WO2021014943A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2021014943A1
WO2021014943A1 PCT/JP2020/026293 JP2020026293W WO2021014943A1 WO 2021014943 A1 WO2021014943 A1 WO 2021014943A1 JP 2020026293 W JP2020026293 W JP 2020026293W WO 2021014943 A1 WO2021014943 A1 WO 2021014943A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
throttle opening
cooler
unit
refrigeration cycle
Prior art date
Application number
PCT/JP2020/026293
Other languages
English (en)
French (fr)
Inventor
稲垣 孝治
加藤 大輝
紘明 河野
加藤 吉毅
直也 牧本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080045059.6A priority Critical patent/CN114025977B/zh
Publication of WO2021014943A1 publication Critical patent/WO2021014943A1/ja
Priority to US17/576,030 priority patent/US20220136747A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3202Cooling devices using evaporation, i.e. not including a compressor, e.g. involving fuel or water evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/02Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/31Air conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to a refrigeration cycle device capable of performing indoor heating to warm the blown air blown into the air-conditioned space.
  • the temperature of the refrigerant becomes very low on the low pressure side in the cycle, and the refrigerant density becomes small, so that the refrigerant passes through the heat exchanger on the low pressure side.
  • the flow rate of the refrigerant is reduced.
  • the viscosity of the oil increases as the temperature of the refrigerant decreases.
  • An object of the present disclosure is to provide a refrigeration cycle device capable of suppressing oil retention during indoor heating.
  • the refrigeration cycle apparatus is It is possible to carry out indoor heating that warms the blown air that blows into the air-conditioned space.
  • a compressor that compresses and discharges a refrigerant containing oil
  • a radiator that warms the blown air using the refrigerant discharged from the compressor as a heat source during room heating
  • a refrigerant decompression unit that decompresses the refrigerant that has passed through the radiator
  • An evaporator that functions as an endothermic when heating the room, It is equipped with an opening control unit that controls the refrigerant decompression unit.
  • the opening degree control unit changes the throttle opening of the refrigerant pressure reducing unit so that the refrigerant state on the refrigerant outlet side of the evaporator alternately changes to a superheated state having a superheat degree and a wet state containing moist steam at least during indoor heating. Execute the fluctuation process to make it.
  • the gas-liquid two-phase state refrigerant is sucked into the compressor, so that the oil in the cycle is sucked together with the refrigerant. Is easier to return to the compressor.
  • the refrigerant decompression unit is controlled so that the refrigerant state on the refrigerant outlet side of the evaporator changes alternately between an overheated state and a wet state.
  • the refrigerant state on the refrigerant outlet side of the evaporator changes alternately between an overheated state and a wet state.
  • the "wet state” is a state in which the refrigerant is moist steam, and the dryness of the refrigerant exceeds 0% and becomes 100% or less.
  • the “superheated state” is a state in which the refrigerant is dry steam, and the refrigerant has a degree of superheat.
  • the refrigeration cycle apparatus is: It is possible to carry out indoor heating that warms the blast air that blows into the air-conditioned space, equipment cooling that cools the heating equipment, and indoor cooling that cools the blast air.
  • a compressor that compresses and discharges a refrigerant containing oil
  • a radiator that warms the blown air that blows air into the air-conditioned space using the refrigerant discharged from the compressor as a heat source during room heating
  • a refrigerant decompression unit that decompresses the refrigerant that has passed through the radiator
  • a parallel decompression unit arranged in parallel with the refrigerant decompression unit on the downstream side of the refrigerant flow of the radiator
  • a device cooler that functions as a cooler that cools heat-generating equipment by using the latent heat of vaporization of the refrigerant that has been decompressed by the refrigerant decompression section when cooling the equipment, and a heat absorber that functions as a heat absorber during room heating.
  • An air-conditioning cooler that cools the blown air by using the latent heat of vaporization of the refrigerant decompressed by the parallel decompression unit. It is provided with an opening degree control unit that controls a refrigerant decompression unit and a parallel decompression unit. At least during room heating, the opening degree control unit opens the throttle of the refrigerant pressure reducing unit so that the refrigerant state on the refrigerant outlet side of the equipment cooler alternately changes to a superheated state with superheat and a wet state containing moist steam. Performs fluctuation processing that changes.
  • the gas-liquid two-phase state refrigerant is sucked into the compressor, so that the cycle is performed together with the refrigerant.
  • the oil inside can easily return to the compressor.
  • the refrigerant decompression unit is controlled so that the refrigerant state on the refrigerant outlet side of the equipment cooler alternately changes to an overheated state and a wet state.
  • the refrigerant state on the refrigerant outlet side of the equipment cooler alternately repeating the wet state and the superheated state in which the refrigerant state can be easily specified, it is possible to prevent the refrigerant from becoming too dry in the wet state. As a result, it is possible to suppress the occurrence of liquid compression in the compressor.
  • FIGS. 1 to 7. This embodiment will be described with reference to FIGS. 1 to 7.
  • This embodiment describes an example in which the refrigeration cycle device 10 of the present disclosure is applied to the air conditioner 1 that adjusts the vehicle interior space to an appropriate temperature.
  • the vehicle interior space is the air conditioning target space.
  • the refrigeration cycle device 10 shown in FIG. 1 is mounted on a hybrid vehicle that obtains driving force for vehicle traveling from an engine and an electric motor for traveling.
  • This hybrid vehicle is configured as a plug-in hybrid vehicle capable of charging the battery BT mounted on the vehicle with the electric power supplied from the external power source when the vehicle is stopped.
  • the driving force output from the engine is used not only for traveling the vehicle but also for generating electricity with the motor generator.
  • the electric power generated by the motor generator and the electric power supplied from the external power source are stored in the battery BT.
  • the electric power stored in the battery BT is supplied not only to the electric motor for traveling but also to various in-vehicle devices including the constituent devices of the refrigeration cycle device 10.
  • the refrigeration cycle device 10 can perform indoor heating that heats the blown air blown into the vehicle interior, indoor cooling that cools the blown air that blows into the vehicle interior, and equipment cooling that cools the battery BT.
  • the refrigeration cycle apparatus 10 is composed of a vapor compression type refrigeration cycle.
  • the refrigeration cycle device 10 has a refrigerant circuit 100 in which a refrigerant circulates.
  • the refrigeration cycle device 10 has a compressor 11, a radiator 12, a first decompression unit 13, an equipment cooler 14, a second decompression unit 15, an air conditioning cooler 16, and an evaporation pressure adjusting valve with respect to the refrigerant circuit 100. 17 is provided.
  • a fluorocarbon-based refrigerant (for example, HFO134a) is sealed in the refrigerant circuit 100 as a refrigerant.
  • the refrigerant circuit 100 has a subcritical cycle in which the pressure on the high pressure side in the cycle does not exceed the critical pressure of the refrigerant.
  • a refrigerant other than HFO134a may be adopted.
  • Oil for lubricating the compressor 11 (that is, refrigerating machine oil) is mixed in the refrigerant.
  • oil for example, polyalkylene glycol oil (that is, PAG oil) having compatibility with the liquid refrigerant is adopted. Part of the oil circulates in the cycle with the refrigerant.
  • the refrigerant circuit 100 has a first refrigerant flow path 100a, a second refrigerant flow path 100b, and a third refrigerant flow path 100c as flow paths through which the refrigerant flows.
  • the second refrigerant flow path 100b and the third refrigerant flow path 100c are connected to the first refrigerant flow path 100a so that the refrigerants flow in parallel with each other.
  • a compressor 11 and a radiator 12 are arranged in series in the first refrigerant flow path 100a. Specifically, in the first refrigerant flow path 100a, the radiator 12 is arranged on the downstream side of the compressor 11.
  • the first decompression unit 13 and the equipment cooler 14 are arranged in series in the second refrigerant flow path 100b. Specifically, in the second refrigerant flow path 100b, the equipment cooler 14 is arranged on the downstream side of the first decompression unit 13.
  • a second decompression unit 15 and an air conditioning cooler 16 are arranged in series in the third refrigerant flow path 100c. Specifically, in the third refrigerant flow path 100c, an air conditioning cooler 16 is arranged on the downstream side of the second decompression unit 15.
  • the compressor 11 is a device that compresses and discharges the refrigerant.
  • the compressor 11 is composed of an electric compressor that rotationally drives a compression mechanism unit that compresses the refrigerant by an electric motor.
  • the rotation speed of the electric motor is controlled by a control signal output from the control device 80 described later.
  • a radiator 12 is connected to the refrigerant discharge side of the compressor 11.
  • the radiator 12 dissipates the refrigerant discharged from the compressor 11.
  • the radiator 12 is a heat exchanger that dissipates high-temperature and high-pressure refrigerant (hereinafter, also referred to as high-pressure refrigerant) discharged from the compressor 11 to a high-temperature heat medium circulating in the high-temperature heat medium circuit 30.
  • the radiator 12 has a condensing unit 121, a liquid receiving unit 122, and a supercooling unit 123.
  • the condensing unit 121 condenses the high-pressure refrigerant by dissipating heat to a high-temperature heat medium.
  • the liquid receiving unit 122 separates the gas and liquid of the refrigerant that has passed through the condensing unit 121, and stores the separated liquid refrigerant as a surplus refrigerant in the cycle.
  • the supercooling unit 123 supercools the liquid refrigerant stored in the liquid receiving unit 122 by dissipating heat to a high-temperature heat medium before flowing into the condensing unit 121.
  • the radiator 12 warms the blown air blown into the vehicle interior by using the refrigerant discharged from the compressor 11 as a heat source. Specifically, the radiator 12 can heat the blown air by radiating the high-pressure refrigerant to the blown air that blows into the vehicle interior via the high-temperature heat medium circuit 30.
  • the high temperature heat medium circuit 30 is a circuit that circulates the high temperature heat medium.
  • the high-temperature heat medium for example, a solution containing ethylene glycol, an antifreeze solution, or the like is adopted.
  • the high temperature heat medium constitutes the first heat medium.
  • a radiator 12 a high temperature side pump 31, a heater core 32, a high temperature side radiator 33, a high temperature side flow rate adjusting valve 34, and the like are arranged.
  • the high temperature side pump 31 is a pump that pumps the high temperature heat medium to the radiator 12 in the high temperature heat medium circuit 30.
  • the high temperature side pump 31 is composed of an electric pump whose rotation speed is controlled according to a control signal output from the control device 80.
  • the heater core 32 is arranged in the casing 61 of the indoor air conditioning unit 60, which will be described later.
  • the heater core 32 is a heat exchanger that heats the blown air by exchanging heat between the high-temperature heat medium heated by the radiator 12 and the blown air that has passed through the air conditioning cooler 16 described later.
  • the high temperature side radiator 33 is a heat exchanger that dissipates heat from the high temperature heat medium heated by the radiator 12 to the outside air.
  • the high temperature side radiator 33 is arranged on the front side of the vehicle to which the running wind hits when the vehicle is running.
  • the high temperature side radiator 33 and the heater core 32 are connected in parallel to the flow of the high temperature heat medium in the high temperature heat medium circuit 30.
  • the high temperature side flow rate adjusting valve 34 determines the flow rate ratio of the flow rate of the high temperature heat medium flowing into the heater core 32 and the flow rate of the high temperature heat medium flowing into the high temperature side radiator 33 among the high temperature heat media heated by the radiator 12. It is a flow rate adjusting valve to adjust.
  • the high temperature side flow rate adjusting valve 34 is composed of a three-way valve type flow rate adjusting valve.
  • the high temperature side flow rate adjusting valve 34 is arranged at a connection portion between the inlet side of the heater core 32 and the inlet side of the high temperature side radiator 33 in the high temperature heat medium circuit 30.
  • the usage mode of the high-pressure refrigerant can be changed by adjusting the above-mentioned flow rate ratio by the high-temperature side flow rate adjusting valve 34.
  • the high-temperature heat medium circuit 30 heats the vehicle interior by using the heat of the high-temperature heat medium to heat the blown air by increasing the flow rate of the high-temperature heat medium flowing into the heater core 32 by, for example, the high-temperature side flow rate adjusting valve 34. can do.
  • the high temperature heat medium circuit 30 can release the heat of the high temperature heat medium to the outside air by increasing the flow rate of the high temperature heat medium flowing into the high temperature side radiator 33 by, for example, the high temperature side flow rate adjusting valve 34.
  • the refrigerant outlet side of the radiator 12 is branched into a second refrigerant flow path 100b and a third refrigerant flow path 100c.
  • the first decompression unit 13 and the equipment cooler 14 are arranged in the second refrigerant flow path 100b.
  • a second decompression unit 15 and an air conditioning cooler 16 are arranged in the third refrigerant flow path 100c.
  • the first decompression unit 13 is a refrigerant decompression unit that decompresses the refrigerant that has passed through the radiator 12.
  • the first pressure reducing unit 13 has a first on-off valve 131 and a first expansion valve 132 that are fully closed or fully opened.
  • the first on-off valve 131 is a solenoid valve that opens and closes the second refrigerant flow path 100b. The opening / closing operation of the first on-off valve 131 is controlled in response to a control signal from the control device 80 described later.
  • the first expansion valve 132 is an expansion valve that reduces the pressure of the refrigerant flowing through the second refrigerant flow path 100b.
  • the first expansion valve 132 is composed of an electric expansion valve having a valve body and an electric actuator.
  • the electric actuator of the first expansion valve 132 includes a stepping motor that displaces the valve body to change the throttle opening ⁇ of the first expansion valve 132.
  • the throttle opening ⁇ of the first expansion valve 132 is controlled according to a control signal from the control device 80 described later.
  • the equipment cooler 14 evaporates the refrigerant by exchanging heat with the low-temperature heat medium (hereinafter, also referred to as low-temperature heat medium) circulating in the low-temperature heat medium circuit 40 for the refrigerant decompressed by the first decompression unit 13. Evaporator (ie, chiller) to make. In the equipment cooler 14, the low-temperature heat medium is cooled by absorbing heat from the low-temperature heat medium and evaporating it.
  • the equipment cooler 14 is composed of a laminated heat exchanger in which a plurality of refrigerant flow paths through which a refrigerant flows and a plurality of heat medium flow paths through which a low-temperature heat medium flows are alternately laminated. ..
  • the device cooler 14 of the present embodiment functions as a cooler that cools the battery BT by utilizing the latent heat of vaporization of the refrigerant decompressed by the first decompression unit 13 when the device is cooled, and functions as a heat absorber during room heating. .. Specifically, the device cooler 14 cools the battery BT via the low temperature heat medium circuit 40 when the device is cooled, and absorbs heat from the outside air when the room is heated.
  • the low temperature heat medium circuit 40 is a heat medium circuit in which a low temperature heat medium circulates.
  • a low temperature heat medium for example, a solution containing ethylene glycol, an antifreeze solution, or the like is adopted.
  • the low temperature heat medium constitutes the second heat medium.
  • a cooler for equipment 14 a low temperature side pump 41, a battery cooling unit 42, a low temperature side radiator 43, a first flow path switching valve 44, a second flow path switching valve 45, and the like are arranged. ..
  • the low temperature side pump 41 is a pump that pumps the low temperature heat medium to the equipment cooler 14 in the low temperature heat medium circuit 40.
  • the low temperature side pump 41 is composed of an electric pump whose rotation speed is controlled according to a control signal output from the control device 80.
  • the battery cooling unit 42 cools the battery BT by the low temperature heat medium flowing through the low temperature heat medium circuit 40.
  • the battery BT is electrically connected to an inverter and a charger (not shown).
  • the battery BT supplies electric power to the inverter and stores electric power supplied from the charger.
  • the battery BT is composed of, for example, a lithium ion battery.
  • the low temperature side radiator 43 is a heat exchanger that exchanges heat with the outside air for the low temperature heat medium cooled by the equipment cooler 14 and absorbs heat from the outside air.
  • the low-temperature side radiator 43, together with the high-temperature side radiator 33, is arranged on the front side of the vehicle to which the running wind hits when the vehicle is running.
  • the low temperature radiator 43 and the battery cooling unit 42 are connected in parallel to the flow of the low temperature heat medium in the low temperature heat medium circuit 40.
  • the first flow path switching valve 44 switches between a state in which the low temperature heat medium flows through the battery cooling unit 42 and a state in which the low temperature heat medium does not flow through the battery cooling unit 42.
  • the first flow path switching valve 44 is composed of a solenoid valve whose opening / closing operation is controlled according to a control signal output from the control device 80.
  • the second flow path switching valve 45 switches between a state in which the low temperature heat medium flows through the low temperature side radiator 43 and a state in which the low temperature heat medium does not flow through the low temperature side radiator 43.
  • the second flow path switching valve 45 is composed of a solenoid valve whose opening / closing operation is controlled according to a control signal output from the control device 80.
  • the usage mode of the low pressure refrigerant can be changed by changing the flow path of the low temperature heat medium by the first flow path switching valve 44 and the second flow path switching valve 45. it can.
  • the low-temperature heat medium circuit 40 can cool the battery BT with the low-temperature heat medium cooled by the device cooler 14, for example, by opening the first flow path switching valve 44.
  • the low temperature heat medium circuit 40 for example, by opening the second flow path switching valve 45 and flowing the low temperature heat medium through the low temperature side radiator 43, the low temperature heat medium can be endothermic from the outside air.
  • the second decompression unit 15 is a parallel decompression unit arranged in parallel with the first decompression unit 13 on the downstream side of the refrigerant flow of the radiator 12.
  • the second pressure reducing unit 15 has a second on-off valve 151 and a second expansion valve 152 that are fully closed or fully opened.
  • the second on-off valve 151 is a solenoid valve that opens and closes the third refrigerant flow path 100c. The opening / closing operation of the second on-off valve 151 is controlled in response to a control signal from the control device 80 described later.
  • the second expansion valve 152 is an expansion valve that reduces the pressure of the refrigerant flowing through the third refrigerant flow path 100c.
  • the second expansion valve 152 is composed of an electric expansion valve having a valve body and an electric actuator.
  • the valve body is configured so that the throttle opening ⁇ , which is the opening of the refrigerant flow path, can be changed.
  • the electric actuator includes a stepping motor that displaces the valve body to change the throttle opening ⁇ of the second expansion valve 152.
  • the throttle opening ⁇ of the second expansion valve 152 is controlled in response to a control signal from the control device 80 described later.
  • the air conditioning cooler 16 is arranged in the casing 61 of the indoor air conditioning unit 60, which will be described later.
  • the air-conditioning cooler 16 is a heat exchanger that evaporates the refrigerant by exchanging heat between the refrigerant decompressed by the second decompression unit 15 and the blown air blown into the vehicle interior.
  • the air-conditioning cooler 16 cools the blown air by utilizing the latent heat of vaporization of the refrigerant decompressed by the second decompression unit 15. That is, in the air conditioning cooler 16, the low-pressure refrigerant absorbs heat from the blown air and evaporates, so that the blown air is cooled.
  • An evaporation pressure adjusting valve 17 is arranged on the refrigerant outlet side of the air conditioner cooler 16.
  • the evaporation pressure adjusting valve 17 is a pressure adjusting valve for maintaining the pressure of the refrigerant on the refrigerant outlet side of the air conditioning cooler 16 at a pressure higher than the pressure of the refrigerant on the refrigerant outlet side of the equipment cooler 14.
  • the evaporation pressure adjusting valve 17 maintains the temperature of the refrigerant on the refrigerant outlet side of the air conditioning cooler 16 at a temperature (for example, 1 ° C.) or higher that can suppress frost formation of the air conditioning cooler 16. It is configured to.
  • the second refrigerant flow path 100b and the third refrigerant flow path 100c are connected to the first refrigerant flow path 100a on the downstream side of the evaporation pressure adjusting valve 17.
  • the refrigeration cycle device 10 has a cycle configuration (that is, an accumulatorless cycle) in which the equipment cooler 14 and the air conditioner cooler 16 are connected to the refrigerant suction side of the compressor 11 without passing through the liquid receiving unit.
  • the refrigeration cycle apparatus 10 has a cycle configuration (that is, a receiver cycle) in which the liquid receiving portion 122 is provided on the high pressure side in the cycle and the liquid receiving portion is not provided on the low pressure side in the cycle. There is.
  • the indoor air conditioning unit 60 shown in FIG. 1 is for adjusting the temperature of the blown air blown into the vehicle interior to an appropriate temperature.
  • the interior air conditioning unit 60 is arranged inside the instrument panel at the front of the vehicle interior.
  • the air conditioning cooler 16 and the heater core 32 are housed inside the casing 61 forming the outer shell.
  • the casing 61 is a passage forming portion that forms an air flow path for blown air to be blown into the vehicle interior.
  • an inside / outside air box for adjusting the introduction ratio of the inside air to the outside air introduced into the casing 61 is arranged on the upstream side of the air flow of the casing 61.
  • a blower 62 for blowing the air introduced from the inside / outside air box into the vehicle interior is arranged.
  • the blower 62 is composed of an electric blower that rotates a centrifugal fan with an electric motor. The rotation speed of the blower 62 is controlled according to a control signal output from the control device 80 described later.
  • an air conditioner cooler 16 is arranged on the downstream side of the air flow of the blower 62. Inside the casing 61, the downstream side of the air flow of the air conditioning cooler 16 is divided into a hot air flow path 63 and a cold air flow path 64. A heater core 32 is arranged in the warm air flow path 63. The cold air flow path 64 is a flow path for allowing air that has passed through the air conditioning cooler 16 to bypass the heater core 32.
  • an air mix door 65 is arranged between the air conditioning cooler 16 and the heater core 32.
  • the air mix door 65 adjusts the air volume ratio of the air passing through the hot air flow path 63 and the air passing through the cold air flow path 64.
  • an air mix space 66 is formed on the downstream side of the hot air flow path 63 and the cold air flow path 64 to mix the hot air passing through the hot air flow path 63 and the cold air passing through the cold air flow path 64. ing.
  • a plurality of opening holes are formed inside the casing 61 at the most downstream portion of the air flow for blowing out blown air adjusted to a desired temperature in the air mix space 66 into the vehicle interior.
  • the control device 80 is composed of a computer including a processor and a memory, and peripheral circuits thereof.
  • the control device 80 performs various calculations and processes based on the program stored in the memory, and controls various devices connected to the output side.
  • the memory of the control device 80 is composed of a non-transitional substantive storage medium.
  • Various devices including the constituent devices of the refrigeration cycle device 10 are connected to the output side of the control device 80. Specifically, on the output side of the control device 80, a compressor 11, a first decompression unit 13, a second decompression unit 15, a high temperature side pump 31, a high temperature side flow rate adjusting valve 34, a low temperature side pump 41, and each flow path. Switching valves 44 and 45, a blower 62, an air mix door 65 and the like are connected.
  • a sensor group 81 for air conditioning control is connected to the input side of the control device 80.
  • the sensor group 81 includes an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, a PT sensor that detects the pressure and temperature on the refrigerant outlet side of each of the coolers 14 and 16, and the like.
  • the PT sensor functions as a sensor for grasping the refrigerant state on the refrigerant outlet side of each of the coolers 14 and 16.
  • the refrigeration cycle device 10 can adjust the temperature of the blown air blown into the vehicle interior according to the physical quantity detected by the sensor group 81, and can realize comfortable air conditioning.
  • An operation panel 82 used for various input operations is connected to the input side of the control device 80.
  • the operation panel 82 is arranged near the instrument panel and has various operation switches. Operation signals from various operation switches provided on the operation panel 82 are input to the control device 80.
  • the various operation switches on the operation panel 82 include an auto switch, an operation mode changeover switch, an air volume setting switch, a temperature setting switch, a blowout mode changeover switch, and the like.
  • the refrigeration cycle device 10 can appropriately switch the operation mode of the refrigeration cycle device 10 by receiving the input from the operation panel 82.
  • control device 80 is integrally configured with a control unit that controls various devices connected to the output side.
  • the control device 80 of the present embodiment includes an opening degree control unit 80a that controls the first decompression unit 13 and the second decompression unit 15.
  • the opening degree control unit 80a may be configured separately from the control device 80.
  • the operation of the air conditioner 1 will be described below.
  • the air conditioner 1 is configured to be capable of executing indoor cooling, equipment cooling, and indoor heating as operation modes. Therefore, in the present embodiment, the operation of the air conditioner 1 will be described for each of the indoor cooling, the equipment cooling, and the indoor heating.
  • the indoor cooling is an operation mode in which the air cooled to a desired temperature by the indoor air conditioning unit 60 is blown into the vehicle interior.
  • the control device 80 appropriately determines the operating state of various devices during indoor cooling by using the detection signal of the sensor group 81 and the operation signal of the operation panel 82.
  • the first on-off valve 131 is fully closed
  • the second on-off valve 151 is fully opened
  • the second expansion valve 152 is in the variable throttle state.
  • the decompression units 13 and 15 are controlled. That is, the control device 80 controls the first decompression unit 13 in a fully closed state, and controls the second decompression unit 15 so that the decompression action is exerted.
  • control device 80 controls the second decompression unit 15 so that the refrigerant state on the refrigerant outlet side of the air conditioner cooler 16 becomes a superheat state having a constant superheat degree during indoor cooling. Execute the process.
  • control device 80 controls the high temperature side flow rate adjusting valve 34 so that the entire amount of the high temperature heat medium passing through the radiator 12 flows to the high temperature side radiator 33. Further, the control device 80 controls the air mix door 65 at a position where the hot air flow path 63 is fully closed and the cold air flow path 64 is fully opened. The control device 80 appropriately determines the control signals for other devices by using the detection signals of the sensor group 81 and the operation signals of the operation panel 82.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condensing portion 121 of the radiator 12.
  • the refrigerant flowing into the condensing unit 121 dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 and condenses.
  • the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 is heated to raise the temperature.
  • the high-temperature heat medium heated by the condensing unit 121 flows to the high-temperature side radiator 33 and is dissipated to the outside air. That is, during indoor cooling, the high-pressure refrigerant in the cycle is dissipated to the outside air via the high-temperature heat medium.
  • the refrigerant that has passed through the condensing section 121 flows into the receiving section 122 and gas and liquid are separated. Then, the liquid refrigerant separated by the liquid receiving unit 122 flows into the supercooling unit 123. The refrigerant that has flowed into the supercooling unit 123 dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 and is supercooled.
  • the refrigerant flowing out of the supercooling unit 123 flows into the second decompression unit 15 and is depressurized by the second expansion valve 152 of the second decompression unit 15. Since the first on-off valve 131 is fully closed during indoor cooling, the refrigerant does not flow into the first expansion valve 132, and the entire amount of the refrigerant is depressurized by the second decompression unit 15.
  • the refrigerant decompressed by the second decompression unit 15 flows into the air conditioning cooler 16.
  • the refrigerant that has flowed into the air conditioning cooler 16 absorbs heat from the air blown from the blower 62 and evaporates. As a result, the blown air from the blower 62 is cooled.
  • the refrigerant that has passed through the air conditioning cooler 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17.
  • the refrigerant sucked into the compressor 11 is compressed by the compressor 11 until it becomes a high-pressure refrigerant again.
  • the interior of the vehicle can be cooled by blowing out the blown air cooled by the air conditioner cooler 16 into the vehicle interior.
  • the equipment cooling is an operation mode in which the battery BT, which is a heat generating equipment, is cooled by utilizing the latent heat of vaporization of the refrigerant.
  • the control device 80 appropriately determines the operating state of various devices when the devices are cooled by using the detection signal of the sensor group 81 and the operation signal of the operation panel 82.
  • the second on-off valve 151 is fully closed, the first on-off valve 131 is fully opened, and the first expansion valve 132 is in the variable throttle state.
  • the decompression units 13 and 15 are controlled. That is, the control device 80 controls the second decompression unit 15 in a fully closed state, and controls the first decompression unit 13 so that the decompression action is exerted.
  • control device 80 controls the first decompression unit 13 so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 becomes a superheat state having a constant superheat degree when the equipment is cooled. Execute the process.
  • control device 80 controls the high temperature side flow rate adjusting valve 34 so that the entire amount of the high temperature heat medium passing through the radiator 12 flows to the high temperature side radiator 33. Further, the control device 80 controls the first flow path switching valve 44 in the fully open state so that the entire amount of the low temperature heat medium passing through the device cooler 14 flows to the battery cooling unit 42, and switches the second flow path. The valve 45 is controlled to be fully closed. The control device 80 appropriately determines the control signals for other devices by using the detection signals of the sensor group 81 and the operation signals of the operation panel 82.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condensing portion 121 of the radiator 12 in the refrigeration cycle device 10.
  • the refrigerant flowing into the condensing portion 121 dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 and condenses (that is, points A1 ⁇ A2 in FIG. 4).
  • the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 is heated to raise the temperature.
  • the high-temperature heat medium heated by the condensing unit 121 flows to the high-temperature side radiator 33 and is dissipated to the outside air. That is, when the equipment is cooled, the high-pressure refrigerant in the cycle is dissipated to the outside air via the high-temperature heat medium.
  • the refrigerant that has passed through the condensing section 121 flows into the receiving section 122 and gas and liquid are separated. Then, the liquid refrigerant separated by the liquid receiving unit 122 flows into the supercooling unit 123. The refrigerant flowing into the supercooling unit 123 dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 and is supercooled (that is, point A2 ⁇ point A3 in FIG. 4).
  • the refrigerant flowing out of the supercooling unit 123 flows into the first decompression unit 13 and is depressurized by the first expansion valve 132 of the first decompression unit 13 (that is, point A3 ⁇ point A4 in FIG. 4). Since the second on-off valve 151 is fully closed when the equipment is cooled, the refrigerant does not flow into the second expansion valve 152, and the entire amount of the refrigerant is depressurized by the first decompression unit 13.
  • the refrigerant decompressed by the first decompression unit 13 flows into the equipment cooler 14.
  • the refrigerant flowing into the equipment cooler 14 absorbs heat from the low-temperature heat medium flowing through the low-temperature heat medium circuit 40 and evaporates (that is, points A4 ⁇ A5 in FIG. 4). As a result, the low temperature heat medium is cooled.
  • the throttle opening ⁇ of the first decompression unit 13 is set so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 becomes overheated. Therefore, the refrigerant that has passed through the equipment cooler 14 becomes a gas refrigerant having a degree of superheat and is sucked into the compressor 11. The refrigerant sucked into the compressor 11 is compressed by the compressor 11 until it becomes a high-pressure refrigerant again.
  • the low-temperature heat medium cooled by the device cooler 14 flows to the battery cooling unit 42 and absorbs heat from the battery BT.
  • the battery BT is cooled. That is, when the equipment is cooled, the battery BT is cooled by utilizing the latent heat of vaporization of the refrigerant in the equipment cooler 14.
  • the battery BT when the equipment is cooled, the battery BT can be cooled by supplying the low temperature heat medium cooled by the equipment cooler 14 to the battery cooling unit 42.
  • the high temperature side flow rate adjusting valve 34 is controlled so that the entire amount of the high temperature heat medium passing through the radiator 12 flows to the high temperature side radiator 33, but the present invention is not limited to this. ..
  • the high temperature side flow rate adjusting valve 34 may be controlled by the control device 80 so that the high temperature heat medium passing through the radiator 12 flows to the heater core 32. According to this, it becomes possible to carry out equipment cooling and room heating at the same time.
  • the second on-off valve 151 is fully closed, the first on-off valve 131 is fully opened, and the throttle opening ⁇ of the first expansion valve 132 is set to a predetermined opening.
  • the decompression units 13 and 15 are controlled are illustrated, but the present invention is not limited to this.
  • the control device 80 controls the second pressure reducing unit so that the second on-off valve 151 is fully opened and the throttle opening ⁇ of the second expansion valve 152 is a predetermined opening. 15 may be controlled. According to this, it becomes possible to carry out equipment cooling and indoor cooling at the same time.
  • the indoor heating is an operation mode in which the air heated to a desired temperature by the indoor air conditioning unit 60 is blown into the vehicle interior.
  • the control device 80 appropriately determines the operating state of various devices during indoor heating by using the detection signal of the sensor group 81 and the operation signal of the operation panel 82.
  • the second on-off valve 151 is fully closed, the first on-off valve 131 is fully opened, and the first expansion valve 132 is in the variable throttle state.
  • the decompression units 13 and 15 are controlled. That is, the control device 80 controls the second decompression unit 15 in a fully closed state, and controls the first decompression unit 13 so that the decompression action is exerted.
  • the control device 80 is basically a first pressure reducing unit 13 so that the throttle opening ⁇ of the first expansion valve 132 during indoor heating is smaller than the throttle opening ⁇ of the first expansion valve 132 during equipment cooling. To control.
  • control device 80 first expands so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 alternately changes into a superheated state having a degree of superheat and a wet state having moist steam during indoor heating.
  • a fluctuation process for changing the throttle opening ⁇ of the valve 132 is executed.
  • control device 80 controls the high temperature side flow rate adjusting valve 34 so that the entire amount of the high temperature heat medium passing through the radiator 12 flows to the heater core 32. Further, the control device 80 controls the first flow path switching valve 44 in a fully closed state so that the entire amount of the low temperature heat medium passing through the equipment cooler 14 flows to the low temperature side radiator 43, and the second flow path. The switching valve 45 is controlled to the fully open state.
  • the control device 80 controls the air mix door 65 at a position where the cold air flow path 64 is fully closed and the hot air flow path 63 is fully opened.
  • the control device 80 appropriately determines the control signals for other devices by using the detection signals of the sensor group 81 and the operation signals of the operation panel 82.
  • the process shown in FIG. 5 is executed by the control device 80, for example, when performing indoor heating.
  • control device 80 reads various signals input from the sensor group 81 and the operation panel 82 in step S100. In step S110, the control device 80 calculates the degree of superheat Tsh on the refrigerant outlet side of the equipment cooler 14.
  • the control device 80 calculates the degree of superheat Tsh based on the temperature and pressure on the refrigerant outlet side of the equipment cooler 14. For example, the saturation temperature of the refrigerant on the refrigerant outlet side of the equipment cooler 14 can be specified from the intersection point where the pressure on the refrigerant outlet side of the equipment cooler 14 and the saturated liquid line shown in the Moriel diagram intersect. .. Then, the degree of superheat Tsh can be calculated by subtracting the saturation temperature of the refrigerant from the temperature on the refrigerant outlet side of the equipment cooler 14.
  • the temperature on the refrigerant outlet side of the equipment cooler 14 becomes the saturation temperature, and the superheat degree Tsh becomes substantially zero. Therefore, it is also possible to grasp whether or not the refrigerant state is in a wet state from the information regarding the degree of superheat Tsh.
  • step S120 the control device 80 determines whether or not the superheat degree Tsh is equal to or higher than the predetermined threshold temperature Tth.
  • This threshold temperature Tth is for suppressing the degree of superheat Tsh from becoming too large, and is set to, for example, 2 to 4 ° C. As shown in FIG. 6, the threshold temperature Tth is set to a value higher than the saturation line indicating the saturation temperature of the refrigerant. That is, the threshold temperature Tth is set to a temperature higher than the saturation temperature of the refrigerant.
  • step S120 when the degree of superheat Tsh is less than the threshold temperature Tth, the control device 80 determines in step S130 the first decompression unit 13 so that the throttle opening ⁇ of the first expansion valve 132 decreases. Is controlled, and the process returns to step S100. Specifically, the control device 80 controls the stepping motor of the first expansion valve 132 so that the throttle opening ⁇ of the first expansion valve 132 decreases stepwise. That is, as shown in FIG. 6, the control device 80 gradually reduces the throttle opening ⁇ of the first expansion valve 132 until the superheat degree Tsh reaches the threshold temperature Tth.
  • step S120 when the superheat degree Tsh is equal to or higher than the threshold temperature Tth, the control device 80 shifts to step S140 and the throttle opening ⁇ of the first expansion valve 132 gradually increases.
  • the first decompression unit 13 is controlled in this way. Specifically, the control device 80 controls the stepping motor of the first expansion valve 132 so that the throttle opening ⁇ of the first expansion valve 132 increases stepwise.
  • the control device 80 is a unit when the throttle opening ⁇ of the first expansion valve 132 is increased as compared with the case where the throttle opening ⁇ of the first expansion valve 132 is reduced.
  • the first decompression unit 13 is controlled so that the amount of change in the aperture opening ⁇ per hour becomes large.
  • the throttle opening per unit step is larger when the throttle opening ⁇ of the first expansion valve 132 is increased than when the throttle opening ⁇ of the first expansion valve 132 is reduced.
  • the stepping motor of the first expansion valve 132 is controlled so that the amount of change in degree ⁇ becomes large.
  • step S150 the control device 80 determines whether or not the throttle opening ⁇ of the first expansion valve 132 is equal to or greater than the predetermined reference opening ⁇ th.
  • the reference opening degree ⁇ th is set to the throttle opening degree ⁇ in which the refrigerant state on the refrigerant outlet side of the equipment cooler 14 is in a damp state.
  • the throttle opening ⁇ in a damp state is the amount of change in the degree of superheat when the throttle opening ⁇ of the first expansion valve 132 is decreased, or the overheating when the throttle opening ⁇ of the first expansion valve 132 is increased. It can be predicted based on the amount of change in degree Tsh. For example, when the refrigerant state on the refrigerant outlet side of the equipment cooler 14 becomes saturated due to the relationship between the throttle opening ⁇ of the first expansion valve 132 and the superheat Tsh until the superheat degree Tsh becomes the threshold temperature Tth or more.
  • the throttle opening ⁇ of the first expansion valve 132 can be estimated.
  • the reference opening ⁇ th is, for example, the first expansion when the refrigerant state on the refrigerant outlet side of the equipment cooler 14 becomes saturated when the throttle opening ⁇ of the first expansion valve 132 is gradually reduced. It is set to a value obtained by adding a predetermined value ⁇ to the throttle opening ⁇ of the valve 132.
  • step S150 If the throttle opening ⁇ of the first expansion valve 132 is less than the reference opening ⁇ th as a result of the determination process in step S150, the control device 80 returns to step S140. That is, the control device 80 increases the throttle opening ⁇ of the first expansion valve 132 until the throttle opening ⁇ of the first expansion valve 132 reaches the reference opening ⁇ th.
  • step S150 when the throttle opening ⁇ of the first expansion valve 132 is equal to or greater than the reference opening ⁇ th, the control device 80 determines whether or not the end condition of the fluctuation process is satisfied in step S160. Is determined.
  • the end condition of the fluctuation process is, for example, a condition that is satisfied when the operation of the air conditioner 1 that executes the room heating is stopped.
  • step S160 As a result of the determination process in step S160, when the end condition of the fluctuation process is satisfied, the control device 80 ends the fluctuation process. On the other hand, if the end condition of the fluctuation process is not satisfied, the control device 80 returns to step S100.
  • control device 80 executes the fluctuation process during indoor heating, so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 alternately switches between the overheated state and the wet state, as shown in FIG. Be done.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the condensing portion 121 of the radiator 12.
  • the refrigerant flowing into the condensing portion 121 dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 and condenses (that is, B1 ⁇ B2 in FIG. 4).
  • the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 is heated to raise the temperature.
  • the high-temperature heat medium heated by the condensing unit 121 flows to the heater core 32 and is dissipated to the blown air blown into the vehicle interior. That is, during indoor heating, the high-pressure refrigerant in the cycle is dissipated to the blown air blown into the vehicle interior via the high-temperature heat medium.
  • the refrigerant that has passed through the condensing section 121 flows into the receiving section 122 and gas and liquid are separated. Then, the liquid refrigerant separated by the liquid receiving unit 122 flows into the supercooling unit 123. The refrigerant that has flowed into the supercooling unit 123 dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30 and is supercooled (that is, B2 ⁇ B3 in FIG. 4).
  • the refrigerant flowing out of the supercooling unit 123 flows into the first decompression unit 13 and is depressurized by the first expansion valve 132 of the first decompression unit 13 (that is, B3 ⁇ B4 in FIG. 4). Since the second on-off valve 151 is fully closed during indoor heating, the refrigerant does not flow into the second expansion valve 152, and the entire amount of the refrigerant is depressurized by the first decompression unit 13.
  • the throttle opening ⁇ of the first expansion valve 132 is smaller than when the equipment is cooled.
  • the pressure Pd of the high-pressure refrigerant becomes larger than when the equipment is cooled (that is, Pd1> Pd2)
  • the pressure Ps of the low-pressure refrigerant becomes smaller than when the equipment is cooled. (Ie, Ps1 ⁇ Ps2).
  • the high / low pressure difference ⁇ P1 of the refrigerant in the cycle during indoor heating is larger than the high / low pressure difference ⁇ P2 of the refrigerant in the cycle during equipment cooling.
  • the temperature of the refrigerant decompressed by the first decompression unit 13 may become extremely low.
  • the density of the refrigerant flowing on the low pressure side in the cycle becomes small, so that the flow rate of the refrigerant passing through the heat exchanger on the low pressure side becomes small.
  • the viscosity of the oil increases as the temperature of the refrigerant decreases.
  • the refrigerant decompressed by the first decompression unit 13 flows into the equipment cooler 14.
  • the refrigerant flowing into the equipment cooler 14 absorbs heat from the low-temperature heat medium flowing through the low-temperature heat medium circuit 40 and evaporates (that is, point B4 ⁇ point B5 in FIG. 4). As a result, the low temperature heat medium is cooled.
  • the low-temperature heat medium cooled by the equipment cooler 14 flows to the low-temperature side radiator 43 and absorbs heat from the outside air.
  • the throttle opening ⁇ of the first expansion valve 132 changes so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 alternately changes into an overheated state and a wet state. Therefore, the refrigerant that has passed through the equipment cooler 14 becomes a gas-liquid two-phase state refrigerant and is sucked into the compressor 11. The refrigerant sucked into the compressor 11 is compressed by the compressor 11 until it becomes a high-pressure refrigerant again.
  • the interior of the vehicle can be heated by blowing out the blown air heated by the heater core 32 into the vehicle interior.
  • the oil in the equipment cooler 14 is returned to the compressor 11 together with the liquid refrigerant.
  • the first flow path switching valve 44 is controlled to be fully closed so that the low temperature heat medium does not pass through the battery cooling unit 42 during the above-mentioned indoor heating, but the control mode during the indoor heating is Not limited to this.
  • the first flow path switching valve 44 may be controlled to the fully open state by the control device 80 so that the low temperature heat medium passes through the battery cooling unit 42.
  • the exhaust heat of the battery BT can be absorbed by the refrigerant in the device cooler 14 via the low temperature heat medium. Therefore, it can be used as a heat source for heating the blown air that blows the exhaust heat of the battery BT into the vehicle interior.
  • the refrigerating cycle device 10 described above has a cycle configuration in which the radiator 12 is provided with a liquid receiving unit 122 for storing excess refrigerant in the cycle. According to this, the refrigerant state on the refrigerant outlet side of the equipment cooler 14 and the air conditioning cooler 16 can be set to an overheated state during indoor cooling and equipment cooling.
  • the first expansion valve 132 is controlled so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 alternately changes to an overheated state and a wet state.
  • the refrigerant in a gas-liquid two-phase state is sucked into the compressor 11, so that the oil in the cycle easily returns to the compressor together with the refrigerant.
  • the first expansion valve 132 is controlled so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14 alternately changes between an overheated state and a wet state.
  • the wet state in which the refrigerant state is difficult to specify and the superheated state in which the refrigerant state can be easily specified it is possible to prevent the refrigerant from becoming too dry in the wet state. As a result, the occurrence of liquid compression in the compressor 11 can be suppressed.
  • the oil can be returned to the refrigerant suction side of the compressor 11 during indoor heating without arranging the accumulator on the refrigerant suction side of the compressor 11.
  • the control device 80 reduces the throttle opening ⁇ of the first expansion valve 132 until the superheat degree Tsh of the refrigerant reaches a predetermined threshold temperature Tth. Then, the control device 80 increases the throttle opening ⁇ of the first expansion valve 132 until the reference opening ⁇ th at which the refrigerant state becomes damp when the superheat degree Tsh of the refrigerant reaches the threshold temperature Tth. Further, when the throttle opening ⁇ of the first expansion valve 132 reaches the reference opening ⁇ th, the control device 80 increases the throttle opening ⁇ of the first expansion valve 132 until the superheat degree Tsh of the refrigerant reaches a predetermined threshold temperature Tth. Make it smaller. According to this, the refrigerant state can be alternately switched between the superheated state and the wet state by changing the throttle opening ⁇ of the first expansion valve 132.
  • the refrigeration cycle device 10 when the refrigerant state on the refrigerant outlet side of the equipment cooler 14 becomes a wet state (that is, a gas-liquid two-phase state), the position on the Moriel diagram cannot be grasped and the refrigerant state cannot be grasped. It becomes difficult to quantitatively grasp.
  • the throttle opening ⁇ of the first expansion valve 132 is changed so that the refrigerant state alternately switches between the superheated state and the wet state, the change in the superheat degree Tsh can be temporarily detected.
  • the state of the refrigerant on the refrigerant outlet side of the equipment cooler 14 can be temporarily and quantitatively grasped. According to this, it is possible to prevent the degree of dryness of the refrigerant from becoming too small when the state of the refrigerant becomes damp, so that it is possible to suppress the occurrence of liquid compression in the compressor 11.
  • the control device 80 throttles per unit time when the throttle opening ⁇ of the first expansion valve 132 is increased as compared with the case where the throttle opening ⁇ of the first expansion valve 132 is reduced.
  • the first decompression unit 13 is controlled so that the amount of change in the opening degree ⁇ becomes large. In this way, when the throttle opening ⁇ of the first expansion valve 132 is increased, if the amount of change in the throttle opening ⁇ per unit time is increased, the refrigerant in a gas-liquid two-phase state flows to the compressor 11 side. It will be easier. Therefore, the oil in the cycle easily returns to the compressor 11 together with the refrigerant.
  • the radiator 12 separates the gas and liquid of the refrigerant that has passed through the condensing unit 121 and the condensing unit 121 that condense the refrigerant, and the liquid receiving unit that stores the excess liquid refrigerant in the cycle. It has 122.
  • the configuration in which the liquid receiving unit 122 is provided on the high pressure side in the cycle is for equipment as compared with the configuration in which the liquid receiving unit is provided on the outlet side of the equipment cooler 14 (so-called accumulator cycle). It becomes easy to exert the heat exchange performance of the cooler 14. Therefore, the refrigeration cycle device 10 can appropriately exert the heat exchange performance of the equipment cooler 14 while suppressing the retention of oil in the equipment cooler 14.
  • the liquid receiving portion causes a loss on the refrigerant suction side of the compressor 11, so that the heat exchange performance of the device cooler 14 is lower than that of the receiver cycle.
  • the radiator 12 of the present embodiment has a supercooling unit 123 that dissipates heat from the refrigerant that has passed through the liquid receiving unit 122.
  • the refrigerant state on the refrigerant outlet side of the radiator 12 becomes a supercooled state, and the enthalpy on the refrigerant outlet side of the radiator 12 is reduced. Therefore, even when the fluctuation process is executed, the refrigerant that has passed through the radiator 12 can be cooled until it becomes a liquid refrigerant. That is, by supercooling the refrigerant by the supercooling unit 123, it is possible to suppress variations in the heat dissipation capacity of the radiator 12 due to the fluctuation treatment.
  • evaporation is performed to maintain the pressure of the refrigerant on the outlet side of the air conditioner cooler 16 at a pressure higher than the pressure of the refrigerant on the outlet side of the equipment cooler 14.
  • a pressure regulating valve 17 is arranged. According to this, for example, when the refrigerant flows through both the air-conditioning cooler 16 and the equipment cooler 14, the refrigerant flowing through the air-conditioning cooler 16 and the equipment cooler 14 is adjusted to a temperature suitable for each. Is possible.
  • the second decompression unit 15 of the refrigeration cycle device 10 includes the second on-off valve 151 and is configured to be fully closed. Then, the control device 80 controls the second decompression unit 15 in a fully closed state at the time of indoor heating, and controls the first decompression unit 13 so that the decompression action is exerted. According to this, at the time of indoor heating, the refrigerant absorbed by the equipment cooler 14 is discharged toward the radiator 12 via the compressor 11, and the refrigerant passing through the radiator 12 is used as a heat source to enter the vehicle interior. The blown air to be blown can be heated.
  • the equipment cooler 14 is composed of a heat exchanger that exchanges heat between the refrigerant decompressed by the first decompression unit 13 and the low temperature heat medium circulating in the low temperature heat medium circuit 40. According to this, when the equipment is cooled, the equipment cooler 14 functions as a cooler for cooling the heat generating equipment by utilizing the latent heat of evaporation when the refrigerant absorbs heat from the low temperature heat medium and evaporates, and the equipment is cooled during indoor heating.
  • the vessel 14 can function as a heat absorber in which the refrigerant absorbs heat from the low temperature heat medium.
  • the refrigeration cycle device 10 is preferably a heat exchanger that exchanges heat between the refrigerant and the heat medium as the device cooler 14. This applies not only to the refrigeration cycle device 10 in which the device cooler 14 and the air conditioning cooler 16 are connected in parallel, but also to the refrigeration cycle device 10 including the device cooler 14 as an evaporator.
  • the fluctuation process is executed by the control device 80 during the room heating, but the execution timing of the fluctuation process is not limited to this.
  • the control device 80 may be configured to execute the fluctuation process during equipment cooling or indoor cooling, for example.
  • control device 80 may be configured to execute the fluctuation process when, for example, the oil shortage condition is satisfied during indoor heating.
  • the oil shortage condition for example, at least one of the following conditions 1 to 5 can be adopted. This also applies to the subsequent embodiments.
  • the oil shortage condition can be a condition that is satisfied when the outside air temperature is lower than a predetermined reference outside air temperature (for example, a temperature lower than 0 ° C.).
  • a predetermined reference outside air temperature for example, a temperature lower than 0 ° C.
  • the oil shortage condition can be, for example, a condition that is satisfied when the temperature of the refrigerant on the refrigerant outlet side of the equipment cooler 14 is lower than the reference refrigerant temperature (for example, a temperature lower than 0 ° C.). ..
  • the reference refrigerant temperature for example, a temperature lower than 0 ° C.
  • the oil shortage condition can be, for example, a condition that is satisfied when the pressure of the refrigerant on the refrigerant outlet side of the equipment cooler 14 is lower than the reference pressure.
  • the pressure of the refrigerant on the refrigerant outlet side of the equipment cooler 14 is low, the density of the refrigerant sucked into the compressor 11 becomes low, so that oil shortage is likely to occur.
  • the oil shortage condition can be, for example, a condition that is satisfied when the rotation speed of the compressor 11 is smaller than the reference rotation speed.
  • the rotation speed of the compressor 11 is smaller than the reference rotation speed, the flow rate of the refrigerant circulating in the cycle is small, so that oil shortage is likely to occur.
  • the oil shortage condition can be, for example, a condition that is satisfied when a predetermined reference time has elapsed since the fluctuation treatment was executed last time.
  • the throttle opening ⁇ of the first expansion valve 132 is increased as soon as the superheat degree Tsh of the refrigerant reaches a predetermined threshold temperature Tth, but the fluctuation treatment includes this. Not limited to.
  • the throttle opening ⁇ of the first expansion valve 132 is not changed until a predetermined time elapses, and the first expansion valve does not change after a predetermined time elapses.
  • the process may be such that the aperture opening ⁇ of 132 is increased.
  • the throttle opening ⁇ of the first expansion valve 132 is reduced as soon as the throttle opening ⁇ of the first expansion valve 132 reaches the reference opening ⁇ th.
  • the fluctuation processing is not limited to this.
  • the throttle opening ⁇ of the first expansion valve 132 is not changed until a predetermined time elapses when the throttle opening ⁇ of the first expansion valve 132 reaches the reference opening ⁇ th, and the throttle opening ⁇ of the first expansion valve 132 is not changed until a predetermined time elapses. 1
  • the process may be performed to reduce the throttle opening ⁇ of the expansion valve 132.
  • the refrigerating cycle device 10 of the present embodiment is different from the first embodiment in the content of the fluctuation process executed by the control device 80.
  • control device 80 reads various signals input from the sensor group 81 and the operation panel 82 in step S200.
  • step S210 the control device 80 determines whether or not the throttle opening ⁇ of the first expansion valve 132 is equal to or greater than the predetermined first reference opening ⁇ th1.
  • the first reference opening degree ⁇ th1 is set to the throttle opening degree ⁇ in which the refrigerant state on the refrigerant outlet side of the equipment cooler 14 becomes an overheated state.
  • the throttle opening ⁇ in the overheated state is the amount of change in the degree of superheat when the throttle opening ⁇ of the first expansion valve 132 is decreased, or the overheating when the throttle opening ⁇ of the first expansion valve 132 is increased. It can be predicted based on the amount of change in degree.
  • the first reference opening degree ⁇ th1 is set to a throttle opening degree ⁇ in which the refrigerant on the refrigerant outlet side of the equipment cooler 14 is expected to have a reference superheat degree (for example, 2 to 4 ° C.).
  • the first reference opening degree ⁇ th1 is set to the diaphragm opening degree ⁇ which is expected to be the threshold temperature Tth described in the first embodiment.
  • the threshold temperature Tth is the aperture opening ⁇ corresponding to the first reference opening ⁇ th1.
  • the first reference opening ⁇ th1 is set to an opening smaller than the reference opening ⁇ th described in the first embodiment.
  • step S210 when the throttle opening ⁇ of the first expansion valve 132 is equal to or greater than the first reference opening ⁇ th1, the throttle opening ⁇ of the first expansion valve 132 is reduced by the first pressure reducing unit 13. Is controlled, and the process returns to step S200.
  • the control device 80 controls the stepping motor of the first expansion valve 132 so that the throttle opening ⁇ of the first expansion valve 132 decreases stepwise. That is, the control device 80 gradually reduces the throttle opening ⁇ of the first expansion valve 132 until the first reference opening ⁇ th1 is reached.
  • step S210 when the throttle opening ⁇ of the first expansion valve 132 is less than the first reference opening ⁇ th1, the control device 80 shifts to step S230 and shifts to step S230 to obtain the first expansion valve 132.
  • the first decompression unit 13 is controlled so that the throttle opening ⁇ increases stepwise.
  • the control device 80 controls the stepping motor of the first expansion valve 132 so that the throttle opening ⁇ of the first expansion valve 132 increases stepwise.
  • the throttle opening ⁇ per unit time is larger when the throttle opening ⁇ of the first expansion valve 132 is larger than when the throttle opening ⁇ of the first expansion valve 132 is smaller.
  • the first decompression unit 13 is controlled so that the amount of change in is large.
  • the throttle opening per unit step is larger when the throttle opening ⁇ of the first expansion valve 132 is increased than when the throttle opening ⁇ of the first expansion valve 132 is reduced.
  • the stepping motor of the first expansion valve 132 is controlled so that the amount of change in degree ⁇ becomes large. According to this, since it becomes easy to flow the refrigerant in the gas-liquid two-phase state to the compressor 11, the oil in the cycle easily returns to the compressor 11 together with the refrigerant.
  • step S240 the control device 80 determines whether or not the throttle opening ⁇ of the first expansion valve 132 is equal to or greater than the predetermined second reference opening ⁇ th2.
  • the second reference opening ⁇ th2 is a throttle opening ⁇ larger than the first reference opening ⁇ th1, and is set to a throttle opening ⁇ in which the refrigerant state on the refrigerant outlet side of the equipment cooler 14 is in a damp state.
  • the second reference opening ⁇ th2 is set in the same manner as the reference opening ⁇ th described in the first embodiment.
  • step S240 when the throttle opening ⁇ of the first expansion valve 132 is less than the second reference opening ⁇ th2, the control device 80 returns to step S230. That is, the control device 80 increases the throttle opening ⁇ of the first expansion valve 132 until the second reference opening ⁇ th2 is reached.
  • the control device 80 satisfies the end condition of the fluctuation process in step S250.
  • the end condition of the fluctuation process is, for example, a condition that is satisfied when the operation of the air conditioner 1 that executes the room heating is stopped.
  • step S250 As a result of the determination process in step S250, when the end condition of the fluctuation process is satisfied, the control device 80 ends the fluctuation process. On the other hand, if the end condition of the fluctuation process is not satisfied, the control device 80 returns to step S200.
  • the refrigeration cycle apparatus 10 of the present embodiment can obtain the same effect as that of the first embodiment, which is the same as or the same as that of the first embodiment.
  • the control device 80 reduces the throttle opening ⁇ of the first expansion valve 132 until the superheat degree Tsh of the refrigerant reaches the first reference opening ⁇ th1 that is equal to or higher than the predetermined threshold temperature Tth. Then, the control device 80 throttles the first expansion valve 132 until the throttle opening ⁇ of the first expansion valve 132 reaches the first reference opening ⁇ th1 and the refrigerant state becomes the second reference opening ⁇ th2. Increase the opening ⁇ . Further, when the throttle opening ⁇ of the first expansion valve 132 reaches the second reference opening ⁇ th2, the control device 80 first expands until the throttle opening ⁇ of the first expansion valve 132 reaches the first reference opening ⁇ th1. The throttle opening ⁇ of the valve 132 is reduced. Also by this, the refrigerant state can be alternately switched between the superheated state and the wet state by changing the throttle opening ⁇ of the first expansion valve 132.
  • the throttle opening ⁇ of the first expansion valve 132 is increased as soon as the throttle opening ⁇ of the first expansion valve 132 reaches the first reference opening ⁇ th1.
  • the fluctuation processing is not limited to this.
  • the throttle opening ⁇ of the first expansion valve 132 is not changed until a predetermined time elapses, and the throttle opening ⁇ is not changed for a predetermined time.
  • the process may be performed to increase the throttle opening ⁇ of the first expansion valve 132. This also applies when the throttle opening ⁇ of the first expansion valve 132 reaches the second reference opening ⁇ th2.
  • the refrigeration cycle device 10A of the present disclosure is applied to the device cooling system for cooling the battery BT, which is a heat generating device, will be described.
  • the refrigeration cycle device 10A shown in FIG. 9 can perform equipment cooling and indoor heating.
  • the refrigeration cycle device 10A includes a compressor 11A, a radiator 12A, a decompression unit 13A, a device cooler 14A, and a control device 80.
  • a compressor 11A, a radiator 12A, a decompression unit 13A, and an equipment cooler 14A are arranged in this order.
  • the compressor 11A is configured in the same manner as the compressor 11 described in the first embodiment.
  • the radiator 12A dissipates the refrigerant discharged from the compressor 11A.
  • the radiator 12A is a heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor 11 to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30A.
  • the radiator 12A has a condensing unit 121A for condensing the refrigerant and a liquid receiving unit 122A for separating the gas and liquid of the refrigerant that has passed through the condensing unit 121A and storing the liquid refrigerant that becomes surplus in the cycle. ..
  • the condensing unit 121A and the liquid receiving unit 122A are configured in the same manner as those described in the first embodiment.
  • the high-temperature heat medium circuit 30A includes a radiator 12A, a high-temperature side pump 31A, a heater core 32A, a high-temperature side radiator 33A, a high-temperature side flow rate adjusting valve 34A, and the like, as in the first embodiment.
  • the high temperature side pump 31A, the heater core 32A, the high temperature side radiator 33A, and the high temperature side flow rate adjusting valve 34A are configured in the same manner as those described in the first embodiment.
  • a decompression unit 13A is connected to the outlet side of the radiator 12.
  • the pressure reducing unit 13A is an expansion valve that reduces the pressure of the refrigerant that has passed through the radiator 12.
  • the pressure reducing unit 13A is configured in the same manner as the first expansion valve 132 described in the first embodiment.
  • the equipment cooler 14A is an evaporator that evaporates the refrigerant by exchanging heat with the low-temperature heat medium circulating in the low-temperature heat medium circuit 40A for the refrigerant decompressed by the decompression unit 13A.
  • the equipment cooler 14A functions as a cooler that cools the battery BT by utilizing the latent heat of vaporization of the refrigerant decompressed by the decompression unit 13A when the equipment is cooled, and functions as a heat absorber when the room is heated.
  • the low temperature heat medium circuit 40A includes a device cooler 14A, a low temperature side pump 41A, a battery cooling unit 42A, a low temperature side radiator 43A, a first flow path switching valve 44A, and a second flow, as in the first embodiment. It is equipped with a road switching valve 45A and the like.
  • the low temperature side pump 41A, the battery cooling unit 42A, the low temperature side radiator 43A, the first flow path switching valve 44A, and the second flow path switching valve 45A are configured in the same manner as those described in the first embodiment.
  • the equipment cooling system is configured to be capable of performing equipment cooling and room heating as an operation mode.
  • the equipment cooling is an operation mode in which the battery BT, which is a heat generating equipment, is cooled by utilizing the latent heat of vaporization of the refrigerant.
  • the control device 80 appropriately determines the operating state of various devices when the devices are cooled by using the detection signal of the sensor group 81 and the operation signal of the operation panel 82.
  • control device 80 controls the decompression unit 13A so as to be in the variable aperture state as shown in FIG. That is, the control device 80 controls the decompression unit 13A so that the refrigerant state on the refrigerant outlet side of the device cooler 14A becomes a superheated state having a superheat degree when the device is cooled.
  • the high-pressure refrigerant discharged from the compressor 11A flows into the condensing portion 121A of the radiator 12A.
  • the refrigerant flowing into the condensing portion 121A dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30A and condenses.
  • the refrigerant that has passed through the condensing section 121A flows into the receiving section 122A and gas and liquid are separated. Then, the liquid refrigerant separated by the liquid receiving unit 122A flows into the decompression unit 13A and is depressurized by the decompression unit 13A.
  • the refrigerant decompressed by the decompression unit 13A flows into the equipment cooler 14A.
  • the refrigerant flowing into the equipment cooler 14A absorbs heat from the low temperature heat medium flowing through the low temperature heat medium circuit 40A and evaporates. As a result, the low temperature heat medium is cooled.
  • the throttle opening ⁇ of the decompression unit 13A is set so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14A becomes overheated. Therefore, the refrigerant that has passed through the equipment cooler 14A becomes a gas refrigerant having a degree of superheat and is sucked into the compressor 11A. The refrigerant sucked into the compressor 11A is compressed by the compressor 11A until it becomes a high-pressure refrigerant again.
  • the low-temperature heat medium cooled by the device cooler 14A flows to the battery cooling unit 42A and absorbs heat from the battery BT.
  • the battery BT is cooled. That is, when the equipment is cooled, the battery BT is cooled by utilizing the latent heat of vaporization of the refrigerant in the equipment cooler 14A.
  • the battery BT when the equipment is cooled, the battery BT can be cooled by supplying the low temperature heat medium cooled by the equipment cooler 14A to the battery cooling unit 42A.
  • the indoor heating is an operation mode in which the air heated to a desired temperature by the indoor air conditioning unit 60A is blown out into the vehicle interior.
  • the control device 80 appropriately determines the operating state of various devices during indoor heating by using the detection signal of the sensor group 81 and the operation signal of the operation panel 82.
  • the control device 80 has a decompression unit so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14A alternately changes to a superheated state having a degree of superheat and a wet state having moist steam.
  • a fluctuation process for changing the aperture opening ⁇ of 13A is executed. That is, the control device 80 controls the decompression unit 13A at the time of room heating, similarly to the first decompression unit 13 of the first embodiment.
  • the high-pressure refrigerant discharged from the compressor 11A flows into the condensing portion 121A of the radiator 12A.
  • the refrigerant flowing into the condensing portion 121A dissipates heat to the high-temperature heat medium flowing through the high-temperature heat medium circuit 30A and condenses.
  • the high-temperature heat medium flowing through the high-temperature heat medium circuit 30A is heated to raise the temperature.
  • the high-temperature heat medium heated by the condensing portion 121A flows to the heater core 32A and is dissipated to the blown air blown into the vehicle interior. That is, during indoor heating, the high-pressure refrigerant in the cycle is dissipated to the blown air blown into the vehicle interior via the high-temperature heat medium.
  • the refrigerant that has passed through the condensing portion 121A flows into the liquid receiving portion 122A, and gas and liquid are separated. Then, the liquid refrigerant separated by the liquid receiving unit 122A flows into the decompression unit 13A, and the pressure is reduced by the decompression unit 13A.
  • the refrigerant decompressed by the decompression unit 13A flows into the equipment cooler 14A.
  • the refrigerant flowing into the equipment cooler 14A absorbs heat from the low temperature heat medium flowing through the low temperature heat medium circuit 40A and evaporates. As a result, the low temperature heat medium is cooled.
  • the low-temperature heat medium cooled by the equipment cooler 14A flows to the low-temperature side radiator 43A and absorbs heat from the outside air.
  • the throttle opening ⁇ of the decompression unit 13A changes so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14A alternately changes to an overheated state and a wet state. Therefore, the refrigerant that has passed through the equipment cooler 14A becomes a gas-liquid two-phase state refrigerant and is sucked into the compressor 11A. The refrigerant sucked into the compressor 11A is compressed by the compressor 11A until it becomes a high-pressure refrigerant again.
  • the interior of the vehicle can be heated by blowing out the blown air heated by the heater core 32A into the vehicle interior.
  • the oil in the equipment cooler 14A is returned to the compressor 11 together with the liquid refrigerant.
  • the refrigeration cycle device 10A of the present embodiment has the same configuration as that of the first embodiment. Therefore, the effect obtained from the configuration common to that of the first embodiment can be obtained in the same manner as that of the first embodiment. That is, in the refrigerating cycle device 10A of the present embodiment, the decompression unit 13A is controlled so that the refrigerant state on the refrigerant outlet side of the equipment cooler 14A alternately changes into a superheated state and a wet state at least during indoor heating.
  • the refrigerant state on the refrigerant outlet side of the equipment cooler 14A becomes damp at least during indoor heating
  • the refrigerant in the gas-liquid two-phase state is sucked into the compressor 11A, so that the refrigerant is sucked together with the refrigerant.
  • the oil in the cycle can easily return to the compressor 11A.
  • by alternately repeating the wet state and the superheated state it is possible to prevent the degree of dryness of the refrigerant in the wet state from becoming too small. As a result, the occurrence of liquid compression in the compressor 11A can be suppressed.
  • the oil can be returned to the refrigerant suction side of the compressor 11 during indoor heating without arranging the accumulator on the refrigerant suction side of the compressor 11.
  • the radiator 12A separates the gas and liquid of the refrigerant that has passed through the condensing unit 121A and the condensing unit 121A that condense the refrigerant, and also stores the liquid refrigerant that becomes surplus in the cycle. It has 122A. Therefore, the refrigeration cycle device 10A can appropriately exhibit the heat exchange performance of the equipment cooler 14A while suppressing the retention of oil in the equipment cooler 14A. Further, since the refrigerating cycle device 10A has a cycle configuration in which the radiator 12A is provided with a liquid receiving unit 122A for storing excess refrigerant in the cycle, the refrigerant on the refrigerant outlet side of the equipment cooler 14A when the equipment is cooled. It is possible to make the state overheated.
  • the fluctuation process is unconditionally executed during the room heating, but the control device 80 may execute the process of determining whether or not the fluctuation process can be executed.
  • the control device 80 may, for example, execute a determination process for determining whether or not to execute the fluctuation process based on the state of the battery BT.
  • the amount of change in the throttle opening ⁇ per unit time is larger when the throttle opening ⁇ of the first expansion valve 132 is increased than when it is reduced. 1
  • the one that controls the decompression unit 13 is illustrated, but the fluctuation process is not limited to this.
  • the fluctuation process may be, for example, a process of controlling the first decompression unit 13 so that the amount of change in the throttle opening ⁇ per unit time becomes constant.
  • the throttle opening ⁇ of the first expansion valve 132 is changed according to the superheat degree Tsh of the refrigerant and the throttle opening ⁇ of the first expansion valve 132 has been illustrated.
  • the trigger for changing the throttle opening ⁇ of the expansion valve 132 is not limited to this.
  • the first expansion valve 132 is triggered by the time for changing the throttle opening ⁇ .
  • the processing may be such that the aperture opening ⁇ of is changed.
  • the fluctuation process may be, for example, a process of controlling the first pressure reducing unit 13 so that the throttle opening ⁇ of the first expansion valve 132 increases or decreases within a preset allowable range.
  • the permissible range may be a throttle range having an upper limit and a lower limit sandwiching the throttle opening ⁇ in which the refrigerant state becomes saturated.
  • the refrigerating cycle device 10 an example capable of performing indoor cooling, equipment cooling, and indoor heating is exemplified, but the refrigerating cycle device 10 is not limited to this.
  • the refrigeration cycle device 10 may be configured to enable dehumidification and heating of the vehicle interior, for example. Further, the refrigeration cycle device 10 may be configured to enable only indoor heating, for example.
  • Each configuration of the refrigeration cycle apparatus 10 described in the above-described embodiment is not limited to the one disclosed in the above-described embodiment.
  • the compressor 11 for example, one driven by an internal combustion engine may be adopted.
  • the radiator 12 may have a configuration in which, for example, the liquid receiving unit 122 and the supercooling unit 123 are omitted, and only the condensing unit 121 is provided.
  • the second expansion valve 152 may be composed of, for example, a mechanical expansion valve or a fixed throttle.
  • the first on-off valve 131 and the second on-off valve 151 may be arranged, for example, on the downstream side of the first expansion valve 132 and the second expansion valve 152.
  • the first on-off valve 131 and the second on-off valve 151 may be arranged in parallel with, for example, the first expansion valve 132 and the second expansion valve 152. Further, the first decompression unit 13 and the second decompression unit 15 may be composed of an electric expansion valve having a fully closed function.
  • the evaporation pressure adjusting valve 17 may be arranged not in the third refrigerant flow path 100c but in the second refrigerant flow path 100b, for example.
  • the high-temperature heat medium and the low-temperature heat medium are not limited thereto.
  • a gas may be adopted as long as it has excellent thermal conductivity.
  • the high-temperature heat medium circuit 30 is configured such that, for example, the flow rate ratio of the refrigerant flowing through the heater core 32 and the high-temperature side radiator 33 is adjusted by two flow rate adjusting valves provided corresponding to the heater core 32 and the high-temperature side radiator 33, respectively. May be.
  • the low-temperature heat medium circuit 40 may be configured such that the flow path is switched by a three-way valve type flow path switching valve.
  • the device to be cooled by the low temperature heat medium flowing through the low temperature heat medium circuit 40 may be a device other than the battery BT as long as it is a heat generating device that generates heat during operation.
  • the on-board heating device includes an electric motor that outputs driving force for traveling, an inverter that converts the frequency of the electric power supplied to the electric motor, a charger for charging the battery BT with electric power, and the like. Therefore, the low temperature heat medium circuit 40 may be configured to cool not only the battery BT but also the electric motor, the inverter, the charger, and the like. Such a configuration can be realized by connecting various heat generating devices in parallel or in series with respect to the flow of the low temperature heat medium.
  • the relationship between the high temperature side radiator 33 and the low temperature side radiator 43 is not mentioned, but the high temperature side radiator 33 and the low temperature side radiator 43 are not limited to independent configurations.
  • the heat of the high temperature heat medium and the heat of the low temperature heat medium may be integrated with each other so as to be heat transferable.
  • the heat media may be integrated so as to be heat transferable by sharing some components (for example, heat exchange fins) of the high temperature side radiator 33 and the low temperature side radiator 43.
  • the refrigeration cycle device 10 is applied to the air conditioner 1 and the equipment cooling system of the hybrid vehicle, but the refrigeration cycle device 10 is not limited to this.
  • the refrigeration cycle device 10 can be applied to, for example, an air conditioner 1 of an electric vehicle or an equipment cooling system. Further, the refrigeration cycle device 10 can be applied to a stationary device or system instead of a moving body such as a vehicle.
  • the sensor when it is described that the external environment information of the vehicle (for example, the outside air temperature) is acquired from the sensor, the sensor is abolished and the external environment information is received from the server or the cloud outside the vehicle. Is also possible. Alternatively, it is possible to abolish the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information.
  • the external environment information of the vehicle for example, the outside air temperature
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional substantive storage medium as an instruction executed by the computer.
  • the refrigeration cycle apparatus is open to control the compressor, the radiator, the refrigerant decompression unit, the evaporator, and the refrigerant decompression unit. It is equipped with a degree control unit.
  • the opening degree control unit changes the throttle opening of the refrigerant pressure reducing unit so that the refrigerant state on the refrigerant outlet side of the evaporator alternately changes to a superheated state having a superheat degree and a wet state containing moist steam at least during indoor heating. Execute the fluctuation process to make it.
  • the refrigerating cycle apparatus includes a compressor, a radiator, a refrigerant decompressing unit, a parallel decompressing unit, a device cooler, an air conditioning cooler, a refrigerant decompressing unit, and a parallel decompressing unit. It is provided with an opening degree control unit for controlling the above. At least during indoor heating, the opening degree control unit opens the throttle of the refrigerant pressure reducing unit so that the refrigerant state on the refrigerant outlet side of the equipment cooler alternately changes to a superheated state with superheat and a wet state containing moist steam. Performs fluctuation processing that changes.
  • the pressure of the refrigerant on the outlet side of the air conditioner cooler is higher than the pressure of the refrigerant on the outlet side of the equipment cooler on the downstream side of the refrigerant flow of the air conditioner cooler.
  • a pressure regulating valve is provided to maintain the pressure. According to this, for example, when the refrigerant flows through both the air conditioner cooler and the equipment cooler, the refrigerant flowing through the air conditioner cooler and the equipment cooler can be adjusted to a temperature suitable for each. ..
  • the throttle opening of the refrigerant decompression section is reduced until the degree of superheat of the refrigerant reaches a predetermined threshold temperature.
  • the throttle opening of the refrigerant decompression unit is increased until the reference opening at which the refrigerant state becomes damp.
  • the throttle opening of the refrigerant decompression section is reduced until the degree of superheat of the refrigerant reaches the threshold temperature.
  • the throttle opening of the refrigerant decompressing portion is reduced until the first reference opening becomes such that the degree of superheat of the refrigerant becomes equal to or higher than a predetermined threshold temperature.
  • the throttle opening of the refrigerant decompression section is increased until the second reference opening at which the refrigerant state becomes damp.
  • the throttle opening of the refrigerant decompression section is reduced until the throttle opening of the refrigerant decompression section reaches the first reference opening. According to this, the refrigerant state can be alternately switched between the superheated state and the wet state by changing the throttle opening degree of the refrigerant decompressing unit.
  • the opening degree control unit is more per unit time when the throttle opening of the refrigerant decompression unit is increased than when the throttle opening of the refrigerant decompression unit is decreased.
  • the refrigerant decompression unit is controlled so that the amount of change in the throttle opening becomes large. In this way, if the amount of change in the throttle opening per unit time is increased when the throttle opening of the refrigerant decompression unit is increased, it is possible to easily flow the refrigerant in a gas-liquid two-phase state to the compressor side. .. Therefore, the oil in the cycle easily returns to the compressor together with the refrigerant.
  • the radiator has a condensing part for condensing the refrigerant, a gas-liquid part for the refrigerant passing through the condensing part, and a receiving part for storing the excess liquid refrigerant in the cycle.
  • the configuration in which the liquid receiving portion is provided on the high pressure side in the cycle evaporates as compared with the configuration in which the liquid receiving portion is provided on the outlet side of the evaporator or the device cooler (so-called accumulator cycle). It becomes easier to demonstrate the heat exchange performance of the cooler for equipment and devices.
  • the liquid receiving portion causes a loss on the refrigerant suction side of the compressor, so that the heat exchange performance of the evaporator and the device cooler is lower than that of the receiver cycle.
  • the radiator has a supercooling unit that dissipates heat from the refrigerant that has passed through the liquid receiving unit. According to this, even when the fluctuation process is executed, the refrigerant that has passed through the radiator can be cooled until it becomes a liquid refrigerant. That is, by supercooling the refrigerant by the supercooling unit, it is possible to suppress variations in the heat dissipation capacity of the radiator due to the fluctuation treatment.
  • the evaporator is composed of a heat exchanger that exchanges heat between the refrigerant decompressed by the refrigerant decompression unit and the heat medium circulating in the heat medium circuit.
  • the evaporator can function as an endothermic absorber in which the refrigerant absorbs heat from the heat medium during indoor heating.
  • the refrigerating cycle apparatus of the present disclosure is preferably a heat exchanger that exchanges heat between the refrigerant and the heat medium as an evaporator.
  • the equipment cooler is composed of a heat exchanger that exchanges heat with the refrigerant decompressed by the refrigerant decompression unit and the heat medium circulating in the heat medium circuit.
  • the equipment cooler when cooling the equipment, the equipment cooler functions as a cooler that cools the heat-generating equipment by utilizing the latent heat of vaporization when the refrigerant absorbs heat from the heat medium and evaporates, and the equipment cooler is used during room heating.
  • the refrigerant can function as an endothermic device that absorbs heat from the heat medium.
  • the refrigeration cycle apparatus of the present disclosure is preferably a heat exchanger that exchanges heat between the refrigerant and the heat medium as a cooler for equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本開示は、室内暖房時にオイルの滞留を抑制可能な冷凍サイクル装置を提供することを目的とする。 冷凍サイクル装置(10)は、空調対象空間に送風する送風空気を暖める室内暖房を実施可能なものである。冷凍サイクル装置は、オイルを含む冷媒を圧縮して吐出する圧縮機(11)と、室内暖房時に圧縮機から吐出された冷媒を熱源として送風空気を暖める放熱器(12)と、を備える。冷凍サイクル装置は、放熱器を通過した冷媒を減圧させる冷媒減圧部(13)と、室内暖房時に吸熱器として機能する蒸発器(14)と、冷媒減圧部を制御する開度制御部(80a)と、を備える。開度制御部は、少なくとも室内暖房時に、蒸発器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する。

Description

冷凍サイクル装置 関連出願への相互参照
 本出願は、2019年7月22日に出願された日本特許出願番号2019-134785号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、空調対象空間に送風する送風空気を暖める室内暖房を実施可能な冷凍サイクル装置に関する。
 従来、圧縮機から吐出された冷媒を車室内へ送風する送風空気と熱交換させて、送風空気を加熱する蒸気圧縮式の冷凍サイクル装置が知られている(例えば、特許文献1参照)。この種の冷凍サイクル装置は、一般的に、圧縮機を潤滑するためのオイルを冷媒に混入させて、オイルを含む冷媒をサイクル内で循環させている。
特開2010-42698号公報
 ところで、冷凍サイクル装置では、例えば、室内暖房時に外気が極低温になると、サイクル内の低圧側で冷媒の温度が非常に低くなり、冷媒密度が小さくなることで、低圧側の熱交換器を通過する冷媒の流量が小さくなる。加えて、サイクル内の低圧側では、冷媒の温度低下によってオイルの粘性が大きくなる。
 これらによって、冷凍サイクル装置では、サイクル内の低圧側の蒸発器にオイルが滞留し易くなっている。蒸発器におけるオイルの滞留は、圧縮機の信頼性の低下を招く要因となることから好ましくない。
 本開示は、室内暖房時にオイルの滞留を抑制可能な冷凍サイクル装置を提供することを目的とする。
 本開示の1つの観点によれば、冷凍サイクル装置は、
 空調対象空間に送風する送風空気を暖める室内暖房を実施可能なものであって、
 オイルを含む冷媒を圧縮して吐出する圧縮機と、
 室内暖房時に圧縮機から吐出された冷媒を熱源として送風空気を暖める放熱器と、
 放熱器を通過した冷媒を減圧させる冷媒減圧部と、
 室内暖房時に吸熱器として機能する蒸発器と、
 冷媒減圧部を制御する開度制御部と、を備え、
 開度制御部は、少なくとも室内暖房時に、蒸発器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する。
 これによれば、少なくとも室内暖房時には、蒸発器の冷媒出口側における冷媒状態が湿り状態となる際に圧縮機に対して気液二相状態の冷媒が吸入されるので、冷媒とともにサイクル内のオイルが圧縮機に戻り易くなる。
 特に、室内暖房時には、蒸発器の冷媒出口側における冷媒状態が過熱状態および湿り状態に交互に変化するように冷媒減圧部が制御される。このように、湿り状態と冷媒状態を特定し易い過熱状態が交互に繰り返されることで、湿り状態での冷媒の乾き度が小さくなり過ぎることを抑制できる。この結果、圧縮機での液圧縮の発生を抑制することができる。
 ここで、「湿り状態」とは、冷媒が湿り蒸気となっている状態であり、冷媒の乾き度が0%を超えるとともに100%以下となる。また、「過熱状態」とは、冷媒が乾き蒸気となっている状態であり、冷媒が過熱度を有する。
 本開示の別の観点によれば、冷凍サイクル装置は、
 空調対象空間に送風する送風空気を暖める室内暖房、発熱機器を冷却する機器冷却、および送風空気を冷却する室内冷房を実施可能なものであって、
 オイルを含む冷媒を圧縮して吐出する圧縮機と、
 室内暖房時に圧縮機から吐出された冷媒を熱源として空調対象空間に送風する送風空気を暖める放熱器と、
 放熱器を通過した冷媒を減圧させる冷媒減圧部と、
 放熱器の冷媒流れ下流側において冷媒減圧部と並列に配置される並列減圧部と、
 機器冷却時に冷媒減圧部で減圧された冷媒の蒸発潜熱を利用して発熱機器を冷却する冷却器として機能し、室内暖房時に吸熱器として機能する機器用冷却器と、
 並列減圧部で減圧された冷媒の蒸発潜熱を利用して送風空気を冷却する空調用冷却器と、
 冷媒減圧部および並列減圧部を制御する開度制御部と、を備え、
 開度制御部は、少なくとも室内暖房時に、機器用冷却器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する。
 これによれば、少なくとも室内暖房時には、機器用冷却器の冷媒出口側における冷媒状態が湿り状態となる際に、圧縮機に対して気液二相状態の冷媒が吸入されるので、冷媒とともにサイクル内のオイルが圧縮機に戻り易くなる。
 特に、室内暖房時には、機器用冷却器の冷媒出口側における冷媒状態が過熱状態および湿り状態に交互に変化するように冷媒減圧部が制御される。このように、湿り状態と冷媒状態を特定し易い過熱状態とを交互に繰り返されることで、湿り状態での冷媒の乾き度が小さくなり過ぎることを抑制できる。この結果、圧縮機での液圧縮の発生を抑制することができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る冷凍サイクル装置を含む空調装置の概略構成図である。 冷凍サイクル装置の制御装置の模式的なブロック図である。 第1実施形態に係る冷凍サイクル装置における運転モード毎の各減圧部の制御態様を説明するための説明図である。 機器冷却時および室内暖房時の冷媒状態を説明するためのモリエル線図である。 第1実施形態に係る冷凍サイクル装置の制御装置が実行する制御処理の流れを示すフローチャートである。 室内暖房時の第1減圧部の作動を説明するための説明図である。 機器冷却時および室内暖房時のサイクル内の冷媒の高低圧差を説明するための説明図である。 第2実施形態に係る冷凍サイクル装置の制御装置が実行する制御処理の流れを示すフローチャートである。 第3実施形態に係る冷凍サイクル装置を含む機器冷却システムの概略構成図である。 第3実施形態に係る冷凍サイクル装置における運転モード毎の各減圧部の制御態様を説明するための説明図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図7を参照して説明する。本実施形態は、車室内空間を適切な温度に調整する空調装置1に本開示の冷凍サイクル装置10を適用した例について説明する。本実施形態では、車室内空間が空調対象空間となる。
 図1に示す冷凍サイクル装置10は、図示しないが、エンジンおよび走行用の電動モータから車両走行用の駆動力を得るハイブリッド車両に搭載される。このハイブリッド車両は、車両停車時に外部電源から供給された電力を車両に搭載されたバッテリBTに充電可能なプラグインハイブリッド車両として構成されている。エンジンから出力される駆動力は、車両走行用として用いられるだけでなく、モータジェネレータで発電するためにも用いられることがある。モータジェネレータで発電された電力および外部電源から供給された電力は、バッテリBTに蓄えられる。バッテリBTに蓄えられた電力は、走行用の電動モータだけでなく、冷凍サイクル装置10の構成機器を含む各種車載機器に供給される。
 冷凍サイクル装置10は、車室内へ送風する送風空気を加熱する室内暖房、車室内へ送風する送風空気を冷却する室内冷房、およびバッテリBTを冷却する機器冷却を実施可能になっている。
 冷凍サイクル装置10は、蒸気圧縮式の冷凍サイクルで構成されている。冷凍サイクル装置10は、冷媒が循環する冷媒回路100を有する。冷凍サイクル装置10は、冷媒回路100に対して、圧縮機11、放熱器12、第1減圧部13、機器用冷却器14、第2減圧部15、空調用冷却器16、および蒸発圧力調整弁17が設けられている。
 冷媒回路100には、冷媒としてフロン系冷媒(例えば、HFO134a)が封入されている。冷媒回路100は、サイクル内の高圧側の圧力が冷媒の臨界圧力を超えない亜臨界サイクルになっている。なお、冷媒としては、HFO134a以外のものが採用されていてもよい。
 冷媒には、圧縮機11を潤滑するためのオイル(すなわち、冷凍機油)が混入されている。オイルは、例えば、液冷媒に相溶性を有するポリアルキレングリコールオイル(すなわち、PAGオイル)が採用される。オイルは、その一部が冷媒と共にサイクル内を循環する。
 冷媒回路100は、冷媒が流れる流路として、第1冷媒流路100a、第2冷媒流路100b、および第3冷媒流路100cを有する。冷媒回路100は、第2冷媒流路100bおよび第3冷媒流路100cは、冷媒が互いに並列に流れるように第1冷媒流路100aに対して接続されている。
 第1冷媒流路100aには、圧縮機11および放熱器12が直列に配置されている。具体的には、第1冷媒流路100aには、圧縮機11の下流側に放熱器12が配置されている。
 第2冷媒流路100bには、第1減圧部13および機器用冷却器14が直列に配置されている。具体的には、第2冷媒流路100bには、第1減圧部13の下流側に機器用冷却器14が配置されている。
 第3冷媒流路100cには、第2減圧部15および空調用冷却器16が直列に配置されている。具体的には、第3冷媒流路100cには、第2減圧部15の下流側に空調用冷却器16が配置されている。
 圧縮機11は、冷媒を圧縮して吐出する機器である。圧縮機11は、冷媒を圧縮する圧縮機構部を電動モータによって回転駆動する電動圧縮機で構成されている。圧縮機11は、後述する制御装置80から出力される制御信号によって電動モータの回転数が制御される。
 圧縮機11の冷媒吐出側には、放熱器12が接続されている。放熱器12は、圧縮機11から吐出された冷媒を放熱させる。放熱器12は、圧縮機11から吐出された高温高圧の冷媒(以下、高圧冷媒とも呼ぶ)を、高温熱媒体回路30を循環する高温熱媒体に放熱させる熱交換器である。
 放熱器12は、凝縮部121、受液部122、および過冷却部123を有している。凝縮部121は、高圧冷媒を高温熱媒体に放熱させることで凝縮させる。受液部122は、凝縮部121を通過した冷媒の気液を分離するとともに、分離された液冷媒をサイクル内の余剰冷媒として貯留する。過冷却部123は、受液部122に貯留された液冷媒を凝縮部121に流入する前の高温熱媒体に放熱させることで過冷却する。
 放熱器12は、圧縮機11から吐出された冷媒を熱源として車室内に送風する送風空気を暖める。具体的には、放熱器12は、高温熱媒体回路30を介して、高圧冷媒を車室内へ送風する送風空気に放熱させて送風空気を加熱することが可能になっている。
 ここで、高温熱媒体回路30は、高温熱媒体を循環させる回路である。高温熱媒体は、例えば、エチレングリコールを含む溶液、不凍液等が採用されている。本実施形態では、高温熱媒体が第1熱媒体を構成している。高温熱媒体回路30には、放熱器12、高温側ポンプ31、ヒータコア32、高温側ラジエータ33、高温側流量調整弁34等が配置されている。
 高温側ポンプ31は、高温熱媒体回路30において、放熱器12に高温熱媒体を圧送するポンプである。高温側ポンプ31は、制御装置80から出力される制御信号に応じて回転数が制御される電動ポンプで構成されている。
 ヒータコア32は、後述する室内空調ユニット60のケーシング61内に配置されている。ヒータコア32は、放熱器12にて加熱された高温熱媒体と後述する空調用冷却器16を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。
 高温側ラジエータ33は、放熱器12にて加熱された高温熱媒体を外気に放熱させる熱交換器である。高温側ラジエータ33は、車両走行時に走行風が当たる車両の前方側に配置されている。高温側ラジエータ33およびヒータコア32は、高温熱媒体回路30において、高温熱媒体の流れに対して並列的に接続されている。
 高温側流量調整弁34は、放熱器12にて加熱された高温熱媒体のうち、ヒータコア32に流入させる高温熱媒体の流量と高温側ラジエータ33に流入させる高温熱媒体の流量との流量比を調整する流量調整弁である。高温側流量調整弁34は、三方弁タイプの流量調整弁で構成されている。高温側流量調整弁34は、高温熱媒体回路30におけるヒータコア32の入口側と高温側ラジエータ33の入口側との接続部に配置されている。
 このように構成される高温熱媒体回路30では、高温側流量調整弁34が上述の流量比を調整することで、高圧冷媒の使用態様を変更することができる。高温熱媒体回路30は、例えば、高温側流量調整弁34によりヒータコア32に流入する高温熱媒体の流量を増加させることで、高温熱媒体の熱を送風空気の加熱に使用して車室内を暖房することができる。一方、高温熱媒体回路30は、例えば、高温側流量調整弁34により高温側ラジエータ33に流入する高温熱媒体の流量を増加させることで、高温熱媒体の熱を外気に放出することができる。
 放熱器12の冷媒出口側は、第2冷媒流路100bおよび第3冷媒流路100cに分岐している。第2冷媒流路100bには、第1減圧部13および機器用冷却器14が配置されている。第3冷媒流路100cには、第2減圧部15および空調用冷却器16が配置されている。
 第1減圧部13は、放熱器12を通過した冷媒を減圧させる冷媒減圧部である。第1減圧部13は、全閉または全開する第1開閉弁131および第1膨張弁132を有している。第1開閉弁131は、第2冷媒流路100bを開閉する電磁弁である。第1開閉弁131は、後述する制御装置80からの制御信号に応じて開閉動作が制御される。
 第1膨張弁132は、第2冷媒流路100bを流れる冷媒を減圧させる膨張弁である。第1膨張弁132は、弁体と電動アクチュエータを有する電気式膨張弁で構成されている。第1膨張弁132の電動アクチュエータは、弁体を変位させて第1膨張弁132の絞り開度αを変化させるステッピングモータを含んでいる。第1膨張弁132は、後述する制御装置80からの制御信号に応じて絞り開度αが制御される。
 機器用冷却器14は、第1減圧部13で減圧された冷媒を、低温熱媒体回路40を循環する低温の熱媒体(以下、低温熱媒体とも呼ぶ)と熱交換させることで、冷媒を蒸発させる蒸発器(すなわち、チラー)である。機器用冷却器14では、冷媒が低温熱媒体から吸熱して蒸発することで、低温熱媒体が冷却される。機器用冷却器14は、冷媒が流通する複数の冷媒流路部および低温熱媒体が流通する複数の熱媒体流路部が交互に積層されて構成される積層型の熱交換器で構成される。
 本実施形態の機器用冷却器14は、機器冷却時に第1減圧部13で減圧された冷媒の蒸発潜熱を利用してバッテリBTを冷却する冷却器として機能し、室内暖房時に吸熱器として機能する。具体的には、機器用冷却器14は、機器冷却時に低温熱媒体回路40を介してバッテリBTを冷却し、室内暖房時に外気から吸熱する。
 ここで、低温熱媒体回路40は、低温の熱媒体が循環する熱媒体回路である。低温熱媒体は、例えば、エチレングリコールを含む溶液、不凍液等が採用されている。本実施形態では、低温熱媒体が第2熱媒体を構成している。低温熱媒体回路40には、機器用冷却器14、低温側ポンプ41、バッテリ冷却部42、低温側ラジエータ43、第1流路切替弁44、第2流路切替弁45等が配置されている。
 低温側ポンプ41は、低温熱媒体回路40において、機器用冷却器14に低温熱媒体を圧送するポンプである。低温側ポンプ41は、制御装置80から出力される制御信号に応じて回転数が制御される電動ポンプで構成されている。
 バッテリ冷却部42は、低温熱媒体回路40を流れる低温熱媒体によってバッテリBTを冷却する。なお、バッテリBTは、図示しないインバータおよび充電器と電気的に接続される。バッテリBTは、インバータに電力を供給するとともに、充電器から供給される電力を蓄える。バッテリBTは、例えば、リチウムイオン電池で構成される。
 低温側ラジエータ43は、機器用冷却器14にて冷却された低温熱媒体を外気と熱交換させて外気から吸熱する熱交換器である。低温側ラジエータ43は、高温側ラジエータ33とともに、車両走行時に走行風が当たる車両の前方側に配置されている。低温側ラジエータ43およびバッテリ冷却部42は、低温熱媒体回路40において、低温熱媒体の流れに対して並列的に接続されている。
 第1流路切替弁44は、バッテリ冷却部42に低温熱媒体が流れる状態とバッテリ冷却部42に低温熱媒体が流れない状態とを切り替える。第1流路切替弁44は、制御装置80から出力される制御信号に応じて開閉動作が制御される電磁弁で構成されている。
 第2流路切替弁45は、低温側ラジエータ43に低温熱媒体が流れる状態と低温側ラジエータ43に低温熱媒体が流れない状態とを切り替える。第2流路切替弁45は、制御装置80から出力される制御信号に応じて開閉動作が制御される電磁弁で構成されている。
 このように構成される低温熱媒体回路40では、第1流路切替弁44および第2流路切替弁45によって低温熱媒体の流路を変えることで、低圧冷媒の使用態様を変更することができる。低温熱媒体回路40は、例えば、第1流路切替弁44を開放することで、機器用冷却器14で冷却された低温熱媒体によってバッテリBTを冷却することができる。一方、低温熱媒体回路40は、例えば、第2流路切替弁45を開放して、低温熱媒体を低温側ラジエータ43に流すことで、外気から低温熱媒体に吸熱させることができる。
 第2減圧部15は、放熱器12の冷媒流れ下流側において第1減圧部13と並列に配置される並列減圧部である。第2減圧部15は、全閉または全開する第2開閉弁151および第2膨張弁152を有している。第2開閉弁151は、第3冷媒流路100cを開閉する電磁弁である。第2開閉弁151は、後述する制御装置80からの制御信号に応じて開閉動作が制御される。
 第2膨張弁152は、第3冷媒流路100cを流れる冷媒を減圧させる膨張弁である。第2膨張弁152は、弁体と電動アクチュエータを有する電気式膨張弁で構成されている。弁体は、冷媒流路の開度である絞り開度αを変更可能に構成されている。電動アクチュエータは、弁体を変位させて第2膨張弁152の絞り開度αを変化させるステッピングモータを含んでいる。第2膨張弁152は、後述する制御装置80からの制御信号に応じて絞り開度αが制御される。
 空調用冷却器16は、後述する室内空調ユニット60のケーシング61内に配置されている。空調用冷却器16は、第2減圧部15で減圧された冷媒と車室内へ送風する送風空気とを熱交換させて冷媒を蒸発させる熱交換器である。空調用冷却器16は、第2減圧部15で減圧された冷媒の蒸発潜熱を利用して送風空気を冷却する。すなわち、空調用冷却器16は、低圧冷媒が送風空気から吸熱して蒸発することで、送風空気が冷却される。
 空調用冷却器16の冷媒出口側には、蒸発圧力調整弁17が配置されている。蒸発圧力調整弁17は、空調用冷却器16の冷媒出口側の冷媒の圧力を機器用冷却器14の冷媒出口側の冷媒の圧力よりも高い圧力に維持するための圧力調整弁である。具体的には、蒸発圧力調整弁17は、空調用冷却器16の冷媒出口側の冷媒の温度が、空調用冷却器16の着霜を抑制可能な温度(例えば、1℃)以上に維持されるように構成されている。
 このように構成される冷凍サイクル装置10は、蒸発圧力調整弁17の下流側で、第2冷媒流路100bおよび第3冷媒流路100cが第1冷媒流路100aに接続されている。冷凍サイクル装置10は、機器用冷却器14および空調用冷却器16が受液部を介さずに圧縮機11の冷媒吸入側に接続されるサイクル構成(すなわち、アキュムレータレスサイクル)になっている。具体的には、冷凍サイクル装置10は、サイクル内の高圧側に受液部122が設けられ、サイクル内の低圧側に受液部が設けられていないサイクル構成(すなわち、レシーバサイクル)になっている。
 次に、室内空調ユニット60について図1を参照して説明する。図1に示す室内空調ユニット60は、車室内へ送風する送風空気を適温に調整するためのものである。室内空調ユニット60は、車室内の最前部のインストルメントパネルの内側に配置されている。室内空調ユニット60は、外殻を形成するケーシング61の内側に、空調用冷却器16およびヒータコア32等が収容されている。
 ケーシング61は、車室内へ送風する送風空気の空気流路を形成する通路形成部である。図示しないが、ケーシング61の空気流れ上流側には、ケーシング61の内側へ導入する内気と外気との導入割合を調整する内外気箱が配置されている。
 ケーシング61の内側には、内外気箱から導入される空気を車室内へ送風するための送風機62が配置されている。送風機62は、遠心ファンを電動モータで回転させる電動送風機で構成されている。送風機62は、後述する制御装置80から出力される制御信号に応じて回転数が制御される。
 ケーシング61の内側には、送風機62の空気流れ下流側に空調用冷却器16が配置されている。ケーシング61の内側には、空調用冷却器16の空気流れ下流側が、温風流路63および冷風流路64に分けられている。温風流路63には、ヒータコア32が配置されている。冷風流路64は、空調用冷却器16を通過した空気をヒータコア32を迂回して流すための流路である。
 ケーシング61の内側には、空調用冷却器16とヒータコア32との間にエアミックスドア65が配置されている。エアミックスドア65は、温風流路63を通過させる空気および冷風流路64を通過させる空気の風量割合を調整するものである。ケーシング61の内側には、温風流路63および冷風流路64の下流側に、温風流路63を通過した温風と冷風流路64を通過した冷風とを混合させるエアミックス空間66が形成されている。図示しないが、ケーシング61の内側には、空気流れの最下流部に、エアミックス空間66で所望の温度に調整された送風空気を車室内へ吹き出すための複数の開口穴が形成されている。
 次に、空調装置1の電子制御部の概要について図2を参照して説明する。制御装置80は、プロセッサ、メモリを含むコンピュータとその周辺回路とで構成されている。制御装置80は、メモリに記憶されたプログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器を制御する。なお、制御装置80のメモリは、非遷移的実体的記憶媒体で構成されている。
 制御装置80の出力側には、冷凍サイクル装置10の構成機器を含む各種機器が接続されている。具体的には、制御装置80の出力側には、圧縮機11、第1減圧部13、第2減圧部15、高温側ポンプ31、高温側流量調整弁34、低温側ポンプ41、各流路切替弁44、45、送風機62、エアミックスドア65等が接続されている。
 制御装置80の入力側には、空調制御用のセンサ群81が接続されている。このセンサ群81には、内気温センサ、外気温センサ、日射センサ、各冷却器14、16の冷媒出口側の圧力および温度を検出するPTセンサ等が含まれている。PTセンサは、各冷却器14、16の冷媒出口側の冷媒状態を把握するためのセンサとして機能する。
 このように、制御装置80には、各種の検出信号が入力される。これにより、冷凍サイクル装置10は、センサ群81で検出した物理量に対応して、車室内に送風される送風空気の温度等を調整することができ、快適な空調を実現することができる。
 制御装置80の入力側には、種々の入力操作に用いられる操作パネル82が接続されている。操作パネル82は、インストルメントパネル付近に配置されており、各種操作スイッチを有している。制御装置80には、操作パネル82に設けられた各種操作スイッチからの操作信号が入力される。
 操作パネル82の各種操作スイッチには、オートスイッチ、運転モード切替スイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等が含まれている。冷凍サイクル装置10は、操作パネル82による入力を受け付けることで、冷凍サイクル装置10の運転モードを適宜切り替えることができる。
 ここで、制御装置80は、出力側に接続された各種機器を制御する制御部が一体に構成されている。本実施形態の制御装置80には、第1減圧部13および第2減圧部15を制御する開度制御部80aが含まれている。なお、開度制御部80aは、制御装置80と別体で構成されていてもよい。
 以下、空調装置1の作動について説明する。空調装置1は、運転モードとして、室内冷房、機器冷却、および室内暖房を実行可能に構成されている。このため、本実施形態では、室内冷房、機器冷却、および室内暖房毎に空調装置1の作動を説明する。
 <室内冷房>
 室内冷房は、室内空調ユニット60で所望の温度に冷却した空気を車室内に吹き出す運転モードである。制御装置80は、室内冷房時における各種機器の作動状態をセンサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 例えば、制御装置80は、図3に示すように、第1開閉弁131が全閉となるとともに、第2開閉弁151が全開となり、さらに、第2膨張弁152が可変絞り状態となるように各減圧部13、15を制御する。すなわち、制御装置80は、第1減圧部13を全閉状態に制御し、減圧作用が発揮されるように第2減圧部15を制御する。
 具体的には、制御装置80は、室内冷房時に、空調用冷却器16の冷媒出口側の冷媒状態が一定の過熱度を有する過熱状態となるように、第2減圧部15を制御する過熱度処理を実行する。
 また、制御装置80は、放熱器12を通過する高温熱媒体の全量が高温側ラジエータ33に流れるように、高温側流量調整弁34を制御する。さらに、制御装置80は、温風流路63が全閉され、且つ、冷風流路64が全開される位置にエアミックスドア65を制御する。制御装置80は、その他の機器に対する制御信号について、センサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 室内冷房時に冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が放熱器12の凝縮部121に流入する。凝縮部121に流入した冷媒は、高温熱媒体回路30を流れる高温熱媒体に対して放熱して凝縮する。これにより、高温熱媒体回路30を流れる高温熱媒体が加熱されて昇温する。
 凝縮部121で加熱された高温熱媒体は、高温側ラジエータ33に流れ、外気に放熱される。すなわち、室内冷房時は、サイクル内の高圧冷媒が高温熱媒体を介して外気に放熱される。
 一方、凝縮部121を通過した冷媒は、受液部122に流入して気液が分離される。そして、受液部122で分離された液冷媒が過冷却部123に流入する。過冷却部123に流入した冷媒は、高温熱媒体回路30を流れる高温熱媒体に放熱して過冷却される。
 過冷却部123から流出した冷媒は、第2減圧部15に流入し、第2減圧部15の第2膨張弁152にて減圧される。なお、室内冷房時は、第1開閉弁131が全閉になっているので、冷媒が第1膨張弁132に流入せず、冷媒の全量が第2減圧部15にて減圧される。
 第2減圧部15で減圧された冷媒は、空調用冷却器16に流入する。空調用冷却器16に流入した冷媒は、送風機62からの送風空気から吸熱して蒸発する。これにより、送風機62からの送風空気が冷却される。
 空調用冷却器16を通過した冷媒は、蒸発圧力調整弁17を介して圧縮機11に吸入される。圧縮機11に吸入された冷媒は、圧縮機11にて再び高圧冷媒となるまで圧縮される。
 以上の如く、室内冷房時には、空調用冷却器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
 <機器冷却>
 機器冷却は、冷媒の蒸発潜熱を利用して発熱機器であるバッテリBTを冷却する運転モードである。制御装置80は、機器冷却時における各種機器の作動状態をセンサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 例えば、制御装置80は、図3に示すように、第2開閉弁151が全閉となるとともに、第1開閉弁131が全開となり、さらに、第1膨張弁132が可変絞り状態となるように各減圧部13、15を制御する。すなわち、制御装置80は、第2減圧部15を全閉状態に制御し、減圧作用が発揮されるように第1減圧部13を制御する。
 具体的には、制御装置80は、機器冷却時に、機器用冷却器14の冷媒出口側の冷媒状態が一定の過熱度を有する過熱状態となるように、第1減圧部13を制御する過熱度処理を実行する。
 また、制御装置80は、放熱器12を通過する高温熱媒体の全量が高温側ラジエータ33に流れるように、高温側流量調整弁34を制御する。さらに、制御装置80は、機器用冷却器14を通過する低温熱媒体の全量がバッテリ冷却部42に流れるように、第1流路切替弁44を全開状態に制御しつつ、第2流路切替弁45を全閉状態に制御する。制御装置80は、その他の機器に対する制御信号について、センサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 機器冷却時に冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が放熱器12の凝縮部121に流入する。凝縮部121に流入した冷媒は、図4の実線に示すように、高温熱媒体回路30を流れる高温熱媒体に対して放熱して凝縮する(すなわち、図4の点A1→点A2)。これにより、高温熱媒体回路30を流れる高温熱媒体が加熱されて昇温する。
 凝縮部121で加熱された高温熱媒体は、高温側ラジエータ33に流れ、外気に放熱される。すなわち、機器冷却時は、サイクル内の高圧冷媒が高温熱媒体を介して外気に放熱される。
 一方、凝縮部121を通過した冷媒は、受液部122に流入して気液が分離される。そして、受液部122で分離された液冷媒が過冷却部123に流入する。過冷却部123に流入した冷媒は、高温熱媒体回路30を流れる高温熱媒体に放熱して過冷却される(すなわち、図4の点A2→点A3)。
 過冷却部123から流出した冷媒は、第1減圧部13に流入し、第1減圧部13の第1膨張弁132にて減圧される(すなわち、図4の点A3→点A4)。なお、機器冷却時は、第2開閉弁151が全閉になっているので、冷媒が第2膨張弁152に流入せず、冷媒の全量が第1減圧部13にて減圧される。
 第1減圧部13で減圧された冷媒は、機器用冷却器14に流入する。機器用冷却器14に流入した冷媒は、低温熱媒体回路40を流れる低温熱媒体から吸熱して蒸発する(すなわち、図4の点A4→点A5)。これにより、低温熱媒体が冷却される。
 機器冷却時には機器用冷却器14の冷媒出口側の冷媒状態が過熱状態となるように第1減圧部13の絞り開度αが設定される。このため、機器用冷却器14を通過した冷媒は、過熱度を有するガス冷媒となって圧縮機11に吸入される。圧縮機11に吸入された冷媒は、圧縮機11にて再び高圧冷媒となるまで圧縮される。
 ここで、機器用冷却器14で冷却された低温熱媒体は、バッテリ冷却部42に流れ、バッテリBTから吸熱する。これにより、バッテリBTが冷却される。すなわち、機器冷却時は、機器用冷却器14における冷媒の蒸発潜熱を利用してバッテリBTが冷却される。
 以上の如く、機器冷却時には、機器用冷却器14にて冷却された低温熱媒体をバッテリ冷却部42に供給することで、バッテリBTの冷却を行うことができる。
 ここで、上述の機器冷却では、放熱器12を通過する高温熱媒体の全量が高温側ラジエータ33に流れるように、高温側流量調整弁34が制御されるものを例示したが、これに限定されない。例えば、機器冷却時に車室内の暖房が必要となる場合、放熱器12を通過する高温熱媒体がヒータコア32に流れるように制御装置80によって高温側流量調整弁34が制御されてもよい。これによると、機器冷却と室内暖房を同時に実施することが可能となる。
 また、上述の機器冷却では、第2開閉弁151が全閉となるとともに、第1開閉弁131が全開となり、さらに、第1膨張弁132の絞り開度αが所定開度となるように各減圧部13、15が制御されるものを例示したが、これに限定されない。例えば、機器冷却時に室内冷房が必要となる場合、第2開閉弁151が全開となるとともに、第2膨張弁152の絞り開度αが所定開度となるように制御装置80によって第2減圧部15が制御されてもよい。これによると、機器冷却と室内冷房を同時に実施することが可能となる。
 <室内暖房>
 室内暖房は、室内空調ユニット60で所望の温度に加熱した空気を車室内に吹き出す運転モードである。制御装置80は、室内暖房時における各種機器の作動状態をセンサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 例えば、制御装置80は、図3に示すように、第2開閉弁151が全閉となるとともに、第1開閉弁131が全開となり、さらに、第1膨張弁132が可変絞り状態となるように各減圧部13、15を制御する。すなわち、制御装置80は、第2減圧部15を全閉状態に制御し、減圧作用が発揮されるように第1減圧部13を制御する。制御装置80は、基本的に、室内暖房時における第1膨張弁132の絞り開度αが機器冷却時における第1膨張弁132の絞り開度αに比べて小さくなるように第1減圧部13を制御する。
 具体的には、制御装置80は、室内暖房時に、機器用冷却器14の冷媒出口側の冷媒状態が過熱度を有する過熱状態および湿り蒸気を有する湿り状態に交互に変化するように第1膨張弁132の絞り開度αを変化させる揺らぎ処理を実行する。
 また、制御装置80は、放熱器12を通過する高温熱媒体の全量がヒータコア32に流れるように、高温側流量調整弁34を制御する。さらに、制御装置80は、機器用冷却器14を通過する低温熱媒体の全量が低温側ラジエータ43に流れるように、第1流路切替弁44を全閉状態に制御しつつ、第2流路切替弁45を全開状態に制御する。
 制御装置80は、冷風流路64が全閉され、且つ、温風流路63が全開される位置にエアミックスドア65を制御する。制御装置80は、その他の機器に対する制御信号について、センサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 以下、本実施形態の制御装置80が実行する揺らぎ処理の流れについて図5、図6を参照して説明する。図5に示す処理は、例えば、室内暖房を実施する際に制御装置80によって実行される。
 図5に示すように、制御装置80は、ステップS100にて、センサ群81および操作パネル82から入力される各種信号を読み込む。制御装置80は、ステップS110にて、機器用冷却器14の冷媒出口側の過熱度Tshを算出する。
 制御装置80は、機器用冷却器14の冷媒出口側の温度および圧力に基づいて、過熱度Tshを算出する。例えば、機器用冷却器14の冷媒出口側の圧力とモリエル線図に示される飽和液線とが交差する交差ポイントから機器用冷却器14の冷媒出口側における冷媒の飽和温度を特定することができる。そして、冷媒の飽和温度を機器用冷却器14の冷媒出口側の温度から減算すれば、過熱度Tshを算出することができる。
 ここで、機器用冷却器14の冷媒出口側の冷媒状態が湿り状態である場合、機器用冷却器14の冷媒出口側の温度が飽和温度となり、過熱度Tshが実質的にゼロとなる。このため、過熱度Tshに関する情報から冷媒状態が湿り状態であるか否かを把握することも可能である。
 続いて、制御装置80は、ステップS120にて、過熱度Tshが予め定めた閾値温度Tth以上であるか否かを判定する。この閾値温度Tthは、過熱度Tshが大きくなり過ぎるのを抑制するためのものであって、例えば、2~4℃に設定される。閾値温度Tthは、図6に示すように、冷媒の飽和温度を示す飽和ラインよりも高い値に設定される。すなわち、閾値温度Tthは、冷媒の飽和温度よりも高い温度に設定される。
 ステップS120の判定処理の結果、過熱度Tshが閾値温度Tth未満である場合、制御装置80は、ステップS130にて、第1膨張弁132の絞り開度αが減少するように第1減圧部13を制御し、ステップS100に戻る。具体的には、制御装置80は、第1膨張弁132の絞り開度αが段階的に減少するように、第1膨張弁132のステッピングモータを制御する。すなわち、制御装置80は、図6に示すように、過熱度Tshが閾値温度Tthとなるまで第1膨張弁132の絞り開度αを段階的に小さくする。
 一方、ステップS120の判定処理の結果、過熱度Tshが閾値温度Tth以上である場合、制御装置80は、ステップS140に移行して、第1膨張弁132の絞り開度αが段階的に増加するように第1減圧部13を制御する。具体的には、制御装置80は、第1膨張弁132の絞り開度αが段階的に増加するように、第1膨張弁132のステッピングモータを制御する。
 ここで、制御装置80は、図6に示すように、第1膨張弁132の絞り開度αを小さくする場合に比べて第1膨張弁132の絞り開度αを大きくする場合の方が単位時間当たりの絞り開度αの変化量が大きくなるように、第1減圧部13を制御する。具体的には、制御装置80は、第1膨張弁132の絞り開度αを小さくする場合に比べて第1膨張弁132の絞り開度αを大きくする場合の方が単位ステップ当たりの絞り開度αの変化量が大きくなるように、第1膨張弁132のステッピングモータを制御する。
 これによると、冷媒状態が湿り状態になっている期間が充分に確保され、圧縮機11側へ気液二相状態の冷媒が流れ易くなるので、冷媒とともにサイクル内のオイルが圧縮機11に戻り易くなる。
 続いて、制御装置80は、ステップS150にて、第1膨張弁132の絞り開度αが所定の基準開度αth以上であるか否かを判定する。この基準開度αthは、機器用冷却器14の冷媒出口側の冷媒状態が湿り状態となる絞り開度αに設定される。
 湿り状態となる絞り開度αは、第1膨張弁132の絞り開度αを減少させた際の過熱度の変化量や、第1膨張弁132の絞り開度αを増加させた際の過熱度Tshの変化量に基づいて予想可能である。例えば、過熱度Tshが閾値温度Tth以上となるまでの第1膨張弁132の絞り開度αと過熱度Tshとの関係から機器用冷却器14の冷媒出口側の冷媒状態が飽和状態となる際の第1膨張弁132の絞り開度αを推定することができる。基準開度αthは、例えば、第1膨張弁132の絞り開度αを段階的に小さくした際に、機器用冷却器14の冷媒出口側の冷媒状態が飽和状態となった際の第1膨張弁132の絞り開度αに対して所定値Δαを加算した値に設定される。
 ステップS150の判定処理の結果、第1膨張弁132の絞り開度αが基準開度αth未満である場合、制御装置80は、ステップS140に戻る。すなわち、制御装置80は、第1膨張弁132の絞り開度αが基準開度αthとなるまで、第1膨張弁132の絞り開度αを増加させる。
 一方、ステップS150の判定処理の結果、第1膨張弁132の絞り開度αが基準開度αth以上である場合、制御装置80は、ステップS160にて、揺らぎ処理の終了条件が成立したか否かを判定する。揺らぎ処理の終了条件は、例えば、室内暖房を実行する空調装置1の運転が停止された際に成立する条件である。
 ステップS160の判定処理の結果、揺らぎ処理の終了条件が成立すると、制御装置80は、揺らぎ処理を終了する。一方、揺らぎ処理の終了条件が不成立となる場合、制御装置80は、ステップS100に戻る。
 冷凍サイクル装置10は、室内暖房時に制御装置80が揺らぎ処理を実行することで、図6に示すように、機器用冷却器14の冷媒出口側の冷媒状態が過熱状態および湿り状態に交互に切り替えられる。
 このような室内暖房時の制御処理が実行されると、冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が放熱器12の凝縮部121に流入する。凝縮部121に流入した冷媒は、図4の破線で示すように、高温熱媒体回路30を流れる高温熱媒体に対して放熱して凝縮する(すなわち、図4のB1→B2)。これにより、高温熱媒体回路30を流れる高温熱媒体が加熱されて昇温する。
 凝縮部121で加熱された高温熱媒体は、ヒータコア32に流れ、車室内へ送風する送風空気に放熱される。すなわち、室内暖房時は、サイクル内の高圧冷媒が高温熱媒体を介して車室内へ送風する送風空気に放熱される。
 一方、凝縮部121を通過した冷媒は、受液部122に流入して気液が分離される。そして、受液部122で分離された液冷媒が過冷却部123に流入する。過冷却部123に流入した冷媒は、高温熱媒体回路30を流れる高温熱媒体に放熱して過冷却される(すなわち、図4のB2→B3)。
 過冷却部123から流出した冷媒は、第1減圧部13に流入し、第1減圧部13の第1膨張弁132にて減圧される(すなわち、図4のB3→B4)。なお、室内暖房時は、第2開閉弁151が全閉になっているので、冷媒が第2膨張弁152に流入せず、冷媒の全量が第1減圧部13にて減圧される。
 ここで、室内暖房時には、機器冷却時に比べて、第1膨張弁132の絞り開度αが小さくなる。これにより、室内暖房時には、図7に示すように、高圧冷媒の圧力Pdが機器冷却時に比べて大きくなり(すなわち、Pd1>Pd2)、且つ、低圧冷媒の圧力Psが機器冷却時に比べて小さくなるようにバランスする(すなわち、Ps1<Ps2)。換言すれば、室内暖房時におけるサイクル内の冷媒の高低圧差ΔP1は、機器冷却時におけるサイクル内の冷媒の高低圧差ΔP2よりも大きくなる。
 このため、室内暖房時には、第1減圧部13で減圧された冷媒の温度が極低温となることがある。この場合、サイクル内の低圧側を流れる冷媒の密度が小さくなることで、低圧側の熱交換器を通過する冷媒の流量が小さくなる。加えて、サイクル内の低圧側では、冷媒の温度低下によってオイルの粘性が大きくなる。
 第1減圧部13で減圧された冷媒は、機器用冷却器14に流入する。機器用冷却器14に流入した冷媒は、低温熱媒体回路40を流れる低温熱媒体から吸熱して蒸発する(すなわち、図4の点B4→点B5)。これにより、低温熱媒体が冷却される。機器用冷却器14で冷却された低温熱媒体は、低温側ラジエータ43に流れ、外気から吸熱する。
 室内暖房時には機器用冷却器14の冷媒出口側の冷媒状態が過熱状態および湿り状態に交互に変化するように第1膨張弁132の絞り開度αが変化する。このため、機器用冷却器14を通過した冷媒は、気液二相状態の冷媒となって圧縮機11に吸入される。圧縮機11に吸入された冷媒は、圧縮機11にて再び高圧冷媒となるまで圧縮される。
 以上の如く、室内暖房時には、ヒータコア32にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。室内暖房時には、機器用冷却器14内のオイルが液冷媒とともに圧縮機11に戻される。
 ここで、上述の室内暖房時には、低温熱媒体がバッテリ冷却部42を通過しないように第1流路切替弁44が全閉状態に制御されるものを例示したが、室内暖房時の制御態様はこれに限定されない。室内暖房時には、低温熱媒体がバッテリ冷却部42を通過するように制御装置80によって第1流路切替弁44が全開状態に制御されてもよい。
 これによると、低温熱媒体を介してバッテリBTの排熱を機器用冷却器14で冷媒に吸熱させることができる。したがって、バッテリBTの排熱を車室内へ送風する送風空気を加熱するための熱源として用いることができる。
 以上説明した冷凍サイクル装置10は、放熱器12に対してサイクル内の余剰冷媒を貯留する受液部122が設けられたサイクル構成になっている。これによると、室内冷房時および機器冷却時に、機器用冷却器14および空調用冷却器16の冷媒出口側の冷媒状態を過熱状態とすることができる。
 加えて、室内暖房時には、機器用冷却器14の冷媒出口側における冷媒状態が過熱状態および湿り状態に交互に変化するように第1膨張弁132が制御される。これにより、室内暖房時には、圧縮機11に対して気液二相状態の冷媒が吸入されるので、冷媒とともにサイクル内のオイルが圧縮機に戻り易くなる。
 特に、室内暖房時には、機器用冷却器14の冷媒出口側における冷媒状態が過熱状態および湿り状態に交互に変化するように第1膨張弁132が制御される。このように、冷媒状態を特定し難い湿り状態と冷媒状態を特定し易い過熱状態とを交互に繰り返されることで、湿り状態での冷媒の乾き度が小さくなり過ぎることを抑制できる。この結果、圧縮機11での液圧縮の発生を抑制することができる。
 したがって、本実施形態の冷凍サイクル装置10によれば、圧縮機11の冷媒吸入側にアキュムレータを配置することなく、室内暖房時に圧縮機11の冷媒吸入側にオイルを戻すことができる。
 具体的には、揺らぎ処理では、制御装置80は、冷媒の過熱度Tshが所定の閾値温度Tthに達するまで第1膨張弁132の絞り開度αを小さくする。そして、制御装置80は、冷媒の過熱度Tshが閾値温度Tthに達すると冷媒状態が湿り状態となる基準開度αthとなるまで第1膨張弁132の絞り開度αを大きくする。さらに、制御装置80は、第1膨張弁132の絞り開度αが基準開度αthに達すると冷媒の過熱度Tshが所定の閾値温度Tthに達するまで第1膨張弁132の絞り開度αを小さくする。これによれば、第1膨張弁132の絞り開度αを変化させることによって冷媒状態を過熱状態と湿り状態とに交互に切り替えることができる。
 ここで、冷凍サイクル装置10では、機器用冷却器14の冷媒出口側の冷媒状態が湿り状態(すなわち、気液二相状態)となると、モリエル線図上での位置を把握できず、冷媒状態を定量的に把握することが困難となる。
 これに対して、冷媒状態が過熱状態と湿り状態とに交互に切り替わるように第1膨張弁132の絞り開度αを変化させると、一時的に過熱度Tshの変化を検出可能となるので、機器用冷却器14の冷媒出口側の冷媒状態を一時的に定量的に把握することができる。これによると、冷媒状態が湿り状態となる際に冷媒の乾き度が小さくなり過ぎることを抑制できるので、圧縮機11での液圧縮の発生を抑制することができる。
 また、制御装置80は、揺らぎ処理において、第1膨張弁132の絞り開度αを小さくする場合に比べて第1膨張弁132の絞り開度αを大きくする場合の方が単位時間当たりの絞り開度αの変化量が大きくなるように第1減圧部13を制御する。このように、第1膨張弁132の絞り開度αを大きくする際に、単位時間当たりの絞り開度αの変化量を大きくすれば、圧縮機11側へ気液二相状態の冷媒を流し易くなる。このため、冷媒とともにサイクル内のオイルが圧縮機11に戻り易くなる。
 また、冷凍サイクル装置10は、放熱器12が、冷媒を凝縮させる凝縮部121、凝縮部121を通過した冷媒の気液を分離するとともに、サイクル内で余剰となる液冷媒を貯留する受液部122を有している。
 このように、サイクル内の高圧側に受液部122を設ける構成(いわゆるレシーバサイクル)は、機器用冷却器14の出口側に受液部を備える構成(いわゆるアキュムレータサイクル)に比べて、機器用冷却器14の熱交換性能を発揮させ易くなる。このため、冷凍サイクル装置10は、機器用冷却器14におけるオイルの滞留を抑制しつつ、機器用冷却器14の熱交換性能を適切に発揮させることができる。なお、アキュムレータサイクルは、受液部によって圧縮機11の冷媒吸入側での損失が生ずるため、レシーバサイクルに比べて機器用冷却器14の熱交換性能が低くなる。
 特に、本実施形態の放熱器12は、受液部122を通過した冷媒を放熱させる過冷却部123を有している。これによると、放熱器12の冷媒出口側における冷媒状態が過冷却状態となり、放熱器12の冷媒出口側のエンタルピが減少する。このため、揺らぎ処理の実行時であっても、放熱器12を通過した冷媒を液冷媒となるまで冷却することができる。つまり、過冷却部123によって冷媒を過冷却することで、揺らぎ処理による放熱器12における放熱能力のバラツキを抑えることができる。
 また、空調用冷却器16の冷媒流れ下流側には、空調用冷却器16の出口側の冷媒の圧力を機器用冷却器14の出口側の冷媒の圧力よりも高い圧力に維持するための蒸発圧力調整弁17が配置されている。これによると、例えば、空調用冷却器16および機器用冷却器14の双方に冷媒が流れる場合に、空調用冷却器16および機器用冷却器14を流れる冷媒をそれぞれに適した温度に調整することが可能となる。
 また、冷凍サイクル装置10の第2減圧部15は、第2開閉弁151を含んでおり、全閉可能に構成されている。そして、制御装置80は、室内暖房時に、第2減圧部15を全閉状態に制御し、減圧作用が発揮されるように第1減圧部13を制御する。これによると、室内暖房時に、機器用冷却器14にて吸熱した冷媒を、圧縮機11を介して放熱器12に向けて吐出することで、放熱器12を通過する冷媒を熱源として車室内へ送風する送風空気を加熱することができる。
 ここで、機器用冷却器14は、第1減圧部13で減圧された冷媒と低温熱媒体回路40を循環する低温熱媒体と熱交換させる熱交換器で構成されている。これによると、機器冷却時には、機器用冷却器14を冷媒が低温熱媒体から吸熱して蒸発した際の蒸発潜熱を利用して発熱機器を冷却する冷却器として機能させ、室内暖房時に機器用冷却器14を冷媒が低温熱媒体から吸熱する吸熱器として機能させることができる。加えて、揺らぎ処理が実行されると、湿り状態の冷媒が機器用冷却器14全体を通過する機会(すなわち、蒸発潜熱が得られる機会)が多くなることで、機器用冷却器14における低温熱媒体からの吸熱効率の向上を期待できる。したがって、冷凍サイクル装置10は、機器用冷却器14として冷媒と熱媒体と熱交換させる熱交換器が好適である。このことは、機器用冷却器14と空調用冷却器16とが並列に接続される冷凍サイクル装置10に限らず、機器用冷却器14を蒸発器として備える冷凍サイクル装置10でも同様である。
 (第1実施形態の変形例)
 上述の第1実施形態では、室内暖房時に制御装置80によって揺らぎ処理が実行されるものを例示したが、揺らぎ処理の実行タイミングはこれに限定されない。制御装置80は、例えば、機器冷却時や室内冷房時に揺らぎ処理を実行するように構成されていてもよい。
 また、制御装置80は、例えば、室内暖房時においてオイル不足条件が成立した場合に、揺らぎ処理を実行するように構成されていてもよい。オイル不足条件としては、例えば、以下の条件1~5の少なくとも1つを採用することができる。このことは、以降の実施形態においても同様である。
 (条件1)
 オイル不足条件は、外気温が予め定めた基準外気温度(例えば、0℃より低い温度)よりも低くなっている場合に成立する条件とすることができる。外気温が低い場合、機器用冷却器14での冷媒蒸発圧力が低くなり、圧縮機11に吸入される冷媒の密度が低くなることから、オイル不足が生じ易い。
 (条件2)
 オイル不足条件としては、例えば、機器用冷却器14の冷媒出口側の冷媒の温度が基準冷媒温度(例えば、0℃より低い温度)よりも低くなっている場合に成立する条件とすることができる。機器用冷却器14の冷媒出口側の冷媒の温度が低い場合、圧縮機11に吸入される冷媒の密度が低くなることから、オイル不足が生じ易い。
 (条件3)
 オイル不足条件としては、例えば、機器用冷却器14の冷媒出口側の冷媒の圧力が基準圧力よりも低くなっている場合に成立する条件とすることができる。機器用冷却器14の冷媒出口側の冷媒の圧力が低い場合、圧縮機11に吸入される冷媒の密度が低くなることから、オイル不足が生じ易い。
 (条件4)
 オイル不足条件としては、例えば、圧縮機11の回転数が基準回転数よりも小さい場合に成立する条件とすることができる。圧縮機11の回転数が基準回転数よりも小さい場合、サイクル内を循環する冷媒流量が少ないことから、オイル不足が生じ易い。
 (条件5)
 オイル不足条件としては、例えば、前回、揺らぎ処理を実行してから所定の基準時間を経過した際に成立する条件とすることができる。
 上述の第1実施形態では、揺らぎ処理において、冷媒の過熱度Tshが所定の閾値温度Tthに達すると直ちに第1膨張弁132の絞り開度αを大きくするものを例示したが、揺らぎ処理はこれに限定されない。揺らぎ処理は、例えば、冷媒の過熱度Tshが所定の閾値温度Tthに達すると、所定時間が経過するまで第1膨張弁132の絞り開度αを変化させず、所定時間経過後に第1膨張弁132の絞り開度αを大きくする処理になっていてもよい。
 また、上述の第1実施形態では、揺らぎ処理において、第1膨張弁132の絞り開度αが基準開度αthに達すると直ちに第1膨張弁132の絞り開度αを小さくするものを例示したが、揺らぎ処理はこれに限定されない。揺らぎ処理は、例えば、第1膨張弁132の絞り開度αが基準開度αthに達する、所定時間が経過するまで第1膨張弁132の絞り開度αを変化させず、所定時間経過後に第1膨張弁132の絞り開度αを小さくする処理になっていてもよい。
 (第2実施形態)
 次に、第2実施形態について、図8を参照して説明する。本実施形態では、第1実施形態と異なる部分について主に説明する。本実施形態の冷凍サイクル装置10は、制御装置80が実行する揺らぎ処理の内容が第1実施形態と相違している。
 本実施形態の揺らぎ処理については、図8のフローチャートを参照して説明する。図8に示すように、制御装置80は、ステップS200にて、センサ群81および操作パネル82から入力される各種信号を読み込む。
 続いて、制御装置80は、ステップS210にて、第1膨張弁132の絞り開度αが所定の第1基準開度αth1以上であるか否かを判定する。この第1基準開度αth1は、機器用冷却器14の冷媒出口側の冷媒状態が過熱状態となる絞り開度αに設定される。
 過熱状態となる絞り開度αは、第1膨張弁132の絞り開度αを減少させた際の過熱度の変化量や、第1膨張弁132の絞り開度αを増加させた際の過熱度の変化量に基づいて予想可能である。具体的には、第1基準開度αth1は、機器用冷却器14の冷媒出口側の冷媒が基準過熱度(例えば、2~4℃)となると予想される絞り開度αに設定される。例えば、第1基準開度αth1は、第1実施形態で説明した閾値温度Tthとなると予想される絞り開度αに設定される。この場合、閾値温度Tthが第1基準開度αth1に対応する絞り開度αとなる。なお、第1基準開度αth1は、第1実施形態で説明した基準開度αthよりも小さい開度に設定される。
 ステップS210の判定処理の結果、第1膨張弁132の絞り開度αが第1基準開度αth1以上である場合、第1膨張弁132の絞り開度αが減少するように第1減圧部13を制御し、ステップS200に戻る。具体的には、制御装置80は、第1膨張弁132の絞り開度αが段階的に減少するように、第1膨張弁132のステッピングモータを制御する。すなわち、制御装置80は、第1基準開度αth1となるまで第1膨張弁132の絞り開度αを段階的に小さくする。
 一方、ステップS210の判定処理の結果、第1膨張弁132の絞り開度αが第1基準開度αth1未満である場合、制御装置80は、ステップS230に移行して、第1膨張弁132の絞り開度αが段階的に増加するように第1減圧部13を制御する。具体的には、制御装置80は、第1膨張弁132の絞り開度αが段階的に増加するように、第1膨張弁132のステッピングモータを制御する。
 ここで、制御装置80は、第1膨張弁132の絞り開度αを小さくする場合に比べて第1膨張弁132の絞り開度αを大きくする場合の方が単位時間当たりの絞り開度αの変化量が大きくなるように、第1減圧部13を制御する。具体的には、制御装置80は、第1膨張弁132の絞り開度αを小さくする場合に比べて第1膨張弁132の絞り開度αを大きくする場合の方が単位ステップ当たりの絞り開度αの変化量が大きくなるように、第1膨張弁132のステッピングモータを制御する。これによると、圧縮機11側へ気液二相状態の冷媒を流し易くなるので、冷媒とともにサイクル内のオイルが圧縮機11に戻り易くなる。
 続いて、制御装置80は、ステップS240にて、第1膨張弁132の絞り開度αが所定の第2基準開度αth2以上であるか否かを判定する。この第2基準開度αth2は、第1基準開度αth1よりも大きい絞り開度αであって、機器用冷却器14の冷媒出口側の冷媒状態が湿り状態となる絞り開度αに設定される。第2基準開度αth2は、第1実施形態で説明した基準開度αthと同様に設定される。
 ステップS240の判定処理の結果、第1膨張弁132の絞り開度αが第2基準開度αth2未満である場合、制御装置80は、ステップS230に戻る。すなわち、制御装置80は、第2基準開度αth2となるまで第1膨張弁132の絞り開度αを増加させる。
 一方、ステップS240の判定処理の結果、第1膨張弁132の絞り開度αが第2基準開度αth2以上である場合、制御装置80は、ステップS250にて、揺らぎ処理の終了条件が成立したか否かを判定する。揺らぎ処理の終了条件は、例えば、室内暖房を実行する空調装置1の運転が停止された際に成立する条件である。
 ステップS250の判定処理の結果、揺らぎ処理の終了条件が成立すると、制御装置80は、揺らぎ処理を終了する。一方、揺らぎ処理の終了条件が不成立となる場合、制御装置80は、ステップS200に戻る。
 その他の構成および作動は、第1実施形態と同様である。本実施形態の冷凍サイクル装置10は、第1実施形態と共通または均等の構成から奏される効果を第1実施形態と同様に得ることができる。
 本実施形態の揺らぎ処理では、制御装置80は、冷媒の過熱度Tshが所定の閾値温度Tth以上となる第1基準開度αth1となるまで第1膨張弁132の絞り開度αを小さくする。そして、制御装置80は、第1膨張弁132の絞り開度αが第1基準開度αth1に達すると冷媒状態が湿り状態となる第2基準開度αth2となるまで第1膨張弁132の絞り開度αを大きくする。さらに、制御装置80は、第1膨張弁132の絞り開度αが第2基準開度αth2に達すると第1膨張弁132の絞り開度αが第1基準開度αth1に達するまで第1膨張弁132の絞り開度αを小さくする。これによっても、第1膨張弁132の絞り開度αを変化させることによって冷媒状態を過熱状態と湿り状態とに交互に切り替えることができる。
 (第2実施形態の変形例)
 上述の第2実施形態では、揺らぎ処理において、第1膨張弁132の絞り開度αが第1基準開度αth1に達すると直ちに第1膨張弁132の絞り開度αを大きくするものを例示したが、揺らぎ処理はこれに限定されない。揺らぎ処理は、例えば、第1膨張弁132の絞り開度αが第1基準開度αth1に達すると、所定時間が経過するまで第1膨張弁132の絞り開度αを変化させず、所定時間経過後に第1膨張弁132の絞り開度αを大きくする処理になっていてもよい。このことは、第1膨張弁132の絞り開度αが第2基準開度αth2に達した際も同様である。
 (第3実施形態)
 次に、第3実施形態について、図9、図10を参照して説明する。本実施形態では、第1実施形態と異なる部分について主に説明する。
 本実施形態では、発熱機器であるバッテリBTを冷却するための機器冷却システムに本開示の冷凍サイクル装置10Aを適用した例について説明する。図9に示す冷凍サイクル装置10Aは、機器冷却および室内暖房を実施可能になっている。
 冷凍サイクル装置10Aは、圧縮機11A、放熱器12A、減圧部13A、および機器用冷却器14A、および制御装置80を備えている。冷凍サイクル装置10Aの冷媒回路100には、圧縮機11A、放熱器12A、減圧部13A、および機器用冷却器14Aがこの順序で配置されている。なお、圧縮機11Aは、第1実施形態で説明した圧縮機11と同様に構成される。
 放熱器12Aは、圧縮機11Aから吐出された冷媒を放熱させる。放熱器12Aは、圧縮機11から吐出された高圧冷媒を、高温熱媒体回路30Aを流れる高温熱媒体に放熱させる熱交換器である。具体的には、放熱器12Aは、冷媒を凝縮させる凝縮部121A、凝縮部121Aを通過した冷媒の気液を分離するとともに、サイクル内で余剰となる液冷媒を貯留する受液部122Aを有する。凝縮部121Aおよび受液部122Aは、第1実施形態で説明したものと同様に構成される。
 ここで、高温熱媒体回路30Aは、第1実施形態と同様に、放熱器12A、高温側ポンプ31A、ヒータコア32A、高温側ラジエータ33A、高温側流量調整弁34A等を備えている。高温側ポンプ31A、ヒータコア32A、高温側ラジエータ33A、高温側流量調整弁34Aは、第1実施形態で説明したものと同様に構成される。
 放熱器12の出口側には減圧部13Aが接続されている。減圧部13Aは、放熱器12を通過した冷媒を減圧する膨張弁である。減圧部13Aは、第1実施形態で説明した第1膨張弁132と同様に構成されている。
 機器用冷却器14Aは、減圧部13Aで減圧された冷媒を、低温熱媒体回路40Aを循環する低温熱媒体と熱交換させることで、冷媒を蒸発させる蒸発器である。機器用冷却器14Aは、機器冷却時に減圧部13Aで減圧された冷媒の蒸発潜熱を利用してバッテリBTを冷却する冷却器として機能し、室内暖房時に吸熱器として機能する。
 ここで、低温熱媒体回路40Aは、第1実施形態と同様に、機器用冷却器14A、低温側ポンプ41A、バッテリ冷却部42A、低温側ラジエータ43A、第1流路切替弁44A、第2流路切替弁45A等を備えている。低温側ポンプ41A、バッテリ冷却部42A、低温側ラジエータ43A、第1流路切替弁44A、および第2流路切替弁45Aは、第1実施形態で説明したものと同様に構成される。
 以下、機器冷却システムの作動について説明する。機器冷却システムは、運転モードとして、機器冷却および室内暖房を実行可能に構成されている。
 <機器冷却>
 機器冷却は、冷媒の蒸発潜熱を利用して発熱機器であるバッテリBTを冷却する運転モードである。制御装置80は、機器冷却時における各種機器の作動状態をセンサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 例えば、制御装置80は、図10に示すように、減圧部13Aが可変絞り状態となるように制御する。すなわち、制御装置80は、機器冷却時に、機器用冷却器14Aの冷媒出口側の冷媒状態が過熱度を有する過熱状態となるように、減圧部13Aを制御する。
 これにより、機器冷却時に冷凍サイクル装置10Aでは、圧縮機11Aから吐出された高圧冷媒が放熱器12Aの凝縮部121Aに流入する。凝縮部121Aに流入した冷媒は、高温熱媒体回路30Aを流れる高温熱媒体に対して放熱して凝縮する。
 凝縮部121Aを通過した冷媒は、受液部122Aに流入して気液が分離される。そして、受液部122Aで分離された液冷媒が、減圧部13Aに流入し、減圧部13Aにて減圧される。
 減圧部13Aで減圧された冷媒は、機器用冷却器14Aに流入する。機器用冷却器14Aに流入した冷媒は、低温熱媒体回路40Aを流れる低温熱媒体から吸熱して蒸発する。これにより、低温熱媒体が冷却される。
 機器冷却時には機器用冷却器14Aの冷媒出口側の冷媒状態が過熱状態となるように減圧部13Aの絞り開度αが設定される。このため、機器用冷却器14Aを通過した冷媒は、過熱度を有するガス冷媒となって圧縮機11Aに吸入される。圧縮機11Aに吸入された冷媒は、圧縮機11Aにて再び高圧冷媒となるまで圧縮される。
 ここで、機器用冷却器14Aで冷却された低温熱媒体は、バッテリ冷却部42Aに流れ、バッテリBTから吸熱する。これにより、バッテリBTが冷却される。すなわち、機器冷却時は、機器用冷却器14Aにおける冷媒の蒸発潜熱を利用してバッテリBTが冷却される。
 以上の如く、機器冷却時には、機器用冷却器14Aにて冷却された低温熱媒体をバッテリ冷却部42Aに供給することで、バッテリBTの冷却を行うことができる。
 <室内暖房>
 室内暖房は、室内空調ユニット60Aで所望の温度に加熱した空気を車室内に吹き出す運転モードである。制御装置80は、室内暖房時における各種機器の作動状態をセンサ群81の検出信号および操作パネル82の操作信号を用いて適宜決定する。
 例えば、制御装置80は、図10に示すように、機器用冷却器14Aの冷媒出口側の冷媒状態が過熱度を有する過熱状態および湿り蒸気を有する湿り状態に交互に変化するように、減圧部13Aの絞り開度αを変化させる揺らぎ処理を実行する。すなわち、制御装置80は、室内暖房時に、第1実施形態の第1減圧部13と同様に、減圧部13Aを制御する。
 これにより、室内暖房時に冷凍サイクル装置10Aでは、圧縮機11Aから吐出された高圧冷媒が放熱器12Aの凝縮部121Aに流入する。凝縮部121Aに流入した冷媒は、高温熱媒体回路30Aを流れる高温熱媒体に対して放熱して凝縮する。これにより、高温熱媒体回路30Aを流れる高温熱媒体が加熱されて昇温する。
 凝縮部121Aで加熱された高温熱媒体は、ヒータコア32Aに流れ、車室内へ送風する送風空気に放熱される。すなわち、室内暖房時は、サイクル内の高圧冷媒が高温熱媒体を介して車室内へ送風する送風空気に放熱される。
 一方、凝縮部121Aを通過した冷媒は、受液部122Aに流入して気液が分離される。そして、受液部122Aで分離された液冷媒が減圧部13Aに流入し、減圧部13Aにて減圧される。
 減圧部13Aで減圧された冷媒は、機器用冷却器14Aに流入する。機器用冷却器14Aに流入した冷媒は、低温熱媒体回路40Aを流れる低温熱媒体から吸熱して蒸発する。これにより、低温熱媒体が冷却される。機器用冷却器14Aで冷却された低温熱媒体は、低温側ラジエータ43Aに流れ、外気から吸熱する。
 ここで、室内暖房時には機器用冷却器14Aの冷媒出口側の冷媒状態が過熱状態および湿り状態に交互に変化するように減圧部13Aの絞り開度αが変化する。このため、機器用冷却器14Aを通過した冷媒は、気液二相状態の冷媒となって圧縮機11Aに吸入される。圧縮機11Aに吸入された冷媒は、圧縮機11Aにて再び高圧冷媒となるまで圧縮される。
 以上の如く、室内暖房時には、ヒータコア32Aにて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。室内暖房時には、機器用冷却器14A内のオイルが液冷媒とともに圧縮機11に戻される。
 本実施形態の冷凍サイクル装置10Aは、第1実施形態と共通の構成を有している。このため、第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。すなわち、本実施形態の冷凍サイクル装置10Aは、少なくとも室内暖房時に、機器用冷却器14Aの冷媒出口側における冷媒状態が過熱状態および湿り状態に交互に変化するように減圧部13Aが制御される。これによると、少なくとも室内暖房時に、機器用冷却器14Aの冷媒出口側における冷媒状態が湿り状態となる際に、圧縮機11Aに対して気液二相状態の冷媒が吸入されるので、冷媒とともにサイクル内のオイルが圧縮機11Aに戻り易くなる。また、湿り状態と過熱状態とが交互に繰り返されることで、湿り状態での冷媒の乾き度が小さくなり過ぎることを抑制できる。この結果、圧縮機11Aでの液圧縮の発生を抑制することができる。
 したがって、本実施形態の冷凍サイクル装置10によれば、圧縮機11の冷媒吸入側にアキュムレータを配置することなく、室内暖房時に圧縮機11の冷媒吸入側にオイルを戻すことができる。
 また、冷凍サイクル装置10Aは、放熱器12Aが、冷媒を凝縮させる凝縮部121A、凝縮部121Aを通過した冷媒の気液を分離するとともに、サイクル内で余剰となる液冷媒を貯留する受液部122Aを有している。このため、冷凍サイクル装置10Aは、機器用冷却器14Aにおけるオイルの滞留を抑制しつつ、機器用冷却器14Aの熱交換性能を適切に発揮させることができる。また、冷凍サイクル装置10Aは、放熱器12Aにサイクル内の余剰冷媒を貯留する受液部122Aが設けられたサイクル構成になっているので、機器冷却時に機器用冷却器14Aの冷媒出口側の冷媒状態を過熱状態とすることが可能になる。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の実施形態では、室内暖房時に無条件で揺らぎ処理が実行されるものを例示したが、制御装置80は、揺らぎ処理の実行の可否を判断する処理を実行するようになっていてもよい。制御装置80は、例えば、バッテリBTの状態に基づいて揺らぎ処理を実行するか否かを判定する判定処理を実行するようになっていてもよい。
 上述の実施形態では、揺らぎ処理において、第1膨張弁132の絞り開度αを小さくする場合に比べて大きくする場合の方が単位時間当たりの絞り開度αの変化量が大きくなるように第1減圧部13を制御するものを例示したが、揺らぎ処理はこれに限定されない。揺らぎ処理は、例えば、単位時間当たりの絞り開度αの変化量が一定になるように第1減圧部13を制御する処理になっていてもよい。
 上述の実施形態では、揺らぎ処理として、冷媒の過熱度Tshや第1膨張弁132の絞り開度αに応じて、第1膨張弁132の絞り開度αを変化させるものを例示したが、第1膨張弁132の絞り開度αを変化させる契機はこれに限定されない。
 揺らぎ処理は、機器用冷却器14の冷媒出口側の冷媒状態が過熱状態および湿り状態に交互に変化するものであれば、例えば、絞り開度αを変化させる時間を契機として第1膨張弁132の絞り開度αを変化させる処理になっていてもよい。
 また、揺らぎ処理は、例えば、予め設定された許容範囲の間で第1膨張弁132の絞り開度αが増減するように第1減圧部13を制御する処理であってもよい。この場合の許容範囲は、冷媒状態が飽和状態となる絞り開度αを挟む上限および下限を有する絞り範囲とすればよい。
 上述の実施形態では、冷凍サイクル装置10として、室内冷房、機器冷却、および室内暖房を実施可能なものを例示したが、冷凍サイクル装置10はこれに限定されない。冷凍サイクル装置10は、例えば、車室内の除湿暖房を実施可能に構成されていてもよい。また、冷凍サイクル装置10は、例えば、室内暖房だけを実施可能に構成されていてもよい。
 上述の実施形態で説明した冷凍サイクル装置10の各構成は、上述の実施形態に開示されたものに限定されない。圧縮機11は、例えば、内燃機関により駆動されるものが採用されていてもよい。放熱器12は、例えば、受液部122や過冷却部123が省略され、凝縮部121だけを備える構成になっていてもよい。第2膨張弁152は、例えば、機械式膨張弁や固定絞りで構成されていてもよい。第1開閉弁131および第2開閉弁151は、例えば、第1膨張弁132および第2膨張弁152の下流側に配置されていてもよい。第1開閉弁131および第2開閉弁151は、例えば、第1膨張弁132および第2膨張弁152と並列になるように配置されていてもよい。また、第1減圧部13および第2減圧部15は、全閉機能を有する電気式膨張弁で構成されていてもよい。蒸発圧力調整弁17は、例えば、第3冷媒流路100cではなく第2冷媒流路100bに配置されていてもよい。
 上述の実施形態では、高温熱媒体および低温熱媒体として不凍液等の液体が用いられる例を説明したが、高温熱媒体および低温熱媒体はこれに限定されない。高温熱媒体および低温熱媒体は、熱伝導性に優れていれば気体が採用されていてもよい。
 上述の実施形態で説明した高温熱媒体回路30の各構成は、上述の実施形態に開示されたものに限定されない。高温熱媒体回路30は、例えば、ヒータコア32および高温側ラジエータ33それぞれに対応して設けられた2つの流量調整弁によってヒータコア32および高温側ラジエータ33に流れる冷媒の流量比が調整される構成になっていてもよい。
 上述の実施形態で説明した低温熱媒体回路40の各構成は、上述の実施形態に開示されたものに限定されない。低温熱媒体回路40は、三方弁タイプの流路切替弁によって流路切替がなされる構成になっていてもよい。
 また、低温熱媒体回路40を流れる低温熱媒体で冷却する機器は、作動時に発熱を伴う発熱機器であれば、バッテリBT以外の機器であってもよい。車載される発熱機器は、バッテリBT以外に走行用の駆動力を出力する電動モータ、電動モータに供給させる電力の周波数を変換するインバータ、バッテリBTに電力を充電するための充電器等がある。このため、低温熱媒体回路40は、バッテリBTだけでなく、電動モータ、インバータ、充電器等を冷却するように構成されていてもよい。このような構成は、各種の発熱機器を低温熱媒体の流れに対して並列的あるいは直列的に接続することで実現可能である。
 また、上述の実施形態では、高温側ラジエータ33および低温側ラジエータ43の関係について言及していないが、高温側ラジエータ33および低温側ラジエータ43は、互いに独立した構成に限定されない。例えば、高温側ラジエータ33および低温側ラジエータ43は、高温熱媒体の有する熱と低温熱媒体の有する熱が互いに熱移動可能に一体化されていてもよい。具体的には、高温側ラジエータ33および低温側ラジエータ43の一部の構成部品(例えば、熱交換フィン)を共通化することによって、熱媒体同士が熱移動可能に一体化されていてもよい。
 上述の実施形態では、冷凍サイクル装置10をハイブリッド車両の空調装置1や機器冷却システムに適用したものを例示したが、冷凍サイクル装置10はこれに限定されない。冷凍サイクル装置10は、例えば、電動車両の空調装置1や機器冷却システムに適用可能である。また、冷凍サイクル装置10は、車両のような移動体ではなく、定置型の装置やシステムにも適用可能である。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 上述の実施形態において、センサから車両の外部環境情報(例えば外気温)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移的実体的記憶媒体に記憶されていてもよい。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、冷凍サイクル装置は、圧縮機と、放熱器と、冷媒減圧部と、蒸発器と、冷媒減圧部を制御する開度制御部と、を備える。開度制御部は、少なくとも室内暖房時に、蒸発器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する。
 第2の観点によれば、冷凍サイクル装置は、圧縮機と、放熱器と、冷媒減圧部と、並列減圧部と、機器用冷却器と、空調用冷却器と、冷媒減圧部および並列減圧部を制御する開度制御部と、を備える。開度制御部は、少なくとも室内暖房時に、機器用冷却器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する。
 第3の観点によれば、冷凍サイクル装置は、空調用冷却器の冷媒流れ下流側に、空調用冷却器の出口側の冷媒の圧力を機器用冷却器の出口側の冷媒の圧力よりも高い圧力に維持するための圧力調整弁が配置されている。これによると、例えば、空調用冷却器および機器用冷却器の双方に冷媒が流れる場合に、空調用冷却器および機器用冷却器を流れる冷媒をそれぞれに適した温度に調整することが可能となる。
 第4の観点によれば、揺らぎ処理は、冷媒の過熱度が所定の閾値温度に達するまで冷媒減圧部の絞り開度を小さくする。揺らぎ処理は、冷媒の過熱度が閾値温度に達すると冷媒状態が湿り状態となる基準開度となるまで冷媒減圧部の絞り開度を大きくする。揺らぎ処理は、冷媒減圧部の絞り開度が基準開度に達すると冷媒の過熱度が閾値温度に達するまで冷媒減圧部の絞り開度を小さくする。これによれば、冷媒減圧部の絞り開度を変化させることによって冷媒状態を過熱状態と湿り状態とに交互に切り替えることができる。
 第5の観点によれば、揺らぎ処理は、冷媒の過熱度が所定の閾値温度以上となる第1基準開度となるまで冷媒減圧部の絞り開度を小さくする。揺らぎ処理は、冷媒減圧部の絞り開度が第1基準開度に達すると冷媒状態が湿り状態となる第2基準開度となるまで冷媒減圧部の絞り開度を大きくする。揺らぎ処理は、冷媒減圧部の絞り開度が第2基準開度に達すると冷媒減圧部の絞り開度が第1基準開度に達するまで冷媒減圧部の絞り開度を小さくする。これによれば、冷媒減圧部の絞り開度を変化させることによって冷媒状態を過熱状態と湿り状態とに交互に切り替えることができる。
 第6の観点によれば、開度制御部は、揺らぎ処理において、冷媒減圧部の絞り開度を小さくする場合に比べて冷媒減圧部の絞り開度を大きくする場合の方が単位時間当たりの絞り開度の変化量が大きくなるように冷媒減圧部を制御する。このように、冷媒減圧部の絞り開度を大きくする際に、単位時間当たりの絞り開度の変化量を大きくすれば、圧縮機側へ気液二相状態の冷媒を流し易くすることができる。このため、冷媒とともにサイクル内のオイルが圧縮機に戻り易くなる。
 第7の観点によれば、放熱器は、冷媒を凝縮させる凝縮部、凝縮部を通過した冷媒の気液を分離するとともに、サイクル内で余剰となる液冷媒を貯留する受液部を有する。このように、サイクル内の高圧側に受液部を設ける構成(いわゆるレシーバサイクル)は、蒸発器や機器用冷却器の出口側に受液部を備える構成(いわゆるアキュムレータサイクル)に比べて、蒸発器や機器用冷却器の熱交換性能を発揮させ易くなる。このため、本観点によれば、蒸発器や機器用冷却器におけるオイルの滞留を抑制しつつ、蒸発器や機器用冷却器の熱交換性能を適切に発揮させることができる。なお、アキュムレータサイクルは、受液部によって圧縮機の冷媒吸入側での損失が生ずるため、レシーバサイクルに比べて蒸発器や機器用冷却器の熱交換性能が低くなる。
 第8の観点によれば、放熱器は、受液部を通過した冷媒を放熱させる過冷却部を有する。これによると、揺らぎ処理の実行時であっても、放熱器を通過した冷媒を液冷媒となるまで冷却することができる。つまり、過冷却部によって冷媒を過冷却することで、揺らぎ処理による放熱器における放熱能力のバラツキを抑えることができる。
 第9の観点によれば、蒸発器は、冷媒減圧部で減圧された冷媒と熱媒体回路を循環する熱媒体と熱交換させる熱交換器で構成されている。これによると、蒸発器を、室内暖房時に冷媒が熱媒体から吸熱する吸熱器として機能させることができる。加えて、揺らぎ処理が実行されると、湿り状態の冷媒が蒸発器全体を通過する機会(すなわち、蒸発潜熱が得られる機会)が多くなることで、蒸発器における熱媒体からの吸熱効率の向上を期待できる。したがって、本開示の冷凍サイクル装置は、蒸発器として冷媒と熱媒体と熱交換させる熱交換器が好適である。
 第10の観点によれば、機器用冷却器は、冷媒減圧部で減圧された冷媒と熱媒体回路を循環する熱媒体と熱交換させる熱交換器で構成されている。これによると、機器冷却時には、機器用冷却器を冷媒が熱媒体から吸熱して蒸発した際の蒸発潜熱を利用して発熱機器を冷却する冷却器として機能させ、室内暖房時に機器用冷却器を冷媒が熱媒体から吸熱する吸熱器として機能させることができる。加えて、揺らぎ処理が実行されると、湿り状態の冷媒が機器用冷却器全体を通過する機会(すなわち、蒸発潜熱が得られる機会)が多くなることで、機器用冷却器における熱媒体からの吸熱効率の向上を期待できる。したがって、本開示の冷凍サイクル装置は、機器用冷却器として冷媒と熱媒体と熱交換させる熱交換器が好適である。

Claims (10)

  1.  空調対象空間に送風する送風空気を暖める室内暖房を実施可能な冷凍サイクル装置であって、
     オイルを含む冷媒を圧縮して吐出する圧縮機(11、11A)と、
     前記室内暖房時に前記圧縮機から吐出された冷媒を熱源として前記送風空気を暖める放熱器(12、12A)と、
     前記放熱器を通過した冷媒を減圧させる冷媒減圧部(13、13A)と、
     前記室内暖房時に吸熱器として機能する蒸発器(14、14A)と、
     前記冷媒減圧部を制御する開度制御部(80a)と、を備え、
     前記開度制御部は、少なくとも前記室内暖房時に、前記蒸発器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように前記冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する、冷凍サイクル装置。
  2.  空調対象空間に送風する送風空気を暖める室内暖房、発熱機器(BT)を冷却する機器冷却、および前記送風空気を冷却する室内冷房を実施可能な冷凍サイクル装置であって、
     オイルを含む冷媒を圧縮して吐出する圧縮機(11)と、
     前記室内暖房時に前記圧縮機から吐出された冷媒を熱源として前記空調対象空間に送風する前記送風空気を暖める放熱器(12)と、
     前記放熱器を通過した冷媒を減圧させる冷媒減圧部(13)と、
     前記放熱器の冷媒流れ下流側において前記冷媒減圧部と並列に配置される並列減圧部(15)と、
     前記機器冷却時に前記冷媒減圧部で減圧された冷媒の蒸発潜熱を利用して前記発熱機器を冷却する冷却器として機能し、前記室内暖房時に吸熱器として機能する機器用冷却器(14)と、
     前記並列減圧部で減圧された冷媒の前記蒸発潜熱を利用して前記送風空気を冷却する空調用冷却器(16)と、
     前記冷媒減圧部および前記並列減圧部を制御する開度制御部(80a)と、を備え、
     前記開度制御部は、少なくとも前記室内暖房時に、前記機器用冷却器の冷媒出口側における冷媒状態が過熱度を有する過熱状態および湿り蒸気を含む湿り状態に交互に変化するように前記冷媒減圧部の絞り開度を変化させる揺らぎ処理を実行する、冷凍サイクル装置。
  3.  前記空調用冷却器の冷媒流れ下流側には、前記空調用冷却器の出口側の冷媒の圧力を前記機器用冷却器の出口側の冷媒の圧力よりも高い圧力に維持するための圧力調整弁(17)が配置されている、請求項2に記載の冷凍サイクル装置。
  4.  前記揺らぎ処理は、
     冷媒の前記過熱度が所定の閾値温度に達するまで前記冷媒減圧部の絞り開度を小さくし、
     冷媒の前記過熱度が前記閾値温度に達すると前記冷媒状態が前記湿り状態となる基準開度となるまで前記冷媒減圧部の絞り開度を大きくし、
     前記冷媒減圧部の絞り開度が前記基準開度に達すると冷媒の前記過熱度が前記閾値温度に達するまで前記冷媒減圧部の絞り開度を小さくする処理である、請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
  5.  前記揺らぎ処理は、
     冷媒の前記過熱度が所定の閾値温度以上となる第1基準開度となるまで前記冷媒減圧部の絞り開度を小さくし、
     前記冷媒減圧部の絞り開度が前記第1基準開度に達すると前記冷媒状態が前記湿り状態となる第2基準開度となるまで前記冷媒減圧部の絞り開度を大きくし、
     前記冷媒減圧部の絞り開度が前記第2基準開度に達すると前記冷媒減圧部の絞り開度が前記第1基準開度に達するまで前記冷媒減圧部の絞り開度を小さくする処理である、請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
  6.  前記開度制御部は、前記揺らぎ処理において、前記冷媒減圧部の絞り開度を小さくする場合に比べて前記冷媒減圧部の絞り開度を大きくする場合の方が単位時間当たりの絞り開度の変化量が大きくなるように前記冷媒減圧部を制御する、請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。
  7.  前記放熱器は、冷媒を凝縮させる凝縮部(121、121A)、前記凝縮部を通過した冷媒の気液を分離するとともに、サイクル内で余剰となる液冷媒を貯留する受液部(122、122A)を有する、請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
  8.  前記放熱器は、前記受液部を通過した冷媒を放熱させる過冷却部(123)を有する、請求項7に記載の冷凍サイクル装置。
  9.  前記蒸発器は、前記冷媒減圧部で減圧された冷媒と熱媒体回路(40)を循環する熱媒体と熱交換させる熱交換器で構成されている、請求項1に記載の冷凍サイクル装置。
  10.  前記機器用冷却器は、前記冷媒減圧部で減圧された冷媒と熱媒体回路(40A)を循環する熱媒体と熱交換させる熱交換器で構成されている、請求項2に記載の冷凍サイクル装置。
PCT/JP2020/026293 2019-07-22 2020-07-03 冷凍サイクル装置 WO2021014943A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080045059.6A CN114025977B (zh) 2019-07-22 2020-07-03 制冷循环装置
US17/576,030 US20220136747A1 (en) 2019-07-22 2022-01-14 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019134785A JP7283285B2 (ja) 2019-07-22 2019-07-22 冷凍サイクル装置
JP2019-134785 2019-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/576,030 Continuation US20220136747A1 (en) 2019-07-22 2022-01-14 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021014943A1 true WO2021014943A1 (ja) 2021-01-28

Family

ID=74193822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026293 WO2021014943A1 (ja) 2019-07-22 2020-07-03 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US20220136747A1 (ja)
JP (1) JP7283285B2 (ja)
CN (1) CN114025977B (ja)
WO (1) WO2021014943A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508831B (zh) * 2022-02-09 2024-06-18 青岛海尔空调器有限总公司 空调器、空调器检测方法、装置、电子设备及存储介质
WO2024034320A1 (ja) * 2022-08-10 2024-02-15 株式会社デンソー 冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203847A (ja) * 1990-11-30 1992-07-24 Toshiba Corp 空気調和装置
JPH04238720A (ja) * 1991-01-11 1992-08-26 Zexel Corp 車両用空調装置
JPH08200846A (ja) * 1995-01-26 1996-08-06 Sanyo Electric Co Ltd 空気調和機
JPH08296906A (ja) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd 空気調和機
JP2006112700A (ja) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd 空気調和機の除湿運転制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548403A (en) * 1944-11-01 1951-04-10 Elton V Smith Lumber kiln
JP4203847B2 (ja) 2003-03-24 2009-01-07 株式会社ニッコー 自転車用スタンド装置
JP4238720B2 (ja) 2003-12-19 2009-03-18 ソニー株式会社 画像信号の処理装置および処理方法、画像信号の処理基板、画像信号処理システム、並びにプログラムおよびそれを記録した媒体
JP2006177632A (ja) * 2004-12-24 2006-07-06 Denso Corp 冷凍サイクル
JP5228023B2 (ja) * 2010-10-29 2013-07-03 三菱電機株式会社 冷凍サイクル装置
WO2013128897A1 (ja) * 2012-02-28 2013-09-06 株式会社日本クライメイトシステムズ 車両用空調装置
WO2014061132A1 (ja) * 2012-10-18 2014-04-24 ダイキン工業株式会社 空気調和装置
JPWO2017217099A1 (ja) * 2016-06-16 2018-11-08 株式会社デンソー 冷凍サイクル装置
JP6910210B2 (ja) * 2017-02-03 2021-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和装置
JP6922856B2 (ja) * 2017-08-10 2021-08-18 株式会社デンソー 冷凍サイクル装置
DE102018118118A1 (de) * 2017-08-23 2019-02-28 Hanon Systems Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203847A (ja) * 1990-11-30 1992-07-24 Toshiba Corp 空気調和装置
JPH04238720A (ja) * 1991-01-11 1992-08-26 Zexel Corp 車両用空調装置
JPH08200846A (ja) * 1995-01-26 1996-08-06 Sanyo Electric Co Ltd 空気調和機
JPH08296906A (ja) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd 空気調和機
JP2006112700A (ja) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd 空気調和機の除湿運転制御方法

Also Published As

Publication number Publication date
CN114025977A (zh) 2022-02-08
JP7283285B2 (ja) 2023-05-30
JP2021017169A (ja) 2021-02-15
US20220136747A1 (en) 2022-05-05
CN114025977B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN108369042B (zh) 制冷循环装置
JP5655954B2 (ja) 冷却装置および冷却装置の制御方法
WO2020213536A1 (ja) 車両用電池加熱装置
JP5373841B2 (ja) 冷却装置
JP7176405B2 (ja) 温度調整装置
JP5815284B2 (ja) 冷却装置
JP5531045B2 (ja) 冷却装置
JP2006118754A (ja) 蒸気圧縮式冷凍機
CN111688434A (zh) 车载温度调节装置
US11241930B2 (en) Vehicle-mounted temperature controller
JP2019104394A (ja) 熱管理システム
WO2021014943A1 (ja) 冷凍サイクル装置
JP2019100688A (ja) ヒートポンプシステム
JP2019066049A (ja) 冷凍サイクル装置
JP2012245856A (ja) 冷却装置
JP5320419B2 (ja) 冷却装置
WO2020246337A1 (ja) 熱交換器、冷凍サイクル装置
WO2020246338A1 (ja) 冷凍サイクル装置
WO2019031131A1 (ja) 冷凍サイクル装置
JP2006177588A (ja) 蒸気圧縮式冷凍機
WO2023182106A1 (ja) 冷凍サイクル装置
KR101170849B1 (ko) 축냉시스템을 이용한 차량용 공조장치
JP2024043205A (ja) 車両用の温調システムおよび温調方法
JP2023139903A (ja) 熱交換システム
JP5917966B2 (ja) 冷却装置およびそれを備える車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844641

Country of ref document: EP

Kind code of ref document: A1