WO2017193948A1 - 一种数据传输方法及终端 - Google Patents

一种数据传输方法及终端 Download PDF

Info

Publication number
WO2017193948A1
WO2017193948A1 PCT/CN2017/083866 CN2017083866W WO2017193948A1 WO 2017193948 A1 WO2017193948 A1 WO 2017193948A1 CN 2017083866 W CN2017083866 W CN 2017083866W WO 2017193948 A1 WO2017193948 A1 WO 2017193948A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
data
transmission time
transmission
resource
Prior art date
Application number
PCT/CN2017/083866
Other languages
English (en)
French (fr)
Inventor
鲍炜
潘学明
谌丽
许芳丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2017193948A1 publication Critical patent/WO2017193948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method and a terminal.
  • TTI Transmission Time Interval
  • the basic time unit of resource allocation and data transmission is TTI.
  • the length of the TTI is 1 subframe, that is, 1 ms (hereinafter referred to as 1 ms TTI).
  • LTE introduces a shorter TTI (hereinafter referred to as short TTI), and the short TTI length is less than 1 ms; it is currently determined that the uplink channel supporting the use of short TTI transmission includes at least short physics.
  • the short physical uplink control channel (s-PUCCH, Short Physical Uplink Control Channel) and the Short Physical Uplink Shared Channel (s-PUSCH); the downlink channel supporting short TTI transmission includes at least a short physical downlink control channel (s- PDCCH (Short Physical Downlink Control Channel) and Short Physical Downlink Shared Channel (s-PDSCH).
  • s- PDCCH Short Physical Downlink Control Channel
  • s-PDSCH Short Physical Downlink Shared Channel
  • RB Radio Bearer
  • Packets with different QoS requirements are mapped to different RBs for transmission. For example, a data packet of a voice service is mapped to a strict delay requirement, but a partial packet loss RB is allowed to be transmitted; a data packet of the ftp service is mapped to an RB whose delay requirement is low but the bit error rate is low.
  • the air interface protocol stack structure of the UE is as shown in FIG. 1.
  • Each RB corresponds to a pair of PDCP (Packet Data Convergence Protocol)/RLC (Radio Link Layer Control Protocol) entities, and different RBs are aggregated at the MAC layer. From the PHY (physical layer) transmission.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Layer Control Protocol
  • the MAC layer applies for the corresponding amount of data to the RLC and PDCP entities of the scheduled RBs.
  • MAC PDU Data, and perform certain processing on the data packets sent by the RLC and PDCP entities of each RB, such as cascading, and finally form a MAC PDU, put it into the transmission buffer of the corresponding HARQ entity, and send it through the physical layer in the air interface; Thereafter, the MAC PDU is still stored in the transmission buffer of the HARQ entity until the MAC PDU in the HARQ entity reaches the maximum number of transmissions, and the HARQ transmission buffer is cleared; or the eNB schedules the new initial transmission using the HARQ entity, and the new MAC PDU will be overwritten. Old MAC PDU in the cache.
  • the eNB After the eNB schedules the uplink transmission using the 1 ms TTI for the UE, if the eNB perceives that the emergency data (hereinafter referred to as delay-sensitive service) required by the UE needs to be transmitted, it may schedule short TTI resources for the UE. Once the 1 ms TTI and the short TTI scheduled by the eNB for the same UE appear in the same subframe, a resource collision (hereinafter referred to as 1 ms TTI and short TTI collision) occurs, as shown in FIG. 2 .
  • 1 ms TTI and short TTI collision a resource collision
  • the inventors have found that in the related art, when a 1 ms TTI and a short TTI collision occur in the same subframe, it is impossible to ensure that the delay-sensitive service is preferentially transmitted.
  • the present disclosure provides a data transmission method and a terminal, which solve the technical problem that the delay sensitive service cannot be preferentially transmitted when a 1 ms TTI and a short TTI collision in the same subframe occur in the related art.
  • a data transmission method including:
  • the UE When the terminal UE is scheduled to use the first transmission time interval for uplink data retransmission or uplink data initial transmission, the UE receives an uplink scheduling for a second transmission time interval of the same subframe;
  • the UE acquires data of an RB that is transmitted by using a second transmission time interval resource, where the first transmission time interval is greater than the second transmission time interval.
  • the method further includes:
  • the media access control MAC entity of the UE buffers the received data of each radio bearer RB.
  • the MAC entity of the UE caches the received data of each RB, including:
  • the MAC entity of the UE sends the data sent by the upper layer to the corresponding cache according to the expected transmission subframe, or the RB is stored in the corresponding cache; or
  • the MAC entity of the UE processes the data sent by the upper layer and sent in the same subframe to generate a MAC PDU, and stores the MAC PDU in the corresponding HARQ transmission buffer.
  • the acquiring, by the UE, the data of the RB that is transmitted by using the second transmission time interval resource includes:
  • the UE directly acquires data of the RB that is transmitted by using the second transmission time interval from the cache, and does not apply for data to the upper layer;
  • the UE applies for data to the corresponding radio link layer control protocol RLC entity or the packet data convergence protocol PDCP entity, or discards the second transmission time interval resource; or
  • the UE abandons using the second transmission time interval resource, and performs data transmission based on the first transmission time interval resource;
  • the UE abandons the use of the second transmission time interval resource, and performs data transmission based on the first transmission time interval resource.
  • the method further includes:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and the UE transmits the other RB by using the remaining second transmission time interval resource. data.
  • the method further includes:
  • the second transmission time interval resource is allocated to use the second transmission time interval resource for transmission After the RB is transmitted, the second transmission time interval resource is left, and padding is used for padding.
  • the method further includes:
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has started, the UE stops using The first transmission time interval for data transmission; or
  • the MAC entity of the UE When the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has not been started, the UE abandons the use.
  • the first transmission time interval performs data transmission.
  • the method further includes:
  • the UE At the start time of the second transmission time interval resource of the subframe, the UE starts to perform data transmission using the second transmission time interval.
  • the method further includes:
  • the buffer is cleared or overwritten by new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the method further includes:
  • the UE For the data transmitted by using the first transmission time interval, the UE generates a media access control protocol data unit MAC PDU according to the data obtained by the upper layer of the existing mechanism of the MAC entity, and stores the data in the HARQ transmission buffer, where the MAC PDU is used heavily. Pass the resources for retransmission.
  • MAC PDU media access control protocol data unit
  • the method further includes:
  • the UE quits using the second transmission time interval resource, and continues to use the first transmission time interval resource for data transmission.
  • each RB is mapped to the first transmission time interval resource or the second transmission time interval resource, or each RB mapping is simultaneously to the first transmission time interval resource and the second transmission time interval resource.
  • a terminal including:
  • a receiving module configured to: when the terminal UE is scheduled to use the first transmission time interval for performing uplink data retransmission or initial transmission of uplink data, receiving an uplink scheduling for a second transmission time interval of the same subframe; Used to acquire RBs that use the second transmission time interval resource for transmission The data is transmitted, wherein the first transmission time interval is greater than the second transmission time interval.
  • the terminal further includes:
  • the buffering module is configured to: when the terminal UE is scheduled to use the first transmission time interval for the initial transmission of the uplink data, buffer the received data of each radio bearer RB.
  • the cache module is further configured to:
  • the data sent by the upper layer to be transmitted in the same subframe is processed to generate a MAC PDU, which is stored in the corresponding HARQ transmission buffer.
  • the sending module is further configured to:
  • the data of the RB that uses the second transmission time interval resource is buffered, the data of the RB that is transmitted by using the second transmission time interval is directly sent from the buffer, and the data is no longer applied to the upper layer;
  • E requests data from the corresponding radio link layer control protocol RLC entity or the packet data convergence protocol PDCP entity, or discards the second transmission time interval resource;
  • the second transmission time interval resource is insufficient to transmit any data of the RB that uses the second transmission time interval resource for transmission, discarding the use of the second transmission time interval resource, and performing data transmission based on the first transmission time interval resource;
  • the second transmission time interval resource is discarded, and the data is transmitted based on the first transmission time interval resource.
  • the sending module is further configured to:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and the remaining second transmission time interval resource is used to transmit the data of the other RB.
  • the sending module is further configured to:
  • the second transmission time interval resource is allocated to use the second transmission time interval resource for transmission After the RB is transmitted, the second transmission time interval resource is left, and padding is used for padding.
  • the sending module is further configured to:
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has started, the first transmission is stopped. Time interval for data transfer; or
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has not yet started, the first transmission is abandoned. Time interval for data transmission.
  • the sending module is further configured to:
  • the sending module is further configured to:
  • the buffer is cleared or overwritten by the new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the sending module is further configured to:
  • the medium access control protocol data unit MAC PDU is generated according to the existing data of the MAC entity to be stored in the HARQ transmission buffer, and the MAC PDU is used for retransmission resources. Retransmission.
  • the sending module is further configured to:
  • the second transmission time interval resource is discarded, and the first transmission time interval resource is used for data transmission.
  • each RB is mapped to the first transmission time interval resource or the second transmission time interval resource, or each RB mapping is simultaneously to the first transmission time interval resource and the second transmission time interval resource.
  • a base station including a processor, a transceiver, and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the uplink UE is scheduled to retransmit or perform uplink data retransmission in the subframe using the first transmission time interval.
  • the UE receives an uplink scheduling for a second transmission time interval of the same subframe;
  • the UE acquires data of an RB that is transmitted by using a second transmission time interval resource, where the first transmission time interval is greater than the second transmission time interval;
  • the transceiver is configured to receive and transmit data
  • the memory is used to store data used by the processor to perform operations.
  • the UE when the UE is scheduled to use the first transmission time interval for uplink data retransmission or uplink data initial transmission, the UE receives the same subframe.
  • the RB that uses the second transmission time interval resource for transmission may be ensured by using the foregoing manner.
  • the data is preferentially transmitted, and the data may be data of a delay-sensitive service, such as data of a voice service, data of a game service, and the like.
  • 1 is a schematic diagram of a protocol stack in related art
  • FIG. 3 is a schematic diagram of a data transmission method according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a terminal according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of a terminal of some embodiments of the present disclosure.
  • embodiments of the present disclosure may be implemented as a system, apparatus, device, method, or computer program product. Therefore, embodiments of the present disclosure may be embodied in the following forms: Full hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • a data transmission method and terminal are proposed.
  • the inventor has found that when the 1 ms TTI and the short TTI collide in the same subframe, the UE cannot use the two scheduled resources for data transmission at the same time (for example, the uplink transmission capability of the restricted UE, the resources of the two schedulings include the same The frequency resources, etc.) need to be designed to ensure that delay-sensitive services are transmitted preferentially.
  • the basic design idea of the present disclosure is that when a 1 ms TTI and a short TTI collision occur, if the UE cannot simultaneously use two scheduling resources for data transmission, the UE can abandon the transmission of 1 ms TTI, and use Short TTI transmission delay sensitive service data packets. Specifically, in the initial transmission of the 1 ms TTI, the UE MAC requests the data to be transmitted to the upper layer according to the resource scheduled by the 1 ms TTI, and needs to buffer the received data of each RB; if the subsequent short TTI uplink scheduling for the same subframe is received, The UE extracts data of the delay sensitive service from the MAC layer cache and transmits the data.
  • the UE MAC prepares retransmission data according to the HARQ buffer. If the subsequent short TTI uplink scheduling for the same subframe is received, the UE extracts data of the delay sensitive service from the MAC layer buffer (initial transmission in 1 ms TTI) When the data is stored, it is sent.
  • the foregoing cache may be a newly defined cache entity or a HARQ send buffer.
  • Step S310 When the terminal UE is scheduled to perform uplink data retransmission or initial transmission of uplink data by using the first transmission time interval, the UE receives an uplink scheduling for a second transmission time interval of the same subframe.
  • Step S320 The UE acquires data of the RB that is transmitted by using the second transmission time interval resource, where the first transmission time interval is greater than the second transmission time interval.
  • the data of the RBs that are transmitted by using the second transmission time interval resource may be data of a delay-sensitive service.
  • the data packet of the voice service is strictly required for delay, and the data belonging to the delay-sensitive service is also the data of the game service.
  • the time delay is strict and it is also the data of the delay-sensitive business. Of course, it is not limited to this.
  • the data of the non-delay-sensitive service such as the data of the ftp service.
  • the first transmission time interval may be a 1 ms TTI
  • the second transmission time interval may be a short TTI.
  • the method when the terminal UE is scheduled to use the first transmission time interval for uplink data initial transmission, the method further includes: the media access control MAC entity of the UE buffers each received radio bearer. RB data.
  • the MAC entity of the UE buffers the received data of each RB, including:
  • the MAC entity of the UE sends the data sent by the upper layer to the corresponding cache according to the expected transmission subframe, or the RB is stored in the corresponding cache; or
  • the MAC entity of the UE processes the data sent by the upper layer and sent in the same subframe to generate a MAC PDU, and stores the MAC PDU into the corresponding HARQ entity sending buffer.
  • the UE acquires data of an RB that is transmitted by using a second transmission time interval resource, where the cache refers to storing the first subframe in the same subframe as the second transmission time interval resource.
  • Transmission time interval resource cache of data to be transmitted including:
  • the UE directly acquires data of the RB that is transmitted by using the second transmission time interval from the cache, and does not apply for data to the upper layer;
  • the UE applies for data to the corresponding radio link layer control protocol RLC entity or the packet data convergence protocol PDCP entity, or discards the second transmission time interval resource; or
  • the UE abandons using the second transmission time interval resource, and performs data transmission based on the first transmission time interval resource;
  • the UE abandons the use of the second transmission time interval resource, and performs data transmission based on the first transmission time interval resource.
  • the method further includes:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and the UE transmits the other RB by using the remaining second transmission time interval resource. data.
  • the method further includes:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and padding is used for padding.
  • the method further includes:
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has started, the UE stops using The first transmission time interval for data transmission; or
  • the MAC entity of the UE When the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has not been started, the UE abandons the use.
  • the first transmission time interval performs data transmission.
  • the method further includes:
  • the UE At the start time of the second transmission time interval resource of the subframe, the UE starts to perform data transmission using the second transmission time interval.
  • the method further includes:
  • the HARQ transmission is cleared or overwritten by new data to be deleted or updated, and the HARQ transmission is HARQ initial transmission or HARQ retransmission.
  • the method further includes:
  • the UE For the data transmitted by using the first transmission time interval, the UE generates a media access control protocol data unit MAC PDU according to the data obtained by the upper layer of the existing mechanism of the MAC entity, and stores the data in the HARQ transmission buffer, where the MAC PDU is used heavily. Pass the resources for retransmission.
  • MAC PDU media access control protocol data unit
  • the method further includes:
  • the UE quits using the second transmission time interval resource, and continues to use the first transmission time interval resource for data transmission.
  • each RB is mapped to a first transmission time interval resource or a second transmission time interval resource, or each RB mapping is simultaneously to a first transmission time interval resource and a second transmission time interval resource .
  • the UE when the terminal UE is scheduled to use the first transmission time interval for uplink data retransmission or uplink data initial transmission, the UE receives the same sub-sub Upgoing scheduling of the second transmission time interval of the frame; the UE acquiring data of the RB that is transmitted by using the second transmission time interval resource, wherein the first transmission time interval is greater than the second transmission time interval.
  • the RB that uses the second transmission time interval resource for transmission may be ensured by using the foregoing manner.
  • the data is preferentially transmitted, and the data may be data of a delay-sensitive service, such as data of a voice service, data of a game service, and the like.
  • Some embodiments of the present disclosure provide a data transmission method, and the specific steps are as follows:
  • Step 1 The UE is scheduled to use the 1 ms TTI resource in subframe A to perform initial uplink data transmission.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • Step 2 According to the scheduling algorithm of the MAC layer, the UE calculates the amount of transmission data that each RB can allocate in the subframe A, and applies for data to the corresponding RLC/PDCP.
  • the scheduling algorithm of the foregoing MAC layer is an algorithm in the related art, and will not be described here.
  • Step 3 The MAC layer sends the data RB sent in the subframe A, which is sent by the upper layer triggered by the step 2, into the cache.
  • cache may be a newly defined cache entity, and is of course not limited thereto.
  • Step 4 The MAC layer processes the high-level data according to the existing mechanism, generates a MAC PDU to be sent, and stores the MAC PDU to be transmitted in the 1m TTI HARQ;
  • Step 5 The UE is scheduled to start with the Xth OFDM (Orthogonal Frequency Division Multiplexing) symbol of the subframe A, and uses the short subframe for uplink transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Step 6 the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission.
  • the short TTI resource described above is equivalent to the second transmission time interval resource in some embodiments of the present disclosure.
  • the data of the corresponding RB has been cached in step 3, the data is directly obtained from the cache; the data is no longer applied to the upper layer;
  • the data of the corresponding RB is not buffered, the data is requested to the corresponding RLC (Radio Link Layer Control Protocol)/PDCP (Packet Data Convergence Protocol) layer (if the upper layer has data to be transmitted);
  • RLC Radio Link Layer Control Protocol
  • PDCP Packet Data Convergence Protocol
  • the UE may acquire, in advance, RB information that may be preferentially transmitted using the short TTI resource.
  • the eNB when configuring the UE to establish the RB, notifies the UE whether the RB preferentially uses the short TTI resource; or The notification may preferentially use the QoS attribute of the RB of the short TTI resource; or specify the QoS attribute of the RB that can preferentially use the short TTI resource in the protocol, and of course, is not limited thereto.
  • the priority order of the above RBs may be determined by a scheduling algorithm.
  • Step 7 If the short TTI resource is allocated to the RB that is preferentially transmitted by using the short TTI resource, the remaining short TTI resource may transmit the data of the other RB; the specific process may be similar to step 6.
  • Step 8 The MAC layer processes the high-level data according to the existing mechanism, and generates a MAC PDU to be sent by using the short TTI resource, and stores the MAC PDU in the short TTI HARQ entity sending buffer.
  • Step 9 If the short TTI scheduling information is obtained in the MAC layer, the data in the 1m TTI HARQ transmission buffer has already started in the 1ms TTI transmission of the subframe A (that is, the MAC of the UE is learned in the subframe A, and the current subframe is still short.
  • the TTI resource is allocated to itself), and the UE may stop transmission of 1 ms TTI data; otherwise, the UE directly discards the transmission of 1 ms TTI data in the subframe A;
  • Step 10 At the start time of the short TTI resource of the subframe A, the UE starts to perform short TTI data transmission;
  • Step 11 When the data corresponding to the 1 ms TTI in the cache completes the HARQ transmission in the air interface, the cache is cleared or overwritten by the new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the foregoing manner may be used to ensure that data of the specified service is preferentially transmitted.
  • the specified service may be a delay-sensitive service, and the delay-sensitive service may be a voice service or a game service.
  • Some embodiments of the present disclosure provide a data transmission method, and the specific steps are as follows:
  • Step 1 The UE is scheduled to use subframe 1 to perform initial uplink data transmission using 1 ms TTI.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • Step 2 According to the scheduling algorithm of the MAC layer, the UE calculates the amount of transmission data that each RB can allocate in the subframe A, and applies for data to the corresponding RLC/PDCP.
  • Step 3 The MAC layer sends the data sent in the subframe A to the cache sent by the upper layer triggered by the step 2, and the cache is divided into RB settings.
  • cache may be a newly defined cache entity, and is of course not limited thereto.
  • Step 4 The MAC layer processes the high-level data according to the existing mechanism, generates a MAC PDU to be sent, and stores the MAC PDU to be transmitted in the 1m TTI HARQ;
  • Step 5 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, using a short TTI resource.
  • the short TTI resource described above is equivalent to the second transmission time interval resource in some embodiments of the present disclosure.
  • Step 6 the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission.
  • the data cache of the corresponding RB is not empty, the data is directly obtained from the cache; the data is no longer applied to the upper layer;
  • the data buffer of the corresponding RB is empty, the data is requested from the corresponding RLC/PDCP layer (if the upper layer has data to be transmitted);
  • Step 7 If the short TTI resource is allocated to the RB that is preferentially transmitted by using the short TTI resource, the remaining short TTI resource may be used to transmit the data of the other RB, and the method is similar to step 6.
  • Step 8 The MAC layer processes the high-level data according to the existing mechanism, and generates a MAC PDU to be sent by using the short TTI resource, and stores the MAC PDU in the short TTI HARQ entity sending buffer.
  • Step 9 If the short TTI scheduling information is obtained in the MAC layer, the data in the 1ms TTI HARQ transmission buffer has already started in the 1ms TTI transmission of the subframe A (that is, the MAC of the UE is learned in the subframe A and there is a short TTI in the current subframe. The resource is allocated to itself), the UE may stop the transmission of 1 ms TTI data; otherwise, the UE directly abandons the transmission of 1 ms TTI data in the subframe A;
  • Step 10 At the start time of the short TTI resource of the subframe A, the UE starts to perform short TTI data transmission;
  • Step 11 When the data corresponding to the 1 ms TTI in the cache completes the HARQ transmission in the air interface, the cache is cleared or overwritten by the new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the foregoing manner may be used to ensure that data of the specified service is preferentially transmitted.
  • the specified service may be a delay-sensitive service, and the delay-sensitive service may be a voice service or a game service.
  • Some embodiments of the present disclosure provide a data transmission method, and the specific steps are as follows:
  • Step 1 The UE is scheduled to perform initial uplink data transmission by using the 1 ms TTI in the subframe A.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • Step 2 According to the scheduling algorithm of the MAC layer, the UE calculates the amount of transmission data that each RB can allocate in the subframe A, and applies for data to the corresponding RLC/PDCP.
  • Step 3 The MAC layer sends the data sent by the upper layer to the RB buffer in the subframe A.
  • the cache may be a newly defined cache entity, and is of course not limited thereto.
  • Step 4 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, and uses the short subframe for uplink transmission.
  • Step 5 According to the scheduling algorithm of the MAC layer, the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission.
  • the short TTI resource described above is equivalent to the second transmission time interval resource in some embodiments of the present disclosure.
  • the data of the corresponding RB has been cached in the above step 3, the data is directly obtained from the cache, and the data is no longer applied to the upper layer;
  • the data of the corresponding RB is not buffered in the foregoing step 3, the data is requested from the corresponding RLC/PDCP layer (if the upper layer has data to be transmitted);
  • Step 6 If the short TTI resource is allocated to the RB that is preferentially used for transmitting the short TTI resource, and there is still remaining, padding is performed;
  • Step 7 If the short TTI scheduling information is obtained in the MAC layer, the 1 ms TTI transmission of the subframe A has already started (that is, the MAC of the UE is learned in the subframe A, and the short TTI resource is allocated to itself in the current subframe), and the UE may Stop transmission of 1ms TTI data.
  • Step 8 The UE starts short TTI data transmission at the start time of the short TTI resource of the subframe A.
  • Step 9 When the data corresponding to the 1 ms TTI in the cache completes the HARQ transmission in the air interface, the cache is cleared or overwritten by the new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the foregoing manner may be used to ensure that data of the specified service is preferentially transmitted.
  • the specified service may be a delay-sensitive service, and the delay-sensitive service may be a voice service or a game service.
  • Some embodiments of the present disclosure provide a data transmission method, and the specific steps are as follows:
  • Step 1 The UE is scheduled to use subframe 1 to perform initial uplink data transmission using 1 ms TTI.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • Step 2 According to the scheduling algorithm of the MAC layer, the UE calculates the amount of transmission data that each RB can allocate in the subframe A, and applies for data to the corresponding RLC/PDCP.
  • Step 3 The MAC layer processes the high-level data according to the existing mechanism, and generates a MAC PDU to be sent, and saves Into the 1m TTI HARQ entity send buffer;
  • Step 4 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, and uses the short subframe for uplink transmission.
  • Step 5 According to the scheduling algorithm of the MAC layer, the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission;
  • the UE extracts the stored MAC PDU in step 3 from the HARQ transmission buffer, and extracts the RLC PDU belonging to the delay sensitive service RB;
  • the data is requested from the corresponding RLC/PDCP layer (if the upper layer has data to be transmitted);
  • Step 6 If the short TTI resource is allocated to the RB that is preferentially transmitted by using the short TTI resource, if there are remaining resources, the data of the other RBs may be transmitted; and the method for acquiring other RB data adopts the scheduling mechanism in the related technology;
  • Step 7 The MAC layer processes the high-level data obtained in steps 5 and 6 according to the mechanism in the related art, generates a MAC PDU to be sent, and stores the short-TTI HARQ entity sending buffer.
  • Step 8 If the short TTI scheduling information is obtained in the MAC layer, the data in the 1m TTI HARQ transmission buffer has already started in the 1ms TTI transmission of the subframe A (that is, the MAC of the UE is learned in the subframe A, and the current subframe is still short.
  • the TTI resource is allocated to itself), and the UE may stop transmission of 1 ms TTI data; otherwise, the UE directly discards the transmission of 1 ms TTI data in the subframe A;
  • Step 9 The UE starts short TTI data transmission at the start time of the short TTI resource of the subframe A.
  • Step 10 After the 1m TTI HARQ transmission buffer completes the HARQ transmission in the air interface, the transmitted data is cleared from the corresponding cache or overwritten by the new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the foregoing manner may be used to ensure that data of the specified service is preferentially transmitted.
  • the specified service may be a delay-sensitive service, and the delay-sensitive service may be a voice service or a game service.
  • Some embodiments of the present disclosure provide a data transmission method, and the specific steps are as follows:
  • Step 1 The UE is scheduled to use the 1 ms TTI resource in subframe A to perform initial uplink data transmission.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • Step 2 According to the scheduling algorithm of the MAC layer, the UE calculates that each RB can be allocated in the subframe A. Transmitting the amount of data and requesting data from the corresponding RLC/PDCP;
  • Step 3 The MAC layer processes the high-level data according to the mechanism in the related art, generates a MAC PDU to be sent, and stores the MAC PDU to be transmitted in the 1m TTI HARQ.
  • Step 4 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, and uses the short subframe for uplink transmission.
  • Step 5 According to the scheduling algorithm of the MAC layer, the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission:
  • the short TTI resource described above is equivalent to the second transmission time interval resource in some embodiments of the present disclosure.
  • the UE extracts the stored MAC PDU in step 3 from the HARQ transmission buffer, and extracts the RLC PDU belonging to the delay sensitive service RB;
  • the high-priority RLC PDUs are preferentially carried;
  • the UE abandons the short TTI resource; and performs data transmission based on the 1 ms TTI resource, and proceeds to the step 10;
  • the UE may abandon the short TTI resource; perform data transmission based on the 1 ms TTI resource, and proceed to step 10;
  • Step 6 If the short TTI resource is allocated to the RB that preferentially uses the short TTI resource for transmission, if there are remaining resources, the MAC layer padding is performed;
  • Step 7 The MAC layer processes the high-level data obtained in step 5 according to the mechanism in the related art, generates a MAC PDU to be sent, and stores the short-TTI HARQ transmission buffer.
  • Step 8 If the short TTI scheduling information is obtained in the MAC layer, the data in the 1m TTI HARQ transmission buffer has already started in the 1ms TTI transmission of the subframe A (that is, the MAC of the UE is learned in the subframe A, and the current subframe is still short.
  • the TTI resource is allocated to itself), and the UE may stop transmission of 1 ms TTI data; otherwise, the UE directly discards the transmission of 1 ms TTI data in the subframe A;
  • Step 9 The UE starts short TTI data transmission at the start time of the short TTI resource of the subframe A.
  • Step 10 After the 1m TTI HARQ transmission buffer completes the HARQ transmission in the air interface, the transmitted data is cleared from the corresponding cache or overwritten by the new data and deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the foregoing method can be used to ensure that the data of the specified service is preferentially transmitted.
  • the specified service may be a delay-sensitive service, and the delay-sensitive service may be a voice service or a game. Business, etc.
  • the corresponding 1 ms TTI is the initial transmission.
  • the case where the 1 ms TTI scheduled resource is retransmitted is described as follows:
  • Step 1 The UE is scheduled to perform uplink data retransmission using the 1 ms TTI in the subframe A.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • the UE MAC performs retransmission based on the MAC PDU buffered by the corresponding HARQ process
  • Step 2 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, and uses the short TTI resource for uplink transmission.
  • the short TTI resource described above is equivalent to the second transmission time interval resource in some embodiments of the present disclosure.
  • Step 3 According to the scheduling algorithm of the MAC layer, the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission;
  • the data cache of the corresponding RB is not empty, the data is directly obtained from the cache; the data is no longer applied to the upper layer;
  • the data cache of the corresponding RB is written at the time of initial transmission.
  • the data buffer of the corresponding RB is empty, the data is requested from the corresponding RLC/PDCP layer (if the upper layer has data to be transmitted);
  • Step 4 If the short TTI resource is allocated to the RB that is preferentially transmitted by using the short TTI resource, the remaining short TTI resource may be used to transmit the data of the other RB, and the method is similar to step 3.
  • Step 5 The MAC layer processes the high-level data according to the mechanism in the related art, and generates a MAC PDU to be sent by using the short TTI resource, and stores the MAC PDU into the short TTI HARQ entity sending buffer.
  • Step 6 If the short TTI scheduling information is obtained in the MAC layer, the data in the 1ms TTI HARQ transmission buffer has already started in the 1ms TTI transmission of the subframe A (that is, the MAC of the UE is learned in the subframe A and there is a short TTI in the current subframe. The resource is allocated to itself), the UE may stop the transmission of 1 ms TTI data; otherwise, the UE directly abandons the transmission of 1 ms TTI data in the subframe A;
  • Step 7 The UE starts short TTI data transmission at the start time of the short TTI resource of the subframe A.
  • Step 8 After the HARQ transmission is completed in the air interface corresponding to the 1 ms TTI, the cache is cleared. Empty or overwritten by new data is deleted or updated.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the corresponding 1 ms TTI is the initial transmission.
  • Step 1 the UE is scheduled to use the 1 ms TTI resource in the subframe A to perform uplink data retransmission;
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • the UE MAC performs retransmission based on the MAC PDU buffered by the corresponding HARQ process
  • Step 2 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, and uses the short subframe for uplink transmission.
  • Step 3 According to the scheduling algorithm of the MAC layer, the UE performs resource allocation in the RB that can preferentially use the short TTI resource for transmission:
  • the short TTI resource described above is equivalent to the second transmission time interval resource in some embodiments of the present disclosure.
  • the UE extracts the MAC PDU corresponding to the HARQ process buffer from the HARQ transmission buffer, and extracts the RLC PDU belonging to the delay sensitive service RB, and the MAC PDU buffered by the HARQ process is stored in the initial transmission of the 1 ms TTI;
  • the high-priority RLC PDUs are preferentially carried;
  • the UE abandons the short TTI resource; and performs data transmission based on the 1 ms TTI resource, and proceeds to the step 8;
  • the UE may abandon the short TTI resource; the data is sent based on the 1 ms TTI resource, and proceeds to step 8;
  • Step 4 If the short TTI resource is allocated to the RB that is preferentially used for transmitting the short TTI resource, and there are remaining resources, the MAC layer is padding;
  • Step 5 The MAC layer processes the high-level data obtained in step 4 according to the mechanism in the related art, generates a MAC PDU to be sent, and stores the short-TTI HARQ transmission buffer.
  • Step 6 If the short TTI scheduling information is obtained in the MAC layer, the data in the 1m TTI HARQ transmission buffer has already started in the 1ms TTI transmission of the subframe A (that is, the MAC of the UE is learned in the subframe A, and the current subframe is still short.
  • the TTI resource is allocated to itself), and the UE can stop the transmission of 1 ms TTI data; Then, the UE directly abandons the transmission of the 1 ms TTI data in the subframe A;
  • Step 7 The UE starts short TTI data transmission at the start time of the short TTI resource of the subframe A.
  • Step 8 After the 1m TTI HARQ transmission buffer completes the HARQ transmission in the air interface, the transmitted data is deleted from the corresponding cache.
  • the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the MAC stored in the HARQ entity is stored.
  • the PDU can be retransmitted using retransmission resources.
  • the scenario of some embodiments of the present disclosure is: if there is no data to be transmitted by using the short TTI resource for transmission, the specific steps are as follows:
  • Step 1 The UE is scheduled to use the 1 ms TTI for uplink transmission in the subframe A.
  • the above 1 ms TTI resource is equivalent to the first transmission time interval resource in some embodiments of the present disclosure.
  • Step 2 The UE is scheduled to start at the Xth OFDM symbol of the subframe A, and uses the short subframe for uplink transmission.
  • Step 3 If all RBs that can use the short TTI resource for transmission have no uplink data to be transmitted, the UE may abandon the short TTI resource and continue to use the 1 ms TTI resource for data transmission.
  • the short TTI resource is equivalent to the second transmission time interval resource in the foregoing embodiment.
  • each RB is mapped to a transmission time interval resource or a second transmission time interval resource, or each RB mapping is simultaneously to a first transmission time interval resource and a second transmission time interval resource.
  • the UE if there is no uplink data to be transmitted, the UE relinquishes 1 ms TTI or short TTI resources without data to be transmitted;
  • the UE selects a 1 ms TTI or short TTI resource to abandon;
  • the UE abandons the data transmission on the 1ms TTI.
  • a terminal including:
  • the receiving module 401 is configured to receive an uplink scheduling for a second transmission time interval of the same subframe when the terminal UE is scheduled to use the first transmission time interval for uplink data retransmission or uplink data initial transmission.
  • the sending module 402 is configured to: if the UE receives the uplink scheduling for the second transmission time interval of the same subframe, obtain, by using the cache, data of the RB that is transmitted by using the second transmission time interval resource, where The first transmission time interval is greater than the second transmission time interval.
  • the terminal further includes: a buffering module, configured to: when the terminal UE is scheduled to use the first transmission time interval for the initial transmission of the uplink data, buffer the received data of each radio bearer RB. ;
  • the cache module is further configured to:
  • the data sent by the upper layer to be transmitted in the same subframe is processed to generate a MAC PDU, which is stored in the corresponding HARQ transmission buffer.
  • the sending module is further configured to:
  • the data of the RB that uses the second transmission time interval resource is buffered, the data of the RB that is transmitted by using the second transmission time interval is directly sent from the buffer, and the data is no longer applied to the upper layer;
  • E requests data from the corresponding radio link layer control protocol RLC entity or the packet data convergence protocol PDCP entity, or discards the second transmission time interval resource;
  • the second transmission time interval resource is insufficient to transmit any data of the RB that uses the second transmission time interval resource for transmission, discarding the use of the second transmission time interval resource, and performing data transmission based on the first transmission time interval resource;
  • the second transmission time interval resource is discarded, and the data is transmitted based on the first transmission time interval resource.
  • the sending module is further configured to:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and the remaining second transmission time interval resource is used to transmit the data of the other RB.
  • the sending module is further configured to:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and padding is used for padding.
  • the sending module is further configured to:
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe A has started, the first use is stopped. Transmission time interval for data transmission; or
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe A has not yet started, the first use is abandoned. Transmission time interval for data transmission.
  • the sending module is further configured to:
  • the sending module is further configured to:
  • the buffer is cleared or overwritten or updated by the new data, and the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • the sending module is further configured to:
  • the medium access control protocol data unit MAC PDU is generated according to the existing data of the MAC entity to be stored in the HARQ transmission buffer, and the MAC PDU is used for retransmission resources. Retransmission.
  • the sending module is further configured to:
  • the second transmission time interval resource is discarded, and the first transmission time interval resource is used for data transmission.
  • each RB is mapped to one first transmission time interval resource or one second transmission time interval resource, or each RB mapping is simultaneously to the first transmission time interval resource and the second transmission time Interval resources.
  • a terminal including:
  • the processor 504 is configured to read a program in the memory 505 and perform the following process:
  • the terminal UE When the terminal UE is scheduled to receive uplink data retransmission or uplink data initial transmission using the first transmission time interval, receiving uplink scheduling for the second transmission time interval of the same subframe; if the UE receives the same The uplink scheduling of the second transmission time interval of the subframes, the data of the RBs that are transmitted by using the second transmission time interval resource is obtained from the buffer, where the first transmission time interval is greater than the second transmission time interval.
  • the transceiver 501 is configured to receive and transmit data under the control of the processor 504.
  • bus 500 can include any number of interconnected buses and bridges, and bus 500 will include one or more processors and first memory represented by processor 504.
  • the various circuits of the memory represented by 805 are linked together.
  • the bus 500 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • the second bus interface 903 provides an interface between the bus 500 and the transceiver 501.
  • Transceiver 501 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by processor 504 is transmitted over wireless medium via antenna 502. Further, antenna 502 also receives data and transmits the data to processor 504.
  • the processor 504 is responsible for managing the bus 500 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 505 can be used to store data used by the processor 504 when performing operations.
  • the processor 504 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the processor 504 is further configured to: when the terminal UE is scheduled to use the first transmission time interval for the initial transmission of the uplink data, buffer the received data of each radio bearer RB;
  • processor 504 is further configured to:
  • the data sent by the upper layer to be transmitted in the same subframe is processed to generate a MAC PDU, which is stored in the corresponding HARQ transmission buffer.
  • processor 504 is further configured to:
  • the data of the RB that uses the second transmission time interval resource is buffered, the data of the RB that is transmitted by using the second transmission time interval is directly sent from the buffer, and the data is no longer applied to the upper layer;
  • E requests data from the corresponding radio link layer control protocol RLC entity or the packet data convergence protocol PDCP entity, or discards the second transmission time interval resource;
  • the second transmission time interval resource is insufficient to transmit any data of the RB that uses the second transmission time interval resource for transmission, discarding the use of the second transmission time interval resource, and performing data transmission based on the first transmission time interval resource;
  • the second transmission time interval resource is discarded, and the data is transmitted based on the first transmission time interval resource.
  • processor 504 is further configured to:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and the remaining second transmission time interval resource is used to transmit the data of the other RB.
  • processor 504 is further configured to:
  • the second transmission time interval resource is allocated to the RB that uses the second transmission time interval resource for transmission, the second transmission time interval resource is left, and padding is used for padding.
  • processor 504 is further configured to:
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has started, the first transmission is stopped. Time interval for data transfer; or
  • the MAC entity of the UE obtains the second transmission time interval scheduling information, if it is determined that the second transmission time interval is used for data transmission, and the first transmission time interval transmission in the same subframe has not yet started, the first transmission is abandoned. Time interval for data transmission.
  • processor 504 is further configured to:
  • processor 504 is further configured to:
  • the buffer is cleared or overwritten or updated by the new data, and the HARQ transmission is a HARQ initial transmission or a HARQ retransmission.
  • processor 504 is further configured to:
  • the medium access control protocol data unit MAC PDU is generated according to the existing data of the MAC entity to be stored in the HARQ transmission buffer, and the MAC PDU is used for retransmission resources. Retransmission.
  • processor 504 is further configured to:
  • the second transmission time interval resource is discarded, and the first transmission time interval resource is used for data transmission.
  • each RB is mapped to the first transmission time interval resource or the second transmission time interval resource, or each RB mapping is simultaneously to the first transmission time interval resource and the second transmission time interval resource.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法及终端,该方法包括:在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保使用第二传输时间间隔资源进行传输的RB的数据被优先传输,该数据可以是时延敏感业务的数据,例如语音业务的数据、游戏业务的数据等。

Description

一种数据传输方法及终端
相关申请的交叉引用
本申请主张在2016年5月13日在中国提交的中国专利申请号No.201610320003.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法及终端。
背景技术
随着移动通信业务需求的发展变化,ITU等多个组织对未来移动通信***都定义了更高的用户面延时性能要求。缩短用户时延性能的主要方法之一是降低传输时间间隔(TTI,Transmission Time Interval)长度。在未来***通信***中,可能同时存在短TTI和传统TTI长度的数据传输,具体的数据传输方案还没有确定。
在LTE***中,空口之间进行调度,资源分配和数据传输的基本时间单位为TTI,在Rel-13之前,TTI的长度为1个子帧,即1ms(下称1ms TTI)。Rel-14中,为了更好的支持时延敏感业务,LTE引入了更短的TTI(下称短TTI),短TTI长度小于1ms;目前确定,支持使用短TTI传输的上行信道至少包括短物理上行控制信道(s-PUCCH,Short Physical Uplink Control Channel)和短物理上行共享信道(s-PUSCH,Short Physical Uplink Shared Channel);支持使用短TTI传输的下行信道至少包括短物理下行控制信道(s-PDCCH,Short Physical Downlink Control Channel)和短物理下行共享信道(s-PDSCH,Short Physical Downlink Shared Channel)。
在LTE中,RB(Radio Bearer,无线承载)是进行QoS管理的基本单位。具有不同QoS需求的数据包被映射到不同的RB上进行传输。如语音业务的数据包被映射到时延要求严格,但允许部分丢包的RB上传输;ftp业务的数据包被映射到时延要求不高但误码率很低的RB上进行传输。
UE的空口协议栈结构如图1所示,每一个RB对应一对PDCP(分组数据汇聚协议)/RLC(无线链路层控制协议)实体,不同的RB在MAC层被汇聚在一 起,通过PHY(物理层)传输。
继续参见图1,当UE的MAC收到eNB的上行调度信令后:
如果是HARQ初始传输:UE MAC根据eNB为本次传输所分配的资源的大小,以及各RB的QoS需求,各RB缓存中待传数据量的多少,数据包的排队等候时长,各RB历史传输速率等因素,进行调度,决定本次传输哪些RB可以进行数据传输,以及每个RB传输多少数据;然后,根据调度结果,MAC层向被调度的各RB的RLC和PDCP实体申请对应数据量的数据,并对各RB的RLC和PDCP实体发送来的数据包进行一定的处理,如级联,最终形成一个MAC PDU,放入对应HARQ实体的发送缓存,经过物理层,在空口发送;发送完成后,MAC PDU仍保存在HARQ实体的发送缓存中,直到HARQ实体中的MAC PDU达到最大传输次数,清空HARQ发送缓存;或者eNB调度使用该HARQ实体进行新的初始传输,新的MAC PDU将覆盖缓存中的旧MAC PDU。
如果是HARQ重传:基于对应HARQ实体的发送缓存中的数据进行重传。
在eNB为UE调度了使用1ms TTI进行上行传输后,如果eNB察觉到UE有高时延要求的紧急数据(下称时延敏感的业务)需要传输,其可以为UE调度短TTI资源。一旦eNB为同一个UE调度的1ms TTI和短TTI出现在同一个子帧,则会出现资源碰撞(下称1ms TTI和短TTI碰撞),如图2所示。
发明人发现,相关技术中,当出现同一子帧中的1ms TTI和短TTI碰撞时,无法确保时延敏感的业务被优先传输。
发明内容
鉴于上述技术问题,本公开提供一种数据传输方法及终端,解决相关技术中当出现同一子帧中的1ms TTI和短TTI碰撞时,无法确保时延敏感的业务被优先传输的技术问题。
依据本公开的一个方面,提供了一种数据传输方法,包括:
在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;
所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
可选地,当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,所述方法还包括:
所述UE的媒体访问控制MAC实体缓存收到的各无线承载RB的数据。
可选地,所述UE的MAC实体缓存收到的各RB的数据,包括:
所述UE的MAC实体将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
所述UE的MAC实体对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ发送缓存。
可选地,所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,包括:
如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,所述UE直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,所述UE向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,UE放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送;或者
如果不存在使用第二传输时间间隔资源进行传输的RB的数据,UE放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
可选地,所述方法还包括:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,所述UE用剩余的第二传输时间间隔资源传输其他RB的数据。
可选地,所述方法还包括:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传 输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
可选地,所述方法还包括:
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输已经开始,所述UE停止使用第一传输时间间隔进行数据的传输;或
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输尚未开始,所述UE放弃使用第一传输时间间隔进行数据的传输。
可选地,所述方法还包括:
在子帧的第二传输时间间隔资源开始时刻,所述UE开始进行使用第二传输时间间隔进行数据的传输。
可选地,所述方法还包括:
当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存中清空或被新数据覆盖而被删除或更新。
可选地,所述HARQ传输为HARQ初传或HARQ重传。
可选地,所述方法还包括:
对于被放弃使用第一传输时间间隔传输的数据,所述UE按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
可选地,所述方法还包括:
如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据,所述UE放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
可选地,每一种RB映射到第一传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
依据本公开的另一个方面,还提供了一种终端,包括:
接收模块,用于在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,接收针对同一个子帧的第二传输时间间隔的上行调度;发送模块,用于获取使用第二传输时间间隔资源进行传输的RB 的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
可选地,所述终端还包括:
缓存模块,用于当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,缓存收到的各无线承载RB的数据。
可选地,所述缓存模块进一步用于:
将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ发送缓存。
可选地,所述发送模块进一步用于:
如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,E向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送;或者
如果不存在使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
可选地,所述发送模块还用于:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,用剩余的第二传输时间间隔资源传输其他RB的数据。
可选地,所述发送模块还用于:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传 输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
可选地,所述发送模块还用于:
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输已经开始,停止使用第一传输时间间隔进行数据的传输;或
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输尚未开始,放弃使用第一传输时间间隔进行数据的传输。
可选地,所述发送模块还用于:
在子帧的第二传输时间间隔资源开始时刻,开始进行使用第二传输时间间隔进行数据的传输。
可选地,所述发送模块还用于:
当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存清空或被新数据覆盖而被删除或更新。
可选地,所述HARQ传输为HARQ初传或HARQ重传。
可选地,所述发送模块还用于:
对于被放弃使用第一传输时间间隔传输的数据,按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
可选地,所述发送模块还用于:
如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据,放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
可选地,每一种RB映射到第一传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
依据本公开的另一个方面,还提供了一种基站,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行 上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;
所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
上述技术方案中的一个技术方案具有如下优点或有益效果:在UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。在同一子帧中的第一传输时间间隔和第二传输时间间隔碰撞时,如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保使用第二传输时间间隔资源进行传输的RB的数据被优先传输,该数据可以是时延敏感业务的数据,例如语音业务的数据、游戏业务的数据等。
附图说明
图1为相关技术中协议栈示意图;
图2为相关技术中时频资源碰撞示意图;
图3为本公开的一些实施例的数据传输方法的示意图;
图4为本公开的一些实施例的终端的示意图;
图5为本公开的一些实施例的终端的示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本领域技术人员知道,本公开的实施方式可以实现为一种***、装置、设备、方法或计算机程序产品。因此,本公开的实施例可以具体实现为以下形式: 完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
根据本公开的实施方式,提出了一种数据传输方法及终端。
发明人发现,在同一子帧中的1ms TTI和短TTI碰撞时,由于UE不能同时使用两次调度的资源进行数据发送(例如:受限UE的上行发送能力,两次调度的资源包含了相同的频率资源等),需要设计方案确保时延敏感的业务被优先传输。
基于发明人的上述发现的分析,本公开的基本设计思想是:当发生1ms TTI和短TTI碰撞时,UE如果不能同时使用两块调度资源进行数据发送,则UE可以放弃1ms TTI的传输,使用短TTI传输时延敏感业务数据包。具体地,在1ms TTI初始传输时,UE MAC根据1ms TTI调度的资源向高层请求待传数据,其需要缓存收到的各RB的数据;如果后继收到针对同一个子帧的短TTI上行调度,UE从MAC层缓存中取出时延敏感业务的数据,进行发送。或者在1ms TTI重传时,UE MAC根据HARQ缓存准备重传数据,如果后继收到针对同一个子帧的短TTI上行调度,UE从MAC层缓存中取出时延敏感业务的数据(在1msTTI初始传输时存入的数据),进行发送。
需要说明的是,上述缓存可以是新定义的缓存实体或者HARQ发送缓存。
参见图3,图中示出了一种数据传输方法,具体步骤如下:
步骤S310、在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;
步骤S320、UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
上述使用第二传输时间间隔资源进行传输的RB的数据可以是时延敏感业务的数据,如语音业务的数据包对时延要求严格,属于时延敏感业务的数据,又如游戏业务的数据也对时延要求严格,也属于时延敏感业务的数据,当然也并不限于此。与时延敏感业务的数据相对的是非时延敏感业务的数据,例如ftp业务的数据。
上述第一传输时间间隔可以是1ms TTI,上述第二传输时间间隔可以是短TTI。
在本公开的一些实施例中,当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,所述方法还包括:UE的媒体访问控制MAC实体缓存收到的各无线承载RB的数据。
在本公开的一些实施例中,所述UE的MAC实体缓存收到的各RB的数据,包括:
所述UE的MAC实体将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
所述UE的MAC实体对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ实体发送缓存。
在本公开的一些实施例中,所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,缓存是指存有与第二传输时间间隔资源位于同一子帧的第一传输时间间隔资源待传数据的缓存,包括:
如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,所述UE直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,所述UE向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,UE放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送;或者
如果不存在使用第二传输时间间隔资源进行传输的RB的数据,UE放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
在本公开的一些实施例中,所述方法还包括:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,所述UE用剩余的第二传输时间间隔资源传输其他RB的数据。
在本公开的一些实施例中,所述方法还包括:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
在本公开的一些实施例中,所述方法还包括:
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输已经开始,所述UE停止使用第一传输时间间隔进行数据的传输;或
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输尚未开始,所述UE放弃使用第一传输时间间隔进行数据的传输。
在本公开的一些实施例中,所述方法还包括:
在子帧的第二传输时间间隔资源开始时刻,所述UE开始进行使用第二传输时间间隔进行数据的传输。
在本公开的一些实施例中,所述方法还包括:
当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存中清空或被新数据覆盖而被删除或更新,上述HARQ传输为HARQ初传或HARQ重传。
在本公开的一些实施例中,所述方法还包括:
对于被放弃使用第一传输时间间隔传输的数据,所述UE按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
在本公开的一些实施例中,所述方法还包括:
如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据,所述UE放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
在本公开的一些实施例中,每一种RB映射到第一传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
在本公开的一些实施例中,在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子 帧的第二传输时间间隔的上行调度;所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。在同一子帧中的第一传输时间间隔和第二传输时间间隔碰撞时,如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保使用第二传输时间间隔资源进行传输的RB的数据被优先传输,该数据可以是时延敏感业务的数据,例如语音业务的数据、游戏业务的数据等。
本公开的一些实施例提供了一种数据传输方法,具体步骤如下:
步骤1、UE被调度在子帧A使用1msTTI资源进行上行数据初始传输;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
步骤2、根据MAC层的调度算法,UE计算出各RB在子帧A可以分配到的传输数据量,并向对应的RLC/PDCP申请数据;
上述MAC层的调度算法为相关技术中的算法,在此不再敷述。
步骤3、MAC层将步骤2触发的高层发送下来的将在子帧A发送的数据分RB放入缓存;
需要说明的是,上述缓存可以是新定义的缓存实体,当然也并不限于此。
步骤4、MAC层按照现有的机制处理高层数据,生成待发送的MAC PDU,存入1m TTI HARQ发送缓存;
步骤5、UE被调度UE在子帧A的第X个OFDM(正交频分复用)符号开始,使用短子帧进行上行传输;
步骤6、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配;
上述短TTI资源相当于本公开的一些实施例中的第二传输时间间隔资源。
例如,如果在步骤3中已经缓存了对应RB的数据,则直接从缓存中获取数据;不再向高层申请数据;
例如,如果没有缓存对应RB的数据,则向对应的RLC(无线链路层控制协议)/PDCP(分组数据汇聚协议)层申请数据(如果高层有待传数据);
在本公开的一些实施例中,UE可以事先获取可以优先使用短TTI资源进行传输的RB信息,可选地,eNB在配置UE建立RB时,通知UE该RB是否优先使用短TTI资源;或eNB通知可以优先使用短TTI资源的RB的QoS属性;或在协议中规定可以优先使用短TTI资源的RB的QoS属性等,当然也并不限于此。
上述RB的优先级顺序可以由调度算法决定。
步骤7、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余,则剩余短TTI资源可以传输其他RB的数据;具体过程可以与步骤6类似;
步骤8、MAC层按照现有的机制处理高层数据,生成待使用短TTI资源发送的MAC PDU,存入短TTI HARQ实体发送缓存;
步骤9、如果在MAC层获得短TTI调度信息时,1m TTI HARQ发送缓存中的数据已经在子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输;否则,UE直接放弃子帧A内的1ms TTI数据的传输;
步骤10、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤11、当缓存内对应1ms TTI的数据在空口完成HARQ传输后,缓存中清空或被新数据覆盖而被删除或更新。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
在本公开的一些实施例中,在同一子帧中的1ms TTI和短TTI碰撞时,如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保指定业务的数据被优先传输,该指定业务可以是时延敏感的业务,上述时延敏感的业务可以是语音业务、游戏业务等。
本公开的一些实施例提供了一种数据传输方法,具体步骤如下:
步骤1、UE被调度在子帧A使用1msTTI进行上行数据初始传输;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
步骤2、根据MAC层的调度算法,UE计算出各RB在子帧A可以分配到的传输数据量,并向对应的RLC/PDCP申请数据;
步骤3、MAC层将步骤2触发的高层发送下来的将在子帧A发送的数据放入缓存,缓存分RB设置;
需要说明的是,上述缓存可以是新定义的缓存实体,当然也并不限于此。
步骤4、MAC层按照现有的机制处理高层数据,生成待发送的MAC PDU,存入1m TTI HARQ发送缓存;
步骤5、UE被调度在子帧A的第X个OFDM符号开始,使用短TTI资源进 行上行传输;
上述短TTI资源相当于本公开的一些实施例中的第二传输时间间隔资源。
步骤6、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配;
例如,如果对应RB的数据缓存非空,则直接从缓存中获取数据;不再向高层申请数据;
又例如,如果对应RB的数据缓存为空,则向对应的RLC/PDCP层申请数据(如果高层有待传数据);
步骤7、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余,则可以用剩余的短TTI资源传输其他RB的数据,方法与步骤6类似;
步骤8、MAC层按照现有的机制处理高层数据,生成待使用短TTI资源发送的MAC PDU,存入短TTI HARQ实体发送缓存;
步骤9、如果在MAC层获得短TTI调度信息时,1msTTI HARQ发送缓存中的数据已经在子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输;否则,UE直接放弃子帧A内的1ms TTI数据的传输;
步骤10、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤11、当缓存内对应1ms TTI的数据在空口完成HARQ传输后,缓存中清空或被新数据覆盖而被删除或更新。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
在本公开的一些实施例中,在同一子帧中的1ms TTI和短TTI碰撞时,如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保指定业务的数据被优先传输,该指定业务可以是时延敏感的业务,上述时延敏感的业务可以是语音业务、游戏业务等。
本公开的一些实施例提供了一种数据传输方法,具体步骤如下:
步骤1、UE被调度UE在子帧A使用1msTTI进行上行数据初始传输;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
步骤2、根据MAC层的调度算法,UE计算出各RB在子帧A可以分配到的传输数据量,并向对应的RLC/PDCP申请数据;
步骤3、MAC层将高层发送下来的将在子帧A发送的数据分RB缓存;
需要说明的是,缓存可以是新定义的缓存实体,当然也并不限于此。
步骤4、UE被调度在子帧A的第X个OFDM符号开始,使用短子帧进行上行传输;
步骤5、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配。
上述短TTI资源相当于本公开的一些实施例中的第二传输时间间隔资源。
如果在上述步骤3中已经缓存了对应RB的数据,则直接从缓存中获取数据,不再向高层申请数据;
如果在上述步骤3中没有缓存对应RB的数据,则向对应的RLC/PDCP层申请数据(如果高层有待传数据);
步骤6、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余,则进行padding(填充);
步骤7、如在MAC层获得短TTI调度信息时,子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输。
步骤8、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤9、当缓存内对应1ms TTI的数据在空口完成HARQ传输后,缓存中清空或被新数据覆盖而被删除或更新。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
在本公开的一些实施例中,在同一子帧中的1ms TTI和短TTI碰撞时,如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保指定业务的数据被优先传输,该指定业务可以是时延敏感的业务,上述时延敏感的业务可以是语音业务、游戏业务等。
本公开的一些实施例提供了一种数据传输方法,具体步骤如下:
步骤1、UE被调度在子帧A使用1msTTI进行上行数据初始传输;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
步骤2、根据MAC层的调度算法,UE计算出各RB在子帧A可以分配到的传输数据量,并向对应的RLC/PDCP申请数据;
步骤3、MAC层按照现有的机制处理高层数据,生成待发送的MAC PDU,存 入1m TTI HARQ实体发送缓存;
步骤4、UE被调度在子帧A的第X个OFDM符号开始,使用短子帧进行上行传输;
步骤5、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配;
例如,UE从HARQ发送缓存中取出步骤3中的存入的MAC PDU,提取出属于时延敏感业务RB的RLC PDU;
又例如,MAC PDU中没有对应RB的数据,则向对应的RLC/PDCP层申请数据(如果高层有待传数据);
步骤6、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余资源,则可以供传输其他RB的数据;其他RB数据的获取方法采用相关技术中的调度机制;
步骤7、MAC层按照相关技术中的机制处理步骤5和6中获得的高层数据,生成待发送的MAC PDU,存入短TTI HARQ实体发送缓存;
步骤8、如在MAC层获得短TTI调度信息时,1m TTI HARQ发送缓存中的数据已经在子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输;否则,UE直接放弃子帧A内的1ms TTI数据的传输;
步骤9、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤10、当1m TTI HARQ发送缓存在空口完成HARQ传输后,将传输过的数据从对应缓存中清空或被新数据覆盖而被删除或更新。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
在本公开的一些实施例中,在同一子帧中的1ms TTI和短TTI碰撞时,如果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保指定业务的数据被优先传输,该指定业务可以是时延敏感的业务,上述时延敏感的业务可以是语音业务、游戏业务等。
本公开的一些实施例提供了一种数据传输方法,具体步骤如下:
步骤1、UE被调度在子帧A使用1msTTI资源进行上行数据初始传输;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
步骤2、根据MAC层的调度算法,UE计算出各RB在子帧A可以分配到的 传输数据量,并向对应的RLC/PDCP申请数据;
步骤3、MAC层按照相关技术中的机制处理高层数据,生成待发送的MAC PDU,存入1m TTI HARQ发送缓存;
步骤4、UE被调度在子帧A的第X个OFDM符号开始,使用短子帧进行上行传输;
步骤5、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配:
上述短TTI资源相当于本公开的一些实施例中的第二传输时间间隔资源。
例如,UE从HARQ发送缓存中取出步骤3中的存入的MAC PDU,提取出属于时延敏感业务RB的RLC PDU;
又例如,如果短TTI资源不足以承载对应MAC PDU中所有时延敏感业务RB的RLC PDU,则优先承载高优先级的RLC PDU;
再例如,如果MAC PDU中存在时延敏感业务RB的RLC PDU,但短TTI资源不足以承载任何一个时延敏感业务RLC PDU,则UE放弃短TTI资源;基于1ms TTI资源进行数据发送,进入步骤10;
再例如,如果MAC PDU中不存在时延敏感业务RB的RLC PDU,UE可以放弃短TTI资源;基于1ms TTI资源进行数据发送,进入步骤10;
步骤6、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余资源,则进行MAC层padding(填充);
步骤7、MAC层按照相关技术中的机制处理步骤5中获得的高层数据,生成待发送的MAC PDU,存入短TTI HARQ发送缓存;
步骤8、如在MAC层获得短TTI调度信息时,1m TTI HARQ发送缓存中的数据已经在子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输;否则,UE直接放弃子帧A内的1ms TTI数据的传输;
步骤9、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤10、当1m TTI HARQ发送缓存在空口完成HARQ传输后,将传输过的数据从对应缓存中清空或被新数据覆盖而被删除或更新。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
在本公开的一些实施例中,在同一子帧中的1ms TTI和短TTI碰撞时,如 果UE不能同时使用两次调度的资源进行数据发送,可以使用上述方式确保指定业务的数据被优先传输,该指定业务可以是时延敏感的业务,上述时延敏感的业务可以是语音业务、游戏业务等。
本公开的一些实施例基于新缓存
上述实施例中,对应的都是1ms TTI为初传的情况,下面在第七实施例中,描述1ms TTI调度的资源为重传的情况:
步骤1、UE被调度在子帧A使用1msTTI进行上行数据重传;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
在重传过程中,UE MAC基于对应HARQ进程缓存的MAC PDU进行重传;
步骤2、UE被调度在子帧A的第X个OFDM符号开始,使用短TTI资源进行上行传输;
上述短TTI资源相当于本公开的一些实施例中的第二传输时间间隔资源。
步骤3、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配;
例如,如果对应RB的数据缓存非空,则直接从缓存中获取数据;不再向高层申请数据;
需要说明的是,上述对应RB的数据缓存是在初传的时候写入的。
又例如,如果对应RB的数据缓存为空,则向对应的RLC/PDCP层申请数据(如果高层有待传数据);
步骤4、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余,则可以用剩余的短TTI资源传输其他RB的数据,方法与步骤3类似;
步骤5、MAC层按照相关技术中的机制处理高层数据,生成待使用短TTI资源发送的MAC PDU,存入短TTI HARQ实体发送缓存;
步骤6、如果在MAC层获得短TTI调度信息时,1msTTI HARQ发送缓存中的数据已经在子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输;否则,UE直接放弃子帧A内的1ms TTI数据的传输;
步骤7、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤8、当缓存内对应1ms TTI的数据在空口完成HARQ传输后,缓存中清 空或被新数据覆盖而被删除或更新。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
本公开的以下实施例基于HARQ缓存
上述实施例中,对应的都是1ms TTI为初传的情况,下面在本公开的一些实施例中,描述1ms TTI调度的资源为重传的情况:
步骤1、UE被调度在子帧A使用1msTTI资源进行上行数据重传;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
在重传过程中,UE MAC基于对应HARQ进程缓存的MAC PDU进行重传;
步骤2、UE被调度在子帧A的第X个OFDM符号开始,使用短子帧进行上行传输;
步骤3、根据MAC层的调度算法,UE在可以优先使用短TTI资源进行传输的RB中进行资源分配:
上述短TTI资源相当于本公开的一些实施例中的第二传输时间间隔资源。
例如,UE从HARQ发送缓存中取出对应HARQ进程缓存的MAC PDU,提取出属于时延敏感业务RB的RLC PDU,上述HARQ进程缓存的MAC PDU是在1msTTI初始传输时存入的;
又例如,如果短TTI资源不足以承载对应MAC PDU中所有时延敏感业务RB的RLC PDU,则优先承载高优先级的RLC PDU;
再例如,如果MAC PDU中存在时延敏感业务RB的RLC PDU,但短TTI资源不足以承载任何一个时延敏感业务RLC PDU,则UE放弃短TTI资源;基于1ms TTI资源进行数据发送,进入步骤8;
再例如,如果MAC PDU中不存在时延敏感业务RB的RLC PDU,UE可以放弃短TTI资源;基于1ms TTI资源进行数据发送,进入步骤8;
步骤4、如果短TTI资源在分配给优先使用短TTI资源进行传输的RB后,尚有剩余资源,则进行MAC层padding(填充);
步骤5、MAC层按照相关技术中的机制处理步骤4中获得的高层数据,生成待发送的MAC PDU,存入短TTI HARQ发送缓存;
步骤6、如在MAC层获得短TTI调度信息时,1m TTI HARQ发送缓存中的数据已经在子帧A的1msTTI传输已经开始(即UE的MAC在子帧A内获知在当前子帧还有短TTI资源被分配给自己),UE可以停止1ms TTI数据的传输;否 则,UE直接放弃子帧A内的1ms TTI数据的传输;
步骤7、在子帧A的短TTI资源开始时刻,UE开始进行短TTI数据传输;
步骤8、当1m TTI HARQ发送缓存在空口完成HARQ传输后,将传输过的数据从对应缓存中删除。
需要说明的是,HARQ传输为HARQ初传或HARQ重传。
在上述各实施例的基础上,本公开的一些实施例中,对于被放弃传输的1ms TTI中的数据,如果后继网络为UE分配了对应1ms HARQ进程的重传资源,存储在HARQ实体的MAC PDU可以使用重传资源进行重传。
在上述各实施例的基础上,本公开的一些实施例的场景是:如果没有优先使用短TTI资源进行传输的RB有数据待传,具体步骤如下:
步骤1、UE被调度在子帧A使用1msTTI进行上行传输;
上述1msTTI资源相当于本公开的一些实施例中的第一传输时间间隔资源。
步骤2、UE被调度在子帧A的第X个OFDM符号开始,使用短子帧进行上行传输;
步骤3、如果所有可以优先使用短TTI资源进行传输的RB都没有上行待传数据,UE可以放弃短TTI资源,继续使用1ms TTI资源进行数据传输。
上述短TTI资源相当于上述实施例中的第二传输时间间隔资源。
在上述各实施例的基础上,在本公开的一些实施例中,预先配置UE哪些承载(RB)可以使用短TTI,哪些承载可以使用1ms TTI;即每种承载只能映射到一种长度的TTI资源上,或者每种承载可以映射到多种长度的TTI资源上;
即,每一种RB映射到传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
同时,在上述实施例的基础上,还可以配置如下策略:
当1msTTI和短TTI出现在同一个子帧时:
a)如果有一个没有上行数据待传,则UE放弃没有待传数据的1msTTI或短TTI资源;
b)如果1msTTI和短TTI资源都没有数据可传,则UE选择一个1msTTI或短TTI资源放弃;
c)如果1msTTI和短TTI资源都有数据待传,UE放弃1ms TTI上的数据传输。
参见图4,图中示出了一种终端,包括:
接收模块401,用于在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,接收针对同一个子帧的第二传输时间间隔的上行调度;
发送模块402,用于如果所述UE收到针对同一个子帧的第二传输时间间隔的上行调度,从缓存中获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
在本公开的一些实施例中,该终端还包括:缓存模块,用于当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,缓存收到的各无线承载RB的数据;
可选地,所述缓存模块进一步用于:
将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ发送缓存。
可选地,所述发送模块进一步用于:
如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,E向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送;或者
如果不存在使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
可选地,所述发送模块还用于:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,用剩余的第二传输时间间隔资源传输其他RB的数据。
可选地,所述发送模块还用于:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
可选地,所述发送模块还用于:
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧A中的第一传输时间间隔传输已经开始,停止使用第一传输时间间隔进行数据的传输;或
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧A中的第一传输时间间隔传输尚未开始,放弃使用第一传输时间间隔进行数据的传输。
可选地,所述发送模块还用于:
在子帧A的第二传输时间间隔资源开始时刻,开始进行使用第二传输时间间隔进行数据的传输。
可选地,所述发送模块还用于:
当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存清空或被新数据覆盖而被删除或更新,所述HARQ传输为HARQ初传或HARQ重传。
可选地,所述发送模块还用于:
对于被放弃使用第一传输时间间隔传输的数据,按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
可选地,所述发送模块还用于:
如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据,放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
可选地,每一种RB映射到一个第一传输时间间隔资源或一个第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时 间间隔资源。
参见图5,图中示出了一种终端,包括:
处理器504,用于读取存储器505中的程序,执行下列过程:
在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,接收针对同一个子帧的第二传输时间间隔的上行调度;如果所述UE收到针对同一个子帧的第二传输时间间隔的上行调度,从缓存中获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
收发机501,用于在处理器504的控制下接收和发送数据。
在图5中,第二总线架构(用总线500来代表),总线500可以包括任意数量的互联的总线和桥,总线500将包括由处理器504代表的一个或多个处理器和第一存储器805代表的存储器的各种电路链接在一起。总线500还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。第二总线接口903在总线500和收发机501之间提供接口。收发机501可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器504处理的数据通过天线502在无线介质上进行传输,进一步,天线502还接收数据并将数据传送给处理器504。
处理器504负责管理总线500和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器505可以被用于存储处理器504在执行操作时所使用的数据。
可选的,处理器504可以是CPU、ASIC、FPGA或CPLD。
可选的,处理器504还用于:当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,缓存收到的各无线承载RB的数据;
可选的,处理器504还用于:
将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ发送缓存。
可选的,处理器504进一步用于:
如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,E向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送;或者
如果不存在使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
可选的,处理器504还用于:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,用剩余的第二传输时间间隔资源传输其他RB的数据。
可选的,处理器504还用于:
如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
可选的,处理器504还用于:
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输已经开始,停止使用第一传输时间间隔进行数据的传输;或
在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输尚未开始,放弃使用第一传输时间间隔进行数据的传输。
可选的,处理器504还用于:
在子帧的第二传输时间间隔资源开始时刻,开始进行使用第二传输时间间 隔进行数据的传输。
可选的,处理器504还用于:
当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存清空或被新数据覆盖而被删除或更新,所述HARQ传输为HARQ初传或HARQ重传。
可选的,处理器504还用于:
对于被放弃使用第一传输时间间隔传输的数据,按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
可选的,处理器504还用于:
如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据,放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
可选地,每一种RB映射到第一传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
应理解,说明书通篇中提到的“一些实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在本公开的一些实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定
另外,本文中术语“***”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开是参照根据本公开的一些实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (27)

  1. 一种数据传输方法,包括:
    在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;
    所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
  2. 根据权利要求1所述的方法,其中,当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,所述方法还包括:
    所述UE的媒体访问控制MAC实体缓存收到的各无线承载RB的数据。
  3. 根据权利要求2所述的方法,其中,所述UE的MAC实体缓存收到的各RB的数据,包括:
    所述UE的MAC实体将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
    所述UE的MAC实体对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ发送缓存。
  4. 根据权利要求2所述的方法,其中,所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,包括:
    如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,所述UE直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
    如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,所述UE向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
    如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
    如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,UE放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送;或者
    如果不存在使用第二传输时间间隔资源进行传输的RB的数据,UE放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
  5. 根据权利要求1所述的方法,还包括:
    如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,所述UE用剩余的第二传输时间间隔资源传输其他RB的数据。
  6. 根据权利要求1所述的方法,还包括:
    如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
  7. 根据权利要求1所述的方法,还包括:
    在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输已经开始,所述UE停止使用第一传输时间间隔进行数据的传输;或
    在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输尚未开始,所述UE放弃使用第一传输时间间隔进行数据的传输。
  8. 根据权利要求1所述的方法,还包括:
    在子帧的第二传输时间间隔资源开始时刻,所述UE开始进行使用第二传输时间间隔进行数据的传输。
  9. 根据权利要求1所述的方法,还包括:
    当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存中清空或被新数据覆盖而被删除或更新。
  10. 根据权利要求9所述的方法,其中,所述HARQ传输为HARQ初传或HARQ重传。
  11. 根据权利要求1所述的方法,还包括:
    对于被放弃使用第一传输时间间隔传输的数据,所述UE按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
  12. 根据权利要求1所述的方法,还包括:
    如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据, 所述UE放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
  13. 根据权利要求1所述的方法,其中,每一种RB映射到第一传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
  14. 一种终端,包括:
    接收模块,用于在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,接收针对同一个子帧的第二传输时间间隔的上行调度;发送模块,用于获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔。
  15. 根据权利要求14所述的终端,还包括:
    缓存模块,用于当终端UE被调度在子帧使用第一传输时间间隔进行上行数据初始传输时,缓存收到的各无线承载RB的数据。
  16. 根据权利要求15所述的终端,其中,所述缓存模块进一步用于:
    将高层发送下来的数据按照分预期发送子帧,分RB存入对应的缓存;或者
    对高层发送下来的将在同一子帧发送的数据进行处理,生成MAC PDU,存入对应HARQ发送缓存。
  17. 根据权利要求14所述的终端,其中,所述发送模块进一步用于:
    如果缓存了使用第二传输时间间隔资源进行传输的RB的数据,直接从缓存中获取使用第二传输时间间隔进行传输的RB的数据进行发送,不再向高层申请数据;或者
    如果没有缓存使用第二传输时间间隔资源进行传输的RB的数据,E向对应的无线链路层控制协议RLC实体或分组数据汇聚协议PDCP实体申请数据,或者放弃第二传输时间间隔资源;或者
    如果第二传输时间间隔资源不足以传输所有使用第二传输时间间隔资源进行传输的RB的数据,则传输高优先级的使用第二传输时间间隔资源进行传输的RB的数据;或者
    如果第二传输时间间隔资源不足以传输任何一个使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输 时间间隔资源进行数据发送;或者
    如果不存在使用第二传输时间间隔资源进行传输的RB的数据,放弃使用第二传输时间间隔资源,基于第一传输时间间隔资源进行数据发送。
  18. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,用剩余的第二传输时间间隔资源传输其他RB的数据。
  19. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    如果第二传输时间间隔资源在分配给使用第二传输时间间隔资源进行传输的RB后,所述第二传输时间间隔资源有剩余,使用填充比特进行填充。
  20. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输已经开始,停止使用第一传输时间间隔进行数据的传输;或
    在所述UE的MAC实体获得第二传输时间间隔调度信息时,如果确定使用第二传输时间间隔进行数据的传输,且同一子帧中的第一传输时间间隔传输尚未开始,放弃使用第一传输时间间隔进行数据的传输。
  21. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    在子帧的第二传输时间间隔资源开始时刻,开始进行使用第二传输时间间隔进行数据的传输。
  22. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    当缓存内对应第一传输时间间隔的数据在空口完成HARQ传输后,缓存清空或被新数据覆盖而被删除或更新。
  23. 根据权利要求22所述的终端,其中,所述HARQ传输为HARQ初传或HARQ重传。
  24. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    对于被放弃使用第一传输时间间隔传输的数据,按照MAC实体现有机制向高层申请获得的数据生成媒体访问控制协议数据单元MAC PDU,存入HARQ发送缓存,所述MAC PDU使用重传资源进行重传。
  25. 根据权利要求14所述的终端,其中,所述发送模块还用于:
    如果所有使用第二传输时间间隔资源进行传输的RB都没有上行待传数据,放弃使用第二传输时间间隔资源,继续使用第一传输时间间隔资源进行数据传输。
  26. 根据权利要求14所述的终端,其中,每一种RB映射到第一传输时间间隔资源或第二传输时间间隔资源,或者每一种RB映射同时到第一传输时间间隔资源和第二传输时间间隔资源。
  27. 一种基站,包括处理器、收发机和存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    在终端UE被调度在子帧使用第一传输时间间隔进行上行数据重传或进行上行数据初始传输时,所述UE接收针对同一个子帧的第二传输时间间隔的上行调度;
    所述UE获取使用第二传输时间间隔资源进行传输的RB的数据进行发送,其中,所述第一传输时间间隔大于所述第二传输时间间隔;
    所述收发机用于接收和发送数据;
    所述存储器用于保存所述处理器执行操作时所使用的数据。
PCT/CN2017/083866 2016-05-13 2017-05-11 一种数据传输方法及终端 WO2017193948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610320003.2A CN107371267B (zh) 2016-05-13 2016-05-13 一种数据传输方法及终端
CN201610320003.2 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017193948A1 true WO2017193948A1 (zh) 2017-11-16

Family

ID=60267047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083866 WO2017193948A1 (zh) 2016-05-13 2017-05-11 一种数据传输方法及终端

Country Status (2)

Country Link
CN (1) CN107371267B (zh)
WO (1) WO2017193948A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874178B (zh) * 2017-12-04 2021-06-04 电信科学技术研究院 一种发送资源的重选方法、装置及终端
CN110971349B (zh) * 2018-09-28 2021-06-08 电信科学技术研究院有限公司 一种重复传输方法、终端和网络侧设备
CN112090065B (zh) * 2020-09-23 2023-09-19 努比亚技术有限公司 一种网络时延调控方法、设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400072A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 提高覆盖能力的传输方法、***及装置
CN104521281A (zh) * 2013-04-12 2015-04-15 华为技术有限公司 一种tti切换方法、基站及用户设备
WO2016048597A1 (en) * 2014-09-26 2016-03-31 Qualcomm Incorporated Ultra-low latency lte control data communication
WO2016064049A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400072A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 提高覆盖能力的传输方法、***及装置
CN104521281A (zh) * 2013-04-12 2015-04-15 华为技术有限公司 一种tti切换方法、基站及用户设备
WO2016048597A1 (en) * 2014-09-26 2016-03-31 Qualcomm Incorporated Ultra-low latency lte control data communication
WO2016064049A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same

Also Published As

Publication number Publication date
CN107371267B (zh) 2019-09-17
CN107371267A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
US11051322B2 (en) Data processing method, apparatus, and system
JP7396768B2 (ja) グラントフリー伝送のためのアップリンクデータスケジューリングのためのシステムおよび方法
US10708940B2 (en) Method and apparatus for reporting buffer state by user equipment in communication system
JP7105311B2 (ja) Nrに対するharqバッファの管理方法
WO2018059234A1 (zh) 一种缓存状态报告的上报方法及装置
WO2018120160A1 (zh) 数据传输的方法和装置
RU2754679C2 (ru) Система, устройство и способ передачи данных
WO2018202037A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019062142A1 (zh) 调度请求的处理方法和终端设备
WO2018059360A1 (zh) 一种缓冲状态报告的处理方法及装置
US20170164231A1 (en) Data transmission method and base station
CN109392012B (zh) 一种数据处理方法及相关设备
CN109156020A (zh) 调度请求触发方法、装置和***
WO2017049558A1 (zh) 上行数据传输的方法和装置
WO2013166670A1 (zh) 上行信道资源配置方法和设备
WO2017193948A1 (zh) 一种数据传输方法及终端
TW201639389A (zh) 回報緩衝區狀態報告的裝置及方法
WO2017193861A1 (zh) 一种业务数据的传输方法、终端及网络侧设备
TW201836336A (zh) 處理用於資料複本的暫存器狀態回報的裝置及方法
WO2019062725A1 (zh) 一种上行数据传输方法及装置
TW201832589A (zh) 一種傳輸資料的方法、終端設備和網路設備
WO2012163276A1 (zh) 业务数据的调度方法、基站及基站控制器
CN110167067B (zh) 数据传输方法及装置、存储介质、终端、基站
WO2011132354A1 (ja) 基地局装置及びスケジューリング方法
WO2012155419A1 (zh) 一种处理重传数据的方法及基站

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795566

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795566

Country of ref document: EP

Kind code of ref document: A1