WO2021030975A1 - Nr v2x sl synchronization signals - Google Patents

Nr v2x sl synchronization signals Download PDF

Info

Publication number
WO2021030975A1
WO2021030975A1 PCT/CN2019/101128 CN2019101128W WO2021030975A1 WO 2021030975 A1 WO2021030975 A1 WO 2021030975A1 CN 2019101128 W CN2019101128 W CN 2019101128W WO 2021030975 A1 WO2021030975 A1 WO 2021030975A1
Authority
WO
WIPO (PCT)
Prior art keywords
pss
polynomial
sss
polynomials
correlation
Prior art date
Application number
PCT/CN2019/101128
Other languages
French (fr)
Inventor
Tao Chen
Xuanbo SHAO
Zhixun Tang
Min LEI
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2019/101128 priority Critical patent/WO2021030975A1/en
Publication of WO2021030975A1 publication Critical patent/WO2021030975A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus for the synchronization signals of V2X sidelink communications.
  • NR SL PSS should avoid the confusion with NR uu PSS/SSS in case of co-existence in the same frequency resources. Besides, the NR SL PSS should secure the good auto-correlation performance and good cross-correlation performance between NR SL PSS’s. Therefore, a proper design for NR SL synchronization signals are important for the operation of the NR V2X.
  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus for the synchronization signals of V2X sidelink communications.
  • NR PSS can be m-sequence generated from another polynomial than 145-polynomial used by NR uu PSS to avoid confusion. 131-polynomial or the other polynomial can be used to generate NR SL PSS. Additionally, only one PSS can be selected to secure the good auto-correlation performance while avoiding confusion between two PSS’s. In case of two PSS’s are selected to potentially reduce the overall detection complexity, the two PSS’s can be selected from two different polynomials for the best cross-correlation performance to avoid confusion.
  • FIG. 1 shows an exemplary block diagram of a UE (a. k. adevice) according to an embodiment of the disclosure.
  • NR SL PSS can be m-sequence generated from another polynomial than 145-polynomial which is used by NR uu PSS to avoid confusion between NR SL PSS and NR uu PSS/SSS.
  • 131-polynomial or the other polynomial can be used to generate NR SL PSS.
  • NR SL PSS can be selected from 131-polynomial as below:
  • x 1 (i+7) (x 1 (i+1) +x 1 (i) ) mod 2
  • the proper pairing between the PSS and SSS’s are needed. In this case, the component of “1-Nid (2) ” is applied in the equation above for a proper pairing between PSS and the corresponding SSS’s .
  • the two PSS’s can be selected from two different polynomials for the best cross-correlation performance to avoid confusion or miss-detection.
  • the other polynomial candidates than 145 can be one of the blow polynomials:
  • only one PSS instead of two PSS’s can be selected to secure the good auto-correlation performance while avoiding confusion caused by two NR SL PSS’s .
  • the corresponding NR SL SSS can be same as NR uu SSS as below.
  • the Nid (2) can be set as 0 or 1, they are implicitly used for generation of 672 SSS sequences.
  • the Nid (2) can be only set as 0, it is implicitly used for generation of 336 SSS sequences.
  • One PSS is corresponding to 336 SSS sequences.
  • Total 672 sequences Two PSS’s from the same or the different polynomials arecorresponding to the total 672 SSS sequences, i.e., one PSS is corresponding to 336 SSS sequences.
  • the table can be as such.
  • Nid (2) will be also used for SSS generation.
  • Table 1 and table 2 show different examples with two root indexes from same or different pplynomial.
  • Example 1 with two root indexes from the same polynomial, e.g., 131
  • Fig. 1 shows an exemplary block diagram of a UE 800 according to an embodiment of the disclosure.
  • the UE 800 can be configured to implement various embodiments of the disclosure described herein.
  • the UE 800 can include a processor 810, a memory 820, and a radio frequency (RF) module 830 that are coupled together as shown in Fig. 1.
  • RF radio frequency
  • the UE 800 can be a mobile phone, a tablet computer, a desktop computer, a vehicle carried device, and the like.
  • the processor 810 can be configured to perform various functions of the UE 800 described above with reference to embodiments described before.
  • the processor 810 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 810 may execute program instructions, for example, stored in the memory 820, to perform functions related with different communication protocols.
  • the processor 810 can be implemented with suitable hardware, software, or a combination thereof.
  • the processor 810 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry.
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • the circuitry can be configured to perform various functions of the processor 810.
  • the memory 820 can store program instructions that, when executed by the processor 810, cause the processor 810 to perform various functions as described herein.
  • the memory 820 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
  • the RF module 830 can be configured to receive a digital signal from the processor 810 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 840.
  • the RF module 830 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 810.
  • the RF module 830 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations.
  • DAC/ADC digital to analog/analog to digital converters
  • the RF module 830 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
  • the UE 800 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 800 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
  • the processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions.
  • the computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware.
  • the computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
  • the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
  • the computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system.
  • a computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
  • the computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like.
  • the computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure relates to wireless communications, and, more particularly, to methods and apparatus for the synchronization signals of V2X sidelink communications. NR PSS can be m-sequence generated from another polynomial than 145-polynomial used by NR uu PSS to avoid confusion. 131-polynomial or the other polynomial can be used to generate NR SL PSS. Additionally, only one PSS can be selected to secure the good auto-correlation performance while avoiding confusion between two PSS's. In case of two PSS's are selected to potentially reduce the overall detection complexity, the two PSS's can be selected from two different polynomials for the best cross-correlation performance to avoid confusion. Alternatively, if the two PSS's are selected from one polynomials, then their spacing should be around (ceiling or floor) the half of the sequence length, e.g., 64 = ceil (127/2), which can minimize the cross-correlation of two PSS's.

Description

NR V2X SL SYNCHRONIZATION SIGNALS
FIELD OF INVENTION
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus for the synchronization signals of V2X sidelink communications.
BACKGROUND OF THE INVENTION
In NR V2X, NR SL PSS should avoid the confusion with NR uu PSS/SSS in case of co-existence in the same frequency resources. Besides, the NR SL PSS should secure the good auto-correlation performance and good cross-correlation performance between NR SL PSS’s. Therefore, a proper design for NR SL synchronization signals are important for the operation of the NR V2X.
SUMMARY OF THE INVENTION
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus for the synchronization signals of V2X sidelink communications.
NR PSS can be m-sequence generated from another polynomial than 145-polynomial used by NR uu PSS to avoid confusion. 131-polynomial or the other polynomial can be used to generate NR SL PSS. Additionally, only one PSS can be selected to secure the good auto-correlation performance while avoiding confusion between two PSS’s. In case of two PSS’s are selected to potentially reduce the overall detection complexity, the two PSS’s can be selected from two different polynomials for the best cross-correlation performance to avoid confusion. Alternatively, if the two PSS’s are selected from one polynomials, then their spacing should be around (ceiling or floor) the half of the sequence length, e.g, 64 = ceil (127/2) , which can minimize the cross-correlation of two PSS’s. Additionally, to avoid the PAPR gap between PSS and the corresponding SSS’s , the proper pairing between the PSS and SSS’s are needed.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
FIG. 1 shows an exemplary block diagram of a UE (a. k. adevice) according to an embodiment of the disclosure.
DETAILED DESCRIPTION
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to ... " . Also, the term "couple" is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections. The making and using of the embodiments of the disclosure are discussed in  detail below. It should be appreciated, however, that the embodiments can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative, and do not limit the scope of the disclosure. Some variations of the embodiments are described. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. Note that the 3GPP specifications described herein are used to teach the spirit of the invention, and the invention is not limited thereto.
NR SL PSS can be m-sequence generated from another polynomial than 145-polynomial which is used by NR uu PSS to avoid confusion between NR SL PSS and NR uu PSS/SSS. 131-polynomial or the other polynomial can be used to generate NR SL PSS. For example, NR SL PSS can be selected from 131-polynomial as below:
d SL_PSS (n) =1-2x (m)
Figure PCTCN2019101128-appb-000001
0≤n<127
x 1(i+7) = (x 1 (i+1) +x 1 (i) ) mod 2
[x(6) x (5) x (4) x (3) x (2) x (1) x (0) ] = [1 1 1 0 1 1 0]
If the two PSS’s are selected from one polynomial for generation of m-sequence based synchronization signals, then the spacing between two PSS’s can be around (ceiling or floor) the half of the sequence length, e.g, 64 = ceil (127/2) assuming 127 is the sequence length, which can minimize the cross-correlation of two PSS’s according to the m-sequence property, as shown in the equation above. Additionally, to avoid the PAPR gap between PSS and the corresponding SSS’s , the proper pairing between the PSS and SSS’s are needed. In this case, the component of “1-Nid (2) ” is applied in the equation above for a proper pairing between PSS and the corresponding SSS’s . Alternatively, in case of two PSS’s are selected to potentially reduce the cross-correlation in between, the two PSS’s can be selected from two different polynomials for the best cross-correlation performance to avoid confusion or miss-detection. The other polynomial candidates than 145 can be one of the blow polynomials:
D^7+D^3+1  (137)
D^7+D^3+D^2+D^1+1  (143)
D^7+D^4+D^3+D^2+1  (157)
D^7+D^5+D^2+D^1+1  (167)
D^7+D^5+D^3+D^1+1  (171)
D^7+D^5+D^4+D^3+1  (185)
D^7+D^5+D^4+D^3+D^2+D^1+1  (191)
D^7+D^6+1  (193)
D^7+D^6+D^3+D^1+1  (203)
D^7+D^6+D^4+D^1+1  (211)
D^7+D^6+D^4+D^2+1  (213)
D^7+D^6+D^5+D^2+1  (229)
D^7+D^6+D^5+D^3+D^2+D^1+1  (239)
D^7+D^6+D^5+D^4+1  (241)
D^7+D^6+D^5+D^4+D^2+D^1+1  (247)
D^7+D^6+D^5+D^4+D^3+D^2+1  (253)
Alternatively, only one PSS instead of two PSS’s can be selected to secure the good auto-correlation performance while avoiding confusion caused by two NR SL PSS’s .
The corresponding NR SL SSS can be same as NR uu SSS as below. When the Nid (2) can be set as 0 or 1, they are implicitly used for generation of 672 SSS sequences. When the Nid (2) can be only set as 0, it is implicitly used for generation of 336 SSS sequences.
d SSS (n) = [1-2x 0 ( (n+m 0) mod 127) ] [1-2x 1 ( (n+m 1) mod 127) ]
Figure PCTCN2019101128-appb-000002
Figure PCTCN2019101128-appb-000003
0≤n<127
For the relation between NR SL PSS and NR SL SSS, it can be:
- Option 1 (total 336 sequences) : One PSS is corresponding to 336 SSS sequences.
- Option 2 (total 672 sequences) : Two PSS’s from the same or the different polynomials arecorresponding to the total 672 SSS sequences, i.e., one PSS is corresponding to 336 SSS sequences.
- Option 3 (total 672 sequences) : One PSS is corresponding to 672 SSS sequences.
Alternative, there can be a table to define mapping between the root index N and/or N+64 used in polynomial for NR SL PSS with the relation to the corresponding SSS’s .
For example, the table can be as such. To be noted, Nid (2) will be also used for SSS generation. Table 1 and table 2 show different examples with two root indexes from same or different pplynomial.
Table 1: Example 1 with two root indexes from the same polynomial, e.g., 131
PSS root index Nid (2)
64 0
0 1
Table 2: Example 2 with two root indexes from the different polynomials
PSS root index Nid (2)
0 in polynomial 131 0
0 in polynomial 185 1
Moreover, the SS detection complexity between the single PSS and two PSS’s can be shown as below in Table 3:
Table 3. Hypothesis for PSS/SSS detection with different subcarrier spacing
Figure PCTCN2019101128-appb-000004
It can be noted that the single PSS will reduce the complexity quite much due to less hypothesis for detection.
Fig. 1 shows an exemplary block diagram of a UE 800 according to an embodiment of the disclosure. The UE 800 can be configured to implement various embodiments of the disclosure described herein. The UE 800 can include a processor 810, a memory 820, and a radio frequency (RF) module 830 that are coupled together as shown in Fig. 1. In different examples, the UE 800 can be a mobile phone, a tablet computer, a desktop computer, a vehicle carried device, and the like.
The processor 810 can be configured to perform various functions of the UE 800 described above with reference to embodiments described before. The processor 810 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 810 may execute program instructions, for example, stored in the memory 820, to perform functions related with different communication protocols. The processor 810 can be implemented with suitable hardware, software, or a combination thereof. For example, the processor 810 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry. The circuitry can be configured to perform various functions of the processor 810.
In one example, the memory 820 can store program instructions that, when executed by the processor 810, cause the processor 810 to perform various functions as described herein. The memory 820 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
The RF module 830 can be configured to receive a digital signal from the processor 810 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 840. In addition, the RF module 830 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 810. The RF module 830 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations. For example, the RF module 830 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
The UE 800 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 800 may be capable of performing other  additional functions, such as executing application programs, and processing alternative communication protocols.
The processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions. The computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware. The computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. For example, the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
The computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system. A computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device. The computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. The computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like. The computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (4)

  1. A method, comprising:
    Performing generation of the one or two NR SL PSS sequence (s) based on m-sequences.
  2. The method of claim 1, wherein generation of the two NR SL PSS sequences based on m-sequences can be from the same polynomial with the spacing between two PSS’s as the ceiling or floor of the half sequence length.
  3. The method of claim 1, wherein generation of the two NR SL PSS sequence (s) based on m-sequences can be from two different polynomials.
  4. The method of claim 1, wherein generation of the NR SL PSS sequence can be a single NR SL PSS from the other polynomials than the one used for generation of NR uu PSS.
PCT/CN2019/101128 2019-08-16 2019-08-16 Nr v2x sl synchronization signals WO2021030975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101128 WO2021030975A1 (en) 2019-08-16 2019-08-16 Nr v2x sl synchronization signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101128 WO2021030975A1 (en) 2019-08-16 2019-08-16 Nr v2x sl synchronization signals

Publications (1)

Publication Number Publication Date
WO2021030975A1 true WO2021030975A1 (en) 2021-02-25

Family

ID=74660138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101128 WO2021030975A1 (en) 2019-08-16 2019-08-16 Nr v2x sl synchronization signals

Country Status (1)

Country Link
WO (1) WO2021030975A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004322A1 (en) * 2016-07-01 2018-01-04 엘지전자(주) Method for transmitting and receiving data in wireless communication system, and apparatus therefor
CN108811077A (en) * 2017-05-05 2018-11-13 电信科学技术研究院 A kind of generation method of secondary synchronization sequences, detection method, base station and user equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004322A1 (en) * 2016-07-01 2018-01-04 엘지전자(주) Method for transmitting and receiving data in wireless communication system, and apparatus therefor
CN108811077A (en) * 2017-05-05 2018-11-13 电信科学技术研究院 A kind of generation method of secondary synchronization sequences, detection method, base station and user equipment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Feature lead summary on AI 7.2.4.3 Sidelink synchronization mechanism", 3GPP TSG RAN WG1 MEETING #97; R1-1907721, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 May 2019 (2019-05-16), Reno, USA; 20190513 - 20190517, XP051740001 *
CONVIDA WIRELESS: "Design Considerations for NR SL Synchronization", 3GPP TSG-RAN WG1 MEETING #94BIS; R1-1811623, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 29 September 2018 (2018-09-29), Chengdu, China; 20181008 - 20181012, XP051519017 *
ITL: "Considerations on sidelink synchronization signal for NR V2X", 3GPP TSG RAN WG1 MEETING #94; R1-1809254, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 11 August 2018 (2018-08-11), Gothenburg, Sweden; 20180820 - 20180824, XP051516620 *

Similar Documents

Publication Publication Date Title
WO2020164115A1 (en) Methods and apparatus of scell activation in new radio system
WO2020168452A1 (en) Control channel design for v2x communication
US20180376511A1 (en) Method and apparatus for random access channel procedure in wireless communication system
EP3697011A1 (en) Demodulation reference signal transmission method, network device, and terminal
WO2020142999A1 (en) Nr v2x sidelink synchronization signal block
WO2021072620A1 (en) Physical channnel structures for sidelink communication
EP3767853A1 (en) Method for transmitting phase tracking reference signal (ptrs), terminal and network device
US11172394B2 (en) Method for channel state information CSI measurement, terminal device and network device
US20130195021A1 (en) Table-based resource mapping for downlink control channels in a wireless system base station
CN115865594A (en) Passive intermodulation correction method and system based on FDD system
WO2020125527A1 (en) Data compression method, apparatus, computer device and storage medium
US20220116128A1 (en) Measurement method and device
WO2020168450A1 (en) Ssb design for v2x communication
WO2021030975A1 (en) Nr v2x sl synchronization signals
US9419829B2 (en) Apparatus, system and method of direct current (DC) estimation of a wireless communication packet
JP7121199B2 (en) Method and apparatus for generating and processing sequences
WO2021030941A1 (en) Ssb design for v2x communication
US20200028641A1 (en) Signal transmission method and apparatus
WO2022127679A1 (en) Information transmission method and apparatus, and terminal and network side device
WO2022179439A1 (en) Agc calibration preprocessing method and device, and storage medium and terminal
WO2022194056A1 (en) Frequency-hopping processing method, device, and terminal
WO2021035610A1 (en) Synchronization and physical channel structure for v2x sl communications
WO2019033392A1 (en) Signal transmission method, terminal device and network device
KR20230084619A (en) Data processing method, terminal device, and network device
WO2020164036A1 (en) Methods and apparatus of interruption at srs antenna switching in new radio system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942479

Country of ref document: EP

Kind code of ref document: A1