WO2021014685A1 - Method for producing thin circularly polarizing plate - Google Patents

Method for producing thin circularly polarizing plate Download PDF

Info

Publication number
WO2021014685A1
WO2021014685A1 PCT/JP2020/012191 JP2020012191W WO2021014685A1 WO 2021014685 A1 WO2021014685 A1 WO 2021014685A1 JP 2020012191 W JP2020012191 W JP 2020012191W WO 2021014685 A1 WO2021014685 A1 WO 2021014685A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizing plate
layer
crystal oriented
solidified layer
Prior art date
Application number
PCT/JP2020/012191
Other languages
French (fr)
Japanese (ja)
Inventor
理 小島
圭太 小川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080052466.XA priority Critical patent/CN114144707A/en
Priority to KR1020227001628A priority patent/KR20220035386A/en
Publication of WO2021014685A1 publication Critical patent/WO2021014685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a method for manufacturing a thin circular polarizing plate.
  • circular polarizing plates are used for the purpose of improving display characteristics and preventing reflection.
  • a polarizer and a retardation film typically form an angle of 45 ° between the absorption axis of the polarizer and the slow axis of the retardation film. It is laminated in this way. Further, due to the demand for thinning of the organic EL panel, thinning of the circular polarizing plate is required.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to have excellent runnability during roll transport, suppression of winding tightening during stagnation during roll transport, and appearance of a film.
  • An object of the present invention is to provide a method for manufacturing a thin circular polarizing plate in which defects are suppressed.
  • the method for producing a circular polarizing plate of the present invention includes a step of forming a liquid crystal oriented solidified layer on the surface of a substrate, a step of adhering the liquid crystal oriented solidified layer on the surface of the polarizing plate, and a step of bonding the liquid crystal oriented solidified layer of the polarizing plate.
  • the thickness of the circularly polarizing plate is 45 ⁇ m or less, including a step of temporarily attaching a separator to the side of the pressure-sensitive adhesive layer opposite to the liquid crystal oriented solidified layer so that the separator can be peeled off.
  • the surface protective film comprises a polyethylene resin or a polyethylene terephthalate resin. In one embodiment, the thickness of the surface protective film is 25 ⁇ m or more.
  • the polarizing plate and the liquid crystal oriented solidifying layer are bonded together via a photocurable adhesive.
  • the liquid crystal oriented solidified layer functions as a ⁇ / 4 plate.
  • another liquid crystal oriented solidified layer is further attached to the opposite side of the liquid crystal oriented solidified layer from the polarizing plate.
  • one of the liquid crystal oriented solidified layer and the other liquid crystal oriented solidified layer functions as a ⁇ / 2 plate, and the other functions as a ⁇ / 4 plate.
  • a liquid crystal oriented solidified layer formed on a base material is attached to the polarizing plate, and a surface protective film is temporarily attached before the base material is peeled off.
  • the following excellent effects can be obtained. That is, in the manufacturing process of the thin circular polarizing plate, the running performance during roll transport is excellent (for example, breakage is suppressed), and poor adhesive deformation, adhesive dents, etc. due to winding tightening during stagnation during roll transport are suppressed. At the same time, poor appearance of the obtained circularly polarizing plate (for example, stains on the visual side) is suppressed.
  • FIGS. 1 to (g) are schematic cross-sectional views for explaining the method for manufacturing a circularly polarizing plate according to the embodiment of the present invention in order of steps. It is the schematic sectional drawing of the circular polarizing plate obtained by the manufacturing method of one Embodiment of this invention.
  • FIGS. 1 (a) to 1 (g) are schematic cross-sectional views for explaining a method for manufacturing a circularly polarizing plate according to an embodiment of the present invention in order of steps.
  • each step of the method for manufacturing a circularly polarizing plate will be described in detail with reference to FIGS. 1 (a) to 1 (g).
  • the polarizing plate 10 is prepared.
  • the polarizing plate 10 typically includes a polarizing element and a protective layer arranged on at least one side of the polarizing element.
  • Protective layers may be placed on either side of the polarizer.
  • the protective layer 11 is arranged on one side of the polarizer 12.
  • the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film ethylene / vinyl acetate copolymer system partially saponified film
  • examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
  • the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching.
  • the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
  • the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer), and the resin base material is peeled off from the resin base material / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
  • the thickness of the polarizer is preferably 15 ⁇ m or less when the polarizer is obtained by using a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material. It is more preferably 1 ⁇ m to 12 ⁇ m, further preferably 3 ⁇ m to 12 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the thickness of the polarizer is preferably more than 15 ⁇ m and 40 ⁇ m or less. is there.
  • the protective layer is formed of any suitable film that can be used as a protective layer for the polarizer.
  • the resin film forming material include (meth) acrylic resin, cellulose resin such as diacetyl cellulose and triacetyl cellulose, cycloolefin resin such as norbornene resin, olefin resin such as polypropylene, and polyethylene terephthalate resin. Examples thereof include ester-based resins such as, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof.
  • a (meth) acrylic resin is preferable.
  • the "(meth) acrylic resin” refers to an acrylic resin and / or a methacrylic resin.
  • the (meth) acrylic resin having a glutarimide structure is used as the (meth) acrylic resin.
  • Examples of the (meth) acrylic resin having a glutarimide structure include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in JP-A-161744 and JP-A-2010-284840. These statements are incorporated herein by reference.
  • the thickness of the protective layer is preferably 5 mm or less, more preferably 1 mm or less, further preferably 1 ⁇ m to 500 ⁇ m, and most preferably 5 ⁇ m to 150 ⁇ m.
  • the thickness of the protective layer is the thickness including the thickness of the surface treatment layer.
  • the protective layer is attached to the polarizer via an arbitrary appropriate adhesive layer (adhesive layer, adhesive layer).
  • the liquid crystal oriented solidified layer 21 is bonded to the surface of the polarizing plate 10 (polarizer 12 in the illustrated example). Specifically, the liquid crystal oriented solidified layer 21 is formed on an arbitrary suitable base material 30, and the laminate of the base material 30 and the liquid crystal oriented solidified layer 21 is bonded to the polarizing plate 10.
  • the liquid crystal oriented solidified layer and the polarizing plate are typically bonded to each other via a photocurable adhesive. Examples of the photocurable adhesive include an ultraviolet curable adhesive.
  • the liquid crystal oriented solidified layer is an oriented solidified layer of a liquid crystal compound.
  • the liquid crystal alignment solidified layer 21 is subjected to an orientation treatment on the surface of the base material 30, and a coating liquid containing a liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state.
  • the substrate is any suitable resin film. Preferably, a triacetyl cellulose (TAC) film is used.
  • the difference between nx and ny of the obtained liquid crystal alignment solidification layer can be remarkably increased as compared with the non-liquid crystal material, so that a desired in-plane phase difference can be obtained.
  • the thickness of the liquid crystal oriented solidified layer can be remarkably reduced. As a result, it is possible to reduce the thickness and weight of the circular polarizing plate.
  • the term "oriented solidified layer” refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed.
  • the "oriented solidified layer” is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later.
  • the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow phase axial direction of the liquid crystal oriented solidified layer (homogeneous orientation).
  • the liquid crystal compound examples include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase.
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed.
  • the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal.
  • the formed liquid crystal oriented solidified layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example.
  • the liquid crystal oriented solidified layer is not affected by temperature changes and is extremely stable.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
  • any suitable liquid crystal monomer can be adopted as the liquid crystal monomer.
  • the polymerizable mesogen compounds described in Special Tables 2002-533742 WO00 / 37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93 / 22397 EP0261712, DE19504224, DE4408171, and GB2280445
  • Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Sillicon-CC3767.
  • the liquid crystal monomer for example, a nematic liquid crystal monomer is preferable.
  • any appropriate orientation treatment can be adopted.
  • Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment.
  • Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment.
  • Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment.
  • As the treatment conditions for various orientation treatments any appropriate conditions may be adopted depending on the purpose.
  • the orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
  • the orientation state is fixed by cooling the liquid crystal compound oriented as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
  • the liquid crystal oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation.
  • the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the oriented solidification layer.
  • the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °.
  • Discotic liquid crystal compounds generally have cyclic mother nuclei such as benzene, 1,3,5-triazine, and calix arene in the center of the molecule, and linear alkyl groups, alkoxy groups, and substituted benzoyls.
  • Typical examples of discotic liquid crystals include C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivatives, triphenylene derivatives, tolucene derivatives, phthalocyanine derivatives, and B.I., described in Vol. 71, p. 111 (1981).
  • the thickness thereof is preferably 0.5 ⁇ m to 7 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the liquid crystal oriented solidified layer is typically provided to impart antireflection properties to the polarizing plate, and can function as a ⁇ / 4 plate when the liquid crystal oriented solidified layer is a single layer.
  • the in-plane retardation Re (550) of the liquid crystal oriented solidified layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and further preferably 130 nm to 160 nm.
  • the Nz coefficient of the liquid crystal oriented solidified layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained circular polarizing plate is used in an image display device.
  • the liquid crystal oriented solidified layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and exhibits a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. Alternatively, it may exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
  • the liquid crystal oriented solidified layer exhibits reverse dispersion wavelength characteristics.
  • the Re (450) / Re (550) of the liquid crystal oriented solidified layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
  • the angle ⁇ formed by the slow axis of the liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °. ..
  • the angle ⁇ is in such a range, by using the liquid crystal oriented solidified layer as the ⁇ / 4 plate as described above, it has very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics).
  • a circular polarizing plate can be obtained.
  • the slow axis direction of the liquid crystal oriented solidified layer can correspond to the above-mentioned orientation processing direction.
  • the production method of the present invention further comprises laminating another liquid crystal oriented solidified layer 22 on the opposite side of the liquid crystal oriented solidified layer 21 to the polarizing plate 10 as shown in FIG. 1 (c). .. Specifically, it is as follows. First, another liquid crystal oriented solidifying layer 22 is formed on the base material 30 in the same manner as described above. Next, the liquid crystal oriented solidifying layer 21 is formed on another base material (not shown) in the same manner as described above. At this time, each orientation treatment direction corresponds to the slow axis direction of each orientation solidification layer described later.
  • the liquid crystal oriented solidified layer 21 is bonded to another liquid crystal oriented solidified layer 22, and a laminated body having the liquid crystal oriented solidified layer 21, another liquid crystal oriented solidified layer 22, and the base material 30 in this order is produced.
  • the liquid crystal oriented solidified layer 21 and another liquid crystal oriented solidified layer 22 are bonded to each other via any suitable adhesive.
  • the obtained laminate is bonded to the polarizing plate in the same manner as described above. In this way, a laminated body as shown in FIG. 1C is obtained.
  • one of the liquid crystal oriented solidified layer and the other liquid crystal oriented solidified layer is ⁇ . It functions as a / 2 plate and the other as a ⁇ / 4 plate. Therefore, the thickness of the liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer can be adjusted so as to obtain a desired in-plane phase difference of the ⁇ / 4 plate or the ⁇ / 2 plate.
  • the thickness of the liquid crystal oriented solidified layer is, for example, 2.0 ⁇ m to 3.0 ⁇ m.
  • the thickness of the liquid crystal oriented solidified layer is, for example, 1.0 ⁇ m to 2.0 ⁇ m.
  • the in-plane retardation Re (550) of the liquid crystal oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm.
  • the in-plane retardation Re (550) of another liquid crystal oriented solidified layer is as described above with respect to the single oriented solidified layer.
  • the angle formed by the slow axis of the liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably about 15 °.
  • the angle formed by the slow axis of another liquid crystal oriented solidifying layer and the absorption axis of the polarizer is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. is there.
  • liquid crystal compounds constituting the liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer, the method for forming the liquid crystal oriented solidified layer and the liquid crystal oriented solidified layer, the optical properties, and the like are as described above for the single layer oriented solidified layer. ..
  • the surface protective film 40 is temporarily attached to the side of the polarizing plate 10 opposite to the liquid crystal oriented solidifying layer 21 so as to be peelable. More specifically, the surface protective film 40 includes a base film and an adhesive layer, and the surface protective film 40 and the polarizing plate 10 are bonded to each other via the adhesive layer. In the subsequent steps, the case where the liquid crystal oriented solidifying layer 21 and another liquid crystal oriented solidifying layer 22 are bonded to each other will be described, but it is the same even if the liquid crystal oriented solidifying layer is a single layer. It is self-evident.
  • the base film of the surface protective film 40 may be composed of any suitable resin film.
  • the resin film forming material include olefin resins such as polyethylene resins, ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, polyamide resins, polycarbonate resins, and copolymers thereof. Examples include resin. A polyethylene-based resin or a polyethylene terephthalate-based resin is preferable. With such a material, in the manufacturing process of the circular polarizing plate, the runnability during roll transport is excellent, the adhesive deformation defect due to the stagnation during roll transport can be suppressed, and the appearance defect of the film can be suppressed. ..
  • the thickness of the base film is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 50 ⁇ m. With such a thickness, there is an advantage that deformation is unlikely to occur even if tension is applied during transportation and / or bonding.
  • the tensile elastic modulus of the base film is preferably 1.0 ⁇ 10 8 Pa to 5.0 ⁇ 10 9 Pa, and more preferably 2.0 ⁇ 10 8 Pa to 3.0 ⁇ 10 9 Pa.
  • the tensile elastic modulus of the base film is within such a range, in the manufacturing process of the circularly polarizing plate, the running performance during roll transport is excellent, and the adhesive deformation defect due to the winding tightening during stagnation during roll transport is suppressed. Poor appearance of the film can be suppressed.
  • any suitable pressure-sensitive adhesive can be adopted.
  • the base resin of the pressure-sensitive adhesive include acrylic resin, styrene resin, and silicone resin. Acrylic resins are preferable from the viewpoints of chemical resistance, adhesion for preventing the infiltration of the treatment liquid during immersion, degree of freedom to the adherend, and the like.
  • the cross-linking agent that can be contained in the pressure-sensitive adhesive include isocyanate compounds, epoxy compounds, and aziridine compounds.
  • the pressure-sensitive adhesive may contain, for example, a silane coupling agent. The formulation of the pressure-sensitive adhesive can be appropriately set according to the purpose.
  • the thickness of the pressure-sensitive adhesive layer is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the lower limit of the thickness is, for example, 0.1 ⁇ m.
  • the thickness of the surface protective film is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, and more preferably 35 ⁇ m or more.
  • the upper limit of the thickness of the surface protective film can be, for example, 100 ⁇ m.
  • the thickness of the surface protective film means the total thickness of the base film and the pressure-sensitive adhesive layer.
  • the base material 30 is peeled off from another liquid crystal oriented solidifying layer 22 with the surface protective film 40 temporarily attached.
  • the running performance during roll transfer is excellent (for example, breakage is suppressed) in the manufacturing process of the thin circular polarizing plate, and the roll transfer is performed.
  • Poor deformation of the adhesive due to tightening during stagnation, dents in the adhesive, and the like are suppressed, and poor appearance of the obtained circularly polarizing plate (for example, stains on the visual side) is suppressed.
  • the thickness of the surface protective film is within the range described in A-3, such an effect becomes remarkable.
  • the pressure-sensitive adhesive layer may be typically composed of an acrylic pressure-sensitive adhesive.
  • the thickness of the pressure-sensitive adhesive layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the lower limit of the thickness of the pressure-sensitive adhesive layer can be, for example, 1 ⁇ m.
  • the separator protects the adhesive layer until actual use and enables the formation of rolls of a circular polarizing plate.
  • the surface protective film 40 and the separator 60 can be peeled off from the optical laminate shown in FIG. 1 (g) obtained by the above manufacturing method. In this way, the circular polarizing plate 100 as shown in FIG. 2 is obtained.
  • the thickness of the circular polarizing plate is 45 ⁇ m or less, preferably 40 ⁇ m or less.
  • the lower limit of the thickness of the circularly polarizing plate can be, for example, 10 ⁇ m.
  • the thickness of the circularly polarizing plate means the total thickness from the polarizing plate to another liquid crystal oriented solidified layer (that is, the thickness of the circularly polarizing plate does not include the thickness of the surface protective film, the pressure-sensitive adhesive layer, and the separator. ).
  • a circular polarizing plate was collected and pasted on a smooth blackboard (CLAREX manufactured by Nitto Jushi Kogyo Co., Ltd.), and the adhesive unevenness was visually recognized in the entire width.
  • the case was evaluated as x, the case where the adhesive unevenness was visually recognized with a width of half or less was evaluated as ⁇ , and the case where the adhesive unevenness was not visually recognized was evaluated as ⁇ .
  • Example 1 Preparation of Polarizer
  • a thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used. ..
  • One side of the resin base material was corona-treated. 100 weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410”) are mixed at a ratio of 9: 1.
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • Polarizing Plate Acrylic film (surface refractive index 1.50, 20 ⁇ m) is applied as a protective layer on the surface of the polarizer obtained above (the surface opposite to the resin substrate), and an ultraviolet curable adhesive is applied. It was pasted together. Specifically, the curable adhesive was coated so as to have a total thickness of 1.0 ⁇ m, and bonded using a roll machine. Then, UV light was irradiated from the protective layer side to cure the adhesive. Next, after slitting both ends, the resin base material was peeled off to obtain a long polarizing plate (width: 1300 mm) having a protective layer / polarizer configuration.
  • the direction of the orientation treatment was set to be 15 ° when viewed from the visual side with respect to the direction of the absorption axis of the polarizer when the polarizing plate was attached.
  • the liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes.
  • the liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer on the TAC film.
  • Another TAC film in the same manner as above, except that the coating thickness was changed and the orientation processing direction was set to be 75 ° when viewed from the visual side with respect to the direction of the absorber's absorption axis.
  • Another liquid crystal oriented solidified layer was formed on the film.
  • the liquid crystal oriented solidified layer was attached to another liquid crystal oriented solidified layer, and the TAC film was peeled off to prepare a laminate having the liquid crystal oriented solidified layer, another liquid crystal oriented solidified layer, and another TAC film in this order. ..
  • the liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer are bonded to each other in the above 2. It was carried out through the ultraviolet curable adhesive (thickness 1.0 ⁇ m) used in.
  • the obtained laminate is subjected to the above 2. It was attached to the above polarizing plate via the ultraviolet curable adhesive (thickness 1.0 ⁇ m) used in. In this way, a laminate having a structure of a polarizing plate / a liquid crystal oriented solidified layer / another liquid crystal oriented solidified layer / a base material (another TAC film) was obtained.
  • a surface protective film (E-MASK RP109F, manufactured by Nitto Denko KK) was temporarily attached to the side opposite to the liquid crystal oriented solidified layer of the polarizing plate so as to be peelable. Then, another TAC film as a base material was peeled off from another liquid crystal oriented solidifying layer. A pressure-sensitive adhesive layer (acrylic pressure-sensitive adhesive, thickness: 50 ⁇ m) was formed on the peeled surface of the other liquid crystal oriented solidified layer. In the step of forming the pressure-sensitive adhesive layer, the evaluation of (1) above was performed.
  • E-MASK RP109F manufactured by Nitto Denko KK
  • a separator was temporarily attached to the side of the pressure-sensitive adhesive layer opposite to the liquid crystal oriented solidified layer so that it could be peeled off.
  • an optical laminate having a structure of a surface protective film / polarizing plate / liquid crystal oriented solidified layer / another liquid crystal oriented solidified layer / adhesive layer / separator was obtained.
  • the thickness of the base film of the surface protective film was 38 ⁇ m, and the thickness of the surface protective film was 48 ⁇ m.
  • the tensile modulus of the surface protective film was 2.0 ⁇ 10 9 Pa.
  • the obtained optical laminate was subjected to the evaluations (2) to (3) above. The results are shown in Table 1.
  • the thickness of the circularly polarizing plate (excluding the adhesive) obtained by peeling the surface protective film and the separator from the optical laminate was 31 ⁇ m.
  • Example 2 An optical laminate was obtained in the same manner as in Example 1 except that E-MASK RP149C (manufactured by Nitto Denko KK) was used as the surface protective film.
  • the thickness of the base film of the surface protective film was 50 ⁇ m, and the thickness of the surface protective film was 60 ⁇ m.
  • the tensile modulus of the surface protective film was 2.0 ⁇ 10 9 Pa.
  • the obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 An optical laminate was obtained in the same manner as in Example 1 except that Tretec 7832E (manufactured by Toray Industries, Inc.) was used as the surface protective film.
  • the thickness of the base film of the surface protective film and the thickness of the surface protective film were 25 ⁇ m.
  • the tensile modulus of the surface protective film was 3.0 ⁇ 10 8 Pa.
  • the obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 4 An optical laminate was obtained in the same manner as in Example 1 except that Tretec 7832C (manufactured by Toray Industries, Inc.) was used as the surface protective film.
  • the thickness of the base film of the surface protective film and the thickness of the surface protective film were 30 ⁇ m.
  • the tensile modulus of the surface protective film was 3.0 ⁇ 10 8 Pa.
  • the obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 5 A long length as in Example 1 except that a cycloolefin-based unstretched film with a hard coat layer (manufactured by Nippon Zeon Co., Ltd., thickness: 27 ⁇ m) was used as the protective layer of the polarizing plate instead of the acrylic stretched film.
  • An optical laminate having a shape-like retardation layer and a polarizing plate with a hard coat layer was obtained.
  • the obtained optical laminate was subjected to the same evaluation as in Example 1.
  • the thickness of the circular polarizing plate excluding the pressure-sensitive adhesive obtained by peeling the surface protective film and the separator from the optical laminate was 38 ⁇ m.
  • Example 1 An optical laminate was obtained in the same manner as in Example 1 except that the surface protective film was not used. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the optical laminate obtained according to the examples of the present invention has excellent runnability during roll transport, suppresses poor adhesive deformation due to stagnation during roll transport, and suppresses poor adhesive deformation of the film. It can be seen that the poor appearance is suppressed. Further, it can be seen that by using a thick surface protective film, poor adhesive deformation due to winding during stagnation is further suppressed (comparison between Examples 1 and 2 and Examples 3 and 4).
  • the circular polarizing plate obtained by the manufacturing method of the present invention is suitably used for an image display device such as a liquid crystal display device (LCD) and an organic electroluminescence display device (OLED).
  • LCD liquid crystal display device
  • OLED organic electroluminescence display device
  • Polarizing plate 11
  • Protective layer 12 Polarizer 21
  • Liquid crystal oriented solidifying layer 22 Another liquid crystal oriented solidifying layer 30
  • Base material 40
  • Surface protective film 50 Adhesive layer 60
  • Separator 100 Circular polarizing plate

Abstract

The present invention provides a method for producing a thin circularly polarizing plate, said method exhibiting excellent travelability during roll conveyance, while being suppressed in adhesive deformation defects due to tight winding during stagnation of the roll conveyance, thereby being suppressed in appearance defects of a film. A method for producing a circularly polarizing plate according to the present invention comprises: a step for forming a liquid crystal alignment fixing layer on the surface of a base material; a step for bonding the liquid crystal alignment fixing layer to the surface of a polarizing plate; a step for provisionally bonding a surface protective film to a surface of the polarizing plate in a removable manner, said surface being on the reverse side from the liquid crystal alignment fixing layer; a step for removing the base material from the liquid crystal alignment fixing layer; a step for forming an adhesive layer on the removal surface of the liquid crystal alignment fixing layer; and a step for provisionally bonding a separator to a surface of the adhesive layer in a removable manner, said surface being on the reverse side from the liquid crystal alignment fixing layer.

Description

薄型円偏光板の製造方法Manufacturing method of thin circular polarizing plate
 本発明は、薄型円偏光板の製造方法に関する。 The present invention relates to a method for manufacturing a thin circular polarizing plate.
 液晶表示装置(LCD)、有機エレクトロルミネッセンス表示装置(OLED)等の画像表示装置において、表示特性の向上や反射防止を目的として円偏光板が用いられている。円偏光板は、代表的には、偏光子と位相差フィルム(代表的にはλ/4板)とが、偏光子の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして積層されている。さらに、有機ELパネルに対する薄型化の要請から、円偏光板の薄型化が求められている。 In image display devices such as liquid crystal display devices (LCD) and organic electroluminescence display devices (OLED), circular polarizing plates are used for the purpose of improving display characteristics and preventing reflection. In a circular polarizing plate, a polarizer and a retardation film (typically a λ / 4 plate) typically form an angle of 45 ° between the absorption axis of the polarizer and the slow axis of the retardation film. It is laminated in this way. Further, due to the demand for thinning of the organic EL panel, thinning of the circular polarizing plate is required.
 しかし、従来の薄型円偏光板の製造工程においては、ロール搬送時の走行性が不十分である、ロール搬送における停滞時に巻き締まりによる粘着剤変形不良が起きる、フィルムの外観不良が起こるなどの問題がある。 However, in the conventional manufacturing process of a thin circular polarizing plate, there are problems such as insufficient runnability during roll transport, poor adhesive deformation due to winding during stagnation during roll transport, and poor film appearance. There is.
特許第3325560号Patent No. 3325560
 本発明は、上記従来の課題を解決するためになされたものであり、その目的とするところは、ロール搬送時の走行性に優れ、ロール搬送における停滞時の巻き締まりが抑制され、フィルムの外観不良が抑制された、薄型円偏光板の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to have excellent runnability during roll transport, suppression of winding tightening during stagnation during roll transport, and appearance of a film. An object of the present invention is to provide a method for manufacturing a thin circular polarizing plate in which defects are suppressed.
 本発明の円偏光板の製造方法は、基材表面に液晶配向固化層を形成する工程と、偏光板の表面に該液晶配向固化層を貼り合わせる工程と、該偏光板の該液晶配向固化層と反対側に表面保護フィルムを剥離可能に仮着する工程と、該基材を該液晶配向固化層から剥離する工程と、該液晶配向固化層の剥離面に粘着剤層を形成する工程と、該粘着剤層の該液晶配向固化層と反対側にセパレーターを剥離可能に仮着する工程と、を含み、該円偏光板の厚みは45μm以下である。
 1つの実施形態においては、上記表面保護フィルムは、ポリエチレン系樹脂またはポリエチレンテレフタレート系樹脂を含む。
 1つの実施形態においては、上記表面保護フィルムの厚みは25μm以上である。
 1つの実施形態においては、上記偏光板と上記液晶配向固化層とを、光硬化型の接着剤を介して貼り合わせる。
 1つの実施形態においては、上記液晶配向固化層はλ/4板として機能する。
 1つの実施形態においては、上記液晶配向固化層の上記偏光板と反対側に別の液晶配向固化層を貼り合わせることをさらに含む。
 1つの実施形態においては、上記液晶配向固化層と上記別の液晶配向固化層のいずれか一方はλ/2板として機能し、他方はλ/4板として機能する。
The method for producing a circular polarizing plate of the present invention includes a step of forming a liquid crystal oriented solidified layer on the surface of a substrate, a step of adhering the liquid crystal oriented solidified layer on the surface of the polarizing plate, and a step of bonding the liquid crystal oriented solidified layer of the polarizing plate. A step of temporarily attaching the surface protective film to the opposite side so as to be peelable, a step of peeling the substrate from the liquid crystal oriented solidified layer, and a step of forming an adhesive layer on the peeled surface of the liquid crystal oriented solidified layer. The thickness of the circularly polarizing plate is 45 μm or less, including a step of temporarily attaching a separator to the side of the pressure-sensitive adhesive layer opposite to the liquid crystal oriented solidified layer so that the separator can be peeled off.
In one embodiment, the surface protective film comprises a polyethylene resin or a polyethylene terephthalate resin.
In one embodiment, the thickness of the surface protective film is 25 μm or more.
In one embodiment, the polarizing plate and the liquid crystal oriented solidifying layer are bonded together via a photocurable adhesive.
In one embodiment, the liquid crystal oriented solidified layer functions as a λ / 4 plate.
In one embodiment, another liquid crystal oriented solidified layer is further attached to the opposite side of the liquid crystal oriented solidified layer from the polarizing plate.
In one embodiment, one of the liquid crystal oriented solidified layer and the other liquid crystal oriented solidified layer functions as a λ / 2 plate, and the other functions as a λ / 4 plate.
 本発明によれば、薄型円偏光板の製造方法において、基材に形成された液晶配向固化層を偏光板に貼り合わせ、当該基材を剥離する前に表面保護フィルムを仮着することにより、下記の優れた効果が得られる。すなわち、薄型円偏光板の製造工程においてロール搬送時の走行性に優れ(例えば、破断が抑制され)、かつ、ロール搬送における停滞時の巻き締まりによる粘着剤変形不良、粘着剤打痕等が抑制されるとともに、得られる円偏光板の外観不良(例えば、視認側の汚れ)が抑制される。 According to the present invention, in the method for producing a thin circular polarizing plate, a liquid crystal oriented solidified layer formed on a base material is attached to the polarizing plate, and a surface protective film is temporarily attached before the base material is peeled off. The following excellent effects can be obtained. That is, in the manufacturing process of the thin circular polarizing plate, the running performance during roll transport is excellent (for example, breakage is suppressed), and poor adhesive deformation, adhesive dents, etc. due to winding tightening during stagnation during roll transport are suppressed. At the same time, poor appearance of the obtained circularly polarizing plate (for example, stains on the visual side) is suppressed.
(a)~(g)は、本発明の一実施形態の円偏光板の製造方法を工程順に説明するための概略断面図である。(A) to (g) are schematic cross-sectional views for explaining the method for manufacturing a circularly polarizing plate according to the embodiment of the present invention in order of steps. 本発明の一実施形態の製造方法により得られる円偏光板の概略断面図である。It is the schematic sectional drawing of the circular polarizing plate obtained by the manufacturing method of one Embodiment of this invention.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.円偏光板の製造方法
 図1(a)~(g)は、本発明の一実施形態の円偏光板の製造方法を工程順に説明するための概略断面図である。以下、図1(a)~(g)を参照しながら、円偏光板の製造方法の各工程について詳細に説明する。
A. Method for Manufacturing Circular Polarizing Plate FIGS. 1 (a) to 1 (g) are schematic cross-sectional views for explaining a method for manufacturing a circularly polarizing plate according to an embodiment of the present invention in order of steps. Hereinafter, each step of the method for manufacturing a circularly polarizing plate will be described in detail with reference to FIGS. 1 (a) to 1 (g).
A-1.偏光板の作製
 まず、図1(a)に示すように、偏光板10を準備する。偏光板10は、代表的には、偏光子と該偏光子の少なくとも一方の側に配置された保護層とを含む。保護層は偏光子の両側に配置されてもよい。好ましくは、図示例のように、保護層11が偏光子12の一方の側に配置される。
A-1. Preparation of Polarizing Plate First, as shown in FIG. 1A, the polarizing plate 10 is prepared. The polarizing plate 10 typically includes a polarizing element and a protective layer arranged on at least one side of the polarizing element. Protective layers may be placed on either side of the polarizer. Preferably, as shown in the illustrated example, the protective layer 11 is arranged on one side of the polarizer 12.
A-1-1.偏光子
 偏光板の偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
A-1-1. Polarizer Any suitable polarizing element can be adopted as the polarizer of the polarizing plate. For example, the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical characteristics, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer a polarizer. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer), and the resin base material is peeled off from the resin base material / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of the publication is incorporated herein by reference.
 偏光子の厚みは、該偏光子が、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体を用いて得られる場合には、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは3μm~8μmである。偏光子の厚みは、該偏光子が、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる場合には、好ましくは15μmを超えて40μm以下である。 The thickness of the polarizer is preferably 15 μm or less when the polarizer is obtained by using a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material. It is more preferably 1 μm to 12 μm, further preferably 3 μm to 12 μm, and particularly preferably 3 μm to 8 μm. When the polarizer is obtained by using a laminate of a resin base material and a PVA-based resin layer coated and formed on the resin base material, the thickness of the polarizer is preferably more than 15 μm and 40 μm or less. is there.
A-1-2.保護層
 保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。樹脂フィルムの形成材料としては、例えば、(メタ)アクリル系樹脂、ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂が挙げられる。好ましくは、(メタ)アクリル系樹脂である。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。
A-1-2. Protective layer The protective layer is formed of any suitable film that can be used as a protective layer for the polarizer. Examples of the resin film forming material include (meth) acrylic resin, cellulose resin such as diacetyl cellulose and triacetyl cellulose, cycloolefin resin such as norbornene resin, olefin resin such as polypropylene, and polyethylene terephthalate resin. Examples thereof include ester-based resins such as, polyamide-based resins, polycarbonate-based resins, and copolymer resins thereof. A (meth) acrylic resin is preferable. The "(meth) acrylic resin" refers to an acrylic resin and / or a methacrylic resin.
 1つの実施形態においては、上記(メタ)アクリル系樹脂として、グルタルイミド構造を有する(メタ)アクリル系樹脂が用いられる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報、特開2009-161744号公報、特開2010-284840号公報に記載されている。これらの記載は、本明細書に参考として援用される。 In one embodiment, the (meth) acrylic resin having a glutarimide structure is used as the (meth) acrylic resin. Examples of the (meth) acrylic resin having a glutarimide structure (hereinafter, also referred to as glutarimide resin) include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in JP-A-161744 and JP-A-2010-284840. These statements are incorporated herein by reference.
 保護層の厚みは、好ましくは5mm以下であり、より好ましくは1mm以下であり、さらに好ましくは1μm~500μmであり、最も好ましくは5μm~150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer is preferably 5 mm or less, more preferably 1 mm or less, further preferably 1 μm to 500 μm, and most preferably 5 μm to 150 μm. When the surface treatment is applied, the thickness of the protective layer is the thickness including the thickness of the surface treatment layer.
 保護層は、任意の適切な接着層(接着剤層、粘着剤層)を介して偏光子に貼り合わせられる。 The protective layer is attached to the polarizer via an arbitrary appropriate adhesive layer (adhesive layer, adhesive layer).
A-2.液晶配向固化層の形成
 次に、図1(b)に示すように、液晶配向固化層21を偏光板10(図示例では、偏光子12)の表面に貼り合わせる。具体的には、任意の適切な基材30上に液晶配向固化層21を形成し、基材30と液晶配向固化層21との積層体を偏光板10に貼り合わせる。液晶配向固化層と偏光板とは、代表的には、光硬化型の接着剤を介して貼り合わせられる。光硬化型の接着剤としては、例えば、紫外線硬化型の接着剤が挙げられる。
A-2. Formation of Liquid Crystal Oriented Solidified Layer Next, as shown in FIG. 1 (b), the liquid crystal oriented solidified layer 21 is bonded to the surface of the polarizing plate 10 (polarizer 12 in the illustrated example). Specifically, the liquid crystal oriented solidified layer 21 is formed on an arbitrary suitable base material 30, and the laminate of the base material 30 and the liquid crystal oriented solidified layer 21 is bonded to the polarizing plate 10. The liquid crystal oriented solidified layer and the polarizing plate are typically bonded to each other via a photocurable adhesive. Examples of the photocurable adhesive include an ultraviolet curable adhesive.
 液晶配向固化層は、液晶化合物の配向固化層である。当該液晶配向固化層21は、基材30の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムである。好ましくは、トリアセチルセルロース(TAC)フィルムが用いられる。 The liquid crystal oriented solidified layer is an oriented solidified layer of a liquid crystal compound. The liquid crystal alignment solidified layer 21 is subjected to an orientation treatment on the surface of the base material 30, and a coating liquid containing a liquid crystal compound is applied to the surface to orient the liquid crystal compound in a direction corresponding to the orientation treatment. It can be formed by fixing the orientation state. In one embodiment, the substrate is any suitable resin film. Preferably, a triacetyl cellulose (TAC) film is used.
 上記配向固化層に液晶化合物を用いることにより、得られる液晶配向固化層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための液晶配向固化層の厚みを格段に小さくすることができる。その結果、円偏光板の薄型化および軽量化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が液晶配向固化層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。 By using a liquid crystal compound for the alignment solidification layer, the difference between nx and ny of the obtained liquid crystal alignment solidification layer can be remarkably increased as compared with the non-liquid crystal material, so that a desired in-plane phase difference can be obtained. The thickness of the liquid crystal oriented solidified layer can be remarkably reduced. As a result, it is possible to reduce the thickness and weight of the circular polarizing plate. As used herein, the term "oriented solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. The "oriented solidified layer" is a concept including an oriented cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, the rod-shaped liquid crystal compounds are typically oriented in a state of being aligned in the slow phase axial direction of the liquid crystal oriented solidified layer (homogeneous orientation).
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 Examples of the liquid crystal compound include a liquid crystal compound (nematic liquid crystal) in which the liquid crystal phase is a nematic phase. As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal expression mechanism of the liquid crystal compound may be either lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された液晶配向固化層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、液晶配向固化層は、温度変化に影響されず、極めて安定性に優れる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the orientation state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After the liquid crystal monomers are oriented, for example, if the liquid crystal monomers are polymerized or crosslinked with each other, the oriented state can be fixed. Here, the polymer is formed by polymerization, and the three-dimensional network structure is formed by cross-linking, but these are non-liquid crystal. Therefore, the formed liquid crystal oriented solidified layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystal compound, for example. As a result, the liquid crystal oriented solidified layer is not affected by temperature changes and is extremely stable.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40 ° C. to 120 ° C., more preferably 50 ° C. to 100 ° C., and most preferably 60 ° C. to 90 ° C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any suitable liquid crystal monomer can be adopted as the liquid crystal monomer. For example, the polymerizable mesogen compounds described in Special Tables 2002-533742 (WO00 / 37585), EP358208 (US5211877), EP66137 (US4388453), WO93 / 22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used. Specific examples of such a polymerizable mesogen compound include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Sillicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 As the orientation treatment, any appropriate orientation treatment can be adopted. Specific examples thereof include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of the mechanical orientation treatment include a rubbing treatment and a stretching treatment. Specific examples of the physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of the chemical alignment treatment include an orthorhombic deposition method and a photoalignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The orientation of the liquid crystal compound is performed by treating at a temperature indicating the liquid crystal phase according to the type of the liquid crystal compound. By performing such temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is oriented according to the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the orientation state is fixed by cooling the liquid crystal compound oriented as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the oriented solidified layer are described in JP-A-2006-163343. The description of this publication is incorporated herein by reference.
 液晶配向固化層の別の例としては、ディスコティック液晶化合物が、垂直配向、ハイブリッド配向及び傾斜配向のいずれかの状態で配向している形態が挙げられる。ディスコティック液晶化合物は、代表的には、ディスコティック液晶化合物の円盤面が配向固化層のフィルム面に対して実質的に垂直に配向している。ディスコティック液晶化合物が実質的に垂直とは、フィルム面とディスコティック液晶化合物の円盤面とのなす角度の平均値が好ましくは70°~90°であり、より好ましくは80°~90°であり、さらに好ましくは85°~90°であることを意味する。ディスコティック液晶化合物とは、一般的には、ベンゼン、1,3,5-トリアジン、カリックスアレーンなどのような環状母核を分子の中心に配し、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基等がその側鎖として放射状に置換された円盤状の分子構造を有する液晶化合物をいう。ディスコティック液晶の代表例としては、C.Destradeらの研究報告、Mol.Cryst.Liq.Cryst.71巻、111頁(1981年)に記載されている、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体や、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されているシクロヘキサン誘導体、および、J.M.Lehnらの研究報告、J.Chem.Soc.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系のマクロサイクルが挙げられる。ディスコティック液晶化合物のさらなる具体例としては、例えば、特開2006-133652号公報、特開2007-108732号公報、特開2010-244038号公報に記載の化合物が挙げられる。上記文献および公報の記載は、本明細書に参考として援用される。 Another example of the liquid crystal oriented solidified layer is a form in which the discotic liquid crystal compound is oriented in any of vertical orientation, hybrid orientation, and inclined orientation. In the discotic liquid crystal compound, typically, the disk surface of the discotic liquid crystal compound is oriented substantially perpendicular to the film surface of the oriented solidification layer. When the discotic liquid crystal compound is substantially vertical, the average value of the angles formed by the film surface and the disk surface of the discotic liquid crystal compound is preferably 70 ° to 90 °, more preferably 80 ° to 90 °. , More preferably, it means that it is 85 ° to 90 °. Discotic liquid crystal compounds generally have cyclic mother nuclei such as benzene, 1,3,5-triazine, and calix arene in the center of the molecule, and linear alkyl groups, alkoxy groups, and substituted benzoyls. A liquid crystal compound having a disk-like molecular structure in which oxy groups and the like are radially substituted as its side chains. Typical examples of discotic liquid crystals include C.I. Research report by Destrade et al., Mol. Cryst. Liq. Cryst. Benzene derivatives, triphenylene derivatives, tolucene derivatives, phthalocyanine derivatives, and B.I., described in Vol. 71, p. 111 (1981). Research report by Kohne et al., Angew. Chem. Cyclohexane derivatives described in Volume 96, p. 70 (1984), and J. Mol. M. Research report by Lehn et al., J. Mol. Chem. Soc. Chem. Commun. , 1794 (1985), J. Mol. Research report by Zhang et al., J. Mol. Am. Chem. Soc. Examples thereof include azacrown-based and phenylacetylene-based macrocycles described in Vol. 116, p. 2655 (1994). Further specific examples of the discotic liquid crystal compound include the compounds described in JP-A-2006-133652, JP-A-2007-108732, and JP-A-2010-244038. The above documents and publications are incorporated herein by reference.
 図1(b)に示すように液晶配向固化層が単一層で構成される場合、その厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 When the liquid crystal oriented solidified layer is composed of a single layer as shown in FIG. 1 (b), the thickness thereof is preferably 0.5 μm to 7 μm, and more preferably 1 μm to 5 μm. By using the liquid crystal compound, it is possible to realize an in-plane phase difference equivalent to that of the resin film with a thickness much thinner than that of the resin film.
 液晶配向固化層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。液晶配向固化層は、代表的には偏光板に反射防止特性を付与するために設けられ、液晶配向固化層が単一層である場合にはλ/4板として機能し得る。この場合、液晶配向固化層の面内位相差Re(550)は、好ましくは100nm~190nmであり、より好ましくは110nm~170nmであり、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。 The liquid crystal oriented solidified layer typically shows a relationship in which the refractive index characteristics are nx> ny = nz. The liquid crystal oriented solidified layer is typically provided to impart antireflection properties to the polarizing plate, and can function as a λ / 4 plate when the liquid crystal oriented solidified layer is a single layer. In this case, the in-plane retardation Re (550) of the liquid crystal oriented solidified layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, and further preferably 130 nm to 160 nm. Here, "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny> nz or ny <nz may occur within a range that does not impair the effects of the present invention.
 液晶配向固化層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる円偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the liquid crystal oriented solidified layer is preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. By satisfying such a relationship, a very excellent reflected hue can be achieved when the obtained circular polarizing plate is used in an image display device.
 液晶配向固化層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、液晶配向固化層は、逆分散波長特性を示す。この場合、液晶配向固化層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The liquid crystal oriented solidified layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and exhibits a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. Alternatively, it may exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light. In one embodiment, the liquid crystal oriented solidified layer exhibits reverse dispersion wavelength characteristics. In this case, the Re (450) / Re (550) of the liquid crystal oriented solidified layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection characteristics can be realized.
 液晶配向固化層の遅相軸と偏光子の吸収軸とのなす角度θは、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、上記のように液晶配向固化層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する円偏光板が得られ得る。なお、液晶配向固化層の遅相軸方向は、上記配向処理方向に対応し得る。 The angle θ formed by the slow axis of the liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °. .. When the angle θ is in such a range, by using the liquid crystal oriented solidified layer as the λ / 4 plate as described above, it has very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics). A circular polarizing plate can be obtained. The slow axis direction of the liquid crystal oriented solidified layer can correspond to the above-mentioned orientation processing direction.
 別の実施形態においては、本発明の製造方法は、図1(c)に示すように液晶配向固化層21の偏光板10と反対側に別の液晶配向固化層22を貼り合わせることをさらに含む。具体的には以下のとおりである。まず、上記と同様にして基材30上に別の液晶配向固化層22を形成する。次に、別の基材(図示せず)上に上記と同様にして液晶配向固化層21を形成する。このとき、それぞれの配向処理方向は、後述するそれぞれの配向固化層の遅相軸方向に対応する。次に、液晶配向固化層21を別の液晶配向固化層22に貼り合わせ、液晶配向固化層21と別の液晶配向固化層22と基材30とをこの順に有する積層体を作製する。なお、液晶配向固化層21と別の液晶配向固化層22とは、任意の適切な接着剤を介して貼り合わせられる。得られた積層体を上記と同様にして偏光板に貼り合わせる。このようにして、図1(c)に示すような積層体が得られる。 In another embodiment, the production method of the present invention further comprises laminating another liquid crystal oriented solidified layer 22 on the opposite side of the liquid crystal oriented solidified layer 21 to the polarizing plate 10 as shown in FIG. 1 (c). .. Specifically, it is as follows. First, another liquid crystal oriented solidifying layer 22 is formed on the base material 30 in the same manner as described above. Next, the liquid crystal oriented solidifying layer 21 is formed on another base material (not shown) in the same manner as described above. At this time, each orientation treatment direction corresponds to the slow axis direction of each orientation solidification layer described later. Next, the liquid crystal oriented solidified layer 21 is bonded to another liquid crystal oriented solidified layer 22, and a laminated body having the liquid crystal oriented solidified layer 21, another liquid crystal oriented solidified layer 22, and the base material 30 in this order is produced. The liquid crystal oriented solidified layer 21 and another liquid crystal oriented solidified layer 22 are bonded to each other via any suitable adhesive. The obtained laminate is bonded to the polarizing plate in the same manner as described above. In this way, a laminated body as shown in FIG. 1C is obtained.
 図1(c)のように液晶配向固化層21と別の液晶配向固化層22とが貼り合わされる場合、好ましくは、該液晶配向固化層と該別の液晶配向固化層のいずれか一方はλ/2板として機能し、他方はλ/4板として機能する。したがって、液晶配向固化層および別の液晶配向固化層の厚みは、λ/4板またはλ/2板の所望の面内位相差が得られるよう調整され得る。例えば、液晶配向固化層がλ/2板として機能し、別の液晶配向固化層がλ/4板として機能する場合、液晶配向固化層の厚みは例えば2.0μm~3.0μmであり、別の液晶配向固化層の厚みは例えば1.0μm~2.0μmである。この場合、液晶配向固化層の面内位相差Re(550)は、好ましくは200nm~300nmであり、より好ましくは230nm~290nmであり、さらに好ましくは250nm~280nmである。別の液晶配向固化層の面内位相差Re(550)は、単一層の配向固化層に関して上記で説明したとおりである。液晶配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは約15°である。別の液晶配向固化層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは約75°である。このような構成であれば、理想的な逆波長分散特性に近い特性を得ることが可能であり、結果として、非常に優れた反射防止特性を実現することができる。液晶配向固化層および別の液晶配向固化層を構成する液晶化合物、液晶配向固化層および液晶配向固化層の形成方法、光学特性等については、単一層の配向固化層に関して上記で説明したとおりである。 When the liquid crystal oriented solidified layer 21 and another liquid crystal oriented solidified layer 22 are bonded to each other as shown in FIG. 1 (c), preferably, one of the liquid crystal oriented solidified layer and the other liquid crystal oriented solidified layer is λ. It functions as a / 2 plate and the other as a λ / 4 plate. Therefore, the thickness of the liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer can be adjusted so as to obtain a desired in-plane phase difference of the λ / 4 plate or the λ / 2 plate. For example, when the liquid crystal oriented solidified layer functions as a λ / 2 plate and another liquid crystal oriented solidified layer functions as a λ / 4 plate, the thickness of the liquid crystal oriented solidified layer is, for example, 2.0 μm to 3.0 μm. The thickness of the liquid crystal oriented solidified layer is, for example, 1.0 μm to 2.0 μm. In this case, the in-plane retardation Re (550) of the liquid crystal oriented solidified layer is preferably 200 nm to 300 nm, more preferably 230 nm to 290 nm, and further preferably 250 nm to 280 nm. The in-plane retardation Re (550) of another liquid crystal oriented solidified layer is as described above with respect to the single oriented solidified layer. The angle formed by the slow axis of the liquid crystal oriented solidified layer and the absorption axis of the polarizer is preferably 10 ° to 20 °, more preferably 12 ° to 18 °, and even more preferably about 15 °. The angle formed by the slow axis of another liquid crystal oriented solidifying layer and the absorption axis of the polarizer is preferably 70 ° to 80 °, more preferably 72 ° to 78 °, and even more preferably about 75 °. is there. With such a configuration, it is possible to obtain characteristics close to the ideal reverse wavelength dispersion characteristic, and as a result, it is possible to realize extremely excellent antireflection characteristics. The liquid crystal compounds constituting the liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer, the method for forming the liquid crystal oriented solidified layer and the liquid crystal oriented solidified layer, the optical properties, and the like are as described above for the single layer oriented solidified layer. ..
A-3.表面保護フィルムの仮着              
 次に、図1(d)に示すように、表面保護フィルム40を偏光板10の液晶配向固化層21と反対側に剥離可能に仮着する。より詳細には、表面保護フィルム40は基材フィルムと粘着剤層とを含み、該粘着剤層を介して表面保護フィルム40と偏光板10とが貼り合わされる。なお、以降の工程においては、液晶配向固化層21と別の液晶配向固化層22とが貼り合わされる場合について説明するが、液晶配向固化層が単一層であっても同様であることは当業者に自明である。
A-3. Temporary attachment of surface protective film
Next, as shown in FIG. 1D, the surface protective film 40 is temporarily attached to the side of the polarizing plate 10 opposite to the liquid crystal oriented solidifying layer 21 so as to be peelable. More specifically, the surface protective film 40 includes a base film and an adhesive layer, and the surface protective film 40 and the polarizing plate 10 are bonded to each other via the adhesive layer. In the subsequent steps, the case where the liquid crystal oriented solidifying layer 21 and another liquid crystal oriented solidifying layer 22 are bonded to each other will be described, but it is the same even if the liquid crystal oriented solidifying layer is a single layer. It is self-evident.
 表面保護フィルム40の基材フィルムは、任意の適切な樹脂フィルムで構成され得る。樹脂フィルムの形成材料としては、ポリエチレン系樹脂等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。好ましくは、ポリエチレン系樹脂またはポリエチレンテレフタレート系樹脂である。このような材料であれば、円偏光板の製造工程において、ロール搬送時の走行性に優れ、ロール搬送における停滞時の巻き締まりによる粘着剤変形不良が抑制され、フィルムの外観不良が抑制され得る。 The base film of the surface protective film 40 may be composed of any suitable resin film. Examples of the resin film forming material include olefin resins such as polyethylene resins, ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, polyamide resins, polycarbonate resins, and copolymers thereof. Examples include resin. A polyethylene-based resin or a polyethylene terephthalate-based resin is preferable. With such a material, in the manufacturing process of the circular polarizing plate, the runnability during roll transport is excellent, the adhesive deformation defect due to the stagnation during roll transport can be suppressed, and the appearance defect of the film can be suppressed. ..
 基材フィルムの厚みは、好ましくは10μm~100μmであり、より好ましくは20μm~50μmである。このような厚みであれば、搬送および/または貼り合わせ時に張力をかけても変形が生じにくいという利点を有する。 The thickness of the base film is preferably 10 μm to 100 μm, more preferably 20 μm to 50 μm. With such a thickness, there is an advantage that deformation is unlikely to occur even if tension is applied during transportation and / or bonding.
 基材フィルムの引張弾性率は、好ましくは1.0×10Pa~5.0×10Paであり、より好ましくは2.0×10Pa~3.0×10Paである。基材フィルムの引張弾性率がこのような範囲であれば、円偏光板の製造工程において、ロール搬送時の走行性に優れ、ロール搬送における停滞時の巻き締まりによる粘着剤変形不良が抑制され、フィルムの外観不良が抑制され得る。 The tensile elastic modulus of the base film is preferably 1.0 × 10 8 Pa to 5.0 × 10 9 Pa, and more preferably 2.0 × 10 8 Pa to 3.0 × 10 9 Pa. When the tensile elastic modulus of the base film is within such a range, in the manufacturing process of the circularly polarizing plate, the running performance during roll transport is excellent, and the adhesive deformation defect due to the winding tightening during stagnation during roll transport is suppressed. Poor appearance of the film can be suppressed.
 粘着剤層を形成する粘着剤としては、任意の適切な粘着剤が採用され得る。粘着剤のベース樹脂としては、例えば、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂が挙げられる。耐薬品性、浸漬時における処理液の浸入を防止するための密着性、被着体への自由度等の観点から、アクリル系樹脂が好ましい。粘着剤に含まれ得る架橋剤としては、例えば、イソシアネート化合物、エポキシ化合物、アジリジン化合物が挙げられる。粘着剤は、例えばシランカップリング剤を含んでいてもよい。粘着剤の配合処方は、目的に応じて適切に設定され得る。 As the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer, any suitable pressure-sensitive adhesive can be adopted. Examples of the base resin of the pressure-sensitive adhesive include acrylic resin, styrene resin, and silicone resin. Acrylic resins are preferable from the viewpoints of chemical resistance, adhesion for preventing the infiltration of the treatment liquid during immersion, degree of freedom to the adherend, and the like. Examples of the cross-linking agent that can be contained in the pressure-sensitive adhesive include isocyanate compounds, epoxy compounds, and aziridine compounds. The pressure-sensitive adhesive may contain, for example, a silane coupling agent. The formulation of the pressure-sensitive adhesive can be appropriately set according to the purpose.
 粘着剤層の厚みは、好ましくは3μm以下であり、より好ましくは1μm以下である。厚みの下限は、例えば0.1μmである。 The thickness of the pressure-sensitive adhesive layer is preferably 3 μm or less, more preferably 1 μm or less. The lower limit of the thickness is, for example, 0.1 μm.
 表面保護フィルムの厚みは、好ましくは25μm以上であり、さらに好ましくは30μm以上であり、より好ましくは35μm以上である。表面保護フィルムの厚みの上限は、例えば、100μmであり得る。なお、表面保護フィルムの厚みとは、基材フィルムと粘着剤層の厚みの合計をいう。 The thickness of the surface protective film is preferably 25 μm or more, more preferably 30 μm or more, and more preferably 35 μm or more. The upper limit of the thickness of the surface protective film can be, for example, 100 μm. The thickness of the surface protective film means the total thickness of the base film and the pressure-sensitive adhesive layer.
A-4.基材の剥離
 次に、図1(e)に示すように、表面保護フィルム40を仮着した状態で、基材30を別の液晶配向固化層22から剥離する。このように、基材の剥離前に表面保護フィルムを仮着することにより、薄型円偏光板の製造工程においてロール搬送時の走行性に優れ(例えば、破断が抑制され)、かつ、ロール搬送における停滞時の巻き締まりによる粘着剤変形不良、粘着剤打痕等が抑制されるとともに、得られる円偏光板の外観不良(例えば、視認側の汚れ)が抑制される。さらに、表面保護フィルムの厚みが上記A-3に記載の範囲であれば、このような効果が顕著となる。
A-4. Peeling of the base material Next, as shown in FIG. 1 (e), the base material 30 is peeled off from another liquid crystal oriented solidifying layer 22 with the surface protective film 40 temporarily attached. By temporarily attaching the surface protective film before the base material is peeled off in this way, the running performance during roll transfer is excellent (for example, breakage is suppressed) in the manufacturing process of the thin circular polarizing plate, and the roll transfer is performed. Poor deformation of the adhesive due to tightening during stagnation, dents in the adhesive, and the like are suppressed, and poor appearance of the obtained circularly polarizing plate (for example, stains on the visual side) is suppressed. Further, if the thickness of the surface protective film is within the range described in A-3, such an effect becomes remarkable.
A-5.セパレーターの仮着
 次に、図1(f)および(g)に示すように、別の液晶配向固化層22の剥離面に粘着剤層50を形成し、粘着剤層50にセパレーター60を剥離可能に仮着する。
A-5. Temporary Adhesion of Separator Next, as shown in FIGS. 1 (f) and 1 (g), an adhesive layer 50 is formed on the peeling surface of another liquid crystal oriented solidifying layer 22, and the separator 60 can be peeled off from the adhesive layer 50. Temporarily wear on.
 粘着剤層は、代表的にはアクリル系粘着剤で構成され得る。 The pressure-sensitive adhesive layer may be typically composed of an acrylic pressure-sensitive adhesive.
 粘着剤層の厚みは、好ましくは50μm以下であり、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。粘着剤層の厚みの下限は、例えば1μmであり得る。 The thickness of the pressure-sensitive adhesive layer is preferably 50 μm or less, more preferably 30 μm or less, and further preferably 20 μm or less. The lower limit of the thickness of the pressure-sensitive adhesive layer can be, for example, 1 μm.
 セパレーターは、実際の使用まで粘着剤層を保護するとともに、円偏光板のロール形成を可能としている。 The separator protects the adhesive layer until actual use and enables the formation of rolls of a circular polarizing plate.
B.円偏光板
 円偏光板の実際の使用時には、上記製造方法により得られた図1(g)に示す光学積層体から、表面保護フィルム40およびセパレーター60が剥離され得る。このようにして、図2に示すような円偏光板100が得られる。円偏光板の厚みは、45μm以下であり、好ましくは40μm以下である。円偏光板の厚みの下限は、例えば、10μmであり得る。なお、円偏光板の厚みとは、偏光板から別の液晶配向固化層までの厚みの合計をいう(すなわち、円偏光板の厚みは、表面保護フィルム、粘着剤層およびセパレーターの厚みを含まない)。
B. Circular Polarizing Plate When the circular polarizing plate is actually used, the surface protective film 40 and the separator 60 can be peeled off from the optical laminate shown in FIG. 1 (g) obtained by the above manufacturing method. In this way, the circular polarizing plate 100 as shown in FIG. 2 is obtained. The thickness of the circular polarizing plate is 45 μm or less, preferably 40 μm or less. The lower limit of the thickness of the circularly polarizing plate can be, for example, 10 μm. The thickness of the circularly polarizing plate means the total thickness from the polarizing plate to another liquid crystal oriented solidified layer (that is, the thickness of the circularly polarizing plate does not include the thickness of the surface protective film, the pressure-sensitive adhesive layer, and the separator. ).
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例における測定および評価方法は下記のとおりである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement and evaluation methods in the examples are as follows.
(1)走行性
 粘着剤層を形成する工程において、ロール走行時に原反破断や、破断に繋がる偏光板端部折れ、裂けおよびめくり返りが見られた場合を×、なき場合を〇とした。
(2)外観不良
 検査員の目視にて判別した。原反ロールから円偏光板を採取し、表面保護フィルムを剥離したときに、円偏光板の視認側に、目視可能な汚れが付着していた場合を×、なき場合を〇とした。
(3)停滞時巻き締まりによる粘着剤変形不良
 検査員の目視にて判別した。原反ロールを4週間保管し、外巻き3周を廃棄した後、円偏光板を採取し、平滑な黒板(日東樹脂工業社製、CLAREX)に貼り、全巾で粘着剤凹凸が視認された場合を×、半分以下の巾で粘着剤凹凸が視認された場合を△、粘着剤凹凸が視認されない場合を〇とした。
(1) Runnability In the step of forming the pressure-sensitive adhesive layer, the case where the original fabric was broken during the roll running, and the edge of the polarizing plate which led to the breakage was broken, torn or turned over was marked with x, and the case without it was marked with 0.
(2) Poor appearance Judgment was made visually by the inspector. When the circularly polarizing plate was collected from the original roll and the surface protective film was peeled off, the case where visible stains were attached to the visible side of the circularly polarizing plate was marked with x, and the case without was marked with 〇.
(3) Adhesive deformation failure due to winding tightening during stagnation The inspector visually determined. After storing the original roll for 4 weeks and discarding the outer winding 3 laps, a circular polarizing plate was collected and pasted on a smooth blackboard (CLAREX manufactured by Nitto Jushi Kogyo Co., Ltd.), and the adhesive unevenness was visually recognized in the entire width. The case was evaluated as x, the case where the adhesive unevenness was visually recognized with a width of half or less was evaluated as Δ, and the case where the adhesive unevenness was not visually recognized was evaluated as 〇.
[実施例1]
1.偏光子の作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が43.0%以上となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム濃度5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み5μmの偏光子を形成した。
[Example 1]
1. Preparation of Polarizer As a thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used. .. One side of the resin base material was corona-treated.
100 weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched at the free end 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) was 43.0% or more (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight, potassium iodide concentration 5.0% by weight) at a liquid temperature of 70 ° C., the rolls having different peripheral speeds are vertically (longitudinal). In the direction), uniaxial stretching was performed so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment).
In this way, a polarizer having a thickness of 5 μm was formed on the resin substrate.
2.偏光板の作製
 上記で得られた偏光子の表面(樹脂基材とは反対側の面)に、保護層としてアクリル系フィルム(表面屈折率1.50、20μm)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を保護層側から照射して接着剤を硬化させた。次いで、両端部をスリットした後に、樹脂基材を剥離し、保護層/偏光子の構成を有する長尺状の偏光板(幅:1300mm)を得た。
2. 2. Fabrication of Polarizing Plate Acrylic film (surface refractive index 1.50, 20 μm) is applied as a protective layer on the surface of the polarizer obtained above (the surface opposite to the resin substrate), and an ultraviolet curable adhesive is applied. It was pasted together. Specifically, the curable adhesive was coated so as to have a total thickness of 1.0 μm, and bonded using a roll machine. Then, UV light was irradiated from the protective layer side to cure the adhesive. Next, after slitting both ends, the resin base material was peeled off to obtain a long polarizing plate (width: 1300 mm) having a protective layer / polarizer configuration.
3.液晶配向固化層および別の液晶配向固化層の形成
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000001
 トリアセチルセルロース(TAC)フィルム(厚み80μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、TACフィルム上に液晶配向固化層を形成した。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、別のTACフィルム上に別の液晶配向固化層を形成した。
 次に、液晶配向固化層を別の液晶配向固化層に貼り合わせ、TACフィルムを剥離し、液晶配向固化層と別の液晶配向固化層と別のTACフィルムとをこの順に有する積層体を作製した。なお、液晶配向固化層と別の液晶配向固化層との貼り合わせは、上記2.で用いた紫外線硬化型接着剤(厚み1.0μm)を介して行った。次に、得られた積層体を上記2.で用いた紫外線硬化型接着剤(厚み1.0μm)を介して上記偏光板に貼り合わせた。このようにして、偏光板/液晶配向固化層/別の液晶配向固化層/基材(別のTACフィルム)の構成を有する積層体を得た。
3. 3. Formation of a liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer 10 g of a polymerizable liquid crystal (manufactured by BASF: trade name "Paliocolor LC242", represented by the following formula) showing a nematic liquid crystal phase, and light for the polymerizable liquid crystal compound. A liquid crystal composition (coating liquid) was prepared by dissolving 3 g of a polymerization initiator (manufactured by BASF: trade name "Irgacure 907") in 40 g of toluene.
Figure JPOXMLDOC01-appb-C000001
The surface of a triacetyl cellulose (TAC) film (thickness 80 μm) was rubbed with a rubbing cloth and subjected to an orientation treatment. The direction of the orientation treatment was set to be 15 ° when viewed from the visual side with respect to the direction of the absorption axis of the polarizer when the polarizing plate was attached. The liquid crystal coating liquid was applied to the alignment-treated surface with a bar coater, and the liquid crystal compound was oriented by heating and drying at 90 ° C. for 2 minutes. The liquid crystal layer thus formed was irradiated with light of 1 mJ / cm 2 using a metal halide lamp, and the liquid crystal layer was cured to form a liquid crystal oriented solidified layer on the TAC film.
Another TAC film in the same manner as above, except that the coating thickness was changed and the orientation processing direction was set to be 75 ° when viewed from the visual side with respect to the direction of the absorber's absorption axis. Another liquid crystal oriented solidified layer was formed on the film.
Next, the liquid crystal oriented solidified layer was attached to another liquid crystal oriented solidified layer, and the TAC film was peeled off to prepare a laminate having the liquid crystal oriented solidified layer, another liquid crystal oriented solidified layer, and another TAC film in this order. .. In addition, the liquid crystal oriented solidified layer and another liquid crystal oriented solidified layer are bonded to each other in the above 2. It was carried out through the ultraviolet curable adhesive (thickness 1.0 μm) used in. Next, the obtained laminate is subjected to the above 2. It was attached to the above polarizing plate via the ultraviolet curable adhesive (thickness 1.0 μm) used in. In this way, a laminate having a structure of a polarizing plate / a liquid crystal oriented solidified layer / another liquid crystal oriented solidified layer / a base material (another TAC film) was obtained.
4.円偏光板の作製
 上記で得られた積層体において、偏光板の液晶配向固化層と反対側に表面保護フィルム(E-MASK RP109F、日東電工社製)を剥離可能に仮着した。その後、基材である別のTACフィルムを別の液晶配向固化層から剥離した。該別の液晶配向固化層の剥離面に粘着剤層(アクリル系粘着剤、厚み:50μm)を形成した。当該粘着剤層の形成工程において、上記(1)の評価を行った。該粘着剤層の液晶配向固化層と反対側に、セパレーターを剥離可能に仮着した。このようにして、表面保護フィルム/偏光板/液晶配向固化層/別の液晶配向固化層/粘着剤層/セパレーターの構成を有する光学積層体を得た。表面保護フィルムの基材フィルムの厚みは38μmであり、表面保護フィルムの厚みは48μmであった。表面保護フィルムの引張弾性率は2.0×10Paであった。得られた光学積層体を、上記(2)~(3)の評価に供した。結果を表1に示す。なお、該光学積層体から、表面保護フィルムおよびセパレーターを剥離して得られる円偏光板の厚み(粘着剤を除く)は、31μmであった。
4. Preparation of Circular Polarizing Plate In the laminate obtained above, a surface protective film (E-MASK RP109F, manufactured by Nitto Denko KK) was temporarily attached to the side opposite to the liquid crystal oriented solidified layer of the polarizing plate so as to be peelable. Then, another TAC film as a base material was peeled off from another liquid crystal oriented solidifying layer. A pressure-sensitive adhesive layer (acrylic pressure-sensitive adhesive, thickness: 50 μm) was formed on the peeled surface of the other liquid crystal oriented solidified layer. In the step of forming the pressure-sensitive adhesive layer, the evaluation of (1) above was performed. A separator was temporarily attached to the side of the pressure-sensitive adhesive layer opposite to the liquid crystal oriented solidified layer so that it could be peeled off. In this way, an optical laminate having a structure of a surface protective film / polarizing plate / liquid crystal oriented solidified layer / another liquid crystal oriented solidified layer / adhesive layer / separator was obtained. The thickness of the base film of the surface protective film was 38 μm, and the thickness of the surface protective film was 48 μm. The tensile modulus of the surface protective film was 2.0 × 10 9 Pa. The obtained optical laminate was subjected to the evaluations (2) to (3) above. The results are shown in Table 1. The thickness of the circularly polarizing plate (excluding the adhesive) obtained by peeling the surface protective film and the separator from the optical laminate was 31 μm.
[実施例2]
 表面保護フィルムにE-MASK RP149C(日東電工社製)を用いたこと以外は実施例1と同様にして、光学積層体を得た。表面保護フィルムの基材フィルムの厚みは50μmであり、表面保護フィルムの厚みは60μmであった。表面保護フィルムの引張弾性率は2.0×10Paであった。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Example 2]
An optical laminate was obtained in the same manner as in Example 1 except that E-MASK RP149C (manufactured by Nitto Denko KK) was used as the surface protective film. The thickness of the base film of the surface protective film was 50 μm, and the thickness of the surface protective film was 60 μm. The tensile modulus of the surface protective film was 2.0 × 10 9 Pa. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例3]
 表面保護フィルムにトレテック7832E(東レ社製)を用いたこと以外は実施例1と同様にして、光学積層体を得た。表面保護フィルムの基材フィルムの厚みおよび表面保護フィルムの厚みは25μmであった。表面保護フィルムの引張弾性率は3.0×10Paであった。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Example 3]
An optical laminate was obtained in the same manner as in Example 1 except that Tretec 7832E (manufactured by Toray Industries, Inc.) was used as the surface protective film. The thickness of the base film of the surface protective film and the thickness of the surface protective film were 25 μm. The tensile modulus of the surface protective film was 3.0 × 10 8 Pa. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例4]
 表面保護フィルムにトレテック7832C(東レ社製)を用いたこと以外は実施例1と同様にして、光学積層体を得た。表面保護フィルムの基材フィルムの厚みおよび表面保護フィルムの厚みは30μmであった。表面保護フィルムの引張弾性率は3.0×10Paであった。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Example 4]
An optical laminate was obtained in the same manner as in Example 1 except that Tretec 7832C (manufactured by Toray Industries, Inc.) was used as the surface protective film. The thickness of the base film of the surface protective film and the thickness of the surface protective film were 30 μm. The tensile modulus of the surface protective film was 3.0 × 10 8 Pa. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[実施例5]
 偏光板の保護層として、アクリル系延伸フィルムの代わりにハードコート層付シクロオレフィン系未延伸フィルム(日本ゼオン社製、厚み:27μm)を用いたこと以外は実施例1と同様にして、長尺状の位相差層およびハードコート層付偏光板である光学積層体を得た。得られた光学積層体を実施例1と同様の評価に供した。なお、該光学積層体から、表面保護フィルムおよびセパレーターを剥離して得られる粘着剤を除いた円偏光板の厚みは38μmであった。
[Example 5]
A long length as in Example 1 except that a cycloolefin-based unstretched film with a hard coat layer (manufactured by Nippon Zeon Co., Ltd., thickness: 27 μm) was used as the protective layer of the polarizing plate instead of the acrylic stretched film. An optical laminate having a shape-like retardation layer and a polarizing plate with a hard coat layer was obtained. The obtained optical laminate was subjected to the same evaluation as in Example 1. The thickness of the circular polarizing plate excluding the pressure-sensitive adhesive obtained by peeling the surface protective film and the separator from the optical laminate was 38 μm.
[比較例1]
 表面保護フィルムを用いなかったこと以外は実施例1と同様にして、光学積層体を得た。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 1]
An optical laminate was obtained in the same manner as in Example 1 except that the surface protective film was not used. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
[比較例2]
 表面保護フィルムを用いなかったこと以外は実施例5と同様にして、光学積層体を得た。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
[Comparative Example 2]
An optical laminate was obtained in the same manner as in Example 5 except that the surface protective film was not used. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
 表1から明らかなように、本発明の実施例により得られた光学積層体は、ロール搬送時の走行性に優れ、ロール搬送における停滞時の巻き締まりによる粘着剤変形不良が抑制され、フィルムの外観不良が抑制されていることがわかる。さらに、厚みの厚い表面保護フィルムを用いることにより、停滞時の巻き締まりによる粘着剤変形不良がより抑制されることがわかる(実施例1および2と、実施例3および4との比較)。
[Evaluation]
As is clear from Table 1, the optical laminate obtained according to the examples of the present invention has excellent runnability during roll transport, suppresses poor adhesive deformation due to stagnation during roll transport, and suppresses poor adhesive deformation of the film. It can be seen that the poor appearance is suppressed. Further, it can be seen that by using a thick surface protective film, poor adhesive deformation due to winding during stagnation is further suppressed (comparison between Examples 1 and 2 and Examples 3 and 4).
 本発明の製造方法により得られる円偏光板は、液晶表示装置(LCD)、有機エレクトロルミネッセンス表示装置(OLED)等の画像表示装置に好適に用いられる。 The circular polarizing plate obtained by the manufacturing method of the present invention is suitably used for an image display device such as a liquid crystal display device (LCD) and an organic electroluminescence display device (OLED).
 10    偏光板
 11    保護層
 12    偏光子
 21    液晶配向固化層
 22    別の液晶配向固化層
 30    基材
 40    表面保護フィルム
 50    粘着剤層
 60    セパレーター
 100   円偏光板
10 Polarizing plate 11 Protective layer 12 Polarizer 21 Liquid crystal oriented solidifying layer 22 Another liquid crystal oriented solidifying layer 30 Base material 40 Surface protective film 50 Adhesive layer 60 Separator 100 Circular polarizing plate

Claims (7)

  1.  円偏光板の製造方法であって、
     基材表面に液晶配向固化層を形成する工程と、
     偏光板の表面に該液晶配向固化層を貼り合わせる工程と、
     該偏光板の該液晶配向固化層と反対側に表面保護フィルムを剥離可能に仮着する工程と、
     該基材を該液晶配向固化層から剥離する工程と、
     該液晶配向固化層の剥離面に粘着剤層を形成する工程と、
     該粘着剤層の該液晶配向固化層と反対側にセパレーターを剥離可能に仮着する工程と、を含み、
     該円偏光板の厚みが45μm以下である、
     円偏光板の製造方法。
    This is a method for manufacturing a circularly polarizing plate.
    The process of forming a liquid crystal oriented solidified layer on the surface of the base material,
    The step of laminating the liquid crystal oriented solidifying layer on the surface of the polarizing plate and
    A step of temporarily attaching a surface protective film to the side of the polarizing plate opposite to the liquid crystal oriented solidified layer so as to be peelable.
    A step of peeling the base material from the liquid crystal oriented solidified layer and
    A step of forming an adhesive layer on the peeled surface of the liquid crystal oriented solidifying layer, and
    The step of temporarily attaching the separator to the side opposite to the liquid crystal oriented solidifying layer of the pressure-sensitive adhesive layer so as to be peelable is included.
    The thickness of the circularly polarizing plate is 45 μm or less.
    Method for manufacturing a circular polarizing plate.
  2.  前記表面保護フィルムが、ポリエチレン系樹脂またはポリエチレンテレフタレート系樹脂を含む、請求項1に記載の円偏光板の製造方法。 The method for producing a circularly polarizing plate according to claim 1, wherein the surface protective film contains a polyethylene resin or a polyethylene terephthalate resin.
  3.  前記表面保護フィルムの厚みが25μm以上である、請求項1または2に記載の円偏光板の製造方法。 The method for producing a circular polarizing plate according to claim 1 or 2, wherein the surface protective film has a thickness of 25 μm or more.
  4.  前記偏光板と前記液晶配向固化層とを、光硬化型の接着剤を介して貼り合わせる、請求項1から3のいずれかに記載の円偏光板の製造方法。 The method for producing a circular polarizing plate according to any one of claims 1 to 3, wherein the polarizing plate and the liquid crystal oriented solidified layer are bonded to each other via a photocurable adhesive.
  5.  前記液晶配向固化層がλ/4板として機能する、請求項1から4のいずれかに記載の円偏光板の製造方法。 The method for producing a circular polarizing plate according to any one of claims 1 to 4, wherein the liquid crystal oriented solidified layer functions as a λ / 4 plate.
  6.  前記液晶配向固化層の前記偏光板と反対側に別の液晶配向固化層を貼り合わせることをさらに含む、請求項1から4のいずれかに記載の円偏光板の製造方法。 The method for producing a circular polarizing plate according to any one of claims 1 to 4, further comprising laminating another liquid crystal oriented solidified layer on the opposite side of the liquid crystal oriented solidified layer to the polarizing plate.
  7.  前記液晶配向固化層と前記別の液晶配向固化層のいずれか一方がλ/2板として機能し、他方がλ/4板として機能する、請求項6に記載の円偏光板の製造方法。 The method for manufacturing a circular polarizing plate according to claim 6, wherein either one of the liquid crystal oriented solidified layer and the other liquid crystal oriented solidified layer functions as a λ / 2 plate and the other functions as a λ / 4 plate.
PCT/JP2020/012191 2019-07-22 2020-03-19 Method for producing thin circularly polarizing plate WO2021014685A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080052466.XA CN114144707A (en) 2019-07-22 2020-03-19 Method for manufacturing thin circular polarizing plate
KR1020227001628A KR20220035386A (en) 2019-07-22 2020-03-19 Manufacturing method of thin circular polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019134759A JP7257907B2 (en) 2019-07-22 2019-07-22 Manufacturing method of thin circularly polarizing plate
JP2019-134759 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021014685A1 true WO2021014685A1 (en) 2021-01-28

Family

ID=74194070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012191 WO2021014685A1 (en) 2019-07-22 2020-03-19 Method for producing thin circularly polarizing plate

Country Status (5)

Country Link
JP (1) JP7257907B2 (en)
KR (1) KR20220035386A (en)
CN (1) CN114144707A (en)
TW (1) TWI820331B (en)
WO (1) WO2021014685A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286693B2 (en) * 2021-03-04 2023-06-05 住友化学株式会社 Defect inspection method for polarizing plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304317A (en) * 2006-05-11 2007-11-22 Nitto Denko Corp Surface protective film for polarizing plate, polarizing plate protected by surface protective film and image display device
JP2019101269A (en) * 2017-12-04 2019-06-24 住友化学株式会社 Optical laminate and production method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045261B1 (en) 1998-10-30 2005-02-02 Teijin Limited Phase difference film and optical device using it
JP4553258B2 (en) * 2005-02-25 2010-09-29 日東電工株式会社 Manufacturing method of elliptically polarizing plate and image display device using elliptically polarizing plate
JP2008009403A (en) * 2006-05-30 2008-01-17 Nippon Oil Corp Elliptical polarizing plate, method for production of the same, and liquid crystal display device
CN104081232B (en) * 2012-02-01 2017-09-01 住友化学株式会社 The manufacture method of polarizability stacked film and the manufacture method of polarization plates
JP6172980B2 (en) * 2012-03-14 2017-08-02 日東電工株式会社 Manufacturing method of liquid crystal display panel
JPWO2014189040A1 (en) * 2013-05-21 2017-02-23 富士フイルム株式会社 Polarizing plate, manufacturing method thereof, and transfer material
WO2015152157A1 (en) * 2014-03-31 2015-10-08 富士フイルム株式会社 Polarizing plate, image display and liquid crystal display
JP6925808B2 (en) * 2017-01-26 2021-08-25 日東電工株式会社 Manufacturing method of optical laminate and manufacturing method of image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304317A (en) * 2006-05-11 2007-11-22 Nitto Denko Corp Surface protective film for polarizing plate, polarizing plate protected by surface protective film and image display device
JP2019101269A (en) * 2017-12-04 2019-06-24 住友化学株式会社 Optical laminate and production method therefor

Also Published As

Publication number Publication date
JP2021018354A (en) 2021-02-15
TWI820331B (en) 2023-11-01
KR20220035386A (en) 2022-03-22
JP7257907B2 (en) 2023-04-14
TW202106518A (en) 2021-02-16
CN114144707A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
JP2004078171A (en) Polarizing plate with optical compensating layer and image display device using same
JP4260538B2 (en) Laminated retardation plate, laminated polarizing plate using the same, and image display device
JP2019151099A (en) Laminate film
TWI708966B (en) Polarizing plate set and ips mode liquid crystal display device using the same
JP2024007555A (en) Polarizing plate having retardation layer and picture display unit using the same
WO2021014685A1 (en) Method for producing thin circularly polarizing plate
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP2023126676A (en) Polarizing plate
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP2020064279A (en) Polarizing plate with phase difference layer and image display device using the same
JP5064075B2 (en) Manufacturing method of polarizing film
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
WO2022181188A1 (en) Laminate and method for manufacturing image display panel
WO2022074872A1 (en) Method for manufacturing phase difference layer-equipped polarizing plate
JP7288465B2 (en) Polarizing plate, manufacturing method thereof, and image display device using the polarizing plate
WO2022185802A1 (en) Circular polarizing plate and image display device using same
WO2022244301A1 (en) Circular polarizing plate and image display device using same
WO2023163119A1 (en) Antireflection film and organic electroluminescent display device
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP6699513B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer
JP2024022329A (en) Manufacturing method of cutting processed film and cutting processed film
TW202408694A (en) Manufacturing method of cutting film and cutting film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845023

Country of ref document: EP

Kind code of ref document: A1