WO2021017690A1 - 一种测量同步的方法、网络设备及终端设备 - Google Patents

一种测量同步的方法、网络设备及终端设备 Download PDF

Info

Publication number
WO2021017690A1
WO2021017690A1 PCT/CN2020/097772 CN2020097772W WO2021017690A1 WO 2021017690 A1 WO2021017690 A1 WO 2021017690A1 CN 2020097772 W CN2020097772 W CN 2020097772W WO 2021017690 A1 WO2021017690 A1 WO 2021017690A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
information
delay
terminal device
neighboring cell
Prior art date
Application number
PCT/CN2020/097772
Other languages
English (en)
French (fr)
Inventor
范江胜
缪德山
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020227005739A priority Critical patent/KR20220038422A/ko
Priority to US17/631,143 priority patent/US11843449B2/en
Priority to EP20847550.9A priority patent/EP4007349A4/en
Publication of WO2021017690A1 publication Critical patent/WO2021017690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18589Arrangements for controlling an end to end session, i.e. for initialising, synchronising or terminating an end to end link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18595Arrangements for adapting broadband applications to satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/212Time-division multiple access [TDMA]
    • H04B7/2125Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, network equipment and terminal equipment for measuring synchronization.
  • the terminal device obtains the synchronization measurement timing configuration (Synchronization Measurement Timing Configuration, SMTC) of the target measurement cell, and quickly locates the frequency point of the target measurement cell according to the measurement window configured in the SMTC
  • the synchronization signal block (Synchronization Signal Block, SSB) completes the process of downlink synchronization with the target measurement cell.
  • the satellite service link has a large time delay. Therefore, if the terminal device still measures the SSB according to the measurement window in the SMTC in the satellite communication system, it may cause the terminal device to fail to measure synchronization with the target measurement cell.
  • the embodiments of the present disclosure provide a method, network equipment and terminal equipment for measurement synchronization, which are used to improve the reliability of measurement synchronization in a satellite communication system.
  • a method for measuring synchronization including:
  • the measurement interval parameter includes a measurement window
  • the terminal device sends the measurement window according to the instruction information, and measures the synchronization signal block of the neighboring cell according to the adjusted measurement window; wherein the instruction information It is used to indicate the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the network device after the network device configures the measurement interval parameters for the terminal device, it will send indication information to the terminal device to indicate that the satellite service link corresponding to the serving cell is related to the delay of the satellite service link corresponding to the neighboring cell. Parameter, so that the terminal device can adjust the measurement window in the measurement interval parameter according to the instruction information to compensate for the difference in measurement time caused by different satellite service links, improve the synchronization of the measurement window and the SSB time domain position, thereby improving the reliability of measurement synchronization .
  • sending the instruction information to the terminal device includes: sending the instruction information to the terminal device through broadcast system information; or sending the instruction information to the terminal device through dedicated signaling.
  • the indication information includes at least one of public offset information, delay offset information, and location information; wherein, the public offset information includes the satellite corresponding to the serving cell The maximum delay difference value between the service link and the satellite service link corresponding to the adjacent cell, and the delay offset information includes the real-time delay of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the adjacent cell.
  • the difference value, the location information includes the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell, or the location information includes the location of the gateway station, the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell.
  • the public offset information further includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay, and the method further includes: If the symbol information needs to be updated, notify the terminal device of the symbol information update in the following manner:
  • the indication information is the delay offset information
  • the indication information after sending the indication information to the terminal device, it includes: for a neighboring cell at any frequency point, if the current delay difference value is If the difference between the delay difference value and the delay difference value in the indication information is greater than a preset threshold, the system information including the current delay difference value is broadcasted, or the terminal device is sent to the terminal device through dedicated signaling for reconfiguration including the Indication information of the current delay difference; wherein, the current delay difference value refers to the delay difference value between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell in the current time period.
  • a method for measuring synchronization including:
  • the delay-related parameters are used to indicate the delay between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell;
  • the synchronization signal block corresponding to the neighboring cell is measured.
  • the delay-related parameters before determining the delay-related parameters, it includes: receiving indication information through broadcast system information; or receiving indication information through dedicated signaling sent by a network device; wherein the indication information is used for Indicates delay related parameters.
  • the indication information includes one or more of public offset information, delay offset information, and location information; wherein, the public offset information includes a serving cell corresponding The maximum delay difference between the satellite service link and the satellite service link corresponding to the neighboring cell, and the delay offset information includes the difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell Real-time delay difference value, the location information includes the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell, or the location information includes the location of the gateway station, the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell .
  • the public offset information further includes symbol information
  • the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay
  • the method further includes: Receive the message for updating system information sent through the paging process, and receive the updated symbol information or the updated current delay difference value for neighboring cells of a specific frequency through the updated system information broadcast, wherein the current The difference value is the delay difference value between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell in the current time period; or, the dedicated signaling reception through reconfiguration includes the neighboring specific frequency point
  • the updated indication information of the current delay difference value of the cell or, receiving the DCI sent by the network device through a paging process, and updating the symbol information according to the indication of the DCI.
  • determining the delay-related parameters includes: according to the location of the gateway, the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell, or according to the terminal equipment Location information, the location of the gateway, the pre-stored ephemeris, the satellite ID corresponding to the serving cell, and the satellite ID corresponding to the neighboring cell, determine the satellite service link corresponding to the serving cell and the satellite service corresponding to the neighboring cell Delay related parameters between links.
  • the method before measuring the synchronization signal block corresponding to the neighboring cell according to the adjusted measurement window, includes: according to a pre-stored ephemeris, the satellite identification corresponding to the serving cell, and The satellite identifier corresponding to the neighboring cell determines the included angle between the antenna of the terminal device and the satellite corresponding to the neighboring cell; according to the included angle, the antenna of the terminal device is adjusted to correspond to the neighboring cell The direction the satellite is aimed at.
  • adjusting the measurement window according to the delay-related parameters includes: if the common offset information does not include symbol information, advancing the start time of the measurement window by a maximum delay difference value , And the duration of the measurement window is increased by twice the maximum delay difference value; if the common offset includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is a time delay amount, The duration of the measurement window is extended by the maximum delay difference value; if the common offset includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is the time advance, then all The start time of the measurement window is advanced by the maximum delay difference value, and the duration of the measurement window is increased by the maximum delay difference value.
  • a method for measuring synchronization including:
  • the network device before configuring the first measurement interval parameter for the terminal device, determines the delay-related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, and according to the delay Related parameters, determine the corresponding measurement interval parameter, that is, the first measurement interval parameter received by the terminal device takes into account the delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, so that When the terminal device measures the SSB of the neighboring cell according to the first measurement interval parameter, the measurement window in the first measurement interval parameter can be synchronized with the time domain position of the SSB, thereby improving the reliability of measurement synchronization.
  • determining the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell includes: according to the location of the gateway station, the pre-stored ephemeris, and the serving cell
  • the identification of the corresponding satellite and the satellite identification of the neighboring cell determine the propagation distance difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell; or, according to the location of the terminal equipment and the location of the gateway ,
  • the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell determine the propagation distance difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell; according to the propagation distance The difference determines the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • sending the first measurement interval parameter to the terminal device includes: sending the first measurement interval parameter to the terminal device through broadcast system information; or, sending the first measurement interval parameter to the terminal device through dedicated signaling parameter.
  • the delay-related parameters include public offset information and/or delay offset information; wherein, the public offset information includes the satellite service link and the corresponding service cell The maximum delay difference value of the satellite service link corresponding to the neighboring cell, and the delay offset information includes the real-time delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the common offset information further includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay.
  • a measurement interval parameter it includes: if the symbol information needs to be updated, determining a second measurement interval parameter according to the updated symbol information; sending a message for updating system information to the terminal device through a paging process, and broadcasting including the System information of the second measurement interval parameter; or, sending downlink control information DCI or a paging message scheduled by DCI to the terminal device through a paging process; wherein the DCI and the paging message scheduled by the DCI carry the first 2. Measurement interval parameters.
  • the delay-related parameter is the delay offset information.
  • the method includes: if the current delay difference value is greater than the delay offset The difference between the delay difference values of the related parameters is greater than the preset threshold; or, after the interval is preset for a period of time; determine the third measurement interval parameter according to the current delay difference value; send the third measurement to the terminal device Interval parameters; wherein, the current delay difference value refers to the delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell in the current time period.
  • a method for measuring synchronization including:
  • the first measurement interval parameter is used to indicate the actual measurement window corresponding to the serving cell when the synchronization signal block is sent through the satellite service link corresponding to the neighboring cell;
  • the measurement window measure the synchronization signal block corresponding to the neighboring cell.
  • receiving the first measurement interval parameter sent by the network measurement device includes: receiving the first measurement interval parameter through broadcast system information; or, receiving the first measurement interval parameter through dedicated signaling.
  • the network measurement device after receiving the first measurement interval parameter sent by the network measurement device, it includes: receiving a message for updating system information sent through a paging process, and receiving system information including the second measurement interval parameter; Or, receiving downlink control information DCI or a paging message scheduled by DCI through a paging process; wherein the DCI and the paging message scheduled by the DCI are used to indicate a second measurement interval parameter; wherein, the second measurement interval
  • the measurement window indicated by the parameter is different from the measurement window indicated by the first measurement interval parameter.
  • a network device including: a processor, a memory, and a transceiver; the processor is configured to read a program in the memory and execute the method according to any one of the above-mentioned first aspects .
  • a terminal device including: a processor, a memory, and a transceiver; the processor is configured to read a program in the memory and execute the method according to any one of the above second aspects .
  • a network device including: a processor, a memory, and a transceiver; the processor is configured to read a program in the memory and execute the method according to any one of the above third aspects .
  • a terminal device including: a processor, a memory, and a transceiver; the processor is configured to read a program in the memory and execute the method according to any one of the foregoing fourth aspects .
  • a network device including:
  • Configuration module used to configure measurement interval parameters for terminal equipment; wherein, the measurement interval parameters include measurement windows;
  • Sending module used to send instruction information to the terminal device so that the terminal device adjusts the measurement window according to the instruction information, and measures the synchronization signal block of the neighboring cell according to the adjusted measurement window; wherein The indication information is used to indicate the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • a terminal device including:
  • Determining module used to determine delay-related parameters; wherein, the delay-related parameters are used to indicate the delay between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell;
  • the adjustment module is configured to adjust the measurement window according to the delay related parameters; wherein the measurement window is obtained from the measurement interval parameter configured by the network device;
  • the measurement module is configured to measure synchronization signal blocks corresponding to neighboring cells according to the adjusted measurement window.
  • a network device including:
  • the determining module is used to determine the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, and determine the first measurement interval parameter according to the delay related parameter; wherein, the measurement Interval parameters include measurement window;
  • the sending module is used to send the first measurement interval parameter to the terminal device.
  • a terminal device including:
  • the receiving module is used to receive the first measurement interval parameter sent by the network measurement equipment; wherein, the first measurement interval parameter is used to indicate the actual measurement corresponding to the serving cell to send the synchronization signal block through the satellite service link corresponding to the neighboring cell window;
  • the measurement module is configured to measure the synchronization signal block corresponding to the neighboring cell according to the measurement window.
  • a computer-readable storage medium stores computer instructions.
  • the computer instructions When the computer instructions are executed on a computer, the computer can execute operations such as the first, second, and The method of any one of the third aspect and the fourth aspect.
  • FIG. 1 is a schematic diagram of a measurement window in an embodiment of the disclosure
  • FIG. 2 is an application scenario diagram of a method for measuring synchronization provided by an embodiment of the disclosure
  • FIG. 3 is a schematic flowchart 1 of the first method for measuring synchronization provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of the interaction process involved in the first method for measuring synchronization provided by an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of the location distribution of gateway stations, satellites, and terminal equipment provided by embodiments of the disclosure
  • FIG. 6 is a schematic cross-sectional view of the location distribution diagram corresponding to FIG. 4 according to an embodiment of the disclosure
  • FIG. 7 is a first schematic diagram of adjusting a measurement window of a terminal device according to an embodiment of the disclosure.
  • FIG. 8 is a second schematic diagram of a terminal device adjusting a measurement window provided by an embodiment of the disclosure.
  • FIG. 9 is a first schematic diagram of a process of updating instruction information provided by an embodiment of the disclosure.
  • FIG. 10 is a second schematic diagram of the process of updating instruction information provided by an embodiment of the disclosure.
  • FIG. 11 is a second schematic flowchart of a second method for measurement synchronization provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of updating measurement interval parameters according to an embodiment of the disclosure.
  • FIG. 13 is a first structural diagram of a network device provided by an embodiment of the disclosure.
  • FIG. 14 is a first structural diagram of a terminal device provided by an embodiment of the disclosure.
  • FIG. 15 is a second structural diagram of a network device provided by an embodiment of the disclosure.
  • FIG. 16 is a second structural diagram of a terminal device provided by an embodiment of the disclosure.
  • FIG. 17 is a third structural diagram of a network device provided by an embodiment of the disclosure.
  • FIG. 18 is a third structural diagram of a terminal device provided by an embodiment of the disclosure.
  • FIG. 19 is a fourth schematic structural diagram of a network device provided by an embodiment of the disclosure.
  • FIG. 20 is a fourth structural diagram of a terminal device provided by an embodiment of the disclosure.
  • Synchronous measurement time configuration including the SSB period, the offset of the SSB start time relative to the SSB period, and the duration of the SSB in the SSB period.
  • Measurement interval includes the repetition period of the measurement interval, the offset of the actual start position of the measurement interval relative to the start time of a measurement interval period, the duration of the measurement interval, and the time start point advance of the measurement interval .
  • Ephemeris Includes orbital data information and/or satellite identification of satellites in the service area where the terminal is located. Among them, the satellite's orbital operation data information, for example, when the satellite orbits the earth, which place on the earth will be bypassed, and at what point in time it will bypass the place. Satellite identifiers are used to indicate corresponding satellites, and each satellite has a unique identifier, such as numbers, characters, or a combination of numbers and characters, which are not specifically limited in the present disclosure.
  • Satellite 1 will pass through Beijing at 16:00 Beijing time, Shanghai at 17:00, Anhui at 20:00, and Chongqing at 21:00.
  • Satellite 2 passed Shanghai at 16:00 Beijing time, Nanjing at 17:00, and Hangzhou at 21:00.
  • Satellite 3 passes through Beijing at 16:00 Beijing time, Shenyang at 17:00, and Lianyungang at 20:00.
  • Satellite 4 passed Xi'an at 16:00 Beijing time, Gansu at 17:00, and Chengdu at 21:00.
  • the terminal equipment can be a wireless terminal or a wired terminal.
  • a wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function, or other connected to a wireless modem Processing equipment.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal For example, they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminals can also be called systems, subscriber units (Subscriber Unit), subscriber stations (Subscriber Station), mobile stations (Mobile Station), mobile stations (Mobile), remote stations (Remote Station), remote terminals (Remote Terminal), Incoming terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment). It should be noted that the terminal equipment referred to in this article refers to the terminal equipment in the satellite communication system.
  • the network equipment refers to the network equipment in the satellite communication system.
  • the network equipment may be a base station, such as a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in a WCDMA system, or an evolved base station (Evo1utional NodeB, eNB, or eNodeB) in an LTE system.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evo1utional NodeB, eNB, or eNodeB evolved base station
  • the network device may also be a wireless controller in a cloud radio access network (C1oud Radio Access Network, CRAN) scenario.
  • CRAN cloud radio access network
  • the network device may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • Satellite service link It can be understood as a communication link composed of gateways, satellites, network equipment and terminal equipment.
  • the SSBs of different neighboring cells around a cell will be staggered in the time domain. In other words, the time domain positions of the SSBs of different neighboring cells are different.
  • the terminal device Before the terminal device switches from the serving cell to another cell, it needs to measure the signal of the cell to be switched. Before measuring the cell signal, it needs to complete downlink synchronization with the cell.
  • the SMTC corresponding to the neighboring cell is sent to the terminal device. After the terminal device obtains the SMTC configuration, it determines the measurement window, measures the SSB on the measurement window, and completes the downlink synchronization with the neighboring cell.
  • the network equipment can broadcast the SMTC of the neighboring cell through the system information. After the terminal device obtains the SMTC, it can try to measure the SSB of the neighboring cell. For a terminal device in an idle or inactive state, it can only wake up once in a Discontinuous Reception (DXR) cycle, so the terminal device will search for the SSB according to the SMTC of the corresponding neighboring cell within the waking time , Complete synchronous measurement. There is no data scheduling for a terminal device in an idle state or an inactive state, so there is no need to configure a measurement interval (Measurement Gap, MP) for a terminal device in an idle state or in an inactive state.
  • DXR Discontinuous Reception
  • the measurement configuration network equipment can be configured to the terminal equipment through dedicated signaling.
  • the measurement configuration information corresponding to a measurement object includes the frequency point and SMTC of the measurement object, and the terminal equipment
  • the SMTC configured according to different frequency points is synchronized to the corresponding SSB. Because the terminal equipment in the connected state has data service scheduling, the network equipment will configure the MP for the terminal equipment. After the terminal equipment obtains the MP, the terminal equipment only needs to be in the MP and synchronizes to the corresponding neighboring cell according to the SMTC, avoiding Data scheduling conflicts between the measurement cell and the serving cell.
  • FIG. 1 shows a schematic diagram of a measurement window determined by the terminal device according to the SMTC.
  • the measurement window of the terminal device is slightly larger than the original signal window of the network device.
  • t1 represents the preparation time required for the reserved measurement
  • t2 is aligned with the original signal window of the network device
  • t3 represents the remaining redundant time, which is to improve the reliability of the measurement.
  • the original signal window of the network device can be understood as the time domain position of the SSB corresponding to the neighboring cell.
  • the terminal equipment may cause the terminal equipment to receive the SMTC measurement window and the actual SSB of the neighboring cell.
  • the time domain location has a large time delay. If the terminal device still measures the SSB of the neighboring cell according to the SMTC configured in the above measurement synchronization mechanism, the terminal device may not be able to measure the SSB in the corresponding measurement window, resulting in measurement synchronization failure.
  • FIG. 2 shows a schematic diagram of an application scenario of the method.
  • the application scenario includes a first satellite 211, a second satellite 212, a gateway 220, a first network device 241, a second network device 242, and a terminal device 250.
  • both the first satellite 211 and the second satellite 212 can communicate with the gateway 220, the first satellite 211 and the first network device 241 communicate with each other, and the second satellite 212 and the second network device 242 communicate with each other.
  • the terminal device 250 When the terminal device 250 is within the service range of the first network device 241, the terminal device 250 can communicate with the first network device 241 and receive information broadcast by the first network device 241.
  • Figure 2 is an example where two satellites are served by the same gateway 220. In fact, the two satellites can also be served by different gateways.
  • two satellites are taken as an example, and the number of satellites is actually not limited.
  • Figure 2 shows two network devices as an example, and the number of network devices is actually not limited.
  • the delay-related parameter is used to indicate the delay between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell;
  • S302 Adjust the measurement window according to the delay related parameters; where the measurement window is obtained from the measurement interval parameter configured by the network device;
  • the terminal device 250 can determine the delay-related parameters between the satellite service link corresponding to the serving cell and the satellite service link of the neighboring cell, and adjust the measurement window according to the delay-related parameters to improve the reliability of measurement synchronization. Sex.
  • the satellite corresponding to the serving cell and the satellite of the neighboring cell may be the same satellite or two adjacent satellites. In either case, there will be a delay difference between the satellite service link corresponding to the serving cell and the satellite service link of the neighboring cell, but the value of the delay difference is different.
  • the embodiment of the present disclosure involves that the first network device 241 needs to configure the measurement interval parameter to the terminal device 250, and the configuration of the measurement interval parameter will be specifically described below.
  • the first network device 241 configures a measurement interval parameter for the terminal device 250, and the measurement interval parameter includes a measurement window.
  • S402 The first network device 241 sends instruction information to the terminal device 250, which is used to indicate delay related parameters.
  • the first network device 241 configures the measurement interval parameters for the terminal device 250 through dedicated signaling.
  • the first network device 241 may configure the measurement interval parameters of each neighboring cell for the terminal device 250 through dedicated signaling.
  • the measurement interval parameter can be understood as a parameter used to instruct the terminal device to measure the time domain position of the SSB of the neighboring cell, and can be understood as the synchronization measurement time configuration mentioned in the background art.
  • the measurement interval parameter includes the measurement window.
  • the measurement window specifically includes the start time of the measurement window, the duration of the measurement window, and the period of the measurement window.
  • the first network device 241 broadcasts the measurement interval parameters of neighboring cells through system information.
  • the first network device may broadcast the measurement interval parameters of each neighboring cell through system information, and the terminal device 250 may receive the measurement interval parameters when waking up in the DRX cycle .
  • the measurement interval parameter refer to the content discussed in Method 1, which will not be repeated here.
  • the first network device 241 may broadcast the parameters of different cells according to frequency points. Measurement interval parameters.
  • the terminal device 250 After the first network device 241 configures the measurement interval parameter for the terminal device 250, the terminal device 250 obtains the measurement interval parameter.
  • the first type the terminal device 250 can determine the delay-related parameters according to the instruction information issued by the first network device 241
  • the second type the terminal device determines the delay-related parameters according to the information stored by itself.
  • the following describes the situation where the first network device 241 delivers the instruction information.
  • the first network device 241 After configuring the measurement interval parameters for the terminal device 250, the first network device 241 performs S302, and the terminal device 250 Instructions, adjust the measurement window.
  • the indication information is used to indicate the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the delay related parameters can be understood as indirectly or directly indicating the satellite service link corresponding to the serving cell The delay difference value of the satellite service link corresponding to the road and the neighboring cell.
  • the following first describes the case where the instruction information is issued by the first network device 241.
  • the instruction information is different, and the first network device 241 obtains the specific content of the instruction information in different manners, which will be described with examples below.
  • the first type of indication information public offset information.
  • the public offset information includes the maximum delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the following is the method for the first network device 241 to obtain the first indication information. Description.
  • the indication information is the public offset information
  • the terminal device 250 after the terminal device 250 obtains the indication information, it can naturally determine the delay-related parameter, and the delay-related parameter is the public offset information.
  • the first network device 241 determines the maximum delay difference value according to the maximum propagation path difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the earth is a sphere as a reference standard. Satellites will continue to operate in predetermined orbits. With the operation of each satellite, the propagation path difference between the service links of different satellites will also continue to change. However, because the speed and direction of each satellite are relatively fixed, the two There is always a corresponding maximum propagation path difference between the satellite service links corresponding to the two satellites, and the maximum propagation path difference is also the maximum propagation path difference between the satellite service links of the two satellites.
  • the first network device 241 may determine the satellite and gateway corresponding to the serving cell according to the location of the gateway 220, the location of the terminal device, the ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell.
  • the maximum propagation path difference of the satellite service link determines the maximum delay difference value.
  • Figure 5 is a schematic cross-sectional view of the location distribution diagram corresponding to Figure 5.
  • point O represents the center of the earth's sphere
  • A represents the gateway 220
  • S1 represents the first satellite 211
  • S2 represents the second Satellite 212.
  • the first satellite 211 is a satellite with an elevation angle of 15° relative to the gateway 220 (the elevation angle is the angle shown by w in FIG. 5).
  • the distance difference between the first satellite 211 and the second satellite 212 is 900km, and the average radius of the earth is 6371km, so that the first satellite service link S1-UA corresponding to the serving cell and the second satellite service corresponding to the neighboring cell can be calculated
  • the distance difference between the link S2-UA is 707km.
  • the distance between the first satellite service link U-S1-A and the second satellite service link U-S2-A The propagation path difference is [-707km, 707km], the delay difference range is [-2.356ms, 2.356ms], and the maximum delay difference value is determined to be 2.356ms.
  • the first network device 241 is pre-configured with a maximum delay difference value.
  • each network device will be pre-configured with the maximum delay difference value, and there is no need for the first network device 241 to perform corresponding calculations.
  • the common offset information includes symbol information, which is used to indicate whether the satellite service link corresponding to the serving cell is advanced or delayed relative to the satellite service link corresponding to the neighboring cell.
  • the symbol information can be further theoretically indicating that the maximum delay difference value is a time advance or a time delay.
  • "-" in “-2ms” means that the maximum delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell is the time delay amount.
  • the “+” in “+2ms” indicates that the maximum delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell is the time advance.
  • the symbol information is described in terms of the satellite service link corresponding to the serving cell relative to the satellite service link corresponding to the neighboring cell, and the symbol information can also be relative to the satellite service link corresponding to the neighboring cell.
  • the symbol information can also be relative to the satellite service link corresponding to the neighboring cell.
  • the satellite service link corresponding to the serving cell For the satellite service link corresponding to the serving cell.
  • the common offset information is used as the indication information. Since the maximum delay difference between adjacent satellites is similar, the calculation amount and the information transmission amount of the first network device 241 can be relatively reduced.
  • the second type of indication information delay offset information.
  • the delay offset information includes the real-time delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell. Due to the change of the position of the terminal device 250, the movement of the satellite, etc., the propagation path difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell may change. Therefore, the satellite service corresponding to the serving cell The delay difference value of the satellite service link corresponding to the link and the neighboring cell will also continue to change. Therefore, the first network device 241 can determine in real time the real time difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell. Delay difference value.
  • the indication information is the delay offset information
  • the terminal device 250 obtains the indication information, it can naturally determine the delay related parameters, and the delay related parameters are the delay offset information.
  • the delay offset information further includes symbol information, and the symbol information may refer to the foregoing discussion, and is used to indicate that the delay offset information is a time advance or a time delay.
  • the first network device 241 can obtain the real-time delay difference value in real time, and can obtain a more accurate delay difference value, so as to further improve the reliability of measurement synchronization.
  • the third type of indication information location information.
  • the location information includes the location of the gateway station, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell.
  • the location information includes the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell.
  • the location of the gateway is pre-configured by the first network device 241 for the terminal device 250, and the first network device 241 only needs to carry the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell in the indication information.
  • the first network device 241 may directly send the location information to the terminal device 250, and the terminal device 250 calculates the corresponding delay related parameters according to the pre-stored ephemeris and the location information, simplifying the processing of the first network device 241 the amount.
  • the ephemeris may be configured in the terminal device 250 in advance, or may be delivered to the terminal device 250 by the first network device 241.
  • the source of the ephemeris in the terminal device 250 is not limited in this disclosure.
  • Regarding the content of the ephemeris please refer to the content discussed in the previous section, which will not be repeated here.
  • the fourth type of indication information a combination of any two or three of common offset information, delay offset information, and position information.
  • the first network device 241 may obtain the public offset information, the delay offset information, and the location information in the manner discussed above, and the first network device 241 may obtain the public offset information, the delay offset information The combination of any two or three of the location information is sent to the terminal device 250.
  • the first network device 241 After the first network device 241 obtains the instruction information, it sends the instruction information to the terminal device 250. Regardless of which of the instructions in the foregoing, the first network device 241 sends the instruction information to the terminal device 250 in various ways. , The specific sending method will be described below.
  • the instruction information is sent to the terminal device 250 through dedicated signaling.
  • the first network device 241 may send the instruction information to the terminal device 250 through dedicated signaling.
  • the dedicated signaling can refer to the content discussed in the previous section, which will not be repeated here.
  • the instruction information is sent to the terminal device 250 through the broadcasted system information.
  • the first network device 241 may carry instruction information in the system information, and the terminal device 250 obtains the instruction information through the system information.
  • the first network device 241 sends the indication information of the corresponding neighboring cells according to the frequency point and the cell identity.
  • the terminal device 250 is based on the cell identity, frequency, and indication information. Determine the time delay between the satellite links corresponding to each neighboring cell and the serving cell.
  • the maximum propagation path difference between any two adjacent satellites can be regarded as equal, so the maximum delay difference between any two adjacent satellites
  • the values can be considered the same.
  • the indication information is public offset information
  • the first network device 241 may broadcast the indication information without distinguishing between cells, and the public offset information in the indication information will be used as the indication information corresponding to all neighboring cells.
  • the terminal device 250 can determine the delay related parameters according to the instruction information. For the specific content of determining the delay related parameters, please refer to the content discussed in the previous section, which will not be repeated here.
  • the following describes the situation where the terminal device 250 determines the delay related parameters by its own information.
  • the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell or according to the location information of the terminal equipment, the location of the gateway, the pre-stored ephemeris, the serving cell
  • the corresponding satellite identifier and the satellite identifier corresponding to the neighboring cell determine the delay-related parameters between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • an ephemeris is pre-stored in the terminal device 250, and the ephemeris can be referred to the content discussed above, which will not be repeated here.
  • the terminal device 250 can determine the satellite identity corresponding to the serving cell and the satellite identity corresponding to the neighboring cell, determine the satellite position corresponding to the serving cell and the satellite position corresponding to the neighboring cell according to the ephemeris, and determine the gateway 220-corresponding to the serving cell
  • the distance between the satellite and the terminal device 250 that is, the propagation path of the satellite service link corresponding to the serving cell, and the distance between the gateway 220 and the satellite corresponding to the neighboring cell and the terminal device 250 are also determined. It is the propagation path of the satellite service link corresponding to the neighboring cell, so that the propagation distance difference is calculated, and the delay related parameters are determined according to the propagation distance difference.
  • the terminal device 250 may determine the satellite identity serving the serving cell according to the identity of the serving cell, the location of the terminal device, and the current moment. Similarly, the terminal device 250 can determine the identity of the satellite serving the neighboring cell based on the identity of the neighboring cell, the location of the terminal device, and the current time.
  • the delay-related parameters may be the delay offset information discussed above, and the delay offset information may refer to the content discussed above, which will not be repeated here.
  • the terminal device 250 can calculate the delay difference value by itself, and the network device 241 does not need to issue instruction information, which relatively reduces signaling interaction.
  • the terminal device 250 executes S302 to adjust the measurement window according to the delay related parameters.
  • the terminal device 250 obtains the measurement interval parameter.
  • the measurement interval parameter For the content of the measurement interval parameter, refer to the content discussed in S401 above.
  • the terminal device 250 also obtains the measurement window of the neighboring cell.
  • the terminal device 250 determines the delay-related parameters, the terminal device adjusts the measurement window according to the delay-related parameters.
  • the manner in which the terminal device 250 adjusts the measurement window is also different, and an example is described below.
  • the delay-related parameters are public offset information.
  • the public offset information may or may not include symbol information. The following is divided into two cases, C1-1 and C1-2, for description.
  • the terminal device 250 advances the start time of the measurement window by the maximum delay difference value, and the duration of the measurement window is increased by two times The maximum delay difference value.
  • the terminal device 250 obtains the maximum delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, but it cannot determine the difference between the satellite service link corresponding to the current serving cell and
  • the real-time delay value of the satellite service link corresponding to the neighboring cell, the SSB of the neighboring cell may be advanced relative to the signal of the serving cell, and the advance is the maximum delay difference value; it may also be neither advanced nor delayed; or delayed, And the delay amount is the maximum delay difference value. Therefore, the terminal device 250 will advance the start time of the measurement window by the maximum delay difference value, and increase the duration of the measurement window by twice the maximum delay difference value to ensure that the terminal device 250 Measure the SSB of the neighboring cell.
  • the adjusted measurement window of the terminal device 250 includes t1, t2, t3, t4, and t5.
  • t2 and t4 are the maximum delay difference value that the terminal device 250 increases by two times according to the maximum delay difference value.
  • the delay-related parameter is public offset information
  • the public offset information includes symbol information
  • the symbol information is used to indicate that the maximum delay difference is the time delay amount, the duration of the measurement window is extended by the maximum delay difference Value; if the symbol information is used to indicate that the maximum delay difference value is the time advance, the start time of the measurement window is advanced by the maximum delay difference value, and the duration of the measurement window is increased by the maximum delay difference value.
  • the terminal device 250 can determine whether the common offset is a time delay amount or a time advance amount according to the symbol information. If the symbol information indicates that the maximum delay difference value is the time delay amount, the terminal device 250 does not adjust the start time of the measurement window, and increases the duration of the terminal device 250 by the maximum delay difference value; if the symbol information indicates that the maximum delay difference value is For the time advance, the terminal device 250 advances the start time of the measurement window by the maximum delay difference value, and the duration of the measurement window is increased by the maximum delay difference value.
  • the terminal device determines that the symbol information is used to indicate the maximum delay difference value is the time advance, and the terminal device advances the measurement window A by the maximum delay difference value, and the duration increases the maximum delay difference value ( Figure 8 in t2). If the symbol information is used to indicate that the maximum delay difference value is the time delay amount, the terminal device increases the duration of the measurement window A by the maximum delay difference value (shown as t8 in FIG. 8).
  • the delay offset information may or may not include symbol information. The following is divided into two cases, C2-1 and C2-2, for description.
  • the terminal device 250 advances the start time of the measurement window by the real-time delay difference value, and the duration of the measurement window increases Two times the real-time delay difference value.
  • the delay-related parameter is delay offset information
  • the delay offset information includes symbol information
  • the symbol information is used to indicate that the real-time delay difference is the time delay
  • the duration of the measurement window is extended in real-time Delay difference value
  • the symbol information is used to indicate that the real-time delay difference value is the time advance
  • the start time of the measurement window is advanced by the real-time delay difference value
  • the duration of the measurement window is increased by the real-time delay difference value.
  • the terminal device 250 may not consider its own location, and directly determine the corresponding satellite identity of the serving cell in the ephemeris. According to the position of the gateway station 220, the distance between the satellite corresponding to the serving cell and the gateway station 220 is determined.
  • the terminal device 250 can directly determine the location of the satellite corresponding to the serving cell in the ephemeris based on the satellite identification corresponding to the neighboring cell, and then determine the location of the satellite corresponding to the neighboring cell and the gateway station 220 based on the location of the gateway 220 Determine the propagation path difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell to determine the corresponding delay difference value.
  • the terminal device 250 may consider the position of the terminal device 250 to calculate the serving cell
  • the first distance between the terminal device 250-satellite-gateway 220 of the neighboring cell is similarly calculated, and the second distance between the terminal device 250-satellite-terminal device 250 of the neighboring cell is calculated according to the first distance and the second distance.
  • the distance determines the propagation path difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, thereby determining the delay difference value.
  • the location of the gateway 220 includes the locations of multiple gateways 220, but the terminal device 250 is not sure which gateway 220 corresponds to the satellite corresponding to the serving cell and the satellite corresponding to the neighboring cell.
  • the terminal device 250 may determine the gateway 220 closest to the satellite corresponding to the serving cell as the gateway 220 corresponding to the satellite corresponding to the serving cell, and the gateway 220 closest to the satellite corresponding to the neighboring cell as the gateway 220 The gateway 220 corresponding to the satellite corresponding to the neighboring cell.
  • the ephemeris may be updated, and the update may or may not be periodic.
  • the first network device 241 may deliver the updated ephemeris to the terminal device 250.
  • the terminal device 250 calculates the delay difference value, it will calculate with the latest received ephemeris.
  • the first network device 241 to deliver the updated ephemeris, for example, through dedicated signaling, or through system information broadcasting, which is not specifically limited in this document.
  • the terminal device 250 calculates the delay difference value according to location information and the like. Since the calculation is based on real-time location information, the terminal device 250 can determine that the calculated delay difference value is a time advance or a time delay.
  • the terminal device 250 determines the delay difference value, if the delay difference value is the amount of time delay, the terminal device 250 extends the duration of the measurement window by the delay difference value; if the symbol information is used to indicate the delay difference value Time advance, advance the start time of the measurement window by the real-time delay difference value, and increase the duration of the measurement window by the delay difference value.
  • the terminal device 250 can use any one of the information as a reference to adjust the measurement window of the terminal device 250, or The terminal device 250 presets two types of information priority. The terminal device 250 uses the highest priority information as a reference to adjust the measurement window.
  • the terminal device 250 presets the priority of the delay offset information and the public offset information. If the terminal device 250 receives the highest priority information, it uses the information as a reference to adjust the measurement window. , If no information about a neighboring cell with the highest priority is received, the information with the second highest priority is used as a reference, and so on.
  • the first network device 250 Since the time delay between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell will constantly change, the first network device 250 will continuously update the indication information and send the updated indication information ⁇ terminal equipment 250. The process of updating the indication information by the first network device 241 will be described below.
  • the update process includes:
  • S902 The first network device 241 broadcasts the updated system information.
  • S903 The terminal device 250 adjusts the measurement window according to the updated system information.
  • the first network device 241 updates the system information when determining that the instruction information meets the preset conditions, broadcasts the updated system information, and the terminal device 250 will update After the system information, adjust the measurement window.
  • the preset conditions in S901 are for example:
  • the indication information is public offset information
  • the public offset information includes symbol information
  • the symbol information needs to be updated means that the symbol information may be advanced from the indicated time.
  • the amount is updated to indicate the time delay amount, or the symbol information may be updated from the indicated time delay amount to the indicated time advance amount.
  • the first network device 241 may trigger the generation of updated system information, and the updated system information carries the updated symbol information.
  • the indication information is a real-time delay difference value, and the real-time delay difference value will continuously change.
  • the first network device 241 determines the difference between the current delay difference value in the current time period and the delay difference value in the indication information When the value is greater than the preset threshold, the first network device 241 may trigger to update the system information, and the updated system information carries the current delay difference value.
  • the first network device 241 After triggering to update the system information, the first network device 241 notifies the terminal device 250 that the system information needs to be updated during the paging process, and then executes S902 to broadcast the updated system information.
  • the first network device 241 may broadcast the updated system information corresponding to each neighboring cell according to the frequency point, so as to facilitate the terminal
  • the device 250 determines the cell to which the updated indication information belongs.
  • the first network device 241 broadcasts the updated system information. After receiving the broadcasted updated system information, the terminal device 250 executes S903, and adjusts the measurement window according to the updated system information.
  • the updated system information carries the updated instruction information
  • the terminal device 250 adjusts the measurement window according to the updated instruction information.
  • the adjustment method can refer to the content discussed above, and will not be repeated here.
  • the period for the first network device 241 to broadcast the updated system information is generally relatively fixed. If the updated system information is broadcast after the broadcast period is reached, the terminal device 250 may not receive the updated instruction information in time. Therefore, in the embodiment of the present disclosure, when the first network device 241 determines that the preset condition 1 is satisfied, it can send downlink control information (DCI) to the terminal device 250 through the paging process, and the DCI is used to instruct the terminal The device 250 updates the symbol information.
  • DCI downlink control information
  • the first network device 241 may promptly instruct the terminal device 250 to update the symbol information according to the DCI. After the terminal device 250 receives the DCI, it updates the symbol information in the indication information according to the instructions of the DCI, and then adjusts according to the updated symbol information. Measurement window.
  • the update process includes:
  • the first network device 241 sends updated indication information to the terminal device 250 through dedicated signaling after reconfiguration.
  • S1003 The terminal device 250 adjusts the measurement window according to the updated instruction information.
  • the preset conditions can refer to the content discussed in FIG. 9, which will not be repeated here.
  • the first network device 241 determines that the preset condition is met, the first network device 241 triggers the reconfiguration dedicated signaling.
  • the first network device 241 determines the updated instruction information according to the preset condition.
  • the first network device 241 executes S1002 and sends the updated instruction information to the terminal device 250 through dedicated reconfiguration signaling.
  • the first network device 241 carries the updated symbol information in the dedicated signaling.
  • the preset condition is the preset condition 2 discussed above
  • the first network device 241 carries the current delay difference value in the dedicated signaling.
  • the updated instruction information is sent to the terminal device 250 through dedicated signaling.
  • the first network device 241 may send the updated system information corresponding to each neighboring cell through dedicated signaling according to the frequency. , So that the terminal device 250 can determine the cell to which the updated indication information belongs.
  • the terminal device 250 After receiving the updated instruction information, the terminal device 250 executes S1003, and adjusts the measurement window according to the updated instruction information.
  • the terminal device 250 After the terminal device 250 adjusts the measurement window, it obtains the updated instruction information. After adjusting the measurement window, the terminal device 250 executes S303 to measure the synchronization signal block of the neighboring cell according to the adjusted measurement window.
  • the terminal device 250 adjusts the measurement window, it is equivalent to determining the time domain position of the neighboring cell sending the SSB.
  • the terminal device 250 measures the synchronization signal block of the neighboring cell according to the adjusted measurement window.
  • the synchronization signal block of the neighboring cell is Periodically broadcast by the second network device 242 corresponding to the neighboring cell, the terminal device 250 compensates for the time delays of different satellite service links, which can ensure that the terminal device 250 can obtain the SSB according to the adjusted measurement window, and complete the communication with the neighboring cell.
  • the second network device 242 and the first network device 241 may be different network devices or the same network device.
  • the terminal device 250 may adjust its own antenna angle before the terminal device 250 measures the synchronization signal block of the neighboring cell.
  • the terminal device 250 can determine the angle between its own antenna and the satellite of the neighboring cell based on the pre-stored ephemeris, the satellite identifier corresponding to the serving cell, the satellite identifier corresponding to the neighboring cell, and the position of the terminal device 250 itself.
  • the antenna of the terminal device 250 is adjusted to a direction aligned with the satellite of the neighboring cell, so as to improve the success rate of the terminal device 250 in measuring the SSB of the neighboring cell.
  • FIG. 11 which includes:
  • the first network device 241 determines a delay related parameter.
  • S1102 Determine a first measurement interval parameter according to the delay related parameter, where the first measurement interval parameter includes a measurement window.
  • S1103 Send the first measurement interval parameter to the terminal device 250.
  • S1104 Measure synchronization signals of neighboring cells according to the measurement window.
  • the first network device 241 determines in advance the delay-related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, and determines the first measurement interval associated with the delay-related parameter Parameter and send the first measurement interval parameter to the terminal device 250. That is to say, in the embodiment of the present disclosure, when the first network device 241 determines the first measurement interval parameter, it considers the delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell. Therefore, the synchronization between the first measurement interval parameter obtained by the terminal equipment and the SSB of the neighboring cell is improved, thereby improving the reliability of measurement synchronization in the satellite system.
  • the first network device 241 determines a delay related parameter.
  • the delay-related parameters refer to the delay-related parameters between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the delay-related parameters include common offset information and/or delay offset
  • the public offset information includes the maximum delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell
  • the delay offset information includes the satellite service link and the satellite service link corresponding to the serving cell.
  • the common offset information may include symbol information, and the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay.
  • the delay offset information may include symbol information, and the symbol information is used to indicate that the real-time delay difference value is a time advance or a time delay.
  • the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell are determined.
  • the location of the satellite corresponding to the serving cell can be determined based on the ephemeris and the satellite identifier corresponding to the serving cell
  • the location of the satellite corresponding to the neighboring cell can be determined based on the ephemeris and the satellite identifier corresponding to the neighboring cell.
  • the location of the gateway, the location of the satellite corresponding to the serving cell, and the location of the satellite corresponding to the neighboring cell determine the propagation distance difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, refer to the previous discussion The content discussed in C3 will not be repeated here.
  • the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell are determined.
  • the ephemeris may be updated periodically or non-periodically. After the ephemeris is updated, the first network device 241 will update according to the latest The ephemeris calculates the delay-related parameters to ensure the accuracy of the calculated delay-related parameters.
  • the position of the terminal device 250 is taken into consideration, so that more accurate delay-related parameters can be obtained, and the reliability of measurement synchronization is further improved.
  • S1102 Determine a first measurement interval parameter according to the delay related parameter, where the first measurement interval parameter includes a measurement window.
  • the first network device 241 will configure the measurement window corresponding to the non-interfering SSB for each neighboring cell in advance. After obtaining the delay related parameters of a certain neighboring cell, the first network device 241 will adjust it according to the delay related parameters.
  • the measurement window of the SSB of the neighboring cell determines the first measurement interval parameter corresponding to the neighboring cell.
  • the manner in which the first network device determines the first measurement interval parameter is also different, and an example is described below.
  • the time delay related parameter is the public offset information.
  • the first network device 241 After the first network device 241 determines the public offset information, and the public offset information does not include symbol information, the first network device 241 can increase the measurement window of the original configuration by twice the maximum delay difference value, and change the original configuration The measurement window is advanced by the maximum delay difference value.
  • the common offset information includes symbol information
  • the symbol information is used to indicate that the maximum delay difference is the time delay
  • the duration of the measurement window is extended by the maximum time.
  • Delay difference value if the symbol information is used to indicate that the maximum delay difference value is the time advance, the start time of the originally configured measurement window is advanced by the maximum delay difference value, and the duration of the originally configured measurement window is increased by the maximum Delay difference value.
  • the time delay related parameter is the public offset information.
  • the first network device 241 After the first network device 241 determines the delay offset information, and the delay offset information does not include symbol information, the first network device 241 can increase the original configured measurement window by twice the real-time delay difference value, and change The originally configured measurement window advances the real-time delay difference value.
  • the delay offset information includes symbol information
  • the symbol information is used to indicate that the real-time delay difference value is the time delay
  • the duration of the measurement window is extended Real-time delay difference value
  • the symbol information is used to indicate that the real-time delay difference value is the time advance
  • the start time of the originally configured measurement window is advanced by the real-time delay difference value
  • the duration of the original configured measurement window Increase the real-time delay difference value.
  • the delay related parameters include public offset information and delay offset information.
  • the first network device 241 may adjust the originally configured measurement window according to any information of the delay related parameters. For specific adjustment methods, please refer to K1 and K2 discussed above.
  • the adjusted measurement window is obtained, and then the first measurement interval parameter is obtained.
  • the first network device 241 executes S1103 and sends the first measurement interval parameter to the terminal device 250.
  • the first network device 241 may send the first measurement interval parameter to the terminal device 250 through broadcasted system information.
  • the first network device 241 may also send the first measurement interval parameter to the terminal device 250 through dedicated signaling.
  • Dedicated signaling can refer to the previous discussion content, which will not be repeated here.
  • the first network device 241 will update the first measurement interval parameter.
  • updating the first measurement interval parameter includes:
  • the first network device 241 determines that the delay-related parameter satisfies a preset condition, and updates the first measurement interval parameter.
  • the first network device 241 sends the updated first measurement interval parameter to the terminal device 250.
  • the first network device 241 will update the first measurement interval parameter when the delay-related parameter meets the preset condition, so that the updated measurement interval parameter matches the current delay-related parameter more closely, and further improves
  • the terminal device 250 measures the reliability of synchronization.
  • the first precondition is the first precondition:
  • the first network device 241 determines that the symbol information in the delay related parameters needs to be updated.
  • the symbol information in the delay-related parameters needs to be updated includes two situations: the symbol information in the public offset information needs to be updated, or the symbol information in the delay offset information needs to be updated.
  • the first network device 241 may generate the second measurement interval parameter according to the updated symbol information.
  • the first network device 241 determines that the difference between the current delay difference value and the delay difference value of the delay-related parameter is greater than a preset threshold.
  • the delay-related parameters include delay offset information, because the real-time delay difference value in the delay offset information will continue to change, but the first network device 241 also needs to process other services, so it can be in the current time
  • the first network device 241 determines that the first measurement interval parameter needs to be updated.
  • the first network device 241 may generate the third measurement interval parameter according to the current delay difference value.
  • the first network device 241 periodically updates the measurement interval parameter. If it is determined that the preset interval has been reached since the last time the first measurement interval parameter was sent, the first network device 241 determines that the first measurement interval parameter needs to be updated . The first network device 241 may update the first measurement interval parameter according to the current delay related parameter.
  • the first network device 241 may generate the fourth measurement interval parameter according to the content that needs to be updated correspondingly in the preset conditions.
  • the first network device 241 executes S1202 and sends the updated measurement interval parameter to the terminal device 250.
  • the first network device 241 to specifically send the updated measurement interval parameter, which will be described below with examples.
  • a message for updating system information is sent to the terminal device 250 through a paging process, and system information including the updated measurement interval parameter is broadcast.
  • the first network device 241 may trigger an update of the system information when a preset condition is met, carry the updated measurement interval parameter in the system information, and send it to the terminal device 250.
  • the updated measurement interval parameter is, for example, the second measurement interval parameter, the third measurement interval parameter, or the fourth measurement interval parameter discussed above.
  • the DCI is sent through the paging process to send the updated measurement interval parameter to the terminal device 250.
  • the first network device 241 may send the DCI during the paging process, and send the DCI carrying the updated measurement interval parameter to the terminal device 250.
  • the updated measurement parameters are the second measurement interval parameter, the third measurement interval parameter, or the fourth measurement interval parameter discussed above.
  • the updated measurement interval parameter is sent to the terminal device 250 through the paging message scheduled by the DCI in the paging process.
  • the updated interval parameter is carried in the paging message.
  • the updated interval parameter is, for example, the second measurement interval parameter, the third measurement interval parameter, or the fourth measurement interval parameter discussed above.
  • the updated measurement interval parameter is sent to the terminal device 250.
  • the first network device 241 carries the updated measurement interval parameter in the dedicated signaling, and sends the updated measurement interval parameter to the terminal device 250.
  • the terminal device 250 may receive the updated measurement interval parameter in a corresponding receiving manner.
  • S1204 is executed to measure the synchronization signal block of the neighboring cell according to the measurement window.
  • the terminal device 250 may measure the synchronization signal block of the neighboring cell on the corresponding measurement window according to the measurement window in the corresponding measurement interval parameter, and complete Downlink synchronization with neighboring cells.
  • the terminal device 250 may adjust its own antenna angle before the terminal device 250 measures the synchronization signal block of the neighboring cell.
  • the terminal device 250 can determine the angle between its own antenna and the satellite of the neighboring cell based on the pre-stored ephemeris, the satellite identifier corresponding to the serving cell, the satellite identifier corresponding to the neighboring cell, and the position of the terminal device 250 itself. After determining the included angle, the antenna of the terminal device 250 is adjusted to a direction aligned with the satellite of the neighboring cell, so as to improve the success rate of the terminal device 250 in measuring the SSB of the neighboring cell.
  • an embodiment of the present disclosure also provides a network device. Please refer to FIG. 13.
  • the network device includes: a processor 1301, a memory 1302, and a transceiver 1303; a processor 1301 for Read the program in the memory 1302 and execute the following process:
  • the processor 1301 is specifically configured to: send instruction information to the terminal device through broadcasted system information; or, send instruction information to the terminal device through dedicated signaling.
  • the indication information includes one or more of public offset information, delay offset information, and location information; wherein, the public offset information includes the satellite service chain corresponding to the serving cell The maximum delay difference value of the satellite service link corresponding to the channel and the neighboring cell.
  • the delay offset information includes the real-time delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the information includes the satellite identifier corresponding to the serving cell and the satellite identifier corresponding to the neighboring cell, or the location information includes the location of the gateway station, the satellite identifier corresponding to the serving cell, and the satellite identifier corresponding to the neighboring cell.
  • the public offset information further includes symbol information
  • the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay
  • the processor 1301 is further configured to: if the symbol information needs to be updated , Notify the terminal device of the symbol information update through the following method: send a message to update the system information to the terminal device through the paging process, and broadcast the system information including the updated symbol information; or, send the downlink control information DCI to the terminal device through the paging process ; Among them, DCI is used to instruct terminal equipment to update symbol information.
  • the indication information is delay offset information
  • the processor 1201 is further configured to: after sending the indication information to the terminal device, for a neighboring cell at any frequency point, if the current delay difference value is If the difference between the delay difference and the delay difference value in the indication information is greater than the preset threshold, broadcast the system information including the current delay difference value, or send the indication information including the current delay difference to the terminal device through dedicated signaling for reconfiguration;
  • the current delay difference value refers to the delay difference value between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell in the current time period.
  • processor 1301 and the memory 1302 may be relatively independently arranged, or may be coupled.
  • one processor 1301 is taken as an example, but the number of processors 1301 is actually not limited.
  • an embodiment of the present disclosure also provides a terminal device. Please refer to FIG. 14.
  • the terminal device includes: a processor 1401, a memory 1402, and a transceiver 1403; a processor 1401 for Read the program in the memory 1402 and execute the following process:
  • the measurement interval parameter configured by the network device; wherein, the measurement interval parameter includes the measurement window;
  • the delay-related parameters are used to indicate the delay between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell;
  • the measurement window is obtained from the measurement interval parameter configured by the network device;
  • the adjusted measurement window measure the synchronization signal block corresponding to the neighboring cell.
  • the processor 1401 is further configured to: before determining the delay related parameters, receive the instruction information through broadcast system information; or, receive the instruction information through dedicated signaling sent by the network device; where The indication information is used to indicate delay related parameters.
  • the indication information includes one or more of public offset information, delay offset information, and location information; wherein, the public offset information includes the satellite service chain corresponding to the serving cell The maximum delay difference between the satellite service links corresponding to the road and the neighboring cell, and the delay offset information includes the real-time delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the location information includes the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell, or the location information includes the location of the gateway station, the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell.
  • the public offset information further includes symbol information
  • the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay
  • the processor 1401 is further configured to: The sent message for updating system information, through the broadcast of the updated system information, receives the updated symbol information or the updated current delay difference value for the neighboring cell of a specific frequency point, where the current difference value is corresponding to the serving cell
  • the delay difference value between the satellite service link and the satellite service link corresponding to the neighboring cell in the current time period; or, through the dedicated signaling of reconfiguration, the current delay difference including the updated current delay difference for the neighboring cell of the specific frequency point is received Value indication information; or, receive the DCI sent by the network device through the paging process, and update the symbol information according to the DCI indication.
  • the indication information is location information
  • the processor 1401 is specifically configured to: according to the location of the gateway, the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell, Or determine the satellite service link corresponding to the serving cell and the satellite corresponding to the neighboring cell based on the location information of the terminal equipment, the location of the gateway, the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell Delay related parameters between service links.
  • the processor 1401 is further configured to: before measuring the synchronization signal block corresponding to the neighboring cell according to the adjusted measurement window, according to the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the neighboring cell
  • the satellite identifier corresponding to the cell determines the angle between the antenna of the terminal device and the satellite corresponding to the adjacent cell; according to the angle, the antenna of the terminal device is adjusted to the direction that the satellite corresponding to the adjacent cell is aligned.
  • the processor 1401 is specifically configured to: if the common offset information does not include symbol information, advance the start time of the measurement window by the maximum delay difference value, and increase the duration of the measurement window by two Times the maximum delay difference value; if the common offset includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is the time delay amount, the duration of the measurement window is extended by the maximum delay difference value; if the common offset The shift includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is the time advance, then the start time of the measurement window is advanced by the maximum delay difference value, and the duration of the measurement window is increased by the maximum delay difference value.
  • processor 1401 and the memory 1402 may be relatively independently arranged, or may be coupled.
  • one processor 1401 is taken as an example, but the number of processors 1401 is actually not limited.
  • an embodiment of the present disclosure also provides a network device. Please refer to FIG. 15.
  • the network device includes: a processor 1501, a memory 1502, and a transceiver 1503; a processor 1501 for Read the program in the memory 1502 and execute the following process:
  • the measurement interval parameter includes the measurement window
  • the processor 1501 is specifically configured to determine the satellite service corresponding to the serving cell according to the location of the gateway station, the pre-stored ephemeris, the satellite identifier corresponding to the serving cell, and the satellite identifier corresponding to the neighboring cell.
  • the propagation distance difference between the link and the satellite service link corresponding to the neighboring cell; or, according to the location of the terminal equipment, the pre-stored ephemeris, the location of the gateway, the location of the satellite corresponding to the serving cell, and the satellite corresponding to the neighboring cell Determine the propagation distance difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell; according to the propagation distance difference, determine the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell Delay related parameters of the road.
  • the processor 1501 is specifically configured to: send the first measurement interval parameter to the terminal device through broadcast system information; or, send the first measurement interval parameter to the terminal device through dedicated signaling.
  • the delay-related parameters include public offset information and/or delay offset information; where the public offset information includes the satellite service link corresponding to the serving cell and the neighboring cell
  • the delay offset information includes the real-time delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the public offset information further includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay
  • the processor 1501 is further configured to: After the first measurement interval parameter, if the symbol information needs to be updated, determine the second measurement interval parameter according to the updated symbol information; send a message to update the system information to the terminal device through the paging process, and broadcast the system including the second measurement interval parameter Information; or, sending a DCI or a DCI scheduled paging message to the terminal device through a paging process; wherein the DCI and the DCI scheduled paging message carry the second measurement interval parameter.
  • the delay-related parameter is delay offset information
  • the processor 1501 is further configured to: after sending the first measurement interval parameter to the terminal device, if the current delay difference value is related to the delay The difference between the delay difference values of the parameters is greater than the preset threshold; or, after the preset time interval; the third measurement interval parameter is determined according to the current delay difference value; the third measurement interval parameter is sent to the terminal device; where, the current time The delay difference value refers to the delay difference value between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell in the current time period.
  • processor 1501 and the memory 1502 may be relatively independently arranged, or may be coupled. In FIG. 15, one processor 1501 is taken as an example, but the number of processors 1501 is actually not limited.
  • the terminal device includes: a processor 1601, a memory 1602, and a transceiver 1603; a processor 1601 for Read the program in the memory 1602 and execute the following process:
  • the first measurement interval parameter is used to indicate the actual measurement window corresponding to the serving cell when the synchronization signal block is sent through the satellite service link corresponding to the neighboring cell;
  • the measurement window measure the synchronization signal block corresponding to the neighboring cell.
  • the processor 1601 is specifically configured to: receive the first measurement interval parameter through broadcasted system information; or, receive the first measurement interval parameter through dedicated signaling.
  • the processor 1601 is further configured to: after receiving the first measurement interval parameter sent by the network measurement device, receive a message for updating system information sent through a paging process, and receive a message including the second measurement interval The system information of the parameter; or, the downlink control information DCI or the paging message scheduled by the DCI is received through the paging process; wherein the DCI and the paging message scheduled by the DCI are used to indicate the second measurement interval parameter; wherein, the second measurement interval parameter The indicated measurement window is different from the measurement window indicated by the first measurement interval parameter.
  • processor 1601 and the memory 1602 may be relatively independently arranged, or may be coupled.
  • one processor 1601 is taken as an example, but the number of processors 1601 is actually not limited.
  • an embodiment of the present disclosure also provides a network device.
  • the network device includes: a configuration module 1701: configured to configure measurement interval parameters for terminal devices;
  • the interval parameter includes the measurement window;
  • the sending module 1702 used to send instruction information to the terminal device, so that the terminal device adjusts the measurement window according to the instruction information, and measures the synchronization signal block of the neighboring cell according to the adjusted measurement window; wherein, the instruction information It is used to indicate the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the sending module 1702 is specifically configured to: send instruction information to the terminal device through broadcast system information; or, send instruction information to the terminal device through dedicated signaling.
  • the indication information includes one or more of public offset information, delay offset information, and location information; wherein, the public offset information includes the satellite service chain corresponding to the serving cell The maximum delay difference value of the satellite service link corresponding to the channel and the neighboring cell.
  • the delay offset information includes the real-time delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the information includes the satellite identifier corresponding to the serving cell and the satellite identifier corresponding to the neighboring cell, or the location information includes the location of the gateway station, the satellite identifier corresponding to the serving cell, and the satellite identifier corresponding to the neighboring cell.
  • the sending module 1702 is further configured to: if the symbol information needs to be updated, notify the terminal device of the symbol information update in the following manner, including: sending a message to update the system information to the terminal device through a paging process, and broadcasting includes System information of the updated symbol information; or, sending downlink control information DCI to the terminal device through the paging process; wherein, the DCI is used to instruct the terminal device to update the symbol information.
  • the sending module 1702 is further configured to: after sending the indication information to the terminal device, for a neighboring cell at any frequency point, if the current delay difference value is greater than the delay difference value in the indication information If the difference is greater than the preset threshold, the system information including the current delay difference is broadcasted, or the indication information including the current delay difference is sent to the terminal device through dedicated signaling for reconfiguration; where the current delay difference refers to the service The delay difference between the satellite service link corresponding to the cell and the satellite service link corresponding to the neighboring cell in the current time period.
  • the configuration module 1701 and the sending module 1702 in FIG. 17 may be implemented by the processor 1301 in FIG. 13.
  • the terminal device includes: a determination module 1801: used to determine delay-related parameters; where delay-related The parameter is used to indicate the delay between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell; the adjustment module 1802 is used to adjust the measurement window according to the delay related parameters; where the measurement window is configured from the network device The measurement interval parameter is obtained; the measurement module 1803 is configured to measure the synchronization signal block corresponding to the neighboring cell according to the adjusted measurement window.
  • the terminal device includes a receiving module 1804, and the receiving module 1804 is configured to: receive instruction information through broadcast system information; or, receive instruction information through dedicated signaling sent by a network device; where the instruction information is used To indicate delay related parameters.
  • the indication information includes one or more of public offset information, delay offset information, and location information; wherein, the public offset information includes the satellite service chain corresponding to the serving cell The maximum delay difference between the satellite service links corresponding to the road and the neighboring cell, and the delay offset information includes the real-time delay difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the location information includes the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell, or the location information includes the location of the gateway station, the satellite identification corresponding to the serving cell and the satellite identification corresponding to the neighboring cell.
  • the public offset information further includes symbol information.
  • the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay
  • the receiving module 1804 is further used to: The sent message for updating system information, through the broadcast of the updated system information, receives the updated symbol information or the updated current delay difference value for the neighboring cell of a specific frequency point; where the current difference value is the value corresponding to the serving cell
  • the delay difference value between the satellite service link and the satellite service link corresponding to the neighboring cell in the current time period; or, through the dedicated signaling of reconfiguration, the current delay difference including the updated current delay difference for the neighboring cell of the specific frequency point is received Value indication information; or, receive the DCI sent by the network device through the paging process, and update the symbol information according to the DCI indication.
  • the indication information is location information
  • the determining module 1801 is specifically configured to: according to the location of the gateway, the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell, Or determine the satellite service link corresponding to the serving cell and the satellite corresponding to the neighboring cell based on the location information of the terminal equipment, the location of the gateway, the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell Delay related parameters between service links.
  • the adjustment module 1802 is further configured to: before measuring the synchronization signal block corresponding to the neighboring cell according to the adjusted measurement window, according to the prestored ephemeris, the satellite identification corresponding to the serving cell, and the neighboring cell
  • the satellite identifier corresponding to the cell determines the angle between the antenna of the terminal device and the satellite corresponding to the adjacent cell; according to the angle, the antenna of the terminal device is adjusted to the direction that the satellite corresponding to the adjacent cell is aligned.
  • the adjustment module 1802 is specifically configured to: if the common offset information does not include symbol information, advance the start time of the measurement window by the maximum delay difference value, and increase the duration of the measurement window by two Times the maximum delay difference value; if the common offset includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is the time delay amount, the duration of the measurement window is extended by the maximum delay difference value; if the common offset The shift includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is the time advance, then the start time of the measurement window is advanced by the maximum delay difference value, and the duration of the measurement window is increased by the maximum delay difference value.
  • receiving module 1804 in FIG. 18 is an optional module.
  • the determination module 1801, the receiving module 1804, the adjustment module 1802, and the measurement module 1803 in FIG. 18 may be implemented by the processor 1401 in FIG. 14.
  • an embodiment of the present disclosure also provides a network device.
  • the network device includes:
  • the determining module 1901 is used to determine the delay related parameters of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell, and determine the first measurement interval parameter according to the delay related parameters; wherein the measurement interval parameter includes Measurement window
  • the sending module 1902 is configured to send the first measurement interval parameter to the terminal device.
  • the determining module 1901 is specifically configured to determine the satellite service corresponding to the serving cell according to the location of the gateway station, the pre-stored ephemeris, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell
  • the propagation distance difference between the link and the satellite service link corresponding to the neighboring cell; or, according to the location of the terminal equipment, the pre-stored ephemeris, the location of the gateway, the satellite identification corresponding to the serving cell, and the satellite identification corresponding to the neighboring cell Determine the propagation distance difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell; according to the propagation distance difference, determine the difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell Delay related parameters.
  • the sending module 1902 is specifically configured to: send the first measurement interval parameter to the terminal device through broadcast system information; or, send the first measurement interval parameter to the terminal device through dedicated signaling.
  • the delay-related parameters include public offset information and/or delay offset information; where the public offset information includes the satellite service link corresponding to the serving cell and the neighboring cell
  • the delay offset information includes the real-time delay difference value of the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell.
  • the public offset information further includes symbol information, and the symbol information is used to indicate that the maximum delay difference value is a time advance or a time delay;
  • the determining module 1901 is also configured to: After the first measurement interval parameter, if the symbol information needs to be updated, the second measurement interval parameter is determined according to the updated symbol information;
  • the sending module 1902 is also used to send a message to update the system information to the terminal device through the paging process, and the broadcast includes System information of the second measurement interval parameter; or, send downlink control information DCI or a paging message scheduled by DCI to the terminal device through a paging process; wherein the DCI and the paging message scheduled by the DCI carry the second measurement interval parameter.
  • the delay-related parameter is delay offset information: the determining module 1901 is further configured to, after sending the first measurement interval parameter to the terminal device, if the current delay difference value is related to the delay The difference between the delay difference values of the parameters is greater than the preset threshold; or, after the interval is preset for the duration, the third measurement interval parameter is determined according to the current delay difference;
  • the sending module 1902 is further configured to send a third measurement interval parameter to the terminal device; where the current delay difference value refers to the difference between the satellite service link corresponding to the serving cell and the satellite service link corresponding to the neighboring cell in the current time period. Delay difference value.
  • the determining module 1901 and the sending module 1902 in FIG. 19 may be implemented by the processor 1501 in FIG. 15.
  • an embodiment of the present disclosure also provides a terminal device. Please refer to FIG. 20.
  • the terminal device includes:
  • the receiving module 2001 is used to receive the first measurement interval parameter sent by the network measurement equipment; where the first measurement interval parameter is used to indicate the actual measurement window corresponding to the serving cell to send the synchronization signal block through the satellite service link corresponding to the neighboring cell ;
  • the measurement module 2002 is used to measure the synchronization signal block corresponding to the neighboring cell according to the measurement window.
  • the receiving module 2001 is specifically configured to: receive the first measurement interval parameter through broadcast system information; or, receive the first measurement interval parameter through dedicated signaling.
  • the receiving module 2001 is further configured to: after receiving the first measurement interval parameter sent by the network measurement device, receive the message for updating system information sent through the paging process, and receive the message including the second measurement interval The system information of the parameter; or, the downlink control information DCI or the paging message scheduled by the DCI is received through the paging process; wherein the DCI and the paging message scheduled by the DCI are used to indicate the second measurement interval parameter; wherein, the second measurement interval parameter The indicated measurement window is different from the measurement window indicated by the first measurement interval parameter.
  • the receiving module 2001 and the measuring module 2002 in FIG. 20 may be implemented by the processor 1601 in FIG. 16.
  • the embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When running on the computer, the computer executes the first method of measurement synchronization discussed above, or the second method of measurement synchronization discussed above.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量同步的方法、网络设备及终端设备,用于提高测量同步的可靠性。该方法包括:确定时延相关参数;其中,所述时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;根据时延相关参数,调整测量窗口;其中,所述测量窗口是从网络设备配置的测量间隔参数获取的;根据调整后的所述测量窗口,测量邻小区对应的同步信号块。

Description

一种测量同步的方法、网络设备及终端设备
相关申请的交叉引用
本公开要求在2019年07月29日提交中国专利局、申请号为201910690828.7、申请名称为“一种测量同步的方法、网络设备及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种测量同步的方法、网络设备及终端设备。
背景技术
在新空口(new radio,NR)测量同步机制中,终端设备获取目标测量小区的同步测量时间配置(Synchronization Measurement Timing Configuration,SMTC),根据SMTC中配置的测量窗口快速定位该目标测量小区的频点的同步信号块(Synchronization Signal Block,SSB),完成与该目标测量小区下行同步的过程。
卫星通信***中,卫星服务链路存在较大的时延,因此如果卫星通信***中,终端设备依旧按照SMTC中的测量窗口测量SSB,可能导致终端设备与目标测量小区测量同步失败。
发明内容
本公开实施例提供一种测量同步的方法、网络设备及终端设备,用于提高卫星通信***中测量同步的可靠性。
第一方面,提供一种测量同步的方法,包括:
为终端设备配置测量间隔参数;其中,所述测量间隔参数包括测量窗口;
向所述终端设备发送指示信息,以使所述终端设备根据所述指示信息调整所述测量窗口,并根据调整后的所述测量窗口,测量邻小区的同步信号块;其中,所述指示信息用于指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
本公开实施例中,网络设备在为终端设备配置测量间隔参数之后,会再向终端设备发送指示信息,以指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,使得终端设备可以根据指示信息调整测量间隔参数中测量窗口,以补偿不同卫星服务链路造成的测量时间的差异,提高测量窗口与SSB时域位置的同步性,进而提高测量同步的可靠性。
在一种可能的实施方式中,向所述终端设备发送指示信息,包括:通过广播的***信息向终端设备发送指示信息;或,通过专用信令向终端设备发送指示信息。
在一种可能的实施方式中,所述指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的至少一项;其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,所述位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或所述位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施方式中,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量,所述方法还包括:若所述符号信息需要更新,通过如下方式通知所述终端设备所述符号信息更新:
通过寻呼过程向所述终端设备发送更新***信息的消息,广播包括更新后的符号信息的***信息;或,通过寻呼过程向所述终端设备发送下行控制信息DCI;其中,所述DCI用于指示所述终端设备更新所述符号信息。
在一种可能的实施方式中,所述指示信息为所述时延偏移量信息,向所述终端设备发送指示信息之后,包括:针对任一频点的邻小区,若当前时延差异值与所述指示信息中的时延差异值的差值大于预设阈值,则广播包括所述当前时延差异值的***信息,或通过重配置的专用信令向所述终端设备发送包括所述当前时延差的指示信息;其中,所述当前时延差异值是指所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
第二方面,提供一种测量同步的方法,包括:
确定时延相关参数;其中,所述时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;
根据时延相关参数,调整测量窗口;其中,所述测量窗口是从网络设备配置的测量间隔参数获取的;
根据调整后的所述测量窗口,测量邻小区对应的同步信号块。
在一种可能的实施方式中,在确定时延相关参数之前,包括:通过广播的***信息接收指示信息;或,通过网络设备发送的专用信令接收指示信息;其中,所述指示信息用于指示时延相关参数。
在一种可能的实施方式中,所述指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的一种或几种;其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,所述位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或所述位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施方式中,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量,所述方法还包括:接收通过寻呼过程发送的更新***信息的消息,通过广播的更新后的***信息,接收更新后的符号信息或针对特定频点邻小区的更新后的当前时延差异值,其中,所述当前差异值为所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值;或,通过重配置的专用信令接收包括针对特定频点邻小区的更新后的当前时延差异值的指示信息;或,通过寻呼过程接收所述网络设备发送的DCI,根据所述DCI的指示,更新所述符号信息。
在一种可能的实施方式中,确定时延相关参数,包括:根据信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,或者根据终端设备的位置信息,信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,确定所述服务小区对应的卫星服务链路与所述邻小区对应的卫星服务链路之间的时延相关参数。
在一种可能的实施方式中,在根据调整后的所述测量窗口,测量所述邻小区对应的同步信号块之前,包括:根据预存的星历图,所述服务小区对应的卫星标识,以及所述邻小区对应的卫星标识,确定终端设备的天线与所述邻小区对应的卫星之间的夹角;根据所述夹角,将所述终端设备的天线调整为与所述邻小区对应的卫星对准的方向。
在一种可能的实施方式中,根据时延相关参数,调整测量窗口,包括:若所述公共偏移量信息不包括符号信息,则将所述测量窗口的起始时间提前最大时延差异值,且所述测量窗口的持续时间增加两倍的最大时延差异值;若所述公共偏移量包括符号信息,且所述符号信息用于指示所述最大时延差异值为时间延迟量,则将所述测量窗口的持续时间延长最大时延差异值;若所述公共偏移量包括符号信息,且所述符号信息用于指示所述最大时延差异值为时间提前量,则将所述测量窗口的起始时间提前最大时延差异值,且所述测量窗口的持续时间增加最大时延差异值。
第三方面,提供一种测量同步的方法,包括:
确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数;
根据所述时延相关参数,确定第一测量间隔参数;其中,所述测量间隔参数包括测量窗口;
向终端设备发送第一测量间隔参数。
在本公开实施例中,网络设备在为终端设备配置第一测量间隔参数之前,会确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,根据该时延相关参数,确定对应的测量间隔参数,也就是说,终端设备接收到的第一测量间隔参数是考虑了服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延差异,使得终端设备根据第一测量间隔参数测量邻小区的SSB时,第一测量间隔参数中的测量窗口能与SSB的时域位置同步,从而提高测量同步的可靠性。
在一种可能的实施方式中,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,包括:根据信关站的位置、预存的星历图、服务小区对应的卫星的标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;或,根据终端设备的位置、信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;根据所述传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
在一种可能的实施方式中,向终端设备发送第一测量间隔参数,包括:通过广播的***信息向终端设备发送第一测量间隔参数;或,通过专用信令向终端设备发送第一测量间隔参数。
在一种可能的实施方式中,所述时延相关参数包括公共偏移量信息和/或时延偏移量信息;其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。
在一种可能的实施方式中,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量,在向终端设备发送第一测量间隔参数之后,包括:若所述符号信息需要更新,根据更新后的符号信息,确定第二测量间隔参数;通过寻呼过程向所述终端设备发送更新***信息的消息,广播包括所述第二测量间隔 参数的***信息;或,通过寻呼过程向所述终端设备发送下行控制信息DCI或DCI调度的寻呼消息;其中,所述DCI和所述DCI调度的寻呼消息携带有第二测量间隔参数。
在一种可能的实施方式中,所述时延相关参数为所述时延偏移量信息,在向终端设备发送第一测量间隔参数之后,包括:若当前时延差异值与所述时延相关参数的时延差异值的差值大于预设阈值;或,间隔预设时长后;根据所述当前时延差异值,确定第三测量间隔参数;向所述终端设备发送所述第三测量间隔参数;其中,所述当前时延差异值是指所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
第四方面,提供一种测量同步的方法,包括:
接收网络测设备发送的第一测量间隔参数;其中,所述第一测量间隔参数是用于指示通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
根据所述测量窗口,测量邻小区对应的同步信号块。
在一种可能的实施方式中,接收网络测设备发送的第一测量间隔参数,包括:通过广播的***信息接收第一测量间隔参数;或,通过专用信令接收第一测量间隔参数。
在一种可能的实施方式中,在接收网络测设备发送的第一测量间隔参数之后,包括:接收通过寻呼过程发送的更新***信息的消息,并接收包括第二测量间隔参数的***信息;或,通过寻呼过程接收下行控制信息DCI或DCI调度的寻呼消息;其中,所述DCI和所述DCI调度的寻呼消息用于指示第二测量间隔参数;其中,所述第二测量间隔参数指示的测量窗口与所述第一测量间隔参数指示的测量窗口不同。
第五方面,提供一种网络设备,包括:处理器、存储器和收发机;所述处理器,用于读取所述存储器中的程序并执行如上述第一方面中任一项所述的方法。
第六方面,提供一种终端设备,包括:处理器、存储器和收发机;所述处理器,用于读取所述存储器中的程序并执行如上述第二方面中任一项所述的方法。
第七方面,提供一种网络设备,包括:处理器、存储器和收发机;所述处理器,用于读取所述存储器中的程序并执行如上述第三方面中任一项所述的方法。
第八方面,提供一种终端设备,包括:处理器、存储器和收发机;所述处理器,用于读取所述存储器中的程序并执行如上述第四方面中任一项所述的方法。
第九方面,提供一种网络设备,包括:
配置模块:用于为终端设备配置测量间隔参数;其中,所述测量间隔参数包括测量窗口;
发送模块:用于向所述终端设备发送指示信息,以使所述终端设备根据所述指示信息调整所述测量窗口,并根据调整后的所述测量窗口,测量邻小区的同步信号块;其中,所述指示信息用于指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
第十方面,提供一种终端设备,包括:
确定模块:用于确定时延相关参数;其中,所述时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;
调整模块,用于根据时延相关参数,调整测量窗口;其中,所述测量窗口是从网络设备配置的测量间隔参数获取的;
测量模块,用于根据调整后的所述测量窗口,测量邻小区对应的同步信号块。
第十一方面,提供一种网络设备,包括:
确定模块,用于确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,以及根据所述时延相关参数,确定第一测量间隔参数;其中,所述测量间隔参数包括测量窗口;
发送模块,用于向终端设备发送第一测量间隔参数。
第十二方面,提供一种终端设备,包括:
接收模块,用于接收网络测设备发送的第一测量间隔参数;其中,所述第一测量间隔参数是用于指示通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
测量模块,用于根据所述测量窗口,测量邻小区对应的同步信号块。
第十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如第一方面、第二方面、第三方面和第四方面中任一项所述的方法。
附图说明
图1为本公开实施例中的一种测量窗口的示意图;
图2为本公开实施例提供的一种测量同步的方法的应用场景图;
图3为本公开实施例提供的第一种测量同步的方法的流程示意图一;
图4为本公开实施例提供的第一种测量同步的方法涉及的交互过程示意图;
图5为本公开实施例提供的信关站、卫星和终端设备的位置分布示意图;
图6为本公开实施例提供的图4对应的位置分布示意图的剖面示意图;
图7为本公开实施例提供的终端设备调整测量窗口的示意图一;
图8为本公开实施例提供的终端设备调整测量窗口的示意图二;
图9为本公开实施例提供的更新指示信息的过程示意图一;
图10为本公开实施例提供的更新指示信息的过程示意图二;
图11为本公开实施例提供的第二种测量同步的方法的流程示意图二;
图12为本公开实施例提供的一种更新测量间隔参数的示意图;
图13为本公开实施例提供的一种网络设备的结构示意图一;
图14为本公开实施例提供的一种终端设备的结构示意图一;
图15为本公开实施例提供的一种网络设备的结构示意图二;
图16为本公开实施例提供的一种终端设备的结构示意图二;
图17为本公开实施例提供的一种网络设备的结构示意图三;
图18为本公开实施例提供的一种终端设备的结构示意图三;
图19为本公开实施例提供的一种网络设备的结构示意图四;
图20为本公开实施例提供的一种终端设备的结构示意图四。
具体实施方式
为了更好的理解本公开实施例提供的技术方案,下面将结合说明书附图以及具体的实施方式进行详细的说明。
为了便于本领域技术人员更好地理解本公开的技术方案,下面对本公开涉及的专业术 语进行解释。
同步测量时间配置:包括SSB周期、SSB起始时间相对于SSB周期的偏移量、以及SSB周期内SSB的持续时长。
测量间隔(Measurement Gap,MP):包括测量间隔的重复周期、测量间隔实际开始位置相对于一个测量间隔周期起始时间的偏移量、测量间隔的持续时间,以及测量间隔的时间起始点提前量。
星历图:包括终端所在服务区内的卫星的轨道运行数据信息和/或卫星标识。其中,卫星的轨道运行数据信息例如卫星围绕地球运行时,会绕过地球上的哪些地方,在什么时间点绕过该地方。卫星标识是用于表示相应的卫星,每颗卫星都有一个唯一标识,该标识例如数字、字符、或数字与字符的结合,本公开不做具体限制。
例如,一种星历图请参见下表1。
表1
Figure PCTCN2020097772-appb-000001
请参照上述表1,该星历图表示卫星1在北京时间16点整会经过北京、在17点整经过上海、在20点整经过安徽、在21点整重庆等。卫星2在北京时间16点整经过上海、在17点整经过南京、在21点整经过杭州。卫星3在北京时间16点整经过北京、在17点整经过沈阳、在20点整经过连云港。卫星4在北京时间16点整经过西安、在17点整经过甘肃、在21点整经过成都。
终端设备:终端设备可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment)。应当说明的是,本文所指的终端设备均是指卫星通信***中的终端设备。
网络设备:该网络设备是指卫星通信***中的网络设备。该网络设备可以是基站,基站例如GSM或CDMA中的基站(Base Transceiver Station,BTS),WCDMA***中的基站(NodeB,NB),LTE***中的演进型基站(Evo1utiona1 NodeB,eNB或eNodeB)。网络设备还可以是云无线接入网络(C1oud Radio Access Network,CRAN)场景下的无线控制器。该 网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或未来演进的PLMN网络中的网络设备等。
卫星服务链路:可以理解为信关站、卫星、网络设备以及终端设备之间组成的通信链路。
为了便于本领域技术人员更好地理解本公开实施例中的技术方案,下面对目前的测量同步机制进行具体说明。
为了避免干扰,一个小区周围的不同邻区的SSB会在时域位置上错开。也就是说,不同邻小区SSB的时域位置不同。终端设备从服务小区切换到其它小区之前,需要测量待切换的小区信号。测量小区信号之前需要先与该小区完成下行同步。NR中,是将邻小区对应的SMTC发送给终端设备,终端设备获得SMTC配置之后,确定测量窗口,在测量窗口上测量SSB,完成与该邻小区的下行同步。
对于处于空闲态或非激活状态的终端设备,网络设备可以通过***信息广播邻小区的SMTC。当终端设备获取SMTC之后,可以尝试测量邻小区的SSB。对于处于空闲态或非激活状态的终端设备,在一个不连续接收(Discontinuous Reception,DXR)周期内只能醒来一次,因此终端设备会在醒来的时间内根据相应邻区的SMTC,搜索SSB,完成同步测量。处于空闲态或非激活状态的终端设备不存在数据调度,因此针对处于空闲态或非激活状态的终端设备不需要配置测量间隔(Measurement Gap,MP)。
对于处于连接态的终端设备,测量配置网络设备可以通过专用信令配置给终端设备,针对一个测量对象(Measurement Object,MO)所对应的测量配置信息包括该测量对象的频点和SMTC,终端设备根据不同频点配置的SMTC同步到对应的SSB上。由于处于连接态的终端设备存在数据业务调度,因此,网络设备会为终端设备配置MP,在终端设备在获得MP之后,终端设备只需在MP内,根据SMTC同步到相应的邻小区,避免了测量小区与服务小区数据调度之间相互冲突。
请参照图1,图1表示目前终端设备根据SMTC确定的一种测量窗口的示意图,终端设备的测量窗口稍微大于网络设备的原始信号窗口。如图1中t1表示预留的测量所需的准备时间,t2与网络设备的原始信号窗口对齐,t3表示余留的冗余时间,该冗余时间为了提高测量的可靠性。网络设备的原始信号窗口可以理解为邻小区所对应的SSB的时域位置。
在卫星通信***中,由于服务小区对应的卫星服务链路和邻小区对应的卫星服务链路的传播路径存在距离差,可能会造成终端设备接收到SMTC的测量窗口与邻小区的SSB的实际的时域位置存在较大时延,如果终端设备依旧按照上述测量同步机制中配置的SMTC,测量邻小区的SSB,可能会导致终端设备无法在对应的测量窗口上测量到SSB,导致测量同步失败。
鉴于此,本公开实施例提供第一种测量同步的方法,请参照图2,图2表示该方法的应用场景示意图。该应用场景中包括第一卫星211、第二卫星212、信关站220、第一网络设备241、第二网络设备242和终端设备250。
具体的,第一卫星211和第二卫星212均可以与信关站220之间相互通信,第一卫星211与第一网络设备241相互通信,第二卫星212和第二网络设备242之间相互通信,当终端设备250处于第一网络设备241的服务范围内,终端设备250可以与第一网络设备241相互通信,接收第一网络设备241广播的信息。
其中,图2中是以两个卫星由同一个信关站220服务为例,实际上两个卫星也可以是不 同的信关站服务的。图2中是以两个卫星为例,实际上不限制卫星的个数。图2中是以两个网络设备为例,实际上不限制网络设备的数量。
基于图2所示的应用场景,下面对本公开提供的第一种测量同步的方法进行介绍。请参照图3,该方法:
S301,确定时延相关参数;
其中,所述时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;
S302,根据时延相关参数,调整测量窗口;其中,测量窗口是从网络设备配置的测量间隔参数获取的;
S303,根据调整后的测量窗口,测量邻小区对应的同步信号块。
本公开实施例中,终端设备250可以确定服务小区对应的卫星服务链路和邻小区的卫星服务链路之间的时延相关参数,根据时延相关参数调整测量窗口,以提高测量同步的可靠性。
其中,服务小区对应的卫星和邻小区的卫星可能是同一颗卫星,也可能是相邻两颗卫星。无论是哪一种情况,服务小区对应的卫星服务链路和邻小区的卫星服务链路之间均会存在时延差,只是时延差异值的大小有所不同。
其中,本公开实施例涉及到第一网络设备241需要向终端设备250配置测量间隔参数,下面对配置测量间隔参数进行具体说明。
请参照图4,S401,第一网络设备241为终端设备250配置测量间隔参数,测量间隔参数包括测量窗口。S402,第一网络设备241向终端设备250发送指示信息,用于指示时延相关参数。
执行S401的方式一:
第一网络设备241通过专用信令为终端设备250配置测量间隔参数。
具体的,例如终端设备250处于连接态时,第一网络设备241可以通过专用信令为终端设备250配置各个邻小区的测量间隔参数。
其中,专用信令例如无线资源控制(Radio Resource Control,RRC)信令,本公开实施例不限制专用信令的具体类型。测量间隔参数可以理解为用于指示终端设备测量邻小区的SSB的时域位置的参数,可以理解为背景技术中提到的同步测量时间配置。测量间隔参数包括测量窗口。测量窗口具体包括测量窗口的起始时间、测量窗口的持续时间、以及测量窗口的周期等。
执行S401的方式二:
第一网络设备241通过***信息广播邻小区的测量间隔参数。
具体的,例如终端设备250处于空闲态或非激活态时,第一网络设备可以通过***信息广播各个邻小区的测量间隔参数,终端设备250在DRX周期中醒来时,可以接收到测量间隔参数。测量间隔参数的内容可以参照方式一中论述的内容,此处不再赘述。
由于对于不同的邻小区,测量间隔参数不同,在一种可能的实施例中,为了便于终端设备250识别各个邻小区对应的测量间隔参数,第一网络设备241可以按照频点分别广播不同小区的测量间隔参数。
在第一网络设备241为终端设备250配置测量间隔参数之后,终端设备250获得该测量间隔参数。
在介绍完本公开实施例中第一种测量同步的方法的整体思路之后,下面对本公开实施例中各个步骤的执行过程进行详细说明,下面先对S301的执行方式进行说明。
S301中,第一种:终端设备250可以根据第一网络设备241下发的指示信息,确定时延相关参数,第二种:终端设备根据自身存储的信息确定时延相关参数。
下面对第一网络设备241下发指示信息的情况进行说明。
第一种:
考虑到服务小区对应的卫星服务链路和邻小区的卫星服务链路之间的时延差相关参数,在为终端设备250配置测量间隔参数之后,第一网络设备241执行S302,终端设备250根据指示信息,调整测量窗口。
其中,指示信息用于指示服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的时延相关参数,时延相关参数可以理解为间接或直接地指示服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的时延差异值。
下面先对指示信息由第一网络设备241下发的情况进行说明。指示信息不同,第一网络设备241获得该指示信息的具体内容的方式也有所不同,下面进行示例说明。
第一种指示信息:公共偏移量信息。
其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,下面对第一网络设备241获得第一种指示信息的方式进行说明。当指示信息为公共偏移量信息时,终端设备250获得指示信息之后,自然能够确定时延相关参数,该时延相关参数即为公共偏移量信息。
A1:
第一网络设备241根据服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的最大传播路径差,确定最大时延差异值。
本公开实施例中以地球为球体作为参照标准。卫星会不断在预先规定的轨道上运行,随着各个卫星的运行,不同卫星的服务链路之间的传播路径差也会不断发生变化,但是由于各个卫星运行速度以及方向相对固定,因此,两颗卫星所对应的卫星服务链路之间始终存在相应的最大传播路径差,该最大传播路径差也就是两颗卫星的卫星服务链路之间的传播路径的最大差值。
具体的,第一网络设备241可以根据信关站220的位置、终端设备的位置、星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定该服务小区对应的卫星、信关站220、终端设备250之间的通信距离,以及该邻小区对应的卫星、信关站220、终端设备250之间的通信距离,从而确定出服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的最大传播路径差,进而确定出最大时延差异值。
例如,以图5为例,图6为图5对应的位置分布示意图的剖面示意图,图5中O点表示地球球心,A表示信关站220,S1表示第一卫星211,S2表示第二卫星212。第一卫星211为相对于信关站220呈15°仰角的卫星(仰角如图5中w所示的夹角)。第一卫星211和第二卫星212之间的距离差为900km,地球的平均半径为6371km,从而可以计算出服务小区对应的第一卫星服务链路S1-U-A与邻小区对应的第二卫星服务链路S2-U-A之间的距离差为707km,确定在信关站220的服务范围内,第一卫星服务链路U-S1-A和第二卫星服务链路U-S2-A之间的传播路径差为[-707km,707km],时延差异范围为[-2.356ms,2.356ms],从而确定出最大时延差异值为2.356ms。
A2:
第一网络设备241预配置有最大时延差异值。
具体的,各个网络设备会预先被配置有该最大时延差异值,无需第一网络设备241进行相应的计算。
在一种可能的实施例中,公共偏移量信息包括符号信息,该符号信息用于指示服务小区对应的卫星服务链路相对于邻小区对应的卫星服务链路提前,还是延迟。也就是说,该符号信息可以进一步理论为指示最大时延差异值为时间提前量或时间延迟量。
例如,“-2ms”中“-”表示服务小区对应的卫星服务链路相对于邻小区对应的卫星服务链路的最大时延差异值为时间延迟量。“+2ms”中“+”表示服务小区对应的卫星服务链路相对于邻小区对应的卫星服务链路的最大时延差异值为时间提前量。
应当说明的是,本公开实施例中是符号信息以服务小区对应的卫星服务链路相对于邻小区对应的卫星服务链路而言进行说明,符号信息也可以邻小区对应的卫星服务链路相对于服务小区对应的卫星服务链路而言。
在本公开实施例中,以公共偏移量信息作为指示信息,由于各个相邻卫星之间的最大时延差异值相近,因此可以相对减少第一网络设备241的计算量以及信息发送量。
第二种指示信息:时延偏移量信息。
具体的,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。由于终端设备250的位置的变动、卫星的运动等,均可能造成服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的传播路径差变化,因此,服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延差异值也会不断发生变化,因此第一网络设备241可以实时确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。当指示信息为时延偏移量信息时,终端设备250获得指示信息之后,自然能够确定时延相关参数,该时延相关参数即为时延偏移量信息。
在一种可能的实施例中,时延偏移量信息还包括符号信息,该符号信息可以参照前文论述内容,用于指示时延偏移量信息为时间提前量或时间延迟量。
在本公开实施例中,第一网络设备241可以实时获取实时时延差异值,可以获得更加精确的时延差异值,以进一步提高测量同步的可靠性。
第三种指示信息:位置信息。
其中,位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施例中,位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识。
具体的,信关站的位置是由第一网络设备241为终端设备250预配置的,第一网络设备241只需在指示信息中携带服务小区对应的卫星标识以及邻小区对应的卫星标识。
具体的,第一网络设备241可以直接将该位置信息发送给终端设备250,由终端设备250根据预存的星历图,以及位置信息计算对应的时延相关参数,简化第一网络设备241的处理量。
其中,星历图可以是提前配置在终端设备250中的,也可以是第一网络设备241下发给终端设备250的,本公开中不限制终端设备250中的星历图的来源。关于星历图的内容可以参照前文论述的内容,此处不再赘述。
第四种指示信息:公共偏移量信息、时延偏移量信息和位置信息任意两种或三种的组合。
具体的,第一网络设备241可以通过前文论述的方式获得公共偏移量信息、时延偏移量信息和位置信息,第一网络设备241可以将公共偏移量信息、时延偏移量信息和位置信息任意两种或三种的组合发送给终端设备250。
在第一网络设备241获得指示信息之后,将指示信息发送给终端设备250,无论指示信息具体是前文中的哪一种,第一网络设备241向终端设备250发送指示信息的方式均有多种,下面对具体发送方式进行说明。
B1:
通过专用信令向终端设备250发送指示信息。
具体的,第一网络设备241可以通过专用信令向终端设备250发送指示信息。专用信令可以参照前文论述的内容,此处不再赘述。
B2:
通过广播的***信息向终端设备250发送指示信息。
具体的,第一网络设备241可以在***信息携带指示信息,终端设备250通过***信息获得指示信息。
作为一种实施例,无论采用哪种发送方式,当指示信息为时延偏移量信息的时候,由于邻小区可能不止一个,每个邻小区对应的卫星链路与服务小区对应的卫星链路之间均存在不同的实时时延差异值,因此,本公开实施例中,第一网络设备241按照频点和小区标识分别发送对应邻小区的指示信息。终端设备250根据该小区标识、频点以及指示信息。确定出各个邻小区与服务小区对应的卫星链路之间的时延。
作为一种实施例,由于各个卫星之间是等间距排布的,任意相邻两个卫星之间的最大传播路径差可以视为相等,因此任意相邻两颗卫星之间的最大时延差异值可以视为相同。当指示信息为公共偏移量信息时,第一网络设备241可以不区分小区,广播该指示信息,该指示信息中的公共偏移量信息会作为所有邻小区所对应的指示信息。
在第一网络设备241下发指示信息之后,终端设备250能够根据该指示信息,确定时延相关参数。具体确定时延相关参数的内容可以参照前文论述的内容,此处不再赘述。
下面对终端设备250自身信息确定时延相关参数的情况进行说明。
根据信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,或者根据终端设备的位置信息,信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的时延相关参数。
具体的,终端设备250中预存有星历图,星历图可以参照前文论述的内容,此处不再赘述。终端设备250可以确定服务小区对应的卫星标识和邻小区对应的卫星标识,根据星历图,确定服务小区对应的卫星位置,以及邻小区对应的卫星位置,确定信关站220-服务小区对应的卫星-终端设备250三者之间的距离,也就是服务小区对应的卫星服务链路的传播路径,以及确定信关站220-邻小区对应的卫星-终端设备250三者之间的距离,也就是邻小区对应的卫星服务链路的传播路径,从而计算出传播距离差,根据传播距离差,确定出时延相关参数。
作为一种实施例,终端设备250可以根据服务小区的标识,终端设备的位置,以及当 前时刻,确定为服务于该服务小区的卫星标识。同样的,终端设备250可以根据邻小区的标识,终端设备的位置,以及当前时刻,确定服务于该邻小区的卫星标识。
其中,时延相关参数可以为前文论述的时延偏移量信息,时延偏移量信息可以参照前文论述的内容,此处不再赘述。
本公开实施例中,终端设备250可以自行计算时延差异值,无需以网络设备241下发指示信息,相对减少信令交互。
在终端设备250接收指示信息之后,终端设备250执行S302,根据时延相关参数,调整测量窗口。
具体的,终端设备250获取测量间隔参数,测量间隔参数的内容可以参照前文S401中论述的内容,终端设备250在获得测量间隔参数之后,也就获得了该邻小区的测量窗口。终端设备250确定时延相关参数之后,终端设备根据时延相关参数,调整测量窗口。时延相关参数不同,终端设备250调整测量窗口的方式也有区别,下面进行示例说明。
C1:
时延相关参数为公共偏移量信息,公共偏移量信息可能包括符号信息,也可能不包括符号信息,下面分为C1-1和C1-2两种情况进行说明。
C1-1:
若时延相关参数为公共偏移量信息,且公共偏移量信息不包括符号信息,终端设备250将测量窗口的起始时间提前最大时延差异值,且测量窗口的持续时间增加两倍的最大时延差异值。
具体的,终端设备250在这种情况下,获得服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的最大时延差异值,但是无法确定当前服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延值,邻小区的SSB可能相对于服务小区的信号提前,并且提前量为最大时延差异值;也可能既不提前也不延迟;也可能延迟,并且延迟量为最大时延差异值,因此,终端设备250会将测量窗口的起始时间提前最大时延差异值,将测量窗口的持续时间增加两倍的最大时延差异值,确保终端设备250测量到邻小区的SSB。
例如,请参照图7,终端设备250调整后的测量窗口,包括t1、t2、t3、t4和t5。t2和t4为终端设备250根据最大时延差异值增加两倍的最大时延差异值。
C1-2:
若时延相关参数为公共偏移量信息,且公共偏移量信息包括符号信息,如果符号信息用于指示最大时延差异值为时间延迟量,则将测量窗口的持续时长延长最大时延差异值;如果符号信息用于指示最大时延差异值为时间提前量,则将测量窗口的起始时间提前最大时延差异值,且将测量窗口的持续时间增加最大时延差异值。
具体的,由于公共偏移量包括符号信息,因此终端设备250获取公共偏移量之后,能够根据符号信息确定该公共偏移量是时间延迟量还是时间提前量。如果符号信息指示最大时延差异值为时间延迟量,终端设备250不调整测量窗口的起始时间,将终端设备250的持续时间增加最大时延差异值;如果符号信息指示最大时延差异值为时间提前量,终端设备250将测量窗口的起始时间提前最大时延差异值,且测量窗口的持续时间增加最大时延差异值。
例如,请参照图8,终端设备确定符号信息用于表示最大时延差异值为时间提前量,终端设备将测量窗口A相对提前最大时延差异值,且持续时间增加最大时延差异值(图8中 的t2所示)。如果符号信息用于表示最大时延差异值为时间延迟量时,终端设备将测量窗口A的持续时长增加最大时延差异值(图8中的t8所示)。
C2:
若时延相关参数为时延偏移量信息,时延偏移量信息可以包括符号信息,也可以不包括符号信息,下面分为C2-1和C2-2两种情况进行说明。
C2-1:
若时延相关参数为时延偏移量信息,且该时延偏移量信息不包括符号信息,终端设备250将测量窗口的起始时间提前实时时延差异值,且测量窗口的持续时间增加两倍的实时时延差异值。
C2-2:
若时延相关参数为时延偏移量信息,且该时延偏移量信息包括符号信息,如果符号信息用于指示实时时延差异值为时间延迟量,则将测量窗口的持续时长延长实时时延差异值;如果符号信息用于指示实时时延差异值为时间提前量,则将测量窗口的起始时间提前实时时延差异值,且将测量窗口的持续时间增加实时时延差异值。
具体的,由于终端设备250与信关站220之间的距离差异相对较小,因此终端设备250可以不考虑自身的位置,直接根据服务小区对应的卫星标识,在星历图中确定该服务小区对应的卫星的位置,再根据信关站220的位置,确定出该服务小区对应的卫星与信关站220的之间的距离。终端设备250可以直接根据邻小区对应的卫星标识,在星历图中确定该服务小区对应的卫星的位置,再根据信关站220的位置,确定出该邻小区对应的卫星与信关站220的之间的距离,确定出服务小区对应的卫星服务链路和邻小区对应的卫星服务链路之间的传播路径差,从而确定出相应的时延差异值。
为了确定出更加精确的时延差异值,终端设备250在确定服务小区对应的卫星服务链路和邻小区对应的卫星服务链路之间的距离时,可以考虑终端设备250的位置,计算服务小区的终端设备250-卫星-信关站220之间的第一距离,同样的,计算邻小区的信关站220-卫星-终端设备250之间的第二距离,再根据第一距离和第二距离确定出服务小区对应的卫星服务链路和邻小区对应的卫星服务链路的传播路径差,从而确定出时延差异值。
作为一种实施例,信关站220的位置包括多个信关站220的位置,但是终端设备250并不确定服务小区对应的卫星和邻小区对应的卫星到底对应哪一个信关站220,因此,终端设备250可以将距离服务小区对应的卫星最近的信关站220确定为该服务小区对应的卫星所对应的信关站220,以距离邻小区对应的卫星最近的信关站220确定为该邻小区对应的卫星所对应的信关站220。
作为一种实施例,星历图可能会更新,更新可能是周期性的,也可能不是呈周期性的。在星历图更新之后,第一网络设备241可以将更新后的星历图下发给终端设备250。终端设备250在计算时延差异值时,会以接收到的最新的星历图进行计算。
第一网络设备241下发更新后的星历图的方式有多种,例如通过专用信令下发,或者通过***信息广播等,本文不做具体限制。
本公开实施例中,终端设备250根据位置信息等计算时延差异值,由于是根据实时位置信息计算,终端设备250可以确定计算出的该时延差异值为时间提前量或时间延迟量。
终端设备250在确定时延差异值之后,如果该时延差异值为时间延迟量,终端设备250将测量窗口的持续时长延长该时延差异值;如果符号信息用于指示该时延差异值为时间提 前量,将测量窗口的起始时间提前实时时延差异值,且将测量窗口的持续时间增加该时延差异值。
C3:
若时延相关参数为时延偏移量信息、公共偏移量信息中一种或两种的组合,终端设备250可以以任意一种信息为参考,对终端设备250的测量窗口进行调整,或者终端设备250预设有两种信息的优先级,终端设备250以优先级最高的信息为参考,对测量窗口进行调整。
具体的,终端设备250预设有时延偏移量信息、公共偏移量信息这两种信息的优先级,终端设备250如果接收到优先级最高的信息,就以该信息为参考,调整测量窗口,如果没有收到关于某个邻小区的优先级最高的信息,则以优先级次高的信息为参考,依次类推。
由于服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的时延会不断地变化,因此,第一网络设备250会不断地更新指示信息,并将更新后的指示信息发送给终端设备250。下面对第一网络设备241对指示信息进行更新过程进行说明。
D1:更新过程一:
请参照图9,在本公开实施例中,更新过程包括:
S901,第一网络设备241确定指示信息满足预设条件时,生成更新后的***信息。
S902,第一网络设备241广播更新后的***信息。
S903,终端设备250根据更新后的***信息,调整测量窗口。
本公开实施例中,第一网络设备241通过***信息发送指示信息之后,第一网络设备241在确定指示信息满足预设条件时,更新***信息,广播更新后的***信息,终端设备250将更新后的***信息,调整测量窗口。
S901中的预设条件例如:
预设条件一:
确定指示信息中的符号信息需要更新。
S901中,当指示信息为公共偏移量信息时,该公共偏移量信息包括符号信息,第一网络设备241确定该符号信息需要更新时,符号信息需要更新是指符号信息可能从指示时间提前量更新为指示时间延迟量,或者符号信息可能从指示时间延迟量更新为指示时间提前量。第一网络设备241可以触发生成更新后的***信息,该更新后的***信息中携带更新后的符号信息。
预设条件二:
确定当前时延差异值与之前的指示信息中的时延差异值的差值大于预设阈值。
具体的,指示信息为实时时延差异值,实时时延差异值会不断发生变化,当第一网络设备241确定当前时间段的当前时延差异值与指示信息中的时延差异值的差值大于预设阈值时,第一网络设备241可以触发更新***信息,该更新后的***信息携带该当前时延差异值。
第一网络设备241在触发更新***信息之后,在寻呼过程中通知终端设备250***信息需要更新,再执行S902,广播更新后的***信息。
具体的,由于不同的邻小区可能与服务小区的时延差异值或者符号信息不同,因此,第一网络设备241可以按照频点,分别广播各个邻小区对应的更新后的***信息,以便于终端设备250确定更新后的指示信息所属的小区。
第一网络设备241是以广播更新后的***信息,终端设备250接收广播的更新后的***信息之后,执行S903,根据更新后的***信息,调整测量窗口。
具体的,更新后的***信息中携带有更新后的指示信息,终端设备250根据更新后的指示信息,调整测量窗口,调整的方式可以参照前文论述的内容,此处不再赘述。
第一网络设备241广播更新后的***信息的周期一般是相对固定的,如果等到广播周期达到之后,再广播更新后的***信息,可能会造成终端设备250无法及时接收到更新后的指示信息。因此,在本公开实施例中,第一网络设备241确定满足预设条件一的时候,可以通过寻呼过程向终端设备250发送下行控制信息(Downlink Control Information,DCI),该DCI用于指示终端设备250更新符号信息。
具体的,第一网络设备241可以根据DCI及时地指示终端设备250更新符号信息,当终端设备250接收DCI之后,根据DCI的指示更新指示信息中的符号信息,再根据更新后的符号信息,调整测量窗口。
D2:更新过程二:
请参照图10,该更新过程包括:
S1001,第一网络设备241确定指示信息满足预设条件时,触发重配置专用信令。
S1002,第一网络设备241通过重配置后的专用信令,向终端设备250发送更新后的指示信息。
S1003,终端设备250根据更新后的指示信息,调整测量窗口。
S1001中,预设条件可以参照图9中论述的内容,此处不再赘述。第一网络设备241确定满足预设条件时,第一网络设备241触发重配置专用信令。第一网络设备241根据预设条件,确定更新后的指示信息。
第一网络设备241执行S1002,通过重配置专用信令将更新后的指示信息发送给终端设备250。
具体的,当预设条件为前文论述的预设条件一时,第一网络设备241将更新后的符号信息携带在专用信令中。当预设条件为前文论述的预设条件二时,第一网络设备241将当前时延差异值携带在专用信令中。通过专用信令将更新后的指示信息发送终端设备250。
进一步的,由于不同的邻小区可能与服务小区的时延差异值或者符号信息不同,因此,第一网络设备241可以按照频点,通过专用信令分别发送各个邻小区对应的更新后的***信息,以便于终端设备250确定更新后的指示信息所属的小区。
终端设备250在接收更新后的指示信息之后,执行S1003,根据更新后的指示信息,调整测量窗口。
终端设备250调整测量窗口之后,获得根据更新后的指示信息,调整测量窗口之后,终端设备250执行S303,根据调整后的测量窗口,测量邻小区的同步信号块。
具体的,终端设备250在调整测量窗口之后,相当于确定该邻小区发送SSB的时域位置,终端设备250根据调整后的测量窗口,测量邻小区的同步信号块,邻小区的同步信号块是由邻小区对应的第二网络设备242周期性广播的,终端设备250由于补偿了不同卫星服务链路的时延,可以确保终端设备250能够根据调整后的测量窗口,获取SSB,完成与邻小区的测量同步过程。第二网络设备242和第一网络设备241可以是不同的网络设备,也可以是同一网络设备。
在一种可能的实施例中,为了提高终端设备250测量邻小区的SSB的成功率,在终端设 备250测量邻小区的同步信号块之前,终端设备250可以调整自身的天线夹角。
具体的,终端设备250可以根据预存的星历图,服务小区对应的卫星标识,邻小区对应的卫星标识,以及终端设备250自身的位置,确定自身天线与邻小区的卫星之间的夹角。
在确定该夹角之后,将终端设备250的天线调整为与邻小区的卫星对准的方向,以提高终端设备250测量邻小区的SSB的成功率。
为了解决同样的技术问题,基于图2论述的应用场景,本公开实施例还提供第二种测量同步的方法,请参照图11,该方法包括:
S1001,第一网络设备241确定时延相关参数。
S1102,根据时延相关参数,确定第一测量间隔参数,第一测量间隔参数包括测量窗口。
S1103,向终端设备250发送第一测量间隔参数。
S1104,根据测量窗口,测量邻小区的同步信号。
本公开实施例中,第一网络设备241提前确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,确定出与该时延相关参数关联的第一测量间隔参数,并将该第一测量间隔参数发送给终端设备250。也就是说,本公开实施例中,第一网络设备241在确定第一测量间隔参数时,就考虑了服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延差异值,因此,提高终端设备获得的第一测量间隔参数与邻小区的SSB的同步性,从而提高卫星***中测量同步的可靠性。
在介绍完本公开实施例中的测量同步的方法的整体构思之后,下面对本公开实施例中各个步骤进行详细介绍。
S1101,第一网络设备241确定时延相关参数。
其中,时延相关参数是指服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的时延相关参数,时延相关参数包括公共偏移量信息和/或时延偏移量信息,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。
在一种可能的实施例中,公共偏移量信息可以包括符号信息,符号信息用于指示最大时延差异值为时间提前量或时间延迟量。
在一种可能的实施例中,时延偏移量信息可以包括符号信息,符号信息用于指示实时时延差异值为时间提前量或时间延迟量。
S1101中,第一网络设备241确定时延相关参数的方式有多种,下面进行示例说明。
D1:
根据信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;
根据传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
具体的,根据星历图和服务小区对应的卫星标识,可以确定出服务小区对应的卫星的位置,根据星历图和邻小区对应的卫星标识,可以确定出邻小区对应的卫星的位置,根据信关站的位置、服务小区对应的卫星的位置以及邻小区对应的卫星的位置,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值,可以参照前文论述C3 中论述的内容,此处不再赘述。
D2:
根据终端设备250的位置、预存的星历图、信关站的位置、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;
根据传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
如前文论述的内容,无论是采用哪种方式计算时延相关参数,星历图可能都可能出现周期性或非周期性地更新,当星历图更新之后,第一网络设备241会根据最新的星历图计算时延相关参数,以保证计算出的时延相关参数的准确性。
本公开实施例中,确定时延相关参数时,考虑了终端设备250的自身位置,可以获得更加准确的时延相关参数,进一步提高测量同步的可靠性。
S1102,根据时延相关参数,确定第一测量间隔参数,第一测量间隔参数包括测量窗口。
具体的,第一网络设备241会提前为各个邻小区配置互不干扰的SSB对应的测量窗口,第一网络设备241在获得某个邻小区的时延相关参数之后,会根据时延相关参数调整该邻小区SSB的测量窗口,确定该邻小区对应的第一测量间隔参数。时延相关参数不同的情况,第一网络设备确定第一测量间隔参数的方式也有所不同,下面进行示例说明。
K1:
时延相关参数为公共偏移量信息。
第一网络设备241确定公共偏移量信息之后,且公共偏移量信息不包括符号信息,第一网络设备241可以将原配置的测量窗口增加两倍的最大时延差异值,并将原配置的测量窗口提前最大时延差异值。
第一网络设备241确定公共偏移量信息之后,且该公共偏移量信息包括符号信息,如果符号信息用于指示最大时延差异值为时间延迟量,则将测量窗口的持续时长延长最大时延差异值;如果符号信息用于指示最大时延差异值为时间提前量,则将原配置的测量窗口的起始时间提前最大时延差异值,且将原配置的测量窗口的持续时间增加最大时延差异值。
K2:
时延相关参数为公共偏移量信息。
第一网络设备241确定时延偏移量信息之后,且时延偏移量信息不包括符号信息,第一网络设备241可以将原配置的测量窗口增加两倍的实时时延差异值,并将原配置的测量窗口提前实时时延差异值。
第一网络设备241确定时延偏移量信息之后,且该时延偏移量信息包括符号信息,如果符号信息用于指示实时时延差异值为时间延迟量,则将测量窗口的持续时长延长实时时延差异值;如果符号信息用于指示实时时延差异值为时间提前量,则将原配置的测量窗口的起始时间提前实时时延差异值,且将原配置的测量窗口的持续时间增加实时时延差异值。
K3:
时延相关参数包括公共偏移量信息和时延偏移量信息。
第一网络设备241可以根据时延相关参数中的任意一种信息,来调整原配置的测量窗口。具体调整方式可以参照前文论述的K1和K2。
在调整原配置的测量窗口之后,获得调整后的测量窗口,进而获得第一测量间隔参数。
第一网络设备241在获得第一测量间隔参数之后,执行S1103,将第一测量间隔参数发送给终端设备250。
具体的,第一网络设备241可以通过广播的***信息向终端设备250发送第一测量间隔参数。第一网络设备241也可以通过专用信令向终端设备250发送第一测量间隔参数。专用信令可以参照前文论述内容,此处不再赘述。
由于服务小区对应的卫星的位置以及邻小区对应的卫星的位置会不断发生变化,服务小区对应的卫星服务链路以及邻小区对应的卫星服务链路之间的距离会不断发生变化,因此服务小区对应的卫星服务链路以及邻小区对应的卫星服务链路之间存在的时延差异值也会不断发生变化。因此,在本公开实施例中,在第一网络设备241会更新第一测量间隔参数。
请参照图12,更新第一测量间隔参数包括:
S1201:第一网络设备241确定时延相关参数满足预设条件,更新第一测量间隔参数。
S1202,第一网络设备241向终端设备250发送更新后的第一测量间隔参数。
本公开实施例中,第一网络设备241会在时延相关参数满足预设条件时,更新第一测量间隔参数,使得更新后的测量间隔参数,与当前的时延相关参数更加匹配,进一步提高终端设备250测量同步的可靠性。
下面对S1201中的预设条件进行示例说明。
第一种预设条件:
第一网络设备241确定时延相关参数中的符号信息需要更新。
具体的,时延相关参数中的符号信息需更新包括两种情况:公共偏移量信息中的符号信息需要更新,或者时延偏移量信息中的符号信息需要更新。第一网络设备241可以根据更新后的符号信息,生成第二测量间隔参数。
第二种预设条件:
第一网络设备241确定当前时延差异值与时延相关参数的时延差异值的差值大于预设阈值。
具体的,时延相关参数包括时延偏移量信息,因为时延偏移量信息中的实时时延差异值会不断变化,但是第一网络设备241还需要处理其他业务,因此可以在当前时延差异值与之前的时延差异值之间的差值大于预设阈值的时候,第一网络设备241确定需要更新第一测量间隔参数。第一网络设备241可以根据当前时延差异值,生成第三测量间隔参数。
第三预设条件:
确定满足间隔预设时长。
具体的,第一网络设备241周期性地更新测量间隔参数,如果确定距离上一次发送第一测量间隔参数之后,已达到间隔预设时长,则第一网络设备241确定需要更新第一测量间隔参数。第一网络设备241可以根据当前所对应的时延相关参数,更新第一测量间隔参数。
第一网络设备241在确定满足上述的预设条件中的任意一种时,可以按照预设条件中需要对应更新的内容,生成第四测量间隔参数。
在更新第一测量间隔参数之后,第一网络设备241执行S1202,将更新后的测量间隔参数发送给终端设备250。
具体的,第一网络设备241具体发送更新后的测量间隔参数的方式有多种,下面进行示例说明。
发送方式一:
通过寻呼过程向终端设备250发送更新***信息的消息,广播包括更新后的测量间隔参数的***信息。
具体的,第一网络设备241可以在满足预设条件时,触发更新***信息,将更新后的测量间隔参数携带在***信息中,发送给终端设备250。更新后的测量间隔参数例如前文中论述的第二测量间隔参数、第三测量间隔参数或第四测量间隔参数。
发送方式二:
通过寻呼过程发送DCI向终端设备250发送更新后的测量间隔参数。
具体的,第一网络设备241可以在寻呼过程中发送DCI,将携带有更新后的测量间隔参数的DCI发送给终端设备250。更新后的测量参数如前文中论述的第二测量间隔参数、第三测量间隔参数或第四测量间隔参数。
发送方式三:
通过寻呼过程中DCI调度的寻呼消息向终端设备250发送更新后的测量间隔参数。
具体的,在寻呼消息中携带更新后的间隔参数。更新后的间隔参数例如前文中论述的第二测量间隔参数、第三测量间隔参数或第四测量间隔参数。
发送方式四:
通过重配置专用信令,向终端设备250发送更新后的测量间隔参数。
具体的,第一网络设备241在专用信令中携带更新后的测量间隔参数,并将更新后的测量间隔参数发送给终端设备250。
在发送更新后的测量间隔参数之后,终端设备250可以通过对应的接收方式接收到更新后的测量间隔参数。
在终端设备250接收第一测量间隔参数或更新后的测量间隔参数之后,执行S1204,根据测量窗口,测量邻小区的同步信号块。
具体的,终端设备250在接收到第一测量间隔参数或更新后的测量间隔参数之后,可以根据对应测量间隔参数中的测量窗口,在对应的测量窗口上,测量邻小区的同步信号块,完成与邻小区的下行同步。
在一种可能的实施例中,为了提高终端设备250测量邻小区的SSB的成功率,在终端设备250测量邻小区的同步信号块之前,终端设备250可以调整自身的天线夹角。
具体的,终端设备250可以根据预存的星历图,服务小区对应的卫星标识,邻小区对应的卫星标识,以及终端设备250自身的位置,确定自身天线与邻小区的卫星之间的夹角。在确定该夹角之后,将终端设备250的天线调整为与邻小区的卫星对准的方向,以提高终端设备250测量邻小区的SSB的成功率。
在第一种测量同步的方法的基础上,本公开实施例还提供一种网络设备,请参照图13,该网络设备包括:处理器1301、存储器1302和收发机1303;处理器1301,用于读取存储器1302中的程序并执行如下过程:
为终端设备250配置测量间隔参数;其中,测量间隔参数包括测量窗口;
向终端设备250发送指示信息,以使终端设备250根据指示信息调整测量窗口,并根据调整后的测量窗口,测量邻小区的同步信号块;其中,指示信息用于指示服务小区对应的 卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
在一种可能的实施例中,处理器1301具体用于:通过广播的***信息向终端设备发送指示信息;或,通过专用信令向终端设备发送指示信息。
在一种可能的实施例中,指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的一种或几种;其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施例中,公共偏移量信息还包括符号信息,符号信息用于指示最大时延差异值为时间提前量或时间延迟量,处理器1301还用于:若符号信息需要更新,通过如下方式通知终端设备符号信息更新:通过寻呼过程向终端设备发送更新***信息的消息,广播包括更新后的符号信息的***信息;或,通过寻呼过程向终端设备发送下行控制信息DCI;其中,DCI用于指示终端设备更新符号信息。
在一种可能的实施例中,指示信息为时延偏移量信息,处理器1201还用于:在向终端设备发送指示信息之后,针对任一频点的邻小区,若当前时延差异值与指示信息中的时延差异值的差值大于预设阈值,则广播包括当前时延差异值的***信息,或通过重配置的专用信令向终端设备发送包括当前时延差的指示信息;其中,当前时延差异值是指服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
应当说明的是,处理器1301和存储器1302可以是相对独立设置的,也可以是耦合的。图13中是以一个处理器1301为例,但是实际上不限制处理器1301的数量。
在第一种测量同步的方法的基础上,本公开实施例还提供一种终端设备,请参照图14,该终端设备包括:处理器1401、存储器1402和收发机1403;处理器1401,用于读取存储器1402中的程序并执行如下过程:
获取网络设备配置的测量间隔参数;其中,测量间隔参数包括测量窗口;
确定时延相关参数;其中,时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;
根据时延相关参数,调整测量窗口;其中,测量窗口是从网络设备配置的测量间隔参数获取的;
根据调整后的测量窗口,测量邻小区对应的同步信号块。
在一种可能的实施例中,处理器1401还用于:在确定时延相关参数之前,通过广播的***信息接收指示信息;或,通过网络设备发送的专用信令接收指示信息;其中,所述指示信息用于指示时延相关参数。
在一种可能的实施例中,指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的一种或几种;其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施例中,公共偏移量信息还包括符号信息,符号信息用于指示最大时 延差异值为时间提前量或时间延迟量,处理器1401还用于:接收通过寻呼过程发送的更新***信息的消息,通过广播的更新后的***信息,接收更新后的符号信息或针对特定频点邻小区的更新后的当前时延差异值,其中,当前差异值为服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值;或,通过重配置的专用信令接收包括针对特定频点邻小区的更新后的当前时延差异值的指示信息;或,通过寻呼过程接收网络设备发送的DCI,根据DCI的指示,更新符号信息。
在一种可能的实施例中,指示信息为位置信息,处理器1401具体用于:根据信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,或者根据终端设备的位置信息,信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的时延相关参数。
在一种可能的实施例中,处理器1401还用于:在根据调整后的测量窗口,测量邻小区对应的同步信号块之前,根据预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,确定终端设备的天线与邻小区对应的卫星之间的夹角;根据夹角,将终端设备的天线调整为与邻小区对应的卫星对准的方向。
在一种可能的实施例中,处理器1401具体用于:若公共偏移量信息不包括符号信息,则将测量窗口的起始时间提前最大时延差异值,且测量窗口的持续时间增加两倍的最大时延差异值;若公共偏移量包括符号信息,且符号信息用于指示最大时延差异值为时间延迟量,则将测量窗口的持续时间延长最大时延差异值;若公共偏移量包括符号信息,且符号信息用于指示最大时延差异值为时间提前量,则将测量窗口的起始时间提前最大时延差异值,且测量窗口的持续时间增加最大时延差异值。
应当说明的是,处理器1401和存储器1402可以是相对独立设置的,也可以是耦合的。图14中是以一个处理器1401为例,但是实际上不限制处理器1401的数量。
在第二种测量同步的方法的基础上,本公开实施例还提供一种网络设备,请参照图15,该网络设备包括:处理器1501、存储器1502和收发机1503;处理器1501,用于读取存储器1502中的程序并执行如下过程:
确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数;
根据时延相关参数,确定第一测量间隔参数;其中,测量间隔参数包括测量窗口;
向终端设备发送第一测量间隔参数。
在一种可能的实施例中,处理器1501具体用于:根据信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;或,根据终端设备的位置、预存的星历图、信关站的位置、服务小区对应的卫星的位置以及邻小区对应的卫星的位置,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;根据传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
在一种可能的实施例中,处理器1501具体用于:通过广播的***信息向终端设备发送第一测量间隔参数;或,通过专用信令向终端设备发送第一测量间隔参数。
在一种可能的实施例中,时延相关参数包括公共偏移量信息和/或时延偏移量信息;其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星 服务链路的实时时延差异值。
在一种可能的实施例中,公共偏移量信息还包括符号信息,符号信息用于指示最大时延差异值为时间提前量或时间延迟量,处理器1501还用于:在向终端设备发送第一测量间隔参数之后,若符号信息需要更新,根据更新后的符号信息,确定第二测量间隔参数;通过寻呼过程向终端设备发送更新***信息的消息,广播包括第二测量间隔参数的***信息;或,通过寻呼过程向终端设备发送DCI或DCI调度的寻呼消息;其中,所DCI和DCI调度的寻呼消息携带有第二测量间隔参数。
在一种可能的实施例中,时延相关参数为时延偏移量信息,处理器1501还用于:在向终端设备发送第一测量间隔参数之后,若当前时延差异值与时延相关参数的时延差异值的差值大于预设阈值;或,间隔预设时长后;根据当前时延差异值,确定第三测量间隔参数;向终端设备发送第三测量间隔参数;其中,当前时延差异值是指服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
应当说明的是,处理器1501和存储器1502可以是相对独立设置的,也可以是耦合的。图15中是以一个处理器1501为例,但是实际上不限制处理器1501的数量。
在第二种测量同步的方法的基础上,本公开实施例还提供一种终端设备,请参照图16,该终端设备包括:处理器1601、存储器1602和收发机1603;处理器1601,用于读取存储器1602中的程序并执行如下过程:
接收网络测设备发送的第一测量间隔参数;其中,第一测量间隔参数是用于指示通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
根据测量窗口,测量邻小区对应的同步信号块。
在一种可能的实施例中,处理器1601具体用于:通过广播的***信息接收第一测量间隔参数;或,通过专用信令接收第一测量间隔参数。
在一种可能的实施例中,处理器1601还用于:在接收网络测设备发送的第一测量间隔参数之后,接收通过寻呼过程发送的更新***信息的消息,并接收包括第二测量间隔参数的***信息;或,通过寻呼过程接收下行控制信息DCI或DCI调度的寻呼消息;其中,DCI和DCI调度的寻呼消息用于指示第二测量间隔参数;其中,第二测量间隔参数指示的测量窗口与第一测量间隔参数指示的测量窗口不同。
应当说明的是,处理器1601和存储器1602可以是相对独立设置的,也可以是耦合的。图16中是以一个处理器1601为例,但是实际上不限制处理器1601的数量。
在第一种测量同步的方法的基础上,本公开实施例还提供一种网络设备,请参照图17,该网络设备包括:配置模块1701:用于为终端设备配置测量间隔参数;其中,测量间隔参数包括测量窗口;发送模块1702:用于向终端设备发送指示信息,以使终端设备根据指示信息调整测量窗口,并根据调整后的测量窗口,测量邻小区的同步信号块;其中,指示信息用于指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
在一种可能的实施例中,发送模块1702具体用于:通过广播的***信息向终端设备发送指示信息;或,通过专用信令向终端设备发送指示信息。
在一种可能的实施例中,指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的一种或几种;其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,位置信息包括服务小区对应的卫星标识 以及邻小区对应的卫星标识,或位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施例中,发送模块1702还用于:若符号信息需要更新,通过如下方式通知终端设备符号信息更新,包括:通过寻呼过程向终端设备发送更新***信息的消息,广播包括更新后的符号信息的***信息;或,通过寻呼过程向终端设备发送下行控制信息DCI;其中,DCI用于指示终端设备更新符号信息。
在一种可能的实施例中,发送模块1702还用于:在向终端设备发送指示信息之后,针对任一频点的邻小区,若当前时延差异值与指示信息中的时延差异值的差值大于预设阈值,则广播包括当前时延差异值的***信息,或通过重配置的专用信令向终端设备发送包括当前时延差的指示信息;其中,当前时延差异值是指服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
作为一种实施例,图17中的配置模块1701和发送模块1702可以通过图13中的处理器1301来实现。
在第一种测量同步的方法的基础上,本公开实施例还提供一种终端设备,请参照图18,该终端设备包括:确定模块1801:用于确定时延相关参数;其中,时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;调整模块1802,用于根据时延相关参数,调整测量窗口;其中,测量窗口是从网络设备配置的测量间隔参数获取的;测量模块1803,用于根据调整后的所述测量窗口,测量邻小区对应的同步信号块。
在一种可能的实施例中,终端设备包括接收模块1804,接收模块1804用于:通过广播的***信息接收指示信息;或,通过网络设备发送的专用信令接收指示信息;其中,指示信息用于指示时延相关参数。
在一种可能的实施例中,指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的一种或几种;其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
在一种可能的实施例中,公共偏移量信息还包括符号信息,符号信息用于指示最大时延差异值为时间提前量或时间延迟量,接收模块1804还用于:接收通过寻呼过程发送的更新***信息的消息,通过广播的更新后的***信息,接收更新后的符号信息或针对特定频点邻小区的更新后的当前时延差异值;其中,当前差异值为服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值;或,通过重配置的专用信令接收包括针对特定频点邻小区的更新后的当前时延差异值的指示信息;或,通过寻呼过程接收网络设备发送的DCI,根据DCI的指示,更新符号信息。
在一种可能的实施例中,指示信息为位置信息,确定模块1801具体用于:根据信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,或者根据终端设备的位置信息,信关站的位置,预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的时延相关参数。
在一种可能的实施例中,调整模块1802还用于:在根据调整后的测量窗口,测量邻小 区对应的同步信号块之前,根据预存的星历图,服务小区对应的卫星标识,以及邻小区对应的卫星标识,确定终端设备的天线与邻小区对应的卫星之间的夹角;根据夹角,将终端设备的天线调整为与邻小区对应的卫星对准的方向。
在一种可能的实施例中,调整模块1802具体用于:若公共偏移量信息不包括符号信息,则将测量窗口的起始时间提前最大时延差异值,且测量窗口的持续时间增加两倍的最大时延差异值;若公共偏移量包括符号信息,且符号信息用于指示最大时延差异值为时间延迟量,则将测量窗口的持续时间延长最大时延差异值;若公共偏移量包括符号信息,且符号信息用于指示最大时延差异值为时间提前量,则将测量窗口的起始时间提前最大时延差异值,且测量窗口的持续时间增加最大时延差异值。
应当说明的是,图18中的接收模块1804为可选的模块。
作为一种实施例,图18中的确定模块1801、接收模块1804、调整模块1802和测量模块1803可以通过图14中的处理器1401来实现。
在第二种测量同步的方法的基础上,本公开实施例还提供一种网络设备,请参照图19,该网络设备包括:
确定模块1901,用于确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,以及根据时延相关参数,确定第一测量间隔参数;其中,测量间隔参数包括测量窗口;
发送模块1902,用于向终端设备发送第一测量间隔参数。
在一种可能的实施例中,确定模块1901具体用于:根据信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;或,根据终端设备的位置、预存的星历图、信关站的位置、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;根据传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
在一种可能的实施例中,发送模块1902具体用于:通过广播的***信息向终端设备发送第一测量间隔参数;或,通过专用信令向终端设备发送第一测量间隔参数。
在一种可能的实施例中,时延相关参数包括公共偏移量信息和/或时延偏移量信息;其中,公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。
在一种可能的实施例中,公共偏移量信息还包括符号信息,符号信息用于指示最大时延差异值为时间提前量或时间延迟量;确定模块1901还用于,在向终端设备发送第一测量间隔参数之后,若符号信息需要更新,根据更新后的符号信息,确定第二测量间隔参数;发送模块1902还用于,通过寻呼过程向终端设备发送更新***信息的消息,广播包括第二测量间隔参数的***信息;或,通过寻呼过程向终端设备发送下行控制信息DCI或DCI调度的寻呼消息;其中,所DCI和DCI调度的寻呼消息携带有第二测量间隔参数。
在一种可能的实施例中,时延相关参数为时延偏移量信息:确定模块1901还用于,在向终端设备发送第一测量间隔参数之后,若当前时延差异值与时延相关参数的时延差异值的差值大于预设阈值;或,间隔预设时长后,根据当前时延差异值,确定第三测量间隔参数;
发送模块1902还用于,向终端设备发送第三测量间隔参数;其中,当前时延差异值是指服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
作为一种实施例,图19中的确定模块1901和发送模块1902可以通过图15中的处理器1501来实现。
在第二种测量同步的方法的基础上,本公开实施例还提供一种终端设备,请参照图20,该终端设备包括:
接收模块2001,用于接收网络测设备发送的第一测量间隔参数;其中,第一测量间隔参数是用于指示通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
测量模块2002,用于根据测量窗口,测量邻小区对应的同步信号块。
在一种可能的实施例中,接收模块2001具体用于:通过广播的***信息接收第一测量间隔参数;或,通过专用信令接收第一测量间隔参数。
在一种可能的实施例中,接收模块2001还用于:在接收网络测设备发送的第一测量间隔参数之后,接收通过寻呼过程发送的更新***信息的消息,并接收包括第二测量间隔参数的***信息;或,通过寻呼过程接收下行控制信息DCI或DCI调度的寻呼消息;其中,DCI和DCI调度的寻呼消息用于指示第二测量间隔参数;其中,第二测量间隔参数指示的测量窗口与第一测量间隔参数指示的测量窗口不同。
作为一种实施例,图20中的接收模块2001和测量模块2002可以通过图16中的处理器1601来实现。
基于前文论述的第一种测量同步的方法,或第二种测量同步的方法,本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行如前文论述的第一种测量同步的方法,或前文论述的第二种测量同步的方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、***、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (47)

  1. 一种测量同步的方法,其特征在于,包括:
    为终端设备配置测量间隔参数;其中,所述测量间隔参数包括测量窗口;
    向所述终端设备发送指示信息,以使所述终端设备根据所述指示信息调整测量窗口,并根据调整后的测量窗口,测量邻小区的同步信号块;其中,所述指示信息用于指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
  2. 如权利要求1所述的方法,其特征在于,向所述终端设备发送指示信息,包括:
    通过广播的***信息向终端设备发送指示信息;或,
    通过专用信令向终端设备发送指示信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的至少一项;
    其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,所述位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或所述位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
  4. 如权利要求3所述的方法,其特征在于,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量;
    所述方法还包括:
    若所述符号信息需要更新,通过如下方式通知所述终端设备所述符号信息更新:
    通过寻呼过程向所述终端设备发送更新***信息的消息,广播包括更新后的符号信息的***信息;或,
    通过寻呼过程向所述终端设备发送下行控制信息DCI;其中,所述DCI用于指示所述终端设备更新所述符号信息。
  5. 如权利要求3所述的方法,其特征在于,所述指示信息为所述时延偏移量信息;
    向所述终端设备发送指示信息之后,包括:
    针对任一频点的邻小区,若当前时延差异值与所述指示信息中的时延差异值的差值大于预设阈值,则广播包括所述当前时延差异值的***信息,或通过重配置的专用信令向所述终端设备发送包括所述当前时延差的指示信息;其中,所述当前时延差异值是指所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
  6. 一种测量同步的方法,其特征在于,包括:
    确定时延相关参数;其中,所述时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;
    根据时延相关参数,调整测量窗口;其中,所述测量窗口是从网络设备配置的测量间隔参数获取的;
    根据调整后的所述测量窗口,测量邻小区对应的同步信号块。
  7. 如权利要求6所述的方法,其特征在于,在确定时延相关参数之前,包括:
    通过广播的***信息接收指示信息;或,
    通过网络设备发送的专用信令接收指示信息;
    其中,所述指示信息用于指示时延相关参数。
  8. 如权利要求7所述的方法,其特征在于,所述指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的至少一项;
    其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,所述位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或所述位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
  9. 如权利要求8所述的方法,其特征在于,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量;
    所述方法还包括:
    接收通过寻呼过程发送的更新***信息的消息,通过广播的更新后的***信息,接收更新后的符号信息或针对特定频点邻小区的更新后的当前时延差异值;其中,所述当前差异值为所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值;或,
    通过重配置的专用信令接收包括针对特定频点邻小区的更新后的当前时延差异值的指示信息;或,
    通过寻呼过程接收所述网络设备发送的下行控制信息DCI,根据所述DCI的指示,更新所述符号信息。
  10. 如权利要求6所述的方法,其特征在于,确定时延相关参数,包括:
    根据信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,或者根据终端设备的位置信息、信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定所述服务小区对应的卫星服务链路与所述邻小区对应的卫星服务链路之间的时延相关参数。
  11. 如权利要求8所述的方法,其特征在于,在根据调整后的所述测量窗口,测量所述邻小区对应的同步信号块之前,还包括:
    根据预存的星历图、所述服务小区对应的卫星标识以及所述邻小区对应的卫星标识,确定终端设备的天线与所述邻小区对应的卫星之间的夹角;
    根据所述夹角,将所述终端设备的天线调整为与所述邻小区对应的卫星对准的方向。
  12. 如权利要求8所述的方法,其特征在于,根据时延相关参数,调整测量窗口,包括:
    若所述公共偏移量信息不包括符号信息,则将所述测量窗口的起始时间提前最大时延差异值,且所述测量窗口的持续时间增加两倍的最大时延差异值;
    若所述公共偏移量包括符号信息,且所述符号信息用于指示所述最大时延差异值为时间延迟量,则将所述测量窗口的持续时间延长最大时延差异值;
    若所述公共偏移量包括符号信息,且所述符号信息用于指示所述最大时延差异值为时间提前量,则将所述测量窗口的起始时间提前最大时延差异值,且所述测量窗口的持续时间增加最大时延差异值。
  13. 一种测量同步的方法,其特征在于,包括:
    确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数;
    根据所述时延相关参数,确定第一测量间隔参数;其中,所述测量间隔参数包括测量窗口;
    向终端设备发送第一测量间隔参数。
  14. 如权利要求13所述的方法,其特征在于,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,包括:
    根据信关站的位置、预存的星历图、服务小区对应的卫星的标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;或,根据终端设备的位置、信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;
    根据所述传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
  15. 如权利要求13所述的方法,其特征在于,向终端设备发送第一测量间隔参数,包括:
    通过广播的***信息向终端设备发送第一测量间隔参数;或,
    通过专用信令向终端设备发送第一测量间隔参数。
  16. 如权利要求13-15任一所述的方法,其特征在于,所述时延相关参数包括公共偏移量信息以及时延偏移量信息中的至少一项;
    其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。
  17. 如权利要求16所述的方法,其特征在于,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量;
    在向终端设备发送第一测量间隔参数之后,还包括:
    若所述符号信息需要更新,根据更新后的符号信息,确定第二测量间隔参数;
    通过寻呼过程向所述终端设备发送更新***信息的消息,广播包括所述第二测量间隔参数的***信息;或,
    通过寻呼过程向所述终端设备发送下行控制信息DCI或DCI调度的寻呼消息;其中,所述DCI和所述DCI调度的寻呼消息携带有第二测量间隔参数。
  18. 如权利要求16所述的方法,其特征在于,所述时延相关参数为所述时延偏移量信息;
    在向终端设备发送第一测量间隔参数之后,还包括:
    若当前时延差异值与所述时延相关参数的时延差异值的差值大于预设阈值;或,间隔预设时长后,根据所述当前时延差异值,确定第三测量间隔参数;
    向所述终端设备发送所述第三测量间隔参数;
    其中,所述当前时延差异值是指所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
  19. 一种测量同步的方法,其特征在于,包括:
    接收网络测设备发送的第一测量间隔参数;其中,所述第一测量间隔参数是用于指示 通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
    根据所述测量窗口,测量邻小区对应的同步信号块。
  20. 如权利要求19所述的方法,其特征在于,接收网络测设备发送的第一测量间隔参数,包括:
    通过广播的***信息接收第一测量间隔参数;或,
    通过专用信令接收第一测量间隔参数。
  21. 如权利要求19或20所述的方法,其特征在于,在接收网络测设备发送的第一测量间隔参数之后,包括:
    接收通过寻呼过程发送的更新***信息的消息,并接收包括第二测量间隔参数的***信息;或,
    通过寻呼过程接收下行控制信息DCI或DCI调度的寻呼消息;其中,所述DCI和所述DCI调度的寻呼消息用于指示第二测量间隔参数;
    其中,所述第二测量间隔参数指示的测量窗口与所述第一测量间隔参数指示的测量窗口不同。
  22. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发机;
    所述处理器,用于读取所述存储器中的程序并执行如下过程:
    为终端设备配置测量间隔参数;其中,所述测量间隔参数包括测量窗口;
    向所述终端设备发送指示信息,以使所述终端设备根据所述指示信息调整测量窗口,并根据调整后的测量窗口,测量邻小区的同步信号块;其中,所述指示信息用于指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
  23. 如权利要求22所述的网络设备,其特征在于,所述处理器具体用于:
    通过广播的***信息向终端设备发送指示信息;或,
    通过专用信令向终端设备发送指示信息。
  24. 如权利要求22或23所述的网络设备,其特征在于,所述指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的至少一项;
    其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,所述位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或所述位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
  25. 如权利要求24所述的网络设备,其特征在于,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量,所述处理器还用于:
    若所述符号信息需要更新,通过如下方式通知所述终端设备所述符号信息更新:
    通过寻呼过程向所述终端设备发送更新***信息的消息,广播包括更新后的符号信息的***信息;或,
    通过寻呼过程向所述终端设备发送下行控制信息DCI;其中,所述DCI用于指示所述终端设备更新所述符号信息。
  26. 如权利要求24所述的网络设备,其特征在于,所述指示信息为所述时延偏移量 信息,所述处理器还用于:
    在向所述终端设备发送指示信息之后,针对任一频点的邻小区,若当前时延差异值与所述指示信息中的时延差异值的差值大于预设阈值,则广播包括所述当前时延差异值的***信息,或通过重配置的专用信令向所述终端设备发送包括所述当前时延差的指示信息;其中,所述当前时延差异值是指所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
  27. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发机;
    所述处理器,用于读取所述存储器中的程序并执行如下过程:
    确定时延相关参数;其中,所述时延相关参数用于表示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延;
    根据时延相关参数,调整测量窗口;其中,所述测量窗口是从网络设备配置的测量间隔参数获取的;
    根据调整后的所述测量窗口,测量邻小区对应的同步信号块。
  28. 如权利要求27所述的终端设备,其特征在于,所述处理器还用于:
    在确定时延相关参数之前,通过广播的***信息接收指示信息;或,
    通过网络设备发送的专用信令接收指示信息;其中,所述指示信息用于指示时延相关参数。
  29. 如权利要求26或27所述的终端设备,其特征在于,所述指示信息包括公共偏移量信息、时延偏移量信息和位置信息中的至少一项;
    其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路之间的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值,所述位置信息包括服务小区对应的卫星标识以及邻小区对应的卫星标识,或所述位置信息包括信关站的位置,服务小区对应的卫星标识以及邻小区对应的卫星标识。
  30. 如权利要求29所述的终端设备,其特征在于,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量,所述处理器还用于:
    接收通过寻呼过程发送的更新***信息的消息,通过广播的更新后的***信息,接收更新后的符号信息或针对特定频点邻小区的更新后的当前时延差异值;其中,所述当前差异值为所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值;或,
    通过重配置的专用信令接收包括针对特定频点邻小区的更新后的当前时延差异值的指示信息;或,
    通过寻呼过程接收所述网络设备发送的DCI,根据所述DCI的指示,更新所述符号信息。
  31. 如权利要求27所述的终端设备,其特征在于,所述指示信息为所述位置信息,所述处理器具体用于:
    根据信关站的位置、预存的星历图、服务小区对应的卫星标识以及邻小区对应的卫星标识,或者根据终端设备的位置信息、信关站的位置、预存的星历图、服务小区对应的卫 星标识以及邻小区对应的卫星标识,确定所述服务小区对应的卫星服务链路与所述邻小区对应的卫星服务链路之间的时延相关参数。
  32. 如权利要求29所述的终端设备,其特征在于,所述处理器还用于:
    在根据调整后的所述测量窗口,测量所述邻小区对应的同步信号块之前,根据预存的星历图、所述服务小区对应的卫星标识以及所述邻小区对应的卫星标识,确定终端设备的天线与所述邻小区对应的卫星之间的夹角;
    根据所述夹角,将所述终端设备的天线调整为与所述邻小区对应的卫星对准的方向。
  33. 如权利要求30所述的终端设备,其特征在于,所述处理器具体用于:
    若所述公共偏移量信息不包括符号信息,则将所述测量窗口的起始时间提前最大时延差异值,且所述测量窗口的持续时间增加两倍的最大时延差异值;
    若所述公共偏移量包括符号信息,且所述符号信息用于指示所述最大时延差异值为时间延迟量,则将所述测量窗口的持续时间延长最大时延差异值;
    若所述公共偏移量包括符号信息,且所述符号信息用于指示所述最大时延差异值为时间提前量,则将所述测量窗口的起始时间提前最大时延差异值,且所述测量窗口的持续时间增加最大时延差异值。
  34. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发机;
    所述处理器,用于读取所述存储器中的程序并执行如下过程:
    确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数;
    根据所述时延相关参数,确定第一测量间隔参数;其中,所述测量间隔参数包括测量窗口;
    向终端设备发送第一测量间隔参数。
  35. 如权利要求34所述的网络设备,其特征在于,所述处理器具体用于:
    根据信关站的位置、预存的星历图、服务小区对应的卫星的标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;或,根据终端设备的位置、预存的星历图、信关站的位置、服务小区对应的卫星标识以及邻小区对应的卫星标识,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的传播距离差值;
    根据所述传播距离差值,确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
  36. 如权利要求34所述的网络设备,其特征在于,所述处理器具体用于:
    通过广播的***信息向终端设备发送第一测量间隔参数;或,
    通过专用信令向终端设备发送第一测量间隔参数。
  37. 如权利要求34-36任一所述的网络设备,其特征在于,所述时延相关参数包括公共偏移量信息和/或时延偏移量信息;
    其中,所述公共偏移量信息包括服务小区对应的卫星服务链路与邻小区所对应的卫星服务链路的最大时延差异值,所述时延偏移量信息包括服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的实时时延差异值。
  38. 如权利要求37所述的网络设备,其特征在于,所述公共偏移量信息还包括符号信息,所述符号信息用于指示所述最大时延差异值为时间提前量或时间延迟量,所述处理 器还用于:
    在向终端设备发送第一测量间隔参数之后,若所述符号信息需要更新,根据更新后的符号信息,确定第二测量间隔参数;
    通过寻呼过程向所述终端设备发送更新***信息的消息,广播包括所述第二测量间隔参数的***信息;或,
    通过寻呼过程向所述终端设备发送下行控制信息DCI或DCI调度的寻呼消息;其中,所述DCI和所述DCI调度的寻呼消息携带有第二测量间隔参数。
  39. 如权利要求37所述的网络设备,其特征在于,所述时延相关参数为所述时延偏移量信息,所述处理器还用于:
    在向终端设备发送第一测量间隔参数之后,若当前时延差异值与所述时延相关参数的时延差异值的差值大于预设阈值;或,间隔预设时长后,根据所述当前时延差异值,确定第三测量间隔参数;
    向所述终端设备发送所述第三测量间隔参数;
    其中,所述当前时延差异值是指所述服务小区对应的卫星服务链路与该邻小区对应的卫星服务链路在当前时间段内的时延差异值。
  40. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发机;
    所述处理器,用于读取所述存储器中的程序并执行如下过程:
    接收网络测设备发送的第一测量间隔参数;其中,所述第一测量间隔参数是用于指示通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
    根据所述测量窗口,测量邻小区对应的同步信号块。
  41. 如权利要求40所述的终端设备,其特征在于,所述处理器具体用于:
    通过广播的***信息接收第一测量间隔参数;或,
    通过专用信令接收第一测量间隔参数。
  42. 如权利要求40或41所述的终端设备,其特征在于,所述处理器还用于:
    在接收网络测设备发送的第一测量间隔参数之后,接收通过寻呼过程发送的更新***信息的消息,并接收包括第二测量间隔参数的***信息;或,
    通过寻呼过程接收下行控制信息DCI或DCI调度的寻呼消息;其中,所述DCI和所述DCI调度的寻呼消息用于指示第二测量间隔参数;
    其中,所述第二测量间隔参数指示的测量窗口与所述第一测量间隔参数指示的测量窗口不同。
  43. 一种网络设备,其特征在于,包括:
    配置模块:用于为终端设备配置测量间隔参数;其中,所述测量间隔参数包括测量窗口;
    发送模块:用于向所述终端设备发送指示信息,以使所述终端设备根据所述指示信息调整所述测量窗口,并根据调整后的所述测量窗口,测量邻小区的同步信号块;其中,所述指示信息用于指示服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数。
  44. 一种终端设备,其特征在于,包括:
    确定模块:用于确定时延相关参数;其中,所述时延相关参数用于表示服务小区对应 的卫星服务链路与邻小区对应的卫星服务链路的时延;
    调整模块,用于根据时延相关参数,调整测量窗口;其中,所述测量窗口是从网络设备配置的测量间隔参数获取的;
    测量模块,用于根据调整后的所述测量窗口,测量邻小区对应的同步信号块。
  45. 一种网络设备,其特征在于,包括:
    确定模块,用于确定服务小区对应的卫星服务链路与邻小区对应的卫星服务链路的时延相关参数,以及根据所述时延相关参数,确定第一测量间隔参数;其中,所述测量间隔参数包括测量窗口;
    发送模块,用于向终端设备发送第一测量间隔参数。
  46. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络测设备发送的第一测量间隔参数;其中,所述第一测量间隔参数是用于指示通过邻小区对应的卫星服务链路发送同步信号块在服务小区对应实际的测量窗口;
    测量模块,用于根据所述测量窗口,测量邻小区对应的同步信号块。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-5、6-12、13-18或19-21中任一项所述的方法。
PCT/CN2020/097772 2019-07-29 2020-06-23 一种测量同步的方法、网络设备及终端设备 WO2021017690A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227005739A KR20220038422A (ko) 2019-07-29 2020-06-23 측정 동기화 방법, 네트워크 장치 및 단말 장치
US17/631,143 US11843449B2 (en) 2019-07-29 2020-06-23 Measurement synchronization method, network device and terminal device
EP20847550.9A EP4007349A4 (en) 2019-07-29 2020-06-23 MEASUREMENT SYNCHRONIZATION METHOD, NETWORK DEVICE AND TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910690828.7A CN112312451B (zh) 2019-07-29 2019-07-29 一种测量同步的方法、网络设备及终端设备
CN201910690828.7 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021017690A1 true WO2021017690A1 (zh) 2021-02-04

Family

ID=74230048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097772 WO2021017690A1 (zh) 2019-07-29 2020-06-23 一种测量同步的方法、网络设备及终端设备

Country Status (5)

Country Link
US (1) US11843449B2 (zh)
EP (1) EP4007349A4 (zh)
KR (1) KR20220038422A (zh)
CN (1) CN112312451B (zh)
WO (1) WO2021017690A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219589A1 (en) * 2021-04-14 2022-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Preconfigured smtc and measurement gaps in ntn
WO2022235319A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Timing configuration management for network entities
WO2023015064A1 (en) * 2021-08-05 2023-02-09 Qualcomm Incorporated Broadcasting of a non-terrestrial network system information block
US11589292B1 (en) 2021-08-05 2023-02-21 Qualcomm Incorporated Broadcasting of a non-terrestrial network system information block
WO2024032594A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 一种通信方法及通信装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4054246A4 (en) * 2019-11-01 2022-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR MEASURING A NEIGHBORING CELL
US11895546B2 (en) * 2020-08-07 2024-02-06 FG Innovation Company Limited Performing measurements for a handover procedure in a non-terrestrial network
CN114698412B (zh) * 2020-10-30 2024-04-16 北京小米移动软件有限公司 测量间隔确定方法、测量方法、相关设备以及存储介质
US11737043B2 (en) * 2021-01-15 2023-08-22 Rakuten Mobile, Inc. Satellite signal propagation delay variation compensation
WO2022178844A1 (zh) * 2021-02-26 2022-09-01 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115119246A (zh) * 2021-03-19 2022-09-27 ***通信有限公司研究院 测量配置信息的确定方法、配置方法、终端及网络侧设备
CN115669040A (zh) * 2021-04-02 2023-01-31 北京小米移动软件有限公司 Ntn中的测量间隔的时间确定方法、装置及设备
CN115190081A (zh) * 2021-04-02 2022-10-14 展讯半导体(南京)有限公司 一种数据传输方法、通信装置、芯片及模组设备
EP4342198A1 (en) * 2021-05-18 2024-03-27 Nokia Technologies Oy Enhancements on satellite positioning measurement
CN115943694A (zh) * 2021-08-02 2023-04-07 北京小米移动软件有限公司 小区测量方法、装置、设备及介质
CN116889018A (zh) * 2021-09-01 2023-10-13 北京小米移动软件有限公司 信息上报方法及装置、存储介质
CN116261878A (zh) * 2021-10-09 2023-06-13 北京小米移动软件有限公司 一种接收或发送测量配置信息的方法、装置、设备及存储介质
WO2023077599A1 (zh) * 2021-11-02 2023-05-11 Oppo广东移动通信有限公司 Ntn***中的通信方法、设备及计算机可读介质
WO2023108374A1 (zh) * 2021-12-13 2023-06-22 北京小米移动软件有限公司 一种测量方法/装置/用户设备/网络侧设备及存储介质
CN114339867B (zh) * 2021-12-31 2024-03-19 哲库科技(北京)有限公司 小区测量方法、装置、终端设备及存储介质
WO2023137704A1 (en) * 2022-01-21 2023-07-27 Lenovo (Beijing) Limited Methods and apparatuses of wireless communication in non-terrestrial network
WO2024000520A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 一种信号测量方法及通信装置
WO2024011459A1 (zh) * 2022-07-13 2024-01-18 北京小米移动软件有限公司 一种测量方法、装置、设备以及可读存储介质
CN117544212A (zh) * 2022-08-02 2024-02-09 华为技术有限公司 一种通信方法及装置
WO2024031495A1 (en) * 2022-08-11 2024-02-15 Apple Inc. User equipment mobility measurements
CN116366499B (zh) * 2023-05-26 2023-08-15 中国工商银行股份有限公司 数据传输方法、装置、电子设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153831B1 (en) * 2017-02-13 2018-12-11 Lockheed Martin Corporation Power usage-aware spectral resource allocation in a satellite long term evolution (LTE) communication system
CN109150454A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 传输信息的方法和装置
CN109391960A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 测量配置方法、基站及计算机可读存储介质
CN109428695A (zh) * 2017-08-24 2019-03-05 电信科学技术研究院 一种测量间隙确定方法、用户终端和网络侧设备
CN109600770A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 通信方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863123B1 (fr) * 2003-12-01 2006-04-28 Cit Alcatel Procede d'acquisition de donnees satellitaires
MX357494B (es) * 2014-03-19 2018-07-11 Hughes Network Systems Llc Aparato y metodo para sincronizacion a nivel de red en multiples sistemas de comunicaciones satelitales de orbita baja terrestre (leo).
US9888426B2 (en) 2015-05-01 2018-02-06 Qualcomm Incorporated Handoff for satellite communication
US10347987B2 (en) * 2016-03-29 2019-07-09 Space Systems/Loral, Llc Satellite system having terminals in hopping beams communicating with more than one gateway
CN109151922B (zh) * 2017-06-16 2021-05-14 华为技术有限公司 测量方法、测量配置方法和相关设备
CN107528628B (zh) * 2017-09-28 2020-01-10 中国电子科技集团公司第七研究所 卫星通信***的信号同步方法、装置和***
WO2019111862A1 (ja) 2017-12-04 2019-06-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20190182900A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Measurement gap sharing
CN112788774B (zh) * 2019-11-08 2023-09-01 华为技术有限公司 卫星通信方法和相关通信设备
US20220321207A1 (en) * 2021-04-06 2022-10-06 Qualcomm Incorporated Measurement configuration in non-terrestrial networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153831B1 (en) * 2017-02-13 2018-12-11 Lockheed Martin Corporation Power usage-aware spectral resource allocation in a satellite long term evolution (LTE) communication system
CN109150454A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 传输信息的方法和装置
CN109391960A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 测量配置方法、基站及计算机可读存储介质
CN109428695A (zh) * 2017-08-24 2019-03-05 电信科学技术研究院 一种测量间隙确定方法、用户终端和网络侧设备
CN109600770A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 通信方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Measurement Issues for NTN System", 3GPP DRAFT; R2-1912157 MEASUREMENT ISSUES FOR NTN SYSTEM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, P.R.China; 20191014 - 20191018, 3 October 2019 (2019-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790209 *
CATT: "The Impact by Propagation Delay Difference on Connected Mode", 3GPP DRAFT; R2-1908755, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051766577 *
HUAWEI, HISILICON: "Discussion on SSB measurement in NTN", 3GPP DRAFT; R2-1915189, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051817074 *
See also references of EP4007349A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219589A1 (en) * 2021-04-14 2022-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Preconfigured smtc and measurement gaps in ntn
WO2022235319A1 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Timing configuration management for network entities
US11909502B2 (en) 2021-05-05 2024-02-20 Qualcomm Incorporated Timing configuration management for network entities
WO2023015064A1 (en) * 2021-08-05 2023-02-09 Qualcomm Incorporated Broadcasting of a non-terrestrial network system information block
US11589292B1 (en) 2021-08-05 2023-02-21 Qualcomm Incorporated Broadcasting of a non-terrestrial network system information block
WO2024032594A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
EP4007349A4 (en) 2022-09-14
CN112312451B (zh) 2022-10-28
CN112312451A (zh) 2021-02-02
EP4007349A1 (en) 2022-06-01
US20220263569A1 (en) 2022-08-18
US11843449B2 (en) 2023-12-12
KR20220038422A (ko) 2022-03-28

Similar Documents

Publication Publication Date Title
WO2021017690A1 (zh) 一种测量同步的方法、网络设备及终端设备
US11765778B2 (en) Off grid radio service system design
JP7089339B2 (ja) 放送及び双方向パケット交換通信のための共有スペクトルアクセス
CN110324889B (zh) 时钟同步方法、通信装置及通信设备
CN111278135B (zh) 信号传输方法和设备
US10165535B2 (en) Methods and wireless devices for enabling synchronization in D2D communications
KR20180035800A (ko) 통신 디바이스들 및 방법들
WO2021022442A1 (zh) 无线通信方法、终端设备和网络设备
WO2020076973A1 (en) Cellular vehicle-to-everything out of coverage synchronization
JP2017521975A (ja) 同期方法、同期装置、および基地局
WO2020164077A1 (zh) 一种资源配置方法、终端设备及网络设备
WO2023013531A1 (en) User equipment, method of user equipment, network node, and mehod of network node
JP7400829B2 (ja) 方法及び端末デバイス
CN115918180A (zh) 无线通信方法、终端设备和网络设备
EP4142337A1 (en) Measurement method and apparatus, terminal device, and network device
WO2020151679A1 (zh) 上行传输方法及设备
RU2627305C2 (ru) Способ покрытия дальней связи и базовая станция
WO2023185808A1 (zh) 小区同步方法及装置
JP2016538779A (ja) 無線でアクセスポイントのためのグローバル時刻基準を同期させるためのシステム、装置、および方法
CN114303428A (zh) 确定时间戳的方法、终端设备、接入网节点、核心网设备
CN112188383A (zh) 一种随机接入的方法及装置
CN103167600A (zh) 一种基站同步的方法及装置
EP3582419B1 (en) Downlink signal pre-correction method and device
WO2023024009A1 (zh) 一种节能信号的传输资源的确定方法及装置、终端设备
EP4351229A1 (en) Method and apparatus for determining energy-saving signal monitoring occasion, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005739

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020847550

Country of ref document: EP

Effective date: 20220228