WO2021022596A1 - 光学指纹装置和电子设备 - Google Patents

光学指纹装置和电子设备 Download PDF

Info

Publication number
WO2021022596A1
WO2021022596A1 PCT/CN2019/103837 CN2019103837W WO2021022596A1 WO 2021022596 A1 WO2021022596 A1 WO 2021022596A1 CN 2019103837 W CN2019103837 W CN 2019103837W WO 2021022596 A1 WO2021022596 A1 WO 2021022596A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
microprism
incident
optical signal
Prior art date
Application number
PCT/CN2019/103837
Other languages
English (en)
French (fr)
Inventor
纪登鑫
沈健
姚国峰
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980004322.4A priority Critical patent/CN111095287B/zh
Publication of WO2021022596A1 publication Critical patent/WO2021022596A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the embodiments of the present application relate to the field of optical fingerprint technology, and more specifically, to optical fingerprint devices and electronic equipment.
  • the under-screen optical fingerprint recognition technology is to install the optical fingerprint module under the display screen, and realize fingerprint recognition by collecting the optical fingerprint image.
  • the requirements for fingerprint recognition performance are getting higher and higher. Therefore, how to improve the performance of fingerprint recognition has become a technical problem to be solved urgently.
  • the embodiments of the present application provide an optical fingerprint device and electronic equipment, which can improve fingerprint recognition performance.
  • an optical fingerprint device configured to be installed below the display screen of an electronic device, and includes: an incident angle conversion structure, which is installed below the display screen, and is used to remove The first optical signal returned by the finger is converted into a second optical signal, wherein the first optical signal is an optical signal inclined relative to the display screen, and the second optical signal is an optical signal perpendicular to the display screen
  • the optical component is arranged below the incident angle conversion structure, and is used to receive the second optical signal and transmit the second optical signal to the optical sensor;
  • the optical sensor includes a plurality of optical sensing units, which are arranged in the The lower part of the optical component is used to receive the optical signal transmitted through the optical component, and the optical signal is used to obtain fingerprint information of the finger.
  • the incident angle conversion structure includes a microprism array
  • the microprism array includes a plurality of microprism units
  • each microprism unit includes at least one microprism
  • each microprism includes at least one first microprism.
  • An incident surface and at least one first exit surface the first incident surface is inclined with respect to the plane of the display screen, and the first exit surface is parallel to the plane of the display screen.
  • each of the microprism units includes a microprism, and an optical sensing unit or a row of optical sensing units is disposed under a microprism;
  • Each microprism unit includes a plurality of microprisms distributed symmetrically at the center, wherein a plurality of optical sensing units are arranged under the plurality of microprisms.
  • the incident surfaces of the plurality of microprisms have different directions relative to the plane of the optical sensor.
  • the plurality of microprisms includes four microprisms, and the incident surface of adjacent microprisms of the four microprisms differs by 90 degrees from the direction angle of the optical sensor.
  • the first optical signal forms a first angle with a direction perpendicular to the optical sensor
  • the first incident surface and the first exit surface of each microprism form a second included angle ⁇ , wherein the first included angle
  • the second angle ⁇ , an intermediary for the refractive index of the first optical signal is n 1
  • a refractive index n 2 of the micro-prisms satisfy the following relationship:
  • each microprism includes at least one first supporting surface, and the at least one first supporting surface is provided with a reflective layer.
  • the first optical signal is incident on the first incident surface, enters the microprism to form a third optical signal, and the third optical signal is again reflected by the first supporting surface. It is incident on the first incident surface and reflected again from the first incident surface to form the second optical signal that exits vertically, wherein the first optical signal and the direction perpendicular to the optical sensor form a second optical signal.
  • An angle The first incident surface and the first exit surface of each microprism form a second included angle ⁇
  • the third optical signal forms a third included angle ⁇ with a direction perpendicular to the first incident surface.
  • the three optical signals and the direction parallel to the first exit surface form a fourth included angle ⁇ , wherein the first included angle
  • the second angle ⁇ , the third angle ⁇ , the fourth angle ⁇ , the refractive index of the intermediary for the first optical signal n 1, the refractive index n 2 microprisms satisfies the following relationship:
  • the optical fingerprint device further includes:
  • the light-transmitting coating is disposed on the incident surface of the incident light conversion structure, the light-transmitting coating includes at least one second incident surface and at least one second exit surface, wherein the first optical signal is transmitted from the first Two incident surfaces enter the light-transmitting coating to form a fourth optical signal.
  • the fourth optical signal emerges from the second exit surface and enters the incident light conversion structure, where it is converted into The second optical signal emitted vertically.
  • a high refractive index translucent coating is provided on the incident surface of the incident angle conversion structure, so that the first optical signal returned from the finger can be converted into a vertically emitted optical signal after two refractions.
  • it can convert the incident light Direction, so that the optical signal facing the incident surface of the incident light conversion structure is refracted at the air/transparent coating interface and then converted into a vertical optical signal, and finally reaches the optical sensor.
  • a high refractive index For the light-transmitting coating under the same incident angle, the required angle of inclination of the incident angle conversion structure is smaller, which is beneficial to reduce the thickness of the incident angle conversion structure, thereby reducing the overall thickness of the optical fingerprint device.
  • the second exit surface is parallel to the entrance surface of the incident light conversion structure
  • the second entrance surface is parallel to the exit surface of the incident light conversion structure
  • the first optical signal Form a first angle with the direction perpendicular to the second incident surface
  • the incident surface of the incident light conversion structure and the exit surface of the incident light conversion structure form a second included angle ⁇
  • the fourth optical signal forms a third angle with the direction perpendicular to the incident surface of the incident light conversion structure.
  • the light-transmitting coating is prepared on the incident surface of the incident light conversion structure by spin coating or spraying.
  • the at least one second incident surface of the light-transmitting coating is provided with an anti-reflection coating and/or a polarizing coating, wherein the anti-reflection coating is used to reduce the The reflectance of an optical signal on the at least one second incident surface, and the polarization coating is used to select the polarization direction of the first optical signal.
  • the optical component includes at least one light blocking layer and a micro lens array, the at least one light blocking layer is disposed under the micro lens array, and each of the at least one light blocking layer An opening is provided in the light blocking layer;
  • the microlens array is used for transmitting the received second light signal to the optical sensor through the opening in the at least one light blocking layer.
  • the at least one light blocking layer includes a first light blocking layer, and the first light blocking layer is disposed at a back focal plane position of the microlens array.
  • the first light blocking layer is a metal layer of the optical sensor.
  • the optical component further includes:
  • the filter is set in at least one of the following positions:
  • the optical assembly includes a straight hole collimator, including a plurality of collimating holes, and each optical sensing unit in the optical sensor corresponds to at least one collimator of the straight hole collimator.
  • a straight hole wherein the straight hole collimator is used to receive the second light signal converted by the incident light conversion structure, and is transmitted to the plurality of optical sensing units through the collimating hole in the straight hole collimator .
  • the straight hole collimating unit is formed by a metal layer and a metal through hole layer of the optical sensing unit.
  • the optical component further includes:
  • the filter is set in at least one of the following positions:
  • the display screen is an organic light emitting diode OLED display screen
  • the optical fingerprint device uses a part of the display unit of the OLED display screen as an excitation light source for optical fingerprint detection.
  • an electronic device including:
  • optical fingerprint device in the first aspect or any possible implementation of the first aspect, wherein the optical fingerprint device is arranged below the display screen.
  • the display screen is an organic light emitting diode OLED display screen, and the display screen includes a plurality of OLED light sources, wherein the optical fingerprint device uses at least part of the OLED light sources as excitation light sources for optical fingerprint detection.
  • oblique incident light can be converted into perpendicular incident light and incident on the optical component, thereby reducing the light loss caused by oblique light incident.
  • the amount of light signals received by the optical sensor can be increased, so that the exposure time can be shortened and the fingerprint recognition speed can be improved.
  • Figure 1 is a schematic plan view of an electronic device to which this application can be applied.
  • Fig. 2 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 along A'-A'.
  • Fig. 3 is a schematic diagram of a fingerprint detection device for fingerprint detection based on oblique light.
  • Fig. 4 is a schematic diagram of another fingerprint detection device for fingerprint detection based on oblique light.
  • Fig. 5 is a schematic block diagram of an optical fingerprint device according to an embodiment of the present application.
  • Fig. 6 is a schematic cross-sectional view of an example of an optical fingerprint device according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the working principle of the microprism.
  • Fig. 8 is a schematic diagram of the working principle of a microprism with a reflective coating on the supporting surface.
  • Fig. 9 is a three-dimensional view of a microprism array composed of the microprisms shown in Fig. 6.
  • FIG. 10 is a schematic structural diagram of the optical fingerprint device shown in FIG. 6 in a top view direction.
  • FIG. 11 is a schematic cross-sectional view of another example of the optical fingerprint device according to the embodiment of the present application.
  • FIG. 12 and 13 are top views of the microprism unit in FIG. 11.
  • FIG. 14 is a schematic cross-sectional view of another example of the optical fingerprint device according to the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of the field of view of the optical fingerprint device according to an embodiment of the present application.
  • Fig. 16 is a schematic cross-sectional view of an example of an optical fingerprint device including a microprism array and a light-transmitting coating.
  • Fig. 17 is a schematic diagram of the working principle of the structure shown in Fig. 16.
  • Fig. 18 is a schematic cross-sectional view of another example of an optical fingerprint device including a microprism array and a light-transmitting coating.
  • 19 is a schematic cross-sectional view of another example of an optical fingerprint device including a microprism array and a light-transmitting coating.
  • Fig. 20 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the fingerprint identification device provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices; more specifically, in the above-mentioned terminal devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • Figures 1 and 2 show schematic diagrams of electronic devices to which the embodiments of the present application can be applied, wherein Figure 1 is a schematic diagram of the orientation of the electronic device 10, and Figure 2 is a schematic diagram of the electronic device 10 shown in Figure 1 along A'-A' Partial sectional structure diagram.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area below the display screen 120, for example, the middle area of the display screen.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array with a plurality of optical sensing units, and the area where the sensing array is located or the sensing area thereof is the fingerprint detection area 103 of the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through a light path design such as lens imaging, a reflective folding light path design, or other light path design such as light convergence or reflection,
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 adopting the above structure does not need to reserve space on the front side for setting fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting part 134 and an optical component 132.
  • the light detecting part 134 includes the sensor array and is electrically connected to the sensor array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetector can be used as the optical sensing unit as described above; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include A filter, a light guide layer or a light path guide structure and other optical elements.
  • the filter layer can be used to filter out ambient light penetrating the finger, for example, infrared light that interferes with imaging, and the light guide layer Or the optical path guiding structure is mainly used to guide the reflected light reflected from the finger surface to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may specifically be a collimator layer made on a semiconductor silicon wafer, which has multiple A collimating unit or a micro-hole array.
  • the collimating unit can be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be passed by the optical sensing unit below it.
  • the light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensing unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the sensor array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which The sensing array used to condense the reflected light reflected from the finger to the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the optical The fingerprint imaging effect of the fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be grown by semiconductors.
  • a process or other processes are formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the microlens layer and the sensing unit may also include The light-blocking layer of the micro-hole, wherein the micro-hole is formed between its corresponding micro-lens and the sensing unit, the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the sensing
  • the light corresponding to the unit is condensed into the microhole through the microlens and is transmitted to the sensing unit through the microhole for optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light to the target finger above the fingerprint detection area 103. The light is reflected on the surface of the finger to form reflected light or is scattered inside the finger.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Because the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light from the fingerprint ridge and the emitted light from the fingerprint ridge have different light intensities. After the reflected light passes through the optical components, it is optically fingerprinted.
  • the sensing array in the device 130 receives and converts into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing the electronic device 10 Optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the terminal device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of invisible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the terminal device 10, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the display screen 120 may also be a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the optical detection device 130 cannot use the display screen 120.
  • the display unit is used as an excitation light source, so it is necessary to integrate an excitation light source inside the optical detection device 130 or set an excitation light source outside it to achieve optical fingerprint detection.
  • a built-in light source or an external light source is used to provide
  • the detection principle is the same as that described above.
  • the electronic device 10 further includes a transparent protective cover, which is located above the display screen 120 and covers the front surface of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side in the middle area of the display screen 120 by splicing, and the multiple The sensing area of the optical fingerprint sensor together constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be It extends to the main area of the middle part of the display screen, that is, extends to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the optical fingerprint device 130 may further include a circuit board for transmitting signals (such as the fingerprint detection signal).
  • the circuit board may be a flexible printed circuit board (Flexible Printed Circuit Board). Circuit, FPC).
  • the optical fingerprint sensor can be connected to the FPC, and through the FPC, electrical interconnection and signal transmission with other peripheral circuits or other elements in the electronic device can be realized.
  • the optical fingerprint sensor may receive the control signal of the processing unit of the electronic device through the FPC, and may also output a fingerprint detection signal (for example, a fingerprint image) to the processing unit of the electronic device through the FPC or Control unit, etc.
  • FIGS. 3 and 4 respectively show schematic structural diagrams of a fingerprint detection device for fingerprint detection based on oblique light.
  • the fingerprint detection device 20 may include a micro lens 21, a micro aperture stop 22 arranged on the back focal plane 211 of the micro lens 21, and an optical sensing unit arranged below the micro aperture stop 22 23, and a filter 25 arranged above the micro lens 21.
  • the filter 25 When the incident angle is After the finger reflected light 24 enters the fingerprint detection device 20, it first passes through the filter 25.
  • the filter 25 has a higher transmittance of visible light and a lower transmittance of infrared light, which can be used to prevent the sun
  • the light signal in the infrared band penetrates the finger and interferes with the fingerprint image collection.
  • the reflected light 24 then passes through the micro lens 21 and is condensed to a point F 1 on the back focal plane 211 of the micro lens.
  • F 1 from the microlenses 21 of rear focus distance F 0 F F 0. 1 may be approximately expressed as:
  • r is the radius of curvature of the microlens 21, and n is the refractive index of the microlens 21.
  • the micro-aperture diaphragm 22 is set at F1, and the area outside the micro-aperture diaphragm 22 is provided with a non-transmissive layer 220.
  • the size of the aperture of the micro-aperture diaphragm determines the angular range of incident light that can pass. Only the incident angle is To The reflected light 24 of the finger within the range can reach the optical sensing unit 23.
  • the combination of the micro lens 21 and the micro aperture diaphragm 22 can realize the angle screening of incident light, and the incident light at a non-target angle is blocked by the non-transparent layer 220.
  • the solution shown in Fig. 3 will face two problems: one is that the transmittance of the filter 25 for large-angle incident light is lower than that of perpendicular incident light; the other is the part of the microlens 21
  • the area (area 241 in FIG. 3) cannot play a converging effect due to the lens shading effect. Therefore, when the fingerprint detection device 20 receives a larger angle of incident light, the light loss is relatively large. Therefore, it is necessary to extend the exposure time of the fingerprint detection device 20 to obtain a sufficient amount of signal, which will make the fingerprint identification time longer and affect Improve the user experience.
  • the fingerprint detection device 30 may include a filter 35, an oblique hole collimator 36 (provided with a plurality of oblique holes 361) arranged under the filter 35, and an oblique hole collimator 36 under the oblique hole collimator 36 Optical sensing unit 33. Since the angle between the direction of the inclined hole 361 and the direction of the normal line 310 is Therefore, the optical sensor unit 33 can only receive the incident angle of the reflected light 34 from the finger. Or close to Tilt light signal.
  • the solution shown in FIG. 4 still has the problem of low transmittance of the filter 35 to oblique incident light at a large angle.
  • the manufacturing process of the oblique hole collimator 36 is relatively complicated and difficult to manufacture, which is not suitable for mass production.
  • the optical fingerprint device 70 may include an incident angle conversion structure 71, an optical component 72 and an optical sensor 73, wherein:
  • the incident angle conversion structure 71 is disposed above the optical component 72, and is used to convert the first optical signal returned from the finger into a second optical signal, wherein the first optical signal is a plane relative to the optical sensor.
  • the optical component 72 is disposed above the optical sensor 73, and is used to receive the second optical signal and transmit the second optical signal to the optical sensor 73;
  • the optical sensor 73 may include a plurality of optical sensing units for receiving the second optical signal transmitted through the optical component 72, and obtaining fingerprint information of the finger according to the second optical signal.
  • oblique incident light can be converted into perpendicular incident light and incident on the optical component, thereby reducing the light loss caused by oblique light incidence. Therefore, the signal amount of the optical signal received by the optical sensor can be increased, and compared with the solution of the oblique hole collimator, the technical solution is simple in process and easy to implement.
  • the incident angle conversion structure 71 may be a structure composed of microprisms, and the microprisms may have an inclined incident surface, which may be used to convert incident light incident on the inclined incident surface. It is an optical signal perpendicular to the display screen, or, in other embodiments, the incident angle conversion structure may also be a structure made of other materials with a high refractive index, as long as it can perform the above functions, the implementation of this application The example does not limit this.
  • the incident angle conversion structure is a microprism structure as an example for description, but the embodiment of the present application is not limited thereto.
  • the optical fingerprint device 70 may be the optical fingerprint device 40 shown in FIG. 6.
  • the optical fingerprint device 40 may include a light guiding part 41 and a light detecting part 42.
  • the light guiding part 41 can be used to guide the light signal reflected or scattered by the finger to the light detecting part 42.
  • the light guiding portion 41 may include an incident light conversion structure and an optical component (for example, the optical component 132 in FIG. 2), which correspond to the incident light conversion structure 71 and the optical component 72 in FIG. 5, respectively.
  • the light guiding portion 41 may also include a light-transmitting coating, which will be described in detail below.
  • the light detecting part 42 corresponds to the optical sensor 73 in FIG. 5, and may include an optical sensing array 424, which may include a plurality of optical sensing units.
  • the optical sensing array 424 may include a first optical sensing unit 424a, a second optical sensing unit 424b, and a third optical sensing unit 424c.
  • the optical signal received by the optical sensor array 424 is used to detect fingerprint information of the finger.
  • the incident light conversion structure may be, for example, the micro-prism array 410 shown in FIG. 6, which may include a plurality of micro-prisms, for example, a first micro-prism 410a, a second micro-prism 410b, and a third micro-prism. Prism 410c and so on.
  • the microprism array 410 can be used to convert the first optical signal reflected by the finger into a second optical signal.
  • the first optical signal may be an optical signal inclined with respect to the display screen
  • the second optical signal is an optical signal perpendicular to the display screen.
  • the first optical signal may be an optical signal that is inclined with respect to the plane of the light detection part 42
  • the second optical signal may be an optical signal that is perpendicular to the plane of the light detection part 42.
  • At least one optical sensing unit is provided below each microprism in the microprism array 410, for example, at least a first optical sensing unit 424a is provided below the first microprism 410a, and At least the second optical sensing unit 424b is arranged under the second microprism 410b, and at least the third optical sensing unit 424c is arranged under the third microprism 410c.
  • the light detecting part 42 may further include at least one metal layer 421 and a dielectric layer 423.
  • the metal layer 421 may be a metal wiring layer of the optical sensing array 424, which is used to electrically interconnect the optical sensing units in the optical sensing array 424 and to electrically connect the optical sensing array 424 to external devices.
  • the medium layer may be disposed between the metal layers 421 and between the metal layer 421 and the optical sensing array 424, and the material of the medium layer 423 may be a transparent material.
  • the optical component may be disposed between the microprism array 410 and the optical sensor array 424, and the optical component is used to screen or separate the microprism array 410 after conversion.
  • the second light signal That is, the optical component can be used to screen out a part of the optical signal from the second optical signal converted by the microprism array 410 and guide it to a specific optical sensing unit in the optical sensing array 424.
  • the optical component is used to guide the second optical signal converted by the corresponding microprism to the optical sensing unit below the microprism.
  • the second optical signal passes through the corresponding optical component (for example, the microlens 412a)
  • the second optical signal converted by the microprism 410a is transmitted to the optical sensing unit 424a provided below the microprism 410a.
  • the thickness of the microprism array 410 is generally thin, the thickness of the optical fingerprint device 40 can be ensured to be small.
  • FIG. 6 only shows a scene where one microprism corresponds to one optical sensing unit.
  • one microprism may also correspond to multiple optical sensing units, that is, multiple optical sensing units may be arranged under the microprism.
  • the sensing unit that is, the first optical signal returned from the finger above the display screen is converted into a second optical signal through the one microprism, and the second optical signal can be further transmitted to the multiple optical signal through the corresponding optical component.
  • the first light signal returned from the finger above the display screen is converted into a second light signal by the microprism 410a, and then further passed through the corresponding The optical component (for example, the microlens 412a) transmits the second optical signal converted by the microprism 410a to the optical sensing units 424a and 424b provided below the microprism 410a.
  • the optical component for example, the microlens 412a
  • the projection of the microprism on the plane where the optical sensing array is located covers the corresponding multiple optical sensing units to ensure The optical signal converted by the microprism can reach the plurality of optical sensing units to the maximum.
  • the optical component may include a microlens array and at least one light blocking layer.
  • the microlens array 413 includes a plurality of microlenses, for example, a first microlens. 412a, the second microlens 412b, the third microlens 412c, etc., are arranged below the microprism array 410; the at least one light blocking layer may be arranged between the microlens array 410 and the optical sensor array 424 In between, each of the at least one light-blocking layer is provided with an opening corresponding to the microlens array or the optical sensing unit.
  • the optical sensor array 424 is used to receive the optical signal condensed by the micro lens array 412 and transmitted through the opening of the at least one light blocking layer.
  • the microlens array 412 is used to receive the second optical signal converted by the microprism array, and transmit the second optical signal to the optical sensor through the opening in the at least one light blocking layer.
  • Array 424 is used to receive the optical signal condensed by the micro lens array 412 and transmitted through the opening of the at least one light blocking layer.
  • the at least one light blocking layer includes a first light blocking layer and a second light blocking layer 414, wherein the first light blocking layer and the second light blocking layer
  • the optical layer 414 is respectively provided with an opening corresponding to each microlens in the microlens array 412.
  • the metal layer 421 in the light detecting portion 42 can be reused as the first light blocking layer to simplify the structure of the optical fingerprint device.
  • the first light blocking layer 421 is provided with a first light blocking layer.
  • the second light blocking layer 414 is provided with a fourth opening 415a corresponding to the first microlens 412a, a fifth opening 415b corresponding to the second microlens 412b, and the third microlens 412c corresponds to the sixth opening 415c.
  • the first optical sensing unit 424a is used to receive the optical signal condensed through the first microlens 412a and transmitted through the fourth opening 415a and the first opening 422a.
  • the second optical sensing unit 424b is used to receive the optical signal converged by the second microlens 412b and transmitted through the fifth opening 415b and the second opening 422b.
  • the third optical sensing unit 424c is used to receive the optical signal converged by the third microlens 412c and transmitted through the sixth opening 415c and the third opening 422c.
  • one microlens can correspond to one optical sensing unit, that is, the microlens can guide the second optical signal transmitted via the microprism to one optical sensing unit, or one microlens can also Corresponding to multiple optical sensing units, that is, the microlens can guide the second optical signal transmitted via the microprism to multiple optical sensing units.
  • an opening in the at least one light blocking layer can also correspond to multiple optical sensing units. The sensing unit, the optical signals transmitted to the multiple optical sensing units can all be transmitted through the one opening.
  • the microprism array 410 first converts the optical signal reflected by the finger and tilted to the display screen into a signal perpendicular to the display screen, and then passes through the microprism array 410.
  • the lens and the light blocking layer converge the vertical light signal, which can reduce the shadow effect of the edge area of the microlens, thereby increasing the amount of signal received by the optical sensor array 424, thereby shortening the exposure time and fingerprint recognition time.
  • the first light blocking layer is disposed at the back focal plane position of the micro lens in the micro lens array, wherein the back focal plane of the micro lens array may be the micro lens array.
  • the focal point of the microlens is in the opening in the first light blocking layer, so that the second optical signal converted by the microprism enters the corresponding microlens of the microprism, converges and transmits to the microlens
  • the opening in the first light blocking layer is further transmitted to the corresponding optical sensing unit through the opening.
  • the metal layer 421 in the light detecting part 42 can be reused as the first light blocking layer, that is, the first light blocking layer can be disposed inside the light detecting part 42, for example, using a chip behind
  • the first light blocking layer 421 is formed by a metal layer in a BEOL process.
  • the metal layer can be a metal layer 421 at any position in the light detecting part 42, for example, at the bottom position, the middle position or the top position Metal layer.
  • an optical sensing unit and the optical components provided on it can constitute an optical image acquisition unit
  • the optical image acquisition unit can be used to form a pixel of the acquired image
  • the array of multiple optical image acquisition units constitute the optical fingerprint Device.
  • the at least one light blocking layer may only include the first light blocking layer, and in other embodiments, the at least one light blocking layer may include the first light blocking layer.
  • Layer and the second light blocking layer 414, and the second light blocking layer 414 is used to avoid interference between adjacent optical image acquisition units.
  • the second light blocking layer 414 may be disposed between the microlens array and the first light blocking layer; in other embodiments, the second light blocking layer may also be disposed on Between adjacent microlenses or on the upper or lower surface of the filter.
  • the openings in the first light blocking layer corresponding to the same microlens are smaller than the openings in the second light blocking layer 414.
  • the microlens 412a corresponds to the first light blocking layer.
  • the opening 415a in the layer is larger than the opening 422a in the second light blocking layer 421 corresponding to the microlens 412a.
  • the optical fingerprint device 40 may further include a planarization layer 411 located above the microlens array 412, and an optical path layer 413 located below the microlens array 412.
  • the flat layer 411 and the optical path layer 413 may be formed of a light-transmitting material, and the second light blocking layer 414 formed of an opaque material may be disposed in the optical path layer 413.
  • the optical component may further include a filter 416, which may be fabricated at any position along the optical path from the reflected light formed by the reflection of the finger to the optical sensor array 424.
  • a filter 416 may be fabricated at any position along the optical path from the reflected light formed by the reflection of the finger to the optical sensor array 424.
  • the filter 416 may be arranged above the microlens array 412, or may also be arranged below the microlens array 412, or above the optical sensing unit.
  • the filter 416 may be an infrared cut filter (IR cut filter).
  • the vertical optical signal Compared with the oblique optical signal directly passing through the optical filter 416, the vertical optical signal enters the optical filter, which can reduce the loss of the optical signal, and there is no need to customize the optical filter 416, thereby reducing its manufacturing complexity.
  • the optical filter 416 is used to reduce undesired ambient light in fingerprint sensing, so as to improve the optical sensing of the optical sensing array 424 to the received light.
  • the filter 416 may specifically be used to filter out light of a specific wavelength, for example, near-infrared light and part of red light. For example, human fingers absorb most of the energy of light with a wavelength below 580nm. If one or more optical filters or optical filter layers are designed to filter light with wavelengths from 580nm to infrared, it can greatly reduce the impact of ambient light on fingerprints. The influence of optical detection in induction.
  • the filter 416 may include one or more optical filters, and the one or more optical filters may be configured as, for example, a band-pass filter to allow the transmission of light emitted by the OLED screen while blocking infrared rays in sunlight. Light and other light components. When the under-screen optical fingerprint device 40 is used outdoors, such optical filtering can effectively reduce the background light caused by sunlight.
  • One or more optical filters may be implemented as, for example, an optical filter coating formed on one or more continuous interfaces, or may be implemented as one or more discrete interfaces.
  • the light entrance surface of the filter 416 may be provided with an optical coating, so that the reflectivity of the light entrance surface of the filter is lower than a first threshold, for example, 1%, so as to ensure that the optical sensor array 424 It can receive enough light signals to improve the fingerprint recognition effect.
  • a first threshold for example, 1%
  • the microprism array 410 may only receive the return from the finger at a specific angle The incident optical signal (for example, the optical signal 43 shown in FIG. 6). Taking the second microprism 410b as an example, taking the angle The incident optical signal 43 is converted into a vertical optical signal after passing through the second microprism 410b.
  • the vertical light signal first passes through the filter 416 to filter out the light in the non-target wavelength band, and then passes through the second microlens 412b and is condensed at the back focus of the microlens 412b under the action of the microlens, that is, converges on the second microlens
  • the optical signal passing through the fifth opening 422b is received by the corresponding optical sensing unit 424b. Since the light from the fingerprint ridge is stronger than that from the fingerprint ridge, the electrical signal output by the optical sensor unit corresponding to the fingerprint ridge is stronger and the image is brighter; the electrical signal output by the optical sensor unit corresponding to the fingerprint ridge is weaker and the image is brighter. Dark, the final output is a clear fingerprint image with a certain contrast.
  • the microprism may include at least one first incident surface, at least one first supporting surface, and at least one first exit surface. It is assumed that the at least one first exit surface is parallel to the A display screen, and the at least one first incident surface and the at least one first exit surface form a second included angle, so that the microprism can convert the first optical signal into the second optical signal.
  • the working principle of the microprism will be described.
  • the second microprism 410b includes a first incident surface 501, a first exit surface 502, and a first supporting surface 500.
  • the incident light 51 reaches the first incident surface 501, part of the light is reflected to form the reflected light 53, and the remaining part is refracted to form the refracted light 52, and is emitted from the first exit surface 502.
  • the first angle and the second angle between the first incident surface and the second exit surface may satisfy the following formula (1):
  • represents the second included angle
  • n 1 represents the refractive index of the propagation medium of the incident light 51
  • n 2 represents the refractive index of the microprism.
  • the second included angle is 35.8 degrees.
  • the second microprism 410b with the second angle of 35.8 degrees can convert the first optical signal with the first angle of 30° into vertical The second light signal emitted.
  • the second included angle ⁇ of the second microprism can be controlled by controlling the refractive index n 2 of the second microprism.
  • the refractive index n 2 of the microprism can be larger, the use of microprisms made of high refractive index materials is beneficial to reduce the thickness of the microprisms, thereby reducing the overall thickness of the optical fingerprint device.
  • the embodiment of the present application does not limit the specific value of the first included angle.
  • Those skilled in the art can determine the angle of the second included angle formed by the incident surface and the output surface of the microprisms in the microprism array 410 according to the angle of the oblique light signal reflected by the finger to be actually collected.
  • the first included angle is greater than or equal to 20 degrees. That is, the optical fingerprint device 40 can detect fingerprint information of a finger based on a large-angle oblique light signal, thereby improving the effect of fingerprint recognition.
  • the microprisms with the second included angle can be fabricated by processes such as nanoimprinting or grayscale photolithography, which are relatively mature, and will not be described here.
  • the first supporting surface may be transparent or opaque, which is not limited in the embodiment of the present application.
  • the microprism may include at least one first incident surface, at least one first supporting surface, and at least one first exit surface.
  • the at least one supporting surface is provided with a reflective layer, wherein The first optical signal of is incident on the first incident surface, enters the microprism to form a third optical signal, and the third optical signal is incident on the first incident surface again after being reflected by the first supporting surface, After being reflected again from the first incident surface, the second optical signal that exits vertically is formed, that is, the reflective layer is used to make the optical signal incident on the first supporting surface specularly reflect on the first supporting surface,
  • the reflective layer may be a metal coating, for example, a silver coating, an aluminum coating, etc., and this type of microprism may be a Litlow prism.
  • the at least one first exit surface is parallel to the display screen, and the at least one first entrance surface and the at least one first exit surface form a second included angle, so that the microprism can separate the The first optical signal is converted into the second optical signal.
  • the working principle of the micro prism will be described.
  • the second microprism 410b includes a first incident surface 501, a first exit surface 502, and a first supporting surface 505, and the first supporting surface 505 is provided with a reflective layer.
  • the incident light 51 reaches the first incident surface 501, part of the light is reflected to form the reflected light 53, and the remaining part is refracted to form the refracted light 54 (that is, the third optical signal).
  • the refracted light 54 is on the first supporting surface 505. Specular reflection occurs, and the reflected light 56 reaches the first incident surface 501 again.
  • the incident light 51 forms a first angle with the direction perpendicular to the optical sensor
  • the first incident surface and the first exit surface form a second included angle ⁇
  • the refracted light 54 and the direction perpendicular to the first incident surface 501 form a third included angle ⁇
  • the refracted light 54 forms a A direction parallel to the first exit surface 502 forms a fourth included angle ⁇ , wherein the first included angle
  • the second angle ⁇ , the third angle ⁇ , the fourth angle ⁇ , the refractive index of the intermediary for the first optical signal n 1, the refractive index n 2 microprisms satisfies the following Formula (2):
  • the microprism array 410 may include a plurality of microprism units distributed in an array, each microprism unit may include one microprism, and one microprism may correspond to one microprism.
  • the optical sensing unit for example, the optical sensing unit may be arranged below the incident surface of the microprism, so that the microprism and the optical components and optical sensing unit arranged below it can constitute an optical image acquisition unit.
  • the microprism array 410 may include a plurality of microprism units distributed in an array, and each microprism unit may include a microprism, and this microprism may correspond to Multiple optical sensing units, for example, each microprism may correspond to a row of optical sensing units or a column of optical sensing units in the optical sensing array, for example, the row or column of optical sensing units may be arranged on the incident surface of the microprism Below.
  • the plurality of microprism units may include a row of microprisms or a row of microprisms distributed in an array, and each microprism is elongated.
  • FIG. 9 may be a schematic perspective view of the microprism array 410 shown in FIG.
  • the microprism array 410 may include a row of microprisms, and a row of optical sensing units may be arranged under each microprism. That is, in FIG. 6, the first microprism 410a, the second microprism 410b, and the third microprism 410c may have a strip structure.
  • a microlens may be disposed under the microprism.
  • the lens, the microlens may also have a strip structure, corresponding to a row of optical sensing units.
  • the second optical signal converted by the microprism is transmitted through the microlens to reach the row of optical sensing units; or, the microlens
  • a row of microlenses can be arranged under the prism, and each microlens corresponds to an optical sensing unit.
  • the second optical signal converted by the microprism is transmitted through the row of microlenses and reaches the optical sensing unit corresponding to each microlens.
  • FIG. 10 is a top view of an optical fingerprint device 40 according to an embodiment of the present application. It should be understood that the numbers of microprisms and microlenses shown in the drawings are only examples, but the application is not limited thereto.
  • the microprism array 410 may include a plurality of microprism units 810 distributed in an array, and each microprism unit 810 may include multiple The micro prisms, which have multiple incident surfaces in different directions, can be used to receive light signals from different directions that return via a finger.
  • the projections of the plurality of microprisms on the plane where the optical sensing unit is located may be quadrangular, pentagonal or other shapes, which are not limited in the embodiment of the present application.
  • the projected area of each microprism in the microprism unit 810 on the plane where the optical sensing unit array 424 is located may be equal to or approximately equal to the projected area of each microlens in the microlens array on the plane where the optical sensing unit 424 is located.
  • Figures 12 to 13 are schematic top views of an example in which the microprism unit includes four microprisms.
  • Figure 12 is a cross-sectional view of the optical fingerprint device along the E-E' direction. It should be understood that one microprism unit is used as an example in the drawings. Examples are described, but this application is not limited to this.
  • the microprism unit 810 may include 4 microprisms, for example, the 4 microprisms are distributed symmetrically in the center. Further, a micro lens may be provided under each micro prism in each micro prism unit 810. At least one light blocking layer is arranged under each microlens, an opening is arranged in the light blocking layer, and an optical sensing unit is arranged under the opening.
  • a microprism unit 810 and the optical components and the light detection part 42 contained thereunder can be used to form a mother unit of the fingerprint detection device 40. That is, each mother unit is composed of four subunits (subunit a, subunit b, subunit c, and subunit d), including a first microprism 810a, a second microprism 810b, a third microprism 810c, and a second The four-microprism 810d, and the corresponding optical components and light detection parts below it, each sub-unit can form an optical image acquisition unit, which is used to form one pixel of the acquired image, and then a mother unit can be used to form four Pixels, that is, 2 rows * 2 columns of pixels.
  • the microprism unit 810 composed of the first microprism 810a, the second microprism 810b, the third microprism 810c, and the fourth microprism 810d may constitute a flat-headed pyramid. That is to say, the pyramid with the spire cut off, for example, the microprism unit 810 composed of the first microprism 810a, the second microprism 810b, the third microprism 810c, and the fourth microprism 810d can be inscribed in a regular quadrilateral to form the
  • the flat-headed pyramid that is, the top view of the microprism unit 810, may be the area enclosed by ABCD as shown in FIG. 12. In other words, FIG. 12 may be a top view of FIG. 11 in the OA direction.
  • the microprism unit 810 can be used to receive data from four different directions with an incident angle of The light signal (lights 831 and 832 in FIG. 11 indicate two directions), which can effectively reduce the dependence of the finger placement angle during fingerprint verification.
  • the microprisms in the microprism unit array can be divided into multiple groups, and each group of microprisms is used to receive light signals in one direction, and the optical sensing units in the optical sensing array can be divided into multiple groups.
  • Each group of optical sensing units can It is used to receive the optical signal in one direction.
  • Each microprism in each group of microprisms can be used to convert the optical signal in one direction into a vertical optical signal and transmit it to the corresponding microlens, and then transmit it to the corresponding group through the microlens.
  • Optical sensing unit The optical signals received by the group of optical sensing units can be used to generate a fingerprint image. Therefore, the optical signals received by the multiple groups of multiple optical sensing units can be used to generate multiple fingerprint images to further correct Processing the multiple fingerprint images can obtain a complete fingerprint image.
  • the exposure time of the optical sensor array can be reduced, thereby shortening the fingerprint recognition time, and reducing the impact of fingerprint collection on the angle of incident light. Dependence.
  • the field of view of the fingerprint detection device 40 can be increased.
  • Fig. 14 is a side sectional view of the electronic device with a display screen taken along the direction EE' shown in Fig. 13.
  • the electronic device 60 may include a display screen 61 and a fingerprint detection device 40 located below the display screen.
  • the microprism unit in the fingerprint detection device 40 can be used to receive light signals in four directions.
  • the third microprism 810c can be used to receive light signals in the second direction, that is, the second field of view shown in the figure can be the field of view of the third microprism 810c, similarly, the second field of view shown in the figure A field of view may be the field of view of the first microprism 810a. That is, the field of view of the fingerprint detection device 40 in the E-E' direction is the third field of view shown in the figure, which is larger than the first field of view and also larger than the second field of view, effectively increasing fingerprint detection The field of view of the device 40.
  • each microprism in the plurality of microprisms includes at least one incident surface, and at least one optical sensing unit is disposed under each incident surface of each microprism in the plurality of microprisms; for another example, the Each microprism of the plurality of microprisms includes a plurality of incident surfaces that are axially symmetrical or centrally symmetrical.
  • each of the plurality of microprisms is a triangular prism or a trapezoidal prism; for another example, each of the plurality of microprisms is a right angle prism, and each of the plurality of microprisms
  • the incident surface of the microprism is the oblique surface of the right-angle prism; for another example, each microprism in the microprism array 410 includes but is not limited to any of the following: right-angle triangular prism, isosceles triangular prism, right-angle trapezoid Prisms and isosceles trapezoidal prisms.
  • the embodiment of the present application does not limit the specific structure of the optical component.
  • the optical component may be the optical component 132 shown in FIG. 2.
  • the optical component may include a microlens array and a light blocking layer, or may be a straight hole collimator.
  • the straight hole collimator includes a plurality of collimating holes, wherein each optical sensing unit is used to receive an optical signal transmitted through one or more collimating holes.
  • the optical component may also include a filter.
  • FIG. 15 is a schematic cross-sectional view of an optical fingerprint device implemented by using a straight hole collimator for an optical component.
  • the optical component is a straight hole collimator 911
  • the straight hole collimator 911 may be disposed between the microprism array 410 and the light detecting portion 42
  • the straight hole collimator 911 may include With a plurality of collimating holes 912 arranged in a certain manner, each optical sensing unit may correspond to one or more collimating holes 912.
  • each optical sensing unit may correspond to three collimating holes 912.
  • the incident angle is The optical signal reflected by the finger is converted into a vertical optical signal by the microprism array 410, and further transmitted to the optical sensing array 424 via the straight hole collimator 911.
  • the incident angle is not The light signal reflected by the finger is blocked by the straight hole collimator 911, and therefore cannot reach the optical sensing array 424.
  • the microprism array 410 first converts the light signal that is inclined relative to the display screen back via the finger into a signal perpendicular to the display screen, and then collimates the light signal through the straight hole.
  • the device 911 transmits the optical signal to the photoelectric sensor array, which effectively reduces the manufacturing difficulty and cost of the collimator.
  • the angle screening capability of the straight hole collimator 911 mainly depends on the aspect ratio (the ratio of the depth to the aperture) of the collimating hole 912, a straight hole with a small aperture is beneficial to improve the image resolution, but it will reduce the image resolution. Therefore, the exposure time of the optical sensor array 424 needs to be extended.
  • a plurality of straight holes are provided above each optical sensing unit, which can effectively reduce the exposure time of the optical sensing array 424, thereby improving user experience.
  • FIG. 15 is only an exemplary structure of the application, and should not constitute any limitation to the application.
  • the optical sensing array 424 and the straight hole collimator 911 may also be integrated.
  • the straight hole collimator 911 may be integrated in the light detecting part 92, for example, a metal layer and a metal via layer in a later process are used to form the collimating hole in the straight hole collimator 911.
  • the incident angle of the light signal returning from the finger is too large, for example, in the example shown in Fig. 7, If the refractive index of the microprism is 1.5, the required angle ⁇ between the incident surface and the exit surface of the microprism is 41.2 degrees. In this case, the incident light is clamped to the normal of the incident surface of the microprism Angle is That is, 81.2 degrees. At this time, about 43% of the incident light is reflected at the air/microprism interface. Therefore, it is still necessary to extend the exposure time to compensate for the lack of light input, which increases the fingerprint recognition time and affects the user experience.
  • a light-transmitting coating may be provided on the incident surface of the incident light angle conversion structure, wherein the refractive index of the light-transmitting coating is greater than that of the incident light angle conversion structure.
  • the refractive index is used to make the incident light directly face the first incident surface of the incident light angle conversion structure, thereby increasing the amount of light incident on the optical sensor array, thereby shortening the exposure time and fingerprint recognition time.
  • the incident light angle conversion structure is a microprism array as an example for specific description.
  • the incident light angle conversion structure is another structure, the implementation manner is similar, and details are not described herein again.
  • Figures 17 to 19 are schematic cross-sectional views of an optical fingerprint device provided with a light-transmitting coating on the incident light conversion structure.
  • the light guide portion 41 may include the aforementioned embodiments in addition to In addition to the structure described in the above, it may further include: a light-transmitting coating 417 disposed on the incident surface of the incident light conversion structure.
  • the incident light conversion structure is a microprism array
  • the light-transmitting coating 417 is disposed On the incident surface of the microprism in the microprism array 410, the light-transmitting coating 417 is used to convert the first optical signal returned from the finger into a fourth optical signal, and further the fourth optical signal is incident on the microprism
  • the incident surface of the microprisms in the prism array 410 is converted by the microprism array 410 into a second optical signal that emits vertically, wherein the refractive index of the transparent coating 417 is greater than the refractive index of the material of the microprisms .
  • the following takes the incident light conversion structure as a microprism array as an example to illustrate the specific implementation of the light-transmitting coating, but the application is not limited thereto. It should be understood that the specific description of each structural member in the optical fingerprint device shown in FIG. 17 to FIG. 19 refers to the related description of the foregoing embodiment, which is not repeated here.
  • the first light signal returned from the finger can be converted into vertically emitted light after being refracted twice.
  • the signal on the one hand, can convert the direction of the incident light, so that the optical signal facing the first incident surface of the microprism array is refracted at the air/transparent coating interface and then converted into a vertical optical signal, and finally reaches the optical sensor
  • the array on the other hand, adopts a high refractive index light-transmitting coating.
  • the required angle between the incident surface and the exit surface of the microprism is smaller, which is beneficial to reduce the thickness of the microprism. This reduces the overall thickness of the optical fingerprint device.
  • the embodiment of the application does not limit the thickness, shape, etc. of the light-transmitting coating, as long as it can cooperate with the microprism array to convert the first optical signal into a second optical signal that is emitted vertically.
  • a light-transmitting coating may be provided on each microprism in the microlens array 410.
  • the light-transmitting coating 417 may be disposed on the incident surface of the microprism.
  • the light-transmitting coating 417 has at least one second incident surface, at least a second exit surface, and at least one second supporting surface, and the second exit surface is parallel to the first incident surface of the microprism.
  • the light-transmitting coating 417b on the microprism 410b is taken as an example to illustrate the specific working principle of the light-transmitting coating.
  • the light-transmitting coating 417b may have a second incident surface 504, a second exit surface 501 (that is, the incident surface of the microprism), and a second supporting surface 500.
  • the second incident surface 504 may be connected to the display screen.
  • the direction is parallel, or in other words, parallel to the exit surface of the microprism.
  • the light-transmitting coating 417b may be grown by a coating method (for example, spinning, spraying, etc.) to obtain the light-transmitting coating of the above structure.
  • the incident light 51 returning from the finger is incident on the second incident surface 504 of the light-transmitting coating 417b, part of the light is reflected to form reflected light 53, and other light is refracted at the air/transparent coating interface to form refracted light 54. Further, This refracted light 54 emits a second refraction at the light-transmitting coating/microprism interface, and finally exits from the first exit surface 502 of the microprism.
  • the incident light 51 is perpendicular to The direction of the second incident surface 504 forms a first angle
  • the first incident surface 501 and the first exit surface 502 form a second included angle ⁇
  • the refracted light 54 and a direction perpendicular to the first incident surface 501 form a third included angle ⁇ , wherein the first The included angle, the second included angle, the third included angle, the refractive index n 0 of the light-transmitting coating, the refractive index n 1 of the propagation medium of the incident light 51 and the refractive index of the microprism n 2 satisfies the following formula (3):
  • the included angle ⁇ of the micro prism can be determined to be 38.2 .
  • the second incident surface of the light-transmitting coating and the first exit surface of the microprism may be parallel to the second incident surface of the light-transmitting coating and the first exiting surface of the microprism.
  • the surfaces are substantially parallel or approximately parallel.
  • the refracted light 54 can exit approximately perpendicularly or substantially perpendicularly from the first exit surface of the microprism.
  • the second incident surface of the light-transmitting coating 417 can be set to be flush with the plane where the highest point of the supporting surface of the microprism is located, or slightly higher than the plane, or slightly lower. On this plane, that is to say, setting the light-transmitting coating on the first incident surface of the microprism has little effect on the overall thickness of the module.
  • the optical fingerprint device using the light-transmitting coating as shown in FIG. 16 since the incident surface of the light-transmitting coating is parallel to the display screen, after preparing the microprism array, the incident surface of the microprism array can be uniformly prepared.
  • the transparent coating corresponding to the microprism can reduce the complexity of the preparation process.
  • the light-transmitting coating may be formed by filling an organic material with a high refractive index inorganic material, for example, zirconium oxide or other inorganic materials.
  • an anti-reflection coating can be provided on the incident surface of the light-transmitting coating, which can further reduce the light loss on the surface of the light-transmitting coating, so that most of the optical signals can be generated. Refraction enters the transparent coating and then enters the microprism array.
  • the anti-reflection coating may be an anti-reflection coating to increase the transmittance of the optical signal and reduce the reflectance of the optical signal.
  • the incident light can be refracted twice in the light-transmitting coating and the microprism, and then exit vertically from the exit surface of the microprism, and when the same incident In the case of low angles, setting a high refractive index light-transmitting coating is helpful to reduce the required angle between the incident surface and the exit surface of the microprism, thereby reducing the thickness of the module, and setting high refraction on the microprism
  • the high-speed light-transmitting coating can reduce the reflectivity of the microprism surface and reduce light loss, thereby shortening the exposure time and improving the fingerprint recognition speed.
  • the optical fingerprint device shown in FIG. 16 to FIG. 19 can receive the light signal incident on the incident surface of the microprism, which is beneficial to increase the optical
  • the light-receiving area of the fingerprint device where the light-receiving area may be the area of the optical fingerprint device that receives light signals.
  • the light-receiving area of a single microprism is 58.4% of the bottom area of the microprism.
  • the light collection area of a single microprism is 1.34 times the bottom area of the microprism, which is about the collection of the optical fingerprint device shown in Figure 6.
  • the light area is 2.29 times, which is beneficial to increase the amount of light signals received by the optical sensor, thereby shortening the exposure time and improving the fingerprint recognition speed.
  • the micro prism structure shown in FIG. 8 also has a higher light collection area than the micro prism structure shown in FIG. 7 without providing a light-transmitting coating. Therefore, for large-angle incident light, E.g If the angle is greater than 45°, the microprism can still effectively receive incident light. Therefore, the microprism structure shown in FIG. 8 may not be provided with a translucent coating. In other embodiments, the microprism structure shown in FIG. A light-transmitting coating is placed on the microprism structure to further increase the light-receiving area, shorten the exposure time, and increase the fingerprint recognition speed.
  • the thickness of the light-transmitting coating in Figures 16 to 19 is only to facilitate the description of the optical path transmission in the light-transmitting coating. In actual products, the thickness of the light-transmitting coating is very thin, which is very important for the thickness of the optical fingerprint device. The impact is small.
  • the electronic device 700 may include a display screen 710 and an optical fingerprint device 720, wherein the optical fingerprint device 720 is disposed below the display screen 710 .
  • the optical fingerprint device 720 may be the optical fingerprint device 40 in the foregoing embodiment.
  • the optical fingerprint device 40 for the specific structure, reference may be made to the relevant description above, which will not be repeated here.
  • the display screen 710 may specifically be a self-luminous display (such as an OLED display), and it includes a plurality of self-luminous display units (such as an OLED pixel or an OLED light source).
  • the optical image acquisition system is a biometric recognition system
  • part of the self-luminous display unit in the display screen can be used as an excitation light source for the biometric recognition system to perform biometric recognition, and is used to direct the biometric detection area to the Transmit light signals for biometric detection.
  • the units can be implemented by electronic hardware, computer software, or a combination of both, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光学指纹装置和电子设备,该光学指纹装置用于设置在电子设备的显示屏的下方,包括:入射角转换结构,设置在所述显示屏的下方,用于将从所述显示屏上方的手指返回的第一光信号转换为与第二光信号,其中,所述第一光信号为相对所述显示屏倾斜的光信号,所述第二光信号为相对所述显示屏垂直的光信号;光学组件设置在所述入射角转换结构的下方,用于接收所述第二光信号,并将所述第二光信号传输至光学传感器;光学传感器包括多个光学感应单元,设置在所述光学组件的下方,用于接收经所述光学组件传输的光信号,所述光信号用于获取所述手指的指纹信息。

Description

光学指纹装置和电子设备
本申请要求于2019年8月8日提交中国专利局、申请号为PCT/CN2019/099822、申请名称为“指纹检测装置和电子设备”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学指纹技术领域,并且更具体地,涉及光学指纹装置和电子设备。
背景技术
随着终端行业的高速发展,生物识别技术越来越受到人们重视,更加便捷的屏下生物特征识别技术,例如屏下光学指纹识别技术的实用化已成为大众所需。
屏下光学指纹识别技术是将光学指纹模组设置于显示屏下,通过采集光学指纹图像,实现指纹识别。随着终端产品的发展,对指纹识别性能的要求越来越高。因此,如何提升指纹识别的性能,成为一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种光学指纹装置和电子设备,能够提升指纹识别性能。
第一方面,提供了一种光学指纹装置,用于设置在电子设备的显示屏的下方,包括:入射角转换结构,设置在所述显示屏的下方,用于将从所述显示屏上方的手指返回的第一光信号转换为与第二光信号,其中,所述第一光信号为相对所述显示屏倾斜的光信号,所述第二光信号为相对所述显示屏垂直的光信号;光学组件设置在所述入射角转换结构的下方,用于接收所述第二光信号,并将所述第二光信号传输至光学传感器;光学传感器包括多个光学感应单元,设置在所述光学组件的下方,用于接收经所述光学组件传输的光信号,所述光信号用于获取所述手指的指纹信息。
在一些可能的实现方式中,所述入射角转换结构包括微棱镜阵列,所述微棱镜阵列包括多个微棱镜单元,每个微棱镜单元包括至少一个微棱镜,每 个微棱镜包括至少一个第一入射面和至少一个第一出射面,所述第一入射面相对于所述显示屏的平面倾斜,所述第一出射面平行于所述显示屏的平面。
在一些可能的实现方式中,所述每个微棱镜单元包括一个微棱镜,一个微棱镜的下方设置有一个光学感应单元或一列光学感应单元;或
所述每个微棱镜单元包括呈中心对称分布的多个微棱镜,其中,所述多个微棱镜的下方设置有多个光学感应单元。
在一些可能的实现方式中,所述多个微棱镜的入射面相对于所述光学传感器平面的方向各不相同。
在一些可能的实现方式中,所述多个微棱镜包括四个微棱镜,所述四个微棱镜中的相邻微棱镜的入射面相对于所述光学传感器的方向角相差90度。
在一些可能的实现方式中,所述第一光信号与垂直于所述光学传感器的方向形成第一夹角
Figure PCTCN2019103837-appb-000001
所述每个微棱镜的第一入射面和第一出射面形成第二夹角θ,其中,所述第一夹角
Figure PCTCN2019103837-appb-000002
所述第二夹角θ,所述第一光信号的传播媒介的折射率n 1,所述微棱镜的折射率n 2满足如下关系:
Figure PCTCN2019103837-appb-000003
在一些可能的实现方式中,所述每个微棱镜包括至少一个第一支撑面,所述至少一个第一支撑面设置有反射层。
在一些可能的实现方式中,所述第一光信号入射至所述第一入射面,进入所述微棱镜形成第三光信号,所述第三光信号在所述第一支撑面反射后再次入射到所述第一入射面,从所述第一入射面再次反射后,形成垂直出射的所述第二光信号,其中,所述第一光信号与垂直于所述光学传感器的方向形成第一夹角
Figure PCTCN2019103837-appb-000004
所述每个微棱镜的第一入射面和第一出射面形成第二夹角θ,所述第三光信号与垂直于所述第一入射面的方向形成第三夹角α,所述第三光信号与平行于所述第一出射面的方向形成第四夹角β,其中,所述第一夹角
Figure PCTCN2019103837-appb-000005
所述第二夹角θ,所述第三夹角α,所述第四夹角β,所述第一光信号的传播媒介的折射率n 1,所述微棱镜的折射率n 2满足如下关系:
Figure PCTCN2019103837-appb-000006
β=(90°-θ)+α
θ=(90°-θ)。
在一些可能的实现方式中,所述光学指纹装置还包括:
透光涂层,设置在所述入射光转换结构的入射面,所述透光涂层包括至少一个第二入射面和至少一个第二出射面,其中,所述第一光信号从所述第二入射面进入所述透光涂层形成第四光信号,所述第四光信号从所述第二出射面出射,并入射至所述入射光转换结构,通过所述入射光转换结构转换为垂直出射的所述第二光信号。
在入射角转换结构的入射面设置高折射率的透光涂层,能够使得从手指返回的第一光信号在经过两次折射后,转换为垂直出射的光信号,一方面可以转换入射光的方向,使得正对所述入射光转换结构的入射面的光信号在该空气/透光涂层界面发生折射进而转换为垂直的光信号,最终到达光学传感器,另一方面,采用高折射率的透光涂层,在相同的入射角的情况下,所需的入射角转换结构的倾斜角更小,有利于降低入射角转换结构的厚度,进而降低光学指纹装置的整体厚度。
在一些可能的实现方式中,所述第二出射面与所述入射光转换结构的入射面平行,所述第二入射面和所述入射光转换结构的出射面平行,所述第一光信号与垂直于所述第二入射面的方向形成第一夹角
Figure PCTCN2019103837-appb-000007
所述入射光转换结构的入射面和所述入射光转换结构的出射面形成第二夹角θ,所述第四光信号与垂直于所述入射光转换结构的入射面的方向形成第三夹角α,其中,所述第一夹角
Figure PCTCN2019103837-appb-000008
所述第二夹角θ,所述第三夹角α,所述透光涂层的折射率n 0,所述第一光信号的传播媒介的折射率n 1和所述微棱镜的折射率n 2满足如下关系:
Figure PCTCN2019103837-appb-000009
n 1sinα=n 2sinθ。
在一些可能的实现方式中,所述透光涂层通过旋涂或喷涂方式制备在所述入射光转换结构的入射面。
在一些可能的实现方式中,所述透光涂层的所述至少一个第二入射面设置有抗反涂层和/或偏振涂层,其中,所述抗反射涂层用于降低所述第一光信号在所述至少一个第二入射面的反射率,所述偏振涂层用于选择所述第一光信号的偏振方向。
在一些可能的实现方式中,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微透镜阵列下方,所述至少一挡光层中的 每个挡光层中设置有开孔;
其中,所述微透镜阵列用于将接收的所述第二光信号通过所述至少一挡光层中的开孔传输至所述光学传感器。
在一些可能的实现方式中,所述至少一挡光层中包括第一挡光层,所述第一挡光层设置在所述微透镜阵列的后焦平面位置。
在一些可能的实现方式中,所述第一挡光层为所述光学传感器的金属层。
在一些可能的实现方式中,所述光学组件还包括:
滤光片,设置在以下位置中的至少一处:
所述入射角转换结构和所述微透镜阵列之间;
所述微透镜阵列和所述光学传感器之间。
在一些可能的实现方式中,所述光学组件包括直孔准直器,包括多个准直孔,所述光学传感器中的每个光学感应单元对应所述直孔准直器中的至少一个准直孔,其中,所述直孔准直器用于接收所述入射光转换结构转换的第二光信号,并通过所述直孔准直器中的准直孔传输至所述多个光学感应单元。
在一些可能的实现方式中,所述直孔准直单元通过所述光学感应单元的金属层和金属通孔层形成。
在一些可能的实现方式中,所述光学组件还包括:
滤光片,设置在以下位置中的至少一处:
所述入射角转换结构和所述直孔准直器之间;
所述直孔准直器和所述光学感应单元之间。
在一些可能的实现方式中,所述显示屏为有机发光二极管OLED显示屏,所述光学指纹装置利用所述OLED显示屏的部分显示单元作为光学指纹检测的激励光源。
第二方面,提供了一种电子设备,包括:
显示屏;
以及第一方面或第一方面的任意可能的实现方式中的光学指纹装置,其中,所述光学指纹装置设置在所述显示屏的下方。
在一些可能的实现方式中,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
本申请实施例的技术方案,通过在所述光学组件的上方设置入射角转换 结构,从而可以将倾斜的入射光转换为垂直的入射光入射至光学组件,能够降低倾斜光入射导致的光损,进而能够提升光学传感器接收到光信号的信号量,从而能够缩短曝光时长,提升指纹识别速度。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备沿A’-A’的部分剖面示意图。
图3是基于倾斜光进行指纹检测的一种指纹检测装置的示意图。
图4是基于倾斜光进行指纹检测的另一种指纹检测装置的示意图。
图5是本申请实施例的光学指纹装置的示意框图。
图6是本申请实施例的光学指纹装置的一例示意性剖面图。
图7是微棱镜的工作原理的示意图。
图8是支撑面设置有反射涂层的微棱镜的工作原理的示意图。
图9是图6所示微棱镜组成的微棱镜阵列的立体图。
图10是图6所示的光学指纹装置的俯视方向的示意性结构图。
图11是本申请实施例的光学指纹装置的另一例示意性剖面图。
图12和图13是图11中的微棱镜单元的俯视图。
图14是本申请实施例的光学指纹装置的再一例示意性剖面图。
图15是本申请实施例的光学指纹装置的视场的示意性结构图。
图16是包括微棱镜阵列和透光涂层的光学指纹装置的一例示意剖面图。
图17是图16所示的结构的工作原理的示意图。
图18是包括微棱镜阵列和透光涂层的光学指纹装置的另一例示意剖面图。
图19是包括微棱镜阵列和透光涂层的光学指纹装置的再一例示意剖面图。
图20是根据本申请实施例的电子设备的示意性结构图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
作为一种常见的应用场景,本申请实施例提供的指纹识别装置可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备; 更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹***。
图1和图2示出了本申请实施例可以适用的电子设备的示意图,其中,图1为电子设备10的定向示意图,图2为图1所示的电子设备10沿A’-A’的部分剖面结构示意图。
如图1至图2所示,所述电子设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域,例如,显示屏中间区域的下方。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线会聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图2所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件 132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,例如,干扰成像的红外光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光引导至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
其中,所述光学组件132的导光层或者光路引导结构有多种实现方案,比如,所述导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,所述导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光会聚到其下方的光检测部分134的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述光学指纹装置的视场,以提高所述光学指纹装置130的指纹成像效果。
在其他实施例中,所述导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,所述微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单元。并且,所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间, 所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜会聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。
应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指发出一束光,该光在手指的表面发生反射形成反射光或者经过所述手指内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光和来自指纹峪的发射光具有不同的光强,反射光经过光学组件后,被光学指纹装置130中的感应阵列所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备10实现光学指纹识别功能。在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述终端设备10的光学指纹***还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测 光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。在其他替代实现方式中,所述显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述光学检测装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述光学检测装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,所述电子设备10还包括透明保护盖板,其位于所述显示屏120的上方并覆盖所述电子设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的中间区域,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也就是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹装置130的指纹采集区域103可以扩展到所述显示屏的中间部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
可选地,在本申请一些实施例中,该光学指纹装置130还可以包括用于传输信号(例如所述指纹检测信号)的电路板,例如,所述电路板可以为柔性电路板(Flexible Printed Circuit,FPC)。光学指纹传感器可以连接到FPC, 并通过所述FPC实现与其他***电路或者电子设备中的其他元件的电性互连和信号传输。比如,所述光学指纹传感器可以通过所述FPC接收所述电子设备的处理单元的控制信号,并且还可以通过所述FPC将指纹检测信号(例如指纹图像)输出给所述电子设备的处理单元或者控制单元等。
需要说明的是,为便于理解,在以下示出的实施例中,对于不同实施例中示出的结构中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
应理解,在以下示出的本申请实施例中的各种结构件的高度或厚度,以及光学指纹装置的整体厚度仅为示例性说明,而不应对本申请构成任何限定。
在一些实施例中,为了提升指纹识别的灵活性,提出了基于倾斜光进行指纹检测的方案,图3和图4分别示出了基于倾斜光进行指纹检测的指纹检测装置的示意性结构图。
如图3所示,所述指纹检测装置20可以包括微透镜21,设置在微透镜21的后焦平面211上的微孔光阑22,设置在所述微孔光阑22下方的光学感应单元23,以及设置在微透镜21上方的滤光片25。
当入射角度为
Figure PCTCN2019103837-appb-000010
的手指反射光24进入指纹检测装置20后,首先经过滤光片25,滤光片25对可见光波段的光的透过率较高,对红外光的透过率较低,可以用于防止太阳光中红外波段的光信号穿透手指,对指纹图像的采集造成干扰。然后反射光24通过微透镜21并被会聚到微透镜的后焦平面211上的点F 1。其中,F 1距离微透镜21的后焦点F 0的距离F 0F 1可以近似表达为:
Figure PCTCN2019103837-appb-000011
其中,r为微透镜21的曲率半径,n为微透镜21的折射率。微孔光阑22设置在F1处,微孔光阑22以外的区域设置有非透光层220,微孔光阑的孔径的大小决定了可通过的入射光的角度范围
Figure PCTCN2019103837-appb-000012
只有入射角在
Figure PCTCN2019103837-appb-000013
Figure PCTCN2019103837-appb-000014
范围内的手指反射光24可到达光学感应单元23。通过微透镜21加微孔光阑22的组合可以实现入射光的角度筛选,非目标角度的入射光则被非透光层220阻挡。
然而,当涉及接收大角度光信号时(例如入射角
Figure PCTCN2019103837-appb-000015
大于30度),图3所示的方案会面临两个问题:一是滤光片25对于大角度入射光的透过率相对垂直入射光的透过率较低;二是微透镜21的部分区域(如图3中的区域241) 由于阴影效应(lens shading effect)不能起到会聚作用。因此,导致指纹检测装置20在接收较大角度的入射光的时候,光损失较大,因此必须依靠延长指纹检测装置20的曝光时间获取足够的信号量,这样会使得指纹识别间较长,影响了用户体验。
如图4所示,指纹检测装置30可以包括滤光片35,设置在滤光片35下方的斜孔准直器36(设置有多个斜孔361),以及斜孔准直器36下方的光学感应单元33。由于设置斜孔361的方向与法线310的方向夹角为
Figure PCTCN2019103837-appb-000016
因此,光学感应单元33只能够接收到手指反射光34中入射角度为
Figure PCTCN2019103837-appb-000017
或接近
Figure PCTCN2019103837-appb-000018
的倾斜光信号。
图4所示的方案仍然存在滤光片35对大角度的斜入射光的透过率低的问题。另外,制作斜孔准直器36的工艺相对复杂,制造难度较大,不适合大规模生产。
进一步地,为了解决上述问题,本申请实施例提出了一种光学指纹装置,如图5所示,该光学指纹装置70可以包括入射角转换结构71,光学组件72和光学传感器73,其中:
所述入射角转换结构71设置在所述光学组件72的上方,用于将从手指返回的第一光信号转换为第二光信号,其中,所述第一光信号为相对于光学传感器的平面倾斜的光信号,所述第二光信号为与所述光学传感器的平面垂直的光信号;
所述光学组件72设置在所述光学传感器73的上方,用于接收所述第二光信号,并将所述第二光信号传输至所述光学传感器73;
所述光学传感器73可以包括多个光学感应单元,用于接收经所述光学组件72传输的第二光信号,并根据所述第二光信号获取手指的指纹信息。
因此,在本申请实施例中,通过在所述光学组件的上方设置入射角转换结构,从而可以将倾斜的入射光转换为垂直的入射光入射至光学组件,能够降低倾斜光入射导致的光损,进而能够提升光学传感器接收到光信号的信号量,并且相对于斜孔准直器的方案,该技术方案工艺简单,易于实现。
可选地,在一些实施例中,所述入射角转换结构71可以为由微棱镜组成的结构,微棱镜可以具有倾斜的入射面,可以用于将入射到该倾斜的入射面的入射光转换为垂直于显示屏的光信号,或者,在其他实施例中,所述入射角转换结构也可以为其他具有高折射率的材料制成的结构,只要能够起到 上述作用即可,本申请实施例对此不作限定。以下,以所述入射角转换结构为微棱镜结构为例进行说明,但本申请实施例并不限于此。
作为一个示例,该光学指纹装置70可以为图6所示的光学指纹装置40。如图6所示,该光学指纹装置40可以包括光引导部分41和光检测部分42。其中,所述光引导部分41可以用于将经由手指反射或散射的光信号引导至所述光检测部分42。所述光引导部分41可以包括入射光转换结构和光学组件(例如图2中的光学组件132),分别对应于图5中的入射光转换结构71和光学组件72,在进一步的实施例中,所述光引导部分41还可以包括透光涂层,下文进行详细描述。
所述光检测部分42对应于图5中的光学传感器73,可以包括光学感应阵列424,其可以包括多个光学感应单元。例如,所述光学感应阵列424可以包括第一光学感应单元424a、第二光学感应单元424b以及第三光学感应单元424c。所述光学感应阵列424接收到的光信号用于检测所述手指的指纹信息。
所述入射光转换结构,例如可以为图6所示的微棱镜阵列410,其可以包括多个微棱镜(micro-prism),例如,第一微棱镜410a、第二微棱镜410b以及第三微棱镜410c等。所述微棱镜阵列410可以用于将经由手指反射的第一光信号转变为第二光信号。其中,所述第一光信号可以为相对所述显示屏倾斜的光信号,所述第二光信号为相对所述显示屏垂直的光信号。或者说,所述第一光信号可以为相对所述光检测部分42的平面倾斜的光信号,所述第二光信号可以为相对所述光检测部分42的平面垂直的光信号。
在一些实施例中,所述微棱镜阵列410中的每个微棱镜的下方设置有至少一个光学感应单元,例如所述第一微棱镜410a的下方至少设置有第一光学感应单元424a,所述第二微棱镜410b的下方至少设置有所述第二光学感应单元424b,所述第三微棱镜410c的下方至少设置有所述第三光学感应单元424c。
进一步地,所述光检测部分42还可以包括至少一层金属层421和介质层423。其中,所述金属层421可以是所述光学感应阵列424的金属布线层,用于电性互联所述光学感应阵列424中的光学感应单元,以及将所述光学感应阵列424电连接至外部器件,以实现与电子设备中其他器件之间的通信。所述介质层可以设置在金属层421之间,以及金属层421和光学感应阵列424 之间,所述介质层423的材料可以是透明材料。
在本申请的一些实施例中,所述光学组件可以设置在所述微棱镜阵列410和所述光学感应阵列424之间,所述光学组件用于筛选或分离经过所述微棱镜阵列410转换后的第二光信号。即所述光学组件可以用于在经过所述微棱镜阵列410转换后的第二光信号中筛选出部分光信号并引导至所述光学感应阵列424中的特定光学感应单元。在该实施例中,所述光学组件用于将对应的微棱镜转换的第二光信号引导至所述微棱镜下方的光学感应单元。例如,从所述显示屏上方的手指返回的第一光信号经由微棱镜410a转换成第二光信号后,所述第二光信号通过对应的所述光学组件(例如,微透镜412a)将所述微棱镜410a转换的第二光信号传输至所述微棱镜410a的下方设置的光学感应单元424a。
在实际产品中,由于所述微棱镜阵列410的厚度通常较薄,能够保证所述光学指纹装置40的厚度较小。
应理解,图6仅示出了一个微棱镜对应一个光学感应单元的场景,在其他实施例中,一个微棱镜也可以对应多个光学感应单元,即可以在微棱镜的下方可以设置多个光学感应单元,即从所述显示屏上方的手指返回的第一光信号经由该一个微棱镜转换成第二光信号后,进一步通过对应的光学组件可以将所述第二光信号传输至所述多个光学感应单元,例如,若微棱镜410a对应光学感应单元424a和424b,则从所述显示屏上方的手指返回的第一光信号经由微棱镜410a转换成第二光信号后,进一步通过对应的光学组件(例如,微透镜412a)将所述微棱镜410a转换的第二光信号传输至所述微棱镜410a的下方设置的光学感应单元424a和424b。
可选地,在一些实施例中,当一个微棱镜对应多个光学感应单元时,所述微棱镜在光学感应阵列所在的平面的投影覆盖其所对应的多个光学感应单元,以保证经所述微棱镜转换的光信号能够最大化地到达所述多个光学感应单元。
可选地,在一些实施例中,所述光学组件可以包括微透镜阵列和至少一个挡光层,如图6所示,所述微透镜阵列413包括多个微透镜,例如,第一微透镜412a,第二微透镜412b和第三微透镜412c等,设置在所述微棱镜阵列410的下方;所述至少一个挡光层可以设置在所述微透镜阵列410和所述光学感应阵列424之间,所述至少一层挡光层中的每层挡光层中设置有对应 于所述微透镜阵列或光学感应单元的开孔。其中,所述光学感应阵列424用于接收经由所述微透镜阵列412会聚的并通过所述至少一个挡光层的开孔传输的光信号。或者说,所述微透镜阵列412用于接收所述微棱镜阵列转换的第二光信号,并将所述第二光信号通过所述至少一个挡光层中的开孔传输至所述光学感应阵列424。
可选地,作为一个示例,如图6所示,所述至少一个挡光层包括第一挡光层和第二挡光层414,其中,所述第一挡光层和所述第二挡光层414中分别设置有微透镜阵列412中每个微透镜对应的开孔。例如,可复用所述光检测部分42中的金属层421作为所述第一挡光层,以简化所述光学指纹装置的结构,这样,所述第一挡光层421中设置有第一微透镜412a对应的第一开孔422a、所述第二微透镜412b对应的第二开孔422b以及所述第三微透镜412c对应的第三开孔422c。类似地,所述第二挡光层414中设置有所述第一微透镜412a对应的第四开孔415a、所述第二微透镜412b对应的第五开孔415b以及所述第三微透镜412c对应的第六开孔415c。
所述第一光学感应单元424a用于接收经由所述第一微透镜412a会聚的,并通过所述第四开孔415a和所述第一开孔422a传输的光信号。所述第二光学感应单元424b用于接收经由所述第二微透镜412b会聚的,并通过所述第五开孔415b和所述第二开孔422b传输的光信号。所述第三光学感应单元424c用于接收经由所述第三微透镜412c会聚的,并通过所述第六开孔415c和所述第三开孔422c传输的光信号。
应理解,在图6所示的方案中,一个微透镜可以对应一个光学感应单元,即微透镜可以将经由微棱镜传输的第二光信号引导至一个光学感应单元,或者,一个微透镜也可以对应多个光学感应单元,即微透镜可以将经由微棱镜传输的第二光信号引导至多个光学感应单元,此情况下,所述至少一个挡光层中的一个开孔也可以对应多个光学感应单元,传输到该多个光学感应单元的光信号都可以通过该一个开孔传输。
因此,图6所示的方案与图4所示的方案相比,先通过所述微棱镜阵列410将经由手指反射的相对显示屏倾斜的光信号转换成相对显示屏垂直的信号,再通过微透镜和挡光层对垂直光信号进行会聚,能够降低微透镜的边缘区域的阴影效应,进而提升了所述光学感应阵列424接收到的信号量,从而能够缩短曝光时间和指纹识别时间。
可选地,在一些实施例中,所述第一挡光层设置在所述微透镜阵列中的微透镜的后焦平面位置,其中,所述微透镜阵列的后焦平面可以是所述微透镜阵列中每个微透镜的后焦点形成的平面。微透镜的聚焦点在所述第一挡光层中的开孔内,这样,经微棱镜转换得到的第二光信号进入该微棱镜对应的微透镜,经该微透镜会聚并传输至所述第一挡光层中的开孔,进一步通过该开孔传输至对应的光学感应单元。
如前文所述,可复用所述光检测部分42中的金属层421作为所述第一挡光层,即所述第一挡光层可以设置在光检测部分42的内部,例如利用芯片后道工艺(BEOL)中的金属层来形成所述第一挡光层421,该金属层可以为光检测部分42中的任一位置处的金属层421,例如处于底部位置,中间位置或顶部位置的的金属层。通过复用所述光学感应阵列424的金属布线层作为挡光层,有利于能够降低光学指纹装置40的厚度。
需要说明的是,在本申请实施例中,一个光学感应单元,及其上所设置的光学组件(例如,图6中的滤光片,微透镜和挡光层,或图14中的滤光片和一个或多个准直孔),以及微棱镜可以构成一个光学图像采集单元,该光学图像采集单元可以用于形成采集图像的一个像素,多个光学图像采集单元构成的阵列构成该光学指纹装置。
应理解,在本申请实施例中,所述至少一个挡光层可以只包括所述第一挡光层,在另一些实施例中,所述至少一个挡光层可以包括所述第一挡光层和所述第二挡光层414,所述第二挡光层414用于避免相邻的光学图像采集单元之间的干扰。在一些实施例中,所述第二挡光层414可以设置在所述微透镜阵列和所述第一挡光层之间;在其他实施例中,所述第二挡光层也可以设置在相邻的微透镜之间或者设置在滤光片的上表面或下表面。可选地,在一些实施例中,同一微透镜对应的第一挡光层中的开孔小于第二挡光层414中的开孔,例如,所述微透镜412a对应的在第一挡光层中的开孔415a大于该微透镜412a对应的在第二挡光层421中的开孔422a。
进一步地,在一些实施例中,所述光学指纹装置40还可以包括位于微透镜阵列412上方的平坦层(planarization layer)411,以及位于微透镜阵列412下方的光路层413。所述平坦层411和所述光路层413可以由透光材料形成,由不透光材料形成的第二挡光层414可以设置在光路层413内。
可选地,在一些实施例中,所述光学组件还可以包括滤光片416,可以 制作在沿着到经由手指反射形成的反射光至成所述光学感应阵列424的光学路径的任一位置上,本申请实施例对此不做具体限定。例如所述滤光片416可以设置在微透镜阵列412的上方,或者也可以设置在微透镜阵列412的下方,或者设置在光学感应单元的上方等。可选地,所述滤光片416可以是红外截止滤光片(IR cut filter)。
与倾斜光信号直接经过所述滤光片416相比,垂直光信号进入所述滤光片,能够降低光信号的损失,且无需定制滤光片416进而降低了其制造复杂度。
在本申请实施例中,滤光片416用于来减少指纹感应中的不期望的环境光,以提高所述光学感应阵列424对接收到的光的光学感应。滤光片416具体可以用于过滤掉特定波长的光,例如,近红外光和部分的红光等。例如,人类手指吸收波长低于580nm的光的能量中的大部分,如果一个或多个光学过滤器或光学过滤层被设计为过滤波长从580nm至红外的光,则可以大大减少环境光对指纹感应中的光学检测的影响。
例如,所述滤光片416可以包括一个或多个光学过滤器,一个或多个光学过滤器可以配置为例如带通过滤器,以允许OLED屏发射的光的传输,同时阻挡太阳光中的红外光等其他光组分。当在室外使用屏下所述光学指纹装置40时,这种光学过滤可以有效地减少由太阳光造成的背景光。一个或多个光学过滤器可以实现为例如光学过滤涂层,光学过滤涂层形成在一个或多个连续界面上,或可以实现为一个或多个离散的界面上。此外,所述滤光片416的进光面可以设置有有光学镀膜,以使得滤光片的进光面的反射率低于第一阈值,例如1%,从而能够保证所述光学感应阵列424能够接收到足够的光信号,进而提升指纹识别效果。
在图6所示的示例中,微棱镜阵列410可以只接收从手指返回的以特定角度
Figure PCTCN2019103837-appb-000019
入射的光信号(例如图6所示的光信号43)。以第二微棱镜410b为例,以角度
Figure PCTCN2019103837-appb-000020
入射的光信号43经过第二微棱镜410b后转换为垂直光信号。该垂直光信号先穿过滤光片416滤除掉非目标波段的光,然后经过第二微透镜412b在微透镜的作用下会聚在该微透镜412b的后焦点,即会聚在第二微透镜412b对应的第五开孔422b内,通过该第五开孔422b的光信号被对应的光学感应单元424b所接收。由于来自指纹峪的光的光强大于来自指纹嵴的,故指纹峪对应的光学感应单元输出的电信号更强、图像更亮;指纹嵴对应的 光学感应单元输出的电信号较弱、图像较暗,最终输出具有一定对比度的清晰指纹图像。
可选地,在一些实施例中,所述微棱镜可以包括至少一个第一入射面,至少一个第一支撑面和至少一个第一出射面,假设所述至少一个第一出射面平行于所述显示屏,并且所述至少一个第一入射面与所述至少一个第一出射面形成第二夹角,以使所述微棱镜能够将所述第一光信号转换成所述第二光信号。下面结合图7,以图6所示的微棱镜阵列410中的第二微棱镜410b为例,对微棱镜的工作原理进行说明。
具体地,所述第二微棱镜410b包括第一入射面501,第一出射面502以及第一支撑面500。当入射光51到达第一入射面501时,部分光发生反射而形成反射光53,剩余的部分发生折射而形成折射光52,并由第一出射面502射出。
假设所述第一光信号与垂直于所述显示屏的方向形成第一夹角,则所述第一夹角和所述第一入射面和第二出射面的第二夹角可以满足以下公式(1):
Figure PCTCN2019103837-appb-000021
其中,θ表示所述第二夹角,
Figure PCTCN2019103837-appb-000022
表示所述第一夹角,n 1表示入射光51的传播媒介的折射率,n 2表示所述微棱镜的折射率。
假设
Figure PCTCN2019103837-appb-000023
第二微棱镜410b的折射率为1.56,入射光51从空气入射,即n 1=1。通过上面的公式可以得到第二夹角为35.8度。也就是说,在微棱镜的折射率为1.56,从空气入射的情况下,第二夹角为35.8度的第二微棱镜410b可以将第一夹角为30°的第一光信号转换为垂直出射的第二光信号。
由上述公式(1)可知,在第一夹角
Figure PCTCN2019103837-appb-000024
固定的情况下,通过控制所述第二微棱镜的折射率n 2可以控制所述第二微棱镜的第二夹角θ,例如,通过设置微棱镜的折射率n 2较大,可以使得所述微棱镜的第二夹角θ较小,也就是说,采用高折射率材料的微棱镜,有利于降低微棱镜的厚度,进而能够降低光学指纹装置的整体厚度。
需要说明的是,由于经由手指反射的光信号包括各个方向的光信号,因此本申请实施例对第一夹角的具体数值不做限定。本领域技术人员可以根据 实际要采集的经由手指反射的倾斜光信号的角度确定微棱镜阵列410中的微棱镜的入射面和出射面形成的第二夹角的角度。优选地,所述第一夹角大于或者等于20度。即所述光学指纹装置40可以基于大角度的倾斜光信号检测手指的指纹信息,进而提高指纹识别效果。
可选地,在本申请实施例中,具有第二夹角的微棱镜可以通过纳米压印或者灰度光刻等工艺制作,其工艺较为成熟,在此不再赘述。
在以上示例中,所述第一支撑面可以是透光的,或者也可以是不透光的,本申请实施例对此不作限定。
在另一些实施例中,所述微棱镜可以包括至少一个第一入射面,至少一个第一支撑面和至少一个第一出射面,所述至少一个支撑面设置有反射层,其中,从手指返回的第一光信号入射至所述第一入射面,进入所述微棱镜形成第三光信号,所述第三光信号在所述第一支撑面反射后再次入射到所述第一入射面,从所述第一入射面再次反射后,形成垂直出射的所述第二光信号,即所述反射层用于使入射到该第一支撑面的光信号在该第一支撑面发生镜面反射,以形成垂直出射的光信号,该反射层可以为金属涂层,例如,银涂层,铝涂层等,此类型的微棱镜可以为李特洛型棱镜。
假设所述至少一个第一出射面平行于所述显示屏,并且所述至少一个第一入射面与所述至少一个第一出射面形成第二夹角,以使所述微棱镜能够将所述第一光信号转换成所述第二光信号。下面结合图8,以图6所示的微棱镜阵列410中的第二微棱镜410b为例,对微棱镜的工作原理进行说明。
具体地,所述第二微棱镜410b包括第一入射面501,第一出射面502以及第一支撑面505,所述第一支撑面505设置有反射层。当入射光51到达第一入射面501时,部分光发生反射而形成反射光53,剩余的部分发生折射而形成折射光54(即第三光信号),该折射光54在第一支撑面505发生镜面反射,反射光56再次到达第一入射面501,由于此时反射光56与第一入射面501的法线503的夹角大于临界角,故发生全反射形成反射光52,垂直于第一出射面502出射。
在该实施例中,入射光51与垂直于所述光学传感器的方向形成第一夹角
Figure PCTCN2019103837-appb-000025
所述第一入射面和所述第一出射面形成第二夹角θ,所述折射光54与垂直于所述第一入射面501的方向形成第三夹角α,所述折射光54与平行于所述第一出射面502的方向形成第四夹角β,其中,所述第一夹角
Figure PCTCN2019103837-appb-000026
所述 第二夹角θ,所述第三夹角α,所述第四夹角β,所述第一光信号的传播媒介的折射率n 1,所述微棱镜的折射率n 2满足如下公式(2):
Figure PCTCN2019103837-appb-000027
以下,结合图9至图13,说明本申请实施例的微棱镜阵列410的具体排布方式。
可选地,作为一个实施例,记为方式1,所述微棱镜阵列410可以包括阵列式分布的多个微棱镜单元,每个微棱镜单元可以包括一个微棱镜,该一个微棱镜可以对应一个光学感应单元,例如,所述光学感应单元可以设置在所述微棱镜的入射面的下方,这样,该微棱镜以及其下方设置的光学组件和光学感应单元可以构成一个光学图像采集单元。
可选地,作为另一实施例,记为方式2,所述微棱镜阵列410可以包括阵列式分布的多个微棱镜单元,每个微棱镜单元可以包括一个微棱镜,该一个微棱镜可以对应多个光学感应单元,例如,每个微棱镜可以对应光学感应阵列中的一行光学感应单元或一列光学感应单元,例如,可以将所述一行或一列光学感应单元设置在所述微棱镜的入射面的下方。也就是说,所述多个微棱镜单元可以包括呈阵列式分布的一列微棱镜或一行微棱镜,每个微棱镜为长条状。
图9可以为图6所示的微棱镜阵列410采用方式2实现的示意性立体图。如图9所示,所述微棱镜阵列410可以包括一行微棱镜,每个微棱镜的下方可以设置有一列光学感应单元。也就是说,在图6中,所述第一微棱镜410a、所述第二微棱镜410b以及所述第三微棱镜410c可以是条形结构。
应理解,本申请实施例对于设置在所述微棱镜和光学感应单元之间的微透镜的个数不作限定,当一个微棱镜可以对应一列光学感应单元时,该一个微棱镜下方可以设置一个微透镜,该微透镜也可以为条形结构,对应该一列光学感应单元,此情况下,经微棱镜转换的第二光信号通过该一个微透镜传输后到达该一列光学感应单元;或者,该微棱镜下方可以设置一列微透镜,每个微透镜对应一个光学感应单元,此情况下,经微棱镜转换的第二光信号通过该一列微透镜传输后到达每个微透镜对应的光学感应单元。
图10是本申请实施例的光学指纹装置40的俯视图。应理解,附图中所 示的微棱镜和微透镜的个数仅为示例,但本申请不限于此。
可选地,作为再一实施例,记为方式3,如图11所示,所述微棱镜阵列410可以包括阵列式分布的多个微棱镜单元810,每个微棱镜单元810可以包括多个微棱镜,该多个微棱镜具有多个不同方向的入射面,可以用于接收来自不同方向的经由手指返回的光信号。可选地,所述多个微棱镜在所述光学感应单元所在平面的投影可以呈四边形,五边形或其他形状等,本申请实施例对此不作限定。所述微棱镜单元810的中每个微棱镜在光学感应单元阵列424所在平面的投影面积可以等于或近似等于所述微透镜阵列中每个微透镜在所述光学感应单元424所在平面的投影面积,以提高所述微棱镜单元810的利用率,以及减小所述光学指纹装置40的体积。
图12至图13是以微棱镜单元包括四个微棱镜为例的示意性俯视图,图12是光学指纹装置沿E-E’方向的截面图,应理解,附图中以一个微棱镜单元为例进行说明,但本申请不限于此。
参见图12,所述微棱镜单元810可以包括4个微棱镜,例如,所述4个微棱镜呈中心对称分布。进一步地,每个微棱镜单元810中的每个微棱镜的下方可以设置有一个微透镜。每个微透镜的下方设置有至少一个挡光层,所述挡光层中设置有开孔,所述开孔的下方设置有一个光学感应单元。
应理解,在该实施例中,一个微棱镜单元810及其下方包含的光学组件以及光检测部分42可以用于构成指纹检测装置40的一个母单元。即,每个母单元由四个子单元(子单元a,子单元b,子单元c以及子单元d)组成,分别包括第一微棱镜810a、第二微棱镜810b、第三微棱镜810c、第四微棱镜810d,以及其下方对应的光学组件以及光检测部分,每个子单元可以形成一个光学图像采集单元,用于形成采集图像的一个像素,则一个母单元可以用于形成采集图像的四个像素,即2行*2列的像素。
作为一个示例,由第一微棱镜810a、第二微棱镜810b、第三微棱镜810c以及第四微棱镜810d所组成的微棱镜单元810可以构成是一个平头金字塔。即被削去塔尖的金字塔,例如第一微棱镜810a、第二微棱镜810b、第三微棱镜810c以及第四微棱镜810d所组成的微棱镜单元810可以被正四边形内切以形成所述平头金字塔,即微棱镜单元810的俯视图可以是如图12所示的ABCD围成的区域。或者说,图12可以是图11在OA方向上的俯视图。
若建立以横向方向为X轴,以纵向方向为Y轴的坐标系,则第一微棱 镜810a、第二微棱镜810b、第三微棱镜810c以及第四微棱镜810d相对于原点O的方向各不相同,例如∠AOX=135°,∠BOX=45°,∠COX=-45°,∠DOX=-135°。
即,所述微棱镜单元810中的相邻两个微棱镜相对原点O的角度相差90度。因此,所述微棱镜单元810可以用于接收来自四个不同方向、入射角度为
Figure PCTCN2019103837-appb-000028
的光信号(图11中的光831和832表示其中的两个方向),能够有效降低指纹验证时对手指放置角度的依赖性。
例如,可以将微棱镜单元阵列中的微棱镜分为多组,每组微棱镜用于接收一个方向的光信号,将光学感应阵列中的光学感应单元分为多组,每组光学感应单元可以用于接收一个方向的光信号,每组微棱镜中的每个微棱镜可以用于将一个方向的光信号转换为垂直光信号传输至对应的微透镜,进一步通过微透镜传输至对应的一组光学感应单元,该一组光学感应单元接收到的光信号可以用于生成一张指纹图像,因此,该多组多个光学感应单元接收到的光信号可以用于生成多张指纹图像,进一步对将所述多张指纹图像进行处理,可以获取一张完整指纹图像。
因此,在本申请实施例中,通过设置微棱镜单元接收多个角度的光信号,能够降低所述光学感应阵列的曝光时长,从而能够缩短指纹识别时间,并且能够降低指纹采集对入射光角度的依赖性。
此外,通过每个微棱镜单元810接收多个角度的光信号,可以增大指纹检测装置40的视场。
图14是沿图13所示的E-E'方向的具有显示屏的电子设备的侧剖面图。
参见图14,电子设备60可以包括显示屏61和位于显示屏下方的指纹检测装置40,其中,指纹检测装置40中的微棱镜单元可用于接收4个方向的光信号。例如,第三微棱镜810c可用于接收第二方向上的光信号,即图中所示的第二视场可以是所述第三微棱镜810c的视场,类似的,图中所示的第一视场可以是第一微棱镜810a的视场。即所述指纹检测装置40在E-E'方向为视场为图中所示的第三视场,其大于所述第一视场,也大于所述第二视场,有效增加了指纹检测装置40的视场。
应理解,本申请实施例对所述微棱镜阵列410中的微棱镜的入射面的数量做不限制。例如所述多个微棱镜中的每个微棱镜包括至少一个入射面,所述多个微棱镜中的每个微棱镜的每个入射面下设置有至少一个光学感应单 元;又例如,所述多个微棱镜中的每个微棱镜包括轴对称或中心对称的多个入射面。
还应理解,本申请实施例对所述微棱镜阵列410中的具体形状做不限制。例如,所述多个微棱镜中的每个微棱镜为三角棱镜或梯形棱镜;又例如,所述多个微棱镜中的每个微棱镜为直角棱镜,所述多个微棱镜中的每个微棱镜的入射面为所述直角棱镜的斜面;再例如,所述微棱镜阵列410中的每个微棱镜包括但不限于以下中的任一种:直角三角棱镜、等腰三角棱镜、直角梯形棱镜以及等腰梯形棱镜。
可选地,本申请实施例对所述光学组件的具体结构不做限定。例如,可以是图2所示的光学组件132。例如所述光学组件可以包括微透镜阵列和挡光层,也可以为直孔准直器。例如,所述直孔准直器包括多个准直孔,其中每个光学感应单元用于接收经由一个或多个准直孔传输的光信号。进一步地,所述光学组件还可以包括滤光片。
如图15所示为光学组件采用直孔准直器实现的光学指纹装置的示意性剖视图。如图15所示,所述光学组件为直孔准直器911,所述直孔准直器911可以设置在微棱镜阵列410和光检测部分42之间,所述直孔准直器911可以包含按照一定方式排列的多个准直孔912,每个光学感应单元可以对应一个或多个准直孔912。例如,每个光学感应单元可以对应3个准直孔912。入射角度为
Figure PCTCN2019103837-appb-000029
的经由手指反射的光信号,经由微棱镜阵列410转换为垂直光信号,进一步经由直孔准直器911传输至光学感应阵列424。入射角度不为
Figure PCTCN2019103837-appb-000030
的经由手指反射的光信号,则被直孔准直器911阻挡,因此无法到达光学感应阵列424。
与图4所示的斜孔准直器方案相比,先通过所述微棱镜阵列410将经由手指返回的相对显示屏倾斜的光信号转换成相对显示屏垂直的信号,再通过直孔准直器911将光信号传输至光电感应阵列,有效降低了准直器的制造难度以及成本。
此外,由于直孔准直器911的角度筛选能力主要取决于准直孔912的深宽比(深度与孔径的比值),因此小孔径的直孔有利于提高图像分辨率,但是却会降低进光量,因此需要延长光学感应阵列424的曝光时长。在本申请实施例中,在每个光学感应单元上方设置多个直孔,可以有效降低光学感应阵列424的曝光时长,进而提升用户体验。
应理解,图15仅为本申请的一种示例性结构,不应对本申请构成任何限制。
例如,所述光学感应阵列424和直孔准直器911也可以集成设置。例如,直孔准直器911可以集成在光检测部分92内,例如利用后道工艺中的金属层和金属通孔层形成直孔准直器911中的准直孔。
以上,结合图6至图15,说明了微棱镜进行角度转换的工作原理,在一些情况下,若从手指返回的光信号的入射角过大,例如,图7所示的示例中,
Figure PCTCN2019103837-appb-000031
为40度,若微棱镜的折射率为1.5,则所需的微棱镜的入射面和出射面的角度θ为41.2度,此情况下,入射光相对于微棱镜的入射面的法线的夹角为
Figure PCTCN2019103837-appb-000032
即81.2度,这时,约有43%的入射光在空气/微棱镜界面被反射,因此,仍然需要延长曝光时长以弥补进光量的不足,增加了指纹识别时间,影响用户体验。
基于该问题,进一步地,在本申请实施例中,可以在入射光角度转换结构的入射面上设置透光涂层,其中,该透光涂层的折射率大于所述入射光角度转换结构的折射率,以使入射光正对所述入射光角度转换结构的第一入射面,从而能够增加入射到光学感应阵列的进光量,从而缩短曝光时长和指纹识别时间。
以下,结合图16至图19,以入射光角度转换结构为微棱镜阵列为例进行具体说明,当该入射光角度转换结构为其他结构时,实现方式类似,这里不再赘述。
图17至图19是在入射光转换结构上设置透光涂层的一种光学指纹装置的示意性截面图,如图17至图19所示,所述光引导部分41除了可以包括前述实施例中所述的结构之外,还可以进一步包括:透光涂层417,设置在入射光转换结构的入射面,例如若所述入射光转换结构为微棱镜阵列,所述透光涂层417设置在微棱镜阵列410中的微棱镜的入射面,所述透光涂层417用于将从手指返回的第一光信号转换为第四光信号,进一步所述第四光信号入射到所述微棱镜阵列410中的微棱镜的入射面,经所述微棱镜阵列410转换为垂直出射的第二光信号,其中,所述透光涂层417的折射率大于所述微棱镜的材料的折射率。以下以入射光转换结构为微棱镜阵列为例,说明所述透光涂层的具体实现,但本申请并不限于此。应理解,图17至图19所示的光学指纹装置中的各个结构件的具体说明参考前述实施例的相关描述,这里 不再赘述。
因此,在本申请实施例中,通过在微棱镜阵列的入射面设置高折射率的透光涂层,能够使得从手指返回的第一光信号在经过两次折射后,转换为垂直出射的光信号,一方面可以转换入射光的方向,使得正对所述微棱镜阵列的第一入射面的光信号在该空气/透光涂层界面发生折射进而转换为垂直的光信号,最终到达光学感应阵列,另一方面,采用高折射率的透光涂层,在相同的入射角的情况下,所需的微棱镜的入射面和出射面的夹角更小,有利于降低微棱镜的厚度,进而降低光学指纹装置的整体厚度。
应理解,本申请实施例对于所述透光涂层的厚度、形状等不作限定,只要其可以与微棱镜阵列配合将第一光信号转换为垂直出射的第二光信号即可。
可选地,在一些实施例中,可以在所述微透镜阵列410中的每个微棱镜上设置一层透光涂层。具体地,所述透光涂层417可以设置在所述微棱镜的入射面上。例如,所述透光涂层417具有至少一个第二入射面,至少第二出射面和至少一个第二支撑面,所述第二出射面与所述微棱镜的第一入射面平行。以下,结合图16,以微棱镜410b上的透光涂层417b为例,说明透光涂层的具体的工作原理。
具体地,所述透光涂层417b可以具有第二入射面504,第二出射面501(即微棱镜的入射面)和第二支撑面500,所述第二入射面504可以与显示屏的方向平行,或者说,与微棱镜的出射面平行。可选地,所述透光涂层417b可以采用涂覆方式(例如,旋途,喷涂等)生长,以得到上述结构的透光涂层。
从手指返回的入射光51入射到透光涂层417b的第二入射面504,部分光发生反射形成反射光53,其他光在空气/透光涂层界面发生折射形成折射光54,进一步地,该折射光54在透光涂层/微棱镜界面发射第二次折射,最终从微棱镜的第一出射面502出射,若要使得折射光52垂直出射,其中,所述入射光51与垂直于所述第二入射面504的方向形成第一夹角
Figure PCTCN2019103837-appb-000033
所述第一入射面501和第一出射面502形成第二夹角θ,所述折射光54与垂直于所述第一入射面501的方向形成第三夹角α,其中,所述第一夹角,所述第二夹角,所述第三夹角,所述透光涂层的折射率n 0,所述入射光51的传播媒介的折射率n 1和所述微棱镜的折射率n 2满足如下公式(3):
Figure PCTCN2019103837-appb-000034
n 1sinα=n 2sinθ           公式(3)。
在该实施例中,若
Figure PCTCN2019103837-appb-000035
度,入射光51从空气入射,即n 1=1,高折射率的透光涂层的折射率为2,微透镜的材料的折射率为1.3,则可以确定微棱镜的夹角θ为38.2。
应理解,在本申请实施例中,所述透光涂层的第二入射面与微棱镜的第一出射面平行可以为透光涂层的第二入射面与所述微棱镜的第一出射面基本平平行或近似平行,对应地,折射光54可以从微棱镜的第一出射面近似垂直或基本垂直出射。
可选地,在该实施例中,可以设置所述透光涂层417的第二入射面与所述微棱镜的支撑面的最高点所在平面平齐,或者略高于该平面,或者略低于该平面,也就是说,在微棱镜的第一入射面设置透光涂层对模组的整体厚度影响不大。
应理解,采用图16所示的透光涂层的光学指纹装置,由于透光涂层的入射面与显示屏平行,可以在制备微棱镜阵列之后,在微棱镜阵列的入射面统一制备每个微棱镜对应的透光涂层,能够降低制备工艺的复杂度。
可选地,在该实施例中,所述透光涂层可以采用通过在有机材料中填充高折射率无机材料形成,例如,氧化锆或其他无机材料。
为了进一步降低透光涂层表面的反射率,还可以在透光涂层的入射面上设置一层抗反射涂层,能够进一步降低透光涂层表面的光损失,使得大部分光信号能够发生折射进入透光涂层,进而进入微棱镜阵列。
可选地,在一些实施例中,所述抗反射涂层可以为增透膜,提高光信号的透过率降低光信号的反射率。
通过在微棱镜阵列的入射面设置高折射率的透光涂层,能够使得入射光在该透光涂层和微棱镜中发生两次折射,进而从微棱镜的出射面垂直出射,在同样入射角的情况下,设置高折射率的透光涂层,有利于减小所需的微棱镜的入射面和出射面的夹角,从而能够降低模组的厚度,并且在微棱镜上设置高折射率的透光涂层能够降低微棱镜表面的反射率,减小光损,从而能够缩短曝光时长,提升指纹识别速度。
应理解,相对于图6,图11和图15所示的光学指纹装置,图16至图19所示的光学指纹装置,可以接收正对微棱镜的入射面入射的光信号,有利 于增加光学指纹装置的收光面积,这里的收光面积可以为光学指纹装置接收光信号的面积。例如,对于图6所示的光学指纹装置,在入射光为30°时,单个微棱镜的收光面积为微棱镜的底面积的58.4%,当采用光路为图16所述的光学指纹装置时,对于同样的入射角度,在透光涂层的折射率为2的情况下,单个微棱镜的收光面积为微棱镜的底面积的1.34倍,约为图6所示的光学指纹装置的收光面积的2.29倍,有利于提升光学传感器接收到光信号的信号量,从而能够缩短曝光时长,提升指纹识别速度。
应理解,在不设置透光涂层的情况下,相对于图7所示的微棱镜结构,图8所示的微棱镜结构也具有较高的收光面积,因此,对于大角度入射光,例如
Figure PCTCN2019103837-appb-000036
大于45°,微棱镜依然可以有效的进行入射光的接收,因此,采用图8所示的微棱镜结构可以不设置透光涂层,在另一些实施例中,也可以在图8所示的微棱镜结构上方设置透光涂层,进一步提升收光面积,缩短曝光时间,提升指纹识别速度。
需要说明的是,图16至图19中的透光涂层的厚度仅为便于说明透光涂层中的光路传输,实际产品中,透光涂层的厚度很薄,对光学指纹装置的厚度的影响不大。
本申请实施例还提供了一种电子设备,如图20所示,所述电子设备700可以包括显示屏710和光学指纹装置720,其中,该光学指纹装置720设置在所述显示屏710的下方。
可选地,所述光学指纹装置720可以为前述实施例中的光学指纹装置40,具体结构可以参考前文的相关描述,这里不再赘述。
可选地,在本申请一个实施例中,所述显示屏710可以具体为自发光显示屏(比如OLED显示屏),且其包括多个自发光显示单元(比如OLED像素或者OLED光源)。在所述光学图像采集***为生物特征识别***时,所述显示屏中的部分自发光显示单元可以作为所述生物特征识别***进行生物特征识别的激励光源,用于向所述生物特征检测区域发射光信号,以用于生物特征检测。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例 和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种光学指纹装置,其特征在于,用于设置在电子设备的显示屏的下方,包括:
    入射角转换结构,设置在所述显示屏的下方,用于将从所述显示屏上方的手指返回的第一光信号转换为与第二光信号,其中,所述第一光信号为相对所述显示屏倾斜的光信号,所述第二光信号为相对所述显示屏垂直的光信号;
    光学组件设置在所述入射角转换结构的下方,用于接收所述第二光信号,并将所述第二光信号传输至光学传感器;
    光学传感器包括多个光学感应单元,设置在所述光学组件的下方,用于接收经所述光学组件传输的光信号,所述光信号用于获取所述手指的指纹信息。
  2. 根据权利要求1所述的光学指纹装置,其特征在于,所述入射角转换结构包括微棱镜阵列,所述微棱镜阵列包括多个微棱镜单元,每个微棱镜单元包括至少一个微棱镜,每个微棱镜包括至少一个第一入射面和至少一个第一出射面,所述第一入射面相对于所述显示屏的平面倾斜,所述第一出射面平行于所述显示屏的平面。
  3. 根据权利要求2所述的光学指纹装置,其特征在于,所述每个微棱镜单元包括一个微棱镜,一个微棱镜的下方设置有一个光学感应单元或一列光学感应单元;或
    所述每个微棱镜单元包括呈中心对称分布的多个微棱镜,其中,所述多个微棱镜的下方设置有多个光学感应单元。
  4. 根据权利要求3所述的光学指纹装置,其特征在于,所述多个微棱镜的入射面相对于所述光学传感器平面的方向各不相同。
  5. 根据权利要求4所述的光学指纹装置,其特征在于,所述多个微棱镜包括四个微棱镜,所述四个微棱镜中的相邻微棱镜的入射面相对于所述光学传感器的方向角相差90度。
  6. 根据权利要求2至5中任一项所述的光学指纹装置,其特征在于,所述第一光信号与垂直于所述光学传感器的方向形成第一夹角
    Figure PCTCN2019103837-appb-100001
    所述每个微棱镜的第一入射面和第一出射面形成第二夹角θ,其中,所述第一夹角
    Figure PCTCN2019103837-appb-100002
    所述第二夹角θ,所述第一光信号的传播媒介的折射率n 1,所述微棱镜的折 射率n 2满足如下关系:
    Figure PCTCN2019103837-appb-100003
  7. 根据权利要求2至5中任一项所述的光学指纹装置,其特征在于,所述每个微棱镜包括至少一个第一支撑面,所述至少一个第一支撑面设置有反射层。
  8. 根据权利要求7所述的光学指纹装置,其特征在于,所述第一光信号入射至所述第一入射面,进入所述微棱镜形成第三光信号,所述第三光信号在所述第一支撑面反射后再次入射到所述第一入射面,从所述第一入射面再次反射后,形成垂直出射的所述第二光信号,其中,所述第一光信号与垂直于所述光学传感器的方向形成第一夹角
    Figure PCTCN2019103837-appb-100004
    所述每个微棱镜的第一入射面和第一出射面形成第二夹角θ,所述第三光信号与垂直于所述第一入射面的方向形成第三夹角α,所述第三光信号与平行于所述第一出射面的方向形成第四夹角β,其中,所述第一夹角
    Figure PCTCN2019103837-appb-100005
    所述第二夹角θ,所述第三夹角α,所述第四夹角β,所述第一光信号的传播媒介的折射率n 1,所述微棱镜的折射率n 2满足如下关系:
    Figure PCTCN2019103837-appb-100006
    β=(90°-θ)+α
    θ=(90°-θ)。
  9. 根据权利要求1至8中任一项所述的光学指纹装置,其特征在于,所述光学指纹装置还包括:
    透光涂层,设置在所述入射光转换结构的入射面,所述透光涂层包括至少一个第二入射面和至少一个第二出射面,其中,所述第一光信号从所述第二入射面进入所述透光涂层形成第四光信号,所述第四光信号从所述第二出射面出射,并入射至所述入射光转换结构,通过所述入射光转换结构转换为垂直出射的所述第二光信号。
  10. 根据权利要求9所述的光学指纹装置,其特征在于,所述第二出射面与所述入射光转换结构的入射面平行,所述第二入射面和所述入射光转换结构的出射面平行,所述第一光信号与垂直于所述第二入射面的方向形成第一夹角
    Figure PCTCN2019103837-appb-100007
    所述入射光转换结构的入射面和所述入射光转换结构的出射面形 成第二夹角θ,所述第四光信号与垂直于所述入射光转换结构的入射面的方向形成第三夹角α,其中,所述第一夹角
    Figure PCTCN2019103837-appb-100008
    所述第二夹角θ,所述第三夹角α,所述透光涂层的折射率n 0,所述第一光信号的传播媒介的折射率n 1和所述微棱镜的折射率n 2满足如下关系:
    Figure PCTCN2019103837-appb-100009
    n 1sinα=n 2sinθ。
  11. 根据权利要求9或10所述的光学指纹装置,其特征在于,所述透光涂层通过旋涂或喷涂方式制备在所述入射光转换结构的入射面。
  12. 根据权利要求9至11中任一项所述的光学指纹装置,其特征在于,所述透光涂层的所述至少一个第二入射面设置有抗反射涂层和/或偏振涂层,其中,所述抗反射涂层用于降低所述第一光信号在所述至少一个第二入射面的反射率,所述偏振涂层用于选择所述第一光信号的偏振方向。
  13. 根据权利要求1至12中任一项所述的光学指纹装置,其特征在于,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微镜头下方,所述至少一挡光层中的每个挡光层中设置有开孔;
    其中,所述微透镜阵列用于将接收的所述第二光信号通过所述至少一挡光层中的开孔传输至所述光学传感器。
  14. 根据权利要求13所述的光学指纹装置,其特征在于,所述至少一挡光层中包括第一挡光层,所述第一挡光层设置在所述微透镜阵列的后焦平面位置。
  15. 根据权利要求14所述的光学指纹装置,其特征在于,所述第一挡光层为所述光学传感器的金属层。
  16. 根据权利要求13至15中任一项所述的光学指纹装置,其特征在于,所述光学组件还包括:
    滤光片,设置在以下位置中的至少一处:
    所述入射角转换结构和所述微透镜阵列之间;
    所述微透镜阵列和所述光学传感器之间。
  17. 根据权利要求1至12中任一项所述的光学指纹装置,其特征在于,所述光学组件包括直孔准直器,包括多个准直孔,所述光学传感器中的每个光学感应单元对应所述直孔准直器中的至少一个准直孔,其中,所述直孔准直器用于接收所述入射光转换结构转换的第二光信号,并通过所述直孔准直 器中的准直孔传输至所述多个光学感应单元。
  18. 根据权利要求17所述的光学指纹装置,其特征在于,所述直孔准直单元通过所述光学感应单元的金属层和金属通孔层形成。
  19. 根据权利要求17或18所述的光学指纹装置,其特征在于,所述光学组件还包括:
    滤光片,设置在以下位置中的至少一处:
    所述入射角转换结构和所述直孔准直器之间;
    所述直孔准直器和所述光学感应单元之间。
  20. 根据权利要求1至19中任一项所述的光学指纹装置,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述光学指纹装置利用所述OLED显示屏的部分显示单元作为光学指纹检测的激励光源。
  21. 一种电子设备,其特征在于,包括:
    显示屏;
    如权利要求1至20中任一项所述的光学指纹装置,其中,所述光学指纹装置设置在所述显示屏的下方。
  22. 根据权利要求21所述的电子设备,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
PCT/CN2019/103837 2019-08-08 2019-08-30 光学指纹装置和电子设备 WO2021022596A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980004322.4A CN111095287B (zh) 2019-08-08 2019-08-30 光学指纹装置和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/099822 2019-08-08
PCT/CN2019/099822 WO2021022560A1 (zh) 2019-08-08 2019-08-08 指纹检测装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021022596A1 true WO2021022596A1 (zh) 2021-02-11

Family

ID=70427486

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/099822 WO2021022560A1 (zh) 2019-07-12 2019-08-08 指纹检测装置和电子设备
PCT/CN2019/103837 WO2021022596A1 (zh) 2019-08-08 2019-08-30 光学指纹装置和电子设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099822 WO2021022560A1 (zh) 2019-07-12 2019-08-08 指纹检测装置和电子设备

Country Status (2)

Country Link
CN (2) CN111108509B (zh)
WO (2) WO2021022560A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095287B (zh) * 2019-08-08 2023-09-12 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
CN111860172A (zh) * 2020-06-19 2020-10-30 北京极豪科技有限公司 指纹识别组件、电子设备及指纹识别方法
CN113296200B (zh) * 2020-07-09 2022-11-29 阿里巴巴集团控股有限公司 光模块
CN112380983A (zh) * 2020-11-12 2021-02-19 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN115291429B (zh) * 2022-08-05 2023-07-25 武汉华星光电技术有限公司 一种液晶显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090650A1 (en) * 2001-11-09 2003-05-15 Nec Corporation Fingerprint input devices and electronic devices provided with the same
CN101419662A (zh) * 2007-10-24 2009-04-29 巫仁杰 指纹输入模组
CN105759330A (zh) * 2016-03-16 2016-07-13 上海交通大学 基于光栅结构与微棱镜阵列的指纹识别***
CN108241839A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
CN110084090A (zh) * 2019-01-22 2019-08-02 东莞市美光达光学科技有限公司 一种光学式屏下指纹识别模组

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891962B1 (en) * 1998-09-14 2005-05-10 Mitsubishi Denki Kabushiki Kaisha Fingerprint sensor and fingerprint recognition system
KR100726100B1 (ko) * 2005-04-28 2007-06-12 대동전자(주) 지문인식장치용 광학시스템
CN102880867B (zh) * 2011-09-06 2015-10-28 友尼嗯可缪尼体有限公司 光学指纹采集装置
CN105184282B (zh) * 2015-10-14 2019-04-23 京东方科技集团股份有限公司 光学指纹检测装置及显示设备
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组
WO2018004243A1 (ko) * 2016-06-28 2018-01-04 주식회사 비욘드아이즈 지문인식 기능을 구비한 디스플레이
CN105988151B (zh) * 2016-06-30 2018-09-07 张家港康得新光电材料有限公司 光转向膜
CN106067014B (zh) * 2016-07-13 2021-09-10 杭州指安科技股份有限公司 一种均匀性光照采指面结构
US9922233B1 (en) * 2016-09-02 2018-03-20 Idspire Corporation Ltd. Thin type optical fingerprint sensor
CN108241827A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
CN206489579U (zh) * 2016-12-23 2017-09-12 敦捷光电股份有限公司 生物辨识装置
CN206470780U (zh) * 2016-12-23 2017-09-05 敦捷光电股份有限公司 生物辨识装置
CN106611170B (zh) * 2017-01-03 2021-10-22 京东方科技集团股份有限公司 指纹识别装置及电子设备
CN108629243B (zh) * 2017-03-24 2022-03-22 敦泰电子有限公司 生物特征识别装置
CN107103307B (zh) * 2017-05-23 2020-05-22 京东方科技集团股份有限公司 触控面板和显示装置
CN107330426B (zh) * 2017-08-28 2024-03-29 京东方科技集团股份有限公司 一种指纹识别装置、显示面板、指纹识别方法
CN107516089A (zh) * 2017-09-08 2017-12-26 北京眼神科技有限公司 一种指纹采集装置
CN108446677A (zh) * 2018-05-03 2018-08-24 东莞市美光达光学科技有限公司 一种用于屏幕下方的指纹识别模组
WO2020029021A1 (zh) * 2018-08-06 2020-02-13 深圳市汇顶科技股份有限公司 屏下光学指纹识别装置及电子设备
CN109313706B (zh) * 2018-09-25 2020-11-24 深圳市汇顶科技股份有限公司 指纹识别装置、方法和终端设备
CN109564623A (zh) * 2018-10-26 2019-04-02 深圳市汇顶科技股份有限公司 复合透镜结构、指纹识别装置和电子设备
WO2020124306A1 (zh) * 2018-12-17 2020-06-25 深圳市汇顶科技股份有限公司 液晶显示指纹模组、屏下指纹识别***及电子设备
CN209168151U (zh) * 2018-12-26 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020133479A1 (zh) * 2018-12-29 2020-07-02 深圳市汇顶科技股份有限公司 光学指纹识别模组及电子设备
WO2020150926A1 (zh) * 2019-01-23 2020-07-30 深圳市汇顶科技股份有限公司 Lcd屏下指纹识别模组、lcd装置和终端设备
CN110062931B (zh) * 2019-03-12 2021-07-16 深圳市汇顶科技股份有限公司 指纹识别装置、指纹识别方法和电子设备
EP3731133B8 (en) * 2019-03-12 2022-04-20 Shenzhen Goodix Technology Co., Ltd. Under-screen fingerprint recognition apparatus and electronic device
CN210295125U (zh) * 2019-08-08 2020-04-10 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090650A1 (en) * 2001-11-09 2003-05-15 Nec Corporation Fingerprint input devices and electronic devices provided with the same
CN101419662A (zh) * 2007-10-24 2009-04-29 巫仁杰 指纹输入模组
CN105759330A (zh) * 2016-03-16 2016-07-13 上海交通大学 基于光栅结构与微棱镜阵列的指纹识别***
CN108241839A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
CN110084090A (zh) * 2019-01-22 2019-08-02 东莞市美光达光学科技有限公司 一种光学式屏下指纹识别模组

Also Published As

Publication number Publication date
CN111108509A (zh) 2020-05-05
CN211349375U (zh) 2020-08-25
WO2021022560A1 (zh) 2021-02-11
CN111108509B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2020151159A1 (zh) 指纹识别的装置和电子设备
CN210038821U (zh) 光学指纹识别装置和电子设备
WO2021022596A1 (zh) 光学指纹装置和电子设备
WO2020133378A1 (zh) 指纹识别装置和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
CN210295125U (zh) 指纹检测装置和电子设备
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
WO2020147018A1 (zh) 光学图像采集***和电子设备
WO2021007730A1 (zh) 指纹检测装置和电子设备
CN111095281B (zh) 指纹检测的装置和电子设备
WO2021087695A1 (zh) 光学指纹装置和电子设备
WO2021035622A1 (zh) 指纹识别装置和电子设备
EP3800579B1 (en) Optical fingerprint apparatus and electronic device
WO2021077265A1 (zh) 指纹识别装置和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
WO2021081891A1 (zh) 用于指纹识别的方法、指纹识别装置和电子设备
CN210605741U (zh) 指纹检测的装置和电子设备
US20210042494A1 (en) Optical fingerprint apparatus and electronic device
WO2021077406A1 (zh) 指纹识别装置和电子设备
WO2020191601A1 (zh) 指纹识别的装置和电子设备
WO2021007964A1 (zh) 指纹检测装置和电子设备
CN210295124U (zh) 指纹检测的装置和电子设备
WO2021007953A1 (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940581

Country of ref document: EP

Kind code of ref document: A1