装置的框图,如图7所示,该数据传输装置可以通过硬件或者软硬结合的方式实现为图1所示无线通信***中的基站的全部或者部分,以执行图2或图4任一所示实施例中由基站执行的步骤。该数据传输装置可以包括:
发送模块701,用于向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
数据传输模块702,用于在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述发送模块701和所述数据传输模块702,包括:
第一传输子模块,用于在所述频域指示信息以及所述时域指示信息共同指示的时域资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述发送模块701,包括:第一发送子模块或者第二发送子模块;
所述第一发送子模块,用于通过无线资源控制RRC信令向所述终端发送所述BWP配置信息;
所述,第二发送子模块,用于通过下行控制信息DCI向所述终端发送所述BWP配置信息。
在一种可能的实现方案中,所述数据传输模块702,包括:
上行数据接收子模块,用于当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,接收所述终端发送的上行数据。
下行数据发送子模块,用于当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,向所述终端发送下行数据。
综上所述,本公开实施例所示的方案,基站向终端发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,基站在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
图8是本公开实施例提供的一种数据传输装置的框图,如图8所示,该数据传输装置可以通过硬件或者软硬结合的方式实现为图1所示无线通信***中的终端的全部或者部分,以执行图3或图4任一所示实施例中由终端执行的步骤。该数据传输装置可以包括:
接收模块801,用于接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
数据传输模块802,用于在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述接收模块801和所述数据传输模块802,包括:
第二传输子模块,用于在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述接收模块801,包括:第一接收子模块,或者,第二接收子模块;
所述第一接收子模块,用于接收所述基站通过无线资源控制RRC信令发送的所述BWP配置信息;
所述第二接收子模块,用于接收所述基站通过下行控制信息DCI发送的所述BWP配置信息。
在一种可能的实现方案中,所述数据传输模块802,包括:
上行数据发送子模块,用于当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,向所述基站发送上行数据。
下行数据接收子模块,用于当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,接收所述基站发送的下行数据。
综上所述,本公开实施例所示的方案,终端接收到基站发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,终端在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各 个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种数据传输装置,能够实现本公开上述图2或图4所示实施例中由基站执行的全部或者部分步骤,该数据传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述BWP配置信息中还包含频域指示信息,所述频域指示信息用于指示所述终端的BWP;
所述在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输,包括:
在所述频域指示信息以及所述时域指示信息共同指示的时域资源上,与所述终端之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述向终端发送带宽部分BWP配置信息,包括:
通过无线资源控制RRC信令向所述终端发送所述BWP配置信息;
或者,
通过下行控制信息DCI向所述终端发送所述BWP配置信息。
在一种可能的实现方案中,所述在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输,包括:
当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,接收所述终端发送的上行数据。
当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,向所述终端发送下行数据。
综上所述,本公开实施例所示的方案,基站向终端发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,基站在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
本公开一示例性实施例提供了一种数据传输装置,能够实现本公开上述图3或图4所示实施例中由终端执行的全部或者部分步骤,该数据传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述BWP配置信息中还包含频域指示信息,所述频域指示信息用于指示所述终端的BWP;
所述在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输,包括:
在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述基站之间进行数据传输。
在一种可能的实现方案中,所述时域指示信息指示的时域资源是非连续的时域资源;
或者,
所述时域指示信息指示的时域资源是连续的时域资源。
在一种可能的实现方案中,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
在一种可能的实现方案中,所述时域指示信息位于所述BWP配置信息的第一级。
在一种可能的实现方案中,所述频域指示信息包括目标带宽部分的标识,所述目标带宽部分是预先配置给所述终端的至少两个带宽部分中的一个。
在一种可能的实现方案中,所述接收基站发送的带宽部分BWP配置信息,包括:
接收所述基站通过无线资源控制RRC信令发送的所述BWP配置信息;
或者,
接收所述基站通过下行控制信息DCI发送的所述BWP配置信息。
在一种可能的实现方案中,所述在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输,包括:
当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,向所述基站发送上行数据。
当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,接收所述基站发送的下行数据。
综上所述,本公开实施例所示的方案,终端接收到基站发送的BWP配置信息中包含时域指示信息,后续在进行数据通信时,终端在上述时域指示信息指示的时域资源上与终端进行数据传输,从而实现通过BWP配置信息对终端的BWP的时域进行灵活的配置,避免因为将终端的各个BWP的时域信息固定且时域连续配置而导致BWP配置的灵活性不够的问题,从而提高***资源的利用率。
上述主要以终端和基站为例,对本公开实施例提供的方案进行了介绍。可以理解的是,终端和基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术 方案的范围。
图9是本公开实施例提供的一种基站的结构示意图。如图9所示:
基站900包括通信单元904和处理器902。其中,处理器902也可以为控制器,图9中表示为“控制器/处理器902”。通信单元904用于支持基站与其它网络设备(例如终端或者其它基站等)进行通信。
进一步的,基站900还可以包括存储器903,存储器903用于存储基站900的程序代码和数据。
可以理解的是,图9仅仅示出了基站900的简化设计。在实际应用中,基站900可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图10是本公开实施例提供的一种终端的结构示意图。如图10所示:
终端1000包括通信单元1004和处理器1002。其中,处理器1002也可以为控制器,图10中表示为“控制器/处理器1002”。通信单元1004用于支持终端与其它网络设备(例如基站等)进行通信。
进一步的,终端1000还可以包括存储器1003,存储器1003用于存储终端1000的程序代码和数据。
可以理解的是,图10仅仅示出了终端1000的简化设计。在实际应用中,终端1000可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,该可读存储介质中包含可执行指令,该可执行指令由终端中的处理器调用执行,以实现如上述各个方法实施例中由终端执行的数据传输方法;或者,该可执行指令由基站中的处理器调 用执行,以实现如上述各个方法实施例中由基站执行的数据传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种数据传输方法,其特征在于,所述方法由基站执行,所述方法包括:
    向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
    在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述BWP配置信息中还包含频域指示信息,所述频域指示信息用于指示所述终端的BWP;
    所述在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输,包括:
    在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述终端之间进行数据传输。
  3. 根据权利要求1所述的方法,其特征在于,
    所述时域指示信息指示的时域资源是非连续的时域资源;
    或者,
    所述时域指示信息指示的时域资源是连续的时域资源。
  4. 根据权利要求1所述的方法,其特征在于,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
  5. 根据权利要求1所述的方法,其特征在于,所述时域指示信息位于所述BWP配置信息的第一级。
  6. 根据权利要求1所述的方法,其特征在于,所述向终端发送带宽部分BWP配置信息,包括:
    通过无线资源控制RRC信令向所述终端发送所述BWP配置信息;
    或者,
    通过下行控制信息DCI向所述终端发送所述BWP配置信息。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输,包括:
    当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,接收所述终端发送的上行数据;
    当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,向所述终端发送下行数据。
  8. 一种数据传输方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息;所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
    在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
  9. 根据权利要求8所述的方法,其特征在于,所述BWP配置信息中还包含频域指示信息,所述频域指示信息用于指示所述终端的BWP;
    所述在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输,包括:
    在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述基站之间进行数据传输。
  10. 根据权利要求8所述的方法,其特征在于,
    所述时域指示信息指示的时域资源是非连续的时域资源;
    或者,
    所述时域指示信息指示的时域资源是连续的时域资源。
  11. 根据权利要求8所述的方法,其特征在于,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
  12. 根据权利要求8所述的方法,其特征在于,所述时域指示信息位于所述BWP配置信息的第一级。
  13. 根据权利要求8所述的方法,其特征在于,所述接收基站发送的带宽部分BWP配置信息,包括:
    接收所述基站通过无线资源控制RRC信令发送的所述BWP配置信息;
    或者,
    接收所述基站通过下行控制信息DCI发送的所述BWP配置信息。
  14. 根据权利要求8至13任一所述的方法,其特征在于,所述在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输,包括:
    当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,向所述基站发送上行数据;
    当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,接收所述基站发送的下行数据。
  15. 一种数据传输装置,其特征在于,所述装置用于基站中,所述装置包括:
    发送模块,用于向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
    数据传输模块,用于在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
  16. 根据权利要求15所述的装置,其特征在于,所述发送模块和所述数据传输模块,包括:
    第一传输子模块,用于在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述终端之间进行数据传输。
  17. 根据权利要求15所述的装置,其特征在于,
    所述时域指示信息指示的时域资源是非连续的时域资源;
    或者,
    所述时域指示信息指示的时域资源是连续的时域资源。
  18. 根据权利要求15所述的装置,其特征在于,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
  19. 根据权利要求15所述的装置,其特征在于,所述时域指示信息位于所述BWP配置信息的第一级。
  20. 根据权利要求15所述的装置,其特征在于,所述发送模块,包括:第一发送子模块或者第二发送子模块;
    所述第一发送子模块,用于通过无线资源控制RRC信令向所述终端发送所述BWP配置信息;
    所述第二发送子模块,用于通过下行控制信息DCI向所述终端发送所述BWP配置信息。
  21. 根据权利要求15至20任一所述的装置,其特征在于,所述数据传输模块,包括:
    上行数据接收子模块,用于当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,接收所述终端发送的上行数据;
    下行数据发送子模块,用于当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,向所述终端发送下行数据。
  22. 一种数据传输装置,其特征在于,所述装置用于终端中,所述装置包括:
    接收模块,用于接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
    数据传输模块,用于在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
  23. 根据权利要求22所述的装置,其特征在于,所述接收模块和所述数据传输模块,包括:
    第二传输子模块,用于在所述频域指示信息以及所述时域指示信息共同指示的时频资源上,与所述基站之间进行数据传输。
  24. 根据权利要求22所述的装置,其特征在于,
    所述时域指示信息指示的时域资源是非连续的时域资源;
    或者,
    所述时域指示信息指示的时域资源是连续的时域资源。
  25. 根据权利要求22所述的装置,其特征在于,所述时域指示信息指示的时域资源的最小时域单位为正交频分复用OFDM符号。
  26. 根据权利要求22所述的装置,其特征在于,所述时域指示信息位于所述BWP配置信息的第一级。
  27. 根据权利要求22所述的装置,其特征在于,所述接收模块,包括:第一接收子模块,或者,第二接收子模块;
    所述第一接收子模块,用于接收所述基站通过无线资源控制RRC信令发送的所述BWP配置信息;
    所述第二接收子模块,用于接收所述基站通过下行控制信息DCI发送的所述BWP配置信息。
  28. 根据权利要求22至27任一所述的装置,其特征在于,所述数据传输模块,包括:
    上行数据发送子模块,用于当所述BWP配置信息用于配置所述终端的上行BWP时,在所述时域指示信息指示的时域资源上,向所述基站发送上行数据;
    下行数据接收子模块,用于当所述BWP配置信息用于配置所述终端的下行BWP时,在所述时域指示信息指示的时域资源上,接收所述基站发送的下行数据。
  29. 一种数据传输装置,其特征在于,所述装置用于基站中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    向终端发送带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
    在所述时域指示信息指示的时域资源上,与所述终端之间进行数据传输。
  30. 一种数据传输装置,其特征在于,所述装置用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站发送的带宽部分BWP配置信息,所述BWP配置信息中包含时域指示信息,所述时域指示信息用于指示所述BWP配置信息生效的时域资源;
    在所述时域指示信息指示的时域资源上,与所述基站之间进行数据传输。
  31. 一种计算机可读存储介质,其特征在于,所述可读存储介质中包含可执行指令,所述可执行指令由基站中的处理器调用执行,以实现如上述权利要求1至7任一所述的数据传输方法。
  32. 一种计算机可读存储介质,其特征在于,所述可读存储介质中包含可执行指令,所述可执行指令由终端中的处理器调用执行,以实现如上述权利要求8至14任一所述的数据传输方法。
PCT/CN2019/103856 2019-08-30 2019-08-30 数据传输方法、装置及存储介质 WO2021035734A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/103856 WO2021035734A1 (zh) 2019-08-30 2019-08-30 数据传输方法、装置及存储介质
US17/637,041 US20220345280A1 (en) 2019-08-30 2019-08-30 Data transmission methods and apparatuses, and storage media
CN201980001862.7A CN110731113B (zh) 2019-08-30 2019-08-30 数据传输方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103856 WO2021035734A1 (zh) 2019-08-30 2019-08-30 数据传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021035734A1 true WO2021035734A1 (zh) 2021-03-04

Family

ID=69226471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103856 WO2021035734A1 (zh) 2019-08-30 2019-08-30 数据传输方法、装置及存储介质

Country Status (3)

Country Link
US (1) US20220345280A1 (zh)
CN (1) CN110731113B (zh)
WO (1) WO2021035734A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279262A1 (zh) * 2021-07-06 2023-01-12 北京小米移动软件有限公司 一种消息配置方法、消息配置装置及存储介质
CN116918425A (zh) * 2022-02-18 2023-10-20 北京小米移动软件有限公司 数据传输方法及装置、存储介质
CN117395794A (zh) * 2022-06-30 2024-01-12 展讯通信(上海)有限公司 通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179805A1 (zh) * 2015-05-13 2016-11-17 华为技术有限公司 一种数据传输的方法及装置
CN109302718A (zh) * 2017-07-24 2019-02-01 华为技术有限公司 一种数据传输方法及装置
CN109600212A (zh) * 2017-10-02 2019-04-09 株式会社Kt 发送和接收新无线电的harq ack/nack信息的装置和方法
CN109802778A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 一种指示和确定时域资源的方法、装置及***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101720131B (zh) * 2010-01-14 2012-10-17 华为技术有限公司 资源分配的方法和装置
CN113115443B (zh) * 2017-02-27 2022-12-23 维沃软件技术有限公司 一种资源分配指示方法、基站及终端
CN109392122B (zh) * 2017-08-10 2023-05-12 华为技术有限公司 数据传输方法、终端和基站
CN109474375B (zh) * 2017-09-08 2021-10-22 维沃移动通信有限公司 一种资源调度方法、基站和终端
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
US10879985B2 (en) * 2017-11-16 2020-12-29 Ofinno, Llc Channel state information report on bandwidth part
CN110166209B (zh) * 2018-02-14 2024-05-24 华为技术有限公司 下行控制信息传输方法
CN110167167B (zh) * 2018-02-14 2020-08-25 维沃移动通信有限公司 半持续性信道状态信息报告发送和接收方法及装置
US11323989B2 (en) * 2018-02-26 2022-05-03 Huawei Technologies Co., Ltd. Method and apparatus for bandwidth indication in unlicensed spectrum
CN110115066B (zh) * 2019-03-21 2022-04-08 北京小米移动软件有限公司 ***信息接收方法、发送方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179805A1 (zh) * 2015-05-13 2016-11-17 华为技术有限公司 一种数据传输的方法及装置
CN109302718A (zh) * 2017-07-24 2019-02-01 华为技术有限公司 一种数据传输方法及装置
CN109600212A (zh) * 2017-10-02 2019-04-09 株式会社Kt 发送和接收新无线电的harq ack/nack信息的装置和方法
CN109802778A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 一种指示和确定时域资源的方法、装置及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "On Bandwidth Part Operation", 3GPP DRAFT; R1-1717675 ON BANDWIDTH PART OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051340860 *

Also Published As

Publication number Publication date
CN110731113B (zh) 2023-11-07
US20220345280A1 (en) 2022-10-27
CN110731113A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN108347778B (zh) 通信方法及装置
TWI771343B (zh) 信息發送方法、信息接收方法、裝置及系統
US11924141B2 (en) Communication method, network device, and terminal device
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
CN109152029B (zh) 一种通信方法、网络设备及用户设备
US20230189225A1 (en) Method for Enhancing Physical Downlink Control Channel, Communication Apparatus, and System
WO2019128680A1 (zh) 一种确定bwp状态的方法、设备及***
EP3684023B1 (en) Method for configuring scheduling request and terminal device
WO2021035734A1 (zh) 数据传输方法、装置及存储介质
WO2011020269A1 (zh) 用于长期演进***的随机接入方法及装置
US11632219B2 (en) Resource determining method, indication method, and apparatus
US20190028164A1 (en) Method for antenna port indication and apparatus
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
CN113950866A (zh) Wlan***中的有效上行链路资源请求
WO2021212286A1 (zh) 物理下行控制信道传输方法、装置及存储介质
WO2019000544A1 (zh) 非授权上行传输的小区切换方法和设备
JP7295100B2 (ja) ネットワーク構成方法、装置、ネットワーク要素及びシステム
CN111436085B (zh) 通信方法及装置
US20230019102A1 (en) Data plane scalable architecture for wireless communication
US20230014887A1 (en) Uplink data grant scheduling
US20230344688A1 (en) Method for symbol application, communication apparatus, and storage medium
WO2016138824A1 (zh) 数据发送方法、接收方法、发送装置及接收装置
CN109565739B (zh) 信号测量方法、装置、终端及***
CN105553912A (zh) 无线局域网的通信方法、通信装置和接入点
WO2022225500A1 (en) Apparatus and method of multiple carrier slice-based uplink grant scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942970

Country of ref document: EP

Kind code of ref document: A1