WO2021029259A1 - モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法 - Google Patents

モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法 Download PDF

Info

Publication number
WO2021029259A1
WO2021029259A1 PCT/JP2020/029714 JP2020029714W WO2021029259A1 WO 2021029259 A1 WO2021029259 A1 WO 2021029259A1 JP 2020029714 W JP2020029714 W JP 2020029714W WO 2021029259 A1 WO2021029259 A1 WO 2021029259A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electronic component
multilayer sheet
component mounting
mass
Prior art date
Application number
PCT/JP2020/029714
Other languages
English (en)
French (fr)
Inventor
森 大輔
正宏 浅原
克司 菅
野村 英一
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to CN202080055658.6A priority Critical patent/CN114207809A/zh
Priority to US17/633,598 priority patent/US20220310546A1/en
Priority to KR1020227004491A priority patent/KR20220041110A/ko
Priority to JP2020568830A priority patent/JP6894077B1/ja
Publication of WO2021029259A1 publication Critical patent/WO2021029259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/1312Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1601Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1712Layout
    • H01L2224/1713Square or rectangular array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29016Shape in side view
    • H01L2224/29018Shape in side view comprising protrusions or indentations
    • H01L2224/29019Shape in side view comprising protrusions or indentations at the bonding interface of the layer connector, i.e. on the surface of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29541Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/2955Shape
    • H01L2224/29551Shape being non uniform
    • H01L2224/29552Shape being non uniform comprising protrusions or indentations
    • H01L2224/29553Shape being non uniform comprising protrusions or indentations at the bonding interface of the layer connector, i.e. on the surface of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/2956Disposition
    • H01L2224/29562On the entire exposed surface of the core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/2957Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29798Fillers
    • H01L2224/29899Coating material
    • H01L2224/2999Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • H01L2224/83204Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a multilayer sheet for sealing mold underfill and a method for sealing mold underfill.
  • Patent Document 1 a mold underfill material capable of simultaneously performing underfill and overmolding has been proposed.
  • an object of the present invention is to provide a multilayer sheet for sealing a mold underfill, which has good penetrability between electrodes.
  • the present invention is the following multilayer sheet.
  • the layer (A) composed of a resin composition having a maximum value of tan ⁇ (tangent loss) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds is the most suitable. It is characterized by being provided as an outer layer.
  • tan ⁇ (tangent loss) indicates the ratio between the elastic property and the viscous property in the resin composition.
  • an elastic force which is a force for pushing the infiltrated material from behind.
  • the multilayer sheet containing the layer (A) made of the resin composition in which the maximum value of the tan ⁇ (tangent loss) of the present invention is specified is used when performing mold underfilling on an electronic component having a narrower distance between electrodes. , Can exhibit excellent permeability. Further, since it has a sheet shape, a step of injecting a resin such as a liquid is not required in the mold underfill sealing. Therefore, it is possible to obtain an electronic component mounting substrate having less voids as compared with the transfer molding method of mold underfill sealing.
  • one embodiment of the multilayer sheet of the present invention is characterized in that the layer (A) contains a filler and the maximum particle size of the filler is 20 ⁇ m or less. According to this feature, it is possible to exhibit better penetration into electronic components in which the distance between electrodes is narrower.
  • the layer (A) is cured with a median diameter (D50) (hereinafter, referred to as “median diameter”) of 10 ⁇ m or less at a cumulative volume of 50% of the volume particle size distribution. It is characterized by containing an accelerator. According to this feature, it is possible to exhibit better penetration into electronic components in which the distance between electrodes is narrower.
  • D50 median diameter
  • one embodiment of the multilayer sheet of the present invention is characterized in that the thickness of the layer (A) is 10 to 500 ⁇ m. According to this feature, warpage of electronic components can be suppressed. Further, the resin can easily penetrate under the electronic component, and more excellent penetration can be exhibited.
  • one embodiment of the multilayer sheet of the present invention is characterized in that it includes a layer (B) made of a resin composition satisfying the following formula (1).
  • indicates a coefficient of thermal expansion ⁇ [ppm / K] of the thermosetting product after being heat-cured at 175 ° C. for 1 hour at 80 ° C. or lower.
  • E' indicates the storage elastic modulus E'[GPa] of the thermosetting product at 25 ° C. 40,000 ⁇ ⁇ x E' ⁇ 250,000 [Pa / K] (1)
  • the shape of an electronic component may change due to heat during curing of the resin, but the multilayer sheet provided with the layer (B) made of the resin composition satisfying the formula (1) follows the shape change of the electronic component.
  • the coefficient of thermal expansion indicates the rate at which the length of the sheet changes as the temperature rises
  • the storage elastic modulus represents the rigidity of the sheet.
  • the multilayer sheet includes a layer (B) containing 70% by mass or more of a filler, and the ratio of the thickness of the layer (B) to the thickness of the layer (A) (B / A) is 1.0 to 80. According to this feature, it is possible to exhibit better sealing performance for electronic components having a narrower distance between electrodes, and it is possible to exhibit more low warpage property for sealed electronic components. ..
  • the mold underfill sealing method of the present invention for solving the above problems is a mold underfill sealing method for an electronic component mounting substrate, in which the height (h) of the electrodes is 5 to 250 ⁇ m, and the distance between the electrodes is set.
  • a step of preparing a substrate on which an electronic component having an electrode having a width (w) of 5 to 500 ⁇ m is flip-chip mounted, a step of preparing a multilayer sheet having a layer (A) as an outermost layer, and a step of preparing a multilayer sheet having a layer (A) as an outermost layer, and a step of preparing an electron It is characterized by including a step of placing the multilayer sheet so as to be in contact with a component and a substrate, and a step of heating and compressing the previously described multilayer sheet.
  • the layer A is a layer made of a resin composition having a maximum value of tan ⁇ (tangent loss) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds. Since the mold underfill sealing method of the present invention uses the multilayer film provided with the layer (A), it can be more efficiently penetrated between the electrodes of the electronic component mounting substrate, and a better sealing method can be obtained. Can be provided.
  • the layer (A) contains a filler, and the maximum particle diameter of the filler is the height (h) of the electrodes and the width between electrodes (w).
  • the maximum particle diameter of the filler in the layer (A) is equal to or less than the height (h) of the electrodes and the width between the electrodes (w)
  • the multilayer film containing the layer (A) is mounted on an electronic component. It is possible to more efficiently penetrate between the electrodes of the substrate, and it is possible to suppress the warp of the electronic component mounting substrate.
  • the electronic component mounting substrate of the present invention for solving the above problems is characterized in that the mold underfill sealing is sealed by a multilayer sheet including the layer (A) as the outermost layer.
  • the layer A is a layer made of a resin composition having a maximum value of tan ⁇ (tangent loss) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds.
  • the multilayer sheet provided with the layer (A) allows the electronic components to penetrate more efficiently between the electrodes of the electronic component mounting substrate on which the electronic components are mounted, and thus has excellent heat resistance and moisture resistance. It is possible to provide an electronic component mounting board.
  • the method for manufacturing an electronic component mounting substrate of the present invention for solving the above problems includes a step of preparing a substrate on which electronic components are flip-chip mounted, a step of preparing a multilayer sheet having a layer (A) as the outermost layer, and ( A) It is characterized by including a step of placing the multilayer sheet so that the layer is in contact with an electronic component and a substrate, and a step of heating and compressing the previously described multilayer sheet.
  • the layer A is a layer made of a resin composition having a maximum value of tan ⁇ (tangent loss) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds. According to this feature, since the multilayer sheet provided with the layer (A) can more efficiently penetrate between the electrodes of the electronic component mounting substrate, a method for manufacturing an electronic component mounting substrate having excellent heat resistance and moisture resistance. Can be provided.
  • the layer (A) made of a resin composition having a maximum value of tan ⁇ (tangent loss) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds is the most suitable. It is characterized by being provided as an outer layer.
  • Mold underfill encapsulation is one of the methods for encapsulating an electronic component connected by a flip chip connection or the like and a substrate, and includes underfill encapsulation for encapsulating an electrode portion and electronic components. An overmold sealing method for encapsulating the entire surface is shown.
  • the multilayer sheet of the present invention includes a layer (A) made of a resin composition having a maximum value of tan ⁇ (loss tangent) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds as the outermost layer.
  • the multilayer film having the layer (A) composed of the resin composition in which the maximum value of tan ⁇ (tangent loss) of the present invention is specified as the outermost layer is used when performing mold underfilling on an electronic component having a narrower distance between electrodes. In addition, it can exhibit excellent permeability.
  • the outermost layer means the outermost layer in the multilayer sheet, and refers to a layer that comes into contact with the atmosphere such as air.
  • the layer (A) of the present invention is a layer to be placed so as to be in direct contact with an electronic component and a substrate in mold underfill sealing. Further, since the layer (A) is provided as the outermost layer, excellent sealing performance can be exhibited by placing the layer (A) so as to be in contact with the electronic component and the substrate and performing sealing. it can.
  • the maximum value of tan ⁇ (tangent loss) is preferably 5 or more, more preferably 7 or more. There is no particular upper limit to the maximum value of tan ⁇ (tangent loss), but it is preferably 60 or less, more preferably 50 or less.
  • the maximum value of tan ⁇ of the resin composition constituting the layer (A) can be controlled by the content of the filler and the type of the thermosetting resin or the curing agent. For example, if the content of the filler is increased, the maximum value becomes small, and if the content of the filler is decreased, the maximum value can be increased. Further, by using a crystalline epoxy resin or a liquid epoxy resin having a low viscosity when heated as a thermosetting resin, or by using a low viscosity curing agent such as low molecular weight phenol, crystalline acid anhydride, or liquid phenol. The maximum value of tan ⁇ can be 3 or more.
  • the maximum value of tan ⁇ of the resin composition constituting the layer (A) is measured at a measurement temperature of 125 for a test piece having a diameter of 25 mm ⁇ using a viscoelasticity measuring device (for example, ARES-LS2 manufactured by TA Instruments). It is a value measured under the conditions of ° C., a measurement time of 0 to 100 seconds, and a frequency of 1 Hz.
  • the layer (A) preferably contains a filler.
  • the filler used for the layer (A) is not particularly limited, and silica such as molten silica and crystalline silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride (BN), and glass. Examples include beads. These may be used alone or in combination of two or more. From the viewpoint of improving the penetration into the electrodes, it is preferable to use silica powder, and among the silica powders, it is more preferable to use fused silica powder. Examples of the molten silica powder include spherical fused silica powder and crushed fused silica powder.
  • spherical fused silica powder From the viewpoint of fluidity, it is particularly preferable to use spherical fused silica powder, and those having a high sphericity are more preferable. Further, by containing the filler, the warp of the electronic component can be suppressed.
  • the filler a filler obtained by reacting the surface with a silane coupling agent in advance can also be used.
  • a filler obtained by reacting a silane coupling agent on the surface the dispersibility in the resin composition can be improved.
  • the blending amount is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the filler.
  • the content of the filler is preferably 30% by mass or more.
  • the lower limit is more preferably 73% by mass or more, still more preferably 76% by mass or more.
  • the upper limit is more preferably 93% by mass or less, still more preferably 85% by mass or less.
  • the median diameter of the filler is, for example, preferably 0.1 to 30 ⁇ m.
  • the lower limit is more preferably 0.1 ⁇ m or more, still more preferably 0.5 ⁇ m or more.
  • the upper limit is more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less.
  • the maximum particle size of the filler is smaller than, for example, the height of the electrode or the width of the electrode, and is preferably 20 ⁇ m or less.
  • the upper limit is more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less.
  • the material constituting the layer (A) is not particularly limited, but is preferably a resin, and more preferably a thermosetting resin.
  • the thermosetting resin include epoxy resin, (meth) acrylic resin, phenol resin, melamine resin, silicone resin, urea resin, urethane resin, vinyl ester resin, unsaturated polyester resin, diallyl phthalate resin, and polyimide resin. Can be mentioned. One of these may be used alone, or two or more thereof may be used in combination.
  • an epoxy resin is particularly preferable, and an epoxy resin having a low viscosity when heated, for example, a crystalline epoxy such as a naphthalene type epoxy resin A resin or a liquid epoxy resin such as a liquid bisphenol A type epoxy resin is more preferable.
  • the epoxy resin is not particularly limited, but is, for example, a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, a hydrogenated bisphenol A type epoxy resin, and a hydrogenated bisphenol F type epoxy resin. , Biphenyl type or tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, alicyclic aliphatic epoxy resin such as dicyclopentadiene type epoxy resin, glycidylamine type epoxy resin, glycidyl ether of organic carboxylic acids And so on. These may be used alone or in combination of two or more.
  • a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, a hydrogenated bisphenol A type epoxy resin, and a hydrogenated bisphenol F type epoxy resin.
  • the epoxy resin may be a prepolymer, or may be a copolymer of an epoxy resin such as a polyether-modified epoxy resin or a silicone-modified epoxy resin and another polymer.
  • an epoxy resin such as a polyether-modified epoxy resin or a silicone-modified epoxy resin and another polymer.
  • preferred examples include bisphenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, glycidylamine type epoxy resin, naphthalene type epoxy resin, and polyether-modified epoxy resin.
  • the epoxy resin can contain about 0.1 to 30% by mass of a monofunctional epoxy resin having one epoxy group in the molecule in order to adjust the viscosity of the resin composition.
  • a monofunctional epoxy resin phenylglycidyl ether, 2-ethylhexyl glycidyl ether, ethyldiethylene glycol glycidyl ether, dicyclopentadiene glycidyl ether, 2-hydroxyethyl glycidyl ether and the like can be used. These may be used alone or in combination of two or more.
  • the content of the thermosetting resin in the layer (A) is not particularly limited, but is preferably 5 to 50% by mass. Further, the content of the epoxy resin in the layer (A) is not particularly limited, but is 5% by mass or more and 50% by mass or less. The lower limit is preferably 5% by mass or more, more preferably 10% by mass or more. The upper limit value is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the layer (A) may contain a curing agent of a thermosetting resin, and the type of the curing agent is not particularly limited, but for example, a solid phenol, a phenol-based curing agent such as solid phenol novolac or liquid phenol novolac, or dicyandiamide-based.
  • Curing agents (disyandiamide, etc.), urea-based curing agents, organic acid hydrazide-based curing agents, polyamine salt-based curing agents, amine adduct-based curing agents, acid anhydride-based curing agents such as solid acid anhydrides and liquid acid anhydrides, imidazole
  • a system curing agent and in order to control the maximum value of tan ⁇ of the layer (A) to 3 or more, it is preferable to use a low-viscosity curing agent such as liquid phenol novolac or liquid acid anhydride. These may be used alone or in combination of two or more.
  • the type of curing agent can be appropriately selected depending on the thermosetting resin.
  • the amount of curing agent varies depending on the type of curing agent.
  • an epoxy resin for example, it is possible to use an amount of the curing agent such that the equivalent number of functional groups of the curing agent is 0.001 to 2 equivalents, and further 0.005 to 1.5 equivalents per 1 equivalent of the epoxy group. preferable.
  • the layer (A) preferably contains a curing accelerator.
  • the curing accelerator include amine compounds such as imidazole compounds, basic compounds such as phosphorus compounds and organic metal compounds, and microcapsule type curing accelerators.
  • the imidazole compound include imidazole, 2-methylimidazole, 2-ethyl imidazole, 1-isobutyl 2-methyl imidazole, 2-ethyl-4-methyl imidazole, 2-phenyl imidazole, 2-phenyl-4-methyl imidazole, 1 -Benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-substituted imidazole compounds such as 2-undecylimidazole, 1-cyanoethyl-2-phenylimid
  • Examples of the phosphorus compound include trialkylphosphine compounds such as tributylphosphine and triarylphosphine compounds such as triphenylphosphine.
  • Examples of the amine compound include 2,4,6-tris (dimethylaminomethyl) phenol, diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • the amine compound may be an amine adduct.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II) and trisacetylacetonate cobalt (III).
  • a fine particle composition in which an amine compound powder is dispersed in an epoxy resin can be used.
  • the amine compound may be selected from those exemplified below based on a desired thickening ratio.
  • Examples of the amine compound include aliphatic primary amine, alicyclic primary amine, aromatic primary amine, aliphatic secondary amine, alicyclic secondary amine, aromatic secondary amine, imidazole compound, and imidazoline compound. , Or the reaction product of these compounds with carboxylic acid, sulfonic acid, isocyanate, epoxy and the like.
  • aliphatic primary amine aliphatic primary amine
  • aromatic primary amine aromatic primary amine
  • aliphatic secondary amine alicyclic secondary amine
  • aromatic aromatic primary amine
  • a combination of a group secondary amine, imidazole compound, or imidazoline compound and a reaction product of their carboxylic acid, sulfonic acid, isocyanate, or epoxy can be preferably used.
  • the amine compound powder has a melting point or a softening point of 60 ° C. or higher from the viewpoint of suppressing thickening at 25 ° C.
  • the curing accelerator contained in the layer (A) preferably has a median diameter of 10 ⁇ m or less.
  • a curing accelerator having a median diameter of 10 ⁇ m or less it is possible to exhibit better penetration into electronic components in which the distance between the electrodes is narrower. That is, since it does not contain particles having a large particle size, it is possible to suppress poor penetration between narrow electrodes.
  • the median diameter is small, the particles are not divided into large particles and small particles in the system, so that partial curing failure after infiltration can be suppressed.
  • the upper limit of the median diameter of the curing accelerator is more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less.
  • the lower limit is preferably 0.1 ⁇ m or more.
  • the content of the curing accelerator is, for example, 0.1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
  • the lower limit is preferably 1 part by mass or more, more preferably 5 parts by mass or more.
  • the upper limit is preferably 30 parts by mass or less, more preferably 20 parts by mass or less.
  • the lower limit is preferably 1 part by mass or more, more preferably 5 parts by mass or more.
  • the upper limit is preferably 30 parts by mass or less, more preferably 20 parts by mass or less.
  • additives can be used for the layer (A) of the present invention as long as the object of the present invention is not impaired.
  • examples of such an additive include a thermoplastic resin, a silane coupling agent, carbon black, an ion scavenger and the like.
  • Thermoplastic resins include silicone oils such as non-reactive silicone oils and reactive silicone oils, acrylic resins, phenoxy resins, polyolefins, polyurethanes, blocked isocyanates, polyethers, polyesters, polyimides, polyvinyl alcohols, butyral resins, polyamides, and chlorides. Examples thereof include vinyl, cellulose, thermoplastic epoxy resin, and thermoplastic phenol resin.
  • non-reactive silicone oil examples include polysiloxane, polyether-modified silicone oil, and alkyl-modified silicone oil.
  • reactive silicone oil examples include epoxy-modified silicone oil, carboxyl-modified silicone oil, and amino-modified silicone oil.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 2- (3,4).
  • -Epylcyclohexyl) Ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and the like can be mentioned.
  • the silane coupling agent can be appropriately blended even when silica having a silane coupling agent reacted on the surface in advance is used.
  • the content of the silane coupling agent is preferably 0.1 to 10% by mass, more preferably 2 to 6% by mass in the layer (A).
  • the content of the carbon black in the layer (A) is preferably 0.1 to 5% by mass, and more preferably 0.5 to 3% by mass.
  • the ion scavenger may be any agent having an ability to capture impurity ions in the sealing composition and capable of improving the reliability of the sealed electronic component.
  • the ion scavenger include an inorganic ion exchanger and the like.
  • the content is not particularly limited, but is preferably 0.05% by mass or more, and more preferably 3% by mass or less in the layer (A).
  • the thickness of the layer (A) is preferably 10 to 500 ⁇ m.
  • the lower limit is more preferably 20 ⁇ m or more, still more preferably 40 ⁇ m or more.
  • the upper limit is more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less.
  • the multilayer sheet of the present invention can preferably include a layer (B) in addition to the layer (A).
  • the layer (B) By providing the layer (B), the multilayer sheet of the present invention can suppress the occurrence of warpage in the multilayer sheet.
  • the layer (B) is preferably the outermost layer or the intermediate layer opposite to the layer (A). Also in this case, the release film or sheet is not called the outermost layer. Further, the multilayer sheet of the present invention is not placed so as to be in direct contact with electronic components and a substrate in mold underfill sealing even if the layer (B) is the outermost layer.
  • the layer (B) is preferably a layer containing a filler.
  • the type of filler is not particularly limited, but the same filler as described in the section (A) above can be used.
  • the content of the filler is preferably 70% by mass or more.
  • the lower limit is more preferably 75% by mass or more, still more preferably 80% by mass or more.
  • the upper limit is preferably 93% by mass or less, and more preferably 90% by mass or less.
  • the median diameter of the filler is preferably 0.1 to 30 ⁇ m.
  • the lower limit is more preferably 1 ⁇ m or more, still more preferably 3 ⁇ m or more.
  • the upper limit is more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the coefficient of thermal expansion of the filler is not particularly limited, but is preferably 1 ppm / K or more, and more preferably 2 ppm / K or more.
  • the upper limit is preferably 15 ppm / K or less, more preferably 10 ppm / K or less.
  • the material constituting the layer (B) is not particularly limited, but is preferably a resin, and more preferably a thermosetting resin.
  • the thermosetting resin the same one as described in the section of the layer (A) above can be used, and an epoxy resin is preferable.
  • the epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, bisphenol modified epoxy resin.
  • the epoxy resin may be a prepolymer, or may be a copolymer of an epoxy resin such as a polyether-modified epoxy resin or a silicone-modified epoxy resin and another polymer.
  • an epoxy resin such as a polyether-modified epoxy resin or a silicone-modified epoxy resin and another polymer.
  • a biphenyl type epoxy resin, a phenol novolac type epoxy resin, a phenol phthalein type epoxy resin, and a bisphenol modified type epoxy resin which are epoxy resins having a rigid skeleton the heat of the layer (B) at 80 ° C. or lower is used.
  • the expansion coefficient can be reduced.
  • the storage elastic modulus E'of the layer (B) at 25 ° C. can be reduced.
  • the epoxy resin can contain about 0.1 to 30% by mass of a monofunctional epoxy resin having one epoxy group in the molecule in order to adjust the viscosity of the resin composition.
  • a monofunctional epoxy resin phenylglycidyl ether, 2-ethylhexyl glycidyl ether, ethyldiethylene glycol glycidyl ether, dicyclopentadiene glycidyl ether, 2-hydroxyethyl glycidyl ether and the like can be used. These may be used alone or in combination of two or more.
  • the content of the thermosetting resin in the layer (B) is not particularly limited, but is preferably 2 to 30% by mass. Further, the content of the epoxy resin in the layer (B) is not particularly limited, but is 2% by mass or more and 30% by mass or less.
  • the lower limit is preferably 3% by mass or more, more preferably 5% by mass or more.
  • the upper limit value is preferably 25% by mass or less, more preferably 20% by mass or less.
  • the layer (B) may contain a curing agent and a curing accelerator of a thermosetting resin, and the types of the curing agent and the curing accelerator shall be the same as those described in the section of the layer (A). Can be done.
  • the amount of hardener depends on the type of hardener. When an epoxy resin is used, for example, it is possible to use an amount of the curing agent in which the equivalent number of functional groups of the curing agent is 0.001 to 2 equivalents, and further 0.005 to 1.5 equivalents per 1 equivalent of the epoxy group. preferable.
  • the storage elastic modulus of the layer (B) can be reduced by using a phenol-based curing agent such as a solid phenol novolac resin, preferably a biphenyl type phenol novolac resin.
  • the content of the curing accelerator is preferably 0.1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
  • the lower limit is more preferably 1 part by mass or more, still more preferably 5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less.
  • the lower limit is more preferably 1 part by mass or more, still more preferably 5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less.
  • additives can be used for the layer (B) as long as the object of the present invention is not impaired.
  • the same additive as that described in the section of the layer (A) above can be used, and examples thereof include a thermoplastic resin, a silane coupling agent, carbon black, and an ion scavenger.
  • Thermoplastic resins include silicone oils such as non-reactive silicone oils and reactive silicone oils, acrylic resins, phenoxy resins, polyolefins, polyurethanes, blocked isocyanates, polyethers, polyesters, polyimides, polyvinyl alcohols, butyral resins, polyamides, and chlorides. Examples thereof include vinyl, cellulose, thermoplastic epoxy resin, and thermoplastic phenol resin.
  • the storage elastic modulus of the layer (B) can be reduced by using a resin such as polyester, acrylic resin, silicone oil, polyether, polyvinyl alcohol, or polyamide.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 2- (3,4).
  • -Epylcyclohexyl) Ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and the like can be mentioned.
  • the silane coupling agent can be appropriately blended even when silica having a silane coupling agent reacted on the surface in advance is used.
  • the content of the silane coupling agent in the layer (B) is preferably 0.1 to 10% by mass, and more preferably 2 to 6% by mass.
  • the content of the carbon black in the layer (B) is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass.
  • the ion scavenger may be any agent having an ability to capture impurity ions in the sealing composition and capable of improving the reliability of the sealed electronic component.
  • the ion scavenger include an inorganic ion exchanger and the like.
  • the content is not particularly limited, but is preferably 0.05% by mass or more, and more preferably 3% by mass or less in the layer (B).
  • the thickness of the layer (B) is preferably 50 to 800 ⁇ m.
  • the lower limit is more preferably 100 ⁇ m or more, still more preferably 200 ⁇ m or more.
  • 700 is more preferably ⁇ m or less, and further preferably 600 ⁇ m or less.
  • the layer (B) of the multilayer sheet of the present invention has a coefficient of thermal expansion ⁇ [ppm / K] at 80 ° C. or lower and a storage elastic modulus E'[GPa] at 25 ° C. of the thermosetting product according to the following formula (1). It is preferable to provide the layer (B) made of the resin composition satisfying the above conditions. 40,000 ⁇ ⁇ x E' ⁇ 250,000 [Pa / K] (1)
  • the lower limit of ⁇ ⁇ E'in the layer (B) is more preferably 40,000 or more, and further preferably 50,000 or more.
  • the upper limit is more preferably 220,000 or less, still more preferably 180,000 or less. Since the multilayer sheet of the present invention is provided with the layer (B) made of the resin composition satisfying the above formula (1), the stress due to heat during curing can be relaxed, so that the warp of the electronic component can be suppressed.
  • the lower limit of the coefficient of thermal expansion ⁇ of the resin composition constituting the layer (B) at 80 ° C. or lower is preferably 3 ppm / K or more, and more preferably 5 ppm / K or more.
  • the upper limit is preferably 15 ppm / K or less, more preferably 10 ppm / K or less.
  • the coefficient of thermal expansion can be reduced by highly filling a filler having a small coefficient of thermal expansion or by using an epoxy resin or the like having a rigid skeleton. Further, by increasing the glass transition temperature of the layer (B), the coefficient of thermal expansion below the glass transition temperature can be reduced.
  • a resin sheet consisting of only the layer (B) is heat-cured at 150 ° C. for 1 hour, and then a measurement sample having a length of 20 mm, a width of 5 mm, and a thickness of 5 ⁇ m is prepared from the thermosetting product. To do. After setting the measurement sample on the compression measurement jig of the thermomechanical analyzer (TMA7100), place it under the conditions of a load of 5 g and a heating rate of 2.5 ° C./min in a temperature range of -50 to 300 ° C. The coefficient of thermal expansion ⁇ is calculated from the expansion rate at ° C. to 70 ° C.
  • the lower limit of the storage elastic modulus E'at 25 ° C. of the resin composition constituting the layer (B) is preferably 3 GPa or more, more preferably 10 GPa or more.
  • the upper limit is preferably 50 GPa or less, more preferably 30 GPa or less.
  • the method for measuring the storage elastic modulus E' is performed according to the following procedure.
  • a resin sheet composed of only the layer (B) is heat-cured at 150 ° C. for 1 hour, and then a measurement sample having a length of 50 mm, a width of 10 mm, and a thickness of 2 mm is prepared from the thermosetting product.
  • (2) Set the measurement sample on a bending measurement jig, and use a viscoelasticity measuring device (DMA6100, manufactured by Hitachi High-Tech Science Co., Ltd.) to determine the flexural modulus in the temperature range of -50 to 300 ° C. The measurement is performed under the conditions of a frequency of 1 Hz and a heating rate of 2.5 ° C./min.
  • the storage elastic modulus (E') at 25 ° C. is read from the above measurement results.
  • the resin composition constituting the layer (B) of the multilayer sheet of the present invention preferably has a glass transition temperature of 80 ° C. or higher after the thermosetting treatment at 175 ° C. for 1 hour. Since the glass transition temperature of the thermosetting product after the thermosetting treatment at 175 ° C. for 1 hour is 80 ° C. or higher, the sealed product sealed with the multilayer sheet can have excellent thermal stability. In order to make the glass transition temperature of the thermosetting product of the layer (B) 80 ° C. or higher, the rigidity of the thermosetting product may be improved. For example, the content of epoxy groups in the epoxy resin may be increased. , It is preferable to increase the number of reactive groups in the curing agent.
  • the thickness of the entire multilayer sheet of the present invention is not particularly limited, but is preferably 100 ⁇ m or more.
  • the lower limit is more preferably 150 ⁇ m or more, still more preferably 200 ⁇ m or more.
  • the upper limit is more preferably 1000 ⁇ m or less, still more preferably 800 ⁇ m or less.
  • the ratio (B / A) of the thickness of the layer (B) to the thickness of the layer (A) is preferably 1.0 to 80, more preferably 2.0 to 10. ..
  • the ratio of the thickness of the layer (A) to the thickness of the layer (B) within the above range, it is possible to exhibit better sealing performance for electronic components having a narrower distance between electrodes and to seal the components. It is possible to more exhibit low warpage for stopped electronic components.
  • the multilayer sheet of the present invention may include other layers in addition to the above layers (A) and (B).
  • the other layer preferably contains the thermosetting resin described in the sections (A) and (B) above, and may contain a filler or the like. Further, the other layers may be one layer or more layers.
  • the multilayer sheet of the present invention contains other layers, for example, if the other layers are (C) layers, the structure is (A) layer / (C) layer / (B) layer, or (A) layer / (B). ) Layer / (C) layer can be configured.
  • the maximum value of tan ⁇ (tangent loss) at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds of the resin composition constituting the layer (A) is preferably other than the layer (A).
  • the measurement temperature of the resin composition constituting the layer is 125 ° C.
  • the measurement time is 0 to 100 seconds, which is equal to or less than the maximum value of tan ⁇ (tangent loss).
  • the resin constituting the (A) layer in the case of a two-layer sheet composed of (A) layer and (B) layer.
  • the maximum value of tan ⁇ of the composition By setting the maximum value of tan ⁇ of the composition to be equal to or less than the maximum value of tan ⁇ of the resin composition constituting the layer (B), it is possible to prevent the layers (A) and (B) from being melted and mixed. It is possible to efficiently perform underfill and overmold sealing.
  • tan ⁇ (loss) at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds of the resin composition constituting the (A) layer is preferable that the maximum value of (tangent) is equal to or less than the maximum value of tan ⁇ (tangent loss) at the measurement temperature of layer (C) at 125 ° C. and the measurement time of 0 to 100 seconds.
  • a measurement time of 0 to 100 seconds of the resin composition constituting the layer (A) is a measurement temperature of 125 ° C. and a measurement time of 0 to 0 to the layers other than the layer (A).
  • FIG. 1 shows a schematic explanatory view of the multilayer sheet of the present invention.
  • the multilayer sheet shown in FIG. 1 is a two-layer multilayer sheet composed of (A) layer 11 and (B) layer 12.
  • the multilayer sheet shown in FIG. 1 is a sheet having (A) layer 11 and (B) layer 12 as outermost layers, respectively, but as described above, other layers are added to the (A) layer and (B) layer. It can also be a multi-layer sheet to be provided.
  • each layer is individually formed by a calendar film forming method, a casting film forming method, an inflation extrusion method, a T die extrusion method, a dry laminating method, or the like, and then bonded.
  • a multilayer sheet may be produced by using a coextrusion method or the like.
  • the base material is not particularly limited, and examples thereof include a plastic film, paper, a non-woven fabric, and a metal.
  • plastic films include polyolefin-based films, vinyl halide polymerization-based films, acrylic resin-based films, rubber-based films, cellulose-based films, polyester-based films, polycarbonate-based films, polystyrene-based films, polyphenylene sulfide-based films, and cycloolefins. Examples include polymer films. It is also possible to use a base material that has been mold-released with silicone or the like. The thickness of the base material is not particularly limited, but is preferably 500 ⁇ m or less.
  • a mold underfill sealing method for the electronic component mounting substrate In the mold underfill sealing method of the electronic component mounting substrate of the present invention, an electronic component having an electrode having an electrode height (h) of 5 to 250 ⁇ m and a width (w) between the electrodes of 5 to 500 ⁇ m is provided.
  • a step of preparing a substrate on which a flip chip is mounted, a multilayer sheet having a layer (A) having a maximum value of tan ⁇ (loss tangent) of 3 or more at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds as the outermost layer It is characterized by including a step, a step of placing the multilayer sheet so that the layer (A) is in contact with an electronic component and a substrate, and a step of heating and compressing the multilayer sheet described above.
  • Electronic components include integrated circuits (ICs) that integrate transistors, capacitors, resistors, etc. on a single chip, and large-scale integrated circuits (ICs) that further increase the degree of integration of ICs and contain more than 1000 elements on a single chip.
  • Examples include semiconductor chips such as LSI).
  • the shape of the electrode is not particularly limited, and examples thereof include balls, pillars, posts, and columns.
  • the material of the electrode is not particularly limited, and for example, Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, Sn-Pb-Bi type, lead-free Sn-Ag type, Sn-Ag-Cu type.
  • the height (h) of the electrodes is 5 to 250 ⁇ m
  • the width (w) between the electrodes is 5 to 500 ⁇ m.
  • the board include a printed wiring board on which a circuit is printed.
  • FIG. 2 is a schematic explanatory view of an electronic component mounting board (mounting board) 20 in which the electronic component 21 and the substrate 22 are connected by an electrode 23.
  • the electronic component 21 and the substrate 22 are conducted by an electrode 23.
  • the height (h) between the electrodes is 5 to 250 ⁇ m
  • the width (w) is 5 to 500 ⁇ m.
  • the diameter of the electrode is preferably 10 ⁇ m to 1000 ⁇ m.
  • FIG. 3 is a schematic explanatory view of a state in which the multilayer sheet 10 is placed on the electronic component mounting substrate (mounting substrate) 20 so that the layer (A) is in contact with the electronic component 21 and the substrate 22.
  • the maximum particle size of the filler contained in the multilayer film is preferably equal to or less than the height (h) and width (w) between the electrodes.
  • the electronic component mounting substrate can be mold-underfilled.
  • the heating temperature at this time is not particularly limited, but is preferably 70 to 150 ° C.
  • the lower limit is more preferably 80 ° C. or higher, and even more preferably 90 ° C. or higher.
  • the upper limit is more preferably 140 ° C.
  • the compression pressure is not particularly limited, but is preferably 0.5 to 10 MPa.
  • the lower limit is more preferably 1 MPa or more, still more preferably 1.5 MPa or more.
  • the upper limit is more preferably 8 MPa or less, still more preferably 6 MPa or less.
  • the method of heat compression is not particularly limited, and examples thereof include a method of pressing the multilayer film while heating it with a press plate or the like. Further, during heat compression, heat compression can also be performed under reduced pressure conditions.
  • a thermosetting resin is contained as the material of the multilayer film, it is preferable to provide a post-curing step.
  • the post-curing step is a step of heating and curing.
  • the heating temperature is preferably 90 to 200 ° C.
  • the lower limit is more preferably 120 ° C. or higher, and even more preferably 140 ° C. or higher.
  • the heating time is preferably 30 to 240 minutes, more preferably 60 to 180 minutes.
  • FIG. 4 is a schematic explanatory view of an electronic component mounting substrate molded underfill-sealed with a multilayer sheet 10. Since the multilayer sheet 10 contains the layer (A) in which the maximum value of tan ⁇ (loss tangent) at a measurement temperature of 125 ° C. and a measurement time of 0 to 100 seconds is 3 or more, it is transferred between the electrodes of the electronic component mounting substrate. It is an electronic component mounting board with excellent heat resistance and moisture resistance because it can be penetrated more efficiently.
  • ⁇ Making a multi-layer sheet> (1) Preparation of layer (A) Epoxy resin, curing agent, filler (molten silica FB501MDX1: manufactured by DENKA Co., Ltd.), carbon black (particle size 24 nm), silane cup with the formulations shown in Tables 1-1 to 1-4.
  • a ring agent (KBM503: manufactured by Shinetsu Silicone), an ion trapping agent (inorganic ion exchanger), and a curing accelerator were mixed, heated at 120 ° C. for 30 minutes by a roll kneader, and then melt-kneaded to prepare a kneaded product. All values in the table are parts by mass.
  • the obtained kneaded product was coated on a mold release film by a T-die extrusion method under the condition of 100 ° C. to form a sheet, and the thickness was 20 to 300 ⁇ m, the length was 500 mm, and the width was 500 mm (A).
  • Layer was prepared.
  • As the release-treated film a polyethylene terephthalate film having a thickness of 50 ⁇ m treated with silicone was used.
  • layer (B) 100 parts by mass of biphenyl type epoxy resin, 50 parts by mass of solid phenol novolac resin, 1360 parts by mass of filler (molten silica FB501MDX: manufactured by DENKA Co., Ltd.), 2 parts by mass of carbon black (particle size 24 nm) , 2 parts by mass of silane coupling agent (KBM503: manufactured by Shinetsu Silicone), 5 parts by mass of ion trapping agent (inorganic ion exchanger), 10 parts by mass of curing accelerator (triarylphosphine compound), and a roll kneader. The mixture was heated at 120 ° C. for 30 minutes and then melt-kneaded to prepare a kneaded product.
  • the obtained kneaded product was coated on a mold release film by a T-die extrusion method under the condition of 100 ° C. to form a sheet, and the thickness was 50 to 800 ⁇ m, the length was 500 mm, and the width was 500 mm (B). ) Layer was prepared.
  • the release-treated film a polyethylene terephthalate film having a thickness of 50 ⁇ m treated with silicone was used.
  • ⁇ Mold underfill test 1> (Inter-electrode penetration test) A bump height of 30 ⁇ m mounted on glass and a dimension of 25 mm in length and 25 mm in width are placed on a test chip so that the layer (A) of the mold underfill sealing sheet prepared above is in contact with the test chip, and the molding pressure is 3 MPa. After pre-curing at 125 ° C. for 10 minutes, it was post-cured at 150 ° C. for 60 minutes. The permeability was evaluated by observing directly from the back surface of the glass and using the following criteria. [Immability evaluation criteria] ⁇ : The size of the uninfiltrated portion is 500 ⁇ m or less. ⁇ : The size of the uninfiltrated portion is larger than 500 ⁇ m and 1000 ⁇ m or less. X: The size of the uninfiltrated portion is larger than 1000 ⁇ m.
  • ⁇ Mold underfill test 2> Each component was mixed according to the formulation shown in Table 2, heated at 120 ° C. for 30 minutes by a roll kneader, and then melt-kneaded to prepare a kneaded product. Next, the obtained kneaded product was coated on a mold release film by a T-die extrusion method under the condition of 100 ° C. to form a sheet, and the thickness was 200 to 800 ⁇ m, the length was 500 mm, and the width was 500 mm (B). ) Layer was prepared. As the release-treated film, a polyethylene terephthalate film having a thickness of 50 ⁇ m treated with silicone was used.
  • the layers (A) and (B) of the formulation used in Example 1 of Table 1-1 are laminated so as to be in contact with each other, and bonded at a temperature of 60 ° C. with a laminator to prepare a mold underfill sealing sheet. did.
  • an inter-electrode penetration test was conducted in the same manner as described above.
  • the evaluation criteria are the same as above.
  • the amount of warpage was evaluated using the following method.
  • the mold underfill sealing sheet was placed on a silicon wafer having a diameter of 12 inches and a thickness of 775 ⁇ m, pre-cured at a molding pressure of 3 MPa at 125 ° C. for 10 minutes, and then post-cured at 150 ° C. for 60 minutes.
  • [Criteria for evaluating the amount of warpage] After the above post-curing, the mixture was cooled to room temperature and the amount of warpage was evaluated according to the following criteria.
  • a laser displacement meter was used to measure the average height difference between the center portion of the silicon wafer on the substrate side and the two end portions of the wafer, and the value was used as the amount of warpage for evaluation according to the following criteria.
  • The warp is 12 mm or less.
  • X The warp is larger than 12 mm.
  • the multilayer sheet for mold underfill sealing of the present invention can perform narrow gap filling under the flip chip and overall sealing at once. As a result, it can be used for sealing integrated circuits and large-scale integrated circuits used for IOT, automatic operation, and the like.
  • Multi-layer sheet 11 ... (A) layer, 12 ... (B) layer, 20 ... Mounting board, 21 ... Electronic component, 22 ... Board, 23 ... Electrode, 100 ... Electronic component mounting board sealed with multi-layer sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

【課題】本発明の課題は、電極間への浸入性が良好であるモールドアンダーフィル封止多層シートを提供することである。 【解決手段】上記課題を解決するために、モールドアンダーフィル封止用の多層シートであって、測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる(A)層を最外層として備えることを特徴とする、多層シートを提供する。

Description

モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法
 本発明は、モールドアンダーフィル封止用の多層シート及びモールドアンダーフィル封止方法に関する。
 電子機器の小型・薄型化が進むにつれ、回路基板に鎮座していた集積回路にも、省スペース化が要求されるようになり、また多くの信号をすばやく伝達するために高密度化する必要が生じてきた。多くの信号をすばやく伝達するための高密度化によって、半導体チップなどの電子部品(以下、「電子部品」という。)とパッケージ基板などとの接続は、近年多ピン化や高速化が容易なフリップチップ接続方式が多く採用されている。電子部品は、外部のほこりや湿気などを遮断するために封止樹脂などを用いて封止を行っており、フリップチップ接続方式で接続された電子部品の封止は、電子部品とパッケージ基板の隙間を流動性のある液状またはスラリー状の封止材でアンダーフィルを施した後、別の液状またはスラリー状の封止材または封止フィルムでオーバーモールドする方法が一般的である。
 これらのアンダーフィルを施した後に、オーバーモールドを行う方法は、工程数が多く工数がかかるため、アンダーフィルとオーバーモールドを同時に行うことができるモールドアンダーフィル材料が提案されている(特許文献1)。
特開2015-71670号公報
 しかしながら、近年IOTや自動運転などに利用される集積回路は、電子部品をより高密度化させるために多くの電極によって、基板などとの接続を行っている。そのため、一つのチップなどにおいても電極間同士の距離がより狭くなっており、従来からのモールドアンダーフィル封止材料では、電極間への浸入が不十分であった。
 そこで、本発明の課題は、電極間への浸入性が良好であるモールドアンダーフィル封止用多層シートを提供することである。
 発明者は、上記課題に対して鋭意検討した結果、特定のtanδ(損失正接)を有する樹脂組成物からなる(A)層を最外層として備える多層シートが、上記課題を解決できることを見出し本発明を完成した。
 すなわち、本発明は、以下の多層シートである。
 上記課題を解決するための本発明の多層シートは、測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる(A)層を最外層として備えることを特徴とするものである。
 tanδ(損失正接)は、樹脂組成物における弾性の性質と粘性の性質との割合を示すものである。電極間同士の距離がより狭い半導体チップなどの電子部品に対してアンダーフィルを行う場合、粘度が小さいだけでは最深部への浸入性が不十分である。最深部への浸入性をより満足させるには、浸入している材料を後ろから押し出す力である弾性力も必要となる。本発明の上記tanδ(損失正接)の極大値を特定した樹脂組成物からなる(A)層を含有する多層シートは、電極間の距離がより狭い電子部品に対してモールドアンダーフィルを行う際に、優れた浸入性を発揮することができる。
 さらに、シート形状であることから、モールドアンダーフィル封止において液状などの樹脂を注入する工程が不要となる。そのため、トランスファ成型方式のモールドアンダーフィル封止に比べて、ボイドの少ない電子部品実装基板とすることができる。
 また、本発明の多層シートの一実施態様としては、(A)層は、フィラーを含有し、前記フィラーの最大粒子径が20μm以下であることを特徴とするものである。
 この特徴によれば、電極間の距離がより狭い電子部品に対してより優れた浸入性を発揮することができる。
 また、本発明の多層シートの一実施態様としては、(A)層には、体積粒度分布の累計体積50%におけるメジアン径(D50)(以下、「メジアン径」という。)が10μm以下の硬化促進剤を含有することを特徴とするものである。
 この特徴によれば、電極間の距離がより狭い電子部品に対してより優れた浸入性を発揮することができる。
 また、本発明の多層シートの一実施態様としては、(A)層の厚さは10~500μmであることを特徴とするものである。
 この特徴によれば、電子部品の反りを抑制することができる。さらに、電子部品下に樹脂が浸入しやすくなり、より優れた浸入性を発揮することができる。
 また、本発明の多層シートの一実施態様としては、下記式(1)を満たす樹脂組成物からなる(B)層を備えることを特徴とするものである。
 下記式(1)において、「α」は、175℃で1時間熱硬化処理した後の熱硬化物の80℃以下における熱膨張係数α[ppm/K]を示す。「E’」は、当該熱硬化物の25℃における貯蔵弾性率E’[GPa]を示す。
  40000≦α×E’≦250000 [Pa/K] (1)
 電子部品は、樹脂硬化時の熱により形状変化を起こすことがあるが、式(1)を満たす樹脂組成物からなる(B)層を備える多層シートは、前記電子部品の形状変化に追従することができ、優れた浸入性を発揮しつつ、反りを抑制することができる。
 具体的には、熱膨張係数は、温度の上昇にあわせてシートの長さが変化する割合を示しており、貯蔵弾性率は、シートの剛性を表している。例えば、式(1)の数値範囲において、熱膨張係数αが大きい場合は、貯蔵弾性率E’が小さくなり、シートの剛性を小さくできる。そうすると、電子部品の形状変化に対して、シートが追従することができ、電子部品の熱による応力を緩和することができる。そうすることで電子部品の反りを抑制することができる。
 また、本発明の多層シートの一実施態様としては、多層シートはフィラーを70質量%以上含有する(B)層を備え、(A)層の厚みに対する(B)層の厚みの比(B/A)が1.0~80であることを特徴とするものである。
 この特徴によれば、電極間の距離がより狭い電子部品に対してより優れた封止性を発揮することができるとともに、封止した電子部品に対して低反り性をより発揮することができる。
 上記課題を解決するための本発明のモールドアンダーフィル封止方法は、電子部品実装基板のモールドアンダーフィル封止方法であって、電極の高さ(h)が5~250μmであり、電極間の幅(w)が5~500μmである電極を備えた電子部品がフリップチップ実装された基板を準備する工程、(A)層を最外層として備える多層シートを準備する工程、(A)層が電子部品及び基板と接するように前記多層シートを載置する工程、前記載置した多層シートを加熱圧縮する工程を備えることを特徴とするものである。
 なお、上記A層は測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層である。
 本発明のモールドアンダーフィル封止方法は、上記(A)層を備える多層フィルムを用いているため、電子部品実装基板の電極間へより効率よく浸入させることができ、より優れた封止方法を提供することができる。
 また、本発明のモールドアンダーフィル封止方法の一実施態様としては、(A)層はフィラーを含有し、前記フィラーの最大粒子径が、前記電極の高さ(h)及び電極間幅(w)以下であることを特徴とするものである。
 この特徴によれば、(A)層におけるフィラーの最大粒子径が電極の高さ(h)及び電極間幅(w)以下であることから、(A)層を含有する多層フィルムを電子部品実装基板の電極間へより効率よく浸入させることができ、かつ、電子部品実装基板の反りを抑制することができる。
 上記課題を解決するための本発明の電子部品実装基板は、前記モールドアンダーフィル封止は、(A)層を最外層として備える多層シートによって封止されていることを特徴とするものである。
 なお、上記A層は測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層である。
 この特徴によれば、上記(A)層を備える多層シートによって、電子部品が実装された電子部品実装基板の電極間へより効率よく浸入させることができているため、耐熱性や耐湿性に優れた電子部品実装基板を提供することができる。
 上記課題を解決するための本発明の電子部品実装基板の製造方法は、電子部品がフリップチップ実装された基板を準備する工程、(A)層を最外層として備える多層シートを準備する工程、(A)層が電子部品及び基板と接するように前記多層シートを載置する工程、前記載置した多層シートを加熱圧縮する工程を備えることを特徴とするものである。
 なお、上記A層は測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層である。
 この特徴によれば、上記(A)層を備える多層シートによって、電子部品実装基板の電極間へより効率よく浸入させることができるため、耐熱性や耐湿性に優れた電子部品実装基板の製造方法を提供することができる。
 本発明によれば、電極間への浸入性が良好であるモールドアンダーフィル封止用多層シートを提供することができる。
本発明の多層シートの概略説明図である。 電子部品実装基板の概略説明図である。 本発明の多層シートを電子部品実装基板上に載置した状態の概略説明図である。 本発明の多層シートでモールドアンダーフィル封止された電子部品実装基板の概略説明図である。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
[モールドアンダーフィル封止用の多層シート]
 本発明のモールドアンダーフィル封止用の多層シートは、測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる(A)層を最外層として備えることを特徴とするものである。
 モールドアンダーフィル封止とは、フリップチップ接続などで接続された電子部品と基板とを封止する方法の一つであり、電極部分の封止を行うアンダーフィル封止と、電子部品を含めた全体の封止を行うオーバーモールド封止を一括で行う封止方法のことを示す。
<(A)層>
 本発明の多層シートは、測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる(A)層を最外層に備えている。
 本発明のtanδ(損失正接)の極大値を特定した樹脂組成物からなる(A)層を最外層に備える多層フィルムは、電極間の距離がより狭い電子部品に対してモールドアンダーフィルを行う際に、優れた浸入性を発揮することができる。
 ここで、最外層とは、多層シートにおいて、最も外の層のことをいい、例えば空気等の大気と接触する層をいう。この場合、離型フィルムやシートは、最外層とはいわない。そして、本発明の(A)層は、モールドアンダーフィル封止において、電子部品及び基板と直接接するように載置する層である。
 また、(A)層を最外層に備えていることから、(A)層が電子部品及び基板と接するように載置して封止を行うことで、優れた封止性を発揮することができる。
 tanδ(損失正接)の極大値としては、好ましくは5以上である、より好ましくは7以上である。tanδ(損失正接)の極大値に特に上限はないが、好ましくは60以下である、より好ましくは50以下である。
 (A)層を構成する樹脂組成物のtanδの極大値は、フィラーの含有量や熱硬化性樹脂や硬化剤の種類により制御することができる。例えば、フィラーの含有量を増やせば、極大値が小さくなり、フィラーの含有量を減らすことで、極大値を大きくすることができる。また、加熱時に低粘度となる結晶性エポキシ樹脂や液状エポキシ樹脂等を熱硬化性樹脂として用いること、低分子量のフェノール、結晶性酸無水物、液状フェノール等の低粘度の硬化剤を用いることによりtanδの極大値を3以上とすることができる。
 本発明において(A)層を構成する樹脂組成物のtanδの極大値は、直径25mmΦの試験片について、粘弾性計測定装置(例えば、TAInstruments社製、ARES-LS2)を用いて、測定温度125℃、測定時間0~100秒、周波数1Hzの条件で測定された値である。
 さらに(A)層は、好ましくはフィラーを含有する。(A)層に用いられるフィラーは、特に限定されるものではなく、溶融シリカや結晶性シリカなどのシリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、窒化ホウ素(BN)、ガラスビーズなどが挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
 電極間への浸入性を向上させるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましく、真球度の高いものがより好ましい。
 また、フィラーを含有することで、電子部品の反りを抑制することができる。
 さらに、上記フィラーは、あらかじめ表面にシランカップリング剤を反応させたものを用いることもできる。表面にシランカップリング剤を反応させたフィラーを用いることで、樹脂組成物中での分散性を向上させることができる。シランカップリング剤を使用する場合の配合量は、フィラー100質量部に対して、0.05~5質量部が好ましく、0.1~3質量部がより好ましい。
 (A)層において、前記フィラーの含有量としては好ましくは30質量%以上である。下限値としては、より好ましくは73質量%以上、更に好ましくは76質量%以上である。上限値としては、より好ましくは93質量%以下であり、更に好ましくは85質量%以下である。フィラーの含有量を上記範囲とすることで、tanδ(損失正接)の極大値が3以上とすることができる。なお、フィラーの含有量が30%以上の場合、樹脂組成物の加工性が向上する傾向がある。
 前記フィラーのメジアン径は、例えば、好ましくは0.1~30μmである。下限値としては、より好ましくは、0.1μm以上であり、更に好ましくは0.5μm以上である。上限値としては、より好ましくは20μm以下であり、更に好ましくは10μm以下である。
 また、(A)層において、前記フィラーの最大粒子径は、例えば、電極高さ、又は、電極の幅より小さく、好ましくは20μm以下である。上限値としては、より好ましくは15μm以下であり、更に好ましくは10μm以下である。
 (A)層においてフィラーの最大粒子径を20μm以下とすることで、電極間への浸入性をより向上させることができる。
 なお、上記メジアン径や最大粒子径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる値である。
 さらに、(A)層を構成する素材は、特に限定されないが、好ましくは樹脂であり、より好ましくは熱硬化性樹脂である。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、(メタ)アクリル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ユリア樹脂、ウレタン樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポリイミド樹脂などが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。(A)層を構成する樹脂組成物のtanδの極大値を3以上に制御するために、なかでもエポキシ樹脂が好ましく、加熱時に低粘度になるエポキシ樹脂、例えばナフタレン型エポキシ樹脂等の結晶性エポキシ樹脂や、液状ビスフェノールA型エポキシ樹脂等の液状エポキシ樹脂、がより好ましい。
 エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル型又はテトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の脂環式脂肪族エポキシ樹脂、グリシジルアミン型エポキシ樹脂、有機カルボン酸類のグリシジルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。エポキシ樹脂は、プレポリマーであってもよく、ポリエーテル変性型エポキシ樹脂、シリコーン変性型エポキシ樹脂のようなエポキシ樹脂と他のポリマーとの共重合体であってもよい。なかでも、好ましくは、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ポリエーテル変性型エポキシ樹脂等が挙げられる。
 エポキシ樹脂は、樹脂組成物の粘度調節のために、エポキシ基を分子中に1つ有する1官能エポキシ樹脂を、エポキシ樹脂全体に対して0.1~30質量%程度含むことができる。このような1官能エポキシ樹脂としては、フェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、エチルジエチレングリコールグリシジルエーテル、ジシクロペンタジエングリシジルエーテル、2-ヒドロキシエチルグリシジルエーテルなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (A)層において、上記熱硬化性樹脂の含有量は特に限定されないが、好ましくは5~50質量%である。
 さらに、(A)層において、エポキシ樹脂の含有量は特に限定されないが、5質量%以上50質量%以下である。下限値としては、好ましくは5質量%以上、より好ましくは10質量%以上である。上限値として、好ましくは40質量%以下、より好ましくは30質量%以下である。
 さらに(A)層は熱硬化性樹脂の硬化剤を含んでもよく、硬化剤の種類は、特に限定されないが、例えば、固形フェノール、固形フェノールノボラックや液状フェノールノボラック等のフェノール系硬化剤、ジシアンジアミド系硬化剤(ジシアンジアミドなど)、尿素系硬化剤、有機酸ヒドラジド系硬化剤、ポリアミン塩系硬化剤、アミンアダクト系硬化剤、固形酸無水物や液状酸無水物等の酸無水物系硬化剤、イミダゾール系硬化剤などが挙げられ、(A)層のtanδの極大値を3以上に制御するためには、液状フェノールノボラックや液状酸無水物等の低粘度の硬化剤を用いることが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。硬化剤の種類は、熱硬化性樹脂に応じて適宜選択することができる。
 硬化剤の量は、硬化剤の種類によって異なる。エポキシ樹脂を用いる場合、例えば、エポキシ基1当量あたり、硬化剤の官能基の当量数が0.001~2当量、更には0.005~1.5当量となる量の硬化剤を用いることが好ましい。
 さらに(A)層は、硬化促進剤を含有することが好ましい。硬化促進剤としては、例えば、イミダゾール化合物などのアミン化合物、リン化合物、及び有機金属化合物などの塩基性の化合物、マイクロカプセル型硬化促進剤が挙げられる。
 上記イミダゾール化合物としては、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、1-イソブチル2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾールなどの2-置換イミダゾール化合物、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイトなどのトリメリット酸塩、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンなどのトリアジン付加物、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾールなどが挙げられる。
 上記リン化合物としては、トリブチルホスフィンなどのトリアルキルホスフィン系化合物、トリフェニルホスフィンなどのトリアリールホスフィン系化合物が挙げられる。
 上記アミン化合物としては、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジンなども挙げられる。アミン化合物はアミンアダクトであってよい。
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)などが挙げられる。
 上記マイクロカプセル型硬化促進剤としては、例えば、アミン系化合物粉末をエポキシ樹脂中に分散した微粒子組成物などを使用することができる。上記アミン系化合物としては、以下に例示するものの中から、所望の増粘倍率に基づいて選択すればよい。上記アミン系化合物としては、脂肪族第一アミン、脂環式第一アミン、芳香族第一アミン、脂肪族第二アミン、脂環式第二アミン、芳香族第二アミン、イミダゾール化合物、イミダゾリン化合物、又はこれら化合物とカルボン酸、スルホン酸、イソシアネート、エポキシなどとの反応生成物などが挙げられる。これらは1種又は2種以上を併用することができ、例えば、脂肪族第一アミン、脂環式第一アミン、芳香族第一アミン、脂肪族第二アミン、脂環式第二アミン、芳香族第二アミン、イミダゾール化合物、又は、イミダゾリン化合物と、それらのカルボン酸、スルホン酸、イソシアネート、又は、エポキシとの反応生成物との併用を好ましく使用することができる。また、上記アミン系化合物粉末は、融点又は軟化点が60℃以上であることが、25℃での増粘を抑える観点から好ましい。
 さらに、(A)層に含有される硬化促進剤は、好ましくはメジアン径が10μm以下のものである。メジアン径が10μm以下の硬化促進剤を含有することで、電極間の距離がより狭い電子部品に対してより優れた浸入性を発揮することができる。すなわち、粒子径の大きな粒子を含まないため、狭い電極間への浸入不良を抑制することができる。また、メジアン径が小さいため、系中で大きい粒子と小さい粒子とに分球されないため、浸入後の部分的な硬化不良を抑制することができる。
 上記硬化促進剤のメジアン径の上限値としては、より好ましくは5μm以下であり、更に好ましくは3μm以下である。下限値としては、好ましくは0.1μm以上である。
 (A)層において、硬化促進剤の含有量は、熱硬化性樹脂100質量部に対して、例えば0.1質量部以上40質量部以下である。下限値としては、好ましくは1質量部以上、より好ましくは5質量部以上である。上限値として、好ましくは30質量部以下、より好ましくは20質量部以下である。硬化促進剤を上記含有量とすることで、硬化不良の発生を抑制させつつ、反りを抑制することができる。
 さらに(A)層においてエポキシ樹脂を用いる場合、硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、例えば0.1質量部以上40質量部以下である。下限値としては、好ましくは1質量部以上、より好ましくは5質量部以上である。上限値として、好ましくは30質量部以下、より好ましくは20質量部以下である。硬化促進剤を上記含有量とすることで、硬化不良の発生を抑制させつつ、反りを抑制することができる。
 本発明の(A)層には、本発明の目的を阻害しないかぎり、その他の添加剤を使用することができる。このような添加剤としては、熱可塑性樹脂、シランカップリング剤、カーボンブラック、イオン捕捉剤などが挙げられる。
 熱可塑性樹脂としては、非反応性シリコーンオイルや反応性シリコーンオイルなどのシリコーンオイル、アクリル樹脂、フェノキシ樹脂、ポリオレフィン、ポリウレタン、ブロックイソシアネート、ポリエーテル、ポリエステル、ポリイミド、ポリビニルアルコール、ブチラール樹脂、ポリアミド、塩化ビニル、セルロース、熱可塑性エポキシ樹脂、熱可塑性フェノール樹脂などが挙げられる。
 非反応性シリコーンオイルとしては、ポリシロキサン、ポリエーテル変性シリコーンオイル、アルキル変性シリコーンオイルなどが挙げられる。反応性シリコーンオイルとしては、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、アミノ変性シリコーンオイルなどが挙げられる。
 シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランなどが挙げられる。上記シランカップリング剤は、あらかじめ表面にシランカップリング剤を反応させたシリカを用いる場合でも、適宜配合することができる。
 上記シランカップリング剤の含有量は、(A)層中、好ましくは0.1~10質量%であり、より好ましくは2~6質量%である。
 上記カーボンブラックの含有量は、(A)層中、好ましくは0.1~5質量%であり、より好ましくは0.5~3質量%である。
 上記イオン捕捉剤としては、封止組成物中の不純物イオンを捕捉する能力を有する剤であって、封止した電子部品の信頼性を向上させることができるものであればよい。イオン捕捉剤としては、例えば、無機イオン交換剤などが挙げられる。
 イオン捕捉剤を含有する場合の含有量は、特に制限されないが、好ましくは(A)層中0.05質量%以上であり、より好ましくは3質量%以下である。
 また、本発明の多層シートにおいて(A)層の厚さは、好ましくは10~500μmである。下限値としては、より好ましくは20μm以上であり、更に好ましくは40μm以上である。上限値としては、より好ましくは400μm以下であり、更に好ましくは300μm以下である。
 (A)層の厚さを上記範囲とすることで、電子部品の反りを抑制することができる。さらに、電子部品下に樹脂が浸入しやすくなり、より優れた浸入性を発揮することができる。
 <(B)層>
 本発明の多層シートは、(A)層に加えて好ましくは(B)層を備えることができる。本発明の多層シートは、(B)層を備えることにより、多層シートにおける反りの発生を抑制することができる。本発明の多層シートにおいて、(B)層は好ましくは、(A)層とは反対面の最外層もしくは中間層である。また、この場合においても、離型フィルムやシートは、最外層とはいわない。
 また、本発明の多層シートは、(B)層が最外層であっても、モールドアンダーフィル封止において、電子部品及び基板と直接接するように載置することはない。
 (B)層は、好ましくはフィラーを含有する層である。フィラーの種類としては特に限定されないが、上記(A)層の項で説明したものと同様のものを使用することができる。
 (B)層において、前記フィラーの含有量としては好ましくは70質量%以上である。下限値としては、より好ましくは75質量%以上、更に好ましくは80質量%以上である。上限値としては、好ましくは93質量%以下であり、より好ましくは90質量%以下である。フィラーの含有量を上記範囲とすることで、封止した電子部品の反りを抑制することができる。
 前記フィラーのメジアン径は、好ましくは0.1~30μmである。下限値としては、より好ましくは、1μm以上であり、更に好ましくは3μm以上である。上限値としては、より好ましくは20μm以下であり、更に好ましくは15μm以下である。
 前記フィラーの熱膨張係数は、特に限定されないが、好ましくは1ppm/K以上であり、より好ましくは2ppm/K以上である。上限値としては、好ましくは15ppm/K以下、より好ましくは10ppm/K以下である。
 フィラーとして熱膨張係数が上記範囲のものを用いることで、(B)層の80℃以下における熱膨張係数を制御することができる。
 さらに、(B)層を構成する素材は、特に限定されないが、好ましくは樹脂であり、より好ましくは熱硬化性樹脂である。熱硬化性樹脂としては、上記(A)層の項で説明したものと同様のものを使用することができ、好ましくはエポキシ樹脂である。
 エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ビスフェノール変性型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル型又はテトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式脂肪族エポキシ樹脂、フェノールフタレイン型エポキシ樹脂、有機カルボン酸類のグリシジルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。エポキシ樹脂は、プレポリマーであってもよく、ポリエーテル変性型エポキシ樹脂、シリコーン変性型エポキシ樹脂のようなエポキシ樹脂と他のポリマーとの共重合体であってもよい。なかでも、剛直な骨格を有するエポキシ樹脂であるビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノールフタレイン型エポキシ樹脂、ビスフェノール変性型エポキシ樹脂を用いることで、(B)層の80℃以下における熱膨張係数を小さくすることができる。さらに、柔軟な骨格を有するポリエーテル変性型エポキシ樹脂等を用いることで、(B)層の25℃における貯蔵弾性率E’を小さくすることができる。
 エポキシ樹脂は、樹脂組成物の粘度調節のために、エポキシ基を分子中に1つ有する1官能エポキシ樹脂を、エポキシ樹脂全体に対して0.1~30質量%程度含むことができる。このような1官能エポキシ樹脂としては、フェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、エチルジエチレングリコールグリシジルエーテル、ジシクロペンタジエングリシジルエーテル、2-ヒドロキシエチルグリシジルエーテルなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (B)層において、上記熱硬化性樹脂の含有量は特に限定されないが、好ましくは2~30質量%である。
 さらに、(B)層において、エポキシ樹脂の含有量は特に限定されないが、2質量%以上30質量%以下である。下限値としては、好ましくは3質量%以上、より好ましくは5質量%以上である。上限値として、好ましくは25質量%以下、より好ましくは20質量%以下である。
 さらに(B)層は熱硬化性樹脂の硬化剤、硬化促進剤を含んでもよく、硬化剤、硬化促進剤の種類は、(A)層の項で説明したものと同様のものを使用することができる。
 硬化剤の量は、硬化剤の種類によって異なる。エポキシ樹脂を用いる場合、例えば、エポキシ基1当量あたり、硬化剤の官能基の当量数が0.001~2当量、更には0.005~1.5当量となる量の硬化剤を用いることが好ましい。なかでも、固形フェノールノボラック樹脂、好ましくはビフェニル型フェノールノボラック樹脂等のフェノール系硬化剤を用いることで、(B)層の貯蔵弾性率を小さくすることができる。
 (B)層において、硬化促進剤の含有量は、熱硬化性樹脂100質量部に対して、好ましくは0.1質量部以上40質量部以下である。下限値としては、より好ましくは1質量部以上、更に好ましくは5質量部以上である。上限値として、より好ましくは30質量部以下、更に好ましくは20質量部以下である。硬化促進剤を上記含有量とすることで、硬化不良の発生を抑制させつつ、反りを抑制することができる。
 さらに(B)層においてエポキシ樹脂を用いる場合、硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、好ましくは0.1質量部以上40質量部以下である。下限値としては、より好ましくは1質量部以上、更に好ましくは5質量部以上である。上限値として、より好ましくは30質量部以下、更に好ましくは20質量部以下である。硬化促進剤を上記含有量とすることで、硬化不良の発生を抑制させつつ、反りを抑制することができる。
 (B)層には、本発明の目的を阻害しないかぎり、その他の添加剤を使用することができる。このような添加剤としては、上記(A)層の項で説明したものと同様のものを使用することができ、熱可塑性樹脂、シランカップリング剤、カーボンブラック、イオン捕捉剤などが挙げられる。
 熱可塑性樹脂としては、非反応性シリコーンオイルや反応性シリコーンオイルなどのシリコーンオイル、アクリル樹脂、フェノキシ樹脂、ポリオレフィン、ポリウレタン、ブロックイソシアネート、ポリエーテル、ポリエステル、ポリイミド、ポリビニルアルコール、ブチラール樹脂、ポリアミド、塩化ビニル、セルロース、熱可塑性エポキシ樹脂、熱可塑性フェノール樹脂などが挙げられる。なかでも、ポリエステル、アクリル樹脂、シリコーンオイル、ポリエーテル、ポリビニルアルコール、ポリアミド等の樹脂を用いることで、(B)層の貯蔵弾性率を小さくすることができる。
 シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランなどが挙げられる。上記シランカップリング剤は、あらかじめ表面にシランカップリング剤を反応させたシリカを用いる場合でも、適宜配合することができる。
 上記シランカップリング剤の含有量は、(B)層中、好ましくは0.1~10質量%であり、より好ましくは2~6質量%である。
 上記カーボンブラックの含有量は、(B)層中、好ましくは0.1~5質量%であり、より好ましくは0.5~3質量%である。
 上記イオン捕捉剤としては、封止組成物中の不純物イオンを捕捉する能力を有する剤であって、封止した電子部品の信頼性を向上させることができるものであればよい。イオン捕捉剤としては、例えば、無機イオン交換剤などが挙げられる。
 イオン捕捉剤を含有する場合の含有量は、特に制限されないが、好ましくは(B)層中0.05質量%以上であり、より好ましくは3質量%以下である。
 また、本発明の多層シートにおいて(B)層の厚さは、好ましくは50~800μmである。下限値としては、より好ましくは100μm以上であり、更に好ましくは200μm以上である。上限値としては、より好ましく700はμm以下であり、更に好ましくは600μm以下である。
 (B)層の厚さを上記範囲とすることで、電子部品の反りを抑制することができる。
 また、本発明の多層シートの(B)層は、80℃以下における熱膨張係数α[ppm/K]及び前記熱硬化物の25℃における貯蔵弾性率E’[GPa]が下記式(1)を満たす樹脂組成物からなる(B)層を備えることが好ましい。
  40000≦α×E’≦250000 [Pa/K] (1)
 (B)層のα×E’の下限値としては、より好ましくは40000以上であり、更に好ましくは50000以上である。上限値としては、より好ましくは220000以下であり、更に好ましくは180000以下である。
 本発明の多層シートは、上記式(1)を満たす樹脂組成物からなる(B)層を備えることで硬化時の熱による応力を緩和できるため、電子部品の反りを抑制することができる。
 (B)層を構成する樹脂組成物の80℃以下における熱膨張係数αの下限値としては、好ましくは3ppm/K以上であり、より好ましくは5ppm/K以上である。上限値としては、好ましくは15ppm/K以下、より好ましくは10ppm/K以下である。
 熱膨張係数αを上記範囲とすることで、電子部品の形状変化に対して、シートが追従することができる。
 (B)層を構成する樹脂組成物の熱膨張係数は、添加するフィラーの熱膨張係数やフィラーの添加量、熱硬化性樹脂の化学構造、及びガラス転移温度によって制御することができる。例えば、熱膨張係数の小さいフィラーを高充填することや、剛直な骨格を有するエポキシ樹脂等を用いることで熱膨張係数を小さくすることができる。さらに、(B)層のガラス転移温度を大きくすることで、ガラス転移温度以下の熱膨張係数を小さくすることできる。
 熱膨張率αの測定方法は、(B)層のみからなる樹脂シートを150℃で1時間熱硬化処理した後、熱硬化物から、長さ20mm×幅5mm×厚さ5μmの測定試料を用意する。測定試料を熱機械分析装置(TMA7100)の圧縮測定用治具にセットした後、-50~300℃の温度域で、荷重5g、昇温速度2.5℃/minの条件下におき、50℃~70℃での膨張率から熱膨張係数αを算出する。
 (B)層を構成する樹脂組成物の25℃における貯蔵弾性率E’の下限値としては、好ましくは3GPa以上、より好ましくは10GPa以上である。上限値としては、好ましくは50GPa以下、より好ましくは30GPa以下である。
 貯蔵弾性率E’を上記範囲とすることで、シートの剛性により、電子部品の形状変化を抑制することができ、結果として電子部品の反りを抑制することができる。
 (B)層を構成する樹脂組成物の貯蔵弾性率は、フィラーの添加量、熱硬化性樹脂や硬化剤の骨格、熱可塑性樹脂の種類によって制御することができる。例えば、フィラーの添加量を多くする、ポリエーテル構造等の柔軟性を備える骨格を有するエポキシ樹脂やビフェニル型フェノールノボラック樹脂等を用いること、アクリル樹脂等の熱可塑性樹脂を混合することで、貯蔵弾性率を小さくすることができる。
 貯蔵弾性率E’の測定方法は、以下の手順で行われる。
(1)(B)層のみからなる樹脂シートを150℃で1時間熱硬化処理した後、熱硬化物から、長さ50mm×幅10mm×厚さ2mmの測定試料を用意する。
(2)前記測定試料を曲げ測定用治具にセットし、粘弾性測定装置(DMA6100、日立ハイテクサイエンス(株)製)を用いて、-50~300℃の温度域での曲げ貯蔵弾性率を、周波数1Hz、昇温速度2.5℃/minの条件下で測定する。
(3)上記測定結果から25℃での貯蔵弾性率(E’)を読み取る。
 さらに、本発明の多層シートの(B)層を構成する樹脂組成物は、175℃で1時間熱硬化処理した後の熱硬化物のガラス転移温度が80℃以上であることが好ましい。175℃で1時間熱硬化処理した後の熱硬化物のガラス転移温度が80℃以上であることから、多層シートで封止された封止物は優れた熱安定性を有することができる。
 (B)層の熱硬化物のガラス転移温度を80℃以上とするためには、熱硬化物の剛直性を向上させればよく、例えば、エポキシ樹脂中のエポキシ基の含有量を増量すること、硬化剤中の反応基数を増やすこと等が好ましい。
 また、本発明の多層シート全体の厚さは、特に限定されないが、好ましくは100μm以上である。下限値としては、より好ましくは150μm以上であり、更に好ましくは200μm以上である。上限値としては、より好ましくは1000μm以下であり、更に好ましくは800μm以下である。
 (B)層の厚さを上記範囲とすることで、電子部品の反りを抑制することができる。
 また、本発明の多層シートは(A)層の厚みに対する(B)層の厚みの比(B/A)が、好ましくは1.0~80であり、より好ましくは2.0~10である。
 (A)層の厚みと(B)層の厚みの比を上記範囲とすることで、電極間の距離がより狭い電子部品に対してより優れた封止性を発揮することができるとともに、封止した電子部品に対して低反り性をより発揮することができる。
 本発明の多層シートは、上記(A)層、(B)層に加えて、その他の層を備えていてもよい。その他の層としては、好ましくは、上記(A)層、(B)層の項で説明した熱硬化性樹脂を含み、フィラーなどを含有してもよい。
 また、その他の層は1層であるか、それ以上の層数であってもよい。
 本発明の多層シートがその他の層を含む場合、例えばその他の層を(C)層とすると、(A)層/(C)層/(B)層という構成や、(A)層/(B)層/(C)層という構成とすることができる。
 また、本発明の多層シートは、好ましくは(A)層を構成する樹脂組成物の測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が、(A)層以外の層を構成する樹脂組成物の測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値以下である。
 例えば、(A)層と(B)層からなる二層シートである場合、(A)層/(C)層/(B)層という三相シートである場合、(A)層を構成する樹脂組成物のtanδの極大値を、(B)層を構成する樹脂組成物のtanδの極大値以下とすることで、(A)層と(B)層が溶融して混合されることを防ぐことができ、アンダーフィルとオーバーモールド封止を効率よく行うことができる。
 また、例えば(A)層/(B)層/(C)層という構成とする場合は、(A)層を構成する樹脂組成物の測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が、(C)層の測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値以下とすることが好ましい。
 (A)層を構成する樹脂組成物の測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が、(A)層以外の層の測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値以下とすることで、(A)層と前記(A)層以外の層が溶融して混合されることを防ぐことができ、アンダーフィルとオーバーモールド封止を効率よく行うことができる。
 図1に本発明の多層シートの概略説明図を示す。図1に示す多層シートは、(A)層11及び(B)層12からなる二層の多層シートである。
 図1に示す多層シートは、(A)層11及び(B)層12をそれぞれ最外層に備えるシートであるが、上記したように(A)層及び(B)層に加えてその他の層を備える多層シートとすることもできる。
[多層シートの製造方法]
 本発明の多層シートの製造方法は、例えばカレンダー製膜法、キャスティング成膜法、インフレーション押出法、Tダイ押出法、ドライラミネート法などで各層を個別で成膜しておき、その後、貼り合わせるか、共押出し法などを用いて多層シートを製造してもよい。
 また、基材上に多層シートを形成し、使用時には基材を剥離して用いることもできる。
 基材としては、特に限定されないが、プラスチックフィルム、紙、不織布、金属などが挙げられる。プラスチックフィルムとしては、例えば、ポリオレフィン系フィルム、ハロゲン化ビニル重合体系フィルム、アクリル樹脂系フィルム、ゴム系フィルム、セルロース系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリスチレン系フィルム、ポリフェニレンサルファイド系フィルム、シクロオレフィンポリマー系フィルムが挙げられる。また、シリコーンなどで離型処理した基材を用いることもできる。
 基材の厚さは特に限定されないが、好ましくは500μm以下である。
[電子部品実装基板のモールドアンダーフィル封止方法]
 次に、電子部品実装基板のモールドアンダーフィル封止方法について説明する。
 本発明の電子部品実装基板のモールドアンダーフィル封止方法は、電極の高さ(h)が5~250μmであり、電極間の幅(w)が5~500μmである電極を備えた電子部品がフリップチップ実装された基板を準備する工程、測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である(A)層を最外層として備える多層シートを準備する工程、(A)層が電子部品及び基板と接するように前記多層シートを載置する工程、前記載置した多層シートを加熱圧縮する工程を備えることを特徴とするものである。
 電子部品としては、トランジスタやコンデンサ、抵抗などを一つのチップに集積した集積回路(IC)や、ICの集積度をさらに高め、1つのチップに1000個以上の素子を収めた大規模集積回路(LSI)などの半導体チップなどが挙げられる。
 また、電極の形状は特に限定されず、ボール、ピラー、ポスト、カラムなどが挙げられる。電極の材質としては特に限定されず、例えば、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、鉛フリーのSn-Ag系、Sn-Ag-Cu系、Bi-Sn系、Sn-Cu系、Sn-Ag-Bi-In系、Sn-Zn-Bi系などのはんだ類、金系金属材、銅系金属材、銅系合金などが挙げられる。さらに電極の高さ(h)は5~250μmであり、電極間の幅(w)は5~500μmである。
 基板としては、例えば、回路が印刷されたプリント配線基板などが挙げられる。
 次に、モールドアンダーフィル封止方法について、図2~4を用いて説明する。
 図2は、電子部品21と基板22が電極23によって接続された電子部品実装基板(実装基板)20の概略説明図である。電子部品21と基板22は電極23によって導通されている。このとき、電極間の高さ(h)は5~250μmであり、幅(w)は5~500μmである。また、電極の直径としては、好ましくは10μm~1000μmである。
 図3は、層(A)が電子部品21及び基板22と接するように、多層シート10を電子部品実装基板(実装基板)20上に載置した状態の概略説明図である。
 このとき、多層フィルムに含まれるフィラーの最大粒子径は、好ましくは電極間の高さ(h)及び幅(w)以下である。
 次に、多層シート10を加熱圧縮することで、電子部品実装基板をモールドアンダーフィル封止することができる。
 この時の加熱温度は、特に限定されないが、好ましくは70~150℃である。下限値としては、より好ましくは80℃以上であり、更に好ましくは90℃以上である。上限値としては、より好ましくは140℃以下であり、更に好ましくは130℃以下である。
 圧縮する圧力は特に限定されないが、好ましくは0.5~10MPaである。下限値としては、より好ましくは1MPa以上であり、更に好ましくは1.5MPa以上である。上限値としては、より好ましくは8MPa以下であり、更に好ましくは6MPa以下である。
 また、加熱圧縮の方法は特に限定されないが、プレス板などによって多層フィルムを加熱しつつ押圧する方法が挙げられる。さらに加熱圧縮時には、減圧条件で加熱圧縮することもできる。
 また、多層フィルムの素材として熱硬化性樹脂を含有する場合は、後硬化工程を設けることが好ましい。後硬化工程としては、加熱して硬化させる工程である。
 加熱温度は、好ましくは90~200℃である。下限値としては、より好ましくは120℃以上であり、更に好ましくは140℃以上である。さらに、加熱時間は、好ましくは30~240分であり、より好ましくは60~180分である。
 図4は、多層シート10でモールドアンダーフィル封止された電子部品実装基板の概略説明図である。多層シート10は、測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である(A)層を含有していることから、電子部品実装基板の電極間へより効率よく浸入させることができているため、耐熱性や耐湿性に優れた電子部品実装基板である。
 以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<多層シートの作製>
(1)(A)層の作製
 表1-1~表1-4に示す配合でエポキシ樹脂、硬化剤、フィラー(溶融シリカ FB501MDX1:DENKA株式会社製)、カーボンブラック(粒子径24nm)、シランカップリング剤(KBM503:信越シリコーン製)、イオン捕捉剤(無機イオン交換剤)、硬化促進剤を混合し、ロール混練機により120℃で30分間加熱し、その後溶融混練し、混練物を調製した。表中の数値は全て質量部である。次いで、得られた混練物を、100℃の条件下、Tダイ押出法により離型処理フィルム上に塗工してシート状に形成し、厚さ20~300μm、縦500mm、横500mmの(A)層を作製した。上記離型処理フィルムとしては、シリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムを用いた。
(2)(B)層の作製
 ビフェニル型エポキシ樹脂100質量部、固形フェノールノボラック樹脂50質量部、フィラー(溶融シリカ FB501MDX:DENKA株式会社製)1360質量部、カーボンブラック(粒子径24nm)2質量部、シランカップリング剤(KBM503:信越シリコーン製)2質量部、イオン捕捉剤(無機イオン交換剤)5質量部、硬化促進剤(トリアリールホスフィン系化合物)10質量部を配合し、ロール混練機により120℃で30分間加熱し、その後溶融混練し、混練物を調製した。次いで、得られた混練物を、100℃の条件下、Tダイ押出法により離型処理フィルム上に塗工してシート状に形成し、厚さ50~800μm、縦500mm、横500mmの(B)層を作製した。上記離型処理フィルムとしては、シリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムを用いた。
(3)モールドアンダーフィル封止用多層シートの作製
 上記で作製した(A)層と(B)層とを、お互いが接するように積層し、ラミネーターにより温度60℃で貼り合せ、モールドアンダーフィル封止シートを作製した。
<tanδ(損失正接)の極大値の測定>
 上記で得られた(A)層を構成する樹脂組成物についてtanδを測定した。測定は直径25mmΦの試験片として、粘弾性計測定装置(TAInstruments社製、ARES-LS2)を用いて、測定温度125℃、測定時間0~100秒、周波数1Hzの条件で行った。測定結果を表1-1~表1-4に示す。
<モールドアンダーフィル試験1>
(電極間浸入性試験)
 ガラス上に搭載されたバンプ高さ30μm、寸法が縦25mm横25mmのテスト用チップに、上記で作製したモールドアンダーフィル封止シートの(A)層が接するように載地して、成型圧力3MPa、125℃、10分で前硬化した後、150℃、60分で後硬化させた。浸入性の評価は、ガラスの裏面から直接観察し、下記の基準で行った。
[浸入性評価基準]
◎:未浸入部の大きさが500μm以下である。
〇:未浸入部の大きさが500μmより大きく、1000μm以下である。
×:未浸入部の大きさが1000μmより大きい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1-1~表1-4の結果より、実施例と比較例を比べると、(A)層を構成する樹脂組成物の測定温度125℃、測定時間0~100秒におけるtanδの極大値が3以上であると、電極間浸入性に優れた、封止シートとすることができることがわかった。
 さらに、実施例1と実施例9を比較すると、メジアン径が10μm以下の硬化促進剤を用いたシートは、電極間浸入性がより優れることがわかった。
<モールドアンダーフィル試験2>
 表2に示す配合で、各成分を混合して、ロール混練機により120℃で30分間加熱し、その後溶融混練し、混練物を調製した。次いで、得られた混練物を、100℃の条件下、Tダイ押出法により離型処理フィルム上に塗工してシート状に形成し、厚さ200~800μm、縦500mm、横500mmの(B)層を作製した。上記離型処理フィルムとしては、シリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムを用いた。
 表1-1の実施例1で用いた配合の(A)層と(B)層とを、お互いが接するように積層し、ラミネーターにより温度60℃で貼り合せ、モールドアンダーフィル封止シートを作製した。
 次に、得られたモールドアンダーフィル封止シートを用いて、上記と同様に電極間浸入性試験を行った。評価基準は上記と同様である。
 さらに、下記の方法を用いて反り量の評価を行った。
(反り量評価)
 直径12インチ×厚み775μmのシリコンウエハ上に、上記モールドアンダーフィル封止シートを載地し、成型圧力3MPa、125℃、10分で前硬化した後、150℃、60分で後硬化させた。
[反り量評価基準]
 上記、後硬化後、室温まで冷却し、反り量を以下の基準で評価した。測定方法はレーザー変位計を用いて、シリコンウエハの基板側中心部と、ウエハ端部2点との高低差の平均を測定し、その値を反り量として、以下の基準で評価を行った。
〇:反りが12mm以下である。
×:反りが12mmより大きい。
Figure JPOXMLDOC01-appb-T000005
 表2の結果より、80℃以下における熱膨張係数α[ppm/K]及び前記熱硬化物の25℃における貯蔵弾性率E’[GPa]が式(1)を満たす樹脂組成物からなる(B)層を備えるシートは、優れた低反り効果を発揮することがわかった。
 さらに、実施例29と実施例30とを比較すると、(A)層の厚みが500μm以下であると、優れた低反り効果を発揮することがわかった。一方、(A)層の厚みが500μmを超えると、低反り効果が発揮できないことがわかった。
 本発明のモールドアンダーフィル封止用の多層シートは、フリップチップ下の狭ギャップ充填と全体封止を一括で行うことができる。それにより、IOTや自動運転などに利用される集積回路や大規模集積回路の封止に利用することができる。
10…多層シート、11…(A)層、12…(B)層、20…実装基板、21…電子部品、22…基板、23…電極、100…多層シートで封止された電子部品実装基板

Claims (10)

  1.  モールドアンダーフィル封止用の多層シートであって、最外層として、以下の(A)層を備えることを特徴とする、多層シート。
     (A)層:測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層。
  2.  前記(A)層は、フィラーを含有し、前記フィラーの最大粒子径が20μm以下であることを特徴とする、請求項1に記載の多層シート。
  3.  前記(A)層には、体積粒度分布の累計体積50%におけるメジアン径(D50)が10μm以下の硬化促進剤を含有することを特徴とする、請求項1又は2に記載の多層シート。
  4.  前記(A)層の厚さは10~500μmであることを特徴とする、請求項1~3の何れか1項に記載の多層シート。
  5.  さらに、以下の(B)層を備えることを特徴とする、請求項1~4の何れか1項に記載の多層シート。
     (B)層:下記式(1)を満たす樹脂組成物からなる層。
     下記式(1)において、「α」は、175℃で1時間熱硬化処理した後の熱硬化物の80℃以下における熱膨張係数α[ppm/K]を示す。「E’」は、当該熱硬化物の25℃における貯蔵弾性率E’[GPa]を示す。
      40000≦α×E’≦250000 [Pa/K] (1)
  6.  前記(A)層の厚みに対する前記(B)層の厚みの比(B/A)が1.0~80であることを特徴とする、請求項5に記載の多層シート。
  7.  電子部品実装基板のモールドアンダーフィル封止方法であって、
     電極の高さ(h)が5~250μmであり、電極間の幅(w)が5~500μmである電極を備えた電子部品がフリップチップ実装された基板を準備する工程、
     最外層として、以下の(A)層を備える多層シートを準備する工程、
     (A)層が電子部品及び基板と接するように前記多層シートを載置する工程、並びに、
     前記載置した多層シートを加熱圧縮する工程
    を備えることを特徴とする、モールドアンダーフィル封止方法。
     (A)層:測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層。
  8.  前記(A)層はフィラーを含有し、前記フィラーの最大粒子径が、前記電極の高さ(h)及び電極間幅(w)より小さいことを特徴とする、請求項7に記載のモールドアンダーフィル封止方法。
  9.  モールドアンダーフィル封止された電子部品実装基板であって、前記モールドアンダーフィル封止は、最外層として、以下の(A)層を備える多層シートによって封止されていることを特徴とする、電子部品実装基板。
     (A)層:測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層。
  10.  モールドアンダーフィル封止された電子部品実装基板の製造方法であって、
     電子部品がフリップチップ実装された基板を準備する工程、
     最外層として、以下の(A)層を備える多層シートを準備する工程、
     (A)層が電子部品及び基板と接するように前記多層シートを載置する工程、
     前記載置した多層シートを加熱圧縮する工程
    を備えることを特徴とする、電子部品実装基板の製造方法。
     (A)層:測定温度125℃、測定時間0~100秒におけるtanδ(損失正接)の極大値が3以上である樹脂組成物からなる層。
PCT/JP2020/029714 2019-08-09 2020-08-03 モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法 WO2021029259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080055658.6A CN114207809A (zh) 2019-08-09 2020-08-03 模具底部填充密封用的多层片、模具底部填充密封方法、电子部件安装基板以及电子部件安装基板的制造方法
US17/633,598 US20220310546A1 (en) 2019-08-09 2020-08-03 Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component
KR1020227004491A KR20220041110A (ko) 2019-08-09 2020-08-03 몰드 언더필 봉지용의 다층 시트, 몰드 언더필 봉지 방법, 전자 부품 실장 기판 및 전자 부품 실장 기판의 제조 방법
JP2020568830A JP6894077B1 (ja) 2019-08-09 2020-08-03 モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147590 2019-08-09
JP2019-147590 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029259A1 true WO2021029259A1 (ja) 2021-02-18

Family

ID=74569433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029714 WO2021029259A1 (ja) 2019-08-09 2020-08-03 モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法

Country Status (5)

Country Link
US (1) US20220310546A1 (ja)
JP (1) JP6894077B1 (ja)
KR (1) KR20220041110A (ja)
CN (1) CN114207809A (ja)
WO (1) WO2021029259A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163763A1 (ja) * 2021-02-01 2022-08-04 ナガセケムテックス株式会社 電子部品実装基板の封止方法および熱硬化性シート
WO2024024883A1 (ja) * 2022-07-29 2024-02-01 ナガセケムテックス株式会社 モールドアンダーフィル封止用シートおよびこれを用いる電子部品実装基板の封止方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022020286A (ja) * 2020-07-20 2022-02-01 株式会社ディスコ 保護部材形成装置で用いるシート、及び保護部材形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054363A (ja) * 2010-08-31 2012-03-15 Kyocera Chemical Corp 電子部品の封止方法
JP2012059743A (ja) * 2010-09-06 2012-03-22 Nitto Denko Corp 電子部品装置の製法およびそれに用いる電子部品封止用樹脂組成物シート
JP2015216230A (ja) * 2014-05-09 2015-12-03 日東電工株式会社 半導体装置の製造方法
JP2018174242A (ja) * 2017-03-31 2018-11-08 ナガセケムテックス株式会社 実装構造体の製造方法およびこれに用いられる積層シート

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275143B1 (en) * 2000-04-20 2007-08-22 Elwyn Paul Michael Wakefield Process for forming electrical/mechanical connections
CN1254914C (zh) * 2000-07-06 2006-05-03 株式会社东芝 声表面波器件及其生产方法
JP3985780B2 (ja) * 2003-05-29 2007-10-03 エプソントヨコム株式会社 圧電デバイス
JP4645233B2 (ja) * 2005-03-03 2011-03-09 パナソニック株式会社 弾性表面波装置
JP2010141055A (ja) * 2008-12-10 2010-06-24 Sanyo Electric Co Ltd 半導体モジュール、半導体モジュールの製造方法および携帯機器
JP5223657B2 (ja) * 2008-12-24 2013-06-26 株式会社村田製作所 電子部品の製造方法及び製造装置
KR101250677B1 (ko) * 2011-09-30 2013-04-03 삼성전기주식회사 반도체 패키지 및 그의 제조 방법
JP6303373B2 (ja) 2013-10-02 2018-04-04 住友ベークライト株式会社 圧縮成形用モールドアンダーフィル材料、半導体パッケージ、構造体および半導体パッケージの製造方法
JP6422296B2 (ja) * 2014-10-09 2018-11-14 新日本無線株式会社 電子部品およびその製造方法
CN110771038B (zh) * 2017-06-23 2023-09-19 株式会社村田制作所 弹性波装置、前端电路以及通信装置
JP7017144B2 (ja) * 2017-09-07 2022-02-08 東レ株式会社 樹脂組成物、樹脂膜の製造方法および電子デバイスの製造方法
CN111295414A (zh) * 2017-11-14 2020-06-16 东丽株式会社 预浸料坯及纤维增强复合材料
EP3726571A4 (en) * 2017-12-14 2021-09-08 Nagase Chemtex Corporation MANUFACTURING PROCESS OF A MOUNTING STRUCTURE
WO2019132965A1 (en) * 2017-12-29 2019-07-04 Intel Corporation Microelectronic assemblies
US12033907B2 (en) * 2019-02-21 2024-07-09 Panasonic Intellectual Property Management Co., Ltd. Semiconductor encapsulation material and semiconductor device
KR102677777B1 (ko) * 2019-04-01 2024-06-25 삼성전자주식회사 반도체 패키지
JP2021067881A (ja) * 2019-10-25 2021-04-30 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 熱膨張性カプセルを用いたトナー粒子
JP2021070160A (ja) * 2019-10-29 2021-05-06 昭和電工マテリアルズ株式会社 フッ素樹脂基板積層体
JP2021150428A (ja) * 2020-03-18 2021-09-27 日機装株式会社 半導体発光装置
KR20220083438A (ko) * 2020-12-11 2022-06-20 삼성전자주식회사 반도체 패키지
JP2022137337A (ja) * 2021-03-09 2022-09-22 キオクシア株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054363A (ja) * 2010-08-31 2012-03-15 Kyocera Chemical Corp 電子部品の封止方法
JP2012059743A (ja) * 2010-09-06 2012-03-22 Nitto Denko Corp 電子部品装置の製法およびそれに用いる電子部品封止用樹脂組成物シート
JP2015216230A (ja) * 2014-05-09 2015-12-03 日東電工株式会社 半導体装置の製造方法
JP2018174242A (ja) * 2017-03-31 2018-11-08 ナガセケムテックス株式会社 実装構造体の製造方法およびこれに用いられる積層シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163763A1 (ja) * 2021-02-01 2022-08-04 ナガセケムテックス株式会社 電子部品実装基板の封止方法および熱硬化性シート
WO2024024883A1 (ja) * 2022-07-29 2024-02-01 ナガセケムテックス株式会社 モールドアンダーフィル封止用シートおよびこれを用いる電子部品実装基板の封止方法

Also Published As

Publication number Publication date
TW202122270A (zh) 2021-06-16
KR20220041110A (ko) 2022-03-31
JPWO2021029259A1 (ja) 2021-09-13
US20220310546A1 (en) 2022-09-29
CN114207809A (zh) 2022-03-18
JP6894077B1 (ja) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2021029259A1 (ja) モールドアンダーフィル封止用の多層シート、モールドアンダーフィル封止方法、電子部品実装基板及び電子部品実装基板の製造方法
US9659883B2 (en) Thermally curable resin sheet for sealing semiconductor chip, and method for manufacturing semiconductor package
JP2018138634A (ja) 樹脂組成物および該樹脂組成物を用いた半導体装置
JP6789495B2 (ja) アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP4892164B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
KR101904509B1 (ko) 반도체 밀봉용 액상 에폭시 수지 조성물 및 수지 밀봉 반도체 장치
JP2002069157A (ja) 半導体封止用樹脂組成物、およびそれを用いた半導体装置、半導体ウエハ、ならびに半導体装置の実装構造
TWI489565B (zh) Semiconductor wafer laminated body manufacturing method and semiconductor device
JP6233441B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP7167912B2 (ja) 液状封止樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2009057575A (ja) 液状エポキシ樹脂組成物及び電子部品装置
JPWO2019146617A1 (ja) 封止用樹脂組成物
TWI846922B (zh) 模具底部填充封裝用的多層片材、模具底部填充封裝方法、電子元件安裝基板及電子元件安裝基板的製造方法
JP5708666B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP2004256646A (ja) アンダーフィル用樹脂組成物及び半導体装置
JP2016040393A (ja) 液状エポキシ樹脂組成物及び電子部品装置
TWI664230B (zh) 液狀環氧樹脂組成物
WO2005080502A1 (ja) アンダーフィル用液状エポキシ樹脂組成物および同組成物を用いて封止した半導体装置
JP5924443B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP5929977B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
JP7095724B2 (ja) アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2022019184A1 (ja) 電子デバイスの製造方法、及び電子デバイス
TWI692489B (zh) 樹脂片材、半導體裝置及半導體裝置之製造方法
WO2024075342A1 (ja) エポキシ樹脂組成物、半導体装置、及び半導体装置の製造方法
JP6482016B2 (ja) 封止材組成物、それを用いた半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020568830

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227004491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851964

Country of ref document: EP

Kind code of ref document: A1