WO2021024305A1 - レーダ装置及び移動体装置 - Google Patents

レーダ装置及び移動体装置 Download PDF

Info

Publication number
WO2021024305A1
WO2021024305A1 PCT/JP2019/030508 JP2019030508W WO2021024305A1 WO 2021024305 A1 WO2021024305 A1 WO 2021024305A1 JP 2019030508 W JP2019030508 W JP 2019030508W WO 2021024305 A1 WO2021024305 A1 WO 2021024305A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
radar
reflector
relative position
mobile device
Prior art date
Application number
PCT/JP2019/030508
Other languages
English (en)
French (fr)
Inventor
小澤 尚志
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to PCT/JP2019/030508 priority Critical patent/WO2021024305A1/ja
Publication of WO2021024305A1 publication Critical patent/WO2021024305A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present disclosure relates to a radar device mounted on a mobile device, and also relates to a mobile device equipped with a radar device.
  • Patent Document 1 discloses a radar detection device that uses signals of a plurality of systems.
  • Radar devices not only receive reflected waves from objects that can be obstacles to the moving device when it emits radar waves, but also additional or alternative mobile devices such as floors, ground, walls, and ceilings. There is a possibility of receiving reflected waves (clutter) from other structures that are not obstacles to. If the signal level of the reflected wave from an object that can be an obstacle is not high enough, or if the signal level of the reflected wave from another structure is not low enough, the reflective object detected by the radar device is an obstacle. It may be indistinguishable whether it is an existence or another structure. Therefore, there is a need for a radar device that can distinguish obstacles from other structures.
  • the apparatus of Patent Document 1 compares the intensity peak positions of the signals of each system, and the spectrum of the signal having a small variation in the intensity peak position in each system is based on the target. It is determined that the spectrum of the signal having a large variation in the intensity peak position in each system is determined to be due to the clutter.
  • the apparatus of Patent Document 1 includes a plurality of circuits for receiving and processing signals of a plurality of systems, and the circuit scale becomes large. Therefore, there is a need for a radar device that can distinguish obstacles from other structures with a simpler configuration.
  • An object of the present disclosure is to provide a radar device capable of distinguishing an obstacle from other structures with a simple configuration.
  • An object of the present disclosure is to provide a mobile device including such a radar device.
  • a radar device mounted on a mobile device When the mobile device is moving, a transmitter / receiver that emits radar waves at predetermined time intervals and receives radar waves reflected by a reflector.
  • a reflection position analyzer that determines the relative position of the reflector based on the position of the radar device based on the received radar wave.
  • a storage device that stores the determined relative position history of the reflective object, and It is provided with an obstacle classifier for determining whether or not the reflective object is an obstacle based on the stored relative position history of the reflective object.
  • the obstacle classifier determines that the reflector is an obstacle when the relative position of the reflector changes regularly at a speed within a predetermined range and a direction within the predetermined range over a predetermined time length. If not, it is determined that the reflective object is not an obstacle.
  • the radar device when the relative position of the reflecting object stays within a predetermined range for the predetermined time length, the reflecting object is the first parallel to the moving direction of the moving body device. It is judged that the structure has the surface of.
  • the obstacle classifier has a second surface in which the reflector is parallel to the moving direction of the mobile device when the relative position of the reflector changes irregularly over a predetermined time length. It is judged that the structure has.
  • the relative position of the reflector is regularly arranged at a speed within a predetermined range corresponding to the speed and direction of the mobile device and a direction within a predetermined range over a predetermined time length. When it changes, it is determined that the reflector is an obstacle.
  • the radar device according to the aspect of the present disclosure and Drive device and It is equipped with a steering device.
  • the obstacle can be distinguished from other structures with a simple configuration.
  • an obstacle can be distinguished from other structures with a simple configuration.
  • FIG. 1 is a block diagram showing a configuration of a system including the mobile device 1 and the server device 2 according to the embodiment.
  • the mobile device 1 is, for example, an automatic guided vehicle called an AGV (automatic guided vehicle) or an AIV (autonomous intelligent vehicle) that operates under the control of a server device 2.
  • a radar device 12 is mounted on the mobile device 1.
  • the mobile device 1 of FIG. 1 includes a signal generator 31, a transmitting antenna 32, a receiving antenna 33, a mixer 34, an analog / digital (AD) converter 35, a reflection position analyzer 36, a storage device 37, and an obstacle classifier. 38 is provided.
  • a signal generator 31 a transmitting antenna 32, a receiving antenna 33, a mixer 34, an analog / digital (AD) converter 35, a reflection position analyzer 36, a storage device 37, and an obstacle classifier. 38 is provided.
  • the signal generator 31 generates a radio frequency signal for detecting the reflector R at a predetermined time interval and supplies it to the transmitting antenna 32 and the mixer 34.
  • the signal generator 31 may generate a CW (continuous wave) signal having a predetermined frequency as a radio frequency signal, or may generate an FM-CW signal having a frequency that changes periodically.
  • the transmitting antenna 32 radiates the radio frequency signal supplied from the signal generator 31 as a radar wave toward the exploration-symmetrical space.
  • the receiving antenna 33 receives the radar wave reflected by the reflector R and sends it to the mixer 34. At least one of the transmitting antenna 32 and the receiving antenna 33 may have a variable directivity.
  • the mixer 34 mixes the signals sent from the signal generator 31 and the receiving antenna 33 and sends them to the AD converter 35.
  • the mobile device 1 may convert the frequency of the signal from the radio frequency to the baseband frequency before sending the signal mixed by the mixer 34 to the AD converter 35.
  • the AD converter 35 converts the analog signal sent from the mixer 34 into a digital signal and sends it to the reflection position analyzer 36.
  • the signal generator 31, the transmitting antenna 32, the receiving antenna 33, the mixer 34, and the AD converter 35 are examples of transmitters and receivers.
  • the mobile device 1 has another form as long as it emits radar waves at predetermined time intervals when the mobile device 1 is moving and receives the radar waves reflected by the reflector R.
  • a transmitter / receiver may be provided.
  • the mobile device 1 may share a single antenna as a transmitting antenna and a receiving antenna. Further, the mobile device 1 may include other circuits such as a radio frequency amplifier.
  • the reflection position analyzer 36 determines the relative position of the reflector R with reference to the position of the radar device 12 based on the signal sent from the AD converter 35 (that is, the signal corresponding to the received radar wave). To do.
  • the reflection position analyzer 36 estimates the distance from the radar device 12 to the reflector R by using a fast Fourier transform or the like. Further, the reflection position analyzer 36 controls, for example, the signal generator 31, the transmitting antenna 32, and / or the receiving antenna 33, and an incoming wave estimation algorithm such as a beamformer algorithm or a MUSIC (multiple signal classification) algorithm. Is used to estimate the direction of arrival of the reflected radar wave.
  • the reflection position analyzer 36 determines the relative position of the reflector R by estimating the distance and the direction of arrival.
  • the reflection position analyzer 36 estimates the distance or the arrival direction based on the signal portion of a certain moment or time interval in the signal corresponding to the received radar wave, and the estimated distance or arrival direction and this signal portion.
  • the signal strengths of the above may be related to each other for processing.
  • the reflection position analyzer 36 may determine the distance or the arrival direction estimated based on the signal portion having the signal strength equal to or higher than a certain threshold value as the distance or the arrival direction of the reflector R. Further, the reflection position analyzer 36 may perform a constant false alarm rate reception process to determine the distance or the arrival direction of the reflector R. Further, the reflection position analyzer 36 may perform clustering of a plurality of estimated distances or arrival directions to determine the distance or arrival direction of the reflector R.
  • the storage device 37 stores the history of the relative position of the reflector R determined by the reflection position analyzer 36.
  • the obstacle classifier 38 determines whether or not the reflector R is an obstacle based on the history of the relative positions of the reflector R stored in the storage device 37. The obstacle classifier 38 determines that the reflector R is an obstacle when the relative position of the reflector R changes regularly at a speed within a predetermined range and a direction within the predetermined range over a predetermined time length. If not, it is determined that the reflector R is not an obstacle.
  • the obstacle is, for example, a structure having a surface that intersects the moving direction of the moving body device 1.
  • other structures having surfaces parallel to the moving direction of the moving body device 1 such as a floor surface, the ground, a wall surface, and a ceiling, do not pose an obstacle to the moving body device 1.
  • the radar device 12 may receive reflected waves (clutters) from such other structures.
  • the obstacle can be distinguished from other structures with a simple configuration by referring to the temporal change of the relative position of the reflecting object R.
  • the mobile device 1 may include a control device 11, a drive device 13, a steering device 14, and a communication device 15 in addition to the radar device 12.
  • the control device 11 controls the overall operation of the mobile device 1.
  • the drive device 13 moves the mobile device 1 at a predetermined speed under the control of the control device 11.
  • the steering device 14 controls the direction of the moving body device 1 under the control of the control device 11.
  • the communication device 15 receives a control signal from the server device 2 and transmits information on obstacles detected by the radar device 12 to the server device 2.
  • the control device 11 of the mobile device 1 notifies the radar device 12 whether or not the mobile device 1 is moving. Further, the control device 11 may notify the radar device 12 of the speed and direction of the mobile device 1. Further, when an obstacle is detected by the radar device 12, the control device 11 may change the route of the mobile device 1 so as to avoid the obstacle, or may stop the mobile device 1.
  • the server device 2 includes a control device 21, a communication device 22, an input device 23, a storage device 24, and a display device 25.
  • the control device 21 controls the overall operation of the server device 2.
  • the communication device 22 transmits a control signal to the mobile device 1 and also receives information on obstacles from the mobile device 1.
  • the input device 23 includes a keyboard, a pointing device, and the like, and receives user input.
  • the storage device 24 stores the obstacle information received from the mobile device 1.
  • the display device 25 displays information on obstacles received from the mobile device 1.
  • the control device 21 of the server device 2 may generate a map of the area in which the mobile device 1 can move based on the obstacle information received from the mobile device 1.
  • the server device 2 may transmit a control signal to the plurality of mobile devices 1 and may receive information on obstacles from the plurality of mobile devices 1.
  • FIG. 2 is a diagram illustrating a schematic operation of the radar device 12 of FIG.
  • FIG. 3 is a diagram showing the relative positions of the reflecting objects detected by the radar device 12 of FIG. 2 and 3 show a case where the mobile device 1 is moving in the vicinity of the obstacle 102 on the smooth floor surface 101.
  • the radar device 12 when the radar device 12 radiates the radar wave, the radar device 12 not only receives the reflected wave by the obstacle 102 for the moving body device 1, but also reflects by the floor surface 101 which does not become an obstacle for the moving body device 1. May receive waves (clutter).
  • the signal level of the reflected wave by the floor surface 101 is large, as shown in FIG. 3, it is impossible to distinguish whether the reflected object R detected by the radar device 12 is an obstacle 102 or a floor surface 101. There is.
  • FIG. 4 is a diagram illustrating a schematic operation of the radar device 12 when the mobile device 1 of FIG. 1 is moving in the vicinity of the obstacle 102.
  • FIG. 5 is a diagram showing a change in the relative position of the reflecting object detected by the radar device 12 of FIG.
  • the radar device 12 emits radar waves at times t1, t2, and t3, and the radar waves reflected by the obstacle 102 are emitted.
  • Reference numerals 1 (t1) to 1 (t3) indicate the positions of the mobile device 1 at times t1 to t3.
  • the radar wave received by the radar device 12 is once regarded as a radar wave reflected by the unknown reflector R.
  • the relative position of the reflector R with respect to the position of the radar device 12 changes as shown in FIG.
  • Reference numerals R (t1) to R (t3) indicate relative positions of the reflector R at times t1 to t3. Since the obstacle 102 has a fixed position on the floor surface 101, when the moving body device 1 is moving, the relative position of the obstacle 102 is within a predetermined range according to the speed and direction of the moving body device 1. It changes regularly in the direction of speed and within a predetermined range. Therefore, when the relative position of the reflecting object R changes regularly at a speed within a predetermined range and a direction within a predetermined range over a predetermined time length, it can be seen that the reflecting object R is an obstacle 102. In the examples of FIGS. 4 and 5, the relative position of the obstacle 102 changes at a constant speed in the ⁇ Y direction. From this, it can be seen that the reflecting object R is not the floor surface 101 but the obstacle 102.
  • the same reflector may be tracked between the relative positions of the reflectors detected at different times as follows. For example, reflectors that generate reflected waves with signal levels closer than a predetermined threshold between the relative positions of the reflectors detected at adjacent times are considered to be the same reflector. It may be considered and tracked. In addition, even if a reflector having a position closer than a predetermined threshold value among the relative positions of the reflectors detected at adjacent times is regarded as the same reflector and tracked. Good. Also, between the relative positions of the reflectors detected at adjacent times, the reflectors having a velocity and direction closer than a predetermined threshold value are considered to be the same reflector and tracked. You may. You may combine these tracking methods.
  • the relative position of the obstacle 102 changes in the direction ( ⁇ Y direction) in which the moving direction (+ Y direction) of the moving body device 1 is reversed has been described.
  • the change in the relative position of the obstacle 102 in response to the movement of the device 1 is not limited thereto.
  • the relative position of the obstacle 102 is different from the direction in which the moving direction of the moving body device 1 is reversed. May change direction.
  • the relative position of the reflecting object R is set at a speed within a predetermined range and a predetermined value over a predetermined time length in accordance with the movement of the moving body device 1.
  • the reflector R is an obstacle 102.
  • the obstacle classifier 38 may refer to the speed and direction of the mobile device 1 when determining whether or not the reflecting object is an obstacle. For example, as shown in FIG. 4, when the mobile device 1 moves in the + Y direction at a constant speed, the obstacle classifier 38 changes in the ⁇ Y direction at the same speed as the mobile device 1. Only the reflector R having a relative position may be determined to be an obstacle. In this case, the obstacle classifier 38 has a reflector R having a relative position that changes in a direction different from the ⁇ Y direction, and a reflector R having a relative position that changes at a speed different from that of the mobile device 1. May be determined not to be an obstacle (eg, another mobile device).
  • the relative position of the reflecting object is regulated at a speed within a predetermined range and a direction within a predetermined range corresponding to the speed and direction of the mobile device 1 over a predetermined time length.
  • the reflecting object is an obstacle.
  • obstacles can be identified with higher accuracy than when no reference is made.
  • FIG. 6 is a diagram illustrating a schematic operation of the radar device 12 when the mobile device 1 of FIG. 1 is moving on a smooth floor surface 101.
  • FIG. 7 is a diagram showing a change in the relative position of the reflecting object detected by the radar device 12 of FIG.
  • the radar device 12 is reflected from the radar device 12 with respect to the floor surface 101 at the same incident angle even if the moving body device 1 moves. Receives radar waves.
  • the relative position of the reflector R is immovable. Therefore, in the obstacle classifier 38, when the relative position of the reflector R stays within a predetermined range for a predetermined time length, the reflector R is parallel and smooth with respect to the moving direction of the moving body device 1. It is determined that the floor surface is 101.
  • FIG. 8 is a diagram illustrating a schematic operation of the radar device 12 when the mobile device 1 of FIG. 1 is moving on the rough floor surface 101A.
  • FIG. 9 is a diagram showing a change in the relative position of the reflecting object detected by the radar device 12 of FIG.
  • the radar device 12 receives the radar wave reflected at a random position on the floor surface 101A each time the radar wave is emitted. ..
  • the relative position of the reflector R changes randomly. Therefore, in the obstacle classifier 38, when the relative position of the reflector R changes irregularly over a predetermined time length, the reflector R is parallel to the moving direction of the moving body device 1 and the floor surface is rough. It is determined that it is 101A.
  • the floor surface being "coarse” may mean, for example, that the average period d of the unevenness on the floor surface exceeds 1/2 of the wavelength of the radar wave, as shown in FIG. Further, the fact that the floor surface is "smooth” may mean that, for example, the average period d of the unevenness on the floor surface is 1/2 or less of the wavelength of the radar wave. Other definitions may be used for the smoothness / roughness of the floor surface.
  • FIG. 10 is a flowchart showing an obstacle detection process executed by the radar device 12 of FIG. The process of FIG. 10 is executed when the mobile device 1 is moving.
  • step S1 the obstacle classifier 38 initializes the number of processing cycles n to zero.
  • step S2 the signal generator 31, the transmitting antenna 32, the receiving antenna 33, the mixer 34, and the AD converter 35 transmit and receive radar waves.
  • step S3 the reflection position analyzer 36 determines the relative position of the reflector R and stores it in the storage device 37.
  • step S4 the obstacle classifier 38 determines whether or not data for N cycles is stored in the storage device 37, and if YES, proceeds to step S6, and if NO, proceeds to step S5.
  • the threshold value N in step S4 is set to, for example, 3 or more.
  • step S5 the obstacle classifier 38 increments the number of processing cycles n by 1.
  • step S6 the obstacle classifier 38 reads the data for the immediately preceding N cycles from the storage device 37 and tracks the same reflector R.
  • step S7 the obstacle classifier 38 determines whether or not the relative position of the reflecting object R changes regularly. If YES, the process proceeds to step S8, and if NO, the process proceeds to step S9. In step S8, the obstacle classifier 38 determines that the reflected signal of interest is the reflection of the obstacle.
  • step S9 the obstacle classifier 38 determines whether or not the relative position of the reflecting object R changes randomly, and if YES, proceeds to step S10, and if NO, proceeds to step S11.
  • step S10 the obstacle classifier 38 determines that the reflected signal of interest is the reflection of the rough floor surface.
  • step S11 the obstacle classifier 38 determines whether or not the relative position of the reflecting object R is immovable. If YES, the process proceeds to step S12, and if NO, the process proceeds to step S13. In step S12, the obstacle classifier 38 determines that the reflected signal of interest is the reflection of the smooth floor surface.
  • step S13 the obstacle classifier 38 determines that the reflected signal of interest is the reflection of another floor surface.
  • the radar device 12 When a plurality of reflective objects are detected in the received radar wave, the radar device 12 performs the processing of steps S7 to S13 (that is, determination of obstacle / rough floor surface / smooth floor surface) for each reflective object. It may be repeated.
  • steps S9 and S11 may be changed. Further, in the process of FIG. 10, steps S9 to S12 may be omitted.
  • the radar device 12 it is determined whether or not the reflecting object R has a smooth floor surface, and whether or not the reflecting object R has a rough floor surface. Obstacles can be identified with higher accuracy.
  • the radar device 12 not only the floor surface but also other structures such as the ground, the wall surface, the ceiling, and other large structures that do not become obstacles to the mobile device 1 are identified. be able to.
  • the processing speed can be increased.
  • the radar device 12 according to the embodiment may be mounted on a mobile device that operates autonomously without communicating with the server device 2.
  • the radar device 12 according to the embodiment is not limited to an automatic guided vehicle, and may be mounted on an automobile or the like. Further, the radar device 12 according to the embodiment may be applied to a mobile device such as a train or an elevator which does not have a steering device and has a drive device.
  • the radar device 12 is mounted on the mobile device 1.
  • the radar device 12 includes a transmitter / receiver, a reflection position analyzer 36, a storage device 37, and an obstacle classifier 38.
  • the transmitter / receiver emits radar waves at predetermined time intervals and receives the radar waves reflected by the reflector.
  • the reflection position analyzer 36 determines the relative position of the reflecting object based on the position of the radar device 12 based on the received radar wave.
  • the storage device 37 stores the history of the relative positions of the determined reflectors.
  • the obstacle classifier 38 determines whether or not the reflector is an obstacle based on the history of the stored relative positions of the reflector.
  • the obstacle classifier 38 determines that the reflector is an obstacle when the relative position of the reflector changes regularly at a speed within a predetermined range and a direction within the predetermined range over a predetermined time length. If not, determine that the reflector is not an obstacle.
  • the obstacle classifier 38 is within a predetermined range for the relative position of the reflecting object over a predetermined time length. When staying at the position of, it is determined that the reflecting object is a structure having a first surface parallel to the moving direction of the moving body device 1.
  • the obstacle classifier 38 has a relative position of the reflecting object over a predetermined time length. When it changes irregularly, it is determined that the reflecting object is a structure having a second surface parallel to the moving direction of the moving body device 1.
  • the obstacle classifier 38 determines in advance the relative position of the reflecting object. When the speed and direction of the mobile device 1 change regularly in a predetermined range and a direction within a predetermined range over a specified time length, it is determined that the reflecting object is an obstacle.
  • the mobile device 1 includes a radar device 12, a drive device 13, and a steering device 14 according to one of the first to fourth aspects.
  • the radar device can be applied to a mobile device such as an AGV (automatic guided vehicle) or an AIV (autonomous intelligent vehicle).
  • a mobile device such as an AGV (automatic guided vehicle) or an AIV (autonomous intelligent vehicle).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

送受信機は、移動体装置が移動中であるとき、予め決められた時間間隔でレーダ波を放射し、反射物によって反射されたレーダ波を受信する。反射位置解析器は、受信されたレーダ波に基づいて、レーダ装置の位置を基準とする反射物の相対位置を決定する。記憶装置は、決定された反射物の相対位置の履歴を記憶する。障害物識別器は、記憶された反射物の相対位置の履歴に基づいて、反射物が障害物であるか否かを判断する。障害物識別器は、反射物の相対位置が予め決められた時間長にわたって所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物が障害物であると判断し、そうでないとき、反射物が障害物ではないと判断する。

Description

レーダ装置及び移動体装置
 本開示は、移動体装置に搭載されるレーダ装置に関し、また、レーダ装置を備えた移動体装置に関する。
 自動車又は自動搬送車などの移動体装置は、その移動中に障害物を検出するために、レーダ装置を搭載することがある。例えば、特許文献1は、複数の系統の信号を用いるレーダ探知装置を開示している。
特開2017-207425号公報
 レーダ装置は、レーダ波を放射したとき、移動体装置にとって障害物となりうる物体による反射波を受信するだけでなく、追加又は代替として、例えば床面、地面、壁面、及び天井など、移動体装置にとって障害物とはならない他の構造物による反射波(クラッタ)を受信する可能性がある。障害物となりうる物体による反射波の信号レベルが十分に大きくない場合、又は、他の構造物による反射波の信号レベルが十分に小さくない場合、レーダ装置によって検出された反射物が、障害物であるのか、それとも他の構造物であるのか、区別できなくなることがある。従って、障害物を他の構造物から区別することできるレーダ装置が求められる。
 例えば、特許文献1の装置は、ターゲットをクラッタから区別するために、各々の系統の信号のスペクトルの強度ピーク位置を比較し、各々の系統における強度ピーク位置のばらつきが小さい信号のスペクトルをターゲットによるものと判定し、各々の系統における強度ピーク位置のばらつきが大きい信号のスペクトルをクラッタによるものと判定する。しかしながら、特許文献1の装置は、複数の系統の信号を受信して処理するために複数の回路を備え、回路規模が大きくなる。従って、より簡単な構成で、障害物を他の構造物から区別することできるレーダ装置が求められる。
 本開示の目的は、簡単な構成で障害物を他の構造物から区別することできるレーダ装置を提供することにある。また、本開示の目的は、そのようなレーダ装置を備えた移動体装置を提供することにある。
 本開示の側面に係るレーダ装置によれば、
 移動体装置に搭載されるレーダ装置であって、
 前記移動体装置が移動中であるとき、予め決められた時間間隔でレーダ波を放射し、反射物によって反射されたレーダ波を受信する送受信機と、
 受信された前記レーダ波に基づいて、前記レーダ装置の位置を基準とする前記反射物の相対位置を決定する反射位置解析器と、
 決定された前記反射物の相対位置の履歴を記憶する記憶装置と、
 記憶された前記反射物の相対位置の履歴に基づいて、前記反射物が障害物であるか否かを判断する障害物識別器とを備え、
 前記障害物識別器は、前記反射物の相対位置が予め決められた時間長にわたって所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、前記反射物が障害物であると判断し、そうでないとき、前記反射物が障害物ではないと判断する。
 これにより、反射物の相対位置の時間的変化を参照することにより、簡単な構成で障害物を他の構造物から区別することできる。
 本開示の側面に係るレーダ装置によれば、
 前記障害物識別器は、前記反射物の相対位置が前記予め決められた時間長にわたって所定範囲内の位置にとどまるとき、前記反射物が、前記移動体装置の移動方向に対して平行な第1の面を有する構造物であると判断する。
 これにより、滑らかな面を識別することにより、障害物を検出する精度を向上することができる。
 本開示の側面に係るレーダ装置によれば、
 前記障害物識別器は、前記反射物の相対位置が前記予め決められた時間長にわたって不規則に変化するとき、前記反射物が、前記移動体装置の移動方向に対して平行な第2の
面を有する構造物であると判断する。
 これにより、粗い面を識別することにより、障害物を検出する精度を向上することができる。
 本開示の側面に係るレーダ装置によれば、
 前記障害物識別器は、前記反射物の相対位置が、前記予め決められた時間長にわたって、前記移動体装置の速度及び方向に対応する所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、前記反射物が障害物であると判断する。
 これにより、移動体装置の速度及び方向を参照することにより、障害物を検出する精度を向上することができる。
 本開示の側面に係る移動体装置によれば、
 本開示の側面に係るレーダ装置と、
 駆動装置と、
 操舵装置とを備える。
 これにより、本開示の側面に係るレーダ装置を備え、反射物の相対位置の時間的変化を参照することにより、簡単な構成で障害物を他の構造物から区別することできる。
 本開示の側面に係るレーダ装置及び移動体装置によれば、簡単な構成で障害物を他の構造物から区別することできる。
実施形態に係る移動体装置1及びサーバ装置2を含むシステムの構成を示すブロック図である。 図1のレーダ装置12の概略動作を説明する図である。 図2のレーダ装置12によって検出される反射物の相対位置を示す図である。 図1の移動体装置1が障害物102の近傍において移動中であるときの、レーダ装置12の概略動作を説明する図である。 図4のレーダ装置12によって検出される反射物の相対位置の変化を示す図である。 図1の移動体装置1が滑らかな床面101において移動中であるときの、レーダ装置12の概略動作を説明する図である。 図6のレーダ装置12によって検出される反射物の相対位置の変化を示す図である。 図1の移動体装置1が粗い床面101Aにおいて移動中であるときの、レーダ装置12の概略動作を説明する図である。 図8のレーダ装置12によって検出される反射物の相対位置の変化を示す図である。 図1のレーダ装置12によって実行される障害物検出処理を示すフローチャートである。
 以下、本開示の一側面に係る実施形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。各図面において、同じ符号は同様の構成要素を示す。
[適用例]
 図1は、実施形態に係る移動体装置1及びサーバ装置2を含むシステムの構成を示すブロック図である。移動体装置1は、例えば、AGV(automatic guided vehicle)又はAIV(autonomous intelligent vehicle)などと呼ばれる、サーバ装置2の制御下で動作する自動搬送車である。移動体装置1にはレーダ装置12が搭載される。
 図1の移動体装置1は、信号発生器31、送信アンテナ32、受信アンテナ33、ミキサ34、アナログ/ディジタル(AD)変換器35、反射位置解析器36、記憶装置37、及び障害物識別器38を備える。
 信号発生器31は、予め決められた時間間隔で、反射物Rを検出するための無線周波信号を発生して送信アンテナ32及びミキサ34に供給する。信号発生器31は、無線周波信号として、予め決められた周波数を有するCW(continuous wave)信号を発生してもよく、周期的に変化する周波数を有するFM-CW信号を発生してもよい。
 送信アンテナ32は、信号発生器31から供給された無線周波信号を、探査対称の空間に向けてレーダ波として放射する。受信アンテナ33は、反射物Rによって反射されたレーダ波を受信してミキサ34に送る。送信アンテナ32及び受信アンテナ33の少なくとも一方は、可変な指向性を有してもよい。
 ミキサ34は、信号発生器31及び受信アンテナ33から送られた信号を混合してAD変換器35に送る。移動体装置1は、ミキサ34によって混合された信号をAD変換器35に送る前に、信号の周波数を無線周波数からベースバンド周波数に変換してもよい。
 AD変換器35は、ミキサ34から送られたアナログ信号をディジタル信号に変換して反射位置解析器36に送る。
 信号発生器31、送信アンテナ32、受信アンテナ33、ミキサ34、及びAD変換器35は、送受信機の一例である。移動体装置1は、移動体装置1が移動中であるとき、予め決められた時間間隔でレーダ波を放射し、反射物Rによって反射されたレーダ波を受信するのであれば、他の形態の送受信機を備えてもよい。例えば、移動体装置1は、単一のアンテナを送信アンテナ及び受信アンテナとして共用してもよい。また、移動体装置1は、無線周波増幅器など、他の回路を備えてもよい。
 反射位置解析器36は、AD変換器35から送られた信号(すなわち、受信されたレーダ波に対応する信号)に基づいて、レーダ装置12の位置を基準とする反射物Rの相対位置を決定する。反射位置解析器36は、高速フーリエ変換などを用いて、レーダ装置12から反射物Rまでの距離を推定する。また、反射位置解析器36は、例えば、信号発生器31、送信アンテナ32、及び/又は受信アンテナ33を制御し、ビームフォーマ(beamformer)アルゴリズム又はMUSIC(multiple signal classification)アルゴリズムなどの到来波推定アルゴリズムを用いて、反射されたレーダ波の到来方向を推定する。反射位置解析器36は、距離及び到来方向を推定することにより、反射物Rの相対位置を決定する。
 反射位置解析器36は、受信されたレーダ波に対応する信号のうち、ある瞬間又は時間区間の信号部分に基づいて距離又は到来方向を推定し、推定された距離又は到来方向と、この信号部分の信号強度とを互いに関連付けて処理してもよい。この場合、反射位置解析器36は、あるしきい値以上の信号強度を有する信号部分に基づいて推定された距離又は到来方向を、反射物Rの距離又は到来方向として決定してもよい。また、反射位置解析器36は、定誤警報率(constant false alarm rate)受信処理を行って反射物Rの距離又は到来方向を決定してもよい。また、反射位置解析器36は、推定された複数の距離又は到来方向のクラスタリングを行って反射物Rの距離又は到来方向を決定してもよい。
 記憶装置37は、反射位置解析器36によって決定された反射物Rの相対位置の履歴を記憶する。
 障害物識別器38は、記憶装置37に記憶された反射物Rの相対位置の履歴に基づいて、反射物Rが障害物であるか否かを判断する。障害物識別器38は、反射物Rの相対位置が予め決められた時間長にわたって所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物Rが障害物であると判断し、そうでないとき、反射物Rが障害物ではないと判断する。
 障害物は、例えば、移動体装置1の移動方向に対して交差する面を有する構造物である。一方、例えば床面、地面、壁面、及び天井など、移動体装置1の移動方向に対して平行な面を有する他の構造物は、移動体装置にとって障害物とはならない。しかしながら、前述したように、レーダ装置12は、このような他の構造物による反射波(クラッタ)を受信する可能性がある。実施形態に係るレーダ装置12によれば、反射物Rの相対位置の時間的変化を参照することにより、簡単な構成で障害物を他の構造物から区別することできる。
[実施形態]
[実施形態の構成例]
 図1を参照すると、移動体装置1は、レーダ装置12に加えて、制御装置11、駆動装置13、操舵装置14、及び通信装置15を備えてもよい。制御装置11は、移動体装置1の全体の動作を制御する。駆動装置13は、制御装置11の制御下で、移動体装置1を所定の速度で移動させる。操舵装置14は、制御装置11の制御下で、移動体装置1の方向を制御する。通信装置15は、サーバ装置2から制御信号を受信し、また、レーダ装置12によって検出された障害物の情報をサーバ装置2に送信する。
 移動体装置1の制御装置11は、移動体装置1が移動中であるか否かをレーダ装置12に通知する。また、制御装置11は、移動体装置1の速度及び方向をレーダ装置12に通知してもよい。また、制御装置11は、レーダ装置12によって障害物が検出されたとき、障害物を回避するように移動体装置1の経路を変更してもよく、移動体装置1を停止してもよい。
 また、図1を参照すると、サーバ装置2は、制御装置21、通信装置22、入力装置23、記憶装置24、及び表示装置25を備える。制御装置21は、サーバ装置2の全体の動作を制御する。通信装置22は、移動体装置1に制御信号を送信し、また、移動体装置1から障害物の情報を受信する。入力装置23は、キーボード及びポインティングデバイスなどを含み、ユーザ入力を受ける。記憶装置24は、移動体装置1から受信された障害物の情報を記憶する。表示装置25は、移動体装置1から受信された障害物の情報を表示する。
 サーバ装置2の制御装置21は、移動体装置1から受信された障害物の情報に基づいて、移動体装置1が移動可能な領域のマップを生成してもよい。
 サーバ装置2は、複数の移動体装置1に制御信号を送信し、また、複数の移動体装置1から障害物の情報を受信してもよい。
[実施形態の動作例]
 図2は、図1のレーダ装置12の概略動作を説明する図である。図3は、図2のレーダ装置12によって検出される反射物の相対位置を示す図である。図2及び図3は、移動体装置1が、滑らかな床面101において、障害物102の近傍において移動中である場合を示す。前述したように、レーダ装置12は、レーダ波を放射したとき、移動体装置1にとって障害物102による反射波を受信するだけでなく、移動体装置1にとって障害物とはならない床面101による反射波(クラッタ)を受信する可能性がある。床面101による反射波の信号レベルが大きい場合、図3に示すように、レーダ装置12によって検出された反射物Rが、障害物102であるのか、それとも床面101であるのか、区別できないことがある。
 図4は、図1の移動体装置1が障害物102の近傍において移動中であるときの、レーダ装置12の概略動作を説明する図である。図5は、図4のレーダ装置12によって検出される反射物の相対位置の変化を示す図である。図4は、移動体装置1が+Y方向に向かって一定の速度で移動しながら、レーダ装置12が、時刻t1、t2、t3においてレーダ波を放射し、障害物102によって反射されたレーダ波を受信する場合を示す。符号1(t1)~1(t3)は、時刻t1~t3における移動体装置1の位置を示す。レーダ装置12によって受信されたレーダ波は、いったん、未知の反射物Rによって反射されたレーダ波であるとみなされる。この場合、レーダ装置12の位置を基準とする反射物Rの相対位置は、図5に示すように変化する。符号R(t1)~R(t3)は、時刻t1~t3における反射物Rの相対位置を示す。障害物102は床面101において決まった位置を有するので、移動体装置1が移動中であるとき、障害物102の相対位置は、移動体装置1の速度及び方向に応じて、所定範囲内の速度かつ所定範囲内の方向で規則的に変化する。従って、反射物Rの相対位置が予め決められた時間長にわたって所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物Rが障害物102であることがわかる。図4及び図5の例では、障害物102の相対位置は、-Y方向に向かって一定の速度で変化する。これにより、反射物Rが、床面101ではなく、障害物102であることがわかる。
 異なる時刻において検出される反射物の相対位置の間において、同一の反射物は、以下のように追跡されてもよい。例えば、互いに隣接する時刻において検出される反射物の相対位置の間において、予め決められたしきい値よりも近接した信号レベルを有する反射波を生じた反射物を、同一の反射物であるとみなして追跡してもよい。また、互いに隣接する時刻において検出される反射物の相対位置の間において、予め決められたしきい値よりも近接した位置を有する反射物を、同一の反射物であるとみなして追跡してもよい。また、互いに隣接する時刻において検出される反射物の相対位置の間において、予め決められたしきい値よりも近接した速度及び方向を有する反射物を、同一の反射物であるとみなして追跡してもよい。これらの追跡方法を組み合わせてもよい。
 図4及び図5の例では、障害物102の相対位置が、移動体装置1の移動方向(+Y方向)を反転した方向(-Y方向)に向かって変化する場合について説明したが、移動体装置1の移動に応じた障害物102の相対位置の変化はそれに限定されない。例えば、移動体装置1がカーブに沿って進むとき、又は、移動体装置1がその場所で旋回するとき、障害物102の相対位置は、移動体装置1の移動方向を反転した方向とは異なる方向に変化することがある。いずれにしても、障害物識別器38は、移動体装置1の移動に応じて、反射物Rの相対位置が予め決められた時間長にわたって反射物Rの相対位置が所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物Rが障害物102であると判断することができる。
 障害物識別器38は、反射物が障害物であるか否かを判断するとき、移動体装置1の速度及び方向を参照してもよい。例えば、図4に示すように、移動体装置1が+Y方向に向かって一定の速度で移動する場合、障害物識別器38は、-Y方向に向かって移動体装置1と同じ速度で変化する相対位置を有する反射物Rのみを障害物であると判断してもよい。この場合、障害物識別器38は、-Y方向とは異なる方向に向かって変化する相対位置を有する反射物R、及び、移動体装置1とは異なる速度で変化する相対位置を有する反射物Rを、障害物ではない(例えば、他の移動体装置など)と判断してもよい。このように、障害物識別器38は、反射物の相対位置が、予め決められた時間長にわたって、移動体装置1の速度及び方向に対応する所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物が障害物であると判断する。移動体装置1の速度及び方向を参照することにより、参照しない場合よりも高精度に障害物を識別することができる。
 図6は、図1の移動体装置1が滑らかな床面101において移動中であるときの、レーダ装置12の概略動作を説明する図である。図7は、図6のレーダ装置12によって検出される反射物の相対位置の変化を示す図である。図6に示すように、床面101が滑らかである場合、レーダ装置12は、移動体装置1が移動しても、レーダ装置12から床面101に対して同じ入射角で入射して反射されたレーダ波を受信する。この場合、図7に示すように、反射物Rの相対位置は不動である。従って、障害物識別器38は、反射物Rの相対位置が予め決められた時間長にわたって所定範囲内の位置にとどまるとき、反射物Rが、移動体装置1の移動方向に対して平行かつ滑らかな床面101であると判断する。
 図8は、図1の移動体装置1が粗い床面101Aにおいて移動中であるときの、レーダ装置12の概略動作を説明する図である。図9は、図8のレーダ装置12によって検出される反射物の相対位置の変化を示す図である。図8に示すように、移動体装置1が粗い床面101Aにおいて移動する場合、レーダ装置12は、レーダ波を放射するごとに、床面101Aにおけるランダムな位置において反射されたレーダ波を受信する。この場合、図9に示すように、反射物Rの相対位置はランダムに変化する。従って、障害物識別器38は、反射物Rの相対位置が予め決められた時間長にわたって不規則に変化するとき、反射物Rが、移動体装置1の移動方向に対して平行かつ粗い床面101Aであると判断する。
 床面が「粗い」とは、例えば、図8に示すように、床面における凹凸の平均周期dがレーダ波の波長の1/2を超えることを意味してもよい。また、床面が「滑らか」であるとは、例えば、床面における凹凸の平均周期dがレーダ波の波長の1/2以下であることを意味してもよい。床面の滑らかさ/粗さについては、他の定義を用いてもよい。
 図10は、図1のレーダ装置12によって実行される障害物検出処理を示すフローチャートである。図10の処理は、移動体装置1が移動中であるときに実行される。
 ステップS1において、障害物識別器38は、処理のサイクル数nをゼロに初期化する。ステップS2において、信号発生器31、送信アンテナ32、受信アンテナ33、ミキサ34、及びAD変換器35は、レーダ波を送受信する。ステップS3において、反射位置解析器36は、反射物Rの相対位置を決定して記憶装置37に記憶する。ステップS4において、障害物識別器38は、記憶装置37にNサイクル分のデータが記憶されているか否かを判断し、YESのときはステップS6に進み、NOのときはステップS5に進む。ステップS4のしきい値Nは、例えば、3以上に設定される。ステップS5において、障害物識別器38は、処理のサイクル数nを1だけインクリメントする。
 ステップS6において、障害物識別器38は、記憶装置37から直前のNサイクル分のデータを読み出し、同じ反射物Rを追跡する。
 ステップS7において、障害物識別器38は、反射物Rの相対位置が規則的に変化するか否かを判断し、YESのときはステップS8に進み、NOのときはステップS9に進む。ステップS8において、障害物識別器38は、関心対象の反射信号が障害物による反射であると判断する。
 ステップS9において、障害物識別器38は、反射物Rの相対位置がランダムに変化するか否かを判断し、YESのときはステップS10に進み、NOのときはステップS11に進む。ステップS10において、障害物識別器38は、関心対象の反射信号が粗い床面による反射であると判断する。
 ステップS11において、障害物識別器38は、反射物Rの相対位置が不動であるか否かを判断し、YESのときはステップS12に進み、NOのときはステップS13に進む。ステップS12において、障害物識別器38は、関心対象の反射信号が滑らかな床面による反射であると判断する。
 ステップS13において、障害物識別器38は、関心対象の反射信号が他の床面による反射であると判断する。
 レーダ装置12は、受信されたレーダ波において複数の反射物が検出された場合、各反射物について、ステップS7~S13の処理(すなわち、障害物/粗い床面/滑らかな床面の判断)を繰り返してもよい。
 図10の処理において、ステップS9及びステップS11の順序を入れ替えてもよい。また、図10の処理において、ステップS9~S12を省略してもよい。
[実施形態の効果]
 従来、ある瞬間における反射波を参照するだけでは、障害物を他の構造物から区別することできなかった。また、特許文献1の装置によれば、複数の系統の信号を受信して処理するために複数の回路が必要であった。一方、実施形態に係るレーダ装置12によれば、反射物Rの相対位置の時間的変化を参照することにより、簡単な構成で障害物を他の構造物から区別することできる。実施形態に係るレーダ装置12によれば、レーダ波を放射して受信する単一の系統の回路のみを備え、従来よりも簡単な構成を有するので、そのコストを低減することができる。
 また、実施形態に係るレーダ装置12によれば、反射物Rが滑らかな床面であるか否かを判断し、また、反射物Rが粗い床面であるか否かを判断することにより、より高精度に障害物を識別することができる。
 また、実施形態に係るレーダ装置12によれば、床面に限らず、地面、壁面、天井、及び他の大きな構造物など、移動体装置1にとって障害物とはならない他の構造物を識別することができる。
 また、実施形態に係るレーダ装置12によれば、移動体装置1の速度及び方向を参照しなくてもよいので、処理を高速化することができる。
[変形例]
 実施形態に係るレーダ装置12は、サーバ装置2と通信することなく、自律的に動作する移動体装置に搭載されてもよい。実施形態に係るレーダ装置12は、自動搬送車に限らず、自動車などに搭載されてもよい。また、実施形態に係るレーダ装置12は、列車及びエレベータなど操舵装置をもたず、駆動装置を備えた移動体装置に適用されてもよい。
[まとめ]
 本開示の各側面に係るレーダ装置及び移動体装置は、以下のように表現されてもよい。
 本開示の第1の側面に係るレーダ装置12は、移動体装置1に搭載される。レーダ装置12は、送受信機、反射位置解析器36、記憶装置37、及び障害物識別器38を備える。送受信機は、移動体装置1が移動中であるとき、予め決められた時間間隔でレーダ波を放射し、反射物によって反射されたレーダ波を受信する。反射位置解析器36は、受信されたレーダ波に基づいて、レーダ装置12の位置を基準とする反射物の相対位置を決定する。記憶装置37は、決定された反射物の相対位置の履歴を記憶する。障害物識別器38は、記憶された反射物の相対位置の履歴に基づいて、反射物が障害物であるか否かを判断する。障害物識別器38は、反射物の相対位置が予め決められた時間長にわたって所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物が障害物であると判断し、そうでないとき、反射物が障害物ではないと判断する。
 本開示の第2の側面に係るレーダ装置12によれば、第1の側面に係るレーダ装置12において、障害物識別器38は、反射物の相対位置が予め決められた時間長にわたって所定範囲内の位置にとどまるとき、反射物が、移動体装置1の移動方向に対して平行な第1の面を有する構造物であると判断する。
 本開示の第3の側面に係るレーダ装置12によれば、第1又は第2の側面に係るレーダ装置12において、障害物識別器38は、反射物の相対位置が予め決められた時間長にわたって不規則に変化するとき、反射物が、移動体装置1の移動方向に対して平行な第2の面を有する構造物であると判断する。
 本開示の第4の側面に係るレーダ装置12によれば、第1~第3のうちの1つの側面に係るレーダ装置12において、障害物識別器38は、反射物の相対位置が、予め決められた時間長にわたって、移動体装置1の速度及び方向に対応する所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、反射物が障害物であると判断する。
 本開示の第5の側面に係る移動体装置1は、第1~第4のうちの1つの側面に係るレーダ装置12と、駆動装置13と、操舵装置14とを備える。
 本開示の側面に係るレーダ装置は、例えば、AGV(automatic guided vehicle)又はAIV(autonomous intelligent vehicle)などの移動体装置に適用可能である。
1 移動体装置
2 サーバ装置
11 制御装置
12 レーダ装置
13 駆動装置
14 操舵装置
15 通信装置
21 制御装置
22 通信装置
23 入力装置
24 記憶装置
25 表示装置
31 信号発生器
32 送信アンテナ
33 受信アンテナ
34 ミキサ
35 アナログ/ディジタル(AD)変換器
36 反射位置解析器
37 記憶装置
38 障害物識別器
101 滑らかな床面
101A 粗い床面
102 障害物
R 反射物

Claims (5)

  1.  移動体装置に搭載されるレーダ装置であって、
     前記移動体装置が移動中であるとき、予め決められた時間間隔でレーダ波を放射し、反射物によって反射されたレーダ波を受信する送受信機と、
     受信された前記レーダ波に基づいて、前記レーダ装置の位置を基準とする前記反射物の相対位置を決定する反射位置解析器と、
     決定された前記反射物の相対位置の履歴を記憶する記憶装置と、
     記憶された前記反射物の相対位置の履歴に基づいて、前記反射物が障害物であるか否かを判断する障害物識別器とを備え、
     前記障害物識別器は、前記反射物の相対位置が予め決められた時間長にわたって所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、前記反射物が障害物であると判断し、そうでないとき、前記反射物が障害物ではないと判断する、
    レーダ装置。
  2.  前記障害物識別器は、前記反射物の相対位置が前記予め決められた時間長にわたって所定範囲内の位置にとどまるとき、前記反射物が、前記移動体装置の移動方向に対して平行な第1の面を有する構造物であると判断する、
    請求項1記載のレーダ装置。
  3.  前記障害物識別器は、前記反射物の相対位置が前記予め決められた時間長にわたって不規則に変化するとき、前記反射物が、前記移動体装置の移動方向に対して平行な第2の面を有する構造物であると判断する、
    請求項1又は2記載のレーダ装置。
  4.  前記障害物識別器は、前記反射物の相対位置が、前記予め決められた時間長にわたって、前記移動体装置の速度及び方向に対応する所定範囲内の速度かつ所定範囲内の方向で規則的に変化するとき、前記反射物が障害物であると判断する、
    請求項1~3のうちの1つに記載のレーダ装置。
  5.  請求項1~4のうちの1つに記載のレーダ装置と、
     駆動装置と、
     操舵装置とを備えた、
    移動体装置。
PCT/JP2019/030508 2019-08-02 2019-08-02 レーダ装置及び移動体装置 WO2021024305A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030508 WO2021024305A1 (ja) 2019-08-02 2019-08-02 レーダ装置及び移動体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030508 WO2021024305A1 (ja) 2019-08-02 2019-08-02 レーダ装置及び移動体装置

Publications (1)

Publication Number Publication Date
WO2021024305A1 true WO2021024305A1 (ja) 2021-02-11

Family

ID=74503384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030508 WO2021024305A1 (ja) 2019-08-02 2019-08-02 レーダ装置及び移動体装置

Country Status (1)

Country Link
WO (1) WO2021024305A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257934A (ja) * 2001-02-27 2002-09-11 Omron Corp 車両用路面状態検知装置及び車両用測距装置
JP2005128722A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Works Ltd 障害物回避機能付き車両
JP2008026030A (ja) * 2006-07-18 2008-02-07 Denso Corp 車両用障害物検出装置及び車両制御システム
US20180300563A1 (en) * 2015-08-03 2018-10-18 Volkswagen Aktiengesellschaft Method and Device in a Motor Vehicle for Improved Data Fusion in an Environment Detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257934A (ja) * 2001-02-27 2002-09-11 Omron Corp 車両用路面状態検知装置及び車両用測距装置
JP2005128722A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Works Ltd 障害物回避機能付き車両
JP2008026030A (ja) * 2006-07-18 2008-02-07 Denso Corp 車両用障害物検出装置及び車両制御システム
US20180300563A1 (en) * 2015-08-03 2018-10-18 Volkswagen Aktiengesellschaft Method and Device in a Motor Vehicle for Improved Data Fusion in an Environment Detection

Similar Documents

Publication Publication Date Title
CN108369271B (zh) 配置用于确定空闲域的车辆雷达***
CN107991650B (zh) 安装在平台上的雷达***及其操作方法
JP4593468B2 (ja) レーダ装置
JP6862474B2 (ja) 自動車両用レーダーセンサ装置、ドライバー支援システム、自動車両、及び物体を感知するための方法
KR101890352B1 (ko) 차량용 레이더 장치 및 그의 고스트 제거 방법
JP2001242242A (ja) 検知性能向上機能を備えたミリ波レーダ装置
JP2001042034A (ja) レーダ装置
EP1326090A2 (en) Security system
KR101956102B1 (ko) 레이더를 이용하여 차량의 주차를 감지하는 방법 및 장치
US10395539B2 (en) Non-line of sight obstacle detection and localization
JP2009109484A (ja) 無線周波数近接センサ及びセンサ・システム
JPWO2005026769A1 (ja) レーダ装置
WO2007015288A1 (ja) 軸ずれ量推定方法及び軸ずれ量推定装置
KR20150051679A (ko) 가변 파형을 이용하여 허위 타켓 판별하는 차량용 레이더 및 이를 이용한 허위 타겟 판별 방법
CN111630406B (zh) 确定物体信息项的方法和雷达***、车辆驾驶员辅助***
JP7257369B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
US10551493B2 (en) Widely spaced radar nodes with unambiguous beam pattern
KR20160081507A (ko) 차량용 레이더 시스템
US20200158848A1 (en) Method and apparatus for coded radar signals
WO2021074949A1 (ja) レーダ装置及び移動体装置
KR102667977B1 (ko) 차량용 레이더 장치 및 제어방법
JP2008209343A (ja) 車載用レーダシステム
WO2021024305A1 (ja) レーダ装置及び移動体装置
EP3401699A1 (en) Vehicle environmental detection system for parking detection
KR100875564B1 (ko) 근거리 물체 감지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP