WO2021031897A1 - 接入资源的确定方法及装置、存储介质、终端 - Google Patents

接入资源的确定方法及装置、存储介质、终端 Download PDF

Info

Publication number
WO2021031897A1
WO2021031897A1 PCT/CN2020/108109 CN2020108109W WO2021031897A1 WO 2021031897 A1 WO2021031897 A1 WO 2021031897A1 CN 2020108109 W CN2020108109 W CN 2020108109W WO 2021031897 A1 WO2021031897 A1 WO 2021031897A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrowband
coreset0
pdcch
sib1
offset
Prior art date
Application number
PCT/CN2020/108109
Other languages
English (en)
French (fr)
Inventor
周化雨
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US17/635,955 priority Critical patent/US20220330242A1/en
Priority to KR1020227008785A priority patent/KR20220051205A/ko
Priority to JP2022510169A priority patent/JP7459229B2/ja
Priority to EP20854660.6A priority patent/EP4017178A4/en
Publication of WO2021031897A1 publication Critical patent/WO2021031897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technology, in particular to a method and device for determining access resources, a storage medium, and a terminal.
  • the 3rd Generation Partnership Project (3GPP) standards organization is studying the fifth-generation mobile communications (The Fifth-Generation mobile communications, 5G) New Radio (NR, also known as New Radio) system.
  • the future NR protocol can support narrowband user equipment (User Equipment, UE for short), that is, UE with a bandwidth less than 100MHz.
  • This type of UE is used for Internet of Things communication (Machine Type Communication, MTC for short, or Internet of Things, IoT for short).
  • the UE needs to support at least Control Resource SET0 (CORESET0 for short) and/or the maximum bandwidth for initial activation of the downlink BWP.
  • CORESET0 is a control resource set that carries Type0-PDCCH (ie RMSI PDCCH or SIB1 PDCCH).
  • Type0-PDCCH ie RMSI PDCCH or SIB1 PDCCH.
  • the CORESET0 bandwidth is also the bandwidth for initially activating the downstream BWP.
  • the frequency domain resources of the physical downlink shared channel (Physical Downlink Shared Channel, referred to as PDSCH) carrying System Information Block 1 (System Information Block 1, referred to as SIB1) are limited to the initial activated downlink BWP (Bandwidth Part, referred to as BWP) .
  • BWP System Information Block 1
  • the initial activated downlink BWP can be further extended to obtain greater flexibility.
  • the extended bandwidth of the initially activated downlink BWP can be delivered to the UE through signaling in SIB1.
  • the maximum bandwidth of CORESET0 and/or the initial activated downlink BWP may exceed the bandwidth supported by the narrowband UE.
  • how the narrowband UE obtains and configures a new narrowband CORESET0 and/or the narrowband initial activation of the downlink BWP is an urgent problem to be solved.
  • the technical problem solved by the present invention is how to obtain and configure the narrowband CORESET0 and/or the maximum bandwidth of the narrowband initially activated downlink BWP.
  • an embodiment of the present invention provides a method for determining an access resource, including: determining the frequency domain position of the narrowband CORESET0 and/or the narrowband initial activated downlink BWP, and/or determining the narrowband SIB1.
  • the bandwidth of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP is a preset value.
  • the lowest PRB of the narrowband CORESET0 is equal to the lowest PRB of CORESET0, and/or, the lowest PRB of the narrowband initially activated downlink BWP is equal to the lowest PRB of CORESET0.
  • the offset between the lowest PRB of the narrowband CORESET0 and the lowest PRB of CORESET0 or the synchronization signal block is a preset value, and/or, the lowest PRB of the narrowband initially activated downlink BWP and the lowest PRB of CORESET0 The offset between is a preset value.
  • the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband CORESET0, and/or the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband initially activated downlink BWP.
  • the number of PRBs included in the offset is greater than or equal to the number of PRBs included in the narrowband CORESET0, and/or the number of PRBs included in the offset is greater than or equal to that included in the narrowband initial activated downlink BWP The number of PRBs.
  • the determining method further includes: obtaining the offset between the narrowband CORESET0 and CORESET0 or the synchronization signal block, and/or obtaining the offset between the narrowband initial activated downlink BWP and the synchronization signal block the amount.
  • the determining the frequency domain position of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP includes: determining the lowest PRB of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP according to the offset.
  • the offset is carried in the synchronization signal block index in the PBCH.
  • the offset is carried in the Type0-PDCCH monitoring timing indication.
  • the offset is carried in the Type0-PDCCH monitoring timing indication.
  • the offset is carried in the Type0-PDCCH monitoring timing indication.
  • the determining the frequency domain position of the narrowband CORESET0 and/or the narrowband initial activation of the downlink BWP includes: receiving the narrowband PBCH to obtain narrowband PBCH information; based on the narrowband PBCH information, obtaining the narrowband CORESET0 and/or narrowband initial Activate the downstream BWP.
  • the bandwidth of the narrowband PBCH is a preset value.
  • the offset between the lowest PRB of the narrowband PBCH and the lowest PRB of the synchronization signal block is a preset value.
  • the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband PBCH.
  • the number of PRBs included in the offset is greater than or equal to the number of PRBs included in the narrowband PBCH.
  • the determining the narrowband SIB1 includes: receiving Type0-PDCCH in CORESET0 to obtain PDSCH scheduling information according to the Type0-PDCCH; and receiving the PDSCH based on the scheduling information to obtain the narrowband SIB1.
  • the determining narrowband SIB1 includes: if a bit in the PBCH indicates Type0-PDCCH to schedule a PDSCH carrying narrowband SIB1, or the offset between the synchronization signal block indicated in the PBCH and CORESET0 is less than or equal to a preset Threshold value, the Type0-PDCCH in the CORESET0 is received to obtain PDSCH scheduling information according to the Type0-PDCCH; and the PDSCH is received based on the scheduling information to obtain the narrowband SIB1.
  • the determining the narrowband SIB1 includes: receiving Type0B-PDCCH in CORESET0, where the Type0B-PDCCH is used to schedule the PDCCH carrying the PDSCH of the narrowband SIB1; and obtaining scheduling information of the PDSCH carrying the narrowband SIB1 based on the Type0B-PDCCH ; Based on the scheduling information, receive the PDSCH to obtain the narrowband SIB1.
  • the determining the narrowband SIB1 includes: if a bit in the PBCH indicates Type0-PDCCH to schedule a PDSCH carrying narrowband SIB1, or the offset between the synchronization signal block indicated in the PBCH and CORESET0 is greater than or equal to a preset Threshold, the Type0B-PDCCH in the CORESET0 is received.
  • the Type0B-PDCCH is used to schedule the PDCCH carrying the narrowband SIB1 PDSCH; based on the Type0B-PDCCH, the scheduling information of the PDSCH carrying the narrowband SIB1 is obtained; based on the scheduling information To receive the PDSCH to obtain the narrowband SIB1.
  • the determining the narrowband SIB1 includes: receiving Type0A-PDCCH, where the Type0A-PDCCH is used to schedule the PDCCH carrying the OSI PDSCH; obtaining the scheduling information of the PDSCH carrying the OSI based on the Type0A-PDCCH; and based on the scheduling Information, receive the PDSCH to obtain OSI, and OSI includes the narrowband SIB1.
  • an embodiment of the present invention also provides a device for determining access resources, including: a determining module, adapted to determine the frequency domain position of the narrowband CORESET0 and/or the narrowband initial activated downlink BWP, and/or determine the narrowband SIB1.
  • an embodiment of the present invention also provides a storage medium on which computer instructions are stored, and the computer instructions execute the steps of the above method when the computer instructions are executed.
  • an embodiment of the present invention also provides a terminal, including a memory and a processor, the memory stores computer instructions that can run on the processor, and when the processor runs the computer instructions Perform the steps of the above method.
  • the embodiment of the present invention provides a method for determining access resources, including: determining the frequency domain position of the narrowband CORESET0 and/or the narrowband initial activation downlink BWP, and/or determining the narrowband SIB1.
  • the access resources of the narrowband UE can be determined, and then the narrowband CORESET0 and the PDSCH carrying SIB1 can be obtained and configured, and the maximum bandwidth of the narrowband initial activated downlink BWP, or Narrowband SIB1.
  • the lowest PRB of the narrowband CORESET0 is equal to the lowest PRB of CORESET0
  • the lowest PRB of the narrowband initially activated downlink BWP is equal to the lowest PRB of CORESET0.
  • the lowest PRB of the narrowband CORESET0 and/or the lowest PRB of the narrowband initial activated downlink BWP is equal to the lowest PRB of CORESET0, so that the narrowband UE can obtain the narrowband CORESET0 and/or the narrowband initial activated downlink BWP based on CORESET0, which is Obtaining the narrowband CORESET0 and the PDSCH carrying SIB1 as well as the initial activation of the narrowband downlink BWP provide a feasible solution.
  • the offset between the lowest PRB of the narrowband CORESET0 and the lowest PRB of CORESET0 or the synchronization signal block is a preset value, and/or, between the lowest PRB of the narrowband initial activated downlink BWP and the lowest PRB of CORESET0
  • the offset of is a preset value.
  • the offset between the narrowband CORESET0 and CORESET0 or the synchronization signal block is a preset value, or the offset between the narrowband CORESET0 and CORESET0 is a preset value.
  • the offset between the narrowband CORESET0 and CORESET0 is a preset value.
  • the Type0-PDCCH in CORESET0 is received to obtain PDSCH scheduling information according to the Type0-PDCCH; and based on the scheduling information, the PDSCH is received to obtain the narrowband SIB1.
  • the PDSCH containing the narrowband SIB1 is acquired through Type0-PDCCH, so that the narrowband UE can acquire the narrowband SIB1, the narrowband UE can acquire the narrowband CORESET0 and the PDSCH carrying the SIB1, and the narrowband initially activates the downlink BWP.
  • the offset between the lowest PRB of the narrowband PBCH and the lowest PRB of the synchronization signal block is a preset value.
  • the narrowband UE can obtain the narrowband CORESET0 and the PDSCH carrying the SIB1 for the narrowband UE, and provide the possibility for the narrowband to initially activate the downlink BWP.
  • the method further includes: receiving Type0-PDCCH in CORESET0 to obtain PDSCH scheduling information according to the Type0-PDCCH; and receiving the PDSCH based on the scheduling information to obtain the SIB1.
  • the technical solution provided by the embodiment of the present invention can enable the narrowband UE to receive the PDSCH of the SIB1, and the narrowband initially activates the downlink BWP.
  • the method further includes: receiving Type0B-PDCCH in CORESET0, where the Type0B-PDCCH is used to schedule a PDCCH carrying a narrowband SIB1 PDSCH; based on the Type0B-PDCCH, obtaining scheduling information for a PDSCH carrying narrowband SIB1; based on the scheduling information , Receiving the PDSCH carrying the narrowband SIB1 to obtain the narrowband SIB1.
  • the technical solutions provided by the embodiments of the present invention can enable narrowband UEs to receive SIB1 or narrowband SIB1 on demand, which is beneficial to saving terminal power consumption.
  • Fig. 1 is a schematic flowchart of a method for determining access resources according to an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an apparatus for determining access resources according to an embodiment of the present invention.
  • the prior art lacks a technical solution for acquiring and configuring narrowband CORESET0 and/or narrowband initial activation of the downlink BWP.
  • synchronization signals and broadcast channel signals are sent in the form of synchronization signal blocks (Synchronization Signal and Physical Broadcast Channel Block), and the 5G system also introduces beam scanning ( beam sweeping, also known as beam sweeping) and other functions.
  • Each synchronization signal block can be regarded as a resource corresponding to a beam in the beam scanning process.
  • the synchronization signal block includes primary synchronization signal (Primary Synchronization Signal, referred to as PSS), secondary synchronization signal (Secondary Synchronization Signal, referred to as SSS), and physical broadcast channel (Physical Broadcast Channel, referred to as PBCH) signals.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • Multiple synchronization signal blocks can form a synchronization signal burst.
  • the synchronization signal burst can be regarded as a relatively concentrated resource containing multiple beams.
  • Multiple synchronization signal bursts form a synchronization signal burst set (synchronization signal burst set).
  • the synchronization signal block is repeatedly sent on different beams to complete the beam scanning process. Through beam scanning training, the user equipment can determine on which beam the received signal is the strongest.
  • the time domain positions of the L synchronization signal blocks within a 5 millisecond (millisecond, ms for short) window are fixed. That is, the transmission time of the synchronization signal block within the 5 ms window is fixed, and the index is also fixed.
  • the indexes of the L synchronization signal blocks are arranged continuously in the time domain position, from 0 to (L-1), and L is a positive integer.
  • RMSI Remaining Minimum System Information
  • SIB1 System Information Block 1
  • RMSI PDCCH Physical Downlink Control Channel
  • a search space set includes properties such as PDCCH monitoring timing and search space type.
  • the search space set is generally bound to a control resource set (Control Resource Set, CORESET for short), and CORESET includes properties such as frequency domain resources and duration of the PDCCH.
  • CORESET includes properties such as frequency domain resources and duration of the PDCCH.
  • the search space set where the RMSI PDCCH (or SIB1 PDCCH, or Type0-PDCCH) is located is generally called Type0-PDCCH search space set or Type0-PDCCH common search space set. Generally, it is configured by MIB, or by radio resource control (Radio Resource Control, RRC for short) in situations such as handover. Generally, the identification number (Identity, ID for short) corresponding to Type0-PDCCH search space set is 0, so it can also be called search space 0 (or search space set 0), and the bound CORESET is called CORESET 0.
  • other public search spaces or public search space sets such as other system information (Other System Information, OSI) PDCCH search space set (Type0A-PDCCH search space set), random access response ( Random Access Response, RAR for short, search space set (Type1-PDCCH search space set) of PDCCH, search space set (Type2-PDCCH search space set) of paging PDCCH, etc., which can be the same as search space set 0 by default .
  • OSI System Information
  • RAR Random Access Response
  • search space set Type1-PDCCH search space set
  • search space set Type2-PDCCH search space set of paging PDCCH, etc.
  • the above-mentioned public search space or public search space set can be reconfigured.
  • the RMSI PDCCH monitoring timing is related to the synchronization signal block.
  • the UE obtains this association relationship according to the RMSI PDCCH monitoring timing table.
  • the UE searches for a synchronization signal block, and the UE determines the time domain position of the RMSI PDCCH associated with the synchronization signal block according to the row index of the table indicated by the PBCH (start symbol index or first symbol index) ), the RMSI PDCCH can be detected, and the RMSI PDSCH can be received and decoded according to the RMSI PDCCH scheduling.
  • the UE decodes the RMSI PDCCH, obtains multiple bits of time domain resource allocation, and searches a predefined table based on these bits to obtain the start symbol index (or number) and symbol length (or duration ( duration)).
  • the UE in the initial access phase of the UE, assumes that the RMSI PDSCH does not perform rate matching on the synchronization signal block.
  • the RMSI can indicate whether the synchronization signal block is sent or not. After the UE obtains the RMSI, it can perform rate matching on the synchronization signal block indicated by the RMSI.
  • Timing information may also be referred to as frame timing (frame timing) information or half-frame timing (half-frame timing) information, and is generally used to indicate the timing of the frame or half-frame corresponding to the detected synchronization signal.
  • frame timing frame timing
  • half-frame timing half-frame timing
  • SFN System Frame Number, referred to as system frame number
  • the UE obtains the complete timing information of the cell corresponding to the synchronization signal block through the half-frame indication (first half or second half) and SFN.
  • the UE obtains the timing information within 10 milliseconds by obtaining the synchronization signal block index.
  • the synchronization signal block index is related to L candidate positions of the synchronization signal block, and L is a positive integer.
  • its corresponding paging occasion consists of multiple paging PDCCH monitoring occasions.
  • the paging PDCCH can be sent by sweeping the beam like the synchronization signal block.
  • the paging PDCCH monitoring timing corresponds to the synchronization signal block one-to-one, that is, within a paging occasion, the Kth paging PDCCH monitoring opportunity corresponds to the K synchronization signal block.
  • eMTC UE In the enhanced Machine-Type Communication (eMTC) of LTE Release 13 (Release 13), eMTC UE is a narrowband (narrowband) UE.
  • the bandwidth of eMTC UE is about 1MHz, which can cover 6 PRBs. Therefore, eMTC UE can detect LTE Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS)/Physical Broadcast Channel (PBCH) during initial access. . Due to the MIB (Master Information Block, referred to as the master information block) carried in the PBCH, the eMTC UE can decode the LTE MIB.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the LTE MIB has 10 reserved bits (spare bits), and a part of these reserved bits can be used to carry the information of SIB1 (SIB1-BR, which is different from LTE SIB1) for scheduling eMTC.
  • SIB1-BR which is different from LTE SIB1
  • the frequency domain resources of the PDSCH carrying eMTC SIB1 are also in 6 physical resource blocks (Physical Resource Block, PRB for short), so the eMTC UE can also receive the PDSCH carrying eMTC SIB1.
  • PRB Physical Resource Block
  • the UE is a UE that supports a 100MHz bandwidth.
  • the UE blindly detects the PSS/SSS/PBCH in the synchronization signal block, and obtains the MIB and time index information carried in the PBCH.
  • the UE obtains the CORESET (can be called CORESET0) and search space set (can be called search space set 0) configuration to which the PDCCH scheduling SIB1 (or RMSI) belongs through the information in the MIB, and further, the UE can monitor and schedule the PDSCH carrying SIB1 Type0-PDCCH, and decode SIB1.
  • the maximum bandwidth of CORESET0 is implicitly defined in the protocol. Furthermore, the protocol stipulates that the frequency domain resources of the PDSCH carrying SIB1 are within the bandwidth (PRB) of CORESET0, so the maximum bandwidth of the PDSCH carrying SIB1 is also implicitly defined in the protocol.
  • narrowband CORESET0 and/or narrowband initially activated downlink BWP that is, the frequency range of the PDSCH carrying narrowband SIB1, and/or narrowband SIB1 (or narrowband RMSI)
  • CORESET0 or initial activation of downlink BWP or SIB1 (RMSI) is not necessarily suitable for narrowband UE reception.
  • the bandwidth of the narrowband CORESET0 defaults to the narrowband initial activated downlink BWP, and after additional information is obtained, the bandwidth of the narrowband initial activated downlink BWP can be expanded.
  • narrowband UEs For narrowband UEs how to obtain and configure narrowband CORESET0 (or CORESET of Type0-PDCCH common search space set) and narrowband initial activation downlink BWP, the prior art has not yet provided a solution, nor does it provide how to obtain and configure narrowband initial activation downlink BWP. Solution.
  • the embodiment of the present invention provides a method for determining access resources, including: determining the frequency domain position of the narrowband CORESET0 and/or the narrowband initial activation downlink BWP, and/or determining the narrowband SIB1.
  • the bandwidth of the narrowband CORESET0 is smaller than or equal to the bandwidth of CORESET0
  • the bandwidth of the narrowband PBCH is smaller than or equal to the bandwidth of the PBCH.
  • the access resources of the narrowband UE can be determined, and then the narrowband CORESET0 and the PDSCH carrying SIB1 can be obtained and configured, and the narrowband initial activation of the downlink BWP Maximum bandwidth.
  • the technical solutions of the present embodiment are also applicable to different network architectures, including but not limited to relay network architecture, dual link architecture, vehicle-to-everything communication architecture and other architectures.
  • the "plurality" in the embodiments of the present invention refers to two or more. It can be understood that, in various embodiments of the present application, the size of the sequence number of each process as shown in the drawings does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic. , And should not constitute any limitation to the implementation process of the embodiments of this application.
  • connection appearing in the embodiment of the present invention refers to various connection modes such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiment of the present invention.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code may include one or more for implementing the provisions in the various embodiments.
  • Executable instructions for logical functions may also occur in a different order than that noted in the drawings.
  • each block in the flowchart and/or block diagram, and the combination of the blocks in the flowchart and/or block diagram can be implemented using a dedicated hardware-based system that performs the specified functions or operations. Or it can be implemented using a combination of dedicated hardware and computer instructions. It should also be noted that the sequence number of each step in the flowchart does not represent a limitation on the execution order of each step.
  • Figure 1 is a schematic flowchart of a method for determining access resources.
  • the determination method may be used on the terminal (User Equipment, UE for short) side, and may include only step S101, or may include step S101 and step S102:
  • Step S101 Determine the frequency domain position of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP, and/or determine the narrowband SIB1.
  • the bandwidth of the narrowband CORESET0 is smaller than or equal to the bandwidth of CORESET0
  • the bandwidth of the narrowband PBCH is smaller than or equal to the bandwidth of the PBCH.
  • the narrowband UE may reuse the synchronization signal block of Release 15.
  • the narrowband CORESET0 and the access resources of the narrowband UE may have a preset association relationship.
  • the preset association relationship may include: narrowband CORESET0 and/or the bandwidth of the narrowband initial activated downlink BWP is a preset value.
  • the preset value is associated with band.
  • the preset association relationship may include: the lowest PRB of the PDSCH of the narrowband CORESET0 is equal to the lowest PRB of CORESET0, and/or the lowest PRB of the narrowband initial activated downlink BWP is equal to the lowest PRB of CORESET0.
  • the preset value is associated with band.
  • the narrowband UE may determine the narrowband CORESET0, and/or the frequency domain position of the narrowband initial activation downlink BWP that the narrowband UE can use.
  • the frequency domain resources of the narrowband initial activation of the narrowband downlink BWP of the narrowband UE are by default equal to the frequency domain resources of the narrowband CORESET0. Therefore, after determining the initial activation of the narrowband downlink BWP, it can be known at the same time Frequency domain resource of narrowband CORESET0.
  • the bandwidth of the narrowband CORESET0 may be a preset value, and/or the bandwidth of the narrowband initially activated downlink BWP may be a preset value.
  • the preset value is related to the band that the narrowband UE accesses.
  • the narrowband UE may reuse the synchronization signal block of Release 15.
  • the narrowband CORESET0 and the access resources of the narrowband UE may have a preset association relationship.
  • the preset association relationship may include: the offset between the lowest PRB of the narrowband CORESET0 and the lowest PRB of the CORESET0 or synchronization signal block is a preset value. And/or, the offset between the lowest PRB of the narrowband initially activated downlink BWP and the lowest PRB of CORESET0 is a preset value.
  • the narrowband UE can determine the narrowband CORESET0, and/or the frequency domain position of the narrowband initial activation of the downlink BWP, and/or the frequency domain resources of the PDSCH carrying SIB1.
  • the lowest PRB of the synchronization signal block may be the lowest PRB in the Common RB that overlaps the lowest PRB of the synchronization signal block. It should be noted that sometimes, the true lowest subcarrier of the synchronization signal block may have a subcarrier level offset from the lowest subcarrier of this PRB.
  • the frequency domain offset from any frequency domain resource can refer to the lowest PRB of the frequency domain resource and the synchronization signal block in Common RB.
  • the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband CORESET0, and/or the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband initially activated downlink BWP.
  • the number of PRBs included in the offset is greater than or equal to the number of PRBs included in the narrowband CORESET0, and/or the number of PRBs included in the offset is greater than or equal to the PRBs included in the narrowband initial activated downlink BWP Quantity.
  • the narrowband UE may determine the lowest PRB of the narrowband CORESET0 according to the offset between the narrowband CORESET0 and CORESET0 or synchronization signal block.
  • the lowest PRB of the narrowband initially activated downlink BWP may be determined according to the offset between the narrowband initially activated downlink BWP and the synchronization signal block.
  • the narrowband UE may determine the lowest PRB of the narrowband CORESET0 according to the offset between the lowest PRB of the narrowband CORESET0 and the lowest PRB of the CORESET0 or synchronization signal block.
  • the lowest PRB of the narrowband initially activated downlink BWP may be determined according to the offset between the narrowband initially activated downlink BWP and CORESET0 or the lowest PRB of the synchronization signal block.
  • the base station may place the offset in the PBCH, which is carried by the synchronization signal block index in the PBCH. Because for FR1, the synchronization signal block index in the PBCH is a reserved bit and is not used to indicate the synchronization signal block index.
  • the base station may place the offset in the PBCH and carry it in the Type0-PDCCH monitoring timing indication.
  • the Type0-PDCCH monitoring timing indication may be equivalent to the Type0-PDCCH monitoring timing table in meaning, because at this time Type0- 3 bits of the PDCCH monitoring timing indicator are reserved and can be used to indicate the offset.
  • the offset is carried in the Type 0-PDCCH monitoring timing indication.
  • the narrowband UE can reuse the PSS and SSS of Release 15, and adopt a narrowband PBCH different from the PBCH in the prior art.
  • the narrowband PBCH refers to the PBCH used by the narrowband UE. Say that its bandwidth is less than or equal to the PBCH bandwidth. Under this condition, the narrowband UE may receive the PBCH first, and the PBCH may indicate that the narrowband UE receives the narrowband PBCH. When a narrowband PBCH is indicated in the PBCH, the narrowband UE can receive the narrowband PBCH and determine the frequency domain position where the narrowband initially activates the downlink BWP.
  • the narrowband PBCH bandwidth can be set to a preset value.
  • the preset value is related to the band that the narrowband UE accesses.
  • the offset between the lowest PRB of the narrowband PBCH and the lowest PRB of the synchronization signal block can be set as a preset value.
  • the preset value is related to the band that the narrowband UE accesses.
  • the bandwidth of the offset may be greater than or equal to the bandwidth of the narrowband PBCH.
  • the number of PRBs included in the offset may be greater than or equal to the number of PRBs included in the narrowband PBCH.
  • the narrowband UE may adopt a new narrowband PSS, narrowband SSS, and narrowband PBCH.
  • the narrowband UE can blindly detect the narrowband PSS and the narrowband SSS to obtain the time-frequency position of the narrowband PBCH. After that, the narrowband UE receives the narrowband PBCH to obtain narrowband PBCH information.
  • the bandwidth of the narrowband PSS is less than or equal to the bandwidth of the PSS
  • the bandwidth of the narrowband SSS is less than or equal to the bandwidth of the SSS.
  • the narrowband PBCH information may include: the offset between the narrowband CORESET0 and/or the lowest PRB of the narrowband initial downlink BWP and the lowest PRB of the synchronization signal block. Further, the narrowband UE may obtain the frequency domain position of the narrowband CORESET0 and/or the narrowband initial activated downlink BWP, and the frequency domain resources of the narrowband initial activated downlink BWP.
  • step S102 may be performed, that is, CORESET0 and/or narrowband initial activation downlink BWP are received at the frequency domain position, and/or narrowband SIB1 is received.
  • the narrowband UE can obtain the narrowband CORESET0 and the narrowband initial activated downlink BWP in the manner described in the following specific embodiments.
  • Embodiment 1 Reuse the synchronization signal block of Release 15.
  • the narrowband UE assumes that the bandwidth of the narrowband CORESET0 and/or the narrowband initial activated downlink BWP has a preset correlation with the bandwidth to be accessed.
  • the narrowband CORESET0 and/or the frequency domain position where the narrowband initially activates the downlink BWP the following solutions can be used:
  • Solution 1 By default, the lowest PRB of the narrowband CORESET0 and/or the narrowband initial activated downlink BWP is the lowest PRB of CORESET0. This solution is suitable for situations where CORESET0 has more time-frequency resources and more time-frequency resources for PDSCH carrying SIB1, because at this time part of CORESET0 resources may be occupied by Type0-PDCCH of narrowband CORESET0, and some resources of PDSCH carrying SIB1 may be occupied. Occupied by the narrowband initially activated downlink BWP.
  • the offset between the lowest PRB of the narrowband CORESET0 and/or the narrowband initial downstream BWP and the lowest PRB of the CORESET0 or synchronization signal block is a preset value.
  • the bandwidth corresponding to the preset value is greater than or equal to the bandwidth of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP. That is, the preset bandwidth corresponds to the number of PRBs under a certain subcarrier interval greater than or equal to the narrowband CORESET0 and/or the bandwidth of the narrowband initial activated downlink BWP corresponds to the number of PRBs under a certain subcarrier interval.
  • This solution is suitable for situations where CORESET0 has less time-frequency resources and the PDSCH carrying SIB1 has less time-frequency resources.
  • the narrowband UE obtains the position of the narrowband CORESET0 by obtaining the synchronization signal block or the offset between CORESET0 and the narrowband CORESET0. More specifically, the narrowband UE obtains the position of the lowest PRB of the narrowband CORESET0 by obtaining the offset between the synchronization signal block or the lowest PRB of CORESET0 and the lowest PRB of the narrowband CORESET0. Since the synchronization signal block of Release 15 is reused, the offset can be transmitted through reserved bits or reserved codepoints in the synchronization signal block.
  • the narrowband UE can obtain the offset by obtaining the synchronization signal block index in the PBCH (that is, the high 3 bits of the synchronization signal block time index, 3 MSB).
  • the narrowband UE can obtain the offset by obtaining the reserved bits or codepoints of the Type0-PDCCH monitoring timing indication (4 bits, defined by a table) in the PBCH.
  • the Type0-PDCCH monitoring timing indication indicates the offset.
  • the Type0-PDCCH monitoring opportunity indicates the offset.
  • Embodiment 2 Reuse the PSS/SSS of Release 15, and adopt narrowband PBCH.
  • the bandwidth of the narrowband PBCH is a preset value.
  • the preset value is associated with band.
  • the offset between the lowest PRB of the narrowband PBCH and the lowest PRB of the synchronization signal block is a preset value.
  • the bandwidth corresponding to the offset is greater than or equal to the bandwidth of the narrowband PBCH. That is, the offset corresponds to the number of PRBs under a certain sub-carrier interval greater than or equal to the number of PRBs under a certain sub-carrier interval corresponding to the bandwidth of the narrowband PBCH.
  • the UE obtains the narrowband CORESET0 and/or the bandwidth and frequency domain position of the narrowband initial activated downlink BWP by obtaining the narrowband PBCH indication.
  • the narrowband UE may obtain the offset between the lowest PRB of the synchronization signal block indicated by the narrowband PBCH and the lowest PRB of the narrowband CORESET0 and/or narrowband initial activation downlink BWP to obtain the narrowband CORESET0 and/or narrowband initial activation Frequency domain position of the downlink BWP.
  • Embodiment 3 Whether the narrowband UE completely reuses the synchronization signal block of Release 15 is indicated by the PBCH.
  • the narrowband UE receives the PBCH and learns from the PBCH information (for example, MIB) whether the narrowband UE completely reuses the synchronization signal block of Release 15.
  • the narrowband UE can obtain the narrowband CORESET0 and PDSCH carrying narrowband SIB1 by receiving CORESET0 or PDSCH carrying SIB1.
  • the narrowband UE may receive Type0-PDCCH in CORESET0, and obtain scheduling information of PDSCH carrying SIB. After that, the narrowband UE may use the scheduling information to receive the PDSCH carrying the SIB, and obtain the SIB message.
  • the SIB message may include the narrowband CORESET0 and/or the narrowband initial activated downlink BWP.
  • the SIB message may include narrowband SIB1 messages and SIB1 messages.
  • the narrowband SIB1 message may include narrowband CORESET0 and/or the narrowband initial activated downlink BWP.
  • a narrowband UE can receive Type0B-PDCCH in CORESET0, where Type0B-PDCCH is a PDCCH for scheduling PDSCH carrying narrowband SIB1. After that, the narrowband UE can obtain scheduling information of the PDSCH carrying the narrowband SIB1 from the Type0B-PDCCH. The narrowband UE may receive the PDSCH carrying the narrowband SIB1, and obtain the narrowband SIB1. The bandwidth of the narrowband SIB1 is less than or equal to the bandwidth of the SIB1. Narrowband UEs can also receive Type0A-PDCCH in CORESET0, where Type0A-PDCCH is a PDCCH for scheduling PDSCH bearing OSI.
  • the narrowband UE can obtain the scheduling information of the PDSCH carrying OSI from the Type0A-PDCCH.
  • the narrowband UE may receive the PDSCH carrying OSI and obtain OSI.
  • OSI may include the narrowband SIB1.
  • the advantage of this technical solution is that narrowband UEs can selectively receive SIB1 or narrowband SIB1, saving terminal energy consumption.
  • the narrowband UE can select the SIB1 or narrowband SIB1 that needs to be received currently, according to instructions from the base station or different scenarios.
  • the UE may obtain the message in the paging. If the message indicates a system update (System information update), the UE may receive SIB1, and if the message indicates a narrowband system update, the UE may receive narrowband SIB1.
  • System information update System information update
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a bit in the PBCH can be used to indicate whether Type0-PDCCH schedules a PDSCH carrying a narrowband SIB1, for example, a bit in the PBCH information is used to indicate whether there is a narrowband PBCH.
  • the PBCH may indicate the offset of the synchronization signal block from CORESET0, and the comparison result of the offset and the threshold value determines whether there is a narrowband PBCH. If the offset is less than or equal to a certain threshold, it may indicate that there is a narrowband PBCH, and the narrowband CORESET0 is determined according to the solution provided in the second embodiment, and/or the frequency domain position of the narrowband initial activation of the downlink BWP. Otherwise, if the offset is greater than the threshold, then the narrowband CORESET0 and/or the frequency domain position of the narrowband initially activated downlink BWP can be determined according to the first embodiment.
  • the offset when the offset is zero or positive, the number of the lowest PRB of the synchronization signal block in the Common Resource Block (Common Resource Block) is greater than the number of the lowest PRB of CORESET0 in the common resource block. The number is high.
  • the advantage of this is that if the offset is less than or equal to a certain threshold, then the synchronization signal block is almost aligned with the bottom end of the frequency domain resource of CORESET0.
  • the base station has the right to carry SIB1 (including narrowband SIB1) PDSCH
  • the frequency domain resource allocation can continuously allocate PRBs from the top of the highest PRB of the synchronization signal block; otherwise, there is a certain frequency domain interval between the synchronization signal block and the bottom end of the frequency domain resource of CORESET0. Therefore, the base station has The domain resource allocation can continuously allocate PRBs from above the highest PRB of the synchronization signal block, and the frequency domain resource allocation for the narrowband initial activated downlink BWP can continuously allocate PRBs from the lowest PRB of CORESET0, thereby achieving full utilization of resources.
  • the technical solution provided by the embodiment of the present invention provides a feasible solution for determining the access resources of the narrowband UE, and then obtaining and configuring the narrowband CORESET0 and the PDSCH carrying SIB1, and the maximum bandwidth of the frequency domain resources for initial activation of the narrowband downlink BWP .
  • Fig. 2 is a schematic structural diagram of an apparatus for determining access resources according to an embodiment of the present invention.
  • the device 2 for determining access resources (hereinafter referred to as the device 2 for determining) may be used to implement the method and technical solution shown in FIG. 1 and be executed by the UE.
  • the determining device 2 may include: a determining module 21, adapted to determine the frequency domain position of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP, and/or determine the narrowband SIB1.
  • the lowest PRB of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP may be equal to the lowest PRB of CORESET0.
  • the bandwidth of the narrowband CORESET0 and/or the narrowband initially activated downlink BWP is a preset value.
  • the lowest PRB of the narrowband CORESET0 is equal to the lowest PRB of CORESET0, and/or, the lowest PRB of the narrowband initially activated downlink BWP is equal to the lowest PRB of CORESET0.
  • the offset between the lowest PRB of the narrowband CORESET0 and the lowest PRB of CORESET0 or synchronization signal block is a preset value, and/or the lowest PRB of the narrowband initially activated downlink BWP and the lowest of CORESET0
  • the offset between PRBs is a preset value.
  • the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband CORESET0, and/or the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband initially activated downlink BWP.
  • the number of PRBs included in the offset is greater than or equal to the number of PRBs included in the narrowband CORESET0, and/or the number of PRBs included in the offset is greater than or equal to the initial activated downlink BWP of the narrowband. The number of PRBs.
  • the determining device 2 may further include: an obtaining module 22, adapted to obtain the offset between the narrowband CORESET0 and CORESET0 or synchronization signal block, and/or obtain the narrowband initial activated downlink BWP The offset from the sync signal block.
  • the determining module 21 may include: a first determining sub-module 211, adapted to determine the lowest PRB of the narrowband CORESET0 according to the offset, and/or the lowest PRB of the narrowband initially activated downlink BWP .
  • the offset is carried in the synchronization signal block index in the PBCH.
  • the offset is carried in the Type0-PDCCH monitoring timing indication.
  • the offset is carried in the Type0-PDCCH monitoring timing indication.
  • the offset is carried in the Type0-PDCCH monitoring timing indication.
  • the determining module 21 is adapted to receive the narrowband PBCH to obtain narrowband PBCH information; based on the narrowband PBCH information, obtain narrowband CORESET0 and/or narrowband initial activated downlink BWP.
  • the offset between the lowest PRB of the narrowband PBCH and the lowest PRB of the synchronization signal block is a preset value.
  • the bandwidth of the offset is greater than or equal to the bandwidth of the narrowband PBCH.
  • the number of PRBs included in the offset is greater than or equal to the number of PRBs included in the narrowband PBCH.
  • the determining module 21 may include: a first receiving submodule 212, adapted to receive Type0-PDCCH in CORESET0 to obtain PDSCH scheduling information according to the Type0-PDCCH; a second receiving submodule 213, It is suitable for receiving the PDSCH based on the scheduling information to obtain the narrowband SIB1.
  • the determining module 21 may include: a third receiving sub-module 214, if the bits in the PBCH indicate Type0-PDCCH scheduling the PDSCH carrying narrowband SIB1, or the synchronization signal block indicated in the PBCH is between CORESET0 If the offset is less than or equal to the preset threshold, the Type0-PDCCH in CORESET0 is received to obtain PDSCH scheduling information according to the Type0-PDCCH; the fourth receiving submodule 215 is adapted to be based on the scheduling information, The PDSCH is received to obtain the narrowband SIB1.
  • the determining module 21 is further adapted to receive the Type0B-PDCCH in CORESET0, the Type0B-PDCCH is used to schedule the PDCCH carrying the narrowband SIB1 PDSCH; based on the Type0B-PDCCH to obtain the narrowband SIB1 PDSCH Scheduling information; based on the scheduling information, receiving the PDSCH to obtain the narrowband SIB1.
  • the determination The module 21 is further adapted to receive the Type0B-PDCCH in the CORESET0, the Type0B-PDCCH is used to schedule the PDCCH carrying the narrowband SIB1 PDSCH; based on the Type0B-PDCCH to obtain the scheduling information of the PDSCH carrying the narrowband SIB1; Scheduling information, receiving PDSCH to obtain the narrowband SIB1.
  • the determining device 2 may further include: a receiving module 23, adapted to receive the CORESET0 and/or narrowband initial activated downlink BWP at the frequency domain position, and/or receive the SIB1.
  • the determining module 21 is further adapted to receive Type0A-PDCCH, the Type0A-PDCCH is used to schedule the PDCCH carrying the OSI PDSCH; based on the Type0A-PDCCH to obtain the scheduling information of the PDSCH carrying the OSI; According to the scheduling information, the PDSCH is received to obtain the OSI, and the OSI includes the narrowband SIB1.
  • the embodiment of the present invention also provides a storage medium on which computer instructions are stored, and the computer instructions execute the steps of the method shown in FIG. 1 when the computer instructions are executed.
  • the storage medium may be a computer-readable storage medium, for example, may include non-volatile memory (non-volatile) or non-transitory (non-transitory) memory, and may also include optical disks, mechanical hard disks, solid state hard disks, and the like.
  • An embodiment of the present invention also provides a terminal, including a memory and a processor, the memory stores computer instructions that can run on the processor, and is characterized in that the processor executes when the computer instructions are executed.
  • Figure 1 shows the steps of the method.
  • the terminal can refer to various forms of user equipment (user equipment, UE for short), access terminal, user unit, user station, mobile station, mobile station (mobile station, built MS), remote station, remote terminal, mobile equipment , User terminal, terminal equipment, wireless communication equipment, user agent or user device.
  • user equipment user equipment, UE for short
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station (mobile station, built MS)
  • remote station remote terminal
  • mobile equipment User terminal
  • terminal equipment wireless communication equipment
  • user agent or user device user agent
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, referred to as The terminal equipment in the PLMN) is not limited in the embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the processor may be a central processing unit (central processing unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSPs for short), and application specific integrated circuits (application integrated circuits). Specific integrated circuit, ASIC for short), field programmable gate array (FPGA for short) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (read-only memory, ROM for short), programmable read-only memory (programmable ROM, PROM for short), erasable PROM (EPROM for short) , Electrically Erasable Programmable Read-Only Memory (EPROM, EEPROM for short) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM for short), which is used as an external cache.
  • random access memory random access memory
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • DRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed method, device, and system can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种接入资源的确定方法及装置、存储介质、终端,所述确定方法包括:确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。本发明为窄带UE获取窄带CORESET0和窄带初始激活下行BWP提供了一种可行技术方案。

Description

接入资源的确定方法及装置、存储介质、终端
本申请要求于2019年8月16日提交中国专利局、申请号为201910762910.6、发明名称为“接入资源的确定方法及装置、存储介质、终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,具体地涉及一种接入资源的确定方法及装置、存储介质、终端。
背景技术
第三代合作伙伴项目(the 3rd Generation Partnership Project,简称3GPP)标准组织正在研究第五代移动通信(The Fifth-Generation mobile communications,简称5G)新无线(New Radio,简称NR,亦称新空口)***。未来的NR协议可以支持窄带用户设备(User Equipment,简称UE),即带宽小于100MHz的UE。这种类型的UE用于物联网通信(Machine Type Communication,简称MTC,或者Internet of Thing,简称IoT)。
一般来说,UE至少需要支持控制资源集0(Control Resource SET0,简称CORESET0)和/或初始激活下行BWP的最大带宽。在初始接入过程中,UE通过PBCH承载的信息获得CORESET0的带宽。一般来说,CORESET0是承载Type0-PDCCH(即RMSI PDCCH或SIB1 PDCCH)的控制资源集。默认地,CORESET0带宽也是初始激活下行BWP的带宽。一般地,承载***信息块1(System Information Block1,简称SIB1)的物理下行共享信道(Physical Downlink Shared  Channel,简称PDSCH)的频域资源是限制在初始激活下行BWP(Bandwidth Part,简称BWP)中的。进一步,在获得SIB1后,初始激活下行BWP可以进一步被扩展,以获得比较大的灵活度。具体来说,初始激活下行BWP的扩展带宽可以通过SIB1中的信令传递给UE。
然而,对于窄带UE,CORESET0和/或初始激活下行BWP的最大带宽可能是超过窄带UE支持的带宽。在这种情况下,窄带UE如何获取和配置一个新的窄带CORESET0和/或窄带初始激活下行BWP是亟需解决的问题。
发明内容
本发明解决的技术问题是如何获取和配置窄带CORESET0和/或窄带初始激活下行BWP的最大带宽。
为解决上述技术问题,本发明实施例提供一种接入资源的确定方法,包括:确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。
可选的,所述窄带CORESET0和/或窄带初始激活下行BWP的带宽为预设值。
可选的,所述窄带CORESET0的最低PRB等于CORESET0的最低PRB,和/或,所述窄带初始激活下行BWP的最低PRB等于CORESET0的最低PRB。
可选的,所述窄带CORESET0的最低PRB与CORESET0或同步信号块的最低PRB之间的偏移量为预设值,和/或,所述窄带初始激活下行BWP的最低PRB与CORESET0的最低PRB之间的偏移量为预设值。
可选的,所述偏移量的带宽大于或等于所述窄带CORESET0的带宽,和/或,所述偏移量的带宽大于或等于所述窄带初始激活下行 BWP的带宽。
可选的,所述偏移量包含的PRB数量大于或等于所述窄带CORESET0包含的PRB数量,和/或,所述偏移量包含的PRB数量大于或等于所述窄带初始激活下行BWP包含的PRB数量。
可选的,所述确定方法还包括:获取所述窄带CORESET0与CORESET0或同步信号块之间的偏移量,和/或,获取所述窄带初始激活下行BWP与同步信号块之间的偏移量。
可选的,所述确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置包括:根据所述偏移量,确定所述窄带CORESET0和/或窄带初始激活下行BWP的最低PRB。
可选的,如果位于频率范围1,则所述偏移量在PBCH内的同步信号块索引中携带。
可选的,如果位于频率范围2,则所述偏移量在Type0-PDCCH监听时机指示中携带。
可选的,当所述同步信号块和CORESET复用模式为2时,所述偏移量在Type0-PDCCH监听时机指示中携带。
可选的,当所述同步信号块和CORESET复用模式为3时,所述偏移量在Type0-PDCCH监听时机指示中携带。
可选的,所述确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置包括:接收所述窄带PBCH,以得到窄带PBCH信息;基于所述窄带PBCH信息,获取窄带CORESET0和/或窄带初始激活下行BWP。
可选的,所述窄带PBCH的带宽为预设值。
可选的,所述窄带PBCH的最低PRB与同步信号块的最低PRB之间的偏移量为预设值。
可选的,所述偏移量的带宽大于或等于所述窄带PBCH的带宽。
可选的,所述偏移量包含的PRB数量大于或等于所述窄带PBCH包含的PRB数量。
可选的,所述确定窄带SIB1包括:接收CORESET0中的Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
可选的,所述确定窄带SIB1包括:如果PBCH内的比特指示Type0-PDCCH调度承载窄带SIB1的PDSCH,或者所述PBCH内指示的同步信号块与CORESET0之间的偏移量小于或等于预设阈值,则接收所述CORESET0中的Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
可选的,所述确定窄带SIB1包括:接收CORESET0中的Type0B-PDCCH,所述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
可选的,所述确定窄带SIB1包括:如果PBCH内的比特指示Type0-PDCCH调度承载窄带SIB1的PDSCH,或者所述PBCH内指示的同步信号块与CORESET0之间的偏移量大于或等于预设阈值,则接收所述CORESET0中的Type0B-PDCCH,所述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;基于所述调度信息,接收PDSCH,以获取所述窄带SIB1。
可选的,所述确定窄带SIB1包括:接收Type0A-PDCCH,所述Type0A-PDCCH用于调度承载OSI的PDSCH的PDCCH;基于所述Type0A-PDCCH获得承载OSI的PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取OSI,OSI包含所述窄带SIB1。
为解决上述技术问题,本发明实施例还提供一种接入资源的确定装置,包括:确定模块,适于确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。
为解决上述技术问题,本发明实施例还提供一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供一种接入资源的确定方法,包括:确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。本发明实施例通过确定窄带CORESET0、窄带初始激活下行BWP的频域位置,可以确定窄带UE的接入资源,进而获取和配置窄带CORESET0和承载SIB1的PDSCH、窄带初始激活下行BWP的最大带宽,或窄带SIB1。
进一步,所述窄带CORESET0的最低PRB等于CORESET0的最低PRB,和/或,所述窄带初始激活下行BWP的最低PRB等于CORESET0的最低PRB。本发明实施例中,所述窄带CORESET0的最低PRB和/或窄带初始激活下行BWP的最低PRB等于CORESET0的最低PRB,使得窄带UE可以基于CORESET0获取到窄带CORESET0和/或窄带初始激活下行BWP,为获取窄带CORESET0和承载SIB1的PDSCH以及窄带初始激活下行BWP提供了一种可行方案。
进一步,所述窄带CORESET0的最低PRB与CORESET0或同步信号块的最低PRB之间的偏移量为预设值,和/或,所述窄带初始激活下行BWP的最低PRB与CORESET0的最低PRB之间的偏移量为预设值。本发明实施例中,通过设置窄带CORESET0和/或窄带初 始激活下行BWP与CORESET0之间的预设偏移量,为获取窄带CORESET0和承载SIB1的PDSCH以及窄带初始激活下行BWP提供了一种可行方案。
进一步,所述窄带CORESET0与CORESET0或同步信号块之间的偏移量为预设值,或者,所述窄带CORESET0与CORESET0之间的偏移量为预设值。本发明实施例中,通过设置窄带CORESET0与CORESET0之间的偏移量为预设值,从而可以为获取窄带CORESET0和承载SIB1的PDSCH,以及窄带初始激活下行BWP提供了一种可行方案。
进一步,接收CORESET0中的Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。本发明实施例通过Type0-PDCCH获取包含窄带SIB1的PDSCH,可以使窄带UE获取到窄带SIB1,为窄带UE获取到窄带CORESET0和承载SIB1的PDSCH,以及窄带初始激活下行BWP提供可能。
进一步,所述窄带PBCH的最低PRB与同步信号块的最低PRB之间的偏移量为预设值。本发明实施例通过设置窄带PBCH与同步信号块之间的预设偏移量,使得窄带UE为窄带UE获取到窄带CORESET0和承载SIB1的PDSCH,以及窄带初始激活下行BWP提供可能。
进一步,还包括:接收CORESET0中的Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取所述SIB1。本发明实施例提供的技术方案可以使得窄带UE接收SIB1的PDSCH,以及窄带初始激活下行BWP。
进一步,还包括:接收CORESET0中的Type0B-PDCCH,所述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;基于所述调度信息,接收承载窄带SIB1的PDSCH,以获取所述窄带 SIB1。本发明实施例提供的技术方案可以使窄带UE按需接收SIB1或窄带SIB1,有利于节省终端功耗。
附图说明
图1是本发明实施例的一种接入资源的确定方法的流程示意图;
图2是本发明实施例的一种接入资源的确定装置的结构示意图。
具体实施方式
如背景技术所言,现有技术缺少获取和配置窄带CORESET0和/或窄带初始激活下行BWP的技术解决方案。
具体而言,在NR版本15(Release 15)***中,同步信号、广播信道信号是以同步信号块(Synchronization Signal and Physical Broadcast Channel Block)的方式发送的,并且,5G***还引入了波束扫描(beam sweeping,亦称扫波束)等功能。每个同步信号块可以看作是波束扫描过程中的一个波束对应的资源。其中,同步信号块包含主同步信号(Primary Synchronization Signal,简称PSS)、辅同步信号(Secondary Synchronization Signal,简称SSS)和物理广播信道(Physical Broadcast Channel,简称PBCH)信号。多个同步信号块可以组成一个同步信号突发(synchronization signal burst)。同步信号突发可以看作是包含多个波束的一块相对集中的资源。多个同步信号突发组成一个同步信号突发集合(synchronization signal burst set)。同步信号块在不同波束上重复发送,完成波束扫描过程。通过波束扫描的训练,用户设备可以确定在哪个波束上收到的信号最强。
例如,可以假设L个同步信号块在5毫秒(millisecond,简称ms)窗口内的时域位置是固定的。也即,同步信号块在所述5ms窗口内的发射时刻是固定的,索引也是固定的。其中,L个同步信号块的索引在时域位置上是连续排列的,从0到(L-1),L是正整数。
进一步,Release 15 NR中的剩余最小***信息(Remaining Minimum System Information,简称RMSI,也可以称为SIB1,即System Information Block 1)相当于LTE中的SIB1,其包括除了MIB外的主要的***信息。RMSI也可以称为SIB1。RMSI是在PDSCH里承载的,而PDSCH是通过物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)调度的。承载RMSI的PDSCH一般被称为RMSI PDSCH,调度RMSI PDSCH的PDCCH一般被称为RMSI PDCCH。
一般地,搜索空间集合(search space set)包含PDCCH的监听时机、搜索空间类型等性质。搜索空间集合一般会绑定控制资源集合(Control Resource Set,简称CORESET),并且,CORESET包含PDCCH的频域资源和持续时间等性质。
RMSI PDCCH(或称SIB1 PDCCH,或称Type0-PDCCH)所在的搜索空间(search space set)一般被称为Type0-PDCCH search space set或Type0-PDCCH common search space set。一般地,由MIB配置的,或者在切换等情形下由无线资源控制(Radio Resource Control,简称RRC)配置的。一般地,Type0-PDCCH search space set对应的识别号(Identity,简称ID)为0,因此也可以被称为search space 0(或search space set 0),所绑定的CORESET被称为CORESET 0。除了RMSI PDCCH的search space set,其他的公共搜索空间或公共搜索空间集合,如其它***信息(Other System Information,简称OSI)PDCCH的search space set(Type0A-PDCCH search space set)、随机接入响应(Random Access Response,简称RAR)PDCCH的search space set(Type1-PDCCH search space set)、寻呼(paging)PDCCH的search space set(Type2-PDCCH search space set)等,可以默认地与search space set 0相同。一般地,上述公共搜索空间或公共搜索空间集合都可以被重新配置。
RMSI PDCCH监听时机与同步信号块有关联关系。UE根据RMSI  PDCCH监听时机表格获得此关联关系。在初始接入过程中,UE搜索到某个同步信号块,UE根据PBCH指示的表格的行索引,确定该同步信号块关联的RMSI PDCCH的时域位置(起始符号索引或第一个符号索引),就能够检测出RMSI PDCCH,并根据RMSI PDCCH调度来接收和解码RMSI PDSCH。
在Release 15 NR中,UE解码RMSI PDCCH,获取时域资源分配的多个比特,根据这些比特查找预定义的表格来获得RMSI PDSCH的起始符号索引(或编号)和符号长度(或持续时间(duration))。
在Release 15 NR中,UE在初始接入阶段,UE假设RMSI PDSCH不对同步信号块进行速率匹配。RMSI可以指示同步信号块的是否发送的信息,当UE获得RMSI后,可以对RMSI指示的同步信号块进行速率匹配。
UE需要通过同步信号块获得定时信息。定时信息也可以称为帧定时(frame timing)信息,或半帧定时(half-frame timing)信息,一般用于指示所检测到的同步信号对应的帧或半帧的定时。UE获得帧定时信息后,再通过SFN(System Frame Number,简称***帧号),来获得同步信号块对应小区的完整定时信息。UE获得半帧定时信息后,再通过半帧指示(前半帧还是后半帧)和SFN,来获得同步信号块对应小区的完整定时信息。
一般来说,UE通过获取同步信号块索引来获得10毫秒内定时信息。在授权频谱中,同步信号块索引跟同步信号块的L个候选位置有关,L为正整数。当L=4,同步信号块索引的低2个比特(2LSBs)在PBCH-DMRS(PBCH解调参考信号)来承载;当L>4,同步信号块索引的低3个比特(3LSBs)在PBCH-DMRS来承载;当L=64,同步信号块索引的高3个比特(3MSBs)在PBCH负荷(payload)或MIB来承载。
在Release 15 NR中,对于给定的UE,其对应的寻呼时机由多个寻呼PDCCH监听时机组成。在一个寻呼时机内,寻呼PDCCH可以 跟同步信号块一样通过扫波束的方式发送。在一个寻呼时机内,寻呼PDCCH监听时机和同步信号块一一对应,即在一个寻呼时机内,第K个寻呼PDCCH监听时机对应第K个同步信号块。
在LTE版本13(Release13)的增强型机器类型通信(enhanced Machine-Type Communication,简称eMTC)中,eMTC UE是窄带(narrowband)UE。eMTC UE的带宽约为1MHz,可以覆盖6个PRBs。因此,eMTC UE在初始接入时,可以检测出LTE的主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS)/物理广播信道(Physical Broadcast CHannel,简称PBCH)。由于PBCH内携带的MIB(Master Information Block,简称主信息块),因此eMTC UE可以解码出LTE的MIB。并且,LTE的MIB有10个保留的比特(Spare bits),这些保留的比特的一部分可以用来承载调度eMTC的SIB1(SIB1-BR,不同于LTE SIB1)的信息。默认地,携带eMTC SIB1的PDSCH的频域资源也在6个物理资源块(Physical Resource Block,简称PRB)内,因此eMTC UE也可以接收携带eMTC SIB1的PDSCH。这样的话,eMTC UE解码出LTE的MIB后,获取其中的eMTC SIB1信息,进而接入网络。
在Release-15NR中,一般地,UE是支持100MHz带宽的UE。UE在初始接入时,盲检同步信号块中的PSS/SSS/PBCH,获得PBCH内携带的MIB和时间索引信息。UE通过MIB中的信息获得调度SIB1(或RMSI)的PDCCH所属的CORESET(可以称为CORESET0)和search space set(可以称为search space set 0)的配置,进而,UE可以监听调度承载SIB1的PDSCH的Type0-PDCCH,并解码出SIB1。由于PBCH内通过表格来设置CORESET0的带宽,所以CORESET0的最大带宽在协议中被隐式地定义了。进一步来说,协议规定承载SIB1的PDSCH的频域资源在CORESET0的带宽(PRB)内,因此承载SIB1的PDSCH的最大带宽在协议中也被隐式地定义了。
当前,对于窄带UE,可能需要定义窄带CORESET0和/或窄带初始激活下行BWP(即承载窄带SIB1的PDSCH的频率范围),和/或窄带SIB1(或窄带RMSI),因为CORESET0或初始激活下行BWP或SIB1(RMSI)不一定适合窄带UE接收。一般来说,在初始接入过程中,窄带CORESET0的带宽默认为窄带初始激活下行BWP,而在获得额外信息后,窄带初始激活下行BWP的带宽可以被扩展。对于窄带UE如何获取和配置窄带CORESET0(或Type0-PDCCH common search space set的CORESET)和窄带初始激活下行BWP,现有技术还未给出解决方案,如何获取和配置窄带初始激活下行BWP也未给出解决方案。
本发明实施例提供一种接入资源的确定方法,包括:确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。一般来说,所述窄带CORESET0的带宽小于或等于CORESET0的带宽,所述窄带PBCH的带宽小于或等于PBCH的带宽。本发明实施例通过确定窄带PBCH、窄带CORESET0、窄带初始激活下行BWP的频域位置,可以确定窄带UE的接入资源,进而获取和配置窄带CORESET0和承载SIB1的PDSCH,以及窄带初始激活下行BWP的最大带宽。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供的技术方案可适用于5G通信***,还可适用于4G、3G通信***,还可适用于后续演进的各种通信***。
本方明实施例的技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、车辆到任何物体的通信(Vehicle-to-Everything)架构等架构。
本发明实施例中出现的“多个”是指两个或两个以上。可以理解的是,在本申请的各种实施例中,如附图中示出的各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在 逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本发明实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本发明实施例中对设备个数的特别限定,不能构成对本发明实施例的任何限制。
本发明实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本发明实施例对此不做任何限定。
以下参考附图详细描述本公开的各个示例性实施例。附图中的流程图和框图示出了根据本公开的各种实施例的方法和***的可能实现的体系架构、功能和操作。应当注意,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分可以包括一个或多个用于实现各个实施例中所规定的逻辑功能的可执行指令。也应当注意,在有些作为备选的实现中,方框中所标注的功能也可以按照不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,或者他们有时也可以按照相反的顺序执行,这取决于所涉及的功能。同样应当注意的是,流程图和/或框图中的每个方框、以及流程图和/或框图中的方框的组合,可以使用执行规定的功能或操作的专用的基于硬件的***来实现,或者可以使用专用硬件与计算机指令的组合来实现。还应当注意,流程图中各个步骤的序号并不代表对各个步骤的执行顺序的限定。
图1是一种接入资源的确定方法的流程示意图。所述确定方法可以用于终端(User Equipment,简称UE)侧,可以仅包括步骤S101,也可以包括步骤S101和步骤S102:
步骤S101:确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。
一般来说,所述窄带CORESET0的带宽小于或等于CORESET0的带宽,所述窄带PBCH的带宽小于或等于PBCH的带宽。
更具体而言,在步骤S101中,在一个实施例中,所述窄带UE可以重用Release 15的同步信号块。所述窄带CORESET0与窄带UE的接入资源可以具有预设关联关系。在具体实施中,所述预设关联关系可以包括:窄带CORESET0和/或窄带初始激活下行BWP的带宽是预设值。其中该预设值与band关联。在具体实施中,所述预设关联关系可以包括:所述窄带CORESET0的PDSCH的最低PRB等于CORESET0的最低PRB,和/或,所述窄带初始激活下行BWP的最低PRB等于CORESET0的最低PRB。其中该预设值与band关联。基于所述预设关联关系,窄带UE可以确定窄带CORESET0,和/或,窄带UE能够使用的窄带初始激活下行BWP的频域位置。
进一步,本领域技术人员理解,通常情况下,窄带UE的窄带初始激活下行BWP的频域资源默认等于窄带CORESET0的频域资源,因而,确定所述窄带初始激活下行BWP后,可以一并得知窄带CORESET0的频域资源。
在一个实施例中,所述窄带CORESET0的带宽可以为预设值,和/或,所述窄带初始激活下行BWP的带宽可以为预设值。所述预设值与窄带UE接入的频带(band)有关。
在另一个实施例中,所述窄带UE可以重用Release 15的同步信号块。所述窄带CORESET0与窄带UE的接入资源可以具有预设关联关系。在具体实施中,所述预设关联关系可以包括:所述窄带CORESET0的最低PRB与CORESET0或同步信号块的最低PRB之间的偏移量为预设值。和/或,所述窄带初始激活下行BWP的最低PRB与CORESET0的最低PRB之间的偏移量为预设值。基于所述预设关联关系和所述偏移量,窄带UE可以确定窄带CORESET0,和/ 或,窄带初始激活下行BWP的频域位置,和/或承载SIB1的PDSCH的频域资源。本发明实施例中,同步信号块的最低PRB可以是Common RB中与同步信号块的最低PRB重叠的最低PRB。需要注意的是,有时候,同步信号块的真正最低的子载波可能与此PRB的最低的子载波有子载波级别的偏移。本发明中与任何频域资源(如CORESET0,窄带CORESET0,初始激活下行BWP等)与同步信号块的频域偏移量都可以是指该频域资源的最低PRB与Common RB中与同步信号块的最低PRB重叠的最低PRB之间的偏移量。
例如,所述偏移量的带宽大于或等于所述窄带CORESET0的带宽,和/或,所述偏移量的带宽大于或等于所述窄带初始激活下行BWP的带宽。
又例如,所述偏移量包含的PRB数量大于或等于所述窄带CORESET0包含的PRB数量,和/或,所述偏移量包含的PRB数量大于或等于所述窄带初始激活下行BWP包含的PRB数量。
进一步,所述窄带UE可以根据所述窄带CORESET0与CORESET0或同步信号块之间的偏移量,确定所述窄带CORESET0的最低PRB。或者,可以根据所述窄带初始激活下行BWP与同步信号块之间的偏移量,确定所述窄带初始激活下行BWP的最低PRB。所述窄带UE可以根据所述窄带CORESET0的最低PRB与CORESET0或同步信号块的最低PRB之间的偏移量,确定所述窄带CORESET0的最低PRB。或者,可以根据所述窄带初始激活下行BWP与CORESET0或同步信号块的最低PRB之间的偏移量,确定所述窄带初始激活下行BWP的最低PRB。
进一步,如果窄带UE位于频率范围1(Frequency Range 1,简称FR1),那么基站可以将所述偏移量置于PBCH中,由所述PBCH内的同步信号块索引携带。因为对于FR1,PBCH内的同步信号块索引是保留比特,并不用来指示同步信号块索引。
作为一个变化例,如果窄带UE位于频率范围2(Frequency Range  2,简称FR2),那么基站可以将所述偏移量置于PBCH中,在Type0-PDCCH监听时机指示中携带。在具体实施例中,当所述同步信号块和CORESET复用模式为2或3时,所述Type0-PDCCH监听时机指示可以在含义上等价于Type0-PDCCH监听时机表格,因为此时Type0-PDCCH监听时机指示有3比特是保留的,可以用于指示所述偏移量。
监听作为另一个变化例,当所述同步信号块和CORESET复用模式为2时,所述偏移量在Type0-PDCCH监听时机中携带。
作为另一个变化例,当所述同步信号块和CORESET复用模式为3时,所述偏移量在Type0-PDCCH监听时机指示中携带。
在另一个实施例中,所述窄带UE可以重用Release 15的PSS及SSS,并采用不同于现有技术中的PBCH的窄带PBCH,所述窄带PBCH指的是供窄带UE使用的PBCH,一般来说其带宽小于或等于PBCH带宽。在此条件下,窄带UE可以先接收PBCH,所述PBCH中可以指示窄带UE接收所述窄带PBCH。当PBCH中指示有窄带PBCH时,窄带UE可以接收窄带PBCH,并确定窄带初始激活下行BWP的频域位置。
当窄带UE可以重用Release 15的PSS及SSS,并采用窄带PBCH时,可以设置所述窄带PBCH带宽为预设值。所述预设值与窄带UE接入的频带(band)有关。当窄带UE可以重用Release 15的PSS及SSS,并采用窄带PBCH时,可以设置所述窄带PBCH的最低PRB与同步信号块的最低PRB之间的偏移量为预设值。所述预设值与窄带UE接入的频带(band)有关。在具体实施时,所述偏移量的带宽可以大于或等于所述窄带PBCH的带宽。或者,所述偏移量包含的PRB数量可以大于或等于所述窄带PBCH包含的PRB数量。
在另一个实施例中,所述窄带UE可以采用全新的窄带PSS、窄带SSS和窄带PBCH。在具体实施中,所述窄带UE可以盲检窄带PSS、窄带SSS,获得窄带PBCH的时频位置。之后,窄带UE接收所述窄 带PBCH,以得到窄带PBCH信息。一般来说,所述窄带PSS的带宽小于或等于PSS的带宽,所述窄带SSS的带宽小于或等于SSS的带宽。所述窄带PBCH信息可以包含:所述窄带CORESET0和/或窄带初始激活下行BWP的最低PRB与同步信号块的最低PRB之间的偏移量。进一步,所述窄带UE可以获取窄带CORESET0和/或窄带初始激活下行BWP的频域位置,以及窄带初始激活下行BWP的频域资源。
之后,可以执行步骤S102,即在所述频域位置接收CORESET0和/或窄带初始激活下行BWP,和/或,接收窄带SIB1。
当窄带UE支持的带宽小于CORESET0或承载SIB1的PDSCH的最大带宽时,窄带UE可以按照如下具体实施例所述方式,获取窄带CORESET0和窄带初始激活下行BWP。
实施例一:重用Release 15的同步信号块。
对于窄带CORESET0和/或窄带初始激活下行BWP的带宽,默认地,窄带UE假设窄带CORESET0和/或窄带初始激活下行BWP的带宽与需要接入的带宽具有预设的关联关系。对于窄带CORESET0和/或窄带初始激活下行BWP的频域位置,可以采用如下方案:
方案1:默认地,窄带CORESET0和/或窄带初始激活下行BWP的最低的PRB为CORESET0的最低的PRB。该方案适合于CORESET0的时频资源较多和承载SIB1的PDSCH的时频资源较多的情形,因为此时CORESET0的部分资源可能被窄带CORESET0的Type0-PDCCH占据,承载SIB1的PDSCH的部分资源可能被窄带初始激活下行BWP占据。
方案2:默认地,窄带CORESET0和/或窄带初始激活下行BWP的最低的PRB和CORESET0或同步信号块的最低的PRB之间的偏移量为预设值。所述预设值对应的带宽大于等于窄带CORESET0和/或窄带初始激活下行BWP的带宽。也就是说,所述预设值带宽对应 某个子载波间隔下的PRB数大于等于窄带CORESET0和/或窄带初始激活下行BWP的带宽对应某个子载波间隔下的PRB数。该方案适合于CORESET0的时频资源较少和承载SIB1的PDSCH的时频资源较少的情形。
方案3:窄带UE通过获取同步信号块或CORESET0和窄带CORESET0的偏移量,获得窄带CORESET0的位置。更具体地说,窄带UE通过获取同步信号块或CORESET0的最低PRB与窄带CORESET0的最低PRB之间的偏移量,获得窄带CORESET0的最低PRB的位置。由于重用Release 15的同步信号块,因此所述偏移量可以通过同步信号块内的保留比特或者保留码本点(codepoints)来传递。
对于频率范围1,窄带UE可以通过获取PBCH内的同步信号块索引(即同步信号块时间索引的高3比特,3MSB)来获取所述偏移量。对于频率范围2,窄带UE可以通过获取PBCH内的Type0-PDCCH监听时机指示(4个比特,用表格定义)的保留比特或codepoints来获取所述偏移量。在一个例子中,当在FR2中同步信号块和CORESET复用模式为2时,Type0-PDCCH监听时机指示表示所述偏移量。在另一个例子中,当在FR2中同步信号块和CORESET复用模式为3时,Type0-PDCCH监听时机指示所述偏移量。
实施例二:重用Release 15的PSS/SSS,采用窄带PBCH。
默认地,窄带PBCH的带宽是预设值。其中该预设值与band关联。默认地,窄带PBCH的最低PRB与同步信号块的最低PRB的偏移量为预设值。所述偏移量对应的带宽大于等于窄带PBCH的带宽。也就是说,所述偏移量对应某个子载波间隔下的PRB数大于等于窄带PBCH的带宽对应某个子载波间隔下的PRB数。UE通过获取所述窄带PBCH指示,来获取窄带CORESET0和/或窄带初始激活下行BWP的带宽和频域位置。具体地说,窄带UE可以通过获取所述窄带PBCH指示的同步信号块的最低PRB与窄带CORESET0和/或窄 带初始激活下行BWP最低PRB之间的偏移量,获取窄带CORESET0和/或窄带初始激活下行BWP的频域位置。
实施例三:窄带UE是否完全重用Release 15的同步信号块由PBCH指示。
窄带UE接收到PBCH,并从PBCH信息(例如,MIB)得知,窄带UE是否完全重用Release 15的同步信号块。在具体实施中,当窄带UE支持的带宽大于或等于CORESET0或承载SIB1的PDSCH的最大带宽时,窄带UE可以通过接收CORESET0或承载SIB1的PDSCH,来获取窄带CORESET0和承载窄带SIB1的PDSCH。
实施例四:
所述窄带UE可以接收CORESET0中的Type0-PDCCH,获得承载SIB的PDSCH的调度信息。之后,所述窄带UE可以利用所述调度信息,接收承载SIB的PDSCH,获取SIB消息。所述SIB消息可以包含所述窄带CORESET0和/或所述窄带初始激活下行BWP。例如,所述SIB消息可以包含窄带SIB1消息和SIB1消息。所述窄带SIB1消息可以包含窄带CORESET0和/或所述窄带初始激活下行BWP。该技术方案的优势在于,窄带UE既接收了SIB1,又接收了窄带SIB1,而SIB1中有些信息对于窄带UE是有用的,比如小区级别的信息,窄带UE可以获取到这些对其有用的SIB消息。
实施例五:
窄带UE可以接收CORESET0中的Type0B-PDCCH,其中Type0B-PDCCH为调度承载窄带SIB1的PDSCH的PDCCH。之后,所述窄带UE可以从Type0B-PDCCH中,获得承载窄带SIB1的PDSCH的调度信息。所述窄带UE可以接收承载窄带SIB1的PDSCH,获取窄带SIB1。所述窄带SIB1的带宽小于或等于所述SIB1的带宽。窄带UE还可以接收CORESET0中的Type0A-PDCCH,其中Type0A-PDCCH为调度承载OSI的PDSCH的PDCCH。之后,所述 窄带UE可以从Type0A-PDCCH中,获得承载OSI的PDSCH的调度信息。所述窄带UE可以接收承载OSI的PDSCH,获取OSI。OSI可以包含所述窄带SIB1。该技术方案的优势在于,窄带UE可以选择性地接收SIB1或窄带SIB1,节省终端能耗。在实际应用中,根据基站指示或者不同场景,窄带UE可以选择当前需要接收的SIB1或窄带SIB1。具体地说,UE可以获取寻呼中的消息,如果所述消息指示***更新(System information update),那么UE可以接收SIB1,如果所述消息指示窄带***更新,那么UE可以接收窄带SIB1。
实施例六:
在具体实施中,可以通过PBCH内的比特指示Type0-PDCCH是否调度承载窄带SIB1的PDSCH,例如,利用PBCH信息中的一个比特指示是否存在窄带PBCH。
具体实施中,所述PBCH可以指示同步信号块与CORESET0的偏移量,由偏移量与阈值的比较结果确定是否存在窄带PBCH。如果所述偏移量小于或等于某个阈值,那么可以表示存在窄带PBCH,并按照实施例二中提供的方案确定窄带CORESET0,和/或,窄带初始激活下行BWP的频域位置。否则,如果所述偏移量大于所述阈值,那么可以按照实施例一确定窄带CORESET0,和/或,窄带初始激活下行BWP的频域位置。
本领域技术人员理解,当所述偏移量为零或正数时,同步信号块的最低PRB的在公共资源块(Common Resource Block)中的编号比CORESET0的最低PRB的在公共资源块中的编号高。这样做的好处是:如果所述偏移量小于或等于某个阈值,那么同步信号块与CORESET0的频域资源的底端差不多是对齐,因此,基站对承载SIB1(包含窄带SIB1)的PDSCH的频域资源分配可以从同步信号块的最高PRB的上方开始连续分配PRB;否则,同步信号块与CORESET0的频域资源的底端有一定的频域间隔,因此,基站对承载SIB1的PDSCH的频域资源分配可以从同步信号块的最高PRB的上方开始连 续分配PRB,而对窄带初始激活下行BWP的频域资源分配可以从CORESET0的最低PRB开始连续分配PRB,从而可以达到对资源的充分利用。
由上,本发明实施例提供的技术方案,为确定窄带UE的接入资源,进而获取和配置窄带CORESET0和承载SIB1的PDSCH,以及窄带初始激活下行BWP的频域资源的最大带宽提供了可行方案。
图2是本发明实施例的一种接入资源的确定装置的结构示意图。所述接入资源的确定装置2(以下简称确定装置2)可以用于实施图1所示方法技术方案,由UE执行。
具体而言,所述确定装置2可以包括:确定模块21,适于确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。
在具体实施中,所述窄带CORESET0和/或窄带初始激活下行BWP的最低PRB可以等于CORESET0的最低PRB。
在具体实施中,所述窄带CORESET0和/或窄带初始激活下行BWP的带宽为预设值。
在具体实施中,所述窄带CORESET0的最低PRB等于CORESET0的最低PRB,和/或,所述窄带初始激活下行BWP的最低PRB等于CORESET0的最低PRB。
在具体实施中,所述窄带CORESET0的最低PRB与CORESET0或同步信号块的最低PRB之间的偏移量为预设值,和/或,所述窄带初始激活下行BWP的最低PRB与CORESET0的最低PRB之间的偏移量为预设值。
在具体实施中,所述偏移量的带宽大于或等于所述窄带CORESET0的带宽,和/或,所述偏移量的带宽大于或等于所述窄带初始激活下行BWP的带宽。
在具体实施中,所述偏移量包含的PRB数量大于或等于所述窄带CORESET0包含的PRB数量,和/或,所述偏移量包含的PRB数量大于或等于所述窄带初始激活下行BWP包含的PRB数量。
在具体实施中,所述确定装置2还可以包括:获取模块22,适于获取所述窄带CORESET0与CORESET0或同步信号块之间的偏移量,和/或,获取所述窄带初始激活下行BWP与同步信号块之间的偏移量。
在具体实施中,所述确定模块21可以包括:第一确定子模块211,适于根据所述偏移量,确定所述窄带CORESET0的最低PRB,和/或,窄带初始激活下行BWP的最低PRB。
在具体实施中,如果位于频率范围1,则所述偏移量在PBCH内的同步信号块索引中携带。
在具体实施中,如果位于频率范围2,则所述偏移量在Type0-PDCCH监听时机指示中携带。
在具体实施中,当所述同步信号块和CORESET复用模式为2时,所述偏移量在Type0-PDCCH监听时机指示中携带。
在具体实施中,当所述同步信号块和CORESET复用模式为3时,所述偏移量在Type0-PDCCH监听时机指示中携带。
在具体实施中,所述确定模块21适于接收所述窄带PBCH,以得到窄带PBCH信息;基于所述窄带PBCH信息,获取窄带CORESET0和/或窄带初始激活下行BWP。
在具体实施中,所述窄带PBCH的最低PRB与同步信号块的最低PRB之间的偏移量为预设值。
在具体实施中,所述偏移量的带宽大于或等于所述窄带PBCH的带宽。
在具体实施中,所述偏移量包含的PRB数量大于或等于所述窄 带PBCH包含的PRB数量。
在具体实施中,所述确定模块21可以包括:第一接收子模块212,适于接收CORESET0中的Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;第二接收子模块213,适于基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
在具体实施中,所述确定模块21可以包括:第三接收子模块214,如果PBCH内的比特指示Type0-PDCCH调度承载窄带SIB1的PDSCH,或者所述PBCH内指示的同步信号块与CORESET0之间的偏移量小于或等于预设阈值,则接收所述CORESET0中的Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;第四接收子模块215,适于基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
在具体实施中,所述确定模块21还适于接收CORESET0中的Type0B-PDCCH,所述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
在具体实施中,如果PBCH内的比特指示Type0-PDCCH调度承载窄带SIB1的PDSCH,或者所述PBCH内指示的同步信号块与CORESET0之间的偏移量大于或等于预设阈值,则所述确定模块21还适于接收所述CORESET0中的Type0B-PDCCH,所述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;基于所述调度信息,接收PDSCH,以获取所述窄带SIB1。
在具体实施中,所述确定装置2还可以包括:接收模块23,适于在所述频域位置接收所述CORESET0和/或窄带初始激活下行BWP,和/或,接收所述SIB1。
在具体实施中,所述确定模块21还适于接收Type0A-PDCCH,所述Type0A-PDCCH用于调度承载OSI的PDSCH的PDCCH;基于所述Type0A-PDCCH获得承载OSI的PDSCH的调度信息;基于所述调度信息,接收所述PDSCH,以获取OSI,OSI包含所述窄带SIB1。
关于所述确定装置2的原理、具体实现和有益效果请参照前文及图1示出的方法的相关描述,此处不再赘述。
本发明实施例还提供了一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述图1示出的方法的步骤。所述存储介质可以是计算机可读存储介质,例如可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器,还可以包括光盘、机械硬盘、固态硬盘等。
本发明实施例还提供了一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行图1示出的方法的步骤。
其中,终端可以指各种形式的用户设备(user equipment,简称UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,建成MS)、远方站、远程终端、移动设备、用户终端、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字处理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称PLMN)中的终端设备等,本申请实施例对此并不限定。
进一步地,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application  specific integrated circuit,简称ASIC)、现成可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
进一步地,所述存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法、装置和***,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。 另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (25)

  1. 一种接入资源的确定方法,其特征在于,包括:
    确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。
  2. 根据权利要求1所述的确定方法,其特征在于,所述窄带CORESET0和/或窄带初始激活下行BWP的带宽为预设值。
  3. 根据权利要求1所述的确定方法,其特征在于,所述窄带CORESET0的最低PRB等于CORESET0的最低PRB,和/或,所述窄带初始激活下行BWP的最低PRB等于CORESET0的最低PRB。
  4. 根据权利要求1所述的确定方法,其特征在于,所述窄带CORESET0的最低PRB与CORESET0或同步信号块的最低PRB之间的偏移量为预设值,和/或,所述窄带初始激活下行BWP的最低PRB与CORESET0的最低PRB之间的偏移量为预设值。
  5. 根据权利要求4所述的确定方法,其特征在于,所述偏移量的带宽大于或等于所述窄带CORESET0的带宽,和/或,所述偏移量的带宽大于或等于所述窄带初始激活下行BWP的带宽。
  6. 根据权利要求4所述的确定方法,其特征在于,所述偏移量包含的PRB数量大于或等于所述窄带CORESET0包含的PRB数量,和/或,所述偏移量包含的PRB数量大于或等于所述窄带初始激活下行BWP包含的PRB数量。
  7. 根据权利要求1所述的确定方法,其特征在于,还包括:获取所述窄带CORESET0与CORESET0或同步信号块之间的偏移量,和/或,获取所述窄带初始激活下行BWP与同步信号块之间的偏移量。
  8. 根据权利要求7所述的确定方法,其特征在于,所述确定窄带 CORESET0和/或窄带初始激活下行BWP的频域位置包括:
    根据所述偏移量,确定所述窄带CORESET0的最低PRB,和/或,窄带初始激活下行BWP的最低PRB。
  9. 根据权利要求7所述的确定方法,其特征在于,如果位于频率范围1,则所述偏移量在PBCH内的同步信号块索引中携带。
  10. 根据权利要求7所述的确定方法,其特征在于,如果位于频率范围2,则所述偏移量在Type0-PDCCH监听时机指示中携带。
  11. 根据权利要求7所述的确定方法,其特征在于,当所述同步信号块和CORESET复用模式为2时,所述偏移量在Type0-PDCCH监听时机指示中携带。
  12. 根据权利要求7所述的确定方法,其特征在于,当所述同步信号块和CORESET复用模式为3时,所述偏移量在Type0-PDCCH监听时机指示中携带。
  13. 根据权利要求1所述的确定方法,其特征在于,所述确定窄带CORESET0和/或窄带初始激活下行BWP包括:
    接收所述窄带PBCH,以得到窄带PBCH信息;
    基于所述窄带PBCH信息,获取窄带CORESET0和/或窄带初始激活下行BWP。
  14. 根据权利要求13所述的确定方法,其特征在于,所述窄带PBCH的带宽为预设值。
  15. 根据权利要求13所述的确定方法,其特征在于,所述窄带PBCH的最低PRB与同步信号块的最低PRB之间的偏移量为预设值。
  16. 根据权利要求15所述的确定方法,其特征在于,所述偏移量的带宽大于或等于所述窄带PBCH的带宽。
  17. 根据权利要求15所述的确定方法,其特征在于,所述偏移量包含 的PRB数量大于或等于所述窄带PBCH包含的PRB数量。
  18. 根据权利要求1所述的确定方法,其特征在于,所述确定窄带SIB1包括:
    接收Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;
    基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
  19. 根据权利要求1所述的确定方法,其特征在于,所述确定窄带SIB1包括:
    如果PBCH内的比特指示Type0-PDCCH调度承载窄带SIB1的PDSCH,或者所述PBCH内指示的同步信号块与CORESET0之间的偏移量小于或等于预设阈值,则接收所述Type0-PDCCH,以根据所述Type0-PDCCH得到PDSCH的调度信息;
    基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
  20. 根据权利要求1所述的确定方法,其特征在于,所述确定窄带SIB1包括:
    接收Type0B-PDCCH,所述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;
    基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;
    基于所述调度信息,接收所述PDSCH,以获取所述窄带SIB1。
  21. 根据权利要求1所述的确定方法,其特征在于,所述确定窄带SIB1包括:
    如果PBCH内的比特指示Type0-PDCCH调度承载窄带SIB1的PDSCH,或者所述PBCH内指示的同步信号块与CORESET0之间的偏移量大于或等于预设阈值,则接收所述Type0B-PDCCH,所 述Type0B-PDCCH用于调度承载窄带SIB1的PDSCH的PDCCH;
    基于所述Type0B-PDCCH获得承载窄带SIB1的PDSCH的调度信息;
    基于所述调度信息,接收PDSCH,以获取所述窄带SIB1。
  22. 根据权利要求1所述的确定方法,其特征在于,所述确定窄带SIB1包括:
    接收Type0A-PDCCH,所述Type0A-PDCCH用于调度承载OSI的PDSCH的PDCCH;
    基于所述Type0A-PDCCH获得承载OSI的PDSCH的调度信息;
    基于所述调度信息,接收所述PDSCH,以获取OSI,OSI中包含所述窄带SIB1。
  23. 一种接入资源的确定装置,其特征在于,包括:
    确定模块,适于确定窄带CORESET0和/或窄带初始激活下行BWP的频域位置,和/或,确定窄带SIB1。
  24. 一种存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至22任一项所述的方法的步骤。
  25. 一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至22任一项所述的方法的步骤。
PCT/CN2020/108109 2019-08-16 2020-08-10 接入资源的确定方法及装置、存储介质、终端 WO2021031897A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/635,955 US20220330242A1 (en) 2019-08-16 2020-08-10 Access resource determination method and device, storage medium and terminal
KR1020227008785A KR20220051205A (ko) 2019-08-16 2020-08-10 액세스 자원 결정 방법 및 장치, 저장 매체 그리고 단말
JP2022510169A JP7459229B2 (ja) 2019-08-16 2020-08-10 アクセスリソース決定方法並びに装置、記憶媒体および端末
EP20854660.6A EP4017178A4 (en) 2019-08-16 2020-08-10 METHOD AND DEVICE FOR DETERMINING ACCESS RESOURCE, STORAGE MEDIA AND TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910762910.6A CN110475361B (zh) 2019-08-16 2019-08-16 接入资源的确定方法及装置、存储介质、终端
CN201910762910.6 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031897A1 true WO2021031897A1 (zh) 2021-02-25

Family

ID=68511002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108109 WO2021031897A1 (zh) 2019-08-16 2020-08-10 接入资源的确定方法及装置、存储介质、终端

Country Status (6)

Country Link
US (1) US20220330242A1 (zh)
EP (1) EP4017178A4 (zh)
JP (1) JP7459229B2 (zh)
KR (1) KR20220051205A (zh)
CN (2) CN110475361B (zh)
WO (1) WO2021031897A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275430A1 (en) * 2021-07-01 2023-01-05 Nokia Technologies Oy Blind physical broadcast channel detection for narrowband new radio

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505642B (zh) * 2019-08-16 2022-02-11 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
CN110475361B (zh) * 2019-08-16 2022-06-10 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
CN111130716B (zh) * 2019-12-12 2022-04-22 展讯通信(上海)有限公司 候选同步信号块的处理方法及其装置
KR20220129600A (ko) * 2020-01-22 2022-09-23 후아웨이 테크놀러지 컴퍼니 리미티드 초기 대역폭 부분(bwp)을 결정하는 방법 및 장치 그리고 저장 매체
EP4109955A4 (en) * 2020-02-17 2023-11-08 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DETERMINING CONFIGURATION INFORMATION AND COMPUTER-READABLE STORAGE MEDIUM
US11751151B2 (en) 2020-02-28 2023-09-05 Qualcomm Incorporated Physical broadcast channel enhancement for new radio light communications
CN113453347A (zh) * 2020-03-26 2021-09-28 夏普株式会社 由用户设备执行的方法以及用户设备
EP4132129A4 (en) * 2020-03-31 2023-12-27 NTT DoCoMo, Inc. TERMINAL DEVICE, RADIO COMMUNICATION METHOD AND BASE STATION
SG10202003546XA (en) * 2020-04-17 2021-11-29 Panasonic Ip Corp America Control resource set zero for reduced capability new radio devices
JP2023525863A (ja) * 2020-05-15 2023-06-19 北京小米移動軟件有限公司 初期アクセス帯域幅部分の決定及び構成方法、装置及び記憶媒体
WO2021258262A1 (zh) * 2020-06-22 2021-12-30 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
BR112022027000A2 (pt) * 2020-07-03 2023-01-24 Beijing Xiaomi Mobile Software Co Ltd Métodos realizados por uma estação base para indicar um recurso e por um terminal para determinar um recurso, aparelhos aplicáveis a uma estação base para indicar um recurso e a um terminal para determinar um recurso, dispositivo eletrônico, e, meio de armazenamento legível por computador armazenado com um programa de computador
EP4192150A1 (en) * 2020-07-27 2023-06-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel transmission method, terminal device, and network device
CN116491148A (zh) * 2020-10-14 2023-07-25 富士通株式会社 数据接收方法,数据发送方法以及装置
JP2024502443A (ja) * 2021-01-12 2024-01-19 インターデイジタル パテント ホールディングス インコーポレイテッド 低減された能力のwtruのための低減された帯域幅のための方法、装置、及びシステム
CN115119183A (zh) * 2021-03-19 2022-09-27 华为技术有限公司 一种通信方法及通信装置
CN115189847A (zh) * 2021-04-06 2022-10-14 展讯通信(上海)有限公司 一种带宽部分的激活方法和配置方法及电子设备
CN113424593B (zh) * 2021-05-10 2023-04-11 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
CN115883008A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 通信方法及装置
US12035356B2 (en) * 2021-11-03 2024-07-09 At&T Intellectual Property I, L.P. Mobile broadband and machine type communication network coexistence
GB2622825A (en) * 2022-09-29 2024-04-03 Nokia Technologies Oy Method, apparatus and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
US20190007124A1 (en) * 2017-06-27 2019-01-03 Lg Electronics Inc. Method and device for relaying signal in mobile communication system
CN110475361A (zh) * 2019-08-16 2019-11-19 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
CN110505642A (zh) * 2019-08-16 2019-11-26 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043555A1 (en) * 2014-09-18 2016-03-24 Lg Electronics Inc. Method and apparatus for using smaller bandwidth for low cost user equipment in wireless communication system
CN106454695B (zh) * 2015-08-12 2021-03-26 中兴通讯股份有限公司 一种机器类通信***中的信息传输方法及装置
WO2018085145A1 (en) * 2016-11-02 2018-05-11 Idac Holding, Inc. Receiver bandwidth adaptation
US10498435B2 (en) * 2017-02-14 2019-12-03 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US20200367242A1 (en) * 2017-04-28 2020-11-19 Electronics And Telecommunications Research Institute Method for transmitting and receiving downlink channel and reference signal in communication system
US11115868B2 (en) * 2017-05-15 2021-09-07 Samsung Electronics Co., Ltd. Method and apparatus for control resource set configuration and monitoring of downlink control channel in wireless communication system
WO2019027242A1 (en) * 2017-07-31 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR DETECTING INDICATION INFORMATION AND TRANSMISSION RELAY METHODS AND DEVICES
US10512072B2 (en) * 2017-09-11 2019-12-17 Lg Electronics Inc. Method and apparatus for transmitting downlink control information in wireless communication system
US10993248B2 (en) * 2017-11-17 2021-04-27 Qualcomm Incorporated Designs for remaining minimum system information (RMSI) control resource set (CORESET) and other system information (OSI) coreset
JP6831040B2 (ja) * 2018-02-21 2021-02-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムでbwp又はビーム切り替えによって制御チャネルを構成する方法及び装置
US11438117B2 (en) * 2018-04-04 2022-09-06 Lg Electronics Inc. Method for receiving reference signal by terminal in wireless communication system, and terminal using same method
CN111971925B (zh) * 2018-04-06 2024-04-26 联想(新加坡)私人有限公司 配置带宽部分
WO2020019101A1 (en) * 2018-07-23 2020-01-30 Qualcomm Incorporated Utilization of a control region for downlink transmission
US11324030B2 (en) * 2018-08-18 2022-05-03 Qualcomm Incorporated System information block delivery for narrowband user equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190007124A1 (en) * 2017-06-27 2019-01-03 Lg Electronics Inc. Method and device for relaying signal in mobile communication system
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
CN110475361A (zh) * 2019-08-16 2019-11-19 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
CN110505642A (zh) * 2019-08-16 2019-11-26 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "RMSI delivery and CORESET configuration", 3GPP DRAFT; R1-1806602 LG_RMSI CORESET CONFIGURATION_FINAL, vol. RAN WG1, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 16, XP051462642 *
MEDIATEK INC: "Summary of Bandwidth Part Remaining Issues", 3GPP DRAFT; R1-1809849_SUMMARY OF BWP REMAINING ISSUES_R3, vol. RAN WG1, 23 August 2018 (2018-08-23), Gothenburg, Sweden, pages 1 - 23, XP051517206 *
See also references of EP4017178A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275430A1 (en) * 2021-07-01 2023-01-05 Nokia Technologies Oy Blind physical broadcast channel detection for narrowband new radio

Also Published As

Publication number Publication date
EP4017178A4 (en) 2022-10-12
KR20220051205A (ko) 2022-04-26
US20220330242A1 (en) 2022-10-13
JP7459229B2 (ja) 2024-04-01
JP2022544694A (ja) 2022-10-20
EP4017178A1 (en) 2022-06-22
CN110475361B (zh) 2022-06-10
CN115066023A (zh) 2022-09-16
CN110475361A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2021031897A1 (zh) 接入资源的确定方法及装置、存储介质、终端
WO2021031895A1 (zh) 接入资源的确定方法及装置、存储介质、终端
CN110856180B (zh) 数据接收方法及装置、存储介质、终端
CN110892770B (zh) 传输信号的方法、网络设备和终端设备
WO2020025061A1 (zh) 传输信号的方法、终端设备和网络设备
EP3165028A1 (en) Cell discovery in a wireless network using an unlicensed radio frequency spectrum band
CN114679770B (zh) Pdcch的监听方法和设备
CN113726496B (zh) 非授权频段上ssb的传输方法和设备
CN113316236B (zh) 寻呼处理方法、装置、设备及存储介质
EP3780761A1 (en) Method and device for transmitting power saving signal
CN113271683A (zh) 一种基于ue能力进行通信的方法和ue及网络侧设备
CN110199553B (zh) 用于传输信息的方法、终端设备和网络设备
CN111050400B (zh) 信息处理的方法和装置
WO2021190494A1 (zh) 由用户设备执行的方法以及用户设备
CN114599057B (zh) 驻留在dl bwp的方法、设备、装置及存储介质
US11856539B2 (en) Method and device for transmitting downlink control information
US12052203B2 (en) Access resource determination method and device, storage medium, and terminal
JP7425885B2 (ja) 無線通信における物理ブロードキャストチャネル拡張
CN107743061B (zh) 一种标识信息的传输方法及装置
CN117675148A (zh) 资源确定方法和装置
CN113261258A (zh) 传输信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008785

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020854660

Country of ref document: EP

Effective date: 20220316