WO2021012668A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021012668A1
WO2021012668A1 PCT/CN2020/075613 CN2020075613W WO2021012668A1 WO 2021012668 A1 WO2021012668 A1 WO 2021012668A1 CN 2020075613 W CN2020075613 W CN 2020075613W WO 2021012668 A1 WO2021012668 A1 WO 2021012668A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road
function
information
board
Prior art date
Application number
PCT/CN2020/075613
Other languages
English (en)
French (fr)
Inventor
李明超
刘航
周铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20843458.9A priority Critical patent/EP3993348A4/en
Publication of WO2021012668A1 publication Critical patent/WO2021012668A1/zh
Priority to US17/581,847 priority patent/US20220144283A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/087Interaction between the driver and the control system where the control system corrects or modifies a request from the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096758Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where no selection takes place on the transmitted or the received information
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • automatic driving functions such as high-speed automatic cruise function or automatic lane change function of vehicles.
  • Different automatic driving functions have different risks. Some automatic driving functions are more dangerous, and some automatic driving functions may be more dangerous. low. If an autonomous vehicle is driving on a road with a more complicated environment and the dangerous autonomous driving function is activated, an accident is extremely likely. For example, if an autonomous vehicle is driving on a road with a school or a hospital, and the function of automatic lane change is turned on, there may be a risk of an accident due to a large number of pedestrians on the road. Therefore, in order to ensure safety, the government generally stipulates the roads on which the automatic driving function can be used. That is to say, the vehicle can only activate the automatic driving function on these prescribed roads, and for the roads where the automatic driving function is not specified, in principle Autopilot functions are not allowed.
  • the current activation of the automatic driving function is determined by humans and is not controlled by the outside world. Even if a road is not a road where the automatic driving function can be used, the automatic driving function can be activated on the road manually. Then, once someone maliciously activates the automatic driving function on a road that is not suitable for using the automatic driving function, it may cause a vehicle accident and cause great harm to social safety.
  • the embodiments of the present application provide a communication method and device for reducing the possibility of a vehicle accident.
  • a first communication method includes: a vehicle-mounted device triggers an on-vehicle function for a first vehicle, the first vehicle carries the vehicle-mounted device; the vehicle-mounted device checks whether the first vehicle is allowed Use the in-vehicle function on the first road; when the first vehicle is on the first road, the on-vehicle device activates or does not activate the in-vehicle function according to the verification result.
  • the method of the first aspect may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system. Further, the communication device may be a vehicle-mounted device. In the following introduction process, take the communication equipment as an example of a vehicle-mounted device for effect analysis.
  • the on-board device if the on-board device triggers the on-board function, the on-board device needs to verify the on-board function, and activate or not activate the on-board function according to the verification result. For example, if the verification fails, it indicates that the first vehicle is not allowed to use the on-board function on the first road, and the on-board device may not activate the on-board function, so that whether to activate the corresponding on-board function can be controlled, so that The activation of functions on the car no longer depends on human needs. In this way, it is possible to control the application of corresponding on-board functions on suitable roads, reduce the risk of accidents that may occur when the on-board functions are applied, and reduce the harm to social safety.
  • the method further includes: the vehicle-mounted device determines the triggered in-vehicle function according to the information of the first road.
  • the information of the first road may come from the roadside device, and the roadside device may send the information of the first road to the vehicle-mounted device after obtaining the information of the first road, so that the vehicle-mounted device can determine the in-vehicle function to be triggered according to the information of the first road.
  • the method also includes:
  • the vehicle-mounted device knows the mapping relationship; wherein the mapping relationship includes the mapping relationship between road information and vehicle functions;
  • the in-vehicle device determining the triggered in-vehicle function according to the information of the first road includes:
  • the in-vehicle device determines the in-vehicle function according to the information of the first road and the mapping relationship.
  • the mapping relationship includes the mapping relationship between road information and vehicle functions. It can be considered that in the mapping relationship, if a piece of road information corresponds to a vehicle function, it means that the vehicle function corresponds to the road information It can be used on the road. Therefore, the vehicle-mounted device can determine the function of the vehicle corresponding to the information of the first road according to the mapping relationship and the information of the first road, and then select a function from the determined vehicle functions to trigger.
  • the in-vehicle functions triggered by the in-vehicle device can be as much as possible the in-vehicle functions that are allowed to be used on the first road, and the in-vehicle functions can be applied on suitable roads, which reduces the possibility of the vehicle when the in-vehicle functions are applied.
  • the emergence of accident risks reduces the harm to social safety.
  • mapping relationship includes:
  • the vehicle-mounted device receives the mapping relationship from a roadside device; or,
  • the vehicle-mounted device obtains the pre-configured mapping relationship; or,
  • the vehicle-mounted device obtains a map from a server, and obtains the mapping relationship included in the map.
  • the vehicle-mounted device receives the mapping relationship from the roadside device, it indicates that the vehicle-mounted device knows the mapping relationship by receiving signaling; or, if the vehicle-mounted device obtains the pre-configured mapping relationship, it indicates that the vehicle-mounted device has stored (or, Pre-store) the mapping relationship; or, if the vehicle-mounted device obtains the map from the server and obtains the mapping relationship through the map, it indicates that the vehicle-mounted device knows the mapping relationship by receiving signaling.
  • the ways in which the vehicle-mounted device knows the mapping relationship are not limited to the above-mentioned ones, and are relatively flexible.
  • the method further includes:
  • the in-vehicle device receives the information of the first road from a roadside device; or,
  • the in-vehicle device obtains a map from a server, and obtains information of the first road included in the map.
  • the vehicle-mounted device may obtain the information of the first road. For example, it may receive the information of the first road from the roadside device, or it may obtain the information of the first road through information such as a map, or may also obtain it through other methods. Information on the first path.
  • the verification by the on-board device whether the first vehicle is allowed to use the on-board function on the first road includes:
  • the vehicle-mounted device verifies the first verification sequence to obtain the verification result, wherein:
  • the verification result indicates that the verification of the first verification sequence fails, indicating that the first vehicle is not allowed to use the on-board function on the first road, and the first verification sequence is the The check sequence corresponding to the functions on the car.
  • the in-vehicle function may have a corresponding first verification sequence, and the vehicle-mounted device can determine whether the in-vehicle function is allowed to be used on the first road by verifying the first verification sequence.
  • the verification method is relatively simple.
  • the method further includes:
  • the in-vehicle device determines the in-vehicle function that is allowed to be used by the first vehicle on the first road according to the information of the first road, and obtains the first verification sequence corresponding to the in-vehicle function; or ,
  • the in-vehicle device determines the in-vehicle function supported by the first vehicle, and obtains the first verification sequence corresponding to the in-vehicle function.
  • the in-vehicle device can only obtain the verification sequences of the on-vehicle functions that are allowed to be used on the first road, which can reduce the number of obtained verification sequences. If this is the case, then if a function on the car is not allowed to be used on the first road, the function on the car will not correspond to the verification sequence. Then the onboard device will be checked if a function on the car is If the function does not correspond to the verification sequence, the vehicle-mounted device can directly consider that the verification of the vehicle function has failed, which can reduce the actual verification process. Alternatively, the vehicle-mounted device can also obtain the verification sequence of all on-board functions supported by the first vehicle, so that the obtained verification sequence is relatively complete. During the verification, whether an on-board function is allowed on the first road The functions on the vehicle that are used have a check sequence corresponding to the functions on the vehicle, which can be checked according to the check sequence to improve the accuracy of the check.
  • that the on-board device obtains the first verification sequence corresponding to the on-board function includes:
  • the vehicle-mounted device calculates the first verification sequence according to the identifier of the vehicle-mounted function; or,
  • the in-vehicle device receives the first verification sequence corresponding to the in-vehicle function from the roadside device; or,
  • the in-vehicle device sends the identification of the on-vehicle function to the roadside device, and the in-vehicle device receives the first verification sequence from the roadside device.
  • the vehicle-mounted device can calculate the verification sequence by itself, or the vehicle-mounted device can also obtain the verification sequence from the roadside device, and the roadside device can actively send the verification sequence to the vehicle-mounted device without the need for the vehicle-mounted device request, reducing the number of vehicle-mounted devices and roadside
  • the signaling interaction of the device, or the roadside device may also send the corresponding check sequence to the on-board device after receiving the request of the on-board device, so that the sending of the check sequence is more targeted.
  • the in-vehicle device calculates the first verification sequence according to the identifier of the on-board function, including:
  • the in-vehicle device calculates the first verification sequence according to the identifier of the in-vehicle function; or,
  • the in-vehicle device calculates the first verification sequence according to the identification and the random sequence of the function on the vehicle; or,
  • the in-vehicle device calculates the first verification sequence according to the identifier of the on-board function and the identifier of the roadside device; or,
  • the in-vehicle device calculates the first verification sequence according to the identity of the on-board function, the random sequence, and the identity of the roadside device.
  • the vehicle-mounted device may consider multiple different elements when calculating the first check sequence, and there is no specific limitation.
  • the first road information includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • the first road information may also include other information, or the first road information does not include the above information, but includes other information.
  • the information of this application is not limited.
  • a second communication method includes: a roadside device receives an identifier of an on-vehicle function from an in-vehicle device; the roadside device determines whether the vehicle is allowed to use the on-vehicle function on a first road; The roadside device sends first information to the in-vehicle device.
  • the method of the second aspect may be executed by a second communication device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication equipment may be a roadside device.
  • the communication equipment is a roadside device as an example for effect analysis.
  • the roadside device After the roadside device receives the identifier of the on-board function from the on-board device, it can determine whether the vehicle is allowed to use the on-board function on the first road. For example, if the vehicle is not allowed to use the on-board function on the first road, the road The side device may not send the verification sequence corresponding to the in-vehicle function to the in-vehicle device, so that the in-vehicle device will fail when verifying the in-vehicle function, so that the in-vehicle device will not use the in-vehicle function and can control the corresponding
  • the application of on-board functions on suitable roads reduces the risk of accidents that may occur in the vehicle when the on-board functions are applied, and reduces the harm to social safety.
  • the first information is used to indicate whether a vehicle is allowed or not allowed to use the on-board function on the first road.
  • the roadside device can send the first information to the on-board device, so that the on-board device can explicitly request the result.
  • the roadside device determines that the vehicle is allowed to use the on-board function on the first road, and the roadside device reports to the vehicle-mounted device Send the first message, including:
  • the roadside device sends the first verification sequence corresponding to the in-vehicle function to the in-vehicle device.
  • the roadside device may send the first verification sequence to the in-vehicle device, so that the in-vehicle device may verify the in-vehicle function according to the first verification sequence.
  • the roadside device obtaining the first verification sequence corresponding to the on-board function includes:
  • the roadside device calculates the first verification sequence according to the identifier of the on-board function; or,
  • the roadside device calculates the first check sequence according to the identifier of the on-board function and the random sequence; or,
  • the roadside device calculates the first verification sequence according to the identifier of the on-board function and the identifier of the roadside device; or,
  • the roadside device calculates the first verification sequence according to the identifier of the on-vehicle function, the random sequence, and the identifier of the roadside device.
  • the roadside device may consider a variety of different elements when calculating the first check sequence, and there is no specific limitation.
  • the roadside device determines that the vehicle is not allowed to use the on-board function on the first road, and the roadside device provides The first information sent by the device includes:
  • the roadside device sends instruction information to the in-vehicle device, where the instruction information is used to indicate that the request fails or is used to indicate the reason why the vehicle is not allowed to use the on-board function on the first road.
  • the roadside device can notify the on-board device that the request has failed, or can also inform the on-board device of the reason for the failure of the request, so that the on-board device can clarify the specific problem.
  • the method further includes: the roadside device sends the information of the first road to the vehicle-mounted device, and the information of the first road It is used to determine the on-board functions allowed by the vehicle on the first road.
  • the roadside device can obtain the information of the first road through a device such as a sensing unit (such as a sensor, etc.) provided on the roadside, and can send the information of the first road to the on-board device, so that the on-board device can determine that the vehicle is on the first road.
  • a device such as a sensing unit (such as a sensor, etc.) provided on the roadside, and can send the information of the first road to the on-board device, so that the on-board device can determine that the vehicle is on the first road.
  • An in-vehicle function allowed on the road is allowed on the road.
  • the first road information includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • the first road information may also include other information, or the first road information does not include the above information, but includes other information.
  • the information of this application is not limited.
  • a third communication method includes: an in-vehicle device receives information about a first road; the in-vehicle device receives information about the first road according to the mapping relationship between the information about the road and the functions of the vehicle, Determine the functions allowed by the first vehicle on the first road, and the first vehicle carries the on-board device.
  • the method of the third aspect may be executed by a third communication device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system. Further, the communication device may be a vehicle-mounted device. In the following introduction process, take the communication equipment as an example of a vehicle-mounted device for effect analysis.
  • the vehicle-mounted device can determine the function of the vehicle corresponding to the information of the first road based on the mapping relationship and the information of the first road, and then select a function from the determined vehicle functions to trigger.
  • the in-vehicle functions triggered by the in-vehicle device can be as much as possible the in-vehicle functions that are allowed to be used on the first road, and the in-vehicle functions can be applied on suitable roads, which reduces the possibility of the vehicle when the in-vehicle functions are applied.
  • the emergence of accident risks reduces the harm to social safety.
  • the method further includes: the in-vehicle device activates an on-board function, and the on-board function belongs to the first vehicle on the first road Functions allowed on the first vehicle, or functions that are not allowed to be used by the first vehicle on the first road; the on-board device sends status information, and the status information is used to indicate that the first vehicle has started the Features in the car.
  • the vehicle-mounted device can send status information after activating the functions on the vehicle.
  • the vehicle-mounted device can broadcast status information, or can also send status information in a multicast or unicast manner.
  • the on-vehicle device sends status information to the roadside device through unicast, so that after the roadside device receives the status information, it can determine that the first vehicle has activated the on-board function, and the roadside device can further determine whether the on-board function is It is a function that allows the vehicle to be used on the first road.
  • the roadside device can record that the on-board device is illegal, for example, there may be a certain penalty for the on-board device in the future Measures to reduce the possibility of vehicle-mounted devices on the road that are not allowed to be used on-vehicle functions and improve the safety factor.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • the first road information may also include other information, or the first road information does not include the above information, but includes other information.
  • the information of this application is not limited.
  • a fourth communication method includes: a roadside device receives status information from an on-board device, the status information is used to indicate that a first vehicle carrying the on-board device has activated an on-board function; The roadside device determines whether the vehicle is allowed to use the on-board function on the first road; when the vehicle is not allowed to use the on-board function on the first road, the roadside device records the activation of the first vehicle The incident of the function on the vehicle is an illegal incident.
  • the method of the fourth aspect may be executed by a fourth communication device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication equipment may be a roadside device.
  • the communication equipment is a roadside device as an example for effect analysis.
  • the roadside device After the roadside device receives the status information from the on-board device, it can determine that the first vehicle has activated the on-board function, and the roadside device can further determine whether the on-board function is a function that allows the vehicle to be used on the first road.
  • the upper function is a function that does not allow vehicles to be used on the first road.
  • the roadside device can record that the on-board device violates the law. For example, the on-board device can be punished in the future, thereby reducing the on-road device to start the vehicle that is not allowed Possibility to improve the safety factor.
  • the roadside device determining whether to allow the vehicle to use the on-board function on the first road includes:
  • the roadside device determines whether the on-board function corresponds to the first road according to the mapping relationship between the road information and the function of the vehicle; wherein, the on-board function corresponds to the first road, allowing The vehicle uses the on-board function on the first road; otherwise, the vehicle is not allowed to use the on-board function on the first road.
  • the roadside device can determine whether the vehicle is allowed to use the on-board function on the first road according to the set mapping relationship, and the determination method is relatively simple.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the communication device is configured to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the communication device may include a module for executing the method in the first aspect or any possible implementation of the first aspect, for example, including a processing module and a transceiver module.
  • the transceiver module may refer to a functional module, which can complete the function of receiving information as well as the function of sending information.
  • the transceiver module may be a collective term for the sending module and the receiving module.
  • the sending module is used to complete the function of sending information
  • the receiving module is used to complete the function of receiving information.
  • the communication device is a vehicle-mounted device. among them,
  • the processing module is configured to trigger on-board functions for a first vehicle, and the first vehicle carries the on-board device;
  • the processing module is also used to verify whether the first vehicle is allowed to use the on-board function on the first road;
  • the processing module is further configured to activate or deactivate the on-board function according to the verification result when the first vehicle is on the first road.
  • the processing module is further configured to determine the triggered on-board function according to the information of the first road.
  • the processing module is also used to know the mapping relationship; wherein the mapping relationship includes the mapping relationship between road information and vehicle functions;
  • the processing module is configured to determine the triggered in-vehicle function according to the information of the first road in the following manner: determine the in-vehicle function according to the information of the first road and the mapping relationship.
  • the processing module is configured to know the mapping relationship in the following manner:
  • the transceiver module is also used to receive information about the first road from a roadside device; or,
  • the processing module is further configured to obtain a map from a server, and obtain information of the first road included in the map.
  • the processing module is configured to check whether the first vehicle is allowed to use the on-board function on the first road in the following manner:
  • the verification result indicates that the verification of the first verification sequence fails, it indicates that the first vehicle is not allowed to use the on-board function on the first road, and the first verification sequence is the The check sequence corresponding to the functions on the car.
  • the processing module is further configured to:
  • the processing module is configured to obtain the first verification sequence corresponding to the on-board function in the following manner:
  • the identifier of the on-vehicle function is sent to the roadside device through the transceiver module, and the first check sequence from the roadside device is received through the transceiver module.
  • the processing module is configured to calculate the first verification sequence according to the identifier of the function on the vehicle in the following manner:
  • the first verification sequence is calculated according to the identifier of the on-board function, the random sequence, and the identifier of the roadside device.
  • the first road information includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the communication device is configured to execute the foregoing second aspect or any possible implementation method of the second aspect.
  • the communication device may include a module for executing the method in the second aspect or any possible implementation of the second aspect, for example, including a processing module and a transceiver module.
  • the transceiver module may refer to a functional module, which can complete the function of receiving information as well as the function of sending information.
  • the transceiver module may be a collective term for the sending module and the receiving module.
  • the sending module is used to complete the function of sending information
  • the receiving module is used to complete the function of receiving information.
  • the communication device is a roadside device. among them,
  • the transceiver module is used to receive the identifier of the on-board function from the on-board device;
  • the processing module is used to determine whether the vehicle is allowed to use the on-board function on the first road;
  • the transceiver module is also used to send first information to the vehicle-mounted device.
  • the first information is used to indicate whether a vehicle is allowed or not allowed to use the on-board function on the first road.
  • the processing module determines that the vehicle is allowed to use the on-board function on the first road, and the transceiver module is configured to communicate with the vehicle in the following manner
  • the in-vehicle device sends the first information: the first verification sequence corresponding to the in-vehicle function is sent to the in-vehicle device.
  • the processing module is configured to obtain the first check sequence corresponding to the on-board function in the following manner:
  • the first verification sequence is calculated according to the identifier of the on-board function, the random sequence, and the identifier of the roadside device.
  • the processing module determines that the vehicle is not allowed to use the on-board function on the first road, and the transceiver module is configured to communicate with The in-vehicle device sends first information: sending instruction information to the in-vehicle device, the instruction information is used to indicate that the request fails, or is used to indicate the reason why the vehicle is not allowed to use the on-board function on the first road .
  • the transceiver module is further configured to send information about the first road to the vehicle-mounted device, and the information about the first road is used to determine On-board functions allowed by the vehicle on the first road.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • a communication device is provided, for example, the communication device is the aforementioned third communication device.
  • the communication device is configured to execute the foregoing third aspect or the method in any possible implementation manner of the third aspect.
  • the communication device may include a module for executing the method in the third aspect or any possible implementation of the third aspect, for example, including a processing module and a transceiver module.
  • the transceiver module may refer to a functional module, which can complete the function of receiving information as well as the function of sending information.
  • the transceiver module may be a collective term for the sending module and the receiving module.
  • the sending module is used to complete the function of sending information
  • the receiving module is used to complete the function of receiving information.
  • the communication device is a vehicle-mounted device. among them,
  • the transceiver module is used to receive information about the first road
  • the processing module is configured to determine the allowed functions of the first vehicle on the first road according to the mapping relationship between the road information and the functions of the vehicle and the information of the first road. Carry the vehicle-mounted device.
  • the processing module is also used to activate on-board functions, which belong to the functions allowed by the first vehicle on the first road, or belong to the first vehicle on the first road Functions that are not allowed;
  • the transceiver module is also used to send status information, and the status information is used to indicate that the first vehicle has activated the on-board function.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • a communication device is provided, for example, the communication device is the fourth communication device as described above.
  • the communication device is configured to execute the foregoing fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • the communication device may include a module for executing the fourth aspect or the method in any possible implementation manner of the fourth aspect, for example, including a processing module and a transceiver module.
  • the transceiver module may refer to a functional module, which can complete the function of receiving information as well as the function of sending information.
  • the transceiver module may be a collective term for the sending module and the receiving module.
  • the sending module is used to complete the function of sending information
  • the receiving module is used to complete the function of receiving information.
  • the communication device is a roadside device. among them,
  • the transceiver module is configured to receive status information from a vehicle-mounted device, and the status information is used to indicate that a first vehicle carrying the vehicle-mounted device has activated an on-vehicle function;
  • the processing module is used to determine whether the vehicle is allowed to use the on-board function on the first road;
  • the processing module is further configured to record the event that the first vehicle activates the in-vehicle function as an illegal event when the vehicle is not allowed to use the in-vehicle function on the first road.
  • the processing module is configured to determine whether the vehicle is allowed to use the on-board function on the first road in the following manner:
  • the on-board function corresponds to the first road; wherein, the on-board function corresponds to the first road, and the vehicle is allowed to travel on the first road. Use the in-vehicle function on a road; otherwise, the vehicle is not allowed to use the in-vehicle function on the first road.
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are used to implement the foregoing first aspect or the methods described in various possible designs of the first aspect.
  • the communication device is a chip provided in a communication device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the information transmission and reception through the radio frequency transceiving component.
  • the communication device is a vehicle-mounted device. among them,
  • the processor is configured to trigger on-board functions for a first vehicle, the first vehicle carrying the on-board device;
  • the processor is further configured to verify whether the first vehicle is allowed to use the on-board function on the first road;
  • the processor is further configured to activate or deactivate the on-board function according to the verification result when the first vehicle is on the first road.
  • the processor is further configured to determine the triggered in-vehicle function according to the information of the first road.
  • the processor is further configured to know the mapping relationship; wherein the mapping relationship includes the mapping relationship between road information and vehicle functions;
  • the processor is configured to determine the triggered in-vehicle function according to the information of the first road in the following manner: determine the in-vehicle function according to the information of the first road and the mapping relationship.
  • the processor is configured to know the mapping relationship in the following manner:
  • the transceiver is also used to receive information about the first road from a roadside device; or,
  • the processor is further configured to obtain a map from a server, and obtain information about the first road included in the map.
  • the processor is configured to check whether the first vehicle is allowed to use the on-board function on the first road in the following manner:
  • the verification result indicates that the verification of the first verification sequence fails, it indicates that the first vehicle is not allowed to use the on-board function on the first road, and the first verification sequence is the The check sequence corresponding to the functions on the car.
  • the processor is further configured to:
  • the processor is configured to obtain the first check sequence corresponding to the on-board function in the following manner:
  • the identifier of the on-board function is sent to the roadside device through the transceiver, and the first verification sequence from the roadside device is received through the transceiver.
  • the processor is configured to calculate the first check sequence according to the identifier of the function on the vehicle in the following manner:
  • the first verification sequence is calculated according to the identifier of the on-board function, the random sequence, and the identifier of the roadside device.
  • the first road information includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are used to implement the foregoing second aspect or the methods described in various possible designs of the second aspect.
  • the communication device is a chip provided in a communication device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the information transmission and reception through the radio frequency transceiving component.
  • the communication device is a roadside device. among them,
  • the transceiver is used to receive the identifier of the on-vehicle function from the vehicle-mounted device;
  • the processor is configured to determine whether to allow the vehicle to use the on-board function on the first road;
  • the tenth is also used to send first information to the vehicle-mounted device.
  • the first information is used to indicate whether a vehicle is allowed or not allowed to use the on-board function on the first road.
  • the processor determines that the vehicle is allowed to use the on-board function on the first road, and the transceiver is configured to communicate to the The vehicle-mounted device sends the first information: the first verification sequence corresponding to the function on the vehicle is sent to the vehicle-mounted device.
  • the processor is configured to obtain the first check sequence corresponding to the on-board function in the following manner:
  • the first verification sequence is calculated according to the identifier of the on-board function, the random sequence, and the identifier of the roadside device.
  • the processor determines that the vehicle is not allowed to use the on-board function on the first road, and the transceiver is used to communicate with The in-vehicle device sends first information: sending instruction information to the in-vehicle device, where the instruction information is used to indicate that the request fails or is used to indicate the reason why the vehicle is not allowed to use the on-board function on the first road.
  • the transceiver is further configured to send information about the first road to the vehicle-mounted device, and the information about the first road is used to determine On-board functions allowed by the vehicle on the first road.
  • the first road information includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • a communication device is provided.
  • the communication device is, for example, the aforementioned third communication device.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are used to implement the methods described in the foregoing third aspect or various possible designs of the third aspect.
  • the communication device is a chip provided in a communication device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component.
  • the communication device is a vehicle-mounted device. among them,
  • the transceiver is used to receive information about the first road
  • the processor is configured to determine the allowed functions of the first vehicle on the first road according to the mapping relationship between the road information and the functions of the vehicle and the information of the first road, and the first vehicle Carry the vehicle-mounted device.
  • the processor is also used to activate on-vehicle functions, which belong to the functions allowed by the first vehicle on the first road, or belong to the first vehicle on the first road Functions that are not allowed;
  • the transceiver is also used to send status information, and the status information is used to indicate that the first vehicle has activated the on-board function.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • a communication device is provided.
  • the communication device is, for example, the fourth communication device described above.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are used to implement the methods described in the foregoing fourth aspect or various possible designs of the fourth aspect.
  • the communication device is a chip provided in a communication device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the information transmission and reception through the radio frequency transceiving component.
  • the communication device is a roadside device. among them,
  • the transceiver is configured to receive status information from a vehicle-mounted device, where the status information is used to indicate that a first vehicle carrying the vehicle-mounted device has activated an on-vehicle function;
  • the processor is configured to determine whether to allow the vehicle to use the on-board function on the first road;
  • the processor is further configured to record the event that the first vehicle activates the on-board function as an illegal event when the vehicle is not allowed to use the on-board function on the first road.
  • the processor is configured to determine whether the vehicle is allowed to use the on-board function on the first road in the following manner:
  • the on-board function corresponds to the first road; wherein, the on-board function corresponds to the first road, and the vehicle is allowed to travel on the first road. Use the in-vehicle function on a road; otherwise, the vehicle is not allowed to use the in-vehicle function on the first road.
  • a communication device may be the first communication device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a vehicle-mounted device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the communication device may also include a communication interface
  • the communication interface may be a transceiver in a vehicle-mounted device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is set in For the chip in the vehicle-mounted device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • a communication device is provided.
  • the communication device may be the second communication device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a roadside device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in a roadside device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a set For the chip in the roadside device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in a roadside device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a set For the chip in the roadside device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • a communication device is provided.
  • the communication device may be the third communication device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a vehicle-mounted device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing third aspect or the method in any one of the possible implementation manners of the third aspect.
  • the communication device may also include a communication interface
  • the communication interface may be a transceiver in a vehicle-mounted device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is set in For the chip in the vehicle-mounted device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • a communication device is provided.
  • the communication device may be the fourth communication device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a roadside device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing fourth aspect or any one of the possible implementation methods of the fourth aspect.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in a roadside device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a set For the chip in the roadside device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in a roadside device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a set For the chip in the roadside device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • a communication system may include the communication device described in the fifth aspect, the communication device described in the ninth aspect, or the communication device described in the thirteenth aspect, and the communication system including the communication device described in the sixth aspect.
  • a communication system may include the communication device according to the seventh aspect, the communication device according to the eleventh aspect, or the communication device according to the fifteenth aspect, as well as the eighth aspect The communication device, the communication device according to the twelfth aspect, or the communication device according to the sixteenth aspect.
  • the communication system provided by the seventeenth aspect and the communication system provided by the eighteenth aspect may be the same communication system, or may be different communication systems.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. The method described in.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the above-mentioned second aspect or any one of the possible designs of the second aspect The method described in.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the third aspect or any one of the possibilities of the third aspect. The method described in the design.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute any one of the foregoing fourth aspect or the fourth aspect. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the first aspects. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions, which when run on a computer, cause the computer to execute the second aspect or any one of the second aspects mentioned above. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the third aspect or any one of the third aspects. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute any one of the fourth aspect or the fourth aspect. The method described in the design.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 2 is a flowchart of the first communication method provided by an embodiment of this application.
  • FIG. 3 is a flowchart of a second communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic block diagram of a first vehicle-mounted device provided by an embodiment of this application.
  • FIG. 5 is another schematic block diagram of the first vehicle-mounted device according to an embodiment of the application.
  • FIG. 6 is a schematic block diagram of a first roadside device provided by an embodiment of this application.
  • FIG. 7 is another schematic block diagram of the first roadside device provided by an embodiment of this application.
  • FIG. 8 is a schematic block diagram of a second vehicle-mounted device provided by an embodiment of the application.
  • FIG. 9 is another schematic block diagram of the second vehicle-mounted device according to an embodiment of the application.
  • FIG. 10 is a schematic block diagram of a second roadside device provided by an embodiment of the application.
  • FIG. 11 is another schematic block diagram of a second type of roadside device provided by an embodiment of this application.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is still another schematic block diagram of the communication device provided by an embodiment of the application.
  • On-board unit generally installed on the vehicle, in the ETC system, a roadside unit (RSU) is installed on the roadside, and the OBU can communicate with the RSU, for example, through microwave .
  • RSU roadside unit
  • the OBU and RSU can use microwave to communicate.
  • the OBU uses dedicated short-range communications (DSRC) technology to establish a microwave communication link with the RSU.
  • DSRC dedicated short-range communications
  • various terminal devices described below if they are located on a vehicle (for example, placed in a vehicle or installed in a vehicle), they can all be regarded as vehicle-mounted terminal devices, and vehicle-mounted terminal devices can also be regarded as OBUs.
  • Terminal devices include devices that provide users with voice and/or data connectivity. For example, they may include handheld devices with a wireless connection function or processing devices connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • RSU which can be a fixed infrastructure entity supporting vehicle-to-everything (V2X) applications, and can exchange messages with other entities supporting V2X applications.
  • V2X vehicle-to-everything
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first road and the second road are only for distinguishing different roads, but do not indicate the difference in priority or importance of the two roads.
  • the driving automation (driving automation) level of vehicles can be divided into L0 to L5 levels, ranging from no driving automation to full driving automation.
  • Level L0 driving automation (no driving automation): The vehicle's automatic driving system cannot continuously perform the lateral motion control or longitudinal motion control in the dynamic driving task, or does not have the goals and objectives that are compatible with the executed lateral motion control or longitudinal motion control. Incident detection and response capabilities.
  • the lateral motion control of the vehicle includes, for example, controlling the steering wheel
  • the longitudinal motion control of the vehicle includes, for example, controlling the brakes.
  • L1 level of driving automation driving assistance: the vehicle’s automatic driving system continuously performs the lateral motion control or longitudinal motion control in the dynamic driving task within the operating range designed for it, and has the same horizontal motion control or longitudinal motion control performed Control the ability to detect and respond to suitable targets and events.
  • the automatic driving system can execute the lateral movement control or the longitudinal movement control of the vehicle, for example, it cannot execute the lateral movement control or the longitudinal movement control of the vehicle on the road with a school.
  • L2 level driving automation (partial driving automation): The vehicle’s automatic driving system continuously executes the lateral motion control and longitudinal motion control in the dynamic driving task within the operating range designed for it, and is equipped with the horizontal motion control and longitudinal motion control performed The ability to detect and respond to targets and events suitable for motion control.
  • L2 level driving automation the driver must perform other dynamic driving tasks except for lateral motion control and longitudinal motion control, supervise the behavior of the automatic driving system, and perform appropriate responses or operations.
  • Level 3 driving automation The vehicle's automatic driving system continuously performs all dynamic driving tasks within the operating range designed for it.
  • L3 driving automation the user in the car does not need to supervise the behavior of the autopilot system, but if the autopilot system issues an intervention request, or the autopilot system fails or makes an error, the user needs to take over the vehicle in an appropriate way to minimize risk status.
  • Level 4 driving automation The automatic driving system continuously performs all dynamic driving tasks within the operating range designed for it.
  • L4 driving automation the user in the car as a passenger does not need to supervise the behavior of the automatic driving system. Even if the automatic driving system issues an intervention request, the user does not need to respond, and the automatic driving system can automatically reach the minimum risk state.
  • Level 5 driving automation complete driving automation: The automatic driving system can continuously perform all dynamic driving tasks under any driving conditions.
  • L5 level driving automation the user in the car as a passenger does not need to supervise the behavior of the autopilot system. Even if the autopilot system issues an intervention request, the user does not need to respond, and the autopilot system can automatically reach the minimum risk state.
  • the L5 autonomous driving system has no design operating limits (excluding commercial and regulatory factors). In principle, the autonomous driving system can complete operations under all conditions that a skilled traditional driver can handle.
  • automatic driving functions such as high-speed automatic cruise function or automatic lane change function of vehicles.
  • Different automatic driving functions have different risks. Some automatic driving functions are more dangerous, and some automatic driving functions may be more dangerous. low. If an autonomous vehicle is driving on a road with a more complicated environment and the dangerous autonomous driving function is activated, an accident is extremely likely. For example, if an autonomous vehicle is driving on a road with a school or a hospital, and the function of automatic lane change is turned on, there may be a risk of an accident due to a large number of pedestrians on the road. Therefore, in order to ensure safety, the government generally stipulates the roads on which the automatic driving function can be used. That is to say, the vehicle can only activate the automatic driving function on these prescribed roads, and for the roads where the automatic driving function is not specified, in principle Autopilot functions are not allowed.
  • the current activation of the automatic driving function is determined by humans and is not controlled by the outside world. Even if a road is not a road where the automatic driving function can be used, the automatic driving function can be activated on the road manually. Then, once someone maliciously activates the automatic driving function on a road that is not suitable for using the automatic driving function, it may cause a vehicle accident and cause great harm to social safety.
  • the technical solutions of the embodiments of the present application are provided.
  • the on-board device if the on-board device triggers the on-board function, the on-board device needs to verify the on-board function, and activate or not activate the on-board function according to the verification result. For example, if the verification fails, it indicates that the first vehicle is not allowed to use the on-board function on the first road, and the on-board device may not activate the on-board function, so that whether to activate the corresponding on-board function can be controlled, so that The activation of functions on the car no longer depends on human needs.
  • the functions on the vehicle are, for example, automatic driving functions, or may also be other functions on the vehicle.
  • the on-board function described here may be one on-board function of the first vehicle.
  • FIG. 1 is a network architecture applied in the embodiment of this application.
  • Figure 1 includes a vehicle-mounted device and a roadside device.
  • the vehicle-mounted device and the roadside device can communicate with each other, for example, through microwave communication, or through other technologies.
  • the vehicle-mounted device is carried on a vehicle, and a vehicle carries one or more vehicle-mounted devices, for example.
  • Fig. 1 takes an in-vehicle device and a roadside device as an example.
  • the vehicle carrying the in-vehicle device is traveling on a certain road, and the roadside device is located on one side of the road, for example.
  • one vehicle-mounted device can communicate with multiple roadside devices, and one roadside device can also communicate with multiple vehicle-mounted devices.
  • the position of the in-vehicle device on the vehicle, the installation position of the roadside device, etc. are just examples, and do not necessarily represent the actual position.
  • the in-vehicle device in FIG. 1 is, for example, an OBU, and the roadside device is, for example, an RSU.
  • On-board functions may include the functions of the on-board OBU, or include the functions of the vehicle, or include the functions of the vehicle and the functions of the on-board OBU.
  • the functions on the vehicle including the functions of the vehicle are mainly taken as an example, but it is not limited to this in practice.
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 2 which is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 1 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device or the second communication device may be a vehicle-mounted device or a communication device (such as a chip system) capable of supporting the vehicle-mounted device to implement the functions required by the method, or may be a roadside device or capable of supporting a roadside device to implement
  • the communication device (such as a chip system) for the functions required by the method can of course also be other communication devices.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the first communication device is implemented in the form of a device, the second communication device is implemented in the form of a chip system, and so on.
  • the method is executed by the vehicle-mounted device and the roadside device as an example, that is, the first communication device is the vehicle-mounted device and the second communication device is the roadside device as an example.
  • the vehicle-mounted device described below may be the vehicle-mounted device in the network architecture shown in FIG. 1
  • the roadside device described below may be It is the roadside device 1 in the network architecture shown in FIG. 1.
  • the on-board device is an OBU and the roadside device is an RSU as an example.
  • the RSU sends the information of the first road to the OBU, and the OBU receives the information of the first road from the RSU.
  • the RSU can send configuration information to the OBU, and the configuration information can include information about at least one road. If the number of at least one road is 1, then the RSU sends the information about the first road to the OBU, and if the number of at least one road is greater than 1. Then the RSU sends the information of multiple roads to the OBU, and the first road may be included in the multiple roads.
  • the RSU is set on the side of the road, so the RSU can obtain the information of one or more roads.
  • the RSU can obtain the information of the road where the RSU is located, or the RSU can also obtain the information of the roads around the road where the RSU is located, such as road 1 and Road 2 crosses, RSU is located at road 1, and at the intersection of road 1 and road 2, then RSU can obtain road 1 information and road 2 information.
  • the information of a road can include one of the following or any combination of the following: the type of the road, the identification of the road, the area of the road (the area can also be called the geographic area), the track information of the road, The number of the lane corresponding to the road, the information of the RSU that sends the road information to the OBU, or the effective time period corresponding to the road.
  • the effective time period of the road may refer to that the type of the road is effective within the effective time period, and therefore, the effective time period corresponding to the road can be understood as the effective time period corresponding to the road type.
  • the information of a road includes the type of the road, or the information of a road includes the type of the road and the identification of the road, or the information of a road includes the type of the road, the identification of the road, the area of the road, and the track information of the road , Or, the information of a road includes the identification of the road, the area of the road, the trajectory information of the road, and the effective time period of the road, etc.
  • the information of the first road may include one or any combination of the following: the type of the first road, the identification of the first road, the geographic range of the first road, the first road The trajectory information of the first road, the number of the lane corresponding to the first road, the RSU information (that is, the RSU information described in S21) that sends the information of the first road to the OBU, or the valid time period corresponding to the first road.
  • roads can be classified into different types based on one of the following factors or any combination of the following factors: road complexity, road marking clarity, road administrative level, road technology level, population density, traffic flow Size, weather conditions, or, road emergencies.
  • roads can be divided into different types based on road complexity, or roads can be divided into different types based on road marking clarity and road technology level, or based on road technology level, population density and traffic The amount of traffic divides the road into different types.
  • the road can be divided into different types based on road complexity, road marking clarity, population density and weather conditions, or it can be based on road complexity and road signs.
  • Line definition, road administrative level, road technology level, population density, traffic volume, weather conditions, and road emergencies classify roads into different types, and so on.
  • Road administrative levels include, for example, highways, national highways, or provincial highways.
  • highways can be divided into one type of road
  • national highways can be divided into another type of roads
  • provincial highways can be divided into another type of roads.
  • Road technology levels include, for example, first-level roads or second-level roads.
  • first-level roads can be classified into one type of road
  • second-level roads can be classified into another type of road.
  • Road emergencies include, for example, road repairs or accidents. For example, roads that have been repaired and/or traffic accidents can be classified as one type of road, and roads that have neither road repairs nor traffic accidents can be classified as Another type of road.
  • the type may not be static.
  • the RSU may set the type of the road, and may periodically update the type of the road, or the RSU may also update the type of the road from time to time, for example, the type of the road may be updated when the road conditions change. For example, for a road, when the RSU updates the road type in a certain period, the road is under maintenance, then the RSU sets the road type to type 1. When the road type is updated in the next cycle of the RSU, and the maintenance of the road has ended and it can be used normally, the RSU can update the road type to type 2.
  • the road identifier includes, for example, the name of the road, or the identification number (ID) of the road, or the name of the road and the ID of the road, and of course, may also include other information that can uniquely identify the road.
  • the geographic extent of the road can be used to indicate the geographic location of the road.
  • the geographic scope of a road may include the starting position and ending position of the road.
  • the trajectory information of the road can be used to describe the shape of the road.
  • the trajectory information of the road includes a sequence of trajectory points of the road.
  • the road information corresponding to a road can be a lane on an avenue, or it can be a complete road. If the road is a lane on an avenue, then the road information may include the lane number, and if the road is a complete road, then the road information may not include the lane number.
  • the information of road 1 includes type 1 and lane number 1 of road 1, then it indicates that the type of the lane of lane number 1 of road 1 is type 1, and the other lanes of road 1 are not indicated. Or, for example, the information of road 1 includes type 1 and the ID of road 1, then it indicates that the type of road 1 is type 1.
  • the effective time period of the road refers to that the type of the road in the effective time period is the current type, and outside the effective time period, the type of the road may or may not be the current type.
  • the effective time period may include one or more time periods. If multiple time periods are included, the multiple time periods may be continuous or discontinuous in time.
  • the configuration information may also include one or more random sequences, for example, the information of at least one road corresponds to the random sequence one-to-one, and one random sequence corresponds to the information of one road, or the information of at least one road only Corresponds to a random sequence.
  • a random sequence can be a single sequence, such as a 128-bit (bit) binary sequence, or a 256-bit binary sequence, etc.; or, a random sequence can also be a combination of multiple sequences, such as combining multiple sequences The sequence obtained after head-to-tail splicing.
  • the RSU can send configuration information by broadcasting, and the OBU can receive the broadcast message from the RSU to obtain the configuration information.
  • the RSU can send the configuration information in a multicast manner, and the OBU can receive the multicast message from the RSU to obtain the configuration information.
  • the RSU may send the configuration information in a unicast manner, and the OBU may receive the unicast message from the RSU to obtain the configuration information.
  • the RSU may send the configuration information in a broadcast or multicast manner, there may be multiple OBUs that can receive the configuration information.
  • the processing manners of multiple OBUs after receiving the configuration information may be similar. Therefore, the embodiment shown in FIG. 2 only uses one of the OBUs as an example for description.
  • an OBU may only receive configuration information from one RSU, or it may also receive configuration information from multiple RSUs. It can be considered that the information of at least one road in S21 may be one or more configuration information. Indicated. If the configuration information sent by two RSUs both indicate the same road (or indicate the same lane of the same road), then the OBU only needs to process it according to the instructions from the configuration information from one of the RSUs. Yes, but the information on the road (or lane of the road) indicated by the configuration information from another RSU can be ignored by the OBU. Or, OBU does not need to consider whether different configuration information indicates the same road or the same lane when processing, OBU processes according to each configuration information, even if different configuration information indicates the same road or the same lane , OBU will also deal with it.
  • S21 is an example where the OBU obtains at least one road information from the RSU, or the OBU may also obtain at least one road information in other ways.
  • the OBU may obtain the map from the server, and the map includes information of at least one road, the OBU may obtain the information of at least one road included in the map.
  • the OBU determines the in-vehicle functions allowed to be used on the first road according to the mapping relationship and the information of the first road.
  • the mapping relationship includes the mapping relationship between road information and vehicle functions.
  • the OBU may determine the on-vehicle functions allowed to be used on at least one road based on the mapping relationship between road information and vehicle functions, and information on at least one road.
  • OBU can determine the in-vehicle functions that are allowed to be used on each road in at least one road.
  • the determination methods used are similar. Therefore, S22 only uses The OBU determines the on-vehicle functions allowed on the first road as an example.
  • the number of in-vehicle functions allowed on the first road may be 1, or it may be greater than 1, and of course it may be 0.
  • the mapping relationship is known to OBU.
  • the OBU stores the mapping relationship, or the OBU stores the mapping relationship in advance, for example, the mapping relationship may be pre-configured in the OBU.
  • the mapping relationship may also be set by the RSU, the RSU may be sent to the OBU after being set, and the OBU may receive the mapping relationship.
  • the mapping relationship may also be stipulated by the agreement.
  • the mapping relationship may also be stored in a cloud platform, and the OBU may obtain the mapping relationship from the cloud platform.
  • the OBU may also obtain the mapping relationship through the network.
  • the OBU may obtain a map from the server, and the map includes the mapping relationship, the OBU may obtain the mapping relationship included in the map.
  • the mapping relationship can be in the form of a table, in which the information of a road can correspond to one or more functions, or the mapping relationship can also be bitmapped.
  • the bitmap includes multiple bits, and the bits included in the bitmap correspond to the function of the vehicle one-to-one, that is, one bit included in the bitmap is used to indicate a function of the vehicle.
  • the information of each road can correspond to a bitmap, the number of bits of the bitmap corresponding to the information of different roads can be the same, and the correspondence between the bits and the functions of the vehicle can also be the same.
  • mapping relationship can also be in other forms, such as a list form (not a tabular form), etc., as long as the mapping relationship can indicate the mapping relationship between road information and vehicle functions. For the form of the mapping relationship No restrictions.
  • the automatic driving function can represent specific functions.
  • the automatic driving function includes functions such as automatic valet parking, high-speed automatic cruise, congested automatic cruise, automatic lane change, automatic formation driving, or remote driving.
  • the autopilot function can also represent the basic capabilities of autopilot.
  • autopilot function 1 indicates support for binocular cameras
  • autopilot function 2 indicates support for 32-line lidar
  • autopilot function 3 indicates support for V2X vehicle-to-road communication, and so on.
  • the automatic driving function can also indicate the working conditions or scenarios that can be supported. For example, the working conditions are divided into signal recognition, intersection traffic, pedestrian avoidance, or driving in rain and snow, etc. Each working condition can correspond to a kind of Autopilot function.
  • the automatic driving function may also correspond to one or more of specific functions, basic capabilities or operating conditions of automatic driving.
  • automatic driving functions correspond to specific functions and basic capabilities of automatic driving, or automatic driving functions correspond to specific functions and working conditions, or automatic driving functions correspond to basic capabilities and working conditions of automatic driving, or automatic driving functions correspond to Based on specific functions, basic capabilities and working conditions of autonomous driving.
  • automatic driving function 1 indicates the function of automatic valet parking and the basic ability to support binocular cameras
  • automatic driving function 2 indicates the ability of high-speed automatic cruise and driving conditions in rain and snow
  • automatic driving function 3 indicates automatic cruise in congestion.
  • the automatic driving function 4 indicates the ability to automatically change lanes, the basic ability to support 32-line lidar, and the working conditions of signal recognition.
  • the mapping relationship between road information and vehicle functions can indicate which functions can be used on the road of which information, so that the on-vehicle functions allowed to be used on a road can be determined according to the mapping relationship.
  • the mapping relationship between road information and vehicle functions can be the mapping relationship between road signs and vehicle function signs. Through this mapping relationship, the function corresponding to each road can be indicated and the granularity of indication Finer.
  • the mapping relationship between road information and vehicle functions can also be the mapping relationship between road types and vehicle functions, so that the mapping relationship can indicate the functions corresponding to a type of road, compared to the respective For indicating the function corresponding to each road, indicating the function corresponding to a type of road can reduce the amount of information of the mapping relationship.
  • mapping relationship between road information and vehicle functions which is the mapping relationship between road types and vehicle functions as an example
  • the mapping relationship between the functions of the vehicle may also be the mapping relationship between the road type identification and the vehicle function identification.
  • the identifier of the function of the vehicle is, for example, the ID of the function of the vehicle, and the identifier of a function of the vehicle may indicate the function.
  • mapping relationship is in the form of a table as an example.
  • Type 2 Type 3 ...
  • type k indicates that the type of road is k.
  • Function 1 has a mapping relationship with Type 1, Type 2, Type 3, and Type k, indicating that if the type of the road is Type 1, Type 2, Type 3, or Type k, function 1 can be used. However, there is no mapping relationship between function 2 and type 2, so if the road type is type 2, function 2 is not allowed.
  • the OBU can determine the on-board functions allowed on the first road.
  • the on-board functions allowed on the first road may include one or more.
  • the in-vehicle functions that are allowed on the first road determined by the OBU are actually the in-vehicle functions that are allowed to be used when the first vehicle is driving on the first road.
  • the first vehicle may be a vehicle corresponding to the OBU.
  • the first vehicle is a vehicle that carries the OBU, or the first vehicle is a vehicle that is controlled by the OBU.
  • the OBU obtains the first check sequence.
  • the OBU can obtain M check sequences, the first check sequence is one of the M check sequences, and M is a positive integer.
  • the first check sequence corresponds to an on-board function of the first vehicle.
  • the on-board function may be referred to as the first on-board function.
  • the OBU may determine that there are M on-board functions running on at least one road, so that the OBU can obtain the verification sequence of the M on-board functions.
  • the OBU determines the on-board functions allowed to be used on the first road, and can obtain the verification sequence corresponding to the on-board functions allowed to be used on the first road.
  • the OBU can obtain one or more check sequences.
  • the one or more check sequences include the first check sequence, and the first check sequence corresponds to For the first on-board function that is allowed to be used on the first road.
  • the OBU can obtain M verification sequences corresponding to the M on-board functions supported by the first vehicle, and the M on-board functions are all or part of the on-board functions supported by the first vehicle.
  • the M in-vehicle functions may include the in-vehicle functions that are allowed to be used on at least one road, or may also include the in-vehicle functions that are not allowed to be used on at least one road, and the OBU obtains the corresponding on-board functions.
  • the check sequence may include the in-vehicle functions that are allowed to be used on at least one road, or may also include the in-vehicle functions that are not allowed to be used on at least one road.
  • the OBU can be different ways for the OBU to obtain M check sequences. Because the way the OBU obtains the check sequence is similar, the following takes the OBU to obtain the first check sequence as an example.
  • the OBU may calculate the first check sequence by itself. For example, the OBU may calculate the first check sequence according to the identifier of the function on the first vehicle. Wherein, the OBU may calculate the first check sequence after determining that the first on-board function is the on-board function allowed to be used on the first road. For example, the OBU may determine the allowable first road based on the information on the first road and the mapping relationship.
  • the OBU calculates the first check sequence; or, the OBU does not need to determine whether the first in-vehicle function is an in-vehicle function allowed to be used on the first road, for example
  • the OBU determines that the first on-vehicle function is an on-vehicle function that the OBU can support, and the OBU may calculate the first check sequence.
  • the M on-board functions are on-board functions that are allowed to be used on at least one road, or the M on-board functions may be all on-board functions supported by the first vehicle, or may also be the first vehicle. Some on-vehicle functions supported.
  • the OBU can calculate a verification sequence based on the identification of a function on the vehicle, which is equivalent to a one-to-one correspondence between the identification of the function on the vehicle and the verification sequence.
  • the OBU is the information of the first road obtained from the RSU, for example, when the OBU calculates the verification sequence, it can consider the identification of the RSU in addition to the identification of the corresponding vehicle function .
  • the OBU may calculate the first check sequence according to the identifier of the function on the first vehicle and the identifier of the RSU corresponding to the function on the first vehicle.
  • the ID of the RSU for example, the ID of the RSU.
  • the RSU corresponding to the first in-vehicle function refers to the information of the first road sent by the RSU to the OBU, and the first in-vehicle function is a function allowed to be used on the first road.
  • the OBU may involve the calculation of multiple check sequences, for example, the OBU calculates M check sequences, so the RSU identifiers used by the OBU may be the same or different when calculating different check sequences. For example, if two on-vehicle functions are determined by OBU based on the configuration information from RSU1, then when OBU calculates the verification sequence of these two on-vehicle functions, the RSU identifiers used are the same, and both are the identifiers of RSU1; or If one on-vehicle function is determined by OBU based on the configuration information from RSU1, and the other on-vehicle function is determined by OBU based on the configuration information from RSU2, then OBU uses the The logos of RSU are different, they are RSU1 logo and RSU2 logo.
  • a random sequence may also be considered.
  • the random sequence is included in the configuration information, for example. Then, if the OBU determines that an on-vehicle function is an autonomous driving function that is allowed to be used on a road based on a configuration information, and the configuration information includes a random sequence, the OBU can determine it based on the identification of the on-board function and the random sequence. Calculate the check sequence.
  • the OBU can use the identification of the first on-board function and the random sequence. Sequence to calculate the first check sequence.
  • the configuration information can indicate the information of one or more roads. For example, no matter how many roads are indicated by the configuration information, the configuration information only includes a random sequence. Then the information of all the roads indicated by the configuration information corresponds to the road The allowed functions on the vehicle can use the random sequence when calculating the verification sequence; or, if the configuration information indicates multiple roads, the configuration information can include multiple random sequences.
  • the road information is the same as the random sequence.
  • the OBU can use the random sequence corresponding to the on-board function when calculating the verification sequence corresponding to the on-board function allowed on the road corresponding to the information of the road indicated by the configuration information.
  • the corresponding random sequence is the random sequence corresponding to the road that allows the use of the function on the vehicle.
  • the OBU can be based on the identification of the function on the first vehicle, the random sequence corresponding to the function on the first vehicle, and the RSU corresponding to the function on the first vehicle. , Calculate the first check sequence. In this way, not only the information of the functions on the vehicle is taken into consideration, so that the verification sequence corresponds to the functions on the vehicle, but also the identification of the RSU is taken into consideration, and the random sequence is also taken into consideration, which improves the reliability of verification.
  • OBU can input information (for example, the identification of the function on the first vehicle, or the identification of the function on the first vehicle and the identification of the RSU, or the identification and random sequence of the function on the first vehicle, or the identification of the function on the first vehicle.
  • the identification of the upper function, the random sequence and the identification of the RSU) are input into the first algorithm, and the output result is the first check sequence.
  • the first algorithm may be the mapping relationship between the input information and the check sequence. After the input information is available, the corresponding check sequence can be obtained according to the input information and the mapping relationship.
  • one OBU may receive configuration information from multiple RSUs, and there may be different configuration information indicating the same road information.
  • the two configuration information both indicate the information of the road 1, for example, according to the mapping relationship between the information of the road and the function of the vehicle, it is determined that the on-board function 1 is allowed to be used on the road 1. If the OBU considers the RSU identification or random sequence when calculating the check sequence, then the OBU can calculate the two check sequences corresponding to function 1 on the vehicle for these two configuration information. In the subsequent verification process, the verification can be performed by any one of the two verification sequences. As long as the verification is passed, the verification is considered successful, or both of the two verification sequences can be verified.
  • the verification is considered as successful only when the two verification sequences have passed the verification.
  • the two configuration information both indicate the information of road 1, and the on-board function 1 is allowed to be used on road 1, then when M on-board functions are determined, it can be considered that on-board function 1 is determined Twice, or in other words, there are two on-board functions that are the same in M on-board functions, both on-board function 1. Therefore, the two check sequences corresponding to on-board function 1 are included in M check-ups In sequence.
  • the OBU can determine after receiving the configuration information. If different configuration information indicates the information of the same road, then the OBU only needs to calculate the corresponding on-board function allowed to be used on the road according to the indication of one of the configuration information.
  • the check sequence is sufficient, and there is no need to calculate the check sequence corresponding to the on-vehicle function permitted to be used on the road indicated by each configuration information, so as to reduce the workload of the OBU without affecting the subsequent verification process.
  • the verification process it mainly refers to verifying whether the corresponding on-board function is allowed to start according to the verification sequence, which will be introduced later.
  • OBU does not need to calculate by itself, other devices can calculate M check sequences, and other devices send M check sequences to OBU after calculation, and OBU receives M A check sequence is sufficient.
  • the other equipment is, for example, an RSU, or may also be equipment other than the OBU and RSU.
  • the RSU is taken as an example. Take the first car function as an example.
  • the OBU may send the identification of the first vehicle function to the RSU, the RSU calculates the first check sequence, the RSU then sends the first check sequence to the OBU, and the OBU receives the first check sequence from the RSU.
  • the OBU may send the identification of the first on-board function to the RSU after determining that the first on-board function is the on-board function that is allowed to be used on the first road.
  • the OBU may use the information on the first road and the mapping Relationship, determine the first on-board function that allows the first vehicle to use on the first road, the OBU sends the identification of the first on-board function to the RSU to receive the first verification sequence from the RSU; or, the OBU does not need to Determine whether the first in-vehicle function is an in-vehicle function allowed to be used on the first road.
  • the OBU can send the identification of the first in-vehicle function to RSU, thereby receiving the first check sequence from the RSU.
  • the M on-board functions are on-board functions that are allowed to be used on at least one road, or the M on-board functions may be all on-board functions supported by the first vehicle, or may also be the first vehicle. Some on-vehicle functions supported.
  • the OBU can send the identifiers of the M functions on the vehicle to one RSU, and one RSU performs unified calculation.
  • the OBU may also send the identifiers of the M on-vehicle functions to multiple RSUs, and the multiple RSUs will process them separately.
  • M on-vehicle functions are determined according to the configuration information and the mapping relationship and allowed to be used on at least one road.
  • the OBU can send the on-board function 1 identification to the corresponding RSU, the corresponding RSU refers to an RSU whose configuration information includes road information that allows the use of on-board function 1.
  • the RSU can determine whether the first-in-vehicle function corresponding to the identifier of the first in-vehicle function is allowed to be used in the current location of the first vehicle according to the mapping relationship described above. If allowed, the RSU can calculate the first check sequence corresponding to the function on the first vehicle and send the first check sequence to the OBU. Or, if the first in-vehicle function corresponding to the identifier of the first in-vehicle function is not allowed to be used on the road where the first vehicle is currently located, the RSU may not need to calculate the verification sequence corresponding to the first in-vehicle function.
  • the road on which the first vehicle is located may refer to the road on which the first vehicle is driving.
  • the first vehicle is located on the road. It may also be understood as the on-board global positioning system (GPS) of the first vehicle.
  • GPS global positioning system
  • the information is located within the range of the road.
  • the RSU may send first information to the OBU.
  • the first information may indicate that the vehicle is allowed or not allowed to use the M on-board functions on the first road.
  • the first information may carry the corresponding check sequence, and/or may also carry indication information.
  • the first information may carry the check sequence, or the indication information, or the check sequence and the indication information.
  • one situation is that if the RSU obtains a check sequence corresponding to an on-vehicle function identifier, it will include the check sequence in the first message, and if the RSU does not obtain a check corresponding to the on-vehicle function identifier Sequence, the first message will include the indication information corresponding to the identifier of the function on the car.
  • the first information includes a check sequence, it indicates that the vehicle is allowed to use the on-board function corresponding to the check sequence on the first road, and if the first information includes an instruction, it indicates that The vehicle is not allowed to use the in-vehicle function indicated by the instruction information on the first road, or the reason why the vehicle is not permitted to use the in-vehicle function indicated by the instruction information on the first road (for example, the instruction information includes a cause value) , Or, indicates that the request failed (that is, the OBU's request for the verification sequence failed).
  • RSU has obtained a total of M check sequences, which is equivalent to that if all the check sequences requested by the OBU are obtained successfully, then the first message only carries the check sequence; or, RSU has obtained a total of 0 checks
  • the sequence is equivalent to that if all the check sequences requested by the OBU are not successfully obtained, then the first message only carries the indication information; or, the RSU has obtained a total of N check sequences, N is a positive integer, and N is less than M is equivalent to that a part of the check sequence requested by the OBU is successfully obtained, but the remaining part of the check sequence requested by the OBU is not obtained successfully, and the first information carries N check sequences and indication information.
  • the indication information may indicate the reason why one or more on-board functions cannot be used, or indicate that the verification sequence request for one or more on-board functions has failed.
  • the instruction information and the functions on the vehicle may have a one-to-one correspondence, or multiple functions on the vehicle may correspond to one instruction information.
  • the RSU obtains a check sequence corresponding to an on-vehicle function identifier, it will include the check sequence in the first information, and if the RSU does not obtain a corresponding on-vehicle function identifier
  • the verification sequence the content corresponding to the identification of the function on the vehicle will not be included in the first information (neither the verification sequence corresponding to the identification of the function on the vehicle nor the indication in the previous case is included information).
  • the first information includes a check sequence
  • the first information does not include an on-board function identifier
  • the corresponding check sequence indicates that the vehicle is not allowed to use the on-board function on the first road, or the reason why the vehicle is not allowed to use the on-board function on the first road (for example, the instruction information includes the reason value), Or, it indicates that the request failed (that is, the OBU's request for the verification sequence failed).
  • the OBU may also send the identification of the first vehicle to the RSU. After the RSU receives the identity of the first vehicle, it can verify the first vehicle to confirm whether the first vehicle is legal. If the first vehicle is legal, the RSU further determines whether the on-board function corresponding to the on-board function identifier from the OBU is allowed to be used on the road where the first vehicle is located. If the first vehicle is illegal, the RSU does not need to address the OBU calculates any check sequence.
  • OBU does not need to calculate by itself, other devices can calculate M check sequences, and other devices send M check sequences to OBU after calculation, and OBU receives M A check sequence is sufficient.
  • other devices may send first information to the OBU, and the first information may indicate that the vehicle is allowed or not allowed to use the M in-vehicle functions on the first road.
  • the other equipment is, for example, RSU, or equipment other than OBU and RSU.
  • RSU is taken as an example.
  • the difference from the previous optional way that OBU obtains M check sequences is that in this optional way, OBU does not need to send the identification of the first vehicle function to RSU, and RSU can actively calculate the first
  • the RSU sends the first check sequence to the OBU, and the OBU receives the first check sequence from the RSU.
  • the RSU may calculate the first check sequence after determining that the first on-board function is an on-board function allowed to be used on the first road. For example, the RSU can determine whether the first on-board function is allowed to be used on the road where the first vehicle is currently located according to the mapping relationship described above. If it is allowed, the RSU can calculate the first check corresponding to the first on-board function.
  • the first information includes the first check sequence.
  • the first information can be considered to indicate that the vehicle is allowed to use the first vehicle on the first check sequence on the first road.
  • the RSU may not need to calculate the check sequence corresponding to the function on the first vehicle, and the RSU may also send the first information to the RSU.
  • the first information may include indication information, which indicates that the vehicle is not allowed to use the on-board function indicated by the indication information on the first road, or indicates that the vehicle is not allowed to use the on-board function indicated by the indication information on the first road.
  • the reason for the on-board function (for example, the indication information includes a reason value), or the first information at this time may also be an empty set to indicate that the vehicle is not allowed to use the on-board function indicated by the indication information on the first road.
  • the manner in which the OBU calculates the first check sequence may be similar.
  • the RSU may calculate the first verification sequence based on the identifier of the function on the first vehicle, or the RSU may calculate the first verification sequence based on the identifier of the function on the first vehicle and the random sequence, or the RSU may calculate the first verification sequence based on the identifier of the function on the first vehicle.
  • the identification of the function and the identification of the RSU calculate the first verification sequence, or the RSU may calculate the first verification sequence according to the identification of the function on the first vehicle, the random sequence, and the identification of the RSU.
  • the RSU can input information (for example, the identification of the function on the first vehicle, or the identification of the function on the first vehicle and the identification of the RSU, or the identification and random sequence of the function on the first vehicle, or the first The identification of the function on the vehicle, the random sequence and the identification of the RSU) are input into the first algorithm, and the output result is the first check sequence.
  • information for example, the identification of the function on the first vehicle, or the identification of the function on the first vehicle and the identification of the RSU, or the identification and random sequence of the function on the first vehicle, or the first
  • the output result is the first check sequence.
  • S21 to S23 are optional steps, which are not mandatory.
  • the OBU determines that the first vehicle triggers the first on-board function, and the first vehicle carries the OBU.
  • the OBU determines the on-board function that allows the first vehicle to be used on at least one road, then if the OBU first vehicle is on the first road, the OBU can trigger the first on-board function, and the first on-board function can be allowed An on-board function used on the first road. In this way, the OBU can directly determine whether to trigger the corresponding on-vehicle function, without the user's decision, and reduce the user's workload.
  • which car function to activate can also be determined by the user. For example, if the user decides to activate the first in-vehicle function, he can perform a corresponding operation (for example, press the corresponding button) to trigger the first in-vehicle function. The user's operation can trigger the OBU, and then the OBU can trigger the first vehicle function.
  • a corresponding operation for example, press the corresponding button
  • OBU has determined the in-vehicle functions that allow the first vehicle to be used on the first road, and the user may not know the in-vehicle functions selected by the user is likely to be a vehicle that is not allowed to be used on the first road. Function. In this case, you can rely on the OBU's subsequent verification process, or there is another way.
  • the OBU determines the on-board function that allows the first vehicle to use on the first road, it can output the second information, the second information It can indicate the on-board function that allows the first vehicle to be used on the first road.
  • the OBU can output the second information through the on-board audio device, or it can output the second information through the on-board video device, or it can also output the second information to The user’s mobile phone and other equipment.
  • the user can know the in-vehicle functions that the first vehicle is allowed to use on the first road, so that when the first vehicle is on the first road, the user can choose to trigger certain in-vehicle functions that are allowed to be used on the first road.
  • One or some functions in the car are examples of the car.
  • OBU can obtain M check sequences first. Or there is an alternative way, OBU may not need to obtain M check sequences first, that is, in this case, S23 may not be executed, or may be executed after S24.
  • the OBU determines the in-vehicle functions that are allowed to be used on the first road, and then the OBU can trigger the first in-vehicle function, which may be an in-vehicle function allowed to be used on the first road.
  • the OBU can calculate the first check sequence of the first in-vehicle function, and the calculation method can refer to the preceding text; or, the OBU can send the identification of the first in-vehicle function to the RSU, and the RSU can calculate it For the first check sequence of the function on the first vehicle, the RSU sends the first check sequence to the OBU.
  • the method of calculating the first check sequence by the RSU please refer to the preceding text.
  • the RSU determines that the first on-board function is an on-board function that is not allowed to be used on the first road, the RSU will not calculate the check sequence of the first on-board function, nor will it send the first check sequence to OBU, in this case, the OBU cannot obtain the first check sequence.
  • the OBU only needs to obtain the check sequence corresponding to the triggered on-board function, without obtaining too many check sequences, which helps save the storage space of the OBU.
  • the OBU checks whether the first vehicle is allowed to use the first on-board function on the first road.
  • the OBU can check the first check sequence. For example, the OBU may input the first check sequence into the first algorithm. If the verification result shows that the verification of the first verification sequence is passed, which is equivalent to indicating that the first vehicle is allowed to use the first on-board function on the first road, the OBU determines that the first on-board function is allowed to be used on the first road. Or, if the verification result shows that the verification of the first verification sequence is not passed, which is equivalent to indicating that the first vehicle is not allowed to use the first vehicle function on the first road, the OBU determines that the first vehicle The function is a car function that is not allowed to be used on the first road.
  • the OBU may not have obtained the first A check sequence.
  • the OBU sends the identity of the function on the first vehicle to the RSU, and the RSU verifies the function on the first vehicle corresponding to the identity of the function on the first vehicle according to the mapping relationship to determine whether the function on the first vehicle is On-board functions that allow vehicles to be used on the first road.
  • the OBU fails to obtain the check sequence corresponding to the function on the first vehicle. Therefore, the verification process of the OBU can be described as a whole.
  • the OBU first determines whether the function on the first vehicle has a corresponding verification sequence. If not, the OBU directly determines that the verification has failed (or described as a verification failure), and If the function on the first vehicle has a corresponding check sequence, the OBU can further check the check sequence. For the verification process, refer to the description in the previous paragraph.
  • the OBU activates or does not activate the first on-board function according to the verification result.
  • the OBU can activate the first on-board function, and the first on-board function can only be used on the first road. If the first vehicle later drives on another road, then if this road also allows the use of the first vehicle function, the OBU may not process it, or if the road does not allow the use of the first vehicle function, then OBU can stop using the first car function.
  • the OBU may not activate the first on-board function.
  • the vehicle on the corresponding road will try not to activate the on-board functions that are not allowed to be used on the road, thereby improving the safety and reliability of the automatic driving process.
  • the embodiment of the present application provides a second communication method.
  • FIG. 3, is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 1 is taken as an example.
  • the method may be executed by two communication devices, for example, the third communication device and the fourth communication device.
  • the third communication device or the fourth communication device may be a vehicle-mounted device or a communication device (such as a chip system) capable of supporting the vehicle-mounted device to implement the functions required by the method, or may be a roadside device or capable of supporting the implementation of a roadside device
  • the communication device (such as a chip system) for the functions required by the method can of course also be other communication devices.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the third communication device is implemented in the form of equipment, the fourth communication device is implemented in the form of a chip system, and so on.
  • the method is executed by the vehicle-mounted device and the roadside device as an example, that is, the third communication device is the vehicle-mounted device and the fourth communication device is the roadside device as an example.
  • the vehicle-mounted device described below may be the vehicle-mounted device in the network architecture shown in FIG. 1
  • the roadside device described below may be It is the roadside device 1 in the network architecture shown in FIG. 1.
  • the on-board device is an OBU and the roadside device is an RSU as an example.
  • the RSU sends configuration information to the OBU, and the OBU receives the configuration information from the RSU, where the configuration information is used to indicate information about at least one road.
  • the information of at least one road includes information of the first road. Therefore, in Figure 3, only the RSU sending the information of the first road to the OBU is taken as an example.
  • the OBU determines the functions allowed to be used by the first vehicle on the first road according to the mapping relationship between the road information and the functions of the vehicle, and the information on the first road.
  • the OBU may determine the functions of the vehicles that allow the first vehicle to be used on at least one road according to the mapping relationship between the road information and the functions of the vehicle, and the configuration information.
  • the first road is taken as an example.
  • the OBU activates the first on-board function.
  • the first on-board function belongs to the function that the first vehicle is allowed to use on the first road, or belongs to the first vehicle that is not allowed to be used on the first road. Function.
  • the OBU determines the on-board function that allows the first vehicle to be used on at least one road, then if the first vehicle of the OBU is on the first road, the OBU can activate the first on-board function, and the first on-board function may be allowed An on-board function used on the first road. In this way, the OBU can directly determine whether to activate the corresponding in-vehicle function, without the user's decision, and reduce the user's workload.
  • the first in-vehicle function may also be an in-vehicle function that is not allowed to be used on the first road.
  • the OBU determines to allow the first vehicle to be on at least one road There was an error when using the on-board function, the first on-board function was mistakenly determined to be the on-board function allowed to be used on the first road, or the mapping relationship was not updated in time, causing the OBU to mistakenly determine the first on-board function as allowed
  • the in-vehicle function used on the first road, or the OBU made an error in determining the in-vehicle function to be activated, and the first in-vehicle function was mistakenly determined to be an in-vehicle function allowed to be used on the first road, or the OBU was There was no error, but OBU randomly selected to activate the first on-board function, and did not determine whether the first on-board function was allowed to be used on the first road, and so on.
  • which car function to activate can also be determined by the user. For example, if the user decides to activate the first in-vehicle function, he can perform a corresponding operation (for example, pressing a corresponding button) to activate the first in-vehicle function.
  • the user's operation can trigger the OBU, and the OBU can start the first on-board function.
  • OBU has determined the in-vehicle functions that allow the first vehicle to be used on the first road, and the user may not know the in-vehicle functions selected by the user is likely to be a vehicle that is not allowed to be used on the first road. Function. Then the first in-vehicle function selected by the user is probably the in-vehicle function that is not allowed to be used on the first road. For this situation, there can be an improved way. For example, after the OBU determines the on-board function that allows the first vehicle to be used on the first road, it can output second information, which can indicate that the first vehicle is allowed to be used on the first road.
  • An in-vehicle function used on the road for example, the OBU can output the second information through the in-vehicle audio device, or can also output the second information through the in-vehicle video device, or can also output the second information to the user's mobile phone and other devices.
  • the user can know the in-vehicle functions that the first vehicle is allowed to use on the first road, so that when the first vehicle is on the first road, the user can choose to start a certain in-vehicle function that is allowed to be used on the first road.
  • One or some on-board functions, in this case, the first on-board function may be an on-board function allowed to be used on the first road.
  • the first in-vehicle function selected by the user is an in-vehicle function that is not allowed to be used on the first road.
  • the first on-board function may be an on-board function that is allowed to be used on the first road, or it may be an on-board function that is not allowed to be used on the first road.
  • the OBU sends status information
  • the RSU receives the status information from the OBU, where the status information is used to indicate that the first vehicle has activated the first on-board function.
  • OBU can be broadcast status information
  • RSU can receive status information broadcast from OBU
  • OBU can be multicast status information
  • RSU can receive status information from OBU multicast
  • OBU can also be in unicast mode Send status information to RSU.
  • the RSU determines whether the vehicle is allowed to use the first on-board function on the first road.
  • the RSU After the RSU receives the status information from the OBU, it can determine whether the functions on the first vehicle are allowed to be used on the road where the first vehicle is currently located according to the mapping relationship described above. the way. For example, the RSU may determine whether the function on the first vehicle corresponds to the first road according to the mapping relationship. If in the mapping relationship, the first on-board function corresponds to the first road, the RSU determines that the vehicle is allowed to use the first on-board function on the first road, and if in the mapping relationship, the function corresponding to the first road If the first onboard function is not included, the RSU determines that the vehicle is not allowed to use the first onboard function on the first road.
  • the RSU When the vehicle is not allowed to use the first on-board function on the first road, the RSU records the event that the first vehicle activates the first on-board function as an illegal event.
  • the RSU determines that the vehicle is not allowed to use the first in-vehicle function on the first road, then the first vehicle is equivalent to the illegal activation of the first in-vehicle function, and the RSU can record the event that the first vehicle activates the first in-vehicle function as illegal event.
  • the RSU can communicate with the traffic management system of the Public Security Bureau, and can send the recorded information of the illegal event to the traffic management system, so that the traffic management system can punish the driver of the first vehicle accordingly.
  • the RSU can also send the recorded information about the illegal event to the first vehicle (or think it is sent to the OBU), so that the first vehicle can stop using the first vehicle function as soon as possible to reduce the harm Sex.
  • the embodiment of the application does not limit the further processing method after the RSU records the illegal event.
  • the RSU may not perform any operation, or the RSU may also send feedback information to the first vehicle (or think it is to the OBU),
  • the feedback information may indicate that the event that the first vehicle activates the function on the first vehicle is a legal event.
  • the OBU activates an illegal on-board function, it will be recorded as illegal by the RSU.
  • the automatic driving function can only be activated on legal roads, and the safety and reliability of automatic driving can be improved.
  • FIG. 4 is a schematic block diagram of a communication device 400 according to an embodiment of the application.
  • the communication device 400 is, for example, an in-vehicle device 400.
  • the vehicle-mounted device 400 includes a processing module 410 and a transceiver module 420.
  • the processing module 410 can be used to perform all the operations performed by the vehicle-mounted device in the embodiment shown in FIG. 2 except for receiving and sending operations, such as S22 to S26 in the embodiment shown in FIG. 2, and/or using To support other processes of the technology described in this article.
  • the transceiving module 420 can be used to perform all the transceiving operations performed by the vehicle-mounted device in the embodiment shown in FIG. 2, such as S21 in the embodiment shown in FIG. 2, and/or other technologies that support the technology described herein. process.
  • the processing module 410 is configured to trigger on-board functions for the first vehicle, which carries the on-board device 400;
  • the processing module 410 is further configured to verify whether the first vehicle is allowed to use the on-board function on the first road;
  • the processing module 410 is further configured to activate or deactivate the on-board function according to the verification result when the first vehicle is on the first road.
  • the processing module 410 is further configured to determine the triggered on-board function according to the information of the first road.
  • the processing module 410 is also used to know the mapping relationship; wherein the mapping relationship includes the mapping relationship between road information and vehicle functions;
  • the processing module 410 is configured to determine the triggered on-vehicle function according to the information of the first road in the following manner: determine the on-vehicle function according to the information of the first road and the mapping relationship.
  • the processing module 410 is configured to know the mapping relationship in the following manner:
  • the transceiver module 420 is configured to receive the first road information from the roadside device; or,
  • the processing module 410 is further configured to obtain a map from a server, and obtain information of the first road included in the map.
  • the processing module 410 is configured to check whether the first vehicle is allowed to use the on-board function on the first road in the following manner:
  • the verification result indicates that the verification of the first verification sequence fails, it indicates that the first vehicle is not allowed to use the on-board function on the first road, and the first verification sequence is the The check sequence corresponding to the functions on the car.
  • processing module 410 is further configured to:
  • the processing module 410 is configured to obtain the first verification sequence corresponding to the on-board function in the following manner:
  • the identifier of the onboard function is sent to the roadside device through the transceiver module 420, and the first verification sequence from the roadside device is received through the transceiver module 420.
  • the processing module 410 is configured to calculate the first verification sequence according to the identifier of the function on the vehicle in the following manner:
  • the first verification sequence is calculated according to the identifier of the on-board function, the random sequence, and the identifier of the roadside device.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • processing module 410 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 420 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 500.
  • the communication device 500 is an in-vehicle device 500, for example.
  • the vehicle-mounted device 500 includes a processor 510, a memory 520, and a transceiver 530.
  • the memory 520 stores instructions or programs
  • the processor 510 is configured to execute the instructions or programs stored in the memory 520.
  • the processor 510 is configured to execute the operations performed by the processing module 410 in the foregoing embodiment
  • the transceiver 530 is configured to execute the operations performed by the transceiver module 420 in the foregoing embodiment.
  • vehicle-mounted device 400 or the vehicle-mounted device 500 may correspond to the vehicle-mounted device in the embodiment shown in FIG. 2, and the operations and/or functions of each module in the vehicle-mounted device 400 or the vehicle-mounted device 500 are respectively In order to implement the corresponding process in the embodiment shown in FIG. 2, for the sake of brevity, details are not described herein again.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the application.
  • the communication device 600 is a roadside device 600, for example.
  • the roadside device 600 includes a processing module 610 and a transceiver module 620.
  • the processing module 610 can be used to perform all the operations performed by the roadside device in the embodiment shown in FIG. 2 except for the transceiving operation, for example, in the embodiment shown in FIG. The operation of using the on-board function on the road, and/or other processes used to support the technology described herein.
  • the transceiving module 620 can be used to perform all the transceiving operations performed by the roadside device in the embodiment shown in FIG. 2, such as S21 in the embodiment shown in FIG. 2, the operation of sending first information to the vehicle-mounted device, and/ Or other processes used to support the technology described herein.
  • the transceiver module 620 is used to receive the identifier of the on-vehicle function from the vehicle-mounted device;
  • the processing module 610 is configured to determine whether the vehicle is allowed to use the on-board function on the first road;
  • the transceiver module 620 is also used to send first information to the vehicle-mounted device.
  • the first information is used to indicate whether the vehicle is allowed or not allowed to use the on-board function on the first road.
  • the determination result is that the vehicle is allowed to use the on-board function on the first road
  • the transceiver module 620 is configured to send the first information to the vehicle-mounted device in the following manner, including:
  • the transceiver module 620 sends the first verification sequence corresponding to the in-vehicle function to the in-vehicle device.
  • the processing module 610 is configured to obtain the first verification sequence corresponding to the on-board function in the following manner:
  • the first verification sequence is calculated according to the identifier of the on-board function, the random sequence, and the identifier of the roadside device.
  • the determination result is that the vehicle is not allowed to use the on-board function on the first road
  • the transceiver module 620 is configured to send the first information to the vehicle-mounted device in the following manner:
  • the transceiver module 620 is further configured to send information about the first road to the vehicle-mounted device, and the information about the first road is used to determine that vehicles are allowed to use on the first road. On-board functions.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • processing module 610 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 620 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 700.
  • the communication device 700 is, for example, a roadside device 700.
  • the roadside device 700 includes a processor 710, a memory 720, and a transceiver 730.
  • the memory 720 stores instructions or programs
  • the processor 710 is configured to execute instructions or programs stored in the memory 720.
  • the processor 710 is configured to execute the operations performed by the processing module 610 in the foregoing embodiment
  • the transceiver 730 is configured to execute the operations performed by the transceiver module 620 in the foregoing embodiment.
  • the roadside device 600 or the roadside device 700 may correspond to the roadside device in the embodiment shown in FIG. 2, and the operation of each module in the roadside device 600 or the roadside device 700
  • the and/or functions are to implement the corresponding processes in the embodiment shown in FIG. 2 respectively, and for the sake of brevity, details are not described herein again.
  • FIG. 8 is a schematic block diagram of a communication device 800 according to an embodiment of the application.
  • the communication device 800 is, for example, an in-vehicle device 800.
  • the vehicle-mounted device 800 includes a processing module 810 and a transceiver module 820.
  • the processing module 810 can be used to perform all operations performed by the vehicle-mounted device in the embodiment shown in FIG. 3 except for receiving and sending operations, such as S32 and S33 in the embodiment shown in FIG. 3, and/or using To support other processes of the technology described in this article.
  • the transceiving module 820 can be used to perform all the transceiving operations performed by the vehicle-mounted device in the embodiment shown in FIG. 3, such as S31 and S34 in the embodiment shown in FIG. 3, and/or for supporting the technology described herein Other processes.
  • the transceiver module 820 is used to receive information about the first road;
  • the processing module 810 is configured to determine the allowed functions of the first vehicle on the first road according to the mapping relationship between the road information and the functions of the vehicle and the information of the first road, and the first vehicle carries In-vehicle device 800.
  • the processing module 810 is also used to start on-board functions, which belong to the functions allowed by the first vehicle on the first road, or belong to the first vehicle not on the first road. Allowed functions;
  • the transceiver module 820 is also used to send status information, and the status information is used to indicate that the first vehicle has activated the on-board function.
  • the information of the first road includes one of the following or any combination of the following multiple:
  • the valid time period corresponding to the first road wherein the type of the first road is valid within the valid time period.
  • processing module 810 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 820 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 900.
  • the communication device 900 is a vehicle-mounted device 900, for example.
  • the vehicle-mounted device 900 includes a processor 910, a memory 920, and a transceiver 930.
  • the memory 920 stores instructions or programs
  • the processor 910 is configured to execute the instructions or programs stored in the memory 920.
  • the processor 910 is configured to perform the operations performed by the processing module 810 in the foregoing embodiment
  • the transceiver 930 is configured to perform the operations performed by the transceiver module 820 in the foregoing embodiment.
  • vehicle-mounted device 800 or the vehicle-mounted device 900 may correspond to the vehicle-mounted device in the embodiment shown in FIG. 3, and the operations and/or functions of each module in the vehicle-mounted device 800 or the vehicle-mounted device 900 are respectively In order to implement the corresponding process in the embodiment shown in FIG. 3, for the sake of brevity, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the application.
  • the communication device 1000 is, for example, a roadside device 1000.
  • the roadside device 1000 includes a processing module 1010 and a transceiver module 1020.
  • the processing module 1010 can be used to perform all operations performed by the roadside device in the embodiment shown in FIG. 3 except for the receiving and sending operations, such as S35 and S36 in the embodiment shown in FIG. 3, and/or Other processes used to support the technology described in this article.
  • the transceiving module 1020 can be used to perform all the transceiving operations performed by the roadside device in the embodiment shown in FIG. 3, such as S31 and S34 in the embodiment shown in FIG. 3, to send the first information to the vehicle-mounted device, And/or other processes used to support the technology described herein.
  • the transceiver module 1020 is configured to receive status information from a vehicle-mounted device, where the status information is used to indicate that the first vehicle carrying the vehicle-mounted device has activated an on-vehicle function;
  • the processing module 1010 is used to determine whether the vehicle is allowed to use the on-board function on the first road;
  • the processing module 1010 is further configured to record the event that the first vehicle activates the in-vehicle function as an illegal event when the vehicle is not allowed to use the in-vehicle function on the first road.
  • the processing module 1010 is configured to determine whether the vehicle is allowed to use the on-board function on the first road in the following manner:
  • the on-board function corresponds to the first road; wherein, the on-board function corresponds to the first road, and the vehicle is allowed to travel on the first road. Use the in-vehicle function on a road; otherwise, the vehicle is not allowed to use the in-vehicle function on the first road.
  • processing module 1010 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1020 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 1100.
  • the communication device 1100 is, for example, a roadside device 1100.
  • the roadside device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 stores instructions or programs
  • the processor 1110 is configured to execute instructions or programs stored in the memory 1120.
  • the processor 1110 is configured to execute the operations performed by the processing module 1010 in the foregoing embodiment
  • the transceiver 1130 is configured to execute the operations performed by the transceiver module 1020 in the foregoing embodiment.
  • the roadside device 1000 or the roadside device 1100 may correspond to the roadside device in the embodiment shown in FIG. 3, and the operation of each module in the roadside device 1000 or the roadside device 1100 The and/or functions are used to implement the corresponding processes in the embodiment shown in FIG. 3, and are not repeated here for brevity.
  • An embodiment of the present application also provides a communication device, which may be a vehicle-mounted device, a roadside device, or a circuit.
  • the communication device may be used to perform actions performed by the vehicle-mounted device or the roadside device in the method embodiment shown in FIG. 2 or the method embodiment shown in FIG. 3.
  • FIG. 12 shows a schematic structural diagram of a simplified communication device.
  • the communication device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the communication device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of communication devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12. In an actual communication device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the communication device, and the processor with the processing function may be regarded as the processing unit of the communication device.
  • the communication device includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform the sending and receiving operations of the vehicle-mounted device in the method embodiment shown in FIG. 2, and the processing unit 1220 is used to perform the transceiving operations on the vehicle-mounted device side in the method embodiment shown in FIG. Other operations.
  • the transceiving unit 1210 is used to perform the transceiving steps of the vehicle-mounted device in the embodiment shown in FIG. 2, such as S21, and/or other processes used to support the technology described herein.
  • the processing unit 1220 is configured to perform other operations of the vehicle-mounted device in the embodiment shown in FIG. 2 in addition to the transceiving operation, such as S22 to S26 in the embodiment shown in FIG. 2, and/or used to support the description herein Other processes of the technology.
  • the transceiving unit 1210 is configured to perform the sending and receiving operations of the roadside device in the method embodiment shown in FIG. 2 above, and the processing unit 1220 is configured to execute the roadside device in the method embodiment shown in FIG. Other operations.
  • the transceiving unit 1210 is used to perform the transceiving steps of the roadside device in the embodiment shown in FIG. 2, such as S21, and/or other processes used to support the technology described herein.
  • the processing unit 1220 is configured to perform other operations of the roadside device in the embodiment shown in FIG. 2 except for the sending and receiving operations, such as determining whether the vehicle is allowed to use the vehicle on the first road in the embodiment shown in FIG. Operation of on-board functions, and/or other processes used to support the technology described herein.
  • the transceiving unit 1210 is used to perform the sending and receiving operations on the vehicle-mounted device side in the method embodiment shown in FIG. 3, and the processing unit 1220 is used to perform the transceiving operations on the vehicle-mounted device side in the method embodiment shown in FIG. Other operations.
  • the transceiving unit 1210 is used to perform the transceiving steps of the vehicle-mounted device in the embodiment shown in FIG. 3, such as S31 and S34, and/or other processes used to support the technology described herein.
  • the processing unit 1220 is configured to perform other operations of the vehicle-mounted device in the embodiment shown in FIG. 3 in addition to the transceiving operations, such as S32 and S33, and/or other processes for supporting the technology described herein.
  • the transceiving unit 1210 is configured to perform the sending and receiving operations on the roadside device side in the method embodiment shown in FIG. 3
  • the processing unit 1220 is configured to perform the transmission and reception operations on the roadside device side in the method embodiment shown in FIG. Other operations.
  • the transceiving unit 1210 is used to perform the transceiving steps of the roadside device in the embodiment shown in FIG. 3, such as S31 and S34, and/or other processes used to support the technology described herein .
  • the processing unit 1220 is configured to perform other operations of the roadside device in the embodiment shown in FIG. 3 in addition to the transceiving operations, such as S35 and S36, and/or other processes for supporting the technology described herein.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the communication device in the embodiment of the present application may also refer to the device shown in FIG. 13.
  • the device can perform functions similar to the processor 1310 in FIG. 13.
  • the device includes a processor 1310, a data sending processor 1320, and a data receiving processor 1330.
  • the processing module 410 in the foregoing embodiment may be the processor 1310 in FIG. 13 and complete corresponding functions;
  • the transceiver module 420 in the foregoing embodiment may be the sending data processor 1320 in FIG. 13 and/or receiving data The processor 1330.
  • the processing module 610 in the foregoing embodiment may be the processor 1310 in FIG. 13 and complete corresponding functions;
  • the transceiving module 620 in the foregoing embodiment may be the sending data processor 1320 in FIG.
  • the processing module 810 in the foregoing embodiment may be the processor 1310 in FIG. 13 and perform corresponding functions; the transceiver module 820 in the foregoing embodiment may be the sending data processor 1320 in FIG. 13 and/or Receive data processor 1330.
  • the processing module 1010 in the foregoing embodiment may be the processor 1310 in FIG. 13 and complete corresponding functions; the transceiver module 1020 in the foregoing embodiment may be the sending data processor 1320 in FIG. 13, and/or Receive data processor 1330.
  • channel encoder and a channel decoder are shown in FIG. 13, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1400 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1403 and an interface 1404.
  • the processor 1403 completes the function of the aforementioned processing module 410
  • the interface 1404 completes the function of the aforementioned transceiver module 420.
  • the processor 1403 completes the function of the aforementioned processing module 610
  • the interface 1404 completes the function of the aforementioned transceiver module 620.
  • the processor 1403 completes the function of the aforementioned processing module 810, and the interface 1404 completes the function of the aforementioned transceiver module 820.
  • the processor 1403 completes the function of the aforementioned processing module 1010, and the interface 1404 completes the function of the aforementioned transceiver module 1020.
  • the modulation subsystem includes a memory 1406, a processor 1403, and a program stored on the memory 1406 and running on the processor.
  • the processor 1403 executes the program to implement the method shown in FIG. 2 above. Example or the method on the vehicle-mounted device or the roadside device side in the method embodiment shown in FIG. 3.
  • the memory 1406 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1400, as long as the memory 1406 can be connected to the processor. 1403 is fine.
  • the embodiment of the present application also provides a first communication system.
  • the communication system may include at least one vehicle-mounted device related to the embodiment shown in FIG. 2 and a roadside device related to the embodiment shown in FIG. 2 described above.
  • the vehicle-mounted device is, for example, the vehicle-mounted device 400 in FIG. 4 or the vehicle-mounted device 500 in FIG. 5, and the roadside device is, for example, the roadside device 600 in FIG. 6 or the roadside device 700 in FIG.
  • the in-vehicle device may be used to perform all operations performed by the in-vehicle device in the embodiment shown in FIG. 2, such as S21 to S26 in the embodiment shown in FIG. 2, and/or support the technology described herein Other processes.
  • the roadside device can be used to perform all operations performed by the roadside device in the embodiment shown in FIG. 2, for example, S21 in the embodiment shown in FIG. 2.
  • S21 in the embodiment shown in FIG. 2.
  • FIG. The operation of using the on-board function on the first road, and/or other processes used to support the technology described herein.
  • the embodiment of the present application also provides a second communication system.
  • the communication system may include at least one vehicle-mounted device related to the embodiment shown in FIG. 3 and a roadside device related to the embodiment shown in FIG. 3 described above.
  • the vehicle-mounted device is, for example, the vehicle-mounted device 800 in FIG. 8 or the vehicle-mounted device 900 in FIG. 9, and the roadside device is, for example, the roadside device 1000 in FIG. 10 or the roadside device 1100 in FIG. 11.
  • the vehicle-mounted device is used to perform all operations performed by the vehicle-mounted device in the embodiment shown in FIG. 3, such as S31, S32, S33, and S34 in the embodiment shown in FIG. 3, and/or used to support Other processes of the described technology.
  • the roadside device can be used to perform all operations performed by the roadside device in the embodiment shown in FIG. 3, such as S31, S34, S35, and S36 in the embodiment shown in FIG. 3, and/or used to support the Other processes of the described technology.
  • the first communication system and the second communication system may be the same communication system, or they may be different communication systems.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can realize the process related to the vehicle-mounted device in the embodiment shown in FIG. 2 provided by the above method embodiment. .
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can realize the information related to the roadside device in the embodiment shown in FIG. 2 provided by the above method embodiment. Process.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the process related to the vehicle-mounted device in the embodiment shown in FIG. 3 provided by the above method embodiment. .
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can realize the information related to the roadside device in the embodiment shown in FIG. 3 provided by the above method embodiment. Process.
  • the embodiment of the present application also provides a computer program product containing instructions that, when executed, execute the method on the vehicle-mounted device side in the method embodiment shown in FIG. 2.
  • the embodiment of the present application also provides a computer program product containing instructions that, when executed, execute the method on the roadside device side in the method embodiment shown in FIG. 2 above.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed, execute the method on the vehicle-mounted device side in the method embodiment shown in FIG. 3.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the roadside device side in the method embodiment shown in FIG. 3.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM) , EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置,可以应用于车联网,例如V2X、LTE-V、V2V等。车载装置为第一车辆触发车上功能,所述第一车辆承载所述车载装置。所述车载装置校验是否允许所述第一车辆在第一道路上使用所述车上功能。当所述第一车辆在所述第一道路上,所述车载装置根据校验结果,启动或者不启动所述车上功能。在本申请实施例中,可以对是否启动相应的车上功能加以控制,使得车上功能的启动不再依赖于人为的需求。通过这种方式,可以控制将相应的车上功能应用在适合的道路上,减小了车上功能应用时车辆可能出现的事故风险,降低了对社会安全造成的危害性。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年07月22日提交国家知识产权局、申请号为201910662001.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
自动驾驶功能可能有多种,例如高速自动巡航功能或车辆自动变道功能等,不同的自动驾驶功能的危险性不同,有些自动驾驶功能的危险性较高,有些自动驾驶功能的危险性可能较低。自动驾驶车辆如果行驶在环境较为复杂的道路上,且又启动了危险性较高的自动驾驶功能,则极有可能出现意外事故。例如,自动驾驶车辆行驶在有学校或医院的道路上,而又开启了自动变道的功能,则可能会因为道路上行人较多而出现事故风险。因此为了保证安全,政府一般都规定了可以使用自动驾驶功能的道路,也就是说,车辆只能在这些规定的道路上启动自动驾驶功能,而对于未规定可以使用自动驾驶功能的道路,原则上不允许使用自动驾驶功能。
然而,目前自动驾驶功能的启动是由人为决定的,不受外界控制。即使一条道路并不是规定可以使用自动驾驶功能的道路,但是人为也可以在该道路上启动自动驾驶功能。那么,一旦有人恶意地在不适合使用自动驾驶功能的道路上启动了自动驾驶功能,则可能导致车辆出现事故,对社会安全造成极大的危害。
发明内容
本申请实施例提供一种通信方法及装置,用于降低车辆出现事故的可能性。
第一方面,提供第一种通信方法,该方法包括:车载装置为第一车辆触发车上功能,所述第一车辆承载所述车载装置;所述车载装置校验是否允许所述第一车辆在第一道路上使用所述车上功能;当所述第一车辆在所述第一道路上,所述车载装置根据校验结果,启动或者不启动所述车上功能。
该第一方面的方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片***。进一步的,通信设备可以为车载装置。在下面的介绍过程中,以通信设备是车载装置为例进行效果分析。
在本申请实施例中,如果车载装置触发车上功能,那么车载装置需要对该车上功能进行校验,根据校验结果启动或不启动该车上功能。例如,如果校验不通过,就表明不允许第一车辆在第一道路上使用该车上功能,则车载装置可以不启动车上功能,从而可以对是否启动相应的车上功能加以控制,使得车上功能的启动不再依赖于人为的需求。通过这种方式,可以控制将相应的车上功能应用在适合的道路上,减小了车上功能应用时车辆可能 出现的事故风险,降低了对社会安全造成的危害性。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:所述车载装置根据所述第一道路的信息确定所触发的所述车上功能。
例如,第一道路的信息可以来自路侧装置,路侧装置获得第一道路的信息后可以发送给车载装置,从而车载装置可以根据第一道路的信息确定要触发的车上功能。
结合第一方面,在第一方面的一种可能的实施方式中,
所述方法还包括:
所述车载装置知晓映射关系;其中,所述映射关系包含道路的信息与车辆的功能之间的映射关系;
所述车载装置根据所述第一道路的信息确定所触发的所述车上功能,包括:
所述车载装置根据所述第一道路的信息与所述映射关系,确定所述车上功能。
映射关系包括道路的信息与车辆的功能之间的映射关系,可以认为,在映射关系中,如果一条道路的信息对应于一种车上功能,就表明该车上功能在该道路的信息所对应的道路上是能够使用的。因此,车载装置可以根据该映射关系,以及第一道路的信息,确定第一道路的信息所对应的车辆的功能,再从所确定的车辆的功能中选择一种功能来触发即可。通过这种方式,可以使得车载装置所触发的车上功能尽量是在第一道路上允许使用的车上功能,将车上功能应用在适合的道路上,减小了车上功能应用时车辆可能出现的事故风险,降低了对社会安全造成的危害性。
结合第一方面,在第一方面的一种可能的实施方式中,所述车载装置知晓映射关系,包括:
所述车载装置接收来自路侧装置的所述映射关系;或,
所述车载装置获得预配置的所述映射关系;或,
所述车载装置从服务器中获取地图,并获得包括在所述地图中的所述映射关系。
如果车载装置接收来自路侧装置的映射关系,表明车载装置是通过接收信令来知晓该映射关系;或者,如果车载装置是获得预配置的映射关系,表明车载装置是已存储着(或者说,预存储)该映射关系;或者,如果车载装置是从服务器中获得地图,并通过地图获得映射关系,表明车载装置是通过接收信令来知晓该映射关系。车载装置知晓映射关系的方式不限于如上几种,较为灵活。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:
所述车载装置接收来自路侧装置的所述第一道路的信息;或,
所述车载装置从服务器中获取地图,并获得包括在所述地图中的所述第一道路的信息。
车载装置获得第一道路的信息的方式也可能有多种,例如可以从路侧装置接收第一道路的信息,或者也可以通过地图等信息获得第一道路的信息,或者还可以通过其他方式获得第一道路的信息。
结合第一方面,在第一方面的一种可能的实施方式中,所述车载装置校验是否允许所述第一车辆在第一道路上使用所述车上功能,包括:
所述车载装置对第一校验序列进行校验,获得所述校验结果,其中,
当所述校验结果表明对所述第一校验序列校验通过时,指示允许所述第一车辆在第一道路上使用所述车上功能,
所述校验结果表明对所述第一校验序列校验未通过时,指示不允许所述第一车辆在第 一道路上使用所述车上功能,所述第一校验序列是所述车上功能对应的校验序列。
车上功能可以有对应的第一校验序列,车载装置通过对第一校验序列进行校验,就可以确定在第一道路上是否允许使用该车上功能,校验方式较为简单。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:
所述车载装置根据所述第一道路的信息确定允许所述第一车辆在第一道路上使用的所述车上功能,并获得所述车上功能对应的所述第一校验序列;或,
所述车载装置确定所述第一车辆所支持的所述车上功能,并获得所述车上功能对应的所述第一校验序列。
车载装置可以只获得允许在第一道路上使用的车上功能的校验序列,这样可以减少所获得的校验序列的数量。如果是这种情况,那么如果一种车上功能是不允许在第一道路上使用的功能,则该车上功能不会对应校验序列,那么车载装置在校验时,如果一种车上功能未对应校验序列,则车载装置可以直接认为对该车上功能校验失败,这样可以减少实际的校验过程。或者,车载装置也可以获得第一车辆所支持的全部车上功能的校验序列,这样获得的校验序列较为完整,在校验时,无论一种车上功能是否是允许在第一道路上使用的车上功能,该车上功能都会对应有校验序列,都能根据校验序列进行校验,提高校验的准确性。
结合第一方面,在第一方面的一种可能的实施方式中,所述车载装置获得所述车上功能对应的所述第一校验序列,包括:
所述车载装置根据所述车上功能的标识,计算所述第一校验序列;或,
所述车载装置接收来自所述路侧装置的所述车上功能对应的所述第一校验序列;或,
所述车载装置将所述车上功能的标识发送给路侧装置,所述车载装置接收来自所述路侧装置的所述第一校验序列。
车载装置可以自行计算校验序列,或者,车载装置也可以从路侧装置获得校验序列,且路侧装置可以主动将校验序列发送给车载装置,无需车载装置请求,减少车载装置和路侧装置的信令交互,或者,路侧装置也可以在接收车载装置的请求后再向车载装置发送对应的校验序列,这样使得校验序列的发送更有针对性。
结合第一方面,在第一方面的一种可能的实施方式中,所述车载装置根据所述车上功能的标识,计算所述第一校验序列,包括:
所述车载装置根据所述车上功能的标识计算所述第一校验序列;或,
所述车载装置根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
所述车载装置根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
所述车载装置根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
车载装置在计算第一校验序列时可以考虑多种不同的元素,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
这里只是列举了第一道路的信息可能包括的一些信息,除了这些信息之外,第一道路的信息还可能包括其他的信息,或者,第一道路的信息不包括如上的信息,而是包括其他的信息,本申请实施例不做限制。
第二方面,提供第二种通信方法,该方法包括:路侧装置接收来自车载装置的车上功能的标识;所述路侧装置确定是否允许车辆在第一道路上使用所述车上功能;所述路侧装置向所述车载装置发送第一信息。
该第二方面的方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片***。进一步的,通信设备可以为路侧装置。在下面的介绍过程中,以通信设备是路侧装置为例进行效果分析。
路侧装置接收来自车载装置的车上功能的标识后,可以确定是否允许车辆在第一道路上使用该车上功能,例如,如果不允许车辆在第一道路上使用该车上功能,则路侧装置可以不向车载装置发送该车上功能对应的校验序列,使得车载装置在对该车上功能进行校验时会失败,从而车载装置不会使用该车上功能,可以控制将相应的车上功能应用在适合的道路上,减小了车上功能应用时车辆可能出现的事故风险,降低了对社会安全造成的危害性。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一信息用于指示允许或不允许车辆在所述第一道路上使用所述车上功能。
无论是否允许车辆在第一道路上使用车上功能,路侧装置都可以向车载装置发送第一信息,从而使得车载装置能够明确请求结果。
结合第二方面,在第二方面的一种可能的实施方式中,所述路侧装置确定允许车辆在所述第一道路上使用所述车上功能,所述路侧装置向所述车载装置发送第一信息,包括:
所述路侧装置将所述车上功能对应的第一校验序列发送给所述车载装置。
如果允许车辆在第一道路上使用该车上功能,则路侧装置可以将第一校验序列发送给车载装置,从而车载装置可以根据第一校验序列对该车上功能进行校验。
结合第二方面,在第二方面的一种可能的实施方式中,所述路侧装置获得所述车上功能对应的第一校验序列,包括:
所述路侧装置根据所述车上功能的标识计算所述第一校验序列;或,
所述路侧装置根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
所述路侧装置根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
所述路侧装置根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
路侧装置在计算第一校验序列时可以考虑多种不同的元素,具体的不做限制。
结合第二方面,在第二方面的一种可能的实施方式中,所述路侧装置确定不允许车辆在所述第一道路上使用所述车上功能,所述路侧装置向所述车载装置发送第一信息,包括:
所述路侧装置向所述车载装置发送指示信息,所述指示信息用于指示请求失败,或用 于指示不允许车辆在所述第一道路上使用所述车上功能的原因。
如果不允许车辆在第一道路上使用该车上功能,则路侧装置可以告知车载装置请求失败,或者还可以告知车载装置请求失败的原因,使得车载装置能够明确具体的问题。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:所述路侧装置向所述车载装置发送所述第一道路的信息,所述第一道路的信息用于确定车辆在所述第一道路上允许使用的车上功能。
例如,路侧装置可以通过设置在路侧的感知单元(例如传感器等)等装置来获得第一道路的信息,并可以将第一道路的信息发送给车载装置,从而车载装置可以确定车辆在第一道路上允许使用的车上功能。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
这里只是列举了第一道路的信息可能包括的一些信息,除了这些信息之外,第一道路的信息还可能包括其他的信息,或者,第一道路的信息不包括如上的信息,而是包括其他的信息,本申请实施例不做限制。
第三方面,提供第三种通信方法,该方法包括:车载装置接收第一道路的信息;所述车载装置根据道路的信息与车辆的功能之间的映射关系以及所述第一道路的信息,确定第一车辆在所述第一道路上允许使用的功能,所述第一车辆承载所述车载装置。
该第三方面的方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片***。进一步的,通信设备可以为车载装置。在下面的介绍过程中,以通信设备是车载装置为例进行效果分析。
可以认为,在映射关系中,如果一条道路的信息对应于一种车上功能,就表明该车上功能在该道路的信息所对应的道路上是能够使用的。因此,车载装置可以根据该映射关系,以及第一道路的信息,确定第一道路的信息所对应的车辆的功能,再从所确定的车辆的功能中选择一种功能来触发。通过这种方式,可以使得车载装置所触发的车上功能尽量是在第一道路上允许使用的车上功能,将车上功能应用在适合的道路上,减小了车上功能应用时车辆可能出现的事故风险,降低了对社会安全造成的危害性。
结合第三方面,在第三方面的一种可能的实施方式中,所述方法还包括:所述车载装置启动车上功能,所述车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能;所述车载装置发送状态信息,所述状态信息用于指示所述第一车辆启动了所述车上功能。
车载装置在启动车上功能后,可以发送状态信息,例如车载装置可以是广播状态信息,或者也可以以组播方式或单播方式发送状态信息。例如,车载装置通过单播方式将状态信息发送给路侧装置,从而路侧装置接收该状态信息后,可以确定第一车辆启动了该车上功 能,路侧装置可以进一步确定该车上功能是否是允许车辆在第一道路上使用的功能,如果该车上功能是不允许车辆在第一道路上使用的功能,则路侧装置可以记录车载装置违法,例如后续可以对车载装置有一定的惩罚措施,从而减少车载装置在道路上启动不允许使用的车上功能的可能性,提高安全系数。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
这里只是列举了第一道路的信息可能包括的一些信息,除了这些信息之外,第一道路的信息还可能包括其他的信息,或者,第一道路的信息不包括如上的信息,而是包括其他的信息,本申请实施例不做限制。
第四方面,提供第四种通信方法,该方法包括:路侧装置接收来自车载装置的状态信息,所述状态信息用于指示承载所述车载装置的第一车辆启动了车上功能;所述路侧装置确定是否允许车辆在第一道路上使用所述车上功能;当不允许车辆在所述第一道路上使用所述车上功能时,所述路侧装置记录所述第一车辆启动所述车上功能的事件为违法事件。
该第四方面的方法可由第四通信装置执行,第四通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片***。进一步的,通信设备可以为路侧装置。在下面的介绍过程中,以通信设备是路侧装置为例进行效果分析。
路侧装置接收来自车载装置的状态信息后,可以确定第一车辆启动了该车上功能,路侧装置可以进一步确定该车上功能是否是允许车辆在第一道路上使用的功能,如果该车上功能是不允许车辆在第一道路上使用的功能,则路侧装置可以记录车载装置违法,例如后续可以对车载装置有一定的惩罚措施,从而减少车载装置在道路上启动不允许使用的车上功能的可能性,提高安全系数。
结合第四方面,在第四方面的一种可能的实施方式中,所述路侧装置确定是否允许车辆在第一道路上使用所述车上功能,包括:
所述路侧装置根据道路的信息与车辆的功能之间的映射关系,确定所述车上功能是否与所述第一道路对应;其中,所述车上功能与所述第一道路对应,允许车辆在所述第一道路上使用所述车上功能,否则,不允许车辆在所述第一道路上使用所述车上功能。
路侧装置可以根据设置的映射关系确定是否允许车辆在第一道路上使用该车上功能,确定方式较为简单。
第五方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述通信装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括处理模块和收发模块。其中,收发模块可以是指一个功能模块,该功能模块既能完成接收信息的功能也能完成发送信息的功能。或者,收发模块可以是发送模块和接收模 块的统称,发送模块用于完成发送信息的功能,接收模块用于完成接收信息的功能。示例性地,所述通信装置为车载装置。其中,
所述处理模块,用于为第一车辆触发车上功能,所述第一车辆承载所述车载装置;
所述处理模块,还用于校验是否允许所述第一车辆在第一道路上使用所述车上功能;
所述处理模块,还用于当所述第一车辆在所述第一道路上,根据校验结果,启动或者不启动所述车上功能。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理模块,还用于根据所述第一道路的信息确定所触发的所述车上功能。
结合第五方面,在第五方面的一种可能的实施方式中,
所述处理模块,还用于知晓映射关系;其中,所述映射关系包含道路的信息与车辆的功能之间的映射关系;
所述处理模块用于通过如下方式根据所述第一道路的信息确定所触发的所述车上功能:根据所述第一道路的信息与所述映射关系,确定所述车上功能。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理模块用于通过如下方式知晓映射关系:
通过所述收发模块接收来自路侧装置的所述映射关系;或,
获得预配置的所述映射关系;或,
从服务器中获取地图,并获得包括在所述地图中的所述映射关系。
结合第五方面,在第五方面的一种可能的实施方式中,
所述收发模块,还用于接收来自路侧装置的所述第一道路的信息;或,
所述处理模块,还用于从服务器中获取地图,并获得包括在所述地图中的所述第一道路的信息。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理模块用于通过如下方式校验是否允许所述第一车辆在第一道路上使用所述车上功能:
对第一校验序列进行校验,获得所述校验结果,其中,
当所述校验结果表明对所述第一校验序列校验通过时,指示允许所述第一车辆在第一道路上使用所述车上功能,
所述校验结果表明对所述第一校验序列校验未通过时,指示不允许所述第一车辆在第一道路上使用所述车上功能,所述第一校验序列是所述车上功能对应的校验序列。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理模块还用于:
根据所述第一道路的信息确定允许所述第一车辆在第一道路上使用的所述车上功能,并获得所述车上功能对应的所述第一校验序列;或,
确定所述第一车辆所支持的所述车上功能,并获得所述车上功能对应的所述第一校验序列。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理模块用于通过如下方式获得所述车上功能对应的所述第一校验序列:
根据所述车上功能的标识,计算所述第一校验序列;或,
通过所述收发模块接收来自所述路侧装置的所述车上功能对应的所述第一校验序列;或,
通过所述收发模块将所述车上功能的标识发送给路侧装置,通过所述收发模块接收来 自所述路侧装置的所述第一校验序列。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理模块用于通过如下方式根据所述车上功能的标识,计算所述第一校验序列:
根据所述车上功能的标识计算所述第一校验序列;或,
根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
关于第五方面或第五方面的各种可能的实施方式的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述通信装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括处理模块和收发模块。其中,收发模块可以是指一个功能模块,该功能模块既能完成接收信息的功能也能完成发送信息的功能。或者,收发模块可以是发送模块和接收模块的统称,发送模块用于完成发送信息的功能,接收模块用于完成接收信息的功能。示例性地,所述通信装置为路侧装置。其中,
所述收发模块,用于接收来自车载装置的车上功能的标识;
所述处理模块,用于确定是否允许车辆在第一道路上使用所述车上功能;
所述收发模块,还用于向所述车载装置发送第一信息。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一信息用于指示允许或不允许车辆在所述第一道路上使用所述车上功能。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理模块确定允许车辆在所述第一道路上使用所述车上功能,所述收发模块用于通过如下方式向所述车载装置发送第一信息:将所述车上功能对应的第一校验序列发送给所述车载装置。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理模块用于通过如下方式获得所述车上功能对应的第一校验序列:
根据所述车上功能的标识计算所述第一校验序列;或,
根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
结合第六方面,在第六方面的一种可能的实施方式中,所述处理模块确定不允许车辆 在所述第一道路上使用所述车上功能,所述收发模块用于通过如下方式向所述车载装置发送第一信息:向所述车载装置发送指示信息,所述指示信息用于指示请求失败,或用于指示不允许车辆在所述第一道路上使用所述车上功能的原因。
结合第六方面,在第六方面的一种可能的实施方式中,所述收发模块,还用于向所述车载装置发送所述第一道路的信息,所述第一道路的信息用于确定车辆在所述第一道路上允许使用的车上功能。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
关于第六方面或第六方面的各种可能的实施方式的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述通信装置用于执行上述第三方面或第三方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第三方面或第三方面的任一可能的实现方式中的方法的模块,例如包括处理模块和收发模块。其中,收发模块可以是指一个功能模块,该功能模块既能完成接收信息的功能也能完成发送信息的功能。或者,收发模块可以是发送模块和接收模块的统称,发送模块用于完成发送信息的功能,接收模块用于完成接收信息的功能。示例性地,所述通信装置为车载装置。其中,
所述收发模块,用于接收第一道路的信息;
所述处理模块,用于根据道路的信息与车辆的功能之间的映射关系以及所述第一道路的信息,确定第一车辆在所述第一道路上允许使用的功能,所述第一车辆承载所述车载装置。
结合第七方面,在第七方面的一种可能的实施方式中,
所述处理模块,还用于启动车上功能,所述车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能;
所述收发模块,还用于发送状态信息,所述状态信息用于指示所述第一车辆启动了所述车上功能。
结合第七方面,在第七方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
关于第七方面或第七方面的各种可能的实施方式的技术效果,可参考对于第三方面或第三方面的各种可能的实施方式的技术效果的介绍。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第四通信装置。所述通信装置用于执行上述第四方面或第四方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第四方面或第四方面的任一可能的实现方式中的方法的模块,例如包括处理模块和收发模块。其中,收发模块可以是指一个功能模块,该功能模块既能完成接收信息的功能也能完成发送信息的功能。或者,收发模块可以是发送模块和接收模块的统称,发送模块用于完成发送信息的功能,接收模块用于完成接收信息的功能。示例性地,所述通信装置为路侧装置。其中,
所述收发模块,用于接收来自车载装置的状态信息,所述状态信息用于指示承载所述车载装置的第一车辆启动了车上功能;
所述处理模块,用于确定是否允许车辆在第一道路上使用所述车上功能;
所述处理模块,还用于当不允许车辆在所述第一道路上使用所述车上功能时,记录所述第一车辆启动所述车上功能的事件为违法事件。
结合第八方面,在第八方面的一种可能的实施方式中,所述处理模块用于通过如下方式确定是否允许车辆在第一道路上使用所述车上功能:
根据道路的信息与车辆的功能之间的映射关系,确定所述车上功能是否与所述第一道路对应;其中,所述车上功能与所述第一道路对应,允许车辆在所述第一道路上使用所述车上功能,否则,不允许车辆在所述第一道路上使用所述车上功能。
关于第八方面或第八方面的各种可能的实施方式的技术效果,可参考对于第四方面或第四方面的各种可能的实施方式的技术效果的介绍。
第九方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器和收发器,处理器和收发器用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。示例性的,所述通信设备为车载装置。其中,
所述处理器,用于为第一车辆触发车上功能,所述第一车辆承载所述车载装置;
所述处理器,还用于校验是否允许所述第一车辆在第一道路上使用所述车上功能;
所述处理器,还用于当所述第一车辆在所述第一道路上,根据校验结果,启动或者不启动所述车上功能。
结合第九方面,在第九方面的一种可能的实施方式中,所述处理器,还用于根据所述第一道路的信息确定所触发的所述车上功能。
结合第九方面,在第九方面的一种可能的实施方式中,
所述处理器,还用于知晓映射关系;其中,所述映射关系包含道路的信息与车辆的功能之间的映射关系;
所述处理器用于通过如下方式根据所述第一道路的信息确定所触发的所述车上功能: 根据所述第一道路的信息与所述映射关系,确定所述车上功能。
结合第九方面,在第九方面的一种可能的实施方式中,所述处理器用于通过如下方式知晓映射关系:
通过所述收发器接收来自路侧装置的所述映射关系;或,
获得预配置的所述映射关系;或,
从服务器中获取地图,并获得包括在所述地图中的所述映射关系。
结合第九方面,在第九方面的一种可能的实施方式中,
所述收发器,还用于接收来自路侧装置的所述第一道路的信息;或,
所述处理器,还用于从服务器中获取地图,并获得包括在所述地图中的所述第一道路的信息。
结合第九方面,在第九方面的一种可能的实施方式中,所述处理器用于通过如下方式校验是否允许所述第一车辆在第一道路上使用所述车上功能:
对第一校验序列进行校验,获得所述校验结果,其中,
当所述校验结果表明对所述第一校验序列校验通过时,指示允许所述第一车辆在第一道路上使用所述车上功能,
所述校验结果表明对所述第一校验序列校验未通过时,指示不允许所述第一车辆在第一道路上使用所述车上功能,所述第一校验序列是所述车上功能对应的校验序列。
结合第九方面,在第九方面的一种可能的实施方式中,所述处理器还用于:
根据所述第一道路的信息确定允许所述第一车辆在第一道路上使用的所述车上功能,并获得所述车上功能对应的所述第一校验序列;或,
确定所述第一车辆所支持的所述车上功能,并获得所述车上功能对应的所述第一校验序列。
结合第九方面,在第九方面的一种可能的实施方式中,所述处理器用于通过如下方式获得所述车上功能对应的所述第一校验序列:
根据所述车上功能的标识,计算所述第一校验序列;或,
通过所述收发器接收来自所述路侧装置的所述车上功能对应的所述第一校验序列;或,
通过所述收发器将所述车上功能的标识发送给路侧装置,通过所述收发器接收来自所述路侧装置的所述第一校验序列。
结合第九方面,在第九方面的一种可能的实施方式中,所述处理器用于通过如下方式根据所述车上功能的标识,计算所述第一校验序列:
根据所述车上功能的标识计算所述第一校验序列;或,
根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
结合第九方面,在第九方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
关于第九方面或第九方面的各种可能的实施方式的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第十方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器和收发器,处理器和收发器用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。示例性的,所述通信设备为路侧装置。其中,
所述收发器,用于接收来自车载装置的车上功能的标识;
所述处理器,用于确定是否允许车辆在第一道路上使用所述车上功能;
所述第十,还用于向所述车载装置发送第一信息。
结合第十方面,在第十方面的一种可能的实施方式中,所述第一信息用于指示允许或不允许车辆在所述第一道路上使用所述车上功能。
结合第十方面,在第十方面的一种可能的实施方式中,所述处理器确定允许车辆在所述第一道路上使用所述车上功能,所述收发器用于通过如下方式向所述车载装置发送第一信息:将所述车上功能对应的第一校验序列发送给所述车载装置。
结合第十方面,在第十方面的一种可能的实施方式中,所述处理器用于通过如下方式获得所述车上功能对应的第一校验序列:
根据所述车上功能的标识计算所述第一校验序列;或,
根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
结合第十方面,在第十方面的一种可能的实施方式中,所述处理器确定不允许车辆在所述第一道路上使用所述车上功能,所述收发器用于通过如下方式向所述车载装置发送第一信息:向所述车载装置发送指示信息,所述指示信息用于指示请求失败,或用于指示不允许车辆在所述第一道路上使用所述车上功能的原因。
结合第十方面,在第十方面的一种可能的实施方式中,所述收发器,还用于向所述车载装置发送所述第一道路的信息,所述第一道路的信息用于确定车辆在所述第一道路上允许使用的车上功能。
结合第十方面,在第十方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
关于第十方面或第十方面的各种可能的实施方式的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第十一方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器和收发器,处理器和收发器用于实现上述第三方面或第三方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。示例性的,所述通信设备为车载装置。其中,
所述收发器,用于接收第一道路的信息;
所述处理器,用于根据道路的信息与车辆的功能之间的映射关系以及所述第一道路的信息,确定第一车辆在所述第一道路上允许使用的功能,所述第一车辆承载所述车载装置。
结合第十一方面,在第十一方面的一种可能的实施方式中,
所述处理器,还用于启动车上功能,所述车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能;
所述收发器,还用于发送状态信息,所述状态信息用于指示所述第一车辆启动了所述车上功能。
结合第十一方面,在第十一方面的一种可能的实施方式中,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
关于第十一方面或第十一方面的各种可能的实施方式的技术效果,可参考对于第三方面或第三方面的各种可能的实施方式的技术效果的介绍。
第十二方面,提供一种通信装置,该通信装置例如为如前所述的第四通信装置。该通信装置包括处理器和收发器,处理器和收发器用于实现上述第四方面或第四方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。示例性的,所述通信设备为路侧装置。其中,
所述收发器,用于接收来自车载装置的状态信息,所述状态信息用于指示承载所述车载装置的第一车辆启动了车上功能;
所述处理器,用于确定是否允许车辆在第一道路上使用所述车上功能;
所述处理器,还用于当不允许车辆在所述第一道路上使用所述车上功能时,记录所述第一车辆启动所述车上功能的事件为违法事件。
结合第十二方面,在第十二方面的一种可能的实施方式中,所述处理器用于通过如下方式确定是否允许车辆在第一道路上使用所述车上功能:
根据道路的信息与车辆的功能之间的映射关系,确定所述车上功能是否与所述第一道路对应;其中,所述车上功能与所述第一道路对应,允许车辆在所述第一道路上使用所述车上功能,否则,不允许车辆在所述第一道路上使用所述车上功能。
关于第十二方面或第十二方面的各种可能的实施方式的技术效果,可参考对于第四方面或第四方面的各种可能的实施方式的技术效果的介绍。
第十三方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一通信装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,通信设备为车载装置。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,该通信装置还可以包括通信接口,该通信接口可以是车载装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在车载装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十四方面,提供一种通信装置。该通信装置可以为上述方法设计中的第二通信装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,通信设备为路侧装置。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,该通信装置还可以包括通信接口,该通信接口可以是路侧装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在路侧装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十五方面,提供一种通信装置。该通信装置可以为上述方法设计中的第三通信装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,通信设备为车载装置。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第三方面或第三方面的任意一种可能的实施方式中的方法。
其中,该通信装置还可以包括通信接口,该通信接口可以是车载装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在车载装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十六方面,提供一种通信装置。该通信装置可以为上述方法设计中的第四通信装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,通信设备为路侧装置。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第四方面或第四方面的任意一种可能的实施方式中的方法。
其中,该通信装置还可以包括通信接口,该通信接口可以是路侧装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在 路侧装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十七方面,提供一种通信***,该通信***可以包括第五方面所述的通信装置、第九方面所述的通信装置或第十三方面所述的通信装置,以及包括第六方面所述的通信装置、第十方面所述的通信装置或第十四方面所述的通信装置。
第十八方面,提供一种通信***,该通信***可以包括第七方面所述的通信装置、第十一方面所述的通信装置或第十五方面所述的通信装置,以及包括第八方面所述的通信装置、第十二方面所述的通信装置或第十六方面所述的通信装置。
第十七方面所提供的通信***和第十八方面所提供的通信***可以是同一个通信***,或者也可以是不同的通信***。
第十九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第二十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
在本申请实施例中,可以对是否启动相应的车上功能加以控制,使得车上功能的启动不再依赖于人为的需求。通过这种方式,可以控制将相应的车上功能应用在适合的道路上,减小了车上功能应用时车辆可能出现的事故风险,降低了对社会安全造成的危害性。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的第一种通信方法的流程图;
图3为本申请实施例提供的第二种通信方法的流程图;
图4为本申请实施例提供的第一种车载装置的示意性框图;
图5为本申请实施例提供的第一种车载装置的另一示意性框图;
图6为本申请实施例提供的第一种路侧装置的示意性框图;
图7为本申请实施例提供的第一种路侧装置的另一示意性框图;
图8为本申请实施例提供的第二种车载装置的示意性框图;
图9为本申请实施例提供的第二种车载装置的另一示意性框图;
图10为本申请实施例提供的第二种路侧装置的示意性框图;
图11为本申请实施例提供的第二种路侧装置的另一示意性框图;
图12为本申请实施例提供的通信装置的示意性框图;
图13为本申请实施例提供的通信装置的另一示意性框图;
图14为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
1)车载单元(on board unit,OBU),一般安装在车辆上,在ETC***中,路边架设路侧单元(road side unit,RSU),OBU可以与RSU进行通信,例如可以通过微波来通信。在车辆通过RSU时,OBU和RSU之间可以使用微波进行通信。在电子收费(electronic toll collection,ETC)***中,OBU采用专用短距离通信(dedicated short range communications,DSRC)技术,与RSU建立微波通信链路,在车辆行进的途中,在不停车的情况下,可以实现车辆的身份识别或电子扣费等过程。
或者,如下介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备也可以认为是OBU。
终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫 描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)RSU,可以是支持车到一切(vehicle-to-everything,V2X)应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。
3)本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一道路和第二道路,只是为了区分不同的道路,而并不是表示这两种道路的优先级或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
自动驾驶技术正在迅猛发展,目前,车辆的驾驶自动化(driving automation)等级可以分为了L0~L5级,从无驾驶自动化到完全驾驶自动化。
L0级驾驶自动化(无驾驶自动化):车辆的自动驾驶***不能持续执行动态驾驶任务中的横向运动控制或纵向运动控制,或者不具备与所执行的横向运动控制或纵向运动控制相适应的目标和事件探测与响应的能力。其中,车辆的横向运动控制例如包括控制方向盘等,车辆的纵向运动控制例如包括控制刹车等。
L1级驾驶自动化(驾驶辅助):车辆的自动驾驶***在为其设计的运行范围内持续地执行动态驾驶任务中的横向运动控制或纵向运动控制,且具备与所执行的横向运动控制或纵向运动控制相适应的目标和事件探测与响应的能力。在L1级驾驶自动化中,规定了自动驾驶***能够执行车辆的横向运动控制或纵向运动控制的工况,例如不能在有学校的道路上执行车辆的横向运动控制或纵向运动控制。
L2级驾驶自动化(部分驾驶自动化):车辆的自动驾驶***在为其设计的运行范围内持续地执行动态驾驶任务中的横向运动控制和纵向运动控制,且具备与所执行的横向运动控制和纵向运动控制相适应的目标和事件探测与响应的能力。对于L2级驾驶自动化,驾驶员须执行除了横向运动控制和纵向运动控制之外的其余的动态驾驶任务,监管自动驾驶***的行为,并执行适当的响应或操作。
L3级驾驶自动化(有条件驾驶自动化):车辆的自动驾驶***在为其设计的运行范围 内持续地执行全部动态驾驶任务。对于L3级驾驶自动化,车内的用户无须监管自动驾驶***的行为,但如果自动驾驶***发出介入请求,或自动驾驶***失效或出错时,需要由用户以适当的方式接管车辆,以达到最小风险状态。
L4级驾驶自动化(高度驾驶自动化):自动驾驶***在为其设计的运行范围内持续地执行全部的动态驾驶任务。对于L4级驾驶自动化,车内的用户作为乘客,无须监管自动驾驶***的行为,即使自动驾驶***发出介入请求等,用户也无需响应,自动驾驶***可自动达到最小风险状态。
L5级驾驶自动化(完全驾驶自动化):自动驾驶***可以在任何可行驶的条件下持续地执行全部的动态驾驶任务。对于L5级驾驶自动化,车内的用户作为乘客,无须监管自动驾驶***的行为,即使自动驾驶***发出介入请求等,用户也无需响应,自动驾驶***可自动达到最小风险状态。L5级的自动驾驶***没有设计运行范围的限制(排除商业和法规等因素),原则上该自动驾驶***可以完成一个熟练的传统驾驶员所能处理的所有条件下的操作。
可以看到,随着自动驾驶等级的提高,车辆的自动化程度逐渐提高,需要驾驶员参与的程度也逐渐降低。
当前,全球各区域都在积极进行自动驾驶车辆的实际道路测试或行驶等相关活动,通过在开放环境中的实际驾驶,来完善或验证自动驾驶的能力。
自动驾驶功能可能有多种,例如高速自动巡航功能或车辆自动变道功能等,不同的自动驾驶功能的危险性不同,有些自动驾驶功能的危险性较高,有些自动驾驶功能的危险性可能较低。自动驾驶车辆如果行驶在环境较为复杂的道路上,且又启动了危险性较高的自动驾驶功能,则极有可能出现意外事故。例如,自动驾驶车辆行驶在有学校或医院的道路上,而又开启了自动变道的功能,则可能会因为道路上行人较多而出现事故风险。因此为了保证安全,政府一般都规定了可以使用自动驾驶功能的道路,也就是说,车辆只能在这些规定的道路上启动自动驾驶功能,而对于未规定可以使用自动驾驶功能的道路,原则上不允许使用自动驾驶功能。
然而,目前自动驾驶功能的启动是由人为决定的,不受外界控制。即使一条道路并不是规定可以使用自动驾驶功能的道路,但是人为也可以在该道路上启动自动驾驶功能。那么,一旦有人恶意地在不适合使用自动驾驶功能的道路上启动了自动驾驶功能,则可能导致车辆出现事故,对社会安全造成极大的危害。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,如果车载装置触发车上功能,那么车载装置需要对该车上功能进行校验,根据校验结果启动或不启动该车上功能。例如,如果校验不通过,就表明不允许第一车辆在第一道路上使用该车上功能,则车载装置可以不启动车上功能,从而可以对是否启动相应的车上功能加以控制,使得车上功能的启动不再依赖于人为的需求。通过这种方式,可以控制将相应的车上功能应用在适合的道路上,减小了车上功能应用时车辆可能出现的事故风险,降低了对社会安全造成的危害性。其中,所述的车上功能,例如为自动驾驶功能,或者也可以是车辆上的其他功能。对于一个车辆来说,可以具有一项或多项车上功能,这里所述的车上功能可以是第一车辆所具有的一项车上功能。
下面介绍本申请实施例所应用的网络架构。请参考图1,为本申请实施例所应用的一种网络架构。
图1中包括车载装置和路侧装置,车载装置和路侧装置之间可以通信,例如可以通过微波方式通信,或者也可以通过其他技术进行通信。车载装置承载在车辆上,一个车辆例如承载一个或多个车载装置。图1以一个车载装置和一个路侧装置为例,承载该车载装置的车辆行驶在某条道路上,路侧装置例如位于道路的一侧。实际上一个车载装置可以和多个路侧装置通信,而一个路侧装置也可以和多个车载装置通信。另外,车载装置在车辆上的位置、以及路侧装置的安装位置等都只是示例,不一定代表实际位置。
图1中的车载装置例如为OBU,路侧装置例如为RSU。
接下来结合附图介绍本申请实施例提供的技术方案。在本申请的各个实施例中,“功能”、“车辆的功能”和“车上功能”,三者可以是同一概念。车上功能,可以包括车载的OBU的功能,或者,包括车辆的功能,或者,包括车辆的功能以及车载的OBU的功能。在下文中,主要以车上功能包括车辆的功能为例,实际不限于此。
本申请实施例提供第一种通信方法,请参见图2,为该方法的流程图。在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置或第二通信装置,可以是车载装置或能够支持车载装置实现该方法所需的功能的通信装置(例如芯片***),或者可以是路侧装置或能够支持路侧装置实现该方法所需的功能的通信装置(例如芯片***),当然还可以是其他通信装置。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第一通信装置通过设备的形式实现,第二通信装置通过芯片***的方式实现,等等。
为了便于介绍,在下文中,以该方法由车载装置和路侧装置执行为例,也就是说,以第一通信装置是车载装置、第二通信装置是路侧装置为例。因为本实施例是以应用在图1所示的网络架构为例,因此,下文中所述的车载装置可以是图1所示的网络架构中的车载装置,下文中所述的路侧装置可以是图1所示的网络架构中的路侧装置1。为了更便于理解,在下文的介绍过程中,以车载装置是OBU、路侧装置是RSU为例。
S21、RSU向OBU发送第一道路的信息,OBU接收来自RSU的第一道路的信息。
例如,RSU可以向OBU发送配置信息,配置信息可以包括至少一条道路的信息,如果至少一条道路的数量为1,那么RSU就是向OBU发送了第一道路的信息,而如果至少一条道路的数量大于1,那么RSU就是向OBU发送了多条道路的信息,这多条道路中可以包括第一道路。
RSU设置在道路边,因此RSU可以获得一条道路或多条道路的信息,例如RSU可以获得RSU所在的道路的信息,或者RSU还可以获得该RSU所在的道路周边的道路的信息,例如道路1和道路2交叉,RSU位于道路1,且位于道路1和道路2交叉的十字路口,那么RSU可以获得道路1的信息,还可以获得道路2的信息。
一条道路的信息可以包括如下的一项或如下多项的任意组合:该道路的类型,该道路的标识,该道路的区域范围(区域范围也可以称为地理范围),该道路的轨迹信息,该道路对应的车道的编号,向OBU发送该道路的信息的RSU的信息,或,该道路对应的有效时间段。其中,道路的有效时间段可以是指,该道路的类型在该有效时间段内是有效的,因此,该道路对应的有效时间段,可以理解为,该道路的类型对应的有效时间段。例如,一条道路的信息包括道路的类型,或者,一条道路的信息包括道路的类型和道路的标识, 或者,一条道路的信息包括道路的类型、道路的标识,道路的区域范围和道路的轨迹信息,或者,一条道路的信息包括道路的标识,道路的区域范围,道路的轨迹信息,以及道路的有效时间段,等等。例如对于第一道路来说,第一道路的信息就可以包括如下的一项或如下多项的任意组合:第一道路的类型,第一道路的标识,第一道路的地理范围,第一道路的轨迹信息,第一道路对应的车道的编号,向OBU发送第一道路的信息的RSU的信息(也就是S21所述的RSU的信息),或,第一道路对应的有效时间段。
例如,可以基于如下的一种因素或如下多种因素的任意组合将道路划分为不同的类型:道路复杂度,道路标志标线清晰度,道路行政等级,道路技术等级,人口密集程度,交通流量大小,天气状况,或,道路突发情况。例如,可以基于道路复杂度将道路划分为不同的类型,或者,可以基于道路标志标线清晰度和道路技术等级将道路划分为不同的类型,或者,可以基于道路技术等级、人口密集程度和交通流量大小将道路划分为不同的类型,或者,可以基于道路复杂度、道路标志标线清晰度、人口密集程度和天气状况将道路划分为不同的类型,或者,可以基于道路复杂度、道路标志标线清晰度、道路行政等级、道路技术等级、人口密集程度、交通流量大小、天气状况、和道路突发情况将道路划分为不同的类型,等等。
例如,如果道路上设置有环岛,或者有较急的弯道等,则道路复杂度较高,此类道路可以划分为一种类型的道路,而如果道路较为平直,没有弯道或弯道较缓等,则道路复杂度较低,此类道路可以划分为另一种类型的道路。道路行政等级例如包括高速、国道或省道等,例如可以将高速道路划分为一种类型的道路,将国道划分为另一种类型的道路,将省道划分为又一种类型的道路。道路技术等级例如包括一级道路或二级道路等,例如可以将一级道路划分为一种类型的道路,将二级道路划分为另一种类型的道路。道路突发情况例如包括修路或事故等,例如可以将发生了修路和/或交通事故的道路划分为一种类型的道路,以及将既未发生修路也未发生交通事故的道路划分为另一种类型的道路。
对于一条道路来说,类型可能并不是一成不变的。例如RSU可以为道路设置类型,可以周期性地更新道路的类型,或者RSU也可以不定时地更新道路的类型,例如可以在道路的情况发生变化时更新道路的类型。例如对于一条道路来说,在RSU在某个周期更新道路的类型时,该道路在进行保养,那么RSU将该道路的类型设置为类型1。而在RSU下个周期更新道路的类型时,该道路的保养已经结束,可以正常使用,则RSU可以将该道路的类型更新为类型2。
道路的标识例如包括道路的名称,或包括道路的身份号(ID),或包括道路的名称和道路的ID,当然还可能包括其他的能够唯一标识该道路的信息。
道路的地理范围可以用于指示道路的地理位置。例如道路的地理范围可以包括道路的起始位置和终止位置。
道路的轨迹信息可以用于描述道路的形状,例如道路的轨迹信息包括道路的轨迹点序列。
一条道路的信息对应的这条道路,可以是一条大道上的一个车道,或者也可以是一条完整的道路。如果这条道路是一条大道上的一个车道,那么该道路的信息就可以包括该车道的编号,而如果这条道路是一条完整的道路,那么该道路的信息就可以不包括车道的编号。例如道路1的信息包括类型1以及道路1的车道编号1,那么就表明,道路1的车道编号1的车道的类型为类型1,而对于道路1的其他的车道并未指示。或者,例如道路1 的信息包括类型1以及道路1的ID,那么就表明,道路1的类型为类型1。
道路的有效时间段是指,该道路在该有效时间段内的类型是当前的类型,而在该有效时间段之外,该道路的类型可能是当前的类型,也可能不是当前的类型。有效时间段可以包括一个或多个时间段,如果包括多个时间段,这多个时间段在时间上可以是连续的,或者也可以不连续。
作为一种可选的方式,配置信息还可以包括一个或多个随机序列,例如至少一条道路的信息和随机序列一一对应,一个随机序列对应一条道路的信息,或者,至少一条道路的信息只对应一个随机序列。一个随机序列可以是一个单独的序列,例如为128比特(bit)的二进制序列,或者为256比特的二进制序列等;或者,一个随机序列也可以是多个序列的组合,例如为将多个序列首尾拼接后得到的序列。
例如,RSU可以通过广播方式发送配置信息,则OBU可以接收来自RSU的广播消息,以获得配置信息。或者,RSU可以通过组播方式发送配置信息,则OBU可以接收来自RSU的组播消息,以获得配置信息。或者,RSU可以通过单播方式发送配置信息,则OBU可以接收来自RSU的单播消息,以获得配置信息。其中,如果RSU以广播方式或组播方式发送配置信息,则可能有多个OBU都能接收配置信息。多个OBU接收配置信息后的处理方式可能都是类似的,因此图2所示的实施例只以其中一个OBU为例进行说明。
另外,对于一个OBU来说,可能只接收来自一个RSU的配置信息,或者也可能接收来自多个RSU的配置信息,可以认为,S21中的至少一条道路的信息,可以是一个或多个配置信息所指示的。如果两个RSU所发送的配置信息都指示了同一条道路(或者,指示了同一条道路的同一个车道),那么OBU在处理时,只需根据来自其中一个RSU的配置信息的指示进行处理即可,而来自另一个RSU的配置信息所指示的该道路(或,该道路的车道)的信息,OBU可以忽略。或者,OBU在处理时可以不必考虑不同的配置信息是否指示了相同的道路或相同的车道,OBU都是根据各个配置信息进行处理即可,即使不同的配置信息指示了相同的道路或相同的车道,OBU也会都进行处理。
另外,S21是以OBU从RSU获得至少一条道路的信息为例,或者,OBU还可以通过其他方式来获得至少一条道路的信息。例如,OBU可以从服务器中获取地图,而地图中包括至少一条道路的信息,则OBU可以获得地图中包括的至少一条道路的信息。
S22、OBU根据映射关系,以及第一道路的信息,确定允许在第一道路上使用的车上功能。该映射关系包含道路的信息与车辆的功能之间的映射关系。
例如,OBU可以根据道路的信息和车辆的功能之间的映射关系,以及至少一条道路的信息,确定允许在至少一条道路上使用的车上功能。OBU可以确定允许在至少一条道路中的每条道路上使用的车上功能,而OBU确定允许在不同的道路上使用的车上功能时,使用的确定方式都是类似的,因此,S22只以OBU确定允许在第一道路上使用的车上功能为例。允许在第一道路上使用的车上功能的数量,可能是1,也可能大于1,当然还有可能为0。
该映射关系,是OBU所知晓的。例如,OBU存储着该映射关系,或者,OBU预先存储了该映射关系,例如该映射关系可以预配置在OBU中。或者,该映射关系也可以是RSU设置的,RSU在设置后可以发送给OBU,OBU可以接收该映射关系。或者,该映射关系也可以是协议规定的。或者,该映射关系也可以存储在云平台,OBU可以从云平台获得该映射关系。或者,OBU也可以通过网络获得该映射关系。或者,OBU可以从服务器中获 取地图,而地图中包括该映射关系,则OBU可以获得包括在地图中的该映射关系。
无论OBU如何知晓该映射关系,例如,该映射关系可以是表格的形式,在该表格中,一条道路的信息可以对应一个或多个功能,或者,该映射关系也可以是比特映射(bitmap)的形式,bitmap包括多个比特(bit),bitmap包括的比特与车辆的功能一一对应,也就是说,bitmap包括的一个比特就用于指示车辆的一种功能。每条道路的信息都可以对应一个bitmap,不同的道路的信息所对应的bitmap的比特数可以相同,比特与车辆的功能之间的对应关系也可以相同。例如对于某条道路的信息对应的bitmap来说,如果所包括的某个比特的取值为“1”,表明该比特所对应的功能是允许在该道路的信息所对应的道路上使用的功能,而如果所包括的某个比特的取值为“0”,表明该比特所对应的功能是不允许在该道路的信息所对应的道路上使用的功能。当然,该映射关系也可以是其他的形式,例如为列表形式(不是表格形式)等,只要该映射关系能够表明道路的信息和车辆的功能之间的映射关系即可,对于该映射关系的形式不做限制。
车辆的功能可能有多种,以车辆的自动驾驶功能为例。自动驾驶功能可以表示具体的功能,例如自动驾驶功能包括自动代客泊车、高速自动巡航、拥堵自动巡航、自动变道、自动编队行驶、或远程驾驶等功能。或者,自动驾驶功能也可以表示自动驾驶的基础能力,例如自动驾驶功能1表示支持双目摄像头,自动驾驶功能2表示支持32线激光雷达,自动驾驶功能3表示支持V2X车路通信,等等。或者,自动驾驶功能也可以表示所能支持的工况或场景,例如工况被分为信号机识别、交叉路口通行、行人避让、或雨雪天行驶等,每个工况可以对应于一种自动驾驶功能。
或者,自动驾驶功能也可以对应于具体的功能、自动驾驶的基础能力或工况中的一种或多种。例如,自动驾驶功能对应于具体的功能和自动驾驶的基础能力,或者自动驾驶功能对应于具体的功能和工况,或者自动驾驶功能对应于自动驾驶的基础能力和工况,或者自动驾驶功能对应于具体的功能、自动驾驶的基础能力和工况。例如,自动驾驶功能1表示自动代客泊车的功能以及支持双目摄像头的基础能力,自动驾驶功能2表示高速自动巡航的能力以及雨雪天行驶的工况,自动驾驶功能3表示拥堵自动巡航的能力和支持V2X车路通信的基础能力,自动驾驶功能4表示自动变道的能力、支持32线激光雷达的基础能力、以及信号机识别的工况。
道路的信息和车辆的功能之间的映射关系,可以指明在何种信息的道路上可以使用何种功能,从而根据该映射关系就可以确定一条道路允许使用的车上功能。例如,道路的信息和车辆的功能之间的映射关系,可以是道路的标识和车辆的功能的标识之间的映射关系,通过这种映射关系,可以指示每条道路所对应的功能,指示粒度较细。再例如,道路的信息和车辆的功能之间的映射关系,也可以是道路的类型和车辆的功能之间的映射关系,从而通过该映射关系可以指示一类道路所对应的功能,相对于分别指示每条道路所对应的功能来说,指示一类道路所对应的功能,能够减小映射关系的信息量。以道路的信息和车辆的功能之间的映射关系,是道路的类型和车辆的功能之间的映射关系为例,那么进一步的,为了再减小该映射关系的信息量,道路的类型和车辆的功能之间的映射关系,也可以是道路的类型的标识和车辆的功能的标识之间的映射关系。其中,车辆的功能的标识例如为车辆的功能的ID,一个车辆的功能的标识可以指示该功能。
请参考表1,为该映射关系的一种示例,在该示例中,以映射关系是表格形式为例。
表1
  类型1 类型2 类型3 类型k
功能1  
功能2    
功能3    
功能4      
表1中,类型k表示道路的类型为k。功能1与类型1、类型2、类型3和类型k都有映射关系,表明如果道路的类型是类型1、类型2、类型3或类型k,都可以使用功能1。但是功能2和类型2没有映射关系,那么,如果道路的类型是类型2,就不允许使用功能2。
OBU根据第一道路的信息,以及该映射关系,就可以确定在第一道路上所允许使用的车上功能。在第一道路上所允许使用的车上功能,可以包括一项或多项。其中,OBU确定的在第一道路上允许使用的车上功能,实际上是第一车辆在第一道路上行驶时所允许使用的车上功能,第一车辆可以是与该OBU对应的车辆,例如,第一车辆是承载该OBU的车辆,或者,第一车辆是接受该OBU控制的车辆。
S23、OBU获得第一校验序列。例如,OBU可以获得M个校验序列,第一校验序列是M个校验序列中的一个,M为正整数。第一校验序列对应于第一车辆的一种车上功能,例如为了避免混淆,可将该车上功能称为第一车上功能。
例如,OBU可以确定运行在至少一条道路上使用的车上功能为M个,从而OBU可以获得这M个车上功能的校验序列。在这种情况下,只是允许在至少一条道路上使用的车上功能有对应的校验序列,而不允许在至少一条道路上使用的车上功能,OBU不会获得对应的校验序列。例如,OBU确定允许在第一道路上使用的车上功能,可以获得允许在第一道路上使用的车上功能对应的校验序列。允许在第一道路上使用的车上功能可能有一种或多种,OBU可以获得一个或多个校验序列,这一个或多个校验序列包括第一校验序列,第一校验序列对应于允许在第一道路上使用的第一车上功能。
或者,OBU可以获得第一车辆所支持的M个车上功能对应的M个校验序列,M个车上功能是第一车辆所支持的全部或部分的车上功能。在这种情况下,M个车上功能可能包括允许在至少一条道路上使用的车上功能,也可能还包括不允许在至少一条道路上使用的车上功能,OBU均获得这些车上功能对应的校验序列。
关于OBU获得M个校验序列,可以有不同的方式。因为OBU获得校验序列的方式是类似的,因此下面以OBU获得第一校验序列为例。
作为OBU获得第一校验序列的一种可选的方式,OBU可以自行计算得到第一校验序列。例如OBU可以根据第一车上功能的标识,计算得到第一校验序列。其中,OBU可以在确定第一车上功能是允许在第一道路上使用的车上功能后,再计算第一校验序列,例如, OBU根据第一道路的信息和该映射关系,确定允许第一车辆在第一道路上使用的第一车上功能,OBU计算第一校验序列;或者,OBU也可以不必确定第一车上功能是否是允许在第一道路上使用的车上功能,例如OBU确定第一车上功能是OBU能够支持的车上功能,则OBU可以计算第一校验序列。可以理解为,M个车上功能是允许在至少一条道路上使用的车上功能,或者,M个车上功能可能是第一车辆所支持的全部的车上功能,或者也可能是第一车辆所支持的部分车上功能。
其中,OBU可以根据一个车上功能的标识计算得到一个校验序列,相当于,车上功能的标识和校验序列之间可以是一一对应的。
作为一种可选的方式,如果OBU是从RSU获得的第一道路的信息,那么如OBU在计算校验序列时,除了可以考虑对应的车上功能的标识之外,还可以考虑RSU的标识。例如,OBU可以根据第一车上功能的标识,以及第一车上功能对应的RSU的标识,计算得到第一校验序列。RSU的标识,例如为RSU的ID。第一车上功能对应的RSU是指,该RSU向OBU发送的第一道路的信息,而第一车上功能是允许在第一道路上使用的功能。
因为OBU可能涉及到要计算多个校验序列,例如OBU计算M个校验序列,那么OBU在计算不同的校验序列时,所使用的RSU的标识可能相同,也可能不同。例如,如果两个车上功能都是OBU根据来自RSU1的配置信息确定的,那么OBU在计算这两个车上功能的校验序列时,使用的RSU的标识相同,都是RSU1的标识;或者,如果一个车上功能是OBU根据来自RSU1的配置信息确定的,另一个车上功能是OBU根据来自RSU2的配置信息确定的,那么OBU在计算这两个车上功能的校验序列时,使用的RSU的标识不同,分别是RSU1的标识和RSU2的标识。
作为又一种可选的方式,为了增加可靠性,OBU在计算校验序列时,除了可以考虑车上功能的标识之外,还可以考虑随机序列,随机序列例如是配置信息包括的。那么,如果OBU是根据一个配置信息确定了一个车上功能是允许在一条道路上使用的自动驾驶功能,且该配置信息包括随机序列,OBU就可以根据该车上功能的标识和该随机序列来计算校验序列。例如,OBU是根据一个配置信息确定了第一车上功能是允许在第一道路上使用的自动驾驶功能,且该配置信息包括随机序列,OBU就可以根据第一车上功能的标识和该随机序列来计算第一校验序列。配置信息可以指示一条或多条道路的信息,例如,无论配置信息指示多少条道路的信息,在配置信息中,都只包括一个随机序列,那么该配置信息所指示的所有道路的信息对应的道路所允许使用的车上功能,在计算校验序列时都可以使用该随机序列;或者,如果配置信息指示多条道路,则在配置信息中可以包括多个随机序列,道路的信息与随机序列一一对应,那么OBU在计算该配置信息所指示的一条道路的信息对应的道路允许使用的车上功能对应的校验序列时,可以使用该车上功能所对应的随机序列,该车上功能所对应的随机序列,也就是允许使用该车上功能的道路所对应的随机序列。
作为再一种可选的方式,以OBU计算第一校验序列为例,OBU可以根据第一车上功能的标识、第一车上功能对应的随机序列、以及第一车上功能对应的RSU的标识,计算第一校验序列。这样,既考虑了车上功能的信息,使得校验序列与车上功能对应,又考虑了RSU的标识,且还考虑了随机序列,提高了验证的可靠性。
例如,OBU可以将输入信息(例如,第一车上功能的标识,或,第一车上功能的标识和RSU的标识,或,第一车上功能的标识和随机序列,或,第一车上功能的标识、随机序列和RSU的标识)输入到第一算法中,输出结果就是第一校验序列。例如,第一算法可以 是输入信息和校验序列之间的映射关系,在有输入信息后,根据输入信息和该映射关系就可以得到对应的校验序列。
其中,一个OBU可能接收来自多个RSU的配置信息,可能有不同的配置信息会指示同一条道路的信息。例如两个配置信息都指示了道路1的信息,例如根据道路的信息和车辆的功能之间的映射关系,确定允许在道路1上使用车上功能1。如果OBU在计算校验序列时会考虑RSU的标识,或者会考虑随机序列,那么OBU对于这两个配置信息,可以计算得到车上功能1对应的两个校验序列。在后续的验证过程中,可以通过这两个校验序列中的任一个校验序列进行校验,只要校验通过即认为校验成功,或者,也可以对这两个校验序列均进行校验,在这两个校验序列均校验通过的情况下才认为校验成功。在这种情况下,由于两个配置信息都指示了道路1的信息,允许在道路1上使用车上功能1,那么在确定M个车上功能时,可以认为是将车上功能1确定了两次,或者说,在M个车上功能中有两个车上功能是相同的,都是车上功能1,因此,车上功能1对应的两个校验序列是包括在M个校验序列中。或者,OBU接收配置信息后可以进行确定,如果不同的配置信息指示了同一条道路的信息,那么OBU只需根据其中的一个配置信息的指示来计算允许在该道路上使用的车上功能对应的校验序列即可,无需计算每个配置信息指示的允许在该道路上使用的车上功能对应的校验序列,以减少OBU的工作量,且不影响后续的校验过程。关于校验过程,主要是指根据校验序列校验相应的车上功能是否允许启动,这将在后文中介绍。
作为OBU获得M个校验序列的另一种可选的方式,OBU无需自行计算,可以由其他设备计算M个校验序列,其他设备计算后将M个校验序列发送给OBU,OBU接收M个校验序列即可。其他设备例如为RSU,或者也可能是除OBU和RSU之外的其他的设备,这里以RSU为例。以第一车上功能为例。例如,OBU可以将第一车上功能的标识发送给RSU,由RSU计算得到第一校验序列,RSU再将第一校验序列发送给OBU,OBU接收来自RSU的第一校验序列。其中,OBU可以在确定第一车上功能是允许在第一道路上使用的车上功能后,再将第一车上功能的标识发送给RSU,例如,OBU根据第一道路的信息和该映射关系,确定允许第一车辆在第一道路上使用的第一车上功能,OBU将第一车上功能的标识发送给RSU,从而接收来自RSU的第一校验序列;或者,OBU也可以不必确定第一车上功能是否是允许在第一道路上使用的车上功能,例如OBU确定第一车上功能是OBU能够支持的车上功能,则OBU可以将第一车上功能的标识发送给RSU,从而接收来自RSU的第一校验序列。可以理解为,M个车上功能是允许在至少一条道路上使用的车上功能,或者,M个车上功能可能是第一车辆所支持的全部的车上功能,或者也可能是第一车辆所支持的部分车上功能。
其中,OBU可以将M个车上功能的标识发送给一个RSU,由一个RSU进行统一计算。或者,OBU也可以将M个车上功能的标识发送给多个RSU,由多个RSU分别进行处理。例如,M个车上功能是根据配置信息和映射关系所确定的允许在至少一条道路上使用的车上功能,那么例如对于车上功能1,OBU可以将车上功能1的标识发送给对应的RSU,对应的RSU是指发送的配置信息包括了允许使用车上功能1的道路的信息的RSU。
例如,RSU在接收来自OBU的第一车上功能的标识后,可以根据如前所述的映射关系,确定第一车上功能的标识对应的第一车上功能是否允许在第一车辆当前所在的道路上使用,如果允许,则RSU可以计算第一车上功能对应的第一校验序列,并将第一校验序列 发送给OBU。或者,如果第一车上功能的标识对应的第一车上功能不允许在第一车辆当前所在的道路上使用,则RSU可以无需计算第一车上功能对应的校验序列。其中,第一车辆所在的道路,可以是指第一车辆正在行驶的道路,例如第一车辆位于该道路上,也可以理解为,是第一车辆的车载全球定位***(global positioning system,GPS)信息位于该道路的范围内。例如,RSU在接收M个车上功能的标识后,可以向OBU发送第一信息,第一信息可以指示允许或不允许车辆在第一道路上使用M个车上功能。例如,第一信息可能携带相应的校验序列,和/或,还可能携带指示信息,具体的,第一信息可能携带校验序列,或携带指示信息,或携带校验序列和指示信息。
例如一种情况是,如果RSU获得了一个车上功能的标识对应的校验序列,就会在第一信息中包括该校验序列,而如果RSU未获得一个车上功能的标识对应的校验序列,就会在第一信息中包括该车上功能的标识对应的指示信息。在这种情况下,如果第一信息包括一个校验序列,就表明指示允许车辆在第一道路上使用该校验序列对应的车上功能,而如果第一信息包括一个指示信息,就表明指示不允许车辆在第一道路上使用该指示信息所指示的车上功能,或者,指示不允许车辆在第一道路上使用该指示信息所指示的车上功能的原因(例如指示信息包括原因值),或者,指示请求失败(也就是说,OBU对于该校验序列的请求失败)。例如,RSU共得到了M个校验序列,相当于,对于OBU所请求的所有的校验序列均获取成功,那么第一信息就只携带校验序列;或者,RSU共得到了0个校验序列,相当于,对于OBU所请求的所有的校验序列均未获取成功,那么第一信息就只携带指示信息;或者,RSU共得到了N个校验序列,N为正整数,且N小于M,相当于,对于OBU所请求的一部分校验序列获取成功,而对于OBU所请求的剩余的一部分校验序列未获取成功,则第一信息就携带N个校验序列和指示信息。指示信息可以指示无法使用一个或多个车上功能的原因,或者指示对于一个或多个车上功能的校验序列请求失败。例如,指示信息和车上功能可以是一一对应,或者也可能多个车上功能对应一个指示信息。
或者,另一种情况是,如果RSU获得了一个车上功能的标识对应的校验序列,就会在第一信息中包括该校验序列,而如果RSU未获得一个车上功能的标识对应的校验序列,就不会在第一信息中包括该车上功能的标识对应的内容(既不包括该车上功能的标识对应的校验序列,也不包括上一种情况中所述的指示信息)。在这种情况下,如果第一信息包括一个校验序列,就表明指示允许车辆在第一道路上使用该校验序列对应的车上功能,而如果第一信息不包括一个车上功能的标识对应的校验序列,就表明指示不允许车辆在第一道路上使用该车上功能,或者,指示不允许车辆在第一道路上使用该车上功能的原因(例如指示信息包括原因值),或者,指示请求失败(也就是说,OBU对于该校验序列的请求失败)。
作为一种可选的方式,OBU除了可以向RSU发送M个校验序列之外,还可以向RSU发送第一车辆的标识。RSU接收第一车辆的标识后,可以对第一车辆进行验证,以确认第一车辆是否合法。如果第一车辆合法,则RSU再进一步确定来自OBU的车上功能的标识对应的车上功能是否允许在第一车辆所在的道路上使用,而如果第一车辆不合法,则RSU可以不必针对该OBU计算任何的校验序列。
作为OBU获得M个校验序列的再一种可选的方式,OBU无需自行计算,可以由其他设备计算M个校验序列,其他设备计算后将M个校验序列发送给OBU,OBU接收M个校验序列即可。例如,其他设备可以向OBU发送第一信息,第一信息可以指示允许或不 允许车辆在第一道路上使用M个车上功能。其他设备例如为RSU,或者为除了OBU和RSU之外的其他的设备,这里以RSU为例。与OBU获得M个校验序列的上一种可选的方式不同的是,在这种可选的方式中,OBU无需将第一车上功能的标识发送给RSU,RSU可以主动计算得到第一校验序列,RSU再将第一校验序列发送给OBU,OBU接收来自RSU的第一校验序列。其中,RSU可以在确定第一车上功能是允许在第一道路上使用的车上功能后,再计算第一校验序列。例如,RSU可以根据如前所述的映射关系,确定第一车上功能是否允许在第一车辆当前所在的道路上使用,如果允许,则RSU可以计算第一车上功能对应的第一校验序列,并向OBU发送第一信息,第一信息包括第一校验序列,此时第一信息可以认为是指示允许车辆在第一道路上使用该第一校验序列所对应的第一车上功能。或者,如果第一车上功能不允许在第一车辆当前所在的道路上使用,则RSU可以无需计算第一车上功能对应的校验序列,则RSU也可以向RSU发送第一信息,此时的第一信息可以包括指示信息,由指示信息来指示不允许车辆在第一道路上使用该指示信息所指示的车上功能,或者,指示不允许车辆在第一道路上使用该指示信息所指示的车上功能的原因(例如指示信息包括原因值),或者,此时的第一信息也可以是空集,以指示不允许车辆在第一道路上使用该指示信息所指示的车上功能。
关于RSU计算第一校验序列的方式,与OBU计算第一校验序列的方式可以是类似的。例如,RSU可以根据第一车上功能的标识计算第一校验序列,或者,RSU可以根据第一车上功能的标识和随机序列计算第一校验序列,或者,RSU可以根据第一车上功能的标识和该RSU的标识计算第一校验序列,或者,RSU可以根据第一车上功能的标识、随机序列和该RSU的标识计算第一校验序列。例如,RSU可以将输入信息(例如,第一车上功能的标识,或,第一车上功能的标识和该RSU的标识,或,第一车上功能的标识和随机序列,或,第一车上功能的标识、随机序列和该RSU的标识)输入到第一算法中,输出结果就是第一校验序列。
其中,S21~S23均为可选的步骤,不是必须执行的。
S24、OBU确定为第一车辆触发第一车上功能,所述第一车辆承载所述OBU。
例如,OBU确定了允许第一车辆在至少一条道路上使用的车上功能,那么如果OBU第一车辆在第一道路上,则OBU可以触发第一车上功能,第一车上功能可以是允许在第一道路上使用的一种车上功能。这种方式可以由OBU直接确定是否触发相应的车上功能,无需用户决策,减少用户的工作量。
或者,具体要启动哪个车上功能,也可以由用户决定。例如用户决定要启动第一车上功能,则可以进行相应的操作(例如按下相应的按钮)以触发第一车上功能。用户的操作可以触发OBU,则OBU就可以触发第一车上功能。
但是,OBU是确定了允许第一车辆在第一道路上使用的车上功能,而用户可能是不知道的,则用户所选择的车上功能很可能是不允许在第一道路上使用的车上功能。对于这种情况,可以依赖于OBU后续的校验过程,或者还有一种方式,OBU在确定了允许第一车辆在第一道路上使用的车上功能后,可以输出第二信息,第二信息可以指示允许第一车辆在第一道路上使用的车上功能,例如OBU可以通过车载音频设备输出第二信息,或者也可以通过车载视频设备输出第二信息,或者还可以将第二信息输出到用户的手机等设备。这样用户就可以获知允许第一车辆在第一道路上使用的车上功能,从而当第一车辆在第一道路上时,用户就可以从允许在第一道路使用的车上功能中选择触发某个或某些车上功能。
在前文介绍了,OBU可以先获得M个校验序列。或者还有一种可选的方式,OBU可以不必先获得M个校验序列,也就是说在这种情况下,S23可以不必执行,或者可以在S24之后执行。例如,OBU确定了允许在第一道路上使用的车上功能,之后,OBU就可以触发第一车上功能,第一车上功能可以是允许在第一道路上使用的一种车上功能。在触发第一车上功能后,OBU可以计算得到第一车上功能的第一校验序列,计算方式可参考前文;或者,OBU可以将第一车上功能的标识发送给RSU,由RSU计算第一车上功能的第一校验序列,RSU再将第一校验序列发送给OBU,RSU计算第一校验序列方式也可参考前文。当然,如果RSU确定第一车上功能是不允许在第一道路上使用的车上功能,则RSU不会计算第一车上功能的校验序列,也不会将第一校验序列发送给OBU,在这种情况下,OBU无法获得第一校验序列。
如果按照这种方式,OBU只需获得所触发的车上功能对应的校验序列即可,无需获得过多的校验序列,有助于节省OBU的存储空间。
S25、OBU校验是否允许所述第一车辆在所述第一道路上使用所述第一车上功能。
例如,如果第一车上功能对应有校验序列(第一校验序列),那么OBU可以对第一校验序列进行校验。例如OBU可以将第一校验序列输入第一算法中。如果校验结果表明对第一校验序列校验通过,相当于指示允许第一车辆在第一道路上使用第一车上功能,则OBU确定第一车上功能是允许在第一道路上使用的车上功能,或者,如果校验结果表明对第一校验序列校验未通过,相当于指示不允许第一车辆在第一道路上使用第一车上功能,则OBU确定第一车上功能是不允许在第一道路上使用的车上功能。
或者,如果OBU只是获得了在第一道路上允许使用的车上功能的校验序列,而第一车上功能是不允许在第一道路上使用的车上功能,那么OBU可能并未获得第一校验序列。或者,如果OBU是将第一车上功能的标识发送给RSU,而RSU要根据映射关系对第一车上功能的标识对应的第一车上功能进行验证,以确定第一车上功能是否是允许车辆在第一道路上使用的车上功能,例如,RSU确定第一车上功能是不允许车辆在第一道路上使用的车上功能,则RSU不会计算第一校验序列,也不会向OBU发送第一校验序列。在这两种情况下,OBU都未获得第一车上功能对应的校验序列。因此,OBU的校验过程可以总体描述为,OBU首先确定第一车上功能是否有对应的校验序列,如果没有,则OBU直接确定校验失败(或描述为,校验不通过),而如果第一车上功能有对应的校验序列,则OBU可以进一步对校验序列进行校验,校验过程可参考上一段落的描述。
S26、当所述第一车辆在所述第一道路上,OBU根据校验结果,启动或者不启动所述第一车上功能。
如果校验结果表明对第一校验序列的校验通过,则OBU可以启动第一车上功能,第一车上功能只能在第一道路上使用。如果之后第一车辆行驶到了另一条道路上,那么,如果这条道路也允许使用第一车上功能,则OBU可以不进行处理,或者,如果这条道路不允许使用第一车上功能,则OBU可以停止使用第一车上功能。
或者,如果校验结果表明对第一校验序列的校验不通过,则OBU可以不启动第一车上功能。
通过本申请实施例所提供的技术方案,使得车辆在相应的道路上尽量不会启动不允许在该道路上使用的车上功能,提高了自动驾驶过程的安全性和可靠性。
为了解决相同的技术问题,本申请实施例提供第二种通信方法,请参见图3,为该方 法的流程图。在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第三通信装置和第四通信装置。其中,第三通信装置或第四通信装置,可以是车载装置或能够支持车载装置实现该方法所需的功能的通信装置(例如芯片***),或者可以是路侧装置或能够支持路侧装置实现该方法所需的功能的通信装置(例如芯片***),当然还可以是其他通信装置。且对于第三通信装置和第四通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第三通信装置通过设备的形式实现,第四通信装置通过芯片***的方式实现,等等。
为了便于介绍,在下文中,以该方法由车载装置和路侧装置执行为例,也就是说,以第三通信装置是车载装置、第四通信装置是路侧装置为例。因为本实施例是以应用在图1所示的网络架构为例,因此,下文中所述的车载装置可以是图1所示的网络架构中的车载装置,下文中所述的路侧装置可以是图1所示的网络架构中的路侧装置1。为了更便于理解,在下文的介绍过程中,以车载装置是OBU、路侧装置是RSU为例。
S31、RSU向OBU发送配置信息,OBU接收来自RSU的配置信息,所述配置信息用于指示至少一条道路的信息。例如,至少一条道路的信息包括第一道路的信息。因此在图3中,只以RSU向OBU发送第一道路的信息为例。
关于S31,可参考图2所示的实施例中的S21。
S32、OBU根据道路的信息和车辆的功能之间的映射关系,以及所述第一道路的信息,确定第一车辆在第一道路上允许使用的功能。
其中,OBU可以根据道路的信息和车辆的功能之间的映射关系,以及配置信息,确定允许第一车辆在至少一条道路上使用的车辆的功能,这里只以第一道路为例。
关于S32,可参考图2所示的实施例中的S22。
S33、OBU启动第一车上功能,第一车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能。
例如,OBU确定了允许第一车辆在至少一条道路上使用的车上功能,那么如果OBU第一车辆在第一道路上,则OBU可以启动第一车上功能,第一车上功能可以是允许在第一道路上使用的一种车上功能。这种方式可以由OBU直接确定是否启动相应的车上功能,无需用户决策,减少用户的工作量。当然还有可能,即使是OBU决策启动第一车上功能,第一车上功能也可能是不允许在第一道路上使用的车上功能,例如OBU在确定允许第一车辆在至少一条道路上使用的车上功能时出错,误将第一车上功能确定为是允许在第一道路上使用的车上功能,或者映射关系未及时更新,导致OBU误将第一车上功能确定为是允许在第一道路上使用的车上功能,或者就是OBU在确定要启动的车上功能时出错,误将第一车上功能确定为是允许在第一道路上使用的车上功能,或者OBU并未出错,但OBU就是随机选择了启动第一车上功能,并未确定第一车上功能是否是允许在第一道路上使用的车上功能,等等。
或者,具体要启动哪个车上功能,也可以由用户决定。例如用户决定要启动第一车上功能,则可以进行相应的操作(例如按下相应的按钮)以启动第一车上功能。用户的操作可以触发OBU,则OBU就可以启动第一车上功能。
但是,OBU是确定了允许第一车辆在第一道路上使用的车上功能,而用户可能是不知道的,则用户所选择的车上功能很可能是不允许在第一道路上使用的车上功能。那么用户 所选择的第一车上功能,很可能就是不允许在第一道路上使用的车上功能。对于这种情况,可以有一种改善的方式,例如OBU在确定了允许第一车辆在第一道路上使用的车上功能后,可以输出第二信息,第二信息可以指示允许第一车辆在第一道路上使用的车上功能,例如OBU可以通过车载音频设备输出第二信息,或者也可以通过车载视频设备输出第二信息,或者还可以将第二信息输出到用户的手机等设备。这样用户就可以获知允许第一车辆在第一道路上使用的车上功能,从而当第一车辆在第一道路上时,用户就可以从允许在第一道路使用的车上功能中选择启动某个或某些车上功能,在这种情况下,第一车上功能可以是允许在第一道路上使用的车上功能。但是,即使通知了用户,但用户在选择车上功能时很可能并不根据所通知的内容进行选择,或者用户的记忆出现偏差,或者在通知过程中出现了错误,等等,都有可能导致用户所选择的第一车上功能是不允许在第一道路上使用的车上功能。
综上可知,第一车上功能可能是允许在第一道路上使用的车上功能,也可能是不允许在第一道路上使用的车上功能。
S34、OBU发送状态信息,RSU接收来自OBU的所述状态信息,所述状态信息用于指示所述第一车辆启动了所述第一车上功能。
例如,OBU可以是广播状态信息,RSU可以接收来自OBU广播的状态信息,或者,OBU可以是组播状态信息,RSU可以接收来自OBU组播的状态信息,或者,OBU也可以是以单播方式将状态信息发送给RSU。
S35、RSU确定是否允许车辆在所述第一道路上使用所述第一车上功能。
RSU在接收来自OBU的状态信息后,可以根据如前所述的映射关系,确定第一车上功能是否允许在第一车辆当前所在的道路上使用,第一车辆当前所在的道路例如为第一道路。例如,RSU可以根据映射关系,确定第一车上功能是否与第一道路对应。如果在该映射关系中,第一车上功能与第一道路对应,则RSU确定允许车辆在第一道路上使用第一车上功能,而如果在该映射关系中,第一道路对应的功能中不包括第一车上功能,则RSU确定不允许车辆在第一道路上使用第一车上功能。
S36、当不允许车辆在所述第一道路上使用所述第一车上功能时,RSU记录所述第一车辆启动所述第一车上功能的事件为违法事件。
如果RSU确定不允许车辆在第一道路上使用第一车上功能,那么第一车辆相当于违法启动了第一车上功能,则RSU可以记录第一车辆启动第一车上功能的事件为违法事件。例如,RSU可以与公安局的交通管理***进行通信,可以将所记录的违法事件的信息发送给交通管理***,从而交通管理***可以对第一车辆的驾驶员作出相应的惩罚。或者,RSU也可以将所记录的违法事件的信息发送给第一车辆(或者认为,是发送给所述的OBU),从而使得第一车辆能够尽快停止使用第一车上功能,以减小危害性。如上只是举例,对于RSU记录违法事件后的进一步的处理方式,本申请实施例不做限制。
而如果RSU确定允许车辆在第一道路上使用第一车上功能,那么RSU可以不进行任何操作,或者,RSU也可以向第一车辆(或者认为,是向所述的OBU)发送反馈信息,该反馈信息可以指示第一车辆启动第一车上功能的事件为合法事件。
另外,关于本实施例中未详细描述的一些技术细节等,均可参考图2所示的实施例的相关描述。例如,本实施例只是未涉及校验的过程,则图2所示的实施例中与校验过程无关的内容,均可作为本实施例的内容。
通过本申请实施例提供的技术方案,如果OBU启动了不合法的车上功能,则会被RSU记为违法。通过该类实时监控,可以尽量确保自动驾驶功能仅能在合法的道路上启动,提高自动驾驶的安全性和可靠性。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图4为本申请实施例提供的通信设备400的示意性框图。示例性地,通信设备400例如为车载装置400。车载装置400包括处理模块410和收发模块420。其中,处理模块410可以用于执行图2所示的实施例中由车载装置所执行的除了收发操作之外的全部操作,例如图2所示的实施例中的S22~S26,和/或用于支持本文所描述的技术的其它过程。收发模块420可以用于执行图2所示的实施例中由车载装置所执行的全部收发操作,例如图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。
处理模块410,用于为第一车辆触发车上功能,所述第一车辆承载车载装置400;
处理模块410,还用于校验是否允许所述第一车辆在第一道路上使用所述车上功能;
处理模块410,还用于当所述第一车辆在所述第一道路上,根据校验结果,启动或者不启动所述车上功能。
作为一种可选的实施方式,处理模块410,还用于根据所述第一道路的信息确定所触发的所述车上功能。
作为一种可选的实施方式,
处理模块410,还用于知晓映射关系;其中,所述映射关系包含道路的信息与车辆的功能之间的映射关系;
处理模块410用于通过如下方式根据所述第一道路的信息确定所触发的所述车上功能:根据所述第一道路的信息与所述映射关系,确定所述车上功能。
作为一种可选的实施方式,处理模块410用于通过如下方式知晓映射关系:
通过收发模块420接收来自路侧装置的所述映射关系;或,
获得预配置的所述映射关系;或,
从服务器中获取地图,并获得包括在所述地图中的所述映射关系。
作为一种可选的实施方式,
收发模块420,用于接收来自路侧装置的所述第一道路的信息;或,
处理模块410,还用于从服务器中获取地图,并获得包括在所述地图中的所述第一道路的信息。
作为一种可选的实施方式,处理模块410用于通过如下方式校验是否允许所述第一车辆在第一道路上使用所述车上功能:
对第一校验序列进行校验,获得所述校验结果,其中,
当所述校验结果表明对所述第一校验序列校验通过时,指示允许所述第一车辆在第一道路上使用所述车上功能,
所述校验结果表明对所述第一校验序列校验未通过时,指示不允许所述第一车辆在第一道路上使用所述车上功能,所述第一校验序列是所述车上功能对应的校验序列。
作为一种可选的实施方式,处理模块410还用于:
根据所述第一道路的信息确定允许所述第一车辆在第一道路上使用的所述车上功能,并获得所述车上功能对应的所述第一校验序列;或,
确定所述第一车辆所支持的所述车上功能,并获得所述车上功能对应的所述第一校验序列。
作为一种可选的实施方式,处理模块410用于通过如下方式获得所述车上功能对应的所述第一校验序列:
根据所述车上功能的标识,计算所述第一校验序列;或,
通过收发模块420接收来自所述路侧装置的所述车上功能对应的所述第一校验序列;或,
通过收发模块420将所述车上功能的标识发送给路侧装置,通过收发模块420接收来自所述路侧装置的所述第一校验序列。
作为一种可选的实施方式,处理模块410用于通过如下方式根据所述车上功能的标识,计算所述第一校验序列:
根据所述车上功能的标识计算所述第一校验序列;或,
根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
作为一种可选的实施方式,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
应理解,本申请实施例中的处理模块410可以由处理器或处理器相关电路组件实现,收发模块420可以由收发器或收发器相关电路组件实现。
如图5所示,本申请实施例还提供一种通信设备500。示例性地,通信设备500例如为车载装置500。车载装置500包括处理器510,存储器520与收发器530,其中,存储器520中存储指令或程序,处理器510用于执行存储器520中存储的指令或程序。存储器520中存储的指令或程序被执行时,该处理器510用于执行上述实施例中处理模块410执行的操作,收发器530用于执行上述实施例中收发模块420执行的操作。
应理解,根据本申请实施例的车载装置400或车载装置500可对应于图2所示的实施例中的车载装置,并且车载装置400或车载装置500中的各个模块的操作和/或功能分别为了实现图2所示的实施例中的相应流程,为了简洁,在此不再赘述。
图6为本申请实施例提供的通信设备600的示意性框图。示例性地,通信设备600例如为路侧装置600。路侧装置600包括处理模块610和收发模块620。其中,处理模块610可以用于执行图2所示的实施例中由路侧装置所执行的除了收发操作之外的全部操作,例如图2所示的实施例中的确定是否允许车辆在第一道路上使用所述车上功能的操作,和/或用于支持本文所描述的技术的其它过程。收发模块620可以用于执行图2所示的实施例中由路侧装置所执行的全部收发操作,例如图2所示的实施例中的S21,向车载装置发送 第一信息的操作,和/或用于支持本文所描述的技术的其它过程。
收发模块620,用于接收来自车载装置的车上功能的标识;
处理模块610,用于确定是否允许车辆在第一道路上使用所述车上功能;
收发模块620,还用于向所述车载装置发送第一信息。
作为一种可选的实施方式,所述第一信息用于指示允许或不允许车辆在所述第一道路上使用所述车上功能。
作为一种可选的实施方式,所述确定结果为允许车辆在所述第一道路上使用所述车上功能,收发模块620用于通过如下方式向所述车载装置发送第一信息,包括:
收发模块620将所述车上功能对应的第一校验序列发送给所述车载装置。
作为一种可选的实施方式,处理模块610用于通过如下方式获得所述车上功能对应的第一校验序列:
根据所述车上功能的标识计算所述第一校验序列;或,
根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
作为一种可选的实施方式,所述确定结果为不允许车辆在所述第一道路上使用所述车上功能,收发模块620用于通过如下方式向所述车载装置发送第一信息:
向所述车载装置发送指示信息,所述指示信息用于指示请求失败,或用于指示不允许车辆在所述第一道路上使用所述车上功能的原因。
作为一种可选的实施方式,收发模块620,还用于向所述车载装置发送所述第一道路的信息,所述第一道路的信息用于确定车辆在所述第一道路上允许使用的车上功能。
作为一种可选的实施方式,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
应理解,本申请实施例中的处理模块610可以由处理器或处理器相关电路组件实现,收发模块620可以由收发器或收发器相关电路组件实现。
如图7所示,本申请实施例还提供一种通信设备700。示例性地,通信设备700例如为路侧装置700。路侧装置700包括处理器710,存储器720与收发器730,其中,存储器720中存储指令或程序,处理器710用于执行存储器720中存储的指令或程序。存储器720中存储的指令或程序被执行时,该处理器710用于执行上述实施例中处理模块610执行的操作,收发器730用于执行上述实施例中收发模块620执行的操作。
应理解,根据本申请实施例的路侧装置600或路侧装置700可对应于图2所示的实施例中的路侧装置,并且路侧装置600或路侧装置700中的各个模块的操作和/或功能分别为了实现图2所示的实施例中的相应流程,为了简洁,在此不再赘述。
图8为本申请实施例提供的通信设备800的示意性框图。示例性地,通信设备800例如为车载装置800。车载装置800包括处理模块810和收发模块820。其中,处理模块810可以用于执行图3所示的实施例中由车载装置所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的S32和S33,和/或用于支持本文所描述的技术的其它过程。收发模块820可以用于执行图3所示的实施例中由车载装置所执行的全部收发操作,例如图3所示的实施例中的S31和S34,和/或用于支持本文所描述的技术的其它过程。
收发模块820,用于接收第一道路的信息;
处理模块810,用于根据道路的信息与车辆的功能之间的映射关系以及所述第一道路的信息,确定第一车辆在所述第一道路上允许使用的功能,所述第一车辆承载车载装置800。
作为一种可选的实施方式,
处理模块810,还用于启动车上功能,所述车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能;
收发模块820,还用于发送状态信息,所述状态信息用于指示所述第一车辆启动了所述车上功能。
作为一种可选的实施方式,所述第一道路的信息包括如下的一项或如下多项的任意组合:
所述第一道路的类型;
所述第一道路的地理范围;
所述第一道路的轨迹信息;
所述第一道路的标识;
所述第一道路对应的车道的编号;或,
所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件实现。
如图9所示,本申请实施例还提供一种通信设备900。示例性地,通信设备900例如为车载装置900。车载装置900包括处理器910,存储器920与收发器930,其中,存储器920中存储指令或程序,处理器910用于执行存储器920中存储的指令或程序。存储器920中存储的指令或程序被执行时,该处理器910用于执行上述实施例中处理模块810执行的操作,收发器930用于执行上述实施例中收发模块820执行的操作。
应理解,根据本申请实施例的车载装置800或车载装置900可对应于图3所示的实施例中的车载装置,并且车载装置800或车载装置900中的各个模块的操作和/或功能分别为了实现图3所示的实施例中的相应流程,为了简洁,在此不再赘述。
图10为本申请实施例提供的通信设备1000的示意性框图。示例性地,通信设备1000例如为路侧装置1000。路侧装置1000包括处理模块1010和收发模块1020。其中,处理模块1010可以用于执行图3所示的实施例中由路侧装置所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的S35和S36,和/或用于支持本文所描述的技术的其它过程。收发模块1020可以用于执行图3所示的实施例中由路侧装置所执行的全部收发操作,例如图3所示的实施例中的S31和S34,向车载装置发送第一信息的操作,和/或用于支持本文所描述的技术的其它过程。
收发模块1020,用于接收来自车载装置的状态信息,所述状态信息用于指示承载所述车载装置的第一车辆启动了车上功能;
处理模块1010,用于确定是否允许车辆在第一道路上使用所述车上功能;
处理模块1010,还用于当不允许车辆在所述第一道路上使用所述车上功能时,记录所述第一车辆启动所述车上功能的事件为违法事件。
作为一种可选的实施方式,处理模块1010用于通过如下方式确定是否允许车辆在第一道路上使用所述车上功能:
根据道路的信息与车辆的功能之间的映射关系,确定所述车上功能是否与所述第一道路对应;其中,所述车上功能与所述第一道路对应,允许车辆在所述第一道路上使用所述车上功能,否则,不允许车辆在所述第一道路上使用所述车上功能。
应理解,本申请实施例中的处理模块1010可以由处理器或处理器相关电路组件实现,收发模块1020可以由收发器或收发器相关电路组件实现。
如图11所示,本申请实施例还提供一种通信设备1100。示例性地,通信设备1100例如为路侧装置1100。路侧装置1100包括处理器1110,存储器1120与收发器1130,其中,存储器1120中存储指令或程序,处理器1110用于执行存储器1120中存储的指令或程序。存储器1120中存储的指令或程序被执行时,该处理器1110用于执行上述实施例中处理模块1010执行的操作,收发器1130用于执行上述实施例中收发模块1020执行的操作。
应理解,根据本申请实施例的路侧装置1000或路侧装置1100可对应于图3所示的实施例中的路侧装置,并且路侧装置1000或路侧装置1100中的各个模块的操作和/或功能分别为了实现图3所示的实施例中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是车载装置、路侧装置、或电路。该通信装置可以用于执行上述图2所示的方法实施例或图3所示的方法实施例中由车载装置或路侧装置所执行的动作。
当该通信装置为车载装置或路侧装置时,图12示出了一种简化的通信装置的结构示意图。如图12所示,通信装置包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对通信装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的通信装置可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的通信装置产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为通信装置的收发单元,将具有处理功能的处理器视为通信装置的处理单元。如图12所示,通信装置包括收发单 元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述图2所示的方法实施例中车载装置的发送操作和接收操作,处理单元1220用于执行上述图2所示的方法实施例中车载装置侧了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图2所示的实施例中的车载装置的收发步骤,例如S21,和/或用于支持本文所描述的技术的其它过程。处理单元1220,用于执行图2所示的实施例中的车载装置除了收发操作之外的其他操作,例如图2所示的实施例中的S22~S26,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元1210用于执行上述图2所示的方法实施例中路侧装置的发送操作和接收操作,处理单元1220用于执行上述图2所示的方法实施例中路侧装置除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图2所示的实施例中的路侧装置的收发步骤,例如S21,和/或用于支持本文所描述的技术的其它过程。处理单元1220,用于执行图2所示的实施例中的路侧装置除了收发操作之外的其他操作,例如图2所示的实施例中的确定是否允许车辆在第一道路上使用所述车上功能的操作,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元1210用于执行上述图3所示的方法实施例中车载装置侧的发送操作和接收操作,处理单元1220用于执行上述图3所示的方法实施例中车载装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图3所示的实施例中的车载装置的收发步骤,例如S31和S34,和/或用于支持本文所描述的技术的其它过程。处理单元1220,用于执行图3所示的实施例中的车载装置除了收发操作之外的其他操作,例如S32和S33,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元1210用于执行上述图3所示的方法实施例中路侧装置侧的发送操作和接收操作,处理单元1220用于执行上述图3所示的方法实施例中路侧装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图3所示的实施例中的路侧装置的收发步骤,例如S31和S34,和/或用于支持本文所描述的技术的其它过程。处理单元1220,用于执行图3所示的实施例中的路侧装置除了收发操作之外的其他操作,例如S35和S36,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中的通信装置还可以参照图13所示的设备。作为一个例子,该设备可以完成类似于图13中处理器1310的功能。在图13中,该设备包括处理器1310,发送数据处理器1320,接收数据处理器1330。上述实施例中的处理模块410可以是图13中的该 处理器1310,并完成相应的功能;上述实施例中的收发模块420可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。或者,上述实施例中的处理模块610可以是图13中的该处理器1310,并完成相应的功能;上述实施例中的收发模块620可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。或者,上述实施例中的处理模块810可以是图13中的该处理器1310,并完成相应的功能;上述实施例中的收发模块820可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。或者,上述实施例中的处理模块1010可以是图13中的该处理器1310,并完成相应的功能;上述实施例中的收发模块1020可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。
虽然图13中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图14示出本实施例的另一种形式。处理装置1400中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信装置可以作为其中的调制子***。具体的,该调制子***可以包括处理器1403,接口1404。其中,处理器1403完成上述处理模块410的功能,接口1404完成上述收发模块420的功能。或者,处理器1403完成上述处理模块610的功能,接口1404完成上述收发模块620的功能。或者,处理器1403完成上述处理模块810的功能,接口1404完成上述收发模块820的功能。或者,处理器1403完成上述处理模块1010的功能,接口1404完成上述收发模块1020的功能。作为另一种变形,该调制子***包括存储器1406、处理器1403及存储在存储器1406上并可在处理器上运行的程序,该处理器1403执行该程序时实现上述图2所示的方法实施例或图3所示的方法实施例中车载装置或路侧装置侧的方法。需要注意的是,所述存储器1406可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于处理装置1400中,只要该存储器1406可以连接到处理器1403即可。
本申请实施例还提供第一种通信***。该通信***可以包括至少一个上述的图2所示的实施例所涉及的车载装置,以及包括上述的图2所示的实施例所涉及的路侧装置。车载装置例如为图4中的车载装置400或图5中的车载装置500,路侧装置例如为图6中的路侧装置600或图7中的路侧装置700等。例如,车载装置可用于执行图2所示的实施例中由车载装置所执行的全部操作,例如图2所示的实施例中的S21~S26,和/或用于支持本文所描述的技术的其它过程。路侧装置可用于执行图2所示的实施例中由路侧装置所执行的全部操作,例如图2所示的实施例中的S21,图2所示的实施例中的确定是否允许车辆在第一道路上使用所述车上功能的操作,和/或用于支持本文所描述的技术的其它过程。
本申请实施例还提供第二种通信***。该通信***可以包括至少一个上述的图3所示的实施例所涉及的车载装置,以及包括上述的图3所示的实施例所涉及的路侧装置。车载装置例如为图8中的车载装置800或图9中的车载装置900,路侧装置例如为图10中的路侧装置1000或图11中的路侧装置1100等。例如,车载装置用于执行图3所示的实施例中由车载装置所执行的全部操作,例如图3所示的实施例中的S31、S32、S33和S34,和/或用于支持本文所描述的技术的其它过程。路侧装置可用于执行图3所示的实施例中由路侧装置所执行的全部操作,例如图3所示的实施例中的S31、S34、S35和S36,和/或用于支持本文所描述的技术的其它过程。
第一种通信***和第二种通信***可以是同一个通信***,或者也可以是不同的通信***。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图2所示的实施例中与车载装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图2所示的实施例中与路侧装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与车载装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与路侧装置相关的流程。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图2所示的方法实施例中车载装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图2所示的方法实施例中路侧装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中车载装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中路侧装置侧的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    车载装置为第一车辆触发车上功能,所述第一车辆承载所述车载装置;
    所述车载装置校验是否允许所述第一车辆在第一道路上使用所述车上功能;
    当所述第一车辆在所述第一道路上,所述车载装置根据校验结果,启动或者不启动所述车上功能。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述车载装置根据所述第一道路的信息确定所触发的所述车上功能。
  3. 根据权利要求2所述的方法,其特征在于,
    所述方法还包括:
    所述车载装置知晓映射关系;其中,所述映射关系包含道路的信息与车辆的功能之间的映射关系;
    所述车载装置根据所述第一道路的信息确定所触发的所述车上功能,包括:
    所述车载装置根据所述第一道路的信息与所述映射关系,确定所述车上功能。
  4. 根据权利要求3所述的方法,其特征在于,所述车载装置知晓映射关系,包括:
    所述车载装置接收来自路侧装置的所述映射关系;或,
    所述车载装置获得预配置的所述映射关系;或,
    所述车载装置从服务器中获取地图,并获得包括在所述地图中的所述映射关系。
  5. 根据权利要求2~4任一项所述的方法,其特征在于,所述方法还包括:
    所述车载装置接收来自路侧装置的所述第一道路的信息;或,
    所述车载装置从服务器中获取地图,并获得包括在所述地图中的所述第一道路的信息。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述车载装置校验是否允许所述第一车辆在第一道路上使用所述车上功能,包括:
    所述车载装置对第一校验序列进行校验,获得所述校验结果,其中,
    当所述校验结果表明对所述第一校验序列校验通过时,指示允许所述第一车辆在第一道路上使用所述车上功能,
    所述校验结果表明对所述第一校验序列校验未通过时,指示不允许所述第一车辆在第一道路上使用所述车上功能,所述第一校验序列是所述车上功能对应的校验序列。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述车载装置根据所述第一道路的信息确定允许所述第一车辆在第一道路上使用的所述车上功能,并获得所述车上功能对应的所述第一校验序列;或,
    所述车载装置确定所述第一车辆所支持的所述车上功能,并获得所述车上功能对应的所述第一校验序列。
  8. 根据权利要求7所述的方法,其特征在于,所述车载装置获得所述车上功能对应的所述第一校验序列,包括:
    所述车载装置根据所述车上功能的标识,计算所述第一校验序列;或,
    所述车载装置接收来自所述路侧装置的所述车上功能对应的所述第一校验序列;或,
    所述车载装置将所述车上功能的标识发送给路侧装置,所述车载装置接收来自所述路侧装置的所述第一校验序列。
  9. 根据权利要求8所述的方法,其特征在于,所述车载装置根据所述车上功能的标识,计算所述第一校验序列,包括:
    所述车载装置根据所述车上功能的标识计算所述第一校验序列;或,
    所述车载装置根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
    所述车载装置根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
    所述车载装置根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
  10. 根据权利要求2~5任一项所述的方法,其特征在于,所述第一道路的信息包括如下的一项或如下多项的任意组合:
    所述第一道路的类型;
    所述第一道路的地理范围;
    所述第一道路的轨迹信息;
    所述第一道路的标识;
    所述第一道路对应的车道的编号;或,
    所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
  11. 一种通信方法,其特征在于,包括:
    路侧装置接收来自车载装置的车上功能的标识;
    所述路侧装置确定是否允许车辆在第一道路上使用所述车上功能;
    所述路侧装置向所述车载装置发送第一信息。
  12. 根据权利要求11所述的方法,其特征在于,所述路侧装置确定允许车辆在所述第一道路上使用所述车上功能,所述路侧装置向所述车载装置发送第一信息,包括:
    所述路侧装置获得所述车上功能对应的第一校验序列;
    所述路侧装置将所述第一校验序列发送给所述车载装置。
  13. 根据权利要求12所述的方法,其特征在于,所述路侧装置获得所述车上功能对应的第一校验序列,包括:
    所述路侧装置根据所述车上功能的标识计算所述第一校验序列;或,
    所述路侧装置根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
    所述路侧装置根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
    所述路侧装置根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
  14. 根据权利要求11所述的方法,其特征在于,所述路侧装置确定不允许车辆在所述第一道路上使用所述车上功能,所述路侧装置向所述车载装置发送第一信息,包括:
    所述路侧装置向所述车载装置发送指示信息,所述指示信息用于指示请求失败,或用于指示不允许车辆在所述第一道路上使用所述车上功能的原因。
  15. 根据权利要求11~14任一项所述的方法,其特征在于,所述方法还包括:
    所述路侧装置向所述车载装置发送所述第一道路的信息,所述第一道路的信息用于确定车辆在所述第一道路上允许使用的车上功能。
  16. 一种车载装置,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于执行所述指令,为第一车辆触发车上功能,校验是否允许所述第一车辆在第一道路上使用所述车上功能,以及,当所述第一车辆在所述第一道路上,根据校验结果,启动或者不启动所述车上功能,所述第一车辆承载所述车载装置。
  17. 根据权利要求16所述的车载装置,其特征在于,所述处理器,还用于根据所述第一道路的信息确定所触发的所述车上功能。
  18. 根据权利要求17所述的车载装置,其特征在于,
    所述处理器,还用于知晓映射关系;其中,所述映射关系包含道路的信息与车辆的功能之间的映射关系;
    所述处理器用于通过如下方式根据所述第一道路的信息确定所触发的所述车上功能:
    根据所述第一道路的信息与所述映射关系,确定所述车上功能。
  19. 根据权利要求18所述的车载装置,其特征在于,所述车载装置还包括收发器;所述处理器用于通过如下方式知晓映射关系:
    通过所述收发器接收来自路侧装置的所述映射关系;或,
    获得预配置的所述映射关系;或,
    从服务器中获取地图,并获得包括在所述地图中的所述映射关系。
  20. 根据权利要求17~19任一项所述的车载装置,其特征在于,所述车载装置还包括收发器;
    所述收发器,用于接收来自路侧装置的所述第一道路的信息;或,
    所述处理器,还用于从服务器中获取地图,并获得包括在所述地图中的所述第一道路的信息。
  21. 根据权利要求16~20任一项所述的车载装置,其特征在于,所述处理器用于通过如下方式校验是否允许所述第一车辆在第一道路上使用所述车上功能:
    对第一校验序列进行校验,获得所述校验结果,其中,
    当所述校验结果表明对所述第一校验序列校验通过时,指示允许所述第一车辆在第一道路上使用所述车上功能,
    所述校验结果表明对所述第一校验序列校验未通过时,指示不允许所述第一车辆在第一道路上使用所述车上功能,所述第一校验序列是所述车上功能对应的校验序列。
  22. 根据权利要求21所述的车载装置,其特征在于,所述处理器还用于:
    根据所述第一道路的信息确定允许所述第一车辆在第一道路上使用的所述车上功能,并获得所述车上功能对应的所述第一校验序列;或,
    确定所述第一车辆所支持的所述车上功能,并获得所述车上功能对应的所述第一校验序列。
  23. 根据权利要求22所述的车载装置,其特征在于,所述车载装置还包括收发器;所述处理器用于通过如下方式获得所述车上功能对应的所述第一校验序列:
    根据所述车上功能的标识,计算所述第一校验序列;或,
    通过所述收发器接收来自所述路侧装置的所述车上功能对应的所述第一校验序列;或,
    通过所述收发器将所述车上功能的标识发送给路侧装置,通过所述收发器接收来自所述路侧装置的所述第一校验序列。
  24. 根据权利要求23所述的车载装置,其特征在于,所述处理器用于通过如下方式根据所述车上功能的标识,计算所述第一校验序列:
    根据所述车上功能的标识计算所述第一校验序列;或,
    根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
    根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
    根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
  25. 根据权利要求17~20任一项所述的车载装置,其特征在于,所述第一道路的信息包括如下的一项或如下多项的任意组合:
    所述第一道路的类型;
    所述第一道路的地理范围;
    所述第一道路的轨迹信息;
    所述第一道路的标识;
    所述第一道路对应的车道的编号;或,
    所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
  26. 一种路侧装置,其特征在于,包括:
    收发器,用于接收来自车载装置的车上功能的标识;
    处理器,用于确定是否允许车辆在第一道路上使用所述车上功能;
    所述收发器,还用于向所述车载装置发送第一信息。
  27. 根据权利要求26所述的路侧装置,其特征在于,所述处理器确定允许车辆在所述第一道路上使用所述车上功能,所述收发器用于通过如下方式向所述车载装置发送第一信息:
    将所述车上功能对应的第一校验序列发送给所述车载装置。
  28. 根据权利要求27所述的路侧装置,其特征在于,所述处理器用于通过如下方式获得所述车上功能对应的第一校验序列:
    根据所述车上功能的标识计算所述第一校验序列;或,
    根据所述车上功能的标识和随机序列计算所述第一校验序列;或,
    根据所述车上功能的标识和所述路侧装置的标识计算所述第一校验序列;或,
    根据所述车上功能的标识、随机序列和所述路侧装置的标识计算所述第一校验序列。
  29. 根据权利要求26所述的路侧装置,其特征在于,所述处理器确定不允许车辆在所述第一道路上使用所述车上功能,所述收发器用于通过如下方式向所述车载装置发送第一信息:
    向所述车载装置发送指示信息,所述指示信息用于指示请求失败,或用于指示不允许车辆在所述第一道路上使用所述车上功能的原因。
  30. 根据权利要求26~29任一项所述的路侧装置,其特征在于,所述收发器,还用于向所述车载装置发送所述第一道路的信息,所述第一道路的信息用于确定车辆在所述第一道路上允许使用的车上功能。
  31. 一种通信方法,其特征在于,包括:
    车载装置接收第一道路的信息;
    所述车载装置根据道路的信息与车辆的功能之间的映射关系以及所述第一道路的信 息,确定第一车辆在所述第一道路上允许使用的功能,所述第一车辆承载所述车载装置。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    所述车载装置启动车上功能,所述车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能;
    所述车载装置发送状态信息,所述状态信息用于指示所述第一车辆启动了所述车上功能。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一道路的信息包括如下的一项或如下多项的任意组合:
    所述第一道路的类型;
    所述第一道路的地理范围;
    所述第一道路的轨迹信息;
    所述第一道路的标识;
    所述第一道路对应的车道的编号;或,
    所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
  34. 一种通信方法,其特征在于,包括:
    路侧装置接收来自车载装置的状态信息,所述状态信息用于指示承载所述车载装置的第一车辆启动了车上功能;
    所述路侧装置确定是否允许车辆在第一道路上使用所述车上功能;
    当不允许车辆在所述第一道路上使用所述车上功能时,所述路侧装置记录所述第一车辆启动所述车上功能的事件为违法事件。
  35. 根据权利要求34所述的方法,其特征在于,所述路侧装置确定是否允许车辆在第一道路上使用所述车上功能,包括:
    所述路侧装置根据道路的信息与车辆的功能之间的映射关系,确定所述车上功能是否与所述第一道路对应;
    其中,所述车上功能与所述第一道路对应,允许车辆在所述第一道路上使用所述车上功能,否则,不允许车辆在所述第一道路上使用所述车上功能。
  36. 一种车载装置,其特征在于,包括:
    收发器,用于接收第一道路的信息;
    处理器,用于根据道路的信息与车辆的功能之间的映射关系以及所述第一道路的信息,确定第一车辆在所述第一道路上允许使用的功能,所述第一车辆承载所述车载装置。
  37. 根据权利要求36所述的车载装置,其特征在于,
    所述处理器,还用于启动车上功能,所述车上功能属于所述第一车辆在所述第一道路上允许使用的功能,或属于所述第一车辆在所述第一道路上不允许使用的功能;
    所述收发器,还用于发送状态信息,所述状态信息用于指示所述第一车辆启动了所述车上功能。
  38. 根据权利要求36或37所述的车载装置,其特征在于,所述第一道路的信息包括如下的一项或如下多项的任意组合:
    所述第一道路的类型;
    所述第一道路的地理范围;
    所述第一道路的轨迹信息;
    所述第一道路的标识;
    所述第一道路对应的车道的编号;或,
    所述第一道路对应的有效时间段,其中,所述第一道路的类型在所述有效时间段内有效。
  39. 一种路侧装置,其特征在于,包括:
    收发器,用于接收来自车载装置的状态信息,所述状态信息用于指示承载所述车载装置的第一车辆启动了车上功能;
    处理器,用于确定是否允许车辆在第一道路上使用所述车上功能;
    所述处理器,还用于当不允许车辆在所述第一道路上使用所述车上功能时,记录所述第一车辆启动所述车上功能的事件为违法事件。
  40. 根据权利要求39所述的路侧装置,其特征在于,所述处理器用于通过如下方式确定是否允许车辆在第一道路上使用所述车上功能:
    根据道路的信息与车辆的功能之间的映射关系,确定所述车上功能是否与所述第一道路对应;
    其中,所述车上功能与所述第一道路对应,允许车辆在所述第一道路上使用所述车上功能,否则,不允许车辆在所述第一道路上使用所述车上功能。
  41. 一种通信***,其特征在于,包括如权利要求16~25任一项所述的车载装置,以及包括如权利要求26~30任一项所述的路侧装置;或者,包括如权利要求36~38任一项所述的车载装置,以及包括如权利要求39~40任一项所述的路侧装置。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10中任意一项所述的方法,或者使得所述计算机执行如权利要求31~33中任意一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求11~15中任意一项所述的方法,或者使得所述计算机执行如权利要求34~35中任意一项所述的方法。
  44. 一种计算机程序产品,其特征在于,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1~10中任意一项所述的方法,或者使得所述计算机执行如权利要求31~33中任意一项所述的方法。
  45. 一种计算机程序产品,其特征在于,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求11~15中任意一项所述的方法,或者使得所述计算机执行如权利要求34~35中任意一项所述的方法。
  46. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行权利要求1~10中任意一项所述的方法,或者执行权利要求31~33中任意一项所述的方法。
  47. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求11~15中任意一项所述的方法,或者如执行权利要求34~35中任意一项所述的方法。
PCT/CN2020/075613 2019-07-22 2020-02-17 一种通信方法及装置 WO2021012668A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20843458.9A EP3993348A4 (en) 2019-07-22 2020-02-17 METHOD AND COMMUNICATION DEVICE
US17/581,847 US20220144283A1 (en) 2019-07-22 2022-01-21 Communication method and apparatus for enabling an on-board function for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910662001.5A CN112291283B (zh) 2019-07-22 2019-07-22 一种通信方法及装置
CN201910662001.5 2019-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,847 Continuation US20220144283A1 (en) 2019-07-22 2022-01-21 Communication method and apparatus for enabling an on-board function for a vehicle

Publications (1)

Publication Number Publication Date
WO2021012668A1 true WO2021012668A1 (zh) 2021-01-28

Family

ID=74192988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075613 WO2021012668A1 (zh) 2019-07-22 2020-02-17 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220144283A1 (zh)
EP (1) EP3993348A4 (zh)
CN (2) CN116366691A (zh)
WO (1) WO2021012668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038076A (zh) * 2021-11-12 2022-02-11 上汽通用五菱汽车股份有限公司 防止etc误读方法、装置、车载obu及可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118369702A (zh) * 2021-12-10 2024-07-19 住友电气工业株式会社 车载装置、路侧装置、控制方法以及计算机程序
CN115639818B (zh) * 2022-10-11 2024-04-19 重庆车联网科技有限公司 一种车路协同大数据智能***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795505A (zh) * 2018-12-10 2019-05-24 北京百度网讯科技有限公司 自动驾驶判别方法、装置、计算机设备及存储介质
US20190179312A1 (en) * 2017-12-11 2019-06-13 Baidu Online Network Technology (Beijing) Co., Ltd. Method and Apparatus for Generating Information
CN109903575A (zh) * 2019-04-09 2019-06-18 南京锦和佳鑫信息科技有限公司 一种自动驾驶专用道进出口匝道的进入与离开方法
CN109987096A (zh) * 2017-12-28 2019-07-09 丰田自动车株式会社 自动驾驶***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6389152B2 (ja) * 2015-08-24 2018-09-12 三菱電機株式会社 車載器および車載器プログラム
CN105118321B (zh) * 2015-09-30 2017-06-16 上海斐讯数据通信技术有限公司 一种交通工具的智能提取方法、***及交通工具
US10324463B1 (en) * 2016-01-22 2019-06-18 State Farm Mutual Automobile Insurance Company Autonomous vehicle operation adjustment based upon route
CN108140303A (zh) * 2016-05-30 2018-06-08 华为技术有限公司 交通消息传递的方法、装置、车载终端及服务器
US10187767B2 (en) * 2016-07-01 2019-01-22 Paxgrid Cdn Inc. System for authenticating and authorizing access to and accounting for wireless access vehicular environment consumption by client devices
CN106971589B (zh) * 2017-03-29 2020-06-05 深圳市金溢科技股份有限公司 智慧公交***及其实现方法
US10343695B2 (en) * 2017-11-14 2019-07-09 General Motors Llc Controlling vehicle functionality based on geopolitical region

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190179312A1 (en) * 2017-12-11 2019-06-13 Baidu Online Network Technology (Beijing) Co., Ltd. Method and Apparatus for Generating Information
CN109987096A (zh) * 2017-12-28 2019-07-09 丰田自动车株式会社 自动驾驶***
CN109795505A (zh) * 2018-12-10 2019-05-24 北京百度网讯科技有限公司 自动驾驶判别方法、装置、计算机设备及存储介质
CN109903575A (zh) * 2019-04-09 2019-06-18 南京锦和佳鑫信息科技有限公司 一种自动驾驶专用道进出口匝道的进入与离开方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993348A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038076A (zh) * 2021-11-12 2022-02-11 上汽通用五菱汽车股份有限公司 防止etc误读方法、装置、车载obu及可读存储介质
CN114038076B (zh) * 2021-11-12 2024-02-06 上汽通用五菱汽车股份有限公司 防止etc误读方法、装置、车载obu及可读存储介质

Also Published As

Publication number Publication date
CN112291283A (zh) 2021-01-29
CN116366691A (zh) 2023-06-30
EP3993348A4 (en) 2022-08-10
CN112291283B (zh) 2023-03-10
US20220144283A1 (en) 2022-05-12
EP3993348A1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2021012668A1 (zh) 一种通信方法及装置
US20200229137A1 (en) Lane data sharing in a vehicle-to-vehicle safety system
KR102334318B1 (ko) 외부 이동 수단으로 릴레이 메시지를 전송하는 전자 장치 및 그 동작 방법
Santa et al. Experimental evaluation of CAM and DENM messaging services in vehicular communications
KR102325049B1 (ko) 보행자의 안전과 연관된 통신 신호를 송신하는 전자 장치 및 그 동작 방법
US10171953B2 (en) Vehicle event notification via cell broadcast
US10235884B2 (en) Wireless beacon collision warning system
US8280583B2 (en) Transmission of vehicle-relevant data of a vehicle via mobile communication
US12022353B2 (en) Vehicle to everything dynamic geofence
US9105189B2 (en) Route guidance system and method
WO2021017723A1 (zh) 一种车路协同方法及装置
WO2016090993A1 (zh) 用于网络租车的电子围栏***
Liu et al. SenSafe: A Smartphone‐Based Traffic Safety Framework by Sensing Vehicle and Pedestrian Behaviors
CN110060465B (zh) 一种用于车辆行人交互***的交互方法及交互***
WO2017138232A1 (ja) 情報配信システム
WO2020259525A1 (zh) 一种通信方法及装置
US20220292965A1 (en) Internet of Vehicles Based Dynamic Information Sending Method and Device
US20210142672A1 (en) Method, mobile device and system for vehicle-to-everything (v2x) communication
CN112019588A (zh) 用于叫车服务的驾驶员验证
WO2022206322A1 (zh) 一种通信方法及通信装置
CN205230373U (zh) 一种交通事故多发地段预报提醒***
JP2016018407A (ja) 車車間無線通信方法及び装置
US10354528B2 (en) Adaptive incident indicator through vehicular communication systems
Altaf et al. Vulnerable road user safety: A systematic review and mesh‐networking based vehicle ad hoc system using hybrid of neuro‐fuzzy and genetic algorithms
EP4312443A1 (en) Improved communication within an intelligent transport system for signalling hidden objects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020843458

Country of ref document: EP

Effective date: 20220131