WO2021022529A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2021022529A1
WO2021022529A1 PCT/CN2019/099683 CN2019099683W WO2021022529A1 WO 2021022529 A1 WO2021022529 A1 WO 2021022529A1 CN 2019099683 W CN2019099683 W CN 2019099683W WO 2021022529 A1 WO2021022529 A1 WO 2021022529A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission resource
mac
transmission
resource
Prior art date
Application number
PCT/CN2019/099683
Other languages
English (en)
French (fr)
Inventor
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980094832.5A priority Critical patent/CN113647169A/zh
Priority to EP19940217.3A priority patent/EP3993536A4/en
Priority to PCT/CN2019/099683 priority patent/WO2021022529A1/zh
Priority to CN202210009354.7A priority patent/CN114340013B/zh
Publication of WO2021022529A1 publication Critical patent/WO2021022529A1/zh
Priority to US17/582,472 priority patent/US20220150951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/32Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • This application relates to the field of communication, and specifically to a communication method and communication device.
  • the 5th generation (5G) communication system supports a protocol data unit (PDU) connection service.
  • the PDU connection service is a service for transmitting PDUs between a terminal device and a network device.
  • PDU is an information unit transmitted between peer entities in the network, and can include control information and service data.
  • control information contained in the PDU of the media access control (MAC) layer can be called a MAC control element (CE)
  • CE media access control
  • service data unit service data unit
  • data unit, SDU data unit
  • the Industrial Internet of Things is an application scenario of 5G communication systems, which has extremely high requirements for delay and transmission reliability.
  • the network device may schedule the next MAC PDU to be transmitted in advance when the previous MAC PDU has not completed transmission, so that the previous MAC PDU may be deleted before it has been successfully transmitted. (flush), causing data loss.
  • the present application provides a communication method and a communication device, which can avoid the deletion of a low-priority MAC PDU (for example, the MAC PDU of the eMBB service) and cause data loss.
  • a low-priority MAC PDU for example, the MAC PDU of the eMBB service
  • a communication method including: acquiring first data; when the first data does not meet a transmission condition, determining that the first data is not deleted within a preset time period.
  • a communication method including: acquiring first data; and determining a processing mode of the first data according to the amount of data that can be carried by the first transmission resource.
  • a communication method including: determining a detection mode of first data according to the amount of data that can be carried by a first transmission resource, where the first transmission resource is used to transmit the first data.
  • a communication method including: determining a first transmission resource, the first transmission resource being used to transmit first data; generating the first data; determining a second transmission resource, the second transmission The resource is used to transmit the second data, where the first data and the second data correspond to the same HARQ process, and the first transmission resource overlaps the second transmission resource; it is determined not to generate the second data And/or authorization information of the second data.
  • a communication method including: determining a first transmission resource, the first transmission resource is used to transmit first data; and determining a second transmission resource, the second transmission resource is used to transmit second data , Wherein the first data and the second data correspond to the same HARQ process, the first transmission resource overlaps the second transmission resource; the first transmission resource and the second transmission resource are generated Data corresponding to higher priority transmission resources.
  • a communication method including: determining a first transmission resource, the first transmission resource is used to transmit first data; generating the first data; determining a second transmission resource, the second transmission The resource is used to transmit the second data, where the first data and the second data correspond to the same HARQ process, the first transmission resource overlaps with the transmission resource of the third data, and the second transmission resource The priority of is higher than the priority of the first transmission resource; the second data is generated; the first data is deleted.
  • a communication device for executing the method of the first, second, fourth, fifth, or sixth aspect described above.
  • the device includes a functional module for executing the method in the first aspect, the second aspect, the fourth aspect, the fifth aspect, or the sixth aspect.
  • a communication device for executing the method of the third aspect.
  • the device includes a functional module for executing the method in the third aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect, the second aspect, the fourth aspect, the fifth aspect, or the sixth aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the third aspect.
  • a chip for executing the method in the above-mentioned first, second, fourth, fifth or sixth aspect.
  • the chip includes a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip is used to execute the first, second, fourth, fifth, or sixth aspect described above. The method in the aspect.
  • a chip for executing the method in the third aspect.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip is used to execute the method in the third aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the first, second, fourth, fifth, or sixth aspect above .
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the third aspect.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect, the second aspect, the fourth aspect, the fifth aspect, or the sixth aspect.
  • a computer program product including computer program instructions that cause a computer to execute the method in the third aspect.
  • a computer program which when run on a computer, causes the computer to execute the method in the first, second, fourth, fifth or sixth aspect.
  • a computer program which, when run on a computer, causes the computer to execute the method in the third aspect.
  • Figure 1 is a schematic diagram of a communication system suitable for the present application
  • Figure 2 is a schematic diagram of a communication method provided by the present application.
  • FIG. 3 is a schematic diagram of another communication method provided by the present application.
  • FIG. 4 is a schematic diagram of another communication method provided by this application.
  • FIG. 5 is a schematic diagram of another communication method provided by this application.
  • FIG. 6 is a schematic diagram of still another communication method provided by this application.
  • FIG. 7 is a schematic diagram of yet another communication method provided by this application.
  • FIG. 8 is a schematic diagram of yet another communication method provided by this application.
  • FIG. 9 is a schematic diagram of yet another communication method provided by this application.
  • FIG. 10 is a schematic diagram of a communication device provided by the present application.
  • FIG. 11 is a schematic diagram of another communication device provided by this application.
  • FIG. 12 is a schematic diagram of another communication device provided by the present application.
  • FIG. 13 is a schematic diagram of still another communication device provided by this application.
  • FIG. 14 is a schematic diagram of another communication device provided by the present application.
  • FIG. 15 is a schematic diagram of another communication device provided by the present application.
  • Fig. 16 is a schematic diagram of a communication device provided by the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the terminal device 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, for example, the third-generation partnership project (3 rd Generation partnership project, 3GPP) defined user equipment (user equipment, UE), mobile station (mobile station, MS), soft terminal, home gateway, set-top box, etc.
  • 3GPP Third-generation partnership project
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (gNB) in a 5G communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (AGF).
  • AMF access gateway
  • the network device 110 may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and other types of devices.
  • the communication system 100 is only an example, and the communication system applicable to the present application is not limited to this.
  • the number of network devices and terminal devices included in the communication system 100 may also be other numbers.
  • the terminal devices and network devices are no longer accompanied by reference numerals.
  • the method 200 includes:
  • the method 200 may be executed by a terminal device or a chip in the terminal device.
  • the first data is, for example, MAC PDU.
  • the network device may configure a first hybrid automatic repeat request (HARQ) process for the transmission resource of the first data, so that the terminal device stores the first data in the first HARQ process after generating the first data.
  • HARQ hybrid automatic repeat request
  • the terminal device may set an identification bit for the buffer of the first HARQ process.
  • the identification bit is, for example, 1 bit. When the identification bit is "0" , Indicates that the buffer of the first HARQ process can be emptied; when the flag is "1", it indicates that the buffer of the first HARQ process cannot be emptied. If the first data does not meet the transmission condition, and the first data is stored in the buffer of the first HARQ process, the terminal device may set the flag of the buffer to "1" to save the first data.
  • the terminal device may configure a timer for the first data.
  • the first data cannot be deleted, so Prevent the first data from being deleted when the transmission conditions are not met.
  • the foregoing first data not meeting the transmission condition may include: the priority of the first data meets the priority requirement.
  • the network equipment dispatches the terminal equipment to transmit enhanced mobile broadband (eMBB) services on transmission resource 1, and then the network equipment dispatches the terminal equipment to transmit ultra-reliability and low latency (ultra reliability and low) on transmission resource 2.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliability and low latency
  • the terminal device After the terminal device generates the MAC PDU of the two services, in order to meet the requirements of the URLLC service, it will send the MAC PDU of the URLLC service on the transmission resource 2 instead of the MAC PDU of the eMBB service.
  • the MAC PDU of the eMBB service when the eMBB service and the URLLC service coexist is an example of the first data.
  • the transmission resource carrying the first data may be a configured grant (CG) resource, and the above timer may be a configured grant timer (configured grant timer).
  • Each HARQ process of the CG resource corresponds to a configuration authorization timer.
  • the role of the configuration authorization timer is: during the operation of the configuration authorization timer, the data in the HARQ process corresponding to the configuration authorization timer cannot be deleted.
  • the network device can also schedule dynamic grant (DG) resources to transmit data, and the network device can also use the HARQ process configured for the CG resource when scheduling the DG resource for transmission. After obtaining the first data transmitted on the DG resource, the terminal device will also start the configuration authorization timer.
  • DG dynamic grant
  • the configuration authorization timer can be started when the first data does not meet the transmission conditions.
  • the first data not satisfying the transmission condition may include at least one of the following situations:
  • the first data is a low priority MAC PDU (deprioritized MAC PDU).
  • the transmission resource of the first data overlaps the transmission resource of the second data.
  • the first data is stored in the first HARQ process.
  • the first data is not sent.
  • first and second refer to two different individuals, for example, the above-mentioned “first data” and “second data” refer to two different data, except There are no other restrictions.
  • the terminal device may transmit the first data without the transmission resource of the first data,
  • the first data may also be transmitted on the transmission resource of the first data. Since the priority of the first data is low, even if it is transmitted, it may be punctured by the second data, resulting in a decrease in the transmission success rate of the first data. Therefore, the terminal device can regard the two cases as the first data not meeting the transmission conditions. Case.
  • the terminal device may also consider this situation as not satisfying the transmission conditions. happening.
  • the terminal device can store the first data from the second HARQ process into the first HARQ process, and wait for the next retransmission or new transmission or subsequent release.
  • the above solution stores the first data and the second data in different HARQ processes, which can avoid the problem of inconsistent understanding of the transmission mode of the first data by the network equipment and the terminal equipment. If the first data is retransmitted later, the terminal equipment can comply with the network Equipment decision.
  • the terminal device When the transmission resource of the first data overlaps the transmission resource of the second data, if the terminal device has already generated the first data and stored the first data in the first HARQ process, and the priority of the transmission resource of the second data If the priority of the transmission resource of the first data is higher, the terminal device may not generate the second data; or the terminal device may generate the second data and store the second data in the second HARQ process.
  • the priority of the transmission resource of the above second data may be the resource priority, the priority of the data to be transmitted on the transmission resource, or the priority of the logical channel to be transmitted on the transmission resource, which is not correct in the embodiment of this application.
  • the method of dividing the priority of transmission resources is limited.
  • the terminal device does not generate the second data to avoid the delay of waiting for retransmission; the terminal device generates the second data, and stores the first data and the second data in different HARQ processes, which can avoid the network device and the terminal device
  • the terminal device can follow the decision of the network device whether to retransmit the first data in the future.
  • the terminal device When the transmission resource of the first data overlaps the transmission resource of the second data, if the terminal device has already generated the first data, and the priority of the transmission resource of the second data is higher than the priority of the transmission resource of the first data, Then the terminal device generates the second data, stores the second data in the first HARQ process, and stores the first data in other HARQ processes.
  • the priority of the transmission resource of the second data may be the resource priority, the priority of the data to be transmitted on the transmission resource, or the priority of the logical channel to be transmitted on the transmission resource.
  • the first HARQ process is the HARQ process for priority transmission
  • storing the second data in the first HARQ process and removing the first data from the HARQ process can ensure that high-priority services are transmitted as soon as possible, reducing high priority Level of service delay.
  • the terminal device may start or restart the configuration authorization timer at the first moment, which is the moment before the end time domain position of the transmission resource of the first data.
  • the first time is the transmission time of the first data, where the transmission time may be the transmission time of the first data determined by the MAC layer.
  • the terminal device starts or restarts the configuration authorization timer.
  • the transmission time of the first data may also be the transmission time of the physical uplink shared channel (PUSCH) corresponding to the first data, or the transmission time of the PUSCH of the first data determined by the MAC layer.
  • PUSCH physical uplink shared channel
  • the terminal device can start or restart the configuration authorization timer.
  • the PUSCH corresponding to the above first data may be interpreted as: a PUSCH used to transmit the first data or a PUSCH pre-allocated to the first data.
  • the first moment may also be: the moment when the first data is acquired (for example, the moment when the MAC layer acquires the first data), or the moment when the MAC layer delivers the uplink grant (uplink grant) of the first data to the physical layer, Or, the moment when the MAC layer delivers (delivers) the first data to the physical layer.
  • the terminal device can start or restart the configuration authorization timer.
  • the MAC layer of the terminal device generates the first data, but due to some reasons, such as the first data is a low-priority MAC PDU, or the transmission resource of the first data overlaps with other transmission resources, the first data is stored in the first data.
  • the terminal device can start or restart the configuration authorization timer at the time when PUSCH transmission or when transmission starts, or when PUSCH should be transmitted or when PUSCH should start transmission.
  • the configuration authorization timer is started. If the time domain location of the transmission resource of the first data is longer than the time when the MAC layer acquires the first data, the terminal device can be configured in the MAC layer.
  • the configuration authorization timer is restarted when the uplink authorization of the first data is transmitted to the physical layer, and/or the configuration authorization timer is restarted at the moment when the MAC layer transmits the first data to the physical layer, so as to avoid the configuration authorization timer being lost in the first data. Failure to transmit or timeout causes the first data to be deleted.
  • the terminal device can try to transmit the first data on the new transmission resource based on the method shown in FIG. 3.
  • the method 300 includes:
  • S320 Determine a processing mode of the first data according to the amount of data that can be carried by the first transmission resource.
  • the first data in the method 300 may be the first data in the method 200, and the first data in the method 300 may be different data from the first data in the method 200.
  • the first transmission resource is a new transmission resource used to transmit the first data.
  • the first transmission resource may be a resource determined by the terminal device from a semi-statically configured resource pool, for example, a CG resource; the first transmission resource may also be a resource dynamically scheduled by a network device, for example, a dynamic grant (DG) resource .
  • DG dynamic grant
  • the HARQ process of the first transmission resource and the HARQ process of the first data may be the same or different.
  • the HARQ process of the first transmission resource may also be changed to the HARQ process of the first data, and the change may also be reported to the network device.
  • the first transmission resource may be a temporarily allocated resource. Therefore, the amount of data that the first transmission resource can carry may not necessarily match the size of the first data.
  • the terminal device determines the processing mode of the first data according to the amount of data that can be carried by the first transmission resource, which can prevent the first data transmission from failing when the amount of data that can be carried by the first transmission resource is smaller than the size of the first data, or can avoid The amount of data that can be carried by the transmission resource is greater than the size of the first data, resulting in a waste of the first transmission resource.
  • the processing mode of the first data is described according to the amount of data that the first transmission resource can carry.
  • Case 1 The amount of data that can be carried by the first transmission resource is greater than or equal to the size of the first data.
  • the terminal device may transmit the third data on the first transmission resource, where the third data includes all or part of the information in the first data, and the third data may be a MAC PDU generated by a multiplexing and assembly entity,
  • the third data transmission on the first transmission resource may be a new transmission.
  • the third data when the amount of data that the first transmission resource can carry is greater than the size of the first data, the third data contains the first data, and the remaining bits can be filled with padding; when the amount of data that the first transmission resource can carry is equal to the first data In terms of the size of the data, the third data only contains the first data.
  • the third data includes at least one MAC SDU in the first data, or the third data includes at least one MAC CE in the first data, or the third data includes at least one MAC SDU and at least one MAC SDU in the first data.
  • the terminal device may compose the aforementioned at least one MAC SDU into a first MAC subPDU (subPDU), and/or the terminal device can compose the aforementioned at least one MAC CE into a second MAC subPDU.
  • the third data may also include: a third MAC subPDU and/or a fourth MAC subPDU.
  • the third MAC subPDU and the fourth MAC subPDU are MAC subPDUs generated during the period between the first transmission resource and the second transmission resource, the third MAC subPDU includes a MAC SDU, and the fourth MAC subPDU includes a MAC CE.
  • the foregoing second transmission resource is a transmission resource located before the first transmission resource, and is used to transmit the first data.
  • the time period between the first transmission resource and the second transmission resource may be: the time period between the first time domain symbol of the second transmission resource and the last time domain symbol of the first transmission resource; or: 2.
  • the period between the first transmission resource and the second transmission resource may also be a period of other duration.
  • the MAC SDU included in the third MAC subPDU may be data newly generated or acquired by a higher layer of the MAC layer during the period between the first transmission resource and the second transmission resource.
  • the MAC CE included in the fourth MAC subPDU may be a MAC CE generated during the period between the first transmission resource and the second transmission resource, triggered by the MAC layer, or when the MAC layer triggers a report (report) The generated MAC CE, or the MAC CE that will be generated when the MAC layer triggers the report, or the MAC CE that can be generated when the MAC layer triggers the report.
  • the third MAC subPDU and the first MAC subPDU may be the same MAC subPDU, or may be different MAC subPDUs; the fourth MAC subPDU and the second MAC subPDU may be the same MAC subPDU or different MAC subPDUs.
  • the terminal device triggers a new buffer status report (BSR), that is, when the terminal device determines that the first transmission resource is available, it generates With the new BSR MAC CE, the terminal device can discard the old BSR MAC CE (that is, the BSR MAC CE in the first data), and fill the new BSR MAC CE in the third data.
  • BSR buffer status report
  • the above-mentioned terminal device triggers a new BSR, for example, the terminal device triggers a periodic BSR when the periodic BSR reporting conditions are met, or the terminal device triggers a regular BSR when there is a higher priority logical channel that needs to transmit data to be transmitted.
  • the terminal device triggers a new BSR, that is, when the terminal device determines that there is the first transmission resource, it can generate a new BSR MAC CE, which can be discarded
  • the old BSR MAC CE (that is, the BSR MAC CE in the first data) fills the new BSR MAC CE into the third data.
  • the foregoing terminal device triggers a new BSR, for example, the terminal device triggers a retransmission of the BSR when the condition for retransmission of the BSR report is satisfied.
  • the terminal device can use the old BSR MAC CE (that is, the BSR MAC CE in the first data) without generating a new BSR MAC CE according to the trigger condition or type of the MAC CE.
  • the MAC layer of the terminal device obtains a new packet data convergence protocol (PDCP) control PDU (such as a PDCP status report) from a higher layer. And/or a new radio link control (RLC) control PDU (RLC control PDU), the terminal device can discard the old PDCP control PDU (that is, the PDCP control PDU in the first data) and the old RLC Control PDU (that is, RLC control PDU in the first data), and fill the new PDCP control PDU and the new RLC control PDU into the third data.
  • PDCP packet data convergence protocol
  • RLC control PDU radio link control
  • the old BSR MAC CE is the invalid MAC CE
  • the new BSR MAC CE is the valid MAC CE
  • the old PDCP control PDU and the old RLC control PDU are the invalid MAC SDU
  • the new RLC control PDU is a valid MAC SDU.
  • the MAC layer of the terminal device obtains a new PDCP data PDU (PDCP data PDU) and/or a new RLC data PDU (RLC data PDU) from a higher layer.
  • the terminal device may generate a new MAC subPDU and fill in the third data.
  • the terminal device can send the third data on the first transmission resource, where the third The data may include all the information of the first data or part of the information of the first data.
  • the terminal device may send third data on the first transmission resource, where the third data may contain all the information of the first data. It may contain partial information of the first data. If the amount of data that the first transmission resource can carry is greater than the size of the third data, the terminal device can add padding to the third data, or the terminal device can use the first transmission resource to transmit other data.
  • the terminal device may discard the first data and transmit other data.
  • the other data is, for example, data matching the first transmission resource, so as to avoid resource waste.
  • Case 2 The amount of data that can be carried by the first transmission resource is less than the size of the first data.
  • the terminal device cannot send the entire content of the first data on the first transmission resource. Therefore, the terminal device can choose to discard the first data and use the first transmission resource.
  • the data matching the first transmission resource is transmitted; the terminal device may also delete part of the content of the first data, so that the first transmission resource can carry the first data.
  • the terminal device may generate fourth data through the multiplexing assembly entity, and transmit the fourth data on the first transmission resource, where the fourth data includes part of the information in the first data, and the fourth data may be transmitted on the first transmission resource. New pass.
  • the fourth data includes at least one MAC SDU in the first data, or the fourth data includes at least one MAC CE in the first data, or the fourth data includes at least one MAC SDU and at least one MAC SDU in the first data.
  • the terminal device may compose the aforementioned at least one MAC SDU into a first MAC subPDU, and/or the terminal device can compose the aforementioned at least one MAC CE into a second MAC subPDU.
  • the terminal device can determine which information in the at least one MAC SDU and the at least one MAC CE can be filled in the fourth data according to the priority.
  • the terminal device may determine the priority of the aforementioned at least one MAC SDU and at least one MAC CE based on pre-definition, network indication, or UE implementation. For example, the terminal device can determine the priority of the MAC SDU/MAC CE according to the priority and type of the logical channel.
  • the fourth data includes at least one MAC SDU in the first data
  • the at least one MAC SDU is: the first m MAC SDUs in the MAC SDU in the first data from high to low priority, and m is a positive integer.
  • the first data includes 3 MAC SDUs, which are respectively MAC SDU1, MAC SDU2, and MAC SDU3 according to priority; if m is equal to 1, the first m MAC SDUs with priority from high to low are MAC SDU1; If m is equal to 2, the first m MAC SDUs from high to low priority are MAC SDU1 and MAC SDU2; if m is equal to 3, the first m MAC SDUs from high to low priority are MAC SDU1, MAC SDU2 and MAC SDU3.
  • n is a positive integer.
  • the fourth data includes at least one MAC CE in the first data
  • the at least one MAC CE is: the first p MAC SDUs in the MAC SDU in the first data from high to low priority, and p is a positive integer.
  • the first data includes 3 MAC CEs, which are MAC CE 1, MAC CE 2, and MAC CE 3 in order of priority; if p is equal to 1, the first p MAC CEs with priority from high to low are MAC CE 1; if p is equal to 2, the first p MAC CEs with priority from high to low are MAC CE 1 and MAC CE 2; if p is equal to 3, the first p MAC CEs with priority from high to low are MAC CE 1, MAC CE 2, and MAC CE 3.
  • the amount of data that the first transmission resource can carry is greater than the size of all MAC CEs in the first data, then the first q MAC SDUs in the MAC SDU in the first data from high to low priority are filled into the fourth data.
  • q is a positive integer.
  • the terminal device may not distinguish the type of information in the first data, and fill the first k information with priority from high to low in at least one MAC CE and at least one MAC SDU into the fourth data.
  • the fourth data may also include: a third MAC subPDU and/or a fourth MAC subPDU.
  • the third MAC subPDU and the fourth MAC subPDU are MAC subPDUs generated during the period between the first transmission resource and the second transmission resource, the third MAC subPDU includes a MAC SDU, and the fourth MAC subPDU includes a MAC CE.
  • the foregoing second transmission resource is a transmission resource located before the first transmission resource, and is used to transmit the first data.
  • the period between the first transmission resource and the second transmission resource may be: the period between the first time domain symbol of the second transmission resource and the last time domain symbol of the first transmission resource; or: 2.
  • the period between the foregoing first transmission resource and the second transmission resource may also be a period of other duration.
  • the MAC SDU may be data newly generated by the MAC layer during the period between the first transmission resource and the second transmission resource. Data obtained from the top.
  • the MAC CE included in the fourth MAC subPDU the MAC CE may be a MAC CE generated when the MAC layer triggers the report during the period between the first transmission resource and the second transmission resource.
  • the third MAC subPDU and the first MAC subPDU may be the same MAC subPDU, or may be different MAC subPDUs; the fourth MAC subPDU and the second MAC subPDU may be the same MAC subPDU or different MAC subPDUs.
  • the terminal device triggers a new BSR (an example of the first MAC CE), that is, the terminal device generates a new BSR MAC CE, then the terminal device When it is determined that there is the first transmission resource, the old BSR MAC CE (that is, the BSR MAC CE in the first data) can be discarded, and the new BSR MAC CE can be filled in the fourth data.
  • the aforementioned terminal device triggers a new BSR, for example, the terminal device triggers a periodic BSR when the periodic BSR reporting conditions are met, or the terminal device triggers a regular BSR when there is a higher priority logical channel that needs to transmit data to be transmitted.
  • the terminal device triggers a new BSR, that is, when the terminal device determines that there is the first transmission resource, it can generate a new BSR MAC CE, which can be discarded
  • the old BSR MAC CE (that is, the BSR MAC CE in the first data) fills the new BSR MAC CE into the fourth data.
  • the foregoing terminal device triggers a new BSR, for example: the terminal device triggers a retransmission of the BSR when the condition for retransmission of the BSR report is satisfied.
  • the terminal device can use the old BSR MAC CE (that is, the BSR MAC CE in the first data) without generating a new BSR MAC CE according to the trigger condition or type of the MAC CE.
  • the MAC layer of the terminal device obtains a new PDCP control PDU (such as a PDCP status report) and/or a new RLC control PDU from a higher layer, then The terminal device can discard the old PDCP control PDU (that is, the PDCP control PDU in the first data) and the old RLC control PDU (that is, the RLC control PDU in the first data), and combine the new PDCP control PDU and the new RLC Fill the control PDU with the fourth data.
  • a new PDCP control PDU such as a PDCP status report
  • the old BSR MAC CE is the invalid MAC CE
  • the new BSR MAC CE is the valid MAC CE
  • the old PDCP control PDU and the old RLC control PDU are the invalid MAC SDU
  • the new RLC control PDU is a valid MAC SDU.
  • the MAC layer of the terminal device obtains a new PDCP data PDU (PDCP data PDU) and/or a new RLC data PDU (RLC data PDU) from a higher layer.
  • the terminal device may generate a new MAC subPDU and fill in the fourth data.
  • the terminal device may store part or all of the first data in the HARQ process corresponding to the first transmission resource to save HARQ process resources .
  • the method 300 describes a method for processing low-priority data provided in this application from the perspective of a terminal device. For the network device, if the network device determines that the terminal device may transmit low-priority data on the new transmission resource, the network device can determine the detection mode of the low-priority data according to the method shown in FIG. 4.
  • the method 400 includes:
  • S410 Determine a detection mode for first data according to the amount of data that can be carried by the first transmission resource, where the first transmission resource is used to transmit the first data.
  • the first transmission resource and the first data in the method 400 are the same as the first transmission resource and the first data in the method 300. For the sake of brevity, details are not described herein again.
  • the first transmission resource may be a temporarily allocated resource. Therefore, the amount of data that the first transmission resource can carry may not necessarily match the size of the first data.
  • the network device can perform detection on the first transmission resource and expect to receive the first data Signals of all or part of the information.
  • the network device can detect on the first transmission resource and expect to receive the first data Partial information signal.
  • the network device may not perform detection on the first transmission resource.
  • the preset rule is: the terminal device does not transmit the first data on a transmission resource that does not match the first data; the network device can determine not to detect the first data on the first transmission resource according to the preset rule, so as to avoid resource waste.
  • the network device can perform detection on the first transmission resource and expect to receive the data containing the first data. Signals of all or part of the information.
  • the network device executing the method 400 can flexibly determine the detection mode of the low-priority data according to the actual situation.
  • the network device configures two CG resources for the terminal device, namely CG resource 1 and CG resource 2.
  • CG resource 1 corresponds to HARQ process 1
  • CG resource 2 corresponds to HARQ process 3.
  • the network device activates the CG resource 1 through downlink control information (DCI) 1. Subsequently, the network device schedules a DG resource through DCI2, and the DG resource overlaps with CG resource 1. Among them, the DG resource corresponds to HARQ process 2.
  • DCI downlink control information
  • the terminal device performs intra-UE priority processing (intra-UE prioritization) to determine the priority to transmit data on the DG. If the terminal device has generated data to be transmitted on CG resource 1, that is, MAC PDU1, then MAC PDU1 is low priority data (deprioritized MAC PDU).
  • the terminal device may store MAC PDU1 in a buffer corresponding to HARQ process 1, and store MAC PDU2 (data to be transmitted on the DG resource) in a buffer corresponding to HARQ process 2.
  • the terminal device preferentially transmits MAC PDU2 and does not transmit MAC PDU1.
  • the terminal device can start or restart the configuration authorization timer of HARQ process 1 at any time before the end position of the time domain of CG resource 1 to prevent MAC PDU1 from being flushed by subsequent buffered data stored in HARQ process 1.
  • the terminal device can start or restart the configuration authorization timer at the start time of the CG resource 1.
  • FIG. 6 shows another low priority data processing method provided by this application.
  • the network device configures two CG resources for the terminal device, namely CG resource 1 and CG resource 2.
  • CG resource 1 corresponds to HARQ process 1
  • CG resource 2 corresponds to HARQ process 3.
  • the network device activates CG resource 1 through DCI1. Subsequently, the network device schedules a DG resource through DCI2, and the DG resource overlaps with CG resource 1. Among them, the DG resource corresponds to HARQ process 2.
  • the terminal device performs intra-UE priority processing (intra-UE prioritization) to determine the priority to transmit data on the DG. If the terminal device has generated data to be transmitted on CG resource 1, that is, MAC PDU1, then MAC PDU1 is low priority data (deprioritized MAC PDU). The terminal device may store MAC PDU1 in the buffer corresponding to HARQ process 1, and store MAC PDU2 (data to be transmitted on the DG resource) in the buffer corresponding to HARQ process 2.
  • intra-UE priority processing intra-UE prioritization
  • the terminal device preferentially transmits MAC PDU2 and does not transmit MAC PDU1.
  • the terminal device can start or restart the configuration authorization timer of the HARQ process 1 at any time before the end position of the time domain of the CG resource 1, so as to prevent the MAC PDU1 from being washed out by subsequent buffered data stored in the HARQ process 1.
  • the terminal device may also not start the configuration authorization timer of the HARQ process 1 or not start the configuration authorization timer of the HARQ process 1 when it is ensured that the MAC PDU1 will not be washed out.
  • the network device can perform dynamic scheduling for HARQ process 1. If the network device schedules the MAC PDU1 retransmission, such as using the configured scheduling radio network temporary identifier (CS-RNTI) to schedule the MAC PDU1 retransmission, the terminal device transmits according to the retransmission. If the network device allocates a new transmission resource for MAC PDU1 (an example of the second transmission resource in the method 300). For example, the network equipment may schedule the new transmission resources of HARQ process 1 through a physical downlink control channel (PDCCH) scrambled by a cell radio network temporary identifier (C-RNTI). The terminal device determines the transmission mode of the MAC PDU1 according to the transport block size (TBS) of the newly transmitted resource.
  • TBS transport block size
  • the terminal device can rebuild (rebuild) the MAC PDU, and generate MAC PDU3 through the multiplex assembly entity.
  • MAC PDU3 contains the contents of MAC PDU1 MAC SDU and MAC CE. Or, directly transmit MAC PDU1 as MAC PDU3.
  • MAC PDU3 is an example of the third data in method 300.
  • the TBS of the newly transmitted resource is 50 bytes
  • the size of MAC PDU1 is 50 bytes
  • the MAC PDU1 includes the PDCP status report.
  • the terminal device Before the start time of the new resource transmission, the terminal device generates a new PDCP status report, then the terminal device can reassemble the MAC PDU, and generate MAC PDU3 through the multiplex assembly entity.
  • MAC PDU3 includes the MAC CE and valid MAC in MAC PDU1 SDU, and MAC PDU3 does not contain invalid MAC SDU.
  • the valid MAC SDU includes a new PDCP status report, and the invalid MAC SDU includes the PDCP status report in MAC PDU1.
  • the terminal device can reassemble the MAC PDU, and generate MAC PDU3 through the multiplex assembly entity.
  • MAC PDU3 includes the MAC SDU and MAC CE in MAC PDU1 , MAC PDU3 also contains padding information to meet transmission requirements.
  • the terminal device can reassemble the MAC PDU, and generate MAC PDU3 through the multiplex assembly entity.
  • MAC PDU3 includes the MAC PDU1 in MAC PDU1 and valid MAC SDU, and MAC PDU3 does not contain invalid MAC SDU. If the size of MAC PDU3 is less than 60 bytes, the terminal device can obtain RLC PDU from higher layers according to logical channel priority (logical channel priority, LCH), and fill in MAC PDU3.
  • logical channel priority logical channel priority, LCH
  • the terminal device can reassemble the MAC PDU, and generate MAC PDU3 through the multiplex assembly entity.
  • MAC PDU3 contains the valid MAC CE and CE in MAC PDU1 A valid MAC SDU, and MAC PDU3 does not include an invalid MAC SDU and an invalid MAC CE. If the size of MAC PDU3 is less than 60 bytes, the terminal device can obtain RLC PDU from the higher layer according to LCH and fill in MAC PDU3.
  • the terminal device can reassemble the MAC PDU according to the priority of each information in the MAC PDU1, and generate the MAC PDU3 through the multiplex assembly entity.
  • the priority of each information in MAC PDU1 from high to low can be: BSR MAC CE>PDCP control PDU>RLC control PDU>RLC data PDU1>RLC data PDU2>RLC data PDU3.
  • the foregoing RLC data PDU1, RLC data PDU2, and RLC data PDU3 represent three different PDUs carrying service data.
  • the terminal device If the size of BSR MAC CE, PDCP control PDU, RLC control PDU, RLC data PDU1, and RLC data PDU2 is less than 40 bytes, the terminal device generates MAC PDU3 containing the above 5 information, and discards RLC data PDU3. Further, when there are scattered resources remaining in the aforementioned newly transmitted resources, the terminal device may fill in the padding information in the MAC PDU3.
  • the terminal device can start or restart the configured authorization timer of HARQ process 1 after generating MAC PDU3 to prevent MAC PDU1 from being washed out by subsequent buffered data stored in HARQ process 1.
  • the terminal device may also not start the configuration authorization timer of the HARQ process 1 or not start the configuration authorization timer of the HARQ process 1 when it is ensured that the MAC PDU3 will not be washed out.
  • the foregoing describes in detail the method for processing low-priority data provided by this application.
  • the above-mentioned method can avoid the deletion of low-priority MAC PDUs and cause data loss.
  • the above-mentioned communication method is relatively complex.
  • several other communication methods provided by this application will be introduced. The following several methods can avoid generating or storing low-priority data and reduce the burden on terminal devices.
  • the method 700 includes:
  • S730 Determine a second transmission resource, where the second transmission resource is used to transmit second data, where the first data and the second data correspond to the same HARQ process, and the first transmission resource is the same as the first data. 2. Overlapping transmission resources.
  • S740 Determine not to generate the second data and/or authorization information of the second data.
  • the first transmission resource may be a CG resource or a DG resource.
  • the above determination of the first transmission resource may be interpreted as: the terminal device determines the CG resource from a semi-statically configured resource pool, or the terminal device receives an indication DG from the network device The instruction information of the resource, and the DG resource is determined according to the instruction information.
  • the second transmission resource may be a CG resource or a DG resource.
  • the above determination of the second transmission resource may be interpreted as: the terminal device determines the CG resource from a semi-statically configured resource pool, or the terminal device receives an indication DG from the network device The instruction information of the resource, and the DG resource is determined according to the instruction information.
  • the first transmission resource and the second transmission resource may overlap partially or completely.
  • the first data is, for example, a MAC PDU. If the terminal device has already generated the MAC PDU corresponding to the first transmission resource when determining the second transmission resource, the terminal device may not generate the second transmission regardless of the priority of the second transmission resource. The MAC PDU corresponding to the resource also no longer generates authorization information (grant) for the second transmission resource.
  • the terminal device executing the method 700 does not generate low-priority data, thereby avoiding the terminal device from executing a complicated low-priority data processing method.
  • the method 800 includes:
  • S810 Determine a first transmission resource, where the first transmission resource is used to transmit first data.
  • S820 Determine a second transmission resource, where the second transmission resource is used to transmit second data, where the first data and the second data correspond to the same HARQ process, and the first transmission resource is the same as the first data. 2. Overlapping transmission resources.
  • S830 Generate data corresponding to a transmission resource with a higher priority among the first transmission resource and the second transmission resource.
  • the first transmission resource may be a CG resource or a DG resource.
  • the above determination of the first transmission resource may be interpreted as: the terminal device determines the CG resource from a semi-statically configured resource pool, or the terminal device receives an indication DG from the network device The instruction information of the resource, and the DG resource is determined according to the instruction information.
  • the second transmission resource may be a CG resource or a DG resource.
  • the above determination of the second transmission resource may be interpreted as: the terminal device determines the CG resource from a semi-statically configured resource pool, or the terminal device receives an indication DG from the network device The instruction information of the resource, and the DG resource is determined according to the instruction information.
  • the first transmission resource and the second transmission resource may overlap partially or completely.
  • S810 and S820 can be performed at the same time or sequentially. This application does not limit the order in which the terminal device performs S810 and S820. If the terminal device has not generated the first data and the second data after determining the first transmission resource and the second transmission resource, the terminal device can determine the transmission resource with the higher priority among the first transmission resource and the second transmission resource, and Generate data corresponding to higher priority transmission resources.
  • the terminal device may generate the second data and no longer generate the first data. Therefore, it is possible to prevent the terminal device from executing a complicated low-priority data processing method.
  • the terminal device can generate the second data , No longer generate the first data. Therefore, it is possible to prevent the terminal device from executing a complicated low-priority data processing method.
  • the method 900 includes:
  • S930 Determine a second transmission resource, where the second transmission resource is used to transmit second data, where the first data and the second data correspond to the same HARQ process, and the first transmission resource is the same as the first data.
  • the second transmission resource overlaps, and the priority of the third transmission resource is higher than the priority of the first transmission resource.
  • S930 to S950 can be replaced with: determining a second transmission resource, where the second transmission resource is used to transmit the second data, where the first data and the second data correspond to the same HARQ process, so If the first transmission resource overlaps with the second transmission resource, and the priority of the second transmission resource is higher than the priority of the first transmission resource, the second data is generated, and the first data is stored in the additional In the HARQ process of any/reserved/specific/empty.
  • S930 to S950 can be replaced with: determining a second transmission resource, where the second transmission resource is used to transmit the second data, where the first data and the second data correspond to the same HARQ process, so If the first transmission resource overlaps with the second transmission resource, and the priority of the second transmission resource is equal to or lower than the priority of the first transmission resource, the second data and/or the The authorization information of the second data.
  • the first transmission resource may be a CG resource or a DG resource.
  • the above determination of the first transmission resource may be interpreted as: the terminal device determines the CG resource from a semi-statically configured resource pool, or the terminal device receives an indication DG from the network device The instruction information of the resource, and the DG resource is determined according to the instruction information.
  • the second transmission resource may be a CG resource or a DG resource.
  • the above determination of the second transmission resource may be interpreted as: the terminal device determines the CG resource from a semi-statically configured resource pool, or the terminal device receives an indication DG from the network device The instruction information of the resource, and the DG resource is determined according to the instruction information.
  • the first transmission resource and the second transmission resource may overlap partially or completely.
  • the first data is, for example, MAC PDU. If the terminal device has generated the MAC PDU corresponding to the first transmission resource when determining the second transmission resource, and the priority of the second transmission resource is higher than the priority of the first transmission resource, then The terminal device may generate a MAC PDU (ie, second data) corresponding to the second transmission resource and delete the MAC PDU corresponding to the first transmission resource.
  • S940 and S950 can be performed at the same time or sequentially. This application does not limit the order in which the terminal device performs S940 and S950.
  • the terminal device executing the method 900 does not generate low-priority data, thereby avoiding the terminal device from executing a complicated low-priority data processing method.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the communication device into functional units according to the foregoing method examples.
  • each function may be divided into each functional unit, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 is a schematic structural diagram of a communication device provided by the present application.
  • the dotted line in the figure indicates that the unit is an optional unit.
  • the device 1000 includes a processing unit 1010 and a communication unit 1020, and the processing unit 1010 can control the communication unit 1020 to perform an acquiring step (or a receiving step).
  • the processing unit 1010 is used for:
  • the first data does not meet the transmission condition, it is determined not to delete the first data within a preset time period.
  • the processing unit 1010 may obtain the first data by: the processing unit 1010 may generate the first data by itself, may obtain the first data generated by a higher layer through the communication unit 1020, or may receive the first data from other devices through the communication unit 1020.
  • the processing unit 1010 is specifically configured to: start or restart a timer, and the timer is configured to not delete the first data within the preset time period.
  • the first data is stored in a first HARQ process
  • the timer is a configuration authorization timer of the first HARQ process.
  • the processing unit 1010 is specifically configured to: start or restart the timer at a first moment, where the first moment is a moment before the end of the time domain on the transmission resource of the first data.
  • the first moment includes one of the following moments: the transmission moment of the first data; the moment when the first data is acquired; the moment when the MAC layer transmits the uplink authorization of the first data to the physical layer ; The moment when the MAC layer transmits the first data to the physical layer.
  • the transmission time of the first data includes: the transmission time of the first data determined by the MAC layer.
  • the transmission time of the first data includes: the transmission time of the PUSCH used to transmit the first data.
  • the time when the first data is acquired includes: the time when the MAC layer acquires the first data.
  • that the first data does not meet a transmission condition includes: the first data is data that meets priority requirements.
  • the data that meets the priority requirement includes: deprioritized MAC PDU.
  • the failure of the first data to satisfy the transmission condition includes: the transmission resource of the first data overlaps the transmission resource of the second data.
  • that the first data does not meet the transmission condition includes: the first data is stored in the first HARQ process.
  • the processing unit 1010 is further configured to store the first data in the second HARQ process into the first HARQ process.
  • FIG. 11 is a schematic structural diagram of a communication device provided by the present application, and the dotted line in the figure indicates that the unit is an optional unit.
  • the device 1100 includes a processing unit 1110 and a communication unit 1120, and the processing unit 1110 can control the communication receiving unit 1120 to perform an acquisition step (or, a receiving step). Among them, the processing unit 1110 is used for:
  • the processing mode of the first data is determined according to the amount of data that the first transmission resource can carry.
  • the processing unit 1110 may obtain the first data by: the processing unit 1110 may generate the first data by itself, may obtain the first data generated by a higher layer through the communication unit 1120, or may receive the first data from other devices through the communication unit 1120.
  • the processing unit 1110 is specifically configured to: when the amount of data that the first transmission resource can carry is greater than or equal to the size of the first data, transmit third data on the first transmission resource, The third data includes part or all of the first data.
  • the third data includes at least one of at least one MAC SDU and at least one MAC CE of the first data.
  • the at least one MAC SDU belongs to a first MAC sub-PDU
  • the at least one MAC CE belongs to a second MAC sub-PDU.
  • the third data further includes: a MAC sub-PDU containing the first MAC SDU generated in the period between the second transmission resource and the first transmission resource, wherein the second transmission resource is used for When transmitting the first data, the second transmission resource is located before the first transmission resource.
  • the first MAC SDU is a newly generated MAC SDU, which is different from at least one MAC SDU in which the third data includes the first data.
  • the explanation about the first MAC SDU here is applicable to all the embodiments of this application.
  • the third data further includes: a MAC sub-PDU containing the first MAC CE generated in a period between the second transmission resource and the first transmission resource, wherein the second transmission resource is used for When transmitting the first data, the second transmission resource is located before the first transmission resource.
  • the first MAC CE is a newly generated MAC CE, which is different from at least one MAC CE in which the third data includes the first data.
  • the explanation about the first MAC CE is applicable to all the embodiments of this application.
  • the third data includes the at least one MAC SDU, and the at least one MAC SDU is a valid MAC SDU.
  • the third data includes the at least one MAC CE, and the at least one MAC CE is a valid MAC CE.
  • the processing unit 1110 is specifically configured to: when the amount of data that the first transmission resource can carry is less than the size of the first data, transmit fourth data on the first transmission resource, and The fourth data includes part of the first data.
  • the fourth data includes at least one of at least one MAC SDU and at least one MAC CE of the first data.
  • the at least one MAC SDU belongs to a first MAC sub-PDU
  • the at least one MAC CE belongs to a second MAC sub-PDU.
  • the fourth data includes at least one MAC SDU of the first data, and the at least one MAC SDU is: the first m MAC SDUs in the MAC SDU in the first data from high to low priority SDU, m is a positive integer.
  • the fourth data further includes at least one MAC CE of the first data, and the at least one MAC CE is: the first n MAC CEs in the first data from high to low priority MAC CE, n is a positive integer.
  • the fourth data includes at least one MAC CE of the first data, and the at least one MAC CE is: the first p MACs of the MAC CE in the first data with priority from high to low CE, p is a positive integer.
  • the fourth data further includes at least one MAC SDU of the first data, and the at least one MAC SDU is: the first q of the MAC SDUs in the first data from high to low priority MAC SDU, q is a positive integer.
  • the fourth data further includes: a MAC sub-PDU containing the first MAC SDU generated in the period between the second transmission resource and the first transmission resource, wherein the second transmission resource is used for When transmitting the first data, the second transmission resource is located before the first transmission resource.
  • the fourth data further includes: a MAC sub-PDU containing the first MAC CE generated in the period between the second transmission resource and the first transmission resource, wherein the second transmission resource is used for When transmitting the first data, the second transmission resource is located before the first transmission resource.
  • the fourth data includes the at least one MAC SDU, and the at least one MAC SDU is a valid MAC SDU.
  • the fourth data includes the at least one MAC CE, and the at least one MAC CE is a valid MAC CE.
  • the first data is stored in a first HARQ process
  • the first transmission resource corresponds to a second HARQ process
  • the processing unit 1110 is further configured to: convert the first data in the first HARQ process Part or all of the content of a data is stored in the second HARQ process.
  • the processing unit 1110 is specifically configured to delete the first data when the amount of data that can be carried by the first transmission resource is greater than or less than the size of the first data.
  • Fig. 12 is a schematic structural diagram of a communication device provided by the present application.
  • the device 1200 includes a processing unit 1210, and the processing unit 1210 is used to:
  • the detection mode of the first data is determined according to the amount of data that can be carried by the first transmission resource, where the first transmission resource is used to transmit the first data.
  • the processing unit 1210 is specifically configured to: when the amount of data that the first transmission resource can carry is greater than or equal to the size of the first data, detect the first transmission resource on the first transmission resource. data.
  • the processing unit 1210 is specifically configured to detect the first data on the first transmission resource when the amount of data that can be carried by the first transmission resource is less than the size of the first data.
  • the processing unit 1210 is specifically configured to: when the amount of data that the first transmission resource can carry is greater than or less than the size of the first data, determine not to detect the first transmission resource on the first transmission resource. One data.
  • FIG. 13 is a schematic structural diagram of a communication device provided by this application.
  • the device 1300 includes a processing unit 1310, and the processing unit 1310 is used to:
  • the second transmission resource is used to transmit second data, wherein the first data and the second data correspond to the same HARQ process, the first transmission resource and the second transmission Resource overlap
  • FIG. 14 is a schematic structural diagram of a communication device provided by this application.
  • the device 1400 includes a processing unit 1410, and the processing unit 1410 is used for:
  • the second transmission resource is used to transmit second data, wherein the first data and the second data correspond to the same HARQ process, the first transmission resource and the second transmission Resource overlap
  • Fig. 15 is a schematic structural diagram of a communication device provided by the present application.
  • the device 1500 includes a processing unit 1510, and the processing unit 1510 is used for:
  • FIG. 16 shows a schematic structural diagram of a communication device provided by this application.
  • the dotted line in Figure 16 indicates that the unit or the module is optional.
  • the device 1600 may be used to implement the methods described in the foregoing method embodiments.
  • the device 1600 may be a terminal device or a network device or a chip.
  • the device 1600 includes one or more processors 1601, and the one or more processors 1601 can support the device 1600 to implement the methods in the method embodiments corresponding to FIGS. 2-9.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor.
  • the processor 1601 may be a central processing unit (CPU).
  • the CPU can be used to control the device 1600, execute software programs, and process data in the software programs.
  • the device 1600 may further include a communication unit 1605 to implement signal input (reception) and output (transmission).
  • the device 1600 may be a chip, and the communication unit 1605 may be an input and/or output circuit of the chip, or the communication unit 1605 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication device Part.
  • the device 1600 may be a terminal device or a network device
  • the communication unit 1605 may be a transceiver of the terminal device or the network device
  • the communication unit 1605 may be a transceiver circuit of the terminal device or the network device.
  • the device 1600 may include one or more memories 1602 with a program 1604 stored thereon.
  • the program 1604 can be executed by the processor 1601 to generate instructions 1603 so that the processor 1601 executes the methods described in the foregoing method embodiments according to the instructions 1603.
  • the memory 1602 may also store data.
  • the processor 1601 may also read data stored in the memory 1602. The data may be stored at the same storage address as the program 1604, or the data may be stored at a different storage address from the program 1604.
  • the processor 1601 and the memory 1602 may be provided separately or integrated together, for example, integrated on a single board of a network device or a system on chip (SOC) of a terminal device.
  • SOC system on chip
  • the device 1600 may also include an antenna 1606.
  • the communication unit 1605 is configured to implement the transceiver function of the device 1600 through the antenna 1606.
  • each step of the foregoing method embodiment may be completed by a logic circuit in the form of hardware or instructions in the form of software in the processor 1601.
  • the processor 1601 can be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • This application also provides a computer program product, which, when executed by the processor 1601, implements the method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 1602, for example, a program 1604.
  • the program 1604 is finally converted into an executable object file that can be executed by the processor 1601 after preprocessing, compilation, assembly, and linking.
  • This application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the method described in any method embodiment in this application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 1602.
  • the memory 1602 may be a volatile memory or a non-volatile memory, or the memory 1602 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three types of relationships. For example, A and/or B can mean that there is A alone, and both A and B exist. There are three cases of B.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法,包括:获取第一数据;当所述第一数据不满足传输条件时,确定在预设时间段内不删除第一数据。第一数据例如保存在第一HARQ进程中,终端设备确定第一数据不满足传输条件后,可以启动或者重启第一HARQ进程的配置授权定时器,在配置授权定时器的运行期间,第一HARQ进程中的数据不能被删除。因此,上述方法能够避免还未成功传输的第一数据被删除导致数据丢失。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,具体涉及一种通信方法和通信装置。
背景技术
第五代(5th generation,5G)通信***支持协议数据单元(protocol data unit,PDU)连接业务,PDU连接业务即终端设备与网络设备之间传输PDU的业务。PDU是网络中对等实体间传送的信息单元,可以包括控制信息和业务数据。
例如,介质接入控制(media access control,MAC)层的PDU包含的控制信息可以称为MAC控制单元(control element,CE),MAC层的PDU包含的业务数据可以称为MAC服务数据单元(service data unit,SDU)。
工业物联网(industrial internet of things,IIoT)是5G通信***的一个应用场景,其对时延和传输可靠性的要求极高。为了满足IIoT的时延需求和传输可靠性需求,网络设备可能会在前一个MAC PDU还未完成传输时调度后一个MAC PDU提前传输,这样,前一个MAC PDU还未被成功传输就可能被删除(flush),从而造成数据丢失。
发明内容
本申请提供了一种通信方法和通信装置,能够避免低优先级的MAC PDU(例如,eMBB业务的MAC PDU)被删除导致数据丢失。
第一方面,提供了一种通信方法,包括:获取第一数据;当所述第一数据不满足传输条件时,确定在预设时间段内不删除所述第一数据。
第二方面,提供了一种通信方法,包括:获取第一数据;根据第一传输资源能够承载的数据量确定所述第一数据的处理方式。
第三方面,提供了一种通信方法,包括:根据第一传输资源能够承载的数据量确定第一数据的检测方式,所述第一传输资源用于传输所述第一数据。
第四方面,提供了一种通信方法,包括:确定第一传输资源,所述第一传输资源用于传输第一数据;生成所述第一数据;确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠;确定不生成所述第二数据和/或所述第二数据的授权信息。
第五方面,提供了一种通信方法,包括:确定第一传输资源,所述第一传输资源用于传输第一数据;确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠;生成所述第一传输资源和所述第二传输资源中较高优先级的传输资源对应的数据。
第六方面,提供了一种通信方法,包括:确定第一传输资源,所述第一传输资源用于传输第一数据;生成所述第一数据;确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第三数据的传输资源重叠,所述第二传输资源的优先级高于所述第一传输资源的优先级;生成所述第二数据;删除所述第一数据。
第七方面,提供了一种通信装置,用于执行上述第一方面、第二方面、第四方面、第五方面或第六方面的方法。具体地,该装置包括用于执行第一方面、第二方面、第四方面、第五方面或第六方面中的方法的功能模块。
第八方面,提供了一种通信装置,用于执行上述第三方面的方法。具体地,该装置包括用于执行第三方面中的方法的功能模块。
第九方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面、第二方面、第四方面、第五方面或第六方面中的方法。
第十方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面中的方法。
第十一方面,提供了一种芯片,用于执行上述第一方面、第二方面、第四方面、第五方面或第六方面中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备用于执行上述第一方面、第二方面、第四方面、第五方面或第六方面中的方法。
第十二方面,提供了一种芯片,用于执行上述第三方面中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备用于执行上述第三方面中的方法。
第十三方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面、第二方面、第四方面、第五方面或第六方面中的方法。
第十四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第三方面中的方法。
第十五方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面、第二方面、第四方面、第五方面或第六方面中的方法。
第十六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第三方面中的方法。
第十七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第四方面、第五方面或第六方面中的方法。
第十八方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第三方面中的方法。
附图说明
图1是一种适用于本申请的通信***的示意图;
图2是本申请提供的一种通信方法的示意图;
图3是本申请提供的另一种通信方法的示意图;
图4是本申请提供的再一种通信方法的示意图;
图5是本申请提供的再一种通信方法的示意图;
图6是本申请提供的再一种通信方法的示意图;
图7是本申请提供的再一种通信方法的示意图;
图8是本申请提供的再一种通信方法的示意图;
图9是本申请提供的再一种通信方法的示意图;
图10是本申请提供的一种通信装置的示意图;
图11是本申请提供的另一种通信装置的示意图;
图12是本申请提供的再一种通信装置的示意图;
图13是本申请提供的再一种通信装置的示意图;
图14是本申请提供的再一种通信装置的示意图;
图15是本申请提供的再一种通信装置的示意图;
图16是本申请提供的一种通信设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信***的示意图。
通信***100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3 rdgeneration partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等。
网络设备110可以是3GPP所定义的基站,例如,5G通信***中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AGF)。网络设备110还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
通信***100仅是举例说明,适用本申请的通信***不限于此,例如,通信***100中包含的网络设备和终端设备的数量还可以是其它的数量。为了简洁,下文中的终端设备和网络设备不再附带附图标记。
下面介绍本申请提供的通信方法。如图2所示,方法200包括:
S210,获取第一数据。
S220,当所述第一数据不满足传输条件时,确定在预设时间段内不删除所述第一数据。
方法200可以由终端设备或者终端设备中的芯片执行。第一数据例如是MAC PDU。网络设备可以为第一数据的传输资源配置第一混合自动重传请求(hybrid automatic repeat request,HARQ)进程, 以便于终端设备在生成第一数据后将第一数据存储在第一HARQ进程中。
作为一种可选的不删除第一数据的方式,终端设备可以为第一HARQ进程的缓冲区(buffer)设置标识位,该标识位例如是1个比特,当该标识位为“0”时,表示第一HARQ进程的缓冲区可以被清空;当该标识位为“1”时,表示第一HARQ进程的缓冲区不可被清空。若第一数据不满足传输条件,且,第一数据存储在第一HARQ进程的缓冲区中,终端设备可以将该缓冲区的标识位设置为“1”,以保存第一数据。
作为另一种可选的不删除第一数据的方式,终端设备可以为第一数据配置定时器,在该定时器运行期间(即,预设时间段内),第一数据不能被删除,从而防止第一数据在不满足传输条件时被删除。上述第一数据不满足传输条件可以包括:第一数据的优先级满足优先级要求。例如:网络设备调度终端设备在传输资源1上传输增强型移动宽带(enhanced mobile broadband,eMBB)业务,随后,网络设备又调度终端设备在传输资源2上传输超可靠低时延(ultra reliability and low latency communication,URLLC)业务,该两个传输资源存在重叠部分。终端设备生成该两个业务的MAC PDU后,为了满足URLLC业务的需求,将在传输资源2上发送URLLC业务的MAC PDU,而不会传输eMBB业务的MAC PDU。eMBB业务和URLLC业务共存时的eMBB业务的MAC PDU即为第一数据的一个示例。
承载第一数据的传输资源可以是配置授权(configured grant,CG)资源,上述定时器可以是配置授权定时器(configuredGrantTimer)。CG资源的每个HARQ进程均对应一个配置授权定时器,配置授权定时器的作用是:在配置授权定时器的运行期间,该配置授权定时器对应的HARQ进程中的数据不能被删除。网络设备也可以调度动态授权(dynamic grant,DG)资源传输数据,网络设备在调度DG资源进行传输时,同样可以使用为CG资源配置的HARQ进程。终端设备获取在DG资源上传输的第一数据后,也将开启配置授权定时器,在配置授权定时器的运行期间,该配置授权定时器对应的HARQ进程中的数据不能被删除。因此,为了避免还未成功传输的第一数据被删除导致数据丢失,可以在第一数据不满足传输条件时开启配置授权定时器。其中,第一数据不满足传输条件可以包括以下几种情况中的至少一种:
第一数据为低优先级MAC PDU(deprioritized MAC PDU)。
第一数据的传输资源与第二数据的传输资源重叠。
第一数据保存在第一HARQ进程中。
第一数据未发送。
在本申请中,若无特别说明,则“第一”、“第二”表示两个不同的个体,例如,上述“第一数据”和“第二数据”表示两个不同的数据,除此之外并无其它限定。
当第一数据为低优先级MAC PDU时,和/或,当第一数据的传输资源与第二数据的传输资源重叠时,终端设备可以在不在第一数据的传输资源上传输第一数据,也可以在第一数据的传输资源上传输第一数据。由于第一数据的优先级较低,即使被传输也可能被第二数据打孔,导致第一数据的传输成功率降低,因此,终端设备可以视该两种情况为第一数据不满足传输条件的情况。
当第一数据保存在第一HARQ进程中时,和/或,第一数据未发送时,可能已经经历了一次传输失败的过程,因此,终端设备也可以将该情况视为不满足传输条件的情况。
当第一数据的传输资源与第二数据的传输资源重叠时,若终端设备已经生成了第一数据和第二数据(均存储在第二HARQ进程中),并且,第二数据的优先级高于第一数据,则终端设备可以将第一数据从第二HARQ进程存入第一HARQ进程,等待下次重传或新传或后续释放。
上述方案将第一数据和第二数据存入不同的HARQ进程,能够避免网络设备和终端设备对第一数据的传输方式的理解不一致的问题,后续是否重传第一数据,终端设备可以遵从网络设备的决定。
当第一数据的传输资源与第二数据的传输资源重叠时,若终端设备已经生成了第一数据,并将第一数据存入第一HARQ进程,并且,第二数据的传输资源的优先级高于第一数据的传输资源的优先级,则终端设备可以不生成第二数据;或者终端设备生成第二数据,将第二数据存入第二HARQ进程。
上述第二数据的传输资源的优先级可以是资源优先级,也可以是传输资源上待传输的数据的优先级,或者,传输资源上待传输的逻辑信道的优先级,本申请实施例中不对传输资源的优先级的划分方式做限定。
上述方案中,终端设备不生成第二数据可以避免等待重传的时延;终端设备生成第二数据,并且将第一数据和第二数据存入不同的HARQ进程,能够避免网络设备和终端设备对第一数据的传输方式的理解不一致的问题,后续是否重传第一数据,终端设备可以遵从网络设备的决定。
当第一数据的传输资源与第二数据的传输资源重叠时,若终端设备已经生成了第一数据,并且, 第二数据的传输资源的优先级高于第一数据的传输资源的优先级,则终端设备生成第二数据,将第二数据存入第一HARQ进程,将第一数据存入其它HARQ进程。
上述第二数据的传输资源的优先级可以是资源优先级,也可以是传输资源上待传输的数据的优先级,或者,传输资源上待传输的逻辑信道的优先级。
由于第一HARQ进程是优先传输的HARQ进程,将第二数据存入第一HARQ进程,以及,将第一数据从HARQ进程中移出,能够保证高优先级的业务尽快被传输,减小高优先级的业务的时延。
终端设备确定第一数据不满足传输条件后,可以在第一时刻启动或者重启配置授权定时器,第一时刻为所述第一数据的传输资源的结束时域位置之前的时刻。
例如,第一时刻为第一数据的传输时刻,其中,该传输时刻可以是MAC层确定的第一数据的传输时刻。当第一数据的传输时刻到来时,终端设备启动或者重启配置授权定时器。第一数据的传输时刻还可以是第一数据对应的物理上行共享信道(physical uplink shared channel,PUSCH)的传输时刻,或者MAC层确定的第一数据的PUSCH的传输时刻。在上述时刻到来时,终端设备可以启动或者重启配置授权定时器。上述第一数据对应的PUSCH,可以被解释为:用于传输第一数据的PUSCH或者预先分配给第一数据的PUSCH。
第一时刻还可以是:获取第一数据的时刻(例如,MAC层获取第一数据的时刻),或者,MAC层向物理层传输(deliver)第一数据的上行授权(uplink grant)的时刻,或者,MAC层向物理层传输(deliver)第一数据的时刻。在上述时刻到来时,终端设备可以启动或者重启配置授权定时器。
例如,终端设备MAC层生成第一数据,但是由于一些原因,如第一数据为低优先级的MAC PDU,或者第一数据的传输资源与其它传输资源发生重叠,导致第一数据存储在第一HARQ进程,但是不能传输(即,第一数据的PUSCH在传输资源的时频位置上不能被上行传输,或第一数据的PUSCH在传输资源的时频位置的至少部分时频位置上不能被上行传输),则终端设备可以在PUSCH传输时刻或开始传输的时刻或PUSCH本应该传输的时刻或PUSCH本应该开始传输的时刻,启动或者重启配置授权定时器。
例如,终端设备MAC层获取第一数据时启动配置授权定时器,若第一数据的传输资源所在的时域位置与MAC层获取第一数据的时刻间隔时间较长,则终端设备可以在MAC层向物理层传输第一数据的上行授权时重启配置授权定时器,和/或,在MAC层向物理层传输第一数据的时刻重启配置授权定时器,以避免配置授权定时器在第一数据还未传输即超时导致第一数据被删除。
当第一数据不满足传输条件时,第一数据不能被传输,终端设备可以基于图3所示的方法尝试在新的传输资源上传输第一数据。
如图3所示,方法300包括:
S310,获取第一数据。
S320,根据第一传输资源能够承载的数据量确定所述第一数据的处理方式。
需要说明的是,在本申请的说明书中,即使两个方法中的名词相同,该两个方法中的名词也可以有不同的含义,也可以有相同的含义。例如,方法300中的第一数据可以是方法200中的第一数据,方法300中的第一数据可以是与方法200中的第一数据不同的数据。第一传输资源为新的用于传输第一数据的传输资源。第一传输资源可以是终端设备从半静态配置的资源池中确定的资源,例如,CG资源;第一传输资源也可以是网络设备动态调度的资源,例如,动态授权(dynamic grant,DG)资源。特别的,第一传输资源的HARQ进程和第一数据的HARQ进行可以相同,也可以不同。在HARQ进程不同时,也可以将第一传输资源的HARQ进程变更为第一数据的HARQ进程,同时也可以将变更情况上报给网络设备。
由于第一数据是低优先级数据,第一传输资源可能是临时分配的资源,因此,第一传输资源能够承载的数据量与第一数据的大小不一定匹配。终端设备根据第一传输资源能够承载的数据量确定第一数据的处理方式,能够避免第一传输资源能够承载的数据量小于第一数据的大小导致第一数据传输失败,或者,能够避免第一传输资源能够承载的数据量大于第一数据的大小导致第一传输资源浪费。
下面,根据第一传输资源能够承载的数据量对第一数据的处理方式进行描述。
情况一,第一传输资源能够承载的数据量大于或等于所述第一数据的大小。
终端设备可以在第一传输资源上传输第三数据,其中,第三数据包括第一数据中的全部或者部分信息,第三数据可以是多工组装实体(multiplexing and assembly entity)生成的MAC PDU,在第一传输资源上传输第三数据可以是新传。
例如,当第一传输资源能够承载的数据量大于第一数据的大小时,第三数据包含第一数据,剩余的比特位可用padding补齐;当第一传输资源能够承载的数据量等于第一数据的大小时,第三数据仅包含第一数据。
例如,第三数据包含第一数据中的至少一个MAC SDU,或者,第三数据包含第一数据中的至少一个MAC CE,或者,第三数据包含第一数据中的至少一个MAC SDU和和至少一个MAC CE。可选地,终端设备可以将上述至少一个MAC SDU组成第一MAC subPDU(子PDU),和/或,终端设备可以将上述至少一个MAC CE组成第二MAC subPDU。
第三数据还可以包括:第三MAC subPDU和/或第四MAC subPDU。
其中,第三MAC subPDU和第四MAC subPDU为第一传输资源和第二传输资源之间的时段内生成的MAC subPDU,第三MAC subPDU包含MAC SDU,第四MAC subPDU包含MAC CE。上述第二传输资源为位于第一传输资源之前的传输资源,用于传输第一数据。
上述第一传输资源和第二传输资源之间的时段,可以是:第二传输资源的第一个时域符号至第一传输资源的最后一个时域符号之间的时段;也可以是:第二传输资源的MAC PDU组包时刻到第一传输资源的MAC PDU的组包时刻之间的时段。上述第一传输资源和第二传输资源之间的时段也可以是其它时长的时段。
例如,对于第三MAC subPDU包含的MAC SDU,该MAC SDU可以是在上述第一传输资源和第二传输资源之间的时段内,MAC层的高层新生成或获取的的数据。对于第四MAC subPDU包含的MAC CE,该MAC CE可以是在上述第一传输资源和第二传输资源之间的时段内,在MAC层触发生成的MAC CE,或MAC层触发上报(report)时所生成的MAC CE,或MAC层触发上报时将生成的MAC CE,或MAC层触发上报时能够生成的MAC CE。
第三MAC subPDU与第一MAC subPDU可以是相同的MAC subPDU,也可以是不同的MAC subPDU;第四MAC subPDU与第二MAC subPDU可以是相同的MAC subPDU,也可以是不同的MAC subPDU。
例如,在第一传输资源和第二传输资源之间的时段内,终端设备触发了新的缓冲状态报告(buffer status report,BSR),即,终端设备在确定有第一传输资源时,生成了新的BSR MAC CE,则终端设备可以丢弃旧的BSR MAC CE(即,第一数据中的BSR MAC CE),将新的BSR MAC CE填入第三数据。上述终端设备触发了新的BSR,例如是:终端设备在满足周期BSR上报的条件时触发了周期BSR,或者终端设备在更高优先级的逻辑信道存在待传输数据需要传输时触发了常规BSR。
又例如,在第一传输资源和第二传输资源之间的时段内,终端设备触发了新的BSR,即,终端设备在确定有第一传输资源时,可用生成新的BSR MAC CE,可以丢弃旧的BSR MAC CE(即,第一数据中的BSR MAC CE),将新的BSR MAC CE填入第三数据。上述上述终端设备触发了新的BSR,例如是:终端设备在满足重传BSR上报的条件时触发了重传BSR。或者,终端设备可用根据MAC CE的触发条件或类型,不生成新的BSR MAC CE,还使用旧的BSR MAC CE(即,第一数据中的BSR MAC CE)。
又例如,在第一传输资源和第二传输资源之间的时段内,终端设备的MAC层从高层获取了新的分组数据汇聚协议(packet data convergence protocol,PDCP)控制PDU(如PDCP状态报告)和/或新的无线链路控制(radio link control,RLC)控制PDU(RLC control PDU),则终端设备可以丢弃旧的PDCP control PDU(即,第一数据中的PDCP control PDU)和旧的RLC control PDU(即,第一数据中的RLC control PDU),将新的PDCP control PDU和新的RLC control PDU填入第三数据。
上述两个示例中,旧的BSR MAC CE即失效的MAC CE,新的BSR MAC CE为有效的MAC CE;旧的PDCP control PDU和旧的RLC control PDU为失效的MAC SDU,新的PDCP control PDU和新的RLC control PDU为有效的MAC SDU。上述方案能够避免无效信息被传输导致的资源浪费。
又例如,在第一传输资源和第二传输资源之间的时段内,终端设备的MAC层从高层获取了新的PDCP数据PDU(PDCP data PDU)和/或新的RLC数据PDU(RLC data PDU),当第一资源中有空余资源或者data PDU的优先级高时,终端设备可以生成新的MAC subPDU,填入第三数据。
当第一传输资源能够承载的数据量等于第一数据的大小时,即,当第一传输资源与第一数据匹配时,终端设备可以在第一传输资源上发送第三数据,其中,第三数据可以包含第一数据的全部信息,也可以包含第一数据的部分信息。
又例如,当第一传输资源能够承载的数据量大于第一数据的大小时,终端设备可以在第一传输资源上发送第三数据,其中,第三数据可以包含第一数据的全部信息,也可以包含第一数据的部分信息。若第一传输资源能够承载的数据量大于第三数据的大小,则终端设备可以在第三数据中增加填充信息(padding),或者,终端设备可以利用第一传输资源传输其它数据。
若第一传输资源能够承载的数据量大于第一数据的大小,则终端设备可以丢弃第一数据,传输其它数据,该其它数据例如是与第一传输资源匹配的数据,以避免资源浪费。
情况二,第一传输资源能够承载的数据量小于所述第一数据的大小。
情况二中,由于第一传输资源不能承载第一数据,因此,终端设备无法在第一传输资源上发送第一数据的全部内容,因此,终端设备可以选择丢弃第一数据,利用第一传输资源传输与与第一传输资源匹配的数据;终端设备也可以删除第一数据的部分内容,以使得第一传输资源能够承载第一数据。
终端设备可以通过多工组装实体生成第四数据,在第一传输资源上传输第四数据,其中,第四数据包括第一数据中的部分信息,在第一传输资源上传输第四数据可以是新传。
例如,第四数据包含第一数据中的至少一个MAC SDU,或者,第四数据包含第一数据中的至少一个MAC CE,或者,第四数据包含第一数据中的至少一个MAC SDU和和至少一个MAC CE。可选地,终端设备可以将上述至少一个MAC SDU组成第一MAC subPDU,和/或,终端设备可以将上述至少一个MAC CE组成第二MAC subPDU。
由于第一数据仅有部分内容能够填入第四数据,因此,终端设备可以按照优先级确定上述至少一个MAC SDU和至少一个MAC CE中的哪些信息可以填入第四数据。
终端设备可以基于预定义、网络指示或UE实现,确定上述至少一个MAC SDU和至少一个MAC CE的优先级。例如,终端设备可以根据逻辑信道的优先级、类型等,确定MAC SDU/MAC CE的优先级。
若第四数据包括第一数据中的至少一个MAC SDU,则该至少一个MAC SDU为:第一数据中的MAC SDU中优先级从高到低的前m个MAC SDU,m为正整数。
例如,第一数据包括3个MAC SDU,按照优先级从高到分别为MAC SDU1、MAC SDU2和MAC SDU3;若m等于1,则优先级从高到低的前m个MAC SDU为MAC SDU1;若m等于2,则优先级从高到低的前m个MAC SDU为MAC SDU1和MAC SDU2;若m等于3,则优先级从高到低的前m个MAC SDU为MAC SDU1、MAC SDU2和MAC SDU3。当第一传输资源能够承载的数据量大于第一数据中全部MAC SDU的大小时,再将第一数据中的MAC CE中优先级从高到低的前n个MAC CE填入第四数据,n为正整数。
若第四数据包括第一数据中的至少一个MAC CE,则该至少一个MAC CE为:第一数据中的MAC SDU中优先级从高到低的前p个MAC SDU,p为正整数。
例如,第一数据包括3个MAC CE,按照优先级从高到分别为MAC CE 1、MAC CE 2和MAC CE 3;若p等于1,则优先级从高到低的前p个MAC CE为MAC CE 1;若p等于2,则优先级从高到低的前p个MAC CE为MAC CE 1和MAC CE 2;若p等于3,则优先级从高到低的前p个MAC CE为MAC CE 1、MAC CE 2和MAC CE 3。当第一传输资源能够承载的数据量大于第一数据中全部MAC CE的大小时,再将第一数据中的MAC SDU中优先级从高到低的前q个MAC SDU填入第四数据,q为正整数。
再例如,终端设备可以不区分第一数据中的信息的类型,将至少一个MAC CE和至少一个MAC SDU中优先级从高到低的前k个信息填入第四数据。
第四数据还可以包括:第三MAC subPDU和/或第四MAC subPDU。
其中,第三MAC subPDU和第四MAC subPDU为第一传输资源和第二传输资源之间的时段内生成的MAC subPDU,第三MAC subPDU包含MAC SDU,第四MAC subPDU包含MAC CE。上述第二传输资源为位于第一传输资源之前的传输资源,用于传输第一数据。
上述第一传输资源和第二传输资源之间的时段,可以是:第二传输资源的第一个时域符号至第一传输资源的最后一个时域符号之间的时段;也可以是:第二传输资源的MAC PDU组包时刻到第一传输资源的MAC PDU的组包时刻之间的时段。上述第一传输资源和第二传输资源之间的时段也可以是其它时长的时段。
例如,对于第三MAC subPDU包含的MAC SDU(第一MAC SDU的一个示例),该MAC SDU可以是在上述第一传输资源和第二传输资源之间的时段内,MAC层新生成的数据或从高层获取的数据。对于第四MAC subPDU包含的MAC CE,该MAC CE可以是在上述第一传输资源和第二传输资源之间的时段内,在MAC层触发生成的MAC CE,或MAC层触发上报时所生成的MAC CE,或MAC层触发上报时将生成的MAC CE,或MAC层触发上报时能够生成的MAC CE。
第三MAC subPDU与第一MAC subPDU可以是相同的MAC subPDU,也可以是不同的MAC subPDU;第四MAC subPDU与第二MAC subPDU可以是相同的MAC subPDU,也可以是不同的MAC subPDU。
例如,在第一传输资源和第二传输资源之间的时段内,终端设备触发了新的BSR(第一MAC CE的一个示例),即,终端设备生成了新的BSR MAC CE,则终端设备在确定有第一传输资源时可以丢弃旧的BSR MAC CE(即,第一数据中的BSR MAC CE),将新的BSR MAC CE填入第四数据。上述终端设备触发了新的BSR,例如是:终端设备在满足周期BSR上报的条件时触发了周期BSR,或 者终端设备在更高优先级的逻辑信道存在待传输数据需要传输时触发了常规BSR。
又例如,在第一传输资源和第二传输资源之间的时段内,终端设备触发了新的BSR,即,终端设备在确定有第一传输资源时,可用生成新的BSR MAC CE,可以丢弃旧的BSR MAC CE(即,第一数据中的BSR MAC CE),将新的BSR MAC CE填入第四数据。上述上述终端设备触发了新的BSR,例如是:终端设备在满足重传BSR上报的条件时触发了重传BSR。或者,终端设备可用根据MAC CE的触发条件或类型,不生成新的BSR MAC CE,还使用旧的BSR MAC CE(即,第一数据中的BSR MAC CE)。
又例如,在第一传输资源和第二传输资源之间的时段内,终端设备的MAC层从高层获取了新的PDCP control PDU(如,PDCP状态报告)和/或新的RLC control PDU,则终端设备可以丢弃旧的PDCP control PDU(即,第一数据中的PDCP control PDU)和旧的RLC control PDU(即,第一数据中的RLC control PDU),将新的PDCP control PDU和新的RLC control PDU填入第四数据。
上述两个示例中,旧的BSR MAC CE即失效的MAC CE,新的BSR MAC CE为有效的MAC CE;旧的PDCP control PDU和旧的RLC control PDU为失效的MAC SDU,新的PDCP control PDU和新的RLC control PDU为有效的MAC SDU。上述方案能够避免无效信息被传输导致的资源浪费。
又例如,在第一传输资源和第二传输资源之间的时段内,终端设备的MAC层从高层获取了新的PDCP数据PDU(PDCP data PDU)和/或新的RLC数据PDU(RLC data PDU),当第一资源中有空余资源或者data PDU的优先级高时,终端设备可以生成新的MAC subPDU,填入第四数据。
方法300中,若第一数据对应的HARQ进程与第一传输资源对应的HARQ进程不同,则终端设备可以将部分或全部第一数据存储第一传输资源对应的HARQ进程中,以节省HARQ进程资源。
方法300从终端设备的角度描述了本申请提供的一种处理低优先级数据的方法。对于网络设备,若网络设备确定终端设备可能在新的传输资源上传输低优先级数据,则网络设备可以按照图4所示的方法确定低优先级数据的检测方式。
如图4所示,方法400包括:
S410,根据第一传输资源能够承载的数据量确定第一数据的检测方式,所述第一传输资源用于传输所述第一数据。
方法400中第一传输资源和第一数据与方法300中的第一传输资源和第一数据相同,为了简洁,在此不再赘述。
由于第一数据是低优先级数据,第一传输资源可能是临时分配的资源,因此,第一传输资源能够承载的数据量与第一数据的大小不一定匹配。
若第一传输资源能够承载的数据量大于第一数据的大小,说明终端设备能够传输第一数据的全部内容,则网络设备可以在第一传输资源上进行检测,期待接收到包含第一数据的全部或部分信息的信号。
若第一传输资源能够承载的数据量小于第一数据的大小,说明终端设备能够传输第一数据的部分内容,则网络设备可以在第一传输资源上进行检测,期待接收到包含第一数据的部分信息的信号。
可选地,网络设备也可以不在第一传输资源上进行检测。例如,预设规则为:终端设备不在与第一数据不匹配的传输资源上传输第一数据;则网络设备可以根据该预设规则确定不在第一传输资源上检测第一数据,避免资源浪费。
若第一传输资源能够承载的数据量大于第一数据的大小,说明终端设备能够传输第一数据的全部内容,则网络设备可以在第一传输资源上进行检测,期待接收到包含第一数据的全部或部分信息的信号。
执行方法400的网络设备能够根据实际情况灵活确定低优先级数据的检测方式。
下面,再介绍两个本申请提供的低优先级数据的处理方法。
如图5所示。网络设备为终端设备配置两个CG资源,分别为CG资源1和CG资源2。CG资源1与HARQ进程1对应,CG资源2与HARQ进程3对应。
网络设备通过下行控制信息(downlink control information,DCI)1激活CG资源1。随后,网络设备通过DCI2调度一个DG资源,并且,该DG资源与CG资源1重叠。其中,DG资源对应HARQ进程2。
终端设备执行UE内部优先级处理(intra-UE prioritization),确定优先传输DG上的数据。若此时终端设备已生成CG资源1上待传输的数据,即,MAC PDU1,则MAC PDU1即为低优先级数据(deprioritized MAC PDU)。终端设备可以将MAC PDU1保存在HARQ进程1对应的缓冲(buffer)中,将MAC PDU2(DG资源上待传输的数据)保存在HARQ进程2对应的缓冲中。
终端设备优先传输MAC PDU2,不传输MAC PDU1。终端设备可以在CG资源1的时域结束位 置之前的任一时刻启动或者重启HARQ进程1的配置授权定时器,以避免MAC PDU1被后续存入HARQ进程1的缓冲的数据冲掉(flush)。例如,终端设备可以在CG资源1的起始时刻启动或重启配置授权定时器。
图6示出了本申请提供的另一种低优先级数据的处理方法。
网络设备为终端设备配置两个CG资源,分别为CG资源1和CG资源2。CG资源1与HARQ进程1对应,CG资源2与HARQ进程3对应。
网络设备通过DCI1激活CG资源1。随后,网络设备通过DCI2调度一个DG资源,并且,该DG资源与CG资源1重叠。其中,DG资源对应HARQ进程2。
终端设备执行UE内部优先级处理(intra-UE prioritization),确定优先传输DG上的数据。若此时终端设备已生成CG资源1上待传输的数据,即,MAC PDU1,则MAC PDU1即为低优先级数据(deprioritized MAC PDU)。终端设备可以将MAC PDU1保存在HARQ进程1对应的缓冲中,将MAC PDU2(DG资源上待传输的数据)保存在HARQ进程2对应的缓冲中。
终端设备优先传输MAC PDU2,不传输MAC PDU1。终端设备可以在CG资源1的时域结束位置之前的任一时刻启动或者重启HARQ进程1的配置授权定时器,以避免MAC PDU1被后续存入HARQ进程1的缓冲的数据冲掉。终端设备也可以不开启HARQ进程1的配置授权定时器或在确保MAC PDU1不会被冲掉的情况下不开启HARQ进程1的配置授权定时器。
随后,网络设备可以针对HARQ进程1进行动态调度。若网络设备调度MAC PDU1重传,如用配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)调度MAC PDU1重传,则终端设备按照重传进行传输。若网络设备为MAC PDU1分配新的传输资源(方法300中第二传输资源的一个示例)。例如,网络设备可以通过由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)调度HARQ进程1的新传资源。终端设备根据该新传资源的传输块大小(transport block size,TBS)确定MAC PDU1的传输方式。上述TBS即新传资源能够承载的数据量
例如,新传资源的TBS为50字节(byte),MAC PDU1大小为50字节,则终端设备可以重组(rebuild)MAC PDU,通过多工组装实体生成MAC PDU3,MAC PDU3包含MAC PDU1中的MAC SDU和MAC CE。或者,直接将MAC PDU1作为MAC PDU3进行传输。MAC PDU3即方法300中第三数据的一个示例。
又例如,新传资源的TBS为50字节,MAC PDU1大小为50字节,并且,MAC PDU1包含PDCP状态报告。在新传资源的起始时刻之前,终端设备生成了新的PDCP状态报告,则终端设备可以重组MAC PDU,通过多工组装实体生成MAC PDU3,MAC PDU3包含MAC PDU1中的MAC CE和有效的MAC SDU,并且,MAC PDU3不包含失效的MAC SDU。该有效的MAC SDU包括新的PDCP状态报告,该失效的MAC SDU包括MAC PDU1中的PDCP状态报告。
又例如,新传资源的TBS为60字节,MAC PDU1大小为50字节,则终端设备可以重组MAC PDU,通过多工组装实体生成MAC PDU3,MAC PDU3包含MAC PDU1中的MAC SDU和MAC CE,MAC PDU3包含还包含填充信息,以满足传输需求。
又例如,新传资源的TBS为60字节,MAC PDU1大小为50字节,则终端设备可以重组MAC PDU,通过多工组装实体生成MAC PDU3,MAC PDU3包含MAC PDU1中的MAC CE和有效的MAC SDU,并且,MAC PDU3不包含失效的MAC SDU。若MAC PDU3的大小小于60字节,则终端设备可以按照逻辑信道优先级(logical channel prioritization,LCH)从高层获取RLC PDU,填入MAC PDU3。
又例如,新传资源的TBS为60字节,MAC PDU1大小为50字节,则终端设备可以重组MAC PDU,通过多工组装实体生成MAC PDU3,MAC PDU3包含MAC PDU1中的有效的MAC CE和有效的MAC SDU,并且,MAC PDU3不包含失效的MAC SDU和失效的MAC CE。若MAC PDU3的大小小于60字节,则终端设备可以按照LCH从高层获取RLC PDU,填入MAC PDU3。
又例如,新传资源的TBS为40字节,MAC PDU1大小为50字节,则终端设备可以根据MAC PDU1中各个信息的优先级重组MAC PDU,通过多工组装实体生成MAC PDU3。其中,MAC PDU1中各个信息的优先级从高到低可以是:BSR MAC CE>PDCP control PDU>RLC control PDU>RLC data PDU1>RLC data PDU2>RLC data PDU3。上述RLC data PDU1、RLC data PDU2和RLC data PDU3表示三个不同的承载业务数据的PDU。若BSR MAC CE、PDCP control PDU、RLC control PDU、RLC data PDU1和RLC data PDU2的大小小于40字节,则终端设备生成包含上述5个信息的MAC PDU3,丢弃RLC data PDU3。进一步的,在上述新传资源还有零散资源剩余时,终端设备可以在MAC PDU3中填入填充信息。
终端设备可以在生成MAC PDU3后启动或重启HARQ进程1的配置授权定时器,以避免MAC  PDU1被后续存入HARQ进程1的缓冲的数据冲掉。终端设备也可以不开启HARQ进程1的配置授权定时器或在确保MAC PDU3不会被冲掉的情况下不开启HARQ进程1的配置授权定时器。
上文详细描述了本申请提供的处理低优先级数据的方法,上述方法能够避免低优先级的MAC PDU将被删除导致数据丢失,然而,对于一些处理能力较弱的终端设备,上述通信方法较为复杂。下面,将介绍本申请提供的另外几种通信方法,下述几种方法能够避免生成或存储低优先级数据,减轻终端设备的负担。
如图7所示,方法700包括:
S710,确定第一传输资源,所述第一传输资源用于传输第一数据。
S720,生成所述第一数据。
S730,确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠。
S740,确定不生成所述第二数据和/或所述第二数据的授权信息。
第一传输资源可以是CG资源,也可以是DG资源,上述确定第一传输资源可以被解释为:终端设备从半静态配置的资源池中确定CG资源,或者,终端设备从网络设备接收指示DG资源的指示信息,根据该指示信息确定DG资源。
第二传输资源可以是CG资源,也可以是DG资源,上述确定第二传输资源可以被解释为:终端设备从半静态配置的资源池中确定CG资源,或者,终端设备从网络设备接收指示DG资源的指示信息,根据该指示信息确定DG资源。
第一传输资源与第二传输资源可以部分重叠,也可以全部重叠。第一数据例如是MAC PDU,若终端设备在确定第二传输资源时已经生成的第一传输资源对应的MAC PDU,则无论第二传输资源的优先级如何,终端设备可以不再生成第二传输资源对应的MAC PDU,也不再生成第二传输资源的授权信息(grant)。执行方法700的终端设备不生成低优先级数据,从而避免终端设备执行复杂的低优先级数据的处理方法。
需要说明的是,本方法也适用于资源优先级相等的场景。
如图8所示,方法800包括:
S810,确定第一传输资源,所述第一传输资源用于传输第一数据。
S820,确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠。
S830,生成所述第一传输资源和所述第二传输资源中较高优先级的传输资源对应的数据。
第一传输资源可以是CG资源,也可以是DG资源,上述确定第一传输资源可以被解释为:终端设备从半静态配置的资源池中确定CG资源,或者,终端设备从网络设备接收指示DG资源的指示信息,根据该指示信息确定DG资源。
第二传输资源可以是CG资源,也可以是DG资源,上述确定第二传输资源可以被解释为:终端设备从半静态配置的资源池中确定CG资源,或者,终端设备从网络设备接收指示DG资源的指示信息,根据该指示信息确定DG资源。
第一传输资源与第二传输资源可以部分重叠,也可以全部重叠。S810与S820可以同时进行,也可以先后进行,本申请对终端设备执行S810与S820的先后顺序不做限定。若终端设备确定第一传输资源和第二传输资源之后,还未生成第一数据和第二数据,则终端设备可以确定第一传输资源和第二传输资源中优先级较高的传输资源,并生成优先级较高的传输资源对应的数据。
例如,第二传输资源的优先级高于第一传输资源,则终端设备可以生成第二数据,不再生成第一数据。从而可以避免终端设备执行复杂的低优先级数据的处理方法。
又例如,第二传输资源上能够承载的逻辑信道或数据或MAC CE的优先级高于第一传输资源上能够承载的逻辑信道或数据或MAC CE的优先级,则终端设备可以生成第二数据,不再生成第一数据。从而可以避免终端设备执行复杂的低优先级数据的处理方法。
需要说明的是,本方法也适用于资源优先级相等的场景。
如图9所示,方法900包括:包括:
S910,确定第一传输资源,所述第一传输资源用于传输第一数据。
S920,生成所述第一数据。
S930,确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠,所述第三传输资源的优先级高于所述第一传输资源的优先级。
S940,生成所述第二数据。
S950,删除所述第一数据。
可选地,S930~S950可以替换为:确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠,所述第二传输资源的优先级高于所述第一传输资源的优先级,则生成所述第二数据,将第一数据保存在额外的/预留的/特定的/任一个空的HARQ进程中。
可选地,S930~S950可以替换为:确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠,所述第二传输资源的优先级等于或低于所述第一传输资源的优先级,则不生成所述第二数据和/或所述第二数据的授权信息。
第一传输资源可以是CG资源,也可以是DG资源,上述确定第一传输资源可以被解释为:终端设备从半静态配置的资源池中确定CG资源,或者,终端设备从网络设备接收指示DG资源的指示信息,根据该指示信息确定DG资源。
第二传输资源可以是CG资源,也可以是DG资源,上述确定第二传输资源可以被解释为:终端设备从半静态配置的资源池中确定CG资源,或者,终端设备从网络设备接收指示DG资源的指示信息,根据该指示信息确定DG资源。
第一传输资源与第二传输资源可以部分重叠,也可以全部重叠。第一数据例如是MAC PDU,若终端设备在确定第二传输资源时已经生成的第一传输资源对应的MAC PDU,并且,第二传输资源的优先级高于第一传输资源的优先级,则终端设备可以生成第二传输资源对应的MAC PDU(即,第二数据)并删除第一传输资源对应的MAC PDU。S940与S950可以同时进行,也可以先后进行,本申请对终端设备执行S940与S950的先后顺序不做限定。
需要说明的是,本方法也适用于资源优先级相等的场景。
执行方法900的终端设备不生成低优先级数据,从而避免终端设备执行复杂的低优先级数据的处理方法。
上文详细介绍了本申请提供的通信方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图10是本申请提供的一种通信装置的结构示意图,图中的虚线表示该单元为可选的单元。该装置1000包括处理单元1010和通信单元1020,处理单元1010能够控制通信单元1020执行获取步骤(或接收步骤)。其中,所述处理单元1010用于:
获取第一数据;
当所述第一数据不满足传输条件时,确定在预设时间段内不删除所述第一数据。
处理单元1010获取第一数据可以是:处理单元1010可以自己生成第一数据,也可以通过通信单元1020获取高层生成的第一数据,或者,通过通信单元1020从其它设备接收第一数据。
可选地,处理单元1010具体用于:启动或重启定时器,所述定时器用于设置为在所述预设时间段内不删除所述第一数据。
可选地,所述第一数据保存在第一HARQ进程中,所述定时器为所述第一HARQ进程的配置授权定时器。
可选地,处理单元1010具体用于:在第一时刻启动或重启所述定时器,所述第一时刻为所述第一数据的传输资源上时域结束位置之前的时刻。
可选地,所述第一时刻包括以下时刻中的一个:所述第一数据的传输时刻;获取所述第一数据的时刻;MAC层向物理层传输所述第一数据的上行授权的时刻;MAC层向物理层传输所述第一数据的时刻。
可选地,所述第一数据的传输时刻包括:MAC层确定的所述第一数据的传输时刻。
可选地,所述第一数据的传输时刻包括:用于传输所述第一数据的PUSCH的传输时刻。
可选地,所述获取所述第一数据的时刻包括:MAC层获取所述第一数据的时刻。
可选地,所述第一数据不满足传输条件,包括:所述第一数据为满足优先级要求的数据。
可选地,所述满足优先级要求的数据包括:deprioritized MAC PDU。
可选地,所述第一数据不满足传输条件,包括:所述第一数据的传输资源与第二数据的传输资源重叠。
可选地,所述第一数据不满足传输条件,包括:所述第一数据保存在第一HARQ进程中。
可选地,在所述第一数据保存在第一HARQ进程中之前,所述第一数据保存在第二HARQ进程中,所述第二数据保存在所述第二HARQ进程中,所述处理单元1010还用于:将在第二HARQ进程中的所述第一数据存入所述第一HARQ进程中。
图11是本申请提供的一种通信装置的结构示意图,图中的虚线表示该单元为可选的单元。该装置1100包括处理单元1110和通信单元1120,处理单元1110能够控通信收单元1120执行获取步骤(或,接收步骤)。其中,处理单元1110用于:
获取第一数据;
根据第一传输资源能够承载的数据量确定所述第一数据的处理方式。
处理单元1110获取第一数据可以是:处理单元1110可以自己生成第一数据,也可以通过通信单元1120获取高层生成的第一数据,或者,通过通信单元1120从其它设备接收第一数据。
可选地,所述处理单元1110具体用于:当所述第一传输资源能够承载的数据量大于或等于所述第一数据的大小时,在所述第一传输资源上传输第三数据,所述第三数据包括部分或全部所述第一数据。
可选地,所述第三数据包括所述第一数据的至少一个MAC SDU和至少一个MAC CE中的至少一个。
可选地,所述至少一个MAC SDU属于第一MAC子PDU,所述至少一个MAC CE属于第二MAC子PDU。
可选地,所述第三数据还包括:第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC SDU的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
第一MAC SDU为新生成的MAC SDU,不同于第三数据包括第一数据的至少一个MAC SDU。此处关于第一MAC SDU的解释适用于本申请的全部实施例。
可选地,所述第三数据还包括:第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC CE的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
第一MAC CE为新生成的MAC CE,不同于第三数据包括第一数据的至少一个MAC CE。此处关于第一MAC CE的解释适用于本申请的全部实施例。
可选地,所述第三数据包括所述至少一个MAC SDU,所述至少一个MAC SDU为有效的MAC SDU。
可选地,所述第三数据包括所述至少一个MAC CE,所述至少一个MAC CE为有效的MAC CE。
可选地,所述处理单元1110具体用于:当所述第一传输资源能够承载的数据量小于所述第一数据的大小时,在所述第一传输资源上传输第四数据,所述第四数据包括部分所述第一数据。
可选地,所述第四数据包括所述第一数据的至少一个MAC SDU和至少一个MAC CE中的至少一个。
可选地,所述至少一个MAC SDU属于第一MAC子PDU,所述至少一个MAC CE属于第二MAC子PDU。
可选地,所述第四数据包括所述第一数据的至少一个MAC SDU,所述至少一个MAC SDU为:所述第一数据中的MAC SDU中优先级从高到低的前m个MAC SDU,m为正整数。
可选地,所述第四数据还包括所述第一数据的至少一个MAC CE,所述至少一个MAC CE为:所述第一数据中的MAC CE中优先级从高到低的前n个MAC CE,n为正整数。
可选地,所述第四数据包括所述第一数据的至少一个MAC CE,所述至少一个MAC CE为:所述第一数据中的MAC CE中优先级从高到低的前p个MAC CE,p为正整数。
可选地,所述第四数据还包括所述第一数据的至少一个MAC SDU,所述至少一个MAC SDU为:所述第一数据中的MAC SDU中优先级从高到低的前q个MAC SDU,q为正整数。
可选地,所述第四数据还包括:第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC SDU的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
可选地,所述第四数据还包括:第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC CE的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
可选地,所述第四数据包括所述至少一个MAC SDU,所述至少一个MAC SDU为有效的MAC SDU。
可选地,所述第四数据包括所述至少一个MAC CE,所述至少一个MAC CE为有效的MAC CE。
可选地,所述第一数据保存在第一HARQ进程中,所述第一传输资源对应第二HARQ进程,所述处理单元1110还用于:将所述第一HARQ进程中的所述第一数据的部分或全部内容存入所述第二HARQ进程中。
可选地,所述处理单元1110具体用于:当所述第一传输资源能够承载的数据量大于或小于所述第一数据的大小时,删除所述第一数据。
图12是本申请提供的一种通信装置的结构示意图。该装置1200包括处理单元1210,处理单元1210用于:
根据第一传输资源能够承载的数据量确定第一数据的检测方式,所述第一传输资源用于传输所述第一数据。
可选地,所述处理单元1210具体用于:当所述第一传输资源能够承载的数据量大于或等于所述第一数据的大小时,在所述第一传输资源上检测所述第一数据。
可选地,所述处理单元1210具体用于:当所述第一传输资源能够承载的数据量小于所述第一数据的大小时,在所述第一传输资源上检测所述第一数据。
可选地,所述处理单元1210具体用于:当所述第一传输资源能够承载的数据量大于或小于所述第一数据的大小时,确定不在所述第一传输资源上检测所述第一数据。
图13是本申请提供的一种通信装置的结构示意图。该装置1300包括处理单元1310,处理单元1310用于:
确定第一传输资源,所述第一传输资源用于传输第一数据;
生成所述第一数据;
确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠;
确定不生成所述第二数据和/或所述第二数据的授权信息。
图14是本申请提供的一种通信装置的结构示意图。该装置1400包括处理单元1410,处理单元1410用于:
确定第一传输资源,所述第一传输资源用于传输第一数据;
确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第二传输资源重叠;
生成所述第一传输资源和所述第二传输资源中较高优先级的传输资源对应的数据。
图15是本申请提供的一种通信装置的结构示意图。该装置1500包括处理单元1510,处理单元1510用于:
确定第一传输资源,所述第一传输资源用于传输第一数据;
生成所述第一数据;
确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的HARQ进程,所述第一传输资源与所述第三数据的传输资源重叠,所述第二传输资源的优先级高于所述第一传输资源的优先级;
生成所述第二数据;
删除所述第一数据。
图16示出了本申请提供的一种通信设备的结构示意图。图16中的虚线表示该单元或该模块为可选的。设备1600可用于实现上述方法实施例中描述的方法。设备1600可以是终端设备或网络设备或芯片。
设备1600包括一个或多个处理器1601,该一个或多个处理器1601可支持设备1600实现图2至图9所对应方法实施例中的方法。处理器1601可以是通用处理器或者专用处理器。例如,处理器1601可以是中央处理器(central processing unit,CPU)。CPU可以用于对设备1600进行控制,执行软件程序,处理软件程序的数据。设备1600还可以包括通信单元1605,用以实现信号的输入(接收)和输出(发送)。
例如,设备1600可以是芯片,通信单元1605可以是该芯片的输入和/或输出电路,或者,通信 单元1605可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
又例如,设备1600可以是终端设备或网络设备,通信单元1605可以是该终端设备或该网络设备的收发器,或者,通信单元1605可以是该终端设备或该网络设备的收发电路。
设备1600中可以包括一个或多个存储器1602,其上存有程序1604,程序1604可被处理器1601运行,生成指令1603,使得处理器1601根据指令1603执行上述方法实施例中描述的方法。可选地,存储器1602中还可以存储有数据。可选地,处理器1601还可以读取存储器1602中存储的数据,该数据可以与程序1604存储在相同的存储地址,该数据也可以与程序1604存储在不同的存储地址。
处理器1601和存储器1602可以单独设置,也可以集成在一起,例如,集成在网络设备的单板或者终端设备的***级芯片(system on chip,SOC)上。
设备1600还可以包括天线1606。通信单元1605用于通过天线1606实现设备1600的收发功能。
处理器1601执行通信方法的具体方式可以参见方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器1601中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1601可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1601执行时实现本申请中任一方法实施例所述的方法。
该计算机程序产品可以存储在存储器1602中,例如是程序1604,程序1604经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器1601执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1602。存储器1602可以是易失性存储器或非易失性存储器,或者,存储器1602可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和设备的具体工作过程以及产生的技术效果,可以参考前述方法实施例中对应的过程和技术效果,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个***。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (92)

  1. 一种通信方法,其特征在于,应用于终端设备,包括:
    获取第一数据;
    当所述第一数据不满足传输条件时,确定在预设时间段内不删除所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述确定在预设时间段内不删除所述第一数据,包括:
    启动或重启定时器,所述定时器用于设置为在所述预设时间段内不删除所述第一数据。
  3. 根据权利要求2所述的方法,其特征在于,所述第一数据保存在第一混合自动重传请求HARQ进程中,所述定时器为所述第一HARQ进程的配置授权定时器。
  4. 根据权利要求2或3所述的方法,其特征在于,所述启动或重启定时器,包括:
    在第一时刻启动或重启所述定时器,所述第一时刻包括所述第一数据的传输资源上时域结束的位置之前的时刻。
  5. 根据权利要求4所述的方法,其特征在于,所述第一时刻包括以下时刻中的一个:
    所述第一数据的传输时刻;
    获取所述第一数据的时刻;
    介质访问控制MAC层向物理层传输所述第一数据的上行授权的时刻;
    MAC层向物理层传输所述第一数据的时刻。
  6. 根据权利要求5所述的方法,其特征在于,所述第一数据的传输时刻包括:MAC层确定的所述第一数据的传输时刻。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一数据的传输时刻包括:用于传输所述第一数据的物理上行共享信道PUSCH的传输时刻。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述获取所述第一数据的时刻包括:MAC层获取所述第一数据的时刻。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一数据不满足传输条件,包括:
    所述第一数据为满足优先级要求的数据。
  10. 根据权利要求9所述的方法,其特征在于,所述满足优先级要求的数据包括:低优先级介质接入控制协议数据单元deprioritized MAC PDU。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一数据不满足传输条件,包括:
    所述第一数据的传输资源与第二数据的传输资源重叠。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一数据不满足传输条件,包括:
    所述第一数据保存在第一HARQ进程中。
  13. 根据权利要求12所述的方法,其特征在于,在所述第一数据保存在第一HARQ进程中之前,所述第一数据保存在第二HARQ进程中,所述第二数据保存在所述第二HARQ进程中,所述方法还包括:
    将在第二HARQ进程中的所述第一数据存入所述第一HARQ进程中。
  14. 一种通信方法,其特征在于,应用于终端设备,包括:
    获取第一数据;
    根据第一传输资源能够承载的数据量确定所述第一数据的处理方式。
  15. 根据权利要求14所述的方法,其特征在于,所述根据第一传输资源能够承载的数据量确定所述第一数据的处理方式,包括:
    当所述第一传输资源能够承载的数据量大于或等于所述第一数据的大小时,在所述第一传输资源上传输第三数据,所述第三数据包括部分或全部所述第一数据。
  16. 根据权利要求15所述的方法,其特征在于,所述第三数据包括所述第一数据的至少一个介质访问控制MAC服务数据单元SDU和/或至少一个MAC控制单元CE。
  17. 根据权利要求16所述的方法,其特征在于,所述至少一个MAC SDU属于第一MAC子PDU,所述至少一个MAC CE属于第二MAC子PDU。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第三数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC SDU的MAC子PDU,其 中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述第三数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含MAC CE的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述第三数据包括所述至少一个MAC SDU,所述至少一个MAC SDU为有效的MAC SDU。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,所述第三数据包括所述至少一个MAC CE,所述至少一个MAC CE为有效的MAC CE。
  22. 根据权利要求14所述的方法,其特征在于,所述根据第一传输资源能够承载的数据量确定所述第一数据的处理方式,包括:
    当所述第一传输资源能够承载的数据量小于所述第一数据的大小时,在所述第一传输资源上传输第四数据,所述第四数据包括部分所述第一数据。
  23. 根据权利要求22所述的方法,其特征在于,所述第四数据包括所述第一数据的至少一个MAC SDU和/或至少一个MAC CE。
  24. 根据权利要求23所述的方法,其特征在于,所述至少一个MAC SDU属于第一MAC子PDU,所述至少一个MAC CE属于第二MAC子PDU。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第四数据包括所述第一数据的至少一个MAC SDU,所述至少一个MAC SDU为:所述第一数据中的MAC SDU中优先级从高到低的前m个MAC SDU,m为正整数。
  26. 根据权利要求25所述的方法,其特征在于,所述第四数据还包括所述第一数据的至少一个MAC CE,所述至少一个MAC CE为:所述第一数据中的MAC CE中优先级从高到低的前n个MAC CE,n为正整数。
  27. 根据权利要求23或24所述的方法,其特征在于,所述第四数据包括所述第一数据的至少一个MAC CE,所述至少一个MAC CE为:所述第一数据中的MAC CE中优先级从高到低的前p个MAC CE,p为正整数。
  28. 根据权利要求27所述的方法,其特征在于,所述第四数据还包括所述第一数据的至少一个MAC SDU,所述至少一个MAC SDU为:所述第一数据中的MAC SDU中优先级从高到低的前q个MAC SDU,q为正整数。
  29. 根据权利要求23至28中任一项所述的方法,其特征在于,所述第四数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC SDU的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  30. 根据权利要求23至29中任一项所述的方法,其特征在于,所述第四数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含MAC CE的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  31. 根据权利要求23至30中任一项所述的方法,其特征在于,所述第四数据包括所述至少一个MAC SDU,所述至少一个MAC SDU为有效的MAC SDU。
  32. 根据权利要求23至31中任一项所述的方法,其特征在于,所述第四数据包括所述至少一个MAC CE,所述至少一个MAC CE为有效的MAC CE。
  33. 根据权利要求14至32中任一项所述的方法,其特征在于,所述第一数据保存在第一HARQ进程中,所述第一传输资源对应第二HARQ进程,所述方法还包括:
    将所述第一HARQ进程中的所述第一数据的部分或全部内容存入所述第二HARQ进程中。
  34. 根据权利要求14所述的方法,其特征在于,所述根据第一传输资源能够承载的数据量确定所述第一数据的处理方式,包括:
    当所述第一传输资源能够承载的数据量大于或小于所述第一数据的大小时,删除所述第一数据。
  35. 一种通信方法,其特征在于,应用于网络设备,包括:
    根据第一传输资源能够承载的数据量确定第一数据的检测方式,所述第一传输资源用于传输所述第一数据。
  36. 根据权利要求35所述的方法,其特征在于,所述根据第一传输资源能够承载的数据量确定所述第一数据的检测方式,包括:
    当所述第一传输资源能够承载的数据量大于或等于所述第一数据的大小时,在所述第一传输资源上检测所述第一数据。
  37. 根据权利要求35所述的方法,其特征在于,所述根据第一传输资源能够承载的数据量确定 所述第一数据的检测方式,包括:
    当所述第一传输资源能够承载的数据量小于所述第一数据的大小时,在所述第一传输资源上检测所述第一数据。
  38. 根据权利要求35所述的方法,其特征在于,所述根据第一传输资源能够承载的数据量确定所述第一数据的检测方式,包括:
    当所述第一传输资源能够承载的数据量大于或小于所述第一数据的大小时,确定不在所述第一传输资源上检测所述第一数据。
  39. 一种通信方法,其特征在于,应用于终端设备,包括:
    确定第一传输资源,所述第一传输资源用于传第二传输资源输第一数据;
    生成所述第一数据;
    确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的混合自动重传请求HARQ进程,所述第一传输资源与所述第二传输资源重叠;
    确定不生成所述第二数据和/或所述第二数据的授权信息。
  40. 一种通信方法,其特征在于,应用于终端设备,包括:
    确定第一传输资源,所述第一传输资源用于传输第一数据;
    确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的混合自动重传请求HARQ进程,所述第一传输资源与所述第二传输资源重叠;
    生成所述第一传输资源和所述第二传输资源中较高优先级的传输资源对应的数据。
  41. 一种通信方法,其特征在于,应用于终端设备,包括:
    确定第一传输资源,所述第一传输资源用于传输第一数据;
    生成所述第一数据;
    确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的混合自动重传请求HARQ进程,所述第一传输资源与所述第二传输资源重叠,所述第二传输资源的优先级高于所述第一传输资源的优先级;
    生成所述第二数据;
    删除所述第一数据。
  42. 一种通信装置,其特征在于,包括处理单元,用于:
    获取第一数据;
    当所述第一数据不满足传输条件时,确定在预设时间段内不删除所述第一数据。
  43. 根据权利要求42所述的装置,其特征在于,所述处理单元具体用于:
    启动或重启定时器,所述定时器用于设置为在所述预设时间段内不删除所述第一数据。
  44. 根据权利要求43所述的装置,其特征在于,所述第一数据保存在第一混合自动重传请求HARQ进程中,所述定时器为所述第一HARQ进程的配置授权定时器。
  45. 根据权利要求43或44所述的装置,其特征在于,所述处理单元具体用于:
    在第一时刻启动或重启所述定时器,所述第一时刻包括所述第一数据的传输资源上时域结束位置之前的时刻。
  46. 根据权利要求45所述的装置,其特征在于,所述第一时刻包括以下时刻中的一个:
    所述第一数据的传输时刻;
    获取所述第一数据的时刻;
    介质访问控制MAC层向物理层传输所述第一数据的上行授权的时刻;
    MAC层向物理层传输所述第一数据的时刻。
  47. 根据权利要求46所述的装置,其特征在于,所述第一数据的传输时刻包括:MAC层确定的所述第一数据的传输时刻。
  48. 根据权利要求46或47所述的装置,其特征在于,所述第一数据的传输时刻包括:用于传输所述第一数据的物理上行共享信道PUSCH的传输时刻。
  49. 根据权利要求46至48中任一项所述的装置,其特征在于,所述获取所述第一数据的时刻包括:MAC层获取所述第一数据的时刻。
  50. 根据权利要求42至49中任一项所述的装置,其特征在于,所述第一数据不满足传输条件,包括:
    所述第一数据为满足优先级要求的数据。
  51. 根据权利要求50所述的装置,其特征在于,所述满足优先级要求的数据包括:低优先级介质接入控制协议数据单元deprioritized MAC PDU。
  52. 根据权利要求42至51中任一项所述的装置,其特征在于,所述第一数据不满足传输条件,包括:
    所述第一数据的传输资源与第二数据的传输资源重叠。
  53. 根据权利要求42至52中任一项所述的装置,其特征在于,所述第一数据不满足传输条件,包括:
    所述第一数据保存在第一HARQ进程中。
  54. 根据权利要求53所述的装置,其特征在于,在所述第一数据保存在第一HARQ进程中之前,所述第一数据保存在第二HARQ进程中,所述第二数据保存在所述第二HARQ进程中,所述处理单元还用于:
    将在第二HARQ进程中的所述第一数据存入所述第一HARQ进程中。
  55. 一种通信装置,其特征在于,包括处理单元,用于:
    获取第一数据;
    根据第一传输资源能够承载的数据量确定所述第一数据的处理方式。
  56. 根据权利要求55所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一传输资源能够承载的数据量大于或等于所述第一数据的大小时,在所述第一传输资源上传输第三数据,所述第三数据包括部分或全部所述第一数据。
  57. 根据权利要求56所述的装置,其特征在于,所述第三数据包括所述第一数据的至少一个介质访问控制MAC服务数据单元SDU和/或至少一个MAC控制单元CE。
  58. 根据权利要求57所述的装置,其特征在于,所述至少一个MAC SDU属于第一MAC子PDU,所述至少一个MAC CE属于第二MAC子PDU。
  59. 根据权利要求57或58所述的装置,其特征在于,所述第三数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC SDU的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  60. 根据权利要求57至59中任一项所述的装置,其特征在于,所述第三数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC CE的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  61. 根据权利要求57至60中任一项所述的装置,其特征在于,所述第三数据包括所述至少一个MAC SDU,所述至少一个MAC SDU为有效的MAC SDU。
  62. 根据权利要求57至61中任一项所述的装置,其特征在于,所述第三数据包括所述至少一个MAC CE,所述至少一个MAC CE为有效的MAC CE。
  63. 根据权利要求55所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一传输资源能够承载的数据量小于所述第一数据的大小时,在所述第一传输资源上传输第四数据,所述第四数据包括部分所述第一数据。
  64. 根据权利要求63所述的装置,其特征在于,所述第四数据包括所述第一数据的至少一个MAC SDU和/或至少一个MAC CE。
  65. 根据权利要求64所述的装置,其特征在于,所述至少一个MAC SDU属于第一MAC子PDU,所述至少一个MAC CE属于第二MAC子PDU。
  66. 根据权利要求64或65所述的装置,其特征在于,所述第四数据包括所述第一数据的至少一个MAC SDU,所述至少一个MAC SDU为:所述第一数据中的MAC SDU中优先级从高到低的前m个MAC SDU,m为正整数。
  67. 根据权利要求66所述的装置,其特征在于,所述第四数据还包括所述第一数据的至少一个MAC CE,所述至少一个MAC CE为:所述第一数据中的MAC CE中优先级从高到低的前n个MAC CE,n为正整数。
  68. 根据权利要求64或65所述的装置,其特征在于,所述第四数据包括所述第一数据的至少一个MAC CE,所述至少一个MAC CE为:所述第一数据中的MAC CE中优先级从高到低的前p个MAC CE,p为正整数。
  69. 根据权利要求68所述的装置,其特征在于,所述第四数据还包括所述第一数据的至少一个MAC SDU,所述至少一个MAC SDU为:所述第一数据中的MAC SDU中优先级从高到低的前q个MAC SDU,q为正整数。
  70. 根据权利要求64至69中任一项所述的装置,其特征在于,所述第四数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC SDU的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  71. 根据权利要求64至70中任一项所述的装置,其特征在于,所述第四数据还包括:
    第二传输资源与所述第一传输资源之间的时段内生成的包含第一MAC CE的MAC子PDU,其中,所述第二传输资源用于传输所述第一数据,所述第二传输资源位于所述第一传输资源之前。
  72. 根据权利要求64至71中任一项所述的装置,其特征在于,所述第四数据包括所述至少一个MAC SDU,所述至少一个MAC SDU为有效的MAC SDU。
  73. 根据权利要求64至72中任一项所述的装置,其特征在于,所述第四数据包括所述至少一个MAC CE,所述至少一个MAC CE为有效的MAC CE。
  74. 根据权利要求55至73中任一项所述的装置,其特征在于,所述第一数据保存在第一HARQ进程中,所述第一传输资源对应第二HARQ进程,所述处理单元还用于:
    将所述第一HARQ进程中的所述第一数据的部分或全部内容存入所述第二HARQ进程中。
  75. 根据权利要求55所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一传输资源能够承载的数据量大于或小于所述第一数据的大小时,删除所述第一数据。
  76. 一种通信装置,其特征在于,包括处理单元,用于:
    根据第一传输资源能够承载的数据量确定第一数据的检测方式,所述第一传输资源用于传输所述第一数据。
  77. 根据权利要求76所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一传输资源能够承载的数据量大于或等于所述第一数据的大小时,在所述第一传输资源上检测所述第一数据。
  78. 根据权利要求76所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一传输资源能够承载的数据量小于所述第一数据的大小时,在所述第一传输资源上检测所述第一数据。
  79. 根据权利要求76所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一传输资源能够承载的数据量大于或小于所述第一数据的大小时,确定不在所述第一传输资源上检测所述第一数据。
  80. 一种通信装置,其特征在于,包括处理单元,用于:
    确定第一传输资源,所述第一传输资源用于传第二传输资源输第一数据;
    生成所述第一数据;
    确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的混合自动重传请求HARQ进程,所述第一传输资源与所述第二传输资源重叠;
    确定不生成所述第二数据和/或所述第二数据的授权信息。
  81. 一种通信装置,其特征在于,包括处理单元,用于:
    确定第一传输资源,所述第一传输资源用于传输第一数据;
    确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的混合自动重传请求HARQ进程,所述第一传输资源与所述第二传输资源重叠;
    生成所述第一传输资源和所述第二传输资源中较高优先级的传输资源对应的数据。
  82. 一种通信装置,其特征在于,包括处理单元,用于:
    确定第一传输资源,所述第一传输资源用于传输第一数据;
    生成所述第一数据;
    确定第二传输资源,所述第二传输资源用于传输第二数据,其中,所述第一数据与所述第二数据对应相同的混合自动重传请求HARQ进程,所述第一传输资源与所述第二传输资源重叠,所述第二传输资源的优先级高于所述第一传输资源的优先级;
    生成所述第二数据;
    删除所述第一数据。
  83. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法,或者,执行如权利要求14至34中任一项所述的方法,或者,执行如权利要求39所述的方法,或者,执行如权利要求40所述的方法,或者执行如权利要求41所述的方法。
  84. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求35至38中任一项所述的方法。
  85. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行:如权利要求1至13中任一项所述的方法,或者,如权利要求14至34中任 一项所述的方法,或者,如权利要求39所述的方法,或者,如权利要求40所述的方法,或者如权利要求41所述的方法。
  86. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求35至38中任一项所述的方法。
  87. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行:如权利要求1至13中任一项所述的方法,或者,如权利要求14至34中任一项所述的方法,或者,如权利要求39所述的方法,或者,如权利要求40所述的方法,或者如权利要求41所述的方法。
  88. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求35至38中任一项所述的方法。
  89. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行:如权利要求1至13中任一项所述的方法,或者,如权利要求14至34中任一项所述的方法,或者,如权利要求39所述的方法,或者,如权利要求40所述的方法,或者如权利要求41所述的方法。
  90. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求35至38中任一项所述的方法。
  91. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行:如权利要求1至13中任一项所述的方法,或者,如权利要求14至34中任一项所述的方法,或者,如权利要求39所述的方法,或者,如权利要求40所述的方法,或者如权利要求41所述的方法。
  92. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求35至38中任一项所述的方法。
PCT/CN2019/099683 2019-08-07 2019-08-07 通信方法和通信装置 WO2021022529A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980094832.5A CN113647169A (zh) 2019-08-07 2019-08-07 通信方法和通信装置
EP19940217.3A EP3993536A4 (en) 2019-08-07 2019-08-07 Communication method and communication apparatus
PCT/CN2019/099683 WO2021022529A1 (zh) 2019-08-07 2019-08-07 通信方法和通信装置
CN202210009354.7A CN114340013B (zh) 2019-08-07 2019-08-07 通信方法和通信装置
US17/582,472 US20220150951A1 (en) 2019-08-07 2022-01-24 Communication method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099683 WO2021022529A1 (zh) 2019-08-07 2019-08-07 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/582,472 Continuation US20220150951A1 (en) 2019-08-07 2022-01-24 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021022529A1 true WO2021022529A1 (zh) 2021-02-11

Family

ID=74502669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099683 WO2021022529A1 (zh) 2019-08-07 2019-08-07 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20220150951A1 (zh)
EP (1) EP3993536A4 (zh)
CN (2) CN114340013B (zh)
WO (1) WO2021022529A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113475135A (zh) * 2019-11-07 2021-10-01 Oppo广东移动通信有限公司 通信方法及装置
CN115516954A (zh) * 2020-03-26 2022-12-23 上海诺基亚贝尔股份有限公司 调度释放反馈
WO2023230743A1 (en) * 2022-05-30 2023-12-07 Qualcomm Incorporated Pose data invalidation in a wireless communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874049A (zh) * 2014-03-31 2014-06-18 电信科学技术研究院 一种缓冲区状态上报bsr触发方法及装置
CN104168214A (zh) * 2014-08-21 2014-11-26 京信通信***(中国)有限公司 一种丢弃分组数据的方法及装置
WO2016122162A1 (en) * 2015-01-28 2016-08-04 Lg Electronics Inc. Method for transmitting a mac pdu on sl-dch in a d2d communication system and device therefor
WO2016126027A1 (en) * 2015-02-04 2016-08-11 Lg Electronics Inc. Method for deactivating scells upon a tat expiry for pucch cell in a carrier aggregation system and a device therefor
CN108768596A (zh) * 2018-05-25 2018-11-06 京信通信***(中国)有限公司 信号自动重传请求方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513859A (zh) * 2015-07-20 2022-05-17 三星电子株式会社 无线通信***中的通信方法和装置
CN107872885B (zh) * 2016-09-27 2020-11-06 华为技术有限公司 一种缓存状态报告的上报方法及装置
CN115297535A (zh) * 2017-08-11 2022-11-04 中兴通讯股份有限公司 一种数据传输方法及装置、计算机可读存储介质
CN109586854B (zh) * 2017-09-28 2020-11-17 华为技术有限公司 数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874049A (zh) * 2014-03-31 2014-06-18 电信科学技术研究院 一种缓冲区状态上报bsr触发方法及装置
CN104168214A (zh) * 2014-08-21 2014-11-26 京信通信***(中国)有限公司 一种丢弃分组数据的方法及装置
WO2016122162A1 (en) * 2015-01-28 2016-08-04 Lg Electronics Inc. Method for transmitting a mac pdu on sl-dch in a d2d communication system and device therefor
WO2016126027A1 (en) * 2015-02-04 2016-08-11 Lg Electronics Inc. Method for deactivating scells upon a tat expiry for pucch cell in a carrier aggregation system and a device therefor
CN108768596A (zh) * 2018-05-25 2018-11-06 京信通信***(中国)有限公司 信号自动重传请求方法与装置

Also Published As

Publication number Publication date
EP3993536A1 (en) 2022-05-04
US20220150951A1 (en) 2022-05-12
CN114340013B (zh) 2023-09-22
CN113647169A (zh) 2021-11-12
CN114340013A (zh) 2022-04-12
EP3993536A4 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
US20220150951A1 (en) Communication method and communication apparatus
US11051322B2 (en) Data processing method, apparatus, and system
RU2754679C2 (ru) Система, устройство и способ передачи данных
US20220183050A1 (en) Transmission pre-emption
CN111865508B (zh) 一种通信方法及通信装置
CN110881223B (zh) 调度请求的处理方法和终端设备
WO2020259581A1 (zh) 通信方法及装置
WO2020063677A1 (zh) 通信方法和装置
US20210007008A1 (en) Method and apparatus for data segmentation and reassembly over multiple wireless links
WO2020200054A1 (zh) 一种通信方法及装置
WO2020191765A1 (zh) 传输数据的方法和终端设备
JP6765446B2 (ja) サービスデータ伝送方法、端末およびネットワーク側機器
WO2021017832A1 (zh) 一种数据处理方法、装置及终端
WO2021128318A1 (zh) 上行mac ce传输的方法和装置
WO2017193948A1 (zh) 一种数据传输方法及终端
CN110972325B (zh) 一种数据传输方法、设备及装置
WO2021026846A1 (zh) 无线通信的方法、终端设备和网络设备
CN113676294B (zh) 数据重传方法、通信装置、计算机设备及可读存储介质
WO2021026847A1 (zh) 无线通信的方法和设备
WO2021098375A1 (zh) 时间信息传输的处理方法、装置及存储介质
CN111867063B (zh) 上行传输方法和通信装置
TW202245522A (zh) 無線通訊方法和使用者設備
WO2019126962A1 (zh) 上行授权的方法和终端设备
US20240235752A1 (en) Processing device, base station, communication system, method, and storage medium
WO2023130367A1 (zh) 信息传输方法、通信设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019940217

Country of ref document: EP

Effective date: 20220125

NENP Non-entry into the national phase

Ref country code: DE