WO2020025061A1 - 传输信号的方法、终端设备和网络设备 - Google Patents

传输信号的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020025061A1
WO2020025061A1 PCT/CN2019/099086 CN2019099086W WO2020025061A1 WO 2020025061 A1 WO2020025061 A1 WO 2020025061A1 CN 2019099086 W CN2019099086 W CN 2019099086W WO 2020025061 A1 WO2020025061 A1 WO 2020025061A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time
resource
terminal device
frequency resource
Prior art date
Application number
PCT/CN2019/099086
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020217006392A priority Critical patent/KR20210038955A/ko
Priority to JP2021505314A priority patent/JP2021533628A/ja
Priority to AU2019314754A priority patent/AU2019314754A1/en
Priority to EP19844247.7A priority patent/EP3833114A4/en
Priority to CN201980051606.9A priority patent/CN112534886A/zh
Publication of WO2020025061A1 publication Critical patent/WO2020025061A1/zh
Priority to US17/166,688 priority patent/US20210159961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method for transmitting signals, a terminal device, and a network device.
  • the terminal needs to continuously detect the physical downlink control channel (PDCCH) at each open window (On Duration) to determine whether the base station schedules and sends it to itself. Data transmission.
  • PDCCH physical downlink control channel
  • On Duration open window
  • an indication signal may be sent to the terminal before the OnDuration, and the terminal performs PDCCH detection and data reception in the OnDuration of the DRX only after detecting the indication signal, otherwise the PDCCH detection is not performed.
  • This indication signal may also be referred to as a power saving signal (WUS).
  • WUS power saving signal
  • a terminal in the idle state to receive a paging message it is determined whether the PDCCH needs to be detected at the current PO by detecting an energy saving signal before a paging occasion (PO). The time-frequency resources occupied by the energy-saving signals are not yet determined.
  • the embodiments of the present application provide a method for transmitting a signal, which can maintain better backward compatibility and facilitate terminal equipment to perform rate matching on a resource where a first signal similar to an energy-saving signal is located.
  • a method for transmitting a signal includes: a terminal device determining a first time-frequency resource for carrying a first signal, where the first signal is used to indicate detection processing on a corresponding channel or signal
  • the first time-frequency resource belongs to a CSI-RS resource set capable of carrying a channel state information reference signal CSI-RS or a synchronization signal block SSB resource set capable of carrying a synchronization signal SS / physical broadcast channel PBCH; the terminal device is in the first A first signal is received on a time-frequency resource.
  • a method for transmitting a signal includes: a network device determines a first time-frequency resource for carrying a first signal, and the first signal is used to instruct a terminal device to perform a corresponding channel or signal. Detection processing, the first time-frequency resource belongs to a CSI-RS resource set capable of carrying a channel state information reference signal CSI-RS or a synchronization signal block SSB resource set capable of carrying a synchronization signal SS / physical broadcast channel PBCH; the network device is in Sending a first signal to the terminal device on the first time-frequency resource.
  • a terminal device is provided to execute the method in the first aspect or the implementations thereof.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or the implementation manners thereof.
  • the network device includes a function module for executing the method in the second aspect or the implementations thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or the implementations thereof.
  • a chip is provided for implementing any one of the first to second aspects or a method in each implementation thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in any one of the first to second aspects described above or in various implementations thereof.
  • a computer program that, when run on a computer, causes the computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • a predefined time-frequency resource that can be used to carry CSI-RS or a time-frequency resource that can be used to carry SS / PBCH blocks carries a first signal similar to an energy-saving signal, which can maintain a better backward direction. Compatibility, and it is convenient for the terminal device to perform rate matching on the resource where the first signal is located.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a signal transmission method according to an embodiment of the present application.
  • FIG. 4 is a configuration diagram of a CSI-RS resource according to an embodiment of the present application.
  • FIG. 5 is a configuration diagram of an SSB resource according to an embodiment of the present application.
  • FIG. 6 is another schematic diagram of a signal transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system applied in the embodiment of the present application may include a network device, and the network device may be a device that communicates with a terminal device (or a communication terminal or a terminal).
  • a network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within the coverage area.
  • the network device may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system ( Evolutional Node (B, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a mobile switching center, relay station, access point, vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Evolutional Node
  • eNB Evolutional Node
  • CRAN Cloud Radio Access Network
  • the network device may be a mobile switching center, relay station, access point, vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices
  • the communication system applied in the embodiments of the present application further includes at least one terminal device located in a coverage area of the network device.
  • terminal equipment used herein includes, but is not limited to, UE, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • Functional handheld devices, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment and the like are not limited in the embodiments of the present invention.
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • the DRX mechanism includes configuring a DRX cycle for a UE in a connected state.
  • a DRX cycle consists of "OnDuration” and "Opportunity for DRX".
  • On Duration that is, the opening window of the DRX
  • the UE monitors and receives the downlink channels and signals including the physical downlink control channel (PDCCH); during the “Opportunity for DRX” time, the DRX is turned off.
  • PDCCH physical downlink control channel
  • the UE does not receive or detect downlink channels and signals such as PDCCH to reduce power consumption.
  • the UE needs to receive paging messages in a similar manner to DRX.
  • the UE only receives paging messages at the PO, and does not accept paging messages outside the PO.
  • the UE determines whether there is a paging message by detecting a PDCCH signal scrambled through a paging radio network temporary identity (P-RNTI).
  • P-RNTI paging radio network temporary identity
  • the base station determines that the terminal needs to be scheduled in DRX OnDuration, it can send an instruction signal to the terminal before OnDuration, otherwise it will not send the instruction signal to the terminal.
  • the terminal performs PDCCH detection and data reception in the on-duration of DRX only after detecting the indication signal; otherwise, it does not perform PDCCH detection.
  • the above indication signal is beneficial to the energy saving of the terminal, and we can also call it WUS.
  • the UE only needs to detect the energy-saving signal to determine whether the PDCCH needs to be detected during this OnDuration, which can save power compared to directly detecting the PDCCH.
  • the UE in the idle state to receive the paging message it is determined whether the PDCCH needs to be detected at the current PO by detecting the energy saving signal before the PO, see FIG. 2.
  • WUS is introduced in NR, but the time-frequency resources where WUS is located have not been determined. Because the channels and signals defined in the NR occupy the corresponding time-frequency resources, the time-frequency resources occupied by the WUS cannot conflict with the existing channels and signals, and backward compatibility needs to be maintained.
  • the embodiment of the present application provides a method for transmitting a signal, and a predefined time-frequency resource that can be used to carry a channel state information reference signal (CSI-RS) or can be used to carry synchronization Signal / Physical Broadcast Channel (Synchronization / Signal / Broadcasting Channel (SS / PBCH) Block (SSB)
  • CSI-RS channel state information reference signal
  • SSB synchronization Signal / Physical Broadcast Channel
  • SSB synchronization Signal / Physical Broadcast Channel
  • the time-frequency resource carries the first signal similar to the energy-saving signal, which can maintain better backward compatibility and has It is convenient for the terminal device to perform rate matching on the resource where the first signal is located.
  • FIG. 3 shows a schematic block diagram of a signal transmission method 200 according to an embodiment of the present application. As shown in FIG. 3, the method 200 includes some or all of the following:
  • the terminal device determines a first time-frequency resource for carrying a first signal, where the first signal is used to indicate detection processing on a corresponding channel or signal, and the first time-frequency resource belongs to a reference signal capable of carrying channel state information.
  • the terminal device receives a first signal on the first time-frequency resource.
  • CSI-RS was introduced for the measurement of downlink channels.
  • Different communication systems have different definitions of CSI-RS.
  • Table 1 shows the possible positions of CSI-RS in a time slot. The number of ports that can pass CSI-RS, Code Division Multiplexing (CDM) type, CDM group index, and resources. Element (resource element, RE) position, as well as periodicity and other characteristics.
  • CDM Code Division Multiplexing
  • CDM types may include No CDM, Frequency Division-CDM (FD-CDM) 2, CDM 4 (FD2, Time Division (TD) 2), CDM8 (FD2, TD4), and so on.
  • FD-CDM Frequency Division-CDM
  • TD Time Division
  • CDM8 FD2, TD4
  • the CSI-RS resource may be as shown in FIG. 4, the horizontal axis is time domain t, and the vertical axis is frequency domain f.
  • the CSI-RS resource includes an 8-port CSI-RS resource. Including 4 CDM groups, each CDM group includes CSI-RS resources of 2 ports, and the CDM type is frequency division FD-CDM2, that is, two REs in the frequency domain use the CDM to carry the CSI-RS of the two ports.
  • the CSI-RS resource set may be all the CSI-RS resources in Table 1 defined above, or may be a part of the CSI-RS resources in Table 1.
  • the CSI-RS resource set may be Includes CSI-RS resources of index 1 to index 5 in Table 1.
  • the embodiment of the present application does not place any limitation on the CSI-RS resource set, as long as it is defined to carry the CSI-RS. That is, the first signal may be carried on any CSI-RS resource defined in Table 1 above.
  • the CSI-RS resources configured by the network device for the terminal device to carry the CSI-RS and the resources configured by the network device for the terminal device to carry the first signal belong to the aforementioned CSI-RS
  • the collection of resources must not conflict with each other.
  • an SS / PBCH burst includes one or more SSBs.
  • One SSB is used to carry the SS and PBCH of a beam. Therefore, an SS / PBCH burst can include SSBs of SSB number beams in the cell.
  • the maximum number of SSBs is related to the frequency band of the system. For example, for a frequency range less than 3GHz, L is 4; for a frequency range from 3GHz to 6GHz, L is 8; for a frequency range from 6GHz to 52.6GHz, L is 64 .
  • An SSB may contain a primary synchronization signal (PSS) of one symbol, a secondary synchronization signal (SSS) of one symbol, and a PBCH of two symbols. All SSBs in the SS / PBCH burst are sent within a time window of 5ms and are repeatedly sent at a certain period. The period is configured by the higher-level parameter SSB-timing, including 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • FIG. 5 shows that the distribution of SSBs in one time slot with a subcarrier interval of 15 kHz as an example is the same.
  • the time-frequency resources used to carry the SSB are predefined and can include L time-frequency resource locations.
  • the network device can send less than L SSBs to the terminal device, that is, the SSBs actually transmitted.
  • the SSB actually sent can be notified to the terminal device through a bitmap, and the terminal device can obtain the time-frequency resource location of the SSB actually sent according to the bitmap information.
  • the SSB resource set may be all the predefined SSB resources or part of the candidate SSB resources.
  • the embodiment of the present application does not limit the SSB resource set as long as it is a predefined one. It only needs to bear the SSB. That is, the first signal may be carried on any predefined SSB resource.
  • the resources configured by the network device for the terminal device to carry the SSB and the resources configured by the network device for the terminal device to carry the first signal may belong to the above-mentioned SSB resource set and mutually It cannot be conflicted.
  • the embodiment of the present application uses the resources in the predefined CSI-RS resource set and SSB resource set to carry the first signal, but the embodiment of the present application is not limited to this, and may be a predefined one capable of carrying other Signal resource set, for example, Positioning Reference Signal (PRS).
  • PRS Positioning Reference Signal
  • the first time-frequency resource determined by the terminal device and the network device to bear the first signal may include one CSI-RS resource, multiple CSI-RS resources in the CSI-RS resource set, or Some resources in at least one CSI-RS resource.
  • one index in Table 1 corresponds to one CSI-RS resource
  • the first time-frequency resource may include any indexed CSI-RS resource in Table 1, or may include multiple indexed CSI-RS resources, or A part of the at least one indexed CSI-RS resource may be included.
  • the first time-frequency resource belongs to the SSB resource set, the implementation manner is similar to that of the CSI-RS resource. For the sake of brevity, we will not go into details here.
  • the first signal in the embodiment of the present application may be an indication signal such as the above-mentioned energy-saving signal, that is, it is used to instruct the terminal device whether to perform channel or signal detection within a corresponding time window.
  • the time window corresponding to the first signal may be a DRX on window, that is, DRX OnDuration.
  • the first signal may be sent to the terminal before OnDuration, and the terminal only detects the first signal after detecting the first signal. PDCCH detection and data reception are performed only during DRX OnDuration, otherwise PDCCH detection is not performed.
  • the time window corresponding to the first signal may also be a PO.
  • the first signal may be a wake-up signal, which is used to wake up the terminal, that is, the network device is between the paging occasions PO Send the first signal to the terminal device.
  • the terminal device After receiving the first signal, the terminal device does not perform PDCCH detection and receive a paging message on the PO.
  • the time window corresponding to the first window may also be a PDCCH search space.
  • This first signal can also be used to indicate to the terminal device that the network device has acquired a channel transmission opportunity in the license-free scenario. At this time, it is possible for the network device to transmit a channel or signal on subsequent resources.
  • the terminal device Only after receiving the first signal, the terminal device starts to detect the channel or signal.
  • the first signal may also be referred to as a starting point of channel or signal detection.
  • the terminal device Before receiving the first signal, the terminal device may be in a non-detection state, thereby greatly reducing the power consumption of the terminal device.
  • the terminal device Before receiving the first signal, the terminal device may use a relatively large period to detect the channel or signal, and after receiving the first signal, the terminal device may use a relatively small period to detect the channel or signal. For example, before the first signal is received, the detection period is 5 ms, and after the first signal is received, the detection period is 1 ms, thereby reducing the power consumption of the terminal device.
  • the network device may obtain the channel transmission opportunity for a certain period of time, for example, for a channel transmission opportunity window, then the time window corresponding to the first signal may also be a channel transmission opportunity window.
  • the detection of channels or signals involved in the embodiments of the present application may be the detection of channels such as PDCCH or data channels such as Physical Downlink Shared Channel (PDSCH), or detection of channels Detection of signals etc. carried on the channel.
  • channels such as PDCCH or data channels such as Physical Downlink Shared Channel (PDSCH), or detection of channels Detection of signals etc. carried on the channel.
  • PDSCH Physical Downlink Shared Channel
  • the network device may display and indicate the first time-frequency resource.
  • the network device may send instruction information to the terminal device to directly indicate the location of the first time-frequency resource where the first signal is transmitted, and the terminal device receives the instruction information. After that, the first signal can be detected at the indicated first time-frequency resource position.
  • the network device may also implicitly indicate the first time-frequency resource.
  • the network device may configure a terminal device with a resource for carrying the first signal, for example, a resource position occupied in a time unit. And you can configure the period of the resource.
  • the terminal device can determine a periodic resource location according to the configuration, and the terminal device can directly detect the first signal directly at the periodically occurring resource location.
  • the terminal device may also combine other information to determine in which time unit the specific signal is detected. For example, the time interval between the first signal and the corresponding time window may be combined, that is, the timing relationship between the first signal and the corresponding time window.
  • the timing relationship may be configured by a network device, and the network device may also be the timing relationship configured by combining the capabilities of the terminal device.
  • the timing relationship may refer to a minimum time interval between the first signal and a corresponding time window.
  • the terminal device may first determine the time unit in which the first signal may be based on the timing relationship, and then determine the first time-frequency resource in the possible time unit in combination with the resources configured by the network device to carry the first signal. The device can then receive the first signal on the first time-frequency resource. Because the terminal device obtains possible time-frequency resources in advance according to the configuration of the network device, instead of the time-frequency occupied by the first signal actually sent by the network device Therefore, the terminal device can blindly detect the first signal on the first time-frequency resource.
  • the time unit in the embodiment of the present application may be a time slot, or may be composed of several symbols.
  • the resource carrying the first signal in the first time-frequency resource may include a part of subcarriers of a defined CSI-RS resource in the frequency domain, or may also occupy consecutive subcarriers, It should be noted that the continuous subcarriers occupied here may be continuous subcarriers occupying only one CSI-RS resource, or continuous subcarriers composed of multiple CSI-RS resources.
  • the subcarriers occupied by the resources carrying the first signal in the first time-frequency resource may also have a guard interval in the frequency domain with the subcarriers occupied by the resources carrying other signals.
  • the first signal may also be transmitted using multiple beams.
  • the network device may also configure a quasi co-location (QCL) relationship between the first signal and other signals, such as the first signal and the CSI-RS. Quasi co-location, or quasi co-location between the first signal and the SSB.
  • QCL quasi co-location
  • the first signal 1 to the first signal i are different first signals that have QCL relationships with SSB 1 to SSB i or QCL relationships with CSI-RS resource index 0 to CSI-RS resource index i, respectively.
  • the so-called quasi co-location refers to that for two antenna ports, if the large-scale characteristics of a radio channel transmitting symbols through one of the antenna ports can be inferred from the radio channel transmitting symbols through the other antenna port, the two antenna ports can be Considered quasi-co-located.
  • the large-scale characteristic that is, the QCL information includes at least one of the following parameters: Doppler shift, Doppler spread, average delay, and delay spread spread) and at least one of Spatial Rx parameters. That is, when the two antenna ports are QCL, this means that the large-scale characteristics of the radio channel of one antenna port correspond to the large-scale characteristics of the radio channel of the other antenna port.
  • RS reference signals
  • A is the reference signal and B is the target signal. If B is quasi-co-located with A about the above-mentioned large-scale parameters, the UE can estimate the quasi-co-located large-scale parameters from A, so B can use the large-scale parameters for subsequent operating.
  • FIG. 6 is a schematic block diagram of a signal transmission method 300 according to an embodiment of the present application. As shown in FIG. 6, the method 300 includes some or all of the following:
  • the network device determines a first time-frequency resource for carrying a first signal, where the first signal is used to instruct a terminal device to perform detection processing on a corresponding channel or signal, and the first time-frequency resource belongs to a channel status information capable of being carried.
  • the network device sends a first signal to the terminal device on the first time-frequency resource.
  • a predefined time-frequency resource that can be used to carry CSI-RS or a time-frequency resource that can be used to carry SSB can carry a first signal similar to an energy-saving signal. , It can maintain better backward compatibility, and it is convenient for the terminal device to do rate matching on the resource where the first signal is located.
  • the first time-frequency resource includes a CSI-RS resource, a plurality of CSI-RS resources, or a part of at least one CSI-RS resource in the CSI-RS resource set,
  • the first time-frequency resource includes an SSB resource, multiple SSB resources, or some resources in at least one SSB resource in the SSB resource set.
  • the method further includes: the network device sends instruction information to the terminal device, where the instruction information is used to indicate the first time-frequency resource.
  • the method further includes: the network device sends configuration information of a resource for carrying the first signal to the terminal device.
  • the first signal is used to instruct the terminal device to perform channel or signal detection within a corresponding time window, or the first signal is used to instruct the terminal device to perform a corresponding time window No channel or signal detection is performed.
  • the time window includes a discontinuous reception DRX start window, a paging occasion PO, a PDCCH search space, or a channel transmission opportunity window.
  • the first signal is used to instruct the network device to obtain a channel transmission opportunity.
  • the resource carrying the first signal in the first time-frequency resource occupies continuous subcarriers in the frequency domain.
  • the first signal is quasi co-located with a CSI-RS and / or a synchronization signal block SSB.
  • the first time-frequency resource belongs to the CSI-RS resource set, and the position of the first time-frequency resource is characterized by at least one of the following information: port number, code division and multiplexing Use CDM type, density, resource element RE position and period.
  • the first time-frequency resource belongs to the SSB resource set, and the position of the first time-frequency resource is characterized by at least one of the following information: a frequency domain position, a time domain position, and cycle.
  • the interaction and related features and functions between the network device and the terminal device described by the network device correspond to the relevant characteristics and functions of the terminal device. In other words, what message does the network device send to the terminal device, and the terminal device receives the corresponding message from the network device.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 7 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine a first time-frequency resource for carrying a first signal, where the first signal is used to indicate detection processing on a corresponding channel or signal, and the first time-frequency resource belongs to a channel capable of bearing
  • the transceiver unit 420 is configured to receive a first signal on the first time-frequency resource.
  • the first time-frequency resource includes one CSI-RS resource, a plurality of CSI-RS resources or a part of at least one CSI-RS resource in the CSI-RS resource set, or the first time-frequency resource includes One SSB resource, multiple SSB resources, or some resources in at least one SSB resource in the SSB resource set.
  • the transceiver unit is further configured to receive instruction information sent by a network device, where the instruction information is used to indicate the first time-frequency resource; and the processing unit is specifically configured to: Determining, by the terminal device, the first time-frequency resource according to the instruction information.
  • the transceiver unit is further configured to: receive configuration information of a resource that is used to carry a first signal sent by a network device; and the processing unit is specifically configured to: The time interval between the receiving windows of the frame determines the time unit in which the first signal is located; and the resource indicated by the configuration information within the time unit is determined as the first time-frequency resource.
  • the processing unit is further configured to determine the time interval according to a capability of the terminal device.
  • the first signal is used to indicate that a channel or signal is detected within a corresponding time window, or the first signal is used to indicate that a channel is not performed within a corresponding time window Or signal detection.
  • the processing unit is further configured to perform channel or signal detection within the corresponding time window, or not perform channel or signal detection within the corresponding time window.
  • the time window includes a discontinuous reception DRX start window, a paging occasion PO, a PDCCH search space, or a channel transmission opportunity window.
  • the first signal is used to instruct a network device to obtain a channel transmission opportunity.
  • the processing unit is further configured to: after receiving the first signal, perform channel or signal detection in a first period, where the first period is less than that after receiving the first signal.
  • the detection period of the channel or signal before the first signal is described.
  • the resource carrying the first signal among the first time-frequency resources occupies continuous subcarriers in the frequency domain.
  • a guard interval exists between the subcarrier occupied by the resource carrying the first signal in the frequency domain and the subcarrier occupied by the second signal among the first time-frequency resources.
  • the first signal is quasi co-located with a CSI-RS and / or a synchronization signal block SSB.
  • the first time-frequency resource belongs to the CSI-RS resource set, and the position of the first time-frequency resource is characterized by at least one of the following information: port number, Code division multiplexing CDM type, density, resource element RE position and period.
  • the first time-frequency resource belongs to the SSB resource set, and the position of the first time-frequency resource is characterized by at least one of the following information: frequency domain position, time Domain position and period.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and / or functions of each unit in the terminal device 400 are to implement the terminal in the method in FIG. 3 respectively.
  • the corresponding process of the device is not repeated here for brevity.
  • FIG. 8 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • a processing unit 510 is configured to determine a first time-frequency resource for carrying a first signal, where the first signal is used to instruct a terminal device to perform detection processing on a corresponding channel or signal, where the first time-frequency resource belongs to A CSI-RS resource set carrying a channel state information reference signal CSI-RS or a synchronization signal block SSB resource set capable of carrying a synchronization signal SS / physical broadcast channel PBCH;
  • the transceiver unit 520 is configured to send a first signal to the terminal device on the first time-frequency resource.
  • the first time-frequency resource includes a part of one CSI-RS resource, a plurality of CSI-RS resources, or at least one CSI-RS resource in the CSI-RS resource set.
  • the resource, or the first time-frequency resource includes one SSB resource, multiple SSB resources, or some resources in at least one SSB resource in the SSB resource set.
  • the network device further includes: the network device sends instruction information to the terminal device, where the instruction information is used to indicate the first time-frequency resource.
  • the network device further includes: the network device sends configuration information of a resource for carrying a first signal to the terminal device.
  • the first signal is used to instruct the terminal device to perform channel or signal detection within a corresponding time window, or the first signal is used to instruct the terminal device to No channel or signal detection is performed within the corresponding time window.
  • the time window includes a discontinuous reception DRX start window, a paging occasion PO, a PDCCH search space, or a channel transmission opportunity window.
  • the first signal is used to instruct the network device to obtain a channel transmission opportunity.
  • the resource carrying the first signal among the first time-frequency resources occupies continuous subcarriers in the frequency domain.
  • a guard interval exists between the subcarrier occupied by the resource carrying the first signal in the frequency domain and the subcarrier occupied by the second signal among the first time-frequency resources.
  • the first signal is quasi co-located with a CSI-RS and / or a synchronization signal block SSB.
  • the first time-frequency resource belongs to the CSI-RS resource set, and the position of the first time-frequency resource is characterized by at least one of the following information: port number, Code division multiplexing CDM type, density, resource element RE position and period.
  • the first time-frequency resource belongs to the SSB resource set, and the position of the first time-frequency resource is characterized by at least one of the following information: frequency domain position, time Domain position and period.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above and other operations and / or functions of each unit in the network device 500 are respectively to implement the network in the method in FIG. 6.
  • the corresponding process of the device is not repeated here for brevity.
  • an embodiment of the present application further provides a terminal device 600.
  • the terminal device 600 may be the terminal device 400 in FIG. 7, which can be used to execute the content of the terminal device corresponding to the method 200 in FIG. 3. .
  • the terminal device 600 shown in FIG. 9 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the terminal device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the terminal device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the terminal device 600 may be the terminal device in the embodiment of the present application, and the terminal device 600 may implement the corresponding process implemented by the terminal device in each method in the embodiments of the present application.
  • the terminal device 600 may implement the corresponding process implemented by the terminal device in each method in the embodiments of the present application.
  • details are not described herein.
  • the processing unit in the terminal device 600 may be implemented by the processor 610 in FIG. 9.
  • the transceiver unit in the terminal device 600 may be implemented by the transceiver 630 in FIG. 9.
  • an embodiment of the present application further provides a network device 700.
  • the network device 700 may be the network device 500 in FIG. 8, which can be used to execute content of the network device corresponding to the method 300 in FIG. .
  • the network device 700 shown in FIG. 10 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the network device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the network device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 710 may control the transceiver 730 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include antennas, and the number of antennas may be one or more.
  • the network device 700 may be the network device in the embodiment of the present application, and the network device 700 may implement the corresponding process implemented by the network device in each method in the embodiments of the present application.
  • the network device 700 may implement the corresponding process implemented by the network device in each method in the embodiments of the present application.
  • details are not described herein again.
  • the processing unit in the network device 700 may be implemented by the processor 710 in FIG. 10.
  • the transceiver unit in the network device 700 may be implemented by the transceiver 730 in FIG. 10.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 800 shown in FIG. 11 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the chip 800 may further include an input interface 830.
  • the processor 810 may control the input interface 830 to communicate with other devices or chips. Specifically, the processor 810 may obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840.
  • the processor 810 may control the output interface 840 to communicate with other devices or chips. Specifically, the processor 810 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 12 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 12, the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented and executed by a hardware decoding processor, or may be executed and completed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for the sake of brevity , Will not repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instruction causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application.
  • the computer program instruction causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application.
  • I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to the terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the terminal device in each method in the embodiment of the present application. , Will not repeat them here.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种传输信号的方法、终端设备和网络设备,该方法包括:终端设备确定用于承载第一信号的第一时频资源,该第一信号用于指示对对应的信道或信号进行的检测处理,该第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;该终端设备在该第一时频资源上接收第一信号。本申请实施例的方法、终端设备和网络设备,可以保持更好的后向兼容性,并且有便于终端设备对类似于节能信号的第一信号所在的资源做速率匹配。

Description

传输信号的方法、终端设备和网络设备
本申请要求于2018年8月3日提交中国专利局、申请号为201810880378.3、发明名称为“传输信号的方法、终端设备和网络设备”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种传输信号的方法、终端设备和网络设备。
背景技术
随着通信***的演进,对终端节电提出了更高的要求。例如对于现有的非连续接收(Discontinuous Reception,DRX)机制,在每个开启窗口(On Duration),终端需要不断检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)来判断基站是否调度发给自己的数据传输。但是对于大部分终端来说,可能在很长一段时间没有接收数据传输的需要,但是仍然需要保持定期的唤醒机制来监听可能的下行传输,对于这类终端,节电有进一步优化的空间。对于空闲(idle)状态下的终端接收寻呼消息的情况也是类似。
对于DRX机制,可以在On Duration之前向终端发送指示信号,终端仅在检测到该指示信号后才在DRX的On Duration进行PDCCH检测以及数据接收,否则不进行PDCCH检测。该指示信号也可以称之为节能信号(power saving signal,WUS)。类似的,对于idle态下的终端接收寻呼消息,在寻呼时机(paging occasion,PO)之前通过检测节能信号判断在本次PO是否需要检测PDCCH。目前节能信号所占的时频资源并未确定。
发明内容
本申请实施例提供一种传输信号的方法,可以保持更好的后向兼容性,并且有便于终端设备对类似于节能信号的第一信号所在的资源做速率匹配。
第一方面,提供了一种传输信号的方法,该方法包括:终端设备确定用于承载第一信号的第一时频资源,该第一信号用于指示对对应的信道或信号进行的检测处理,该第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;该终端设备在该第一时频资源上接收第一信号。
第二方面,提供了一种传输信号的方法,该方法包括:网络设备确定用于承载第一信号的第一时频资源,该第一信号用于指示终端设备对对应的信道或信号进行的检测处理,该第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;该网络设备在该第一时频资源上向该终端设备发送第一信号。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,用预定义的能够用于承载CSI-RS的时频资源或能够用于承载SS/PBCH block的时频资源承载类似于节能信号的第一信号,可以保持更好的后向兼容性,并且有便于终端设备对第一信号所在的资源做速率匹配。
附图说明
图1是本申请实施例提供的一种通信***架构的示意图。
图2是本申请实施例的一种应用场景的示意图。
图3是本申请实施例提供的传输信号的方法的一种示意图。
图4是本申请实施例的CSI-RS资源的一种配置图。
图5是本申请实施例的SSB资源的一种配置图。
图6是本申请实施例提供的传输信号的方法的另一种示意图。
图7是本申请实施例提供的终端设备的一种示意性框图。
图8是本申请实施例提供的网络设备的一种示意性框图。
图9是本申请实施例提供的终端设备的另一种示意性框图。
图10是本申请实施例提供的网络设备的另一种示意性框图。
图11是本申请实施例提供的一种芯片的示意性框图。
图12是本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***可以包括网络设备,网络设备可以是与终 端设备(或称为通信终端、终端)通信的设备。网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
本申请实施例应用的通信***还包括位于网络设备覆盖范围内的至少一个终端设备。作为在此使用的“终端设备”包括但不限于UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了减少终端的耗电,LTE和NR***中都有DRX机制,使得终端在没有数据接收的情况下,可以不必一直开启接收机,而是进入了一种非连续接收的状态,从而达到省电的目的。DRX的机制包括为处于连接态的UE配置DRX cycle,一个DRX cycle有“On Duration”和“Opportunity for DRX”组成。在“On Duration”时间内即DRX的开启窗口,UE监听并接收包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)在内的下行信道和信号;在“Opportunity for DRX”时间内即DRX的关闭窗口,UE不接收或检测PDCCH等下行信道和信号以减少功耗。在空闲态下的UE需要与DRX类似的方式接收寻呼消息,在一个DRX周期内存在一个寻呼时机PO,UE只在PO接收寻呼消息,而在PO之外的时间不接受寻呼消息,来达到省电的目的。在PO期间,UE通过检测通过寻呼无线网络临时标识(Paging Radio Network Tempory Identity,P-RNTI)加扰的PDCCH信号来判断是否有寻呼消息。
在5G的演进中,对UE节电提出了更高的要求。例如对于现有的DRX机制,在每个On Duration期间,UE需要不断检测PDCCH来判断基站是否调度发给自己的数据传输。但是对于大部分UE来说,可能在很长一段时间没有接收数据传输的需要,但是仍 然需要保持定期的唤醒机制来监听可能的下行传输,对于这类UE,节电有进一步优化的空间。对于空闲态下的UE接收寻呼消息的情况也是类似。
如果基站判断需要在DRX On Duration调度终端,则可以在On Duration之前向终端发送指示信号,否则不向终端发送该指示信号。终端仅在检测到该指示信号后才在DRX的On Duration进行PDCCH检测以及数据接收,否则不进行PDCCH检测。上述指示信号有利于终端的节能,我们也可以称之为WUS。此时,UE仅需要检测节能信号来判断在本次On Duration期间需不需要检测PDCCH,相比直接检测PDCCH可以省电。类似的,对于空闲态下的UE接收寻呼消息,在PO之前通过检测节能信号判断在本次PO是否需要检测PDCCH,参见图2。
在NR中引入WUS,但是WUS所在的时频资源并未确定。由于NR中定义的信道和信号分别占据相应的时频资源,WUS占用的时频资源不能与现有的信道和信号冲突,需要保持后向兼容性。
因此,本申请实施例提供了一种传输信号的方法,可以用预定义的能够用于承载信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的时频资源或能够用于承载同步信号/物理广播信道(Synchronization Signal/Physical broadcasting channel,SS/PBCH)块(Block)(SSB)的时频资源承载类似于节能信号的第一信号,可以保持更好的后向兼容性,并且有便于终端设备对第一信号所在的资源做速率匹配。
图3示出了本申请实施例的传输信号的方法200的示意性框图。如图3所示,方法200包括以下部分或全部内容:
S210,终端设备确定用于承载第一信号的第一时频资源,该第一信号用于指示对对应的信道或信号进行的检测处理,该第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
S220,该终端设备在该第一时频资源上接收第一信号。
随着通信***的演进,CSI-RS被引入,用于下行信道的测量。不同通信***对CSI-RS进行了不同定义。例如,在NR中,表1是CSI-RS在一个时隙中可能出现的位置,其中可以通过CSI-RS的端口数,码分复用(Code Division Multiplexing,CDM)类型,CDM组索引,资源元素(resource element,RE)位置,以及周期等表征。
表1
Figure PCTCN2019099086-appb-000001
Figure PCTCN2019099086-appb-000002
Figure PCTCN2019099086-appb-000003
在表1中,CDM类型可以包括No CDM,频分(Frequency Division-CDM,FD-CDM)2,CDM4(FD2,时分(Time Division,TD)2),CDM8(FD2,TD4)等。
以表1中的索引7为例,该CSI-RS资源可以如图4所示,横轴为时域t,纵轴为频域f,该CSI-RS资源包含8端口的CSI-RS资源,包括4个CDM组,每个CDM组包括2个端口的CSI-RS资源,CDM类型为频分FD-CDM2,即在频域上两个RE采用CDM的方式承载两个端口的CSI-RS。
在本申请实施例中,该CSI-RS资源集合可以是上述定义的表1中的所有CSI-RS资源,也可以是表1中的部分CSI-RS资源,例如,该CSI-RS资源集合可以包括表1中索引1~索引5的CSI-RS资源。本申请实施例对CSI-RS资源集合不作任何限定,只要是定义的用来承载CSI-RS即可。也就是说,可以在上述表1中定义的任何CSI-RS资源上承载第一信号。
对于同一个终端设备来说,网络设备为该终端设备配置的用于承载CSI-RS的CSI-RS资源与网络设备为该终端设备配置的用于承载第一信号的资源均属于上述CSI-RS资源集合,并且相互是不能冲突的。
同样地,为了提高公共信道和信号接收的可靠性,如SS和PBCH,可以通过多波 束扫描的方式覆盖整个小区,该多波束的方式可以通过定义SS/PBCH簇集(burst set)实现。一个SS/PBCH burst set包括一个或多个SSB,一个SSB用于承载一个波束的SS和PBCH。因此,一个SS/PBCH burst set可以包括小区内SSB number个波束的SSB。SSB的最大数目L与***的频段有关,例如,对于小于3GHz的频率范围,L为4;对于从3GHz到6GHz的频率范围,L为8;对于从6GHz到52.6GHz的频率范围,L为64。
一个SSB中可以包含一个符号的主同步信号(Primary Synchronization Signal,PSS),一个符号的辅同步信号(Secondary Synchronization Signal,SSS)和两个符号的PBCH。SS/PBCH burst set内所有的SSB在5ms的时间窗内发送,并以一定的周期重复发送,周期通过高层的参数SSB-timing进行配置,包括5ms,10ms,20ms,40ms,80ms,160ms等。
图5示出了以子载波间隔为15kHz为例的一个时隙内的SSB的分布同样。从图中可以看出,用于承载SSB的时频资源是预定义好的,可以包括L个时频资源位置。但是在实际***中,网络设备可以向终端设备发送少于L个SSB,即实际传输的SSB。实际发送的SSB可以通过一个比特图(bitmap)通知给终端设备,终端设备可以根据该bitmap信息得到实际发送的SSB的时频资源位置。
在本申请实施例中,该SSB资源集合可以是预定义的所有候选的SSB资源,也可以是部分候选的SSB资源,本申请实施例对SSB资源集合不作任何限定,只要是预定义的用来承载SSB即可。也就是说,可以在预定义的任何SSB资源上承载第一信号。
对于同一个终端设备来说,网络设备为该终端设备配置的用于承载SSB的资源与网络设备为该终端设备配置的用于承载第一信号的资源均可以属于上述SSB资源集合中,并且相互是不能冲突的。
需要说明的是,本申请实施例是使用预定义的CSI-RS资源集合和SSB资源集合中的资源承载第一信号,但本申请实施例并不限于此,还可以是预定义的能够承载其他信号的资源集合,例如,定位参考信号(Positioning Reference Signal,PRS)等。
可选地,本申请实施例中终端设备和网络设备确定的用于承载第一信号的第一时频资源可以包括CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或者至少一个CSI-RS资源中的部分资源。例如,表1中的一个索引对应一个CSI-RS资源,第一时频资源可以包括表1中的任何一个索引的CSI-RS资源,或者也可以包括多个索引的CSI-RS资源,或者也可以包括至少一个索引的CSI-RS资源中的部分资源。若第一时频资源属于SSB资源集合,与CSI-RS资源的实现方式类似,为了简洁,此处不过多赘述。
应理解,本申请实施例中的第一信号可以是上述节能信号等指示信号,也就是说用来指示终端设备要不要在对应的时间窗口内进行信道或信号的检测。该第一信号对应的时间窗口可以是DRX开启窗口,即DRX的On Duration,例如,在DRX机制中,可以在On Duration之前向终端发送该第一信号,终端仅在检测到该第一信号后才在DRX的On Duration进行PDCCH检测以及数据接收,否则不进行PDCCH检测。该第一信号对应的时间窗口还可以是PO,例如,在寻呼机制中,该第一信号可以是唤醒信号,该唤醒信号用于唤醒终端,也就是说,网络设备在寻呼时机PO之间向终端设备发送该第一信号,终端设备接收到该第一信号之后,就不在PO上进行PDCCH的检测以及接收寻呼消息。可选地,该第一窗口对应的时间窗口还可以是PDCCH搜索空间。
该第一信号还可以在免授权场景中用来向终端设备指示网络设备获取了信道传输机会,此时,网络设备才有可能在之后的资源上传输信道或信号,而对于终端设备来说,只有在接收到第一信号之后,终端设备才开始进行信道或信号的检测。该第一信号也可以称为是信道或信号检测的起点。在接收到第一信号之前,终端设备可能处于不检测状态,从而可以极大地降低终端设备的功耗。终端设备在接收该第一信号之前,也可以是使用一个比较大的周期对信道或信号进行检测,而在接收到该第一信号之后,终端设备可以使用比较小的周期对信道或信号进行检测,例如,在接收到第一信号之前,检测周 期为5ms,而在接收到第一信号之后,检测周期为1ms,从而也可以降低终端设备的功耗。
需要说明的是,网络设备获得信道传输机会可以是持续一定时间,例如,持续一个信道传输机会窗口,那么第一信号对应的时间窗口也可以是一个信道传输机会窗口。
本领域技术人员理解,本申请实施例中涉及的对信道或信号的检测,可以是对PDCCH或者是数据信道例如物理下行共享信道(Physical Downlink Shared Channel,PDSCH)等信道的检测,也可以是对在信道上承载的信号等的检测。
可选地,网络设备可以显示指示该第一时频资源,例如,网络设备可以向终端设备发送指示信息,直接指示传输该第一信号的第一时频资源的位置,终端设备接收到指示信息之后,即可在指示的第一时频资源位置上去检测第一信号。
可选地,网络设备也可以隐式指示该第一时频资源,例如,网络设备可以向终端设备配置用于承载该第一信号的资源,例如,在一个时间单元中所占的资源位置,并且可以配置该资源的周期。终端设备根据该配置就可以确定出来一个周期性地资源位置,终端设备可以直接在该周期性出现的资源位置上盲检第一信号。终端设备也可以结合一下其他信息确定具体在哪个时间单元内检测该第一信号。例如,可以结合第一信号和对应的时间窗口之间的时间间隔,也就是第一信号和对应的时间窗口之间的定时关系。该定时关系可以是网络设备配置的,网络设备也可以是结合终端设备的能力配置的该定时关系。该定时关系可以是指第一信号和对应的时间窗口之间的最小的时间间隔。终端设备可以首先结合该定时关系确定第一信号可能会在的时间单元,然后再结合网络设备配置的用于承载第一信号的资源,在可能的时间单元中确定该第一时频资源,终端设备进而就可以在该第一时频资源上接收第一信号,由于终端设备是根据网络设备的配置提前获取到可能的时频资源,而不是网络设备实际发送的第一信号所占的时频资源,因此,终端设备可以在该第一时频资源上盲检测该第一信号。
本申请实施例中的时间单元可以是时隙,或者是由几个符号组成等。
可选地,在本申请实施例中,第一时频资源中承载第一信号的资源在频域上可以包括定义的CSI-RS资源的部分子载波,或者还可以是占有连续的子载波,需要说明的是,此处占有连续的子载波可以是只占有一个CSI-RS资源上连续的子载波,也可以是多个CSI-RS资源拼接组成的连续的子载波。第一时频资源中承载第一信号的资源占有的子载波在频域上还可以与承载其他信号的资源占有的子载波之间具有保护间隔。
此外,第一信号也可以使用多波束发送,网络设备还可以配置该第一信号与其他信号之间的准共址(Quasi co-location,QCL)关系,例如该第一信号和CSI-RS之间准共址,或者该第一信号和SSB之间准共址等。例如,第一信号1~第一信号i是不同的第一信号,其分别与SSB 1~SSB i具有QCL关系,或者分别与CSI-RS资源索引0~CSI-RS资源索引i具有QCL关系。
所谓准共址,是指对于两个天线端口,如果通过天线端口之一发送符号的无线电信道的大尺度特性可从通过另一天线端口发送符号的无线电信道推断,则这两个天线端口可被视为准共址。所述大尺度特性,即QCL信息包括以下参数中的至少一种:多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、平均时延(average delay)、延时扩展(delay spread)和以及空间接收参数(Spatial Rx parameter)中的至少一种。即当两个天线端口为QCL时,这意味着一个天线端口的无线电信道的大尺度特性对应于另一个天线端口的无线电信道的大尺度特性。考虑发送参考信号(Reference Signal,RS)的多个天线端口,当发送两种不同类型的RS的天线端口为QCL时,一个天线端口的无线电信道的大尺度特性可由另一天线端口的无线电信道的大尺度特性代替。
假设A为参考信号,B为目标信号,如果B关于上述大尺度参数与A准共址,则UE可以从A估算出该准共址的大尺度参数,从而B可以利用该大尺度参数进行后续操作。
图6为本申请实施例提供的一种传输信号的方法300的示意性框图。如图6所示,该方法300包括以下部分或全部内容:
S310,网络设备确定用于承载第一信号的第一时频资源,该第一信号用于指示终端设备对对应的信道或信号进行的检测处理,该第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
S320,该网络设备在该第一时频资源上向该终端设备发送第一信号。
因此,本申请实施例提供了一种传输信号的方法,可以用预定义的能够用于承载CSI-RS的时频资源或能够用于承载SSB的时频资源承载类似于节能信号的第一信号,可以保持更好的后向兼容性,并且有便于终端设备对第一信号所在的资源做速率匹配。
可选地,在本申请实施例中,该第一时频资源包括该CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或该第一时频资源包括该SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
可选地,在本申请实施例中,该方法还包括:该网络设备向该终端设备发送指示信息,该指示信息用于指示该第一时频资源。
可选地,在本申请实施例中,该方法还包括:该网络设备向该终端设备发送用于承载第一信号的资源的配置信息。
可选地,在本申请实施例中,该第一信号用于指示该终端设备在对应的时间窗口内进行信道或信号的检测,或该第一信号用于指示该终端设备在对应的时间窗口内不进行信道或信号的检测。
可选地,在本申请实施例中,该时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
可选地,在本申请实施例中,该第一信号用于指示该网络设备获得信道传输机会。
可选地,在本申请实施例中,该第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
可选地,在本申请实施例中,该第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
可选地,在本申请实施例中,该第一信号与CSI-RS和/或同步信号块SSB准共址。
可选地,在本申请实施例中,该第一时频资源属于该CSI-RS资源集合,该第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
可选地,在本申请实施例中,该第一时频资源属于该SSB资源集合,该第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。也就是说,网络设备向终端设备发送什么消息,终端设备从网络设备接收相应的消息。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的传输信号的方法,下面将结合图7至图10,描述根据本申请实施例的传输信号的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图7示出了本申请实施例的终端设备400的示意性框图。如图7所示,该终端设备400包括:
处理单元410,用于确定用于承载第一信号的第一时频资源,所述第一信号用于指 示对对应的信道或信号进行的检测处理,所述第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
收发单元420,用于在所述第一时频资源上接收第一信号。
所述第一时频资源包括所述CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或所述第一时频资源包括所述SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
可选地,在本申请实施例中,所述收发单元还用于:接收网络设备发送的指示信息,所述指示信息用于指示所述第一时频资源;所述处理单元具体用于:所述终端设备根据所述指示信息,确定所述第一时频资源。
可选地,在本申请实施例中,所述收发单元还用于:接收网络设备发送的用于承载第一信号的资源的配置信息;所述处理单元具体用于:根据第一信号与对应的接收窗口之间的时间间隔,确定第一信号所在的时间单元;将所述时间单元内由所述配置信息指示的资源确定为所述第一时频资源。
可选地,在本申请实施例中,所述处理单元还用于:根据所述终端设备的能力,确定所述时间间隔。
可选地,在本申请实施例中,所述第一信号用于指示在对应的时间窗口内进行信道或信号的检测,或所述第一信号用于指示在对应的时间窗口内不进行信道或信号的检测。
可选地,在本申请实施例中,所述处理单元还用于:在所述对应的时间窗口内进行信道或信号的检测,或在所述对应的时间窗口内不进行信道或信号的检测。
可选地,在本申请实施例中,所述时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
可选地,在本申请实施例中,所述第一信号用于指示网络设备获得信道传输机会。
可选地,在本申请实施例中,所述处理单元还用于:在接收到所述第一信号之后,以第一周期进行信道或信号的检测,所述第一周期小于在接收到所述第一信号之前信道或信号的检测周期。
可选地,在本申请实施例中,所述第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
可选地,在本申请实施例中,所述第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
可选地,在本申请实施例中,所述第一信号与CSI-RS和/或同步信号块SSB准共址。
可选地,在本申请实施例中,所述第一时频资源属于所述CSI-RS资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
可选地,在本申请实施例中,所述第一时频资源属于所述SSB资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3方法中终端设备的相应流程,为了简洁,在此不再赘述。
图8示出了本申请实施例的网络设备500的示意性框图。如图8所示,该网络设备500包括:
处理单元510,用于确定用于承载第一信号的第一时频资源,所述第一信号用于指示终端设备对对应的信道或信号进行的检测处理,所述第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
收发单元520,用于在所述第一时频资源上向所述终端设备发送第一信号。
可选地,在本申请实施例中,所述第一时频资源包括所述CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或所述第一时频资源包括所述SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
可选地,在本申请实施例中,所述网络设备还包括:所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述第一时频资源。
可选地,在本申请实施例中,所述网络设备还包括:所述网络设备向所述终端设备发送用于承载第一信号的资源的配置信息。
可选地,在本申请实施例中,所述第一信号用于指示所述终端设备在对应的时间窗口内进行信道或信号的检测,或所述第一信号用于指示所述终端设备在对应的时间窗口内不进行信道或信号的检测。
可选地,在本申请实施例中,所述时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
可选地,在本申请实施例中,所述第一信号用于指示所述网络设备获得信道传输机会。
可选地,在本申请实施例中,所述第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
可选地,在本申请实施例中,所述第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
可选地,在本申请实施例中,所述第一信号与CSI-RS和/或同步信号块SSB准共址。
可选地,在本申请实施例中,所述第一时频资源属于所述CSI-RS资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
可选地,在本申请实施例中,所述第一时频资源属于所述SSB资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6方法中网络设备的相应流程,为了简洁,在此不再赘述。
如图9所示,本申请实施例还提供了一种终端设备600,该终端设备600可以是图7中的终端设备400,其能够用于执行与图3中方法200对应的终端设备的内容。图9所示的终端设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,终端设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图9所示,终端设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备600可为本申请实施例的终端设备,并且该终端设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,终端设备600中的处理单元可以由图9中的处理器610实现。终端设备600中的收发单元可以由图9中的收发器630实现。
如图10所示,本申请实施例还提供了一种网络设备700,该网络设备700可以是图 8中的网络设备500,其能够用于执行与图7中方法300对应的网络设备的内容。图10所示的网络设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,网络设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图10所示,网络设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该网络设备700可为本申请实施例的网络设备,并且该网络设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
一个具体的实施方式中,网络设备700中的处理单元可以由图10中的处理器710实现。网络设备700中的收发单元可以由图10中的收发器730实现。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图12是本申请实施例提供的一种通信***900的示意性框图。如图12所示,该通信***900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行 完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种传输信号的方法,其特征在于,包括:
    终端设备确定用于承载第一信号的第一时频资源,所述第一信号用于指示对对应的信道或信号进行的检测处理,所述第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
    所述终端设备在所述第一时频资源上接收第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时频资源包括所述CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或所述第一时频资源包括所述SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定用于承载第一信号的第一时频资源,包括:
    所述终端设备接收网络设备发送的指示信息,所述指示信息用于指示所述第一时频资源;
    所述终端设备根据所述指示信息,确定所述第一时频资源。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定用于承载第一信号的第一时频资源,包括:
    所述终端设备接收网络设备发送的用于承载第一信号的资源的配置信息;
    所述终端设备根据第一信号与对应的接收窗口之间的时间间隔,确定第一信号所在的时间单元;
    所述终端设备将所述时间单元内由所述配置信息指示的资源确定为所述第一时频资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述终端设备的能力,确定所述时间间隔。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信号用于指示在对应的时间窗口内进行信道或信号的检测,或所述第一信号用于指示在对应的时间窗口内不进行信道或信号的检测。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述对应的时间窗口内进行信道或信号的检测,或
    所述终端设备在所述对应的时间窗口内不进行信道或信号的检测。
  8. 根据权利要求6或7所述的方法,其特征在于,所述时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
  9. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信号用于指示网络设备获得信道传输机会。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备在接收到所述第一信号之后,以第一周期进行信道或信号的检测,所述第一周期小于在接收到所述第一信号之前信道或信号的检测周期。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一信号与CSI-RS和/或同步信号块SSB准共址。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一时频资源属于所述CSI-RS资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
  15. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一时频资源属于所述SSB资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
  16. 一种传输信号的方法,其特征在于,包括:
    网络设备确定用于承载第一信号的第一时频资源,所述第一信号用于指示终端设备对对应的信道或信号进行的检测处理,所述第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
    所述网络设备在所述第一时频资源上向所述终端设备发送第一信号。
  17. 根据权利要求16所述的方法,其特征在于,所述第一时频资源包括所述CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或所述第一时频资源包括所述SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述第一时频资源。
  19. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送用于承载第一信号的资源的配置信息。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述第一信号用于指示所述终端设备在对应的时间窗口内进行信道或信号的检测,或所述第一信号用于指示所述终端设备在对应的时间窗口内不进行信道或信号的检测。
  21. 根据权利要求20所述的方法,其特征在于,所述时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,所述第一信号用于指示所述网络设备获得信道传输机会。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
  24. 根据权利要求23所述的方法,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
  25. 根据权利要求16至24中任一项所述的方法,其特征在于,所述第一信号与CSI-RS和/或同步信号块SSB准共址。
  26. 根据权利要求16至25中任一项所述的方法,其特征在于,所述第一时频资源属于所述CSI-RS资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
  27. 根据权利要求16至25中任一项所述的方法,其特征在于,所述第一时频资源属于所述SSB资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
  28. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于确定用于承载第一信号的第一时频资源,所述第一信号用于指示对对应的信道或信号进行的检测处理,所述第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
    收发单元,用于在所述第一时频资源上接收第一信号。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第一时频资源包括所述CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或所述第一时频资源包括所述SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
  30. 根据权利要求28或29所述的终端设备,其特征在于,所述收发单元还用于:
    接收网络设备发送的指示信息,所述指示信息用于指示所述第一时频资源;
    所述处理单元具体用于:
    所述终端设备根据所述指示信息,确定所述第一时频资源。
  31. 根据权利要求28或29所述的终端设备,其特征在于,所述收发单元还用于:
    接收网络设备发送的用于承载第一信号的资源的配置信息;
    所述处理单元具体用于:
    根据第一信号与对应的接收窗口之间的时间间隔,确定第一信号所在的时间单元;
    将所述时间单元内由所述配置信息指示的资源确定为所述第一时频资源。
  32. 根据权利要求31所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述终端设备的能力,确定所述时间间隔。
  33. 根据权利要求28至32中任一项所述的终端设备,其特征在于,所述第一信号用于指示在对应的时间窗口内进行信道或信号的检测,或所述第一信号用于指示在对应的时间窗口内不进行信道或信号的检测。
  34. 根据权利要求33所述的终端设备,其特征在于,所述处理单元还用于:
    在所述对应的时间窗口内进行信道或信号的检测,或
    在所述对应的时间窗口内不进行信道或信号的检测。
  35. 根据权利要求33或34所述的终端设备,其特征在于,所述时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
  36. 根据权利要求28至32中任一项所述的终端设备,其特征在于,所述第一信号用于指示网络设备获得信道传输机会。
  37. 根据权利要求36所述的终端设备,其特征在于,所述处理单元还用于:
    在接收到所述第一信号之后,以第一周期进行信道或信号的检测,所述第一周期小于在接收到所述第一信号之前信道或信号的检测周期。
  38. 根据权利要求28至37中任一项所述的终端设备,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
  39. 根据权利要求38所述的终端设备,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
  40. 根据权利要求28至39中任一项所述的终端设备,其特征在于,所述第一信号与CSI-RS和/或同步信号块SSB准共址。
  41. 根据权利要求28至40中任一项所述的终端设备,其特征在于,所述第一时频资源属于所述CSI-RS资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
  42. 根据权利要求28至40中任一项所述的终端设备,其特征在于,所述第一时频资源属于所述SSB资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
  43. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于确定用于承载第一信号的第一时频资源,所述第一信号用于指示终端设备对对应的信道或信号进行的检测处理,所述第一时频资源属于能够承载信道状态信息参考信号CSI-RS的CSI-RS资源集合或属于能够承载同步信号SS/物理广播信道PBCH的同步信号块SSB资源集合;
    收发单元,用于在所述第一时频资源上向所述终端设备发送第一信号。
  44. 根据权利要求43所述的网络设备,其特征在于,所述第一时频资源包括所述CSI-RS资源集合中的一个CSI-RS资源、多个CSI-RS资源或至少一个CSI-RS资源中的部分资源,或所述第一时频资源包括所述SSB资源集合中的一个SSB资源、多个SSB资源或至少一个SSB资源中的部分资源。
  45. 根据权利要求43或44所述的网络设备,其特征在于,所述网络设备还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述第一时频资源。
  46. 根据权利要求43或44所述的网络设备,其特征在于,所述网络设备还包括:
    所述网络设备向所述终端设备发送用于承载第一信号的资源的配置信息。
  47. 根据权利要求43至46中任一项所述的网络设备,其特征在于,所述第一信号用于指示所述终端设备在对应的时间窗口内进行信道或信号的检测,或所述第一信号用于指示所述终端设备在对应的时间窗口内不进行信道或信号的检测。
  48. 根据权利要求47所述的网络设备,其特征在于,所述时间窗口包括非连续接收DRX开启窗口、寻呼时机PO、PDCCH搜索空间或信道传输机会窗口。
  49. 根据权利要求43至46中任一项所述的网络设备,其特征在于,所述第一信号用于指示所述网络设备获得信道传输机会。
  50. 根据权利要求43至49中任一项所述的网络设备,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有连续的子载波。
  51. 根据权利要求50所述的网络设备,其特征在于,所述第一时频资源中承载第一信号的资源在频域上占有的子载波与第二信号占有的子载波之间具有保护间隔。
  52. 根据权利要求43至51中任一项所述的网络设备,其特征在于,所述第一信号与CSI-RS和/或同步信号块SSB准共址。
  53. 根据权利要求43至52中任一项所述的网络设备,其特征在于,所述第一时频资源属于所述CSI-RS资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:端口数、码分复用CDM类型、密度、资源元素RE位置和周期。
  54. 根据权利要求43至52中任一项所述的网络设备,其特征在于,所述第一时频资源属于所述SSB资源集合,所述第一时频资源的位置通过以下信息中的至少一种信息表征:频域位置、时域位置和周期。
  55. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  56. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求16至27中任一项所述的方法。
  57. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  58. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至27中任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求16至27中任一项所述的方法。
  61. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16至27中任一项所述的方法。
  63. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  64. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求16至27中任一项所述的方法。
PCT/CN2019/099086 2018-08-03 2019-08-02 传输信号的方法、终端设备和网络设备 WO2020025061A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217006392A KR20210038955A (ko) 2018-08-03 2019-08-02 신호 전송 방법, 단말기 및 네트워크 기기
JP2021505314A JP2021533628A (ja) 2018-08-03 2019-08-02 信号を伝送する方法、端末機器及びネットワーク機器
AU2019314754A AU2019314754A1 (en) 2018-08-03 2019-08-02 Method for transmitting signal, terminal device, and network device
EP19844247.7A EP3833114A4 (en) 2018-08-03 2019-08-02 METHOD OF TRANSMISSION OF SIGNALS, TERMINAL DEVICE AND NETWORK DEVICE
CN201980051606.9A CN112534886A (zh) 2018-08-03 2019-08-02 传输信号的方法、终端设备和网络设备
US17/166,688 US20210159961A1 (en) 2018-08-03 2021-02-03 Method for transmitting signal, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810880378 2018-08-03
CN201810880378.3 2018-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/166,688 Continuation US20210159961A1 (en) 2018-08-03 2021-02-03 Method for transmitting signal, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2020025061A1 true WO2020025061A1 (zh) 2020-02-06

Family

ID=69232339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099086 WO2020025061A1 (zh) 2018-08-03 2019-08-02 传输信号的方法、终端设备和网络设备

Country Status (8)

Country Link
US (1) US20210159961A1 (zh)
EP (1) EP3833114A4 (zh)
JP (1) JP2021533628A (zh)
KR (1) KR20210038955A (zh)
CN (1) CN112534886A (zh)
AU (1) AU2019314754A1 (zh)
TW (1) TW202008766A (zh)
WO (1) WO2020025061A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029039A1 (en) * 2020-08-05 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Ssb-aligned transmission of paging-related signals
WO2023116441A1 (zh) * 2021-12-24 2023-06-29 华为技术有限公司 通信方法、装置、设备以及存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510262B (zh) * 2019-01-30 2023-06-06 华为技术有限公司 接收参考信号的方法、发送参考信号的方法和装置
US11617155B2 (en) * 2019-10-08 2023-03-28 Samsung Electronics Co., Ltd. Method and apparatus for UE power saving in RRC_IDLE/INACTIVE STATE
CN115276890A (zh) * 2021-04-30 2022-11-01 维沃移动通信有限公司 传输处理方法、终端及网络侧设备
CN115515250A (zh) * 2021-06-07 2022-12-23 维沃移动通信有限公司 传输处理方法、终端及网络侧设备
EP4380240A1 (en) * 2021-07-28 2024-06-05 Beijing Xiaomi Mobile Software Co., Ltd. Energy-saving configuration method and apparatus
CN115942336A (zh) * 2021-08-19 2023-04-07 展讯半导体(南京)有限公司 通信方法与装置、终端和网络设备
CN116193595B (zh) * 2021-09-28 2023-11-28 华为技术有限公司 一种信号的发送方法、接收方法及通信装置
WO2024035058A1 (ko) * 2022-08-10 2024-02-15 엘지전자 주식회사 하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치 및 저장 매체, 그리고 하향링크 신호를 전송하는 방법 및 기지국
CN117880937A (zh) * 2022-09-30 2024-04-12 大唐移动通信设备有限公司 资源位置的确定方法、设备、装置及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11075686B2 (en) * 2016-09-29 2021-07-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and device
CN108282303B (zh) * 2017-01-06 2023-03-10 北京三星通信技术研究有限公司 信号传输的方法及设备
CN109391411B (zh) * 2017-08-10 2021-03-02 电信科学技术研究院 一种导频配置方法、信道测量方法及通信设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "On Wake-up Signal Design", 3GPP TSG RAN WG1 MEETING #92 R1-1802140, 2 March 2018 (2018-03-02), XP051396872 *
VIVO: "NR UE Power Saving", R1-1803860 3GPP TSG RAN WG1 MEETING #92BIS, 20 April 2018 (2018-04-20), XP051426155 *
VIVO: "Views on Rel-16 NR UE Power Saving", 3GPP TSG RAN MEETING #80 RP-180810, 14 June 2018 (2018-06-14), XP051510691 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029039A1 (en) * 2020-08-05 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Ssb-aligned transmission of paging-related signals
WO2023116441A1 (zh) * 2021-12-24 2023-06-29 华为技术有限公司 通信方法、装置、设备以及存储介质

Also Published As

Publication number Publication date
EP3833114A1 (en) 2021-06-09
AU2019314754A1 (en) 2021-03-18
KR20210038955A (ko) 2021-04-08
US20210159961A1 (en) 2021-05-27
TW202008766A (zh) 2020-02-16
JP2021533628A (ja) 2021-12-02
CN112534886A (zh) 2021-03-19
EP3833114A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020025061A1 (zh) 传输信号的方法、终端设备和网络设备
US20210144646A1 (en) Signal transmission method, network device and terminal device
US11924907B2 (en) Method for discontinuous transmission and terminal device
TWI828716B (zh) 傳輸訊號的方法、網路設備及終端設備
CN113163476A (zh) 信号发送和接收方法、装置、设备和存储介质
US11576124B2 (en) Method and device for transmitting power saving signal
US20210250883A1 (en) Method and device for transmitting ssb in an unlicensed spectrum
US20210014786A1 (en) Signal transmission method and device
WO2020001123A1 (zh) 一种下行控制信道的检测方法及装置、终端设备
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备
US20240129851A1 (en) Method and apparatus for determining a time window, and chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217006392

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019844247

Country of ref document: EP

Effective date: 20210303

ENP Entry into the national phase

Ref document number: 2019314754

Country of ref document: AU

Date of ref document: 20190802

Kind code of ref document: A