WO2021009966A1 - Box-type annealed dr steel sheet and method for manufacturing same - Google Patents

Box-type annealed dr steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2021009966A1
WO2021009966A1 PCT/JP2020/010173 JP2020010173W WO2021009966A1 WO 2021009966 A1 WO2021009966 A1 WO 2021009966A1 JP 2020010173 W JP2020010173 W JP 2020010173W WO 2021009966 A1 WO2021009966 A1 WO 2021009966A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
box
less
annealed
rolling
Prior art date
Application number
PCT/JP2020/010173
Other languages
French (fr)
Japanese (ja)
Inventor
中村 紀彦
博之 ▲浜▼田
房亮 假屋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020536832A priority Critical patent/JP6838685B1/en
Publication of WO2021009966A1 publication Critical patent/WO2021009966A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a box-type annealed DR steel sheet having an excellent surface appearance and a method for manufacturing the same.
  • temper color is a surface defect caused by an oxide film formed on the surface of a steel sheet due to oxidation of components (for example, Mn, Al, Si) in the steel that are concentrated on the surface of the steel sheet during annealing, and gives the surface appearance of the steel sheet. Deteriorate.
  • Patent Document 1 proposes a technique for improving expand moldability by using a box-type annealed DR steel sheet.
  • Patent Document 1 investigates the presence or absence of stretcher strain after expand molding, but does not mention uneven color tone.
  • the technique of Patent Document 1 has a problem that Si and Mn, which are steel sheet elements, are concentrated on the surface layer during box annealing, and a temper color is generated. Further, even if it is not recognized as a temper color, it is considered that an oxide film (surface oxide) on the surface layer due to oxidized Si or Mn is inevitably formed.
  • secondary cold rolling is performed after annealing.
  • the present inventors have repeatedly studied the steel sheet composition and the manufacturing method in order to improve the surface appearance of the box-type annealed DR steel sheet. Then, it was found that the surface appearance of the box-type annealed DR steel sheet is improved by setting the rolling reduction ratio at the time of secondary cold rolling (DR rolling) to 25% or less at the time of manufacturing the steel sheet. On the other hand, since the strength cannot be expected by keeping the rolling reduction during the secondary cold rolling low, the components were repeatedly examined in order to secure the strength of the steel sheet. Then, it was found that the strength of the steel sheet can be secured by limiting the content of Mn, which is easily oxidized, and increasing the content of Nb as a reinforcing element.
  • the gist of the present invention is as follows. [1] In terms of mass%, C: 0.020 to 0.080%, Si: 0.05% or less, Mn: 0.10 to 0.50%, P: 0.020% or less, S: 0.020 % Or less, Al: 0.001 to 0.100%, N: 0.014 to 0.020%, Nb: 0.014 to 0.020%, Mn + 25Nb ⁇ 0.85, and the balance is Fe.
  • a box-type annealed DR steel sheet having a component composition consisting of unavoidable impurities, a yield point of 450 to 650 MPa, and a total elongation of 4% or more.
  • Mn and Nb refer to the content (mass%) of each element.
  • the steel material having the component composition described in [1] is subjected to hot rolling and then primary cold rolling, and then box-shaped annealing at 650 to 750 ° C. for 2 to 16 hours.
  • a box-type annealed DR steel sheet having excellent desired mechanical properties and surface appearance can be obtained.
  • the desired mechanical properties in the present invention are a yield point of 450 to 650 MPa and a total elongation of 4% or more.
  • the box-type annealed DR steel sheet of the present invention has a mass% of C: 0.020 to 0.080%, Si: 0.05% or less, Mn: 0.10 to 0.50%, P: 0.020%.
  • C 0.020 to 0.080% C is an element that improves the strength of the steel sheet.
  • the C content is set to 0.020% or more. Preferably, it is 0.025% or more.
  • the C content is set to 0.080% or less. Preferably, it is 0.050% or less.
  • the Si content is set to 0.05% or less. Preferably, it is 0.03% or less. From the viewpoint of refining, the Si content is preferably 0.001% or more because it is necessary to keep the cost within a range that does not increase.
  • Mn 0.10 to 0.50%
  • Mn is an element that improves the strength of the steel sheet.
  • the Mn content is 0.10% or more.
  • it is 0.20% or more.
  • the Mn content exceeds 0.50%, it is oxidized during box annealing and oxides are deposited on the WR surface during the subsequent secondary cold rolling to deteriorate the surface appearance. It ends up. It also reduces the total elongation of the steel sheet. Therefore, the Mn content is set to 0.50% or less. Preferably, it is 0.35% or less.
  • P 0.020% or less
  • P is an element that segregates at the grain boundaries in the steel sheet to reduce workability and deteriorate corrosion resistance. Therefore, the P content is set to 0.020% or less. Preferably, it is 0.015% or less.
  • S 0.020% or less S precipitates at the grain boundaries as MnS during continuous casting and causes slab cracking. Therefore, the S content is set to 0.020% or less. Preferably, it is 0.015% or less.
  • Al 0.001 to 0.100% Al is known to form N and AlN.
  • N that does not form AlN exists as a solid solution N.
  • the solid solution N contributes to the improvement of the strength of the steel sheet.
  • the Al content is 0.100% or less in order to secure the required solid solution N amount. Preferably, it is 0.08% or less.
  • the Al content is set to 0.001% or more because it is necessary to keep the cost within a range that does not increase the cost from the viewpoint of refining.
  • N 0.014-0.020% N forms Al and AlN, and N that does not form AlN exists as a solid solution N.
  • the solid solution N contributes to the improvement of the strength of the steel sheet. Therefore, the N content is set to 0.014% or more. Preferably, it is 0.015% or more.
  • the N content is set to 0.020% or less. Preferably, it is 0.019% or less.
  • Nb 0.014-0.020%
  • Nb is an element that improves the strength of the steel sheet.
  • the Nb content is 0.014% or more. Preferably, it is 0.015% or more.
  • the Nb content is set to 0.020% or less. Preferably, it is 0.018% or less.
  • Mn + 25Nb ⁇ 0.85 Both Mn and Nb are elements necessary for ensuring the strength of the steel sheet. However, as described above, since Mn is easily oxidized, it forms a surface oxide during annealing and deteriorates the surface appearance of the final product. Therefore, it is necessary to appropriately control the upper limit amount of Mn according to the amount of Nb. From various experimental results, it was found that when Mn + 25Nb ⁇ 0.85, there is no deterioration in the surface appearance and the strength can be ensured. In addition, Mn and Nb indicate the content (mass%) of each element, respectively.
  • the rest is Fe and unavoidable impurities.
  • unavoidable impurities include Ni and Cu, and Ni is 0.1% or less and Cu is 0.1% or less, which is acceptable.
  • the above components are the basic components of the present invention.
  • elements generally present in known container steel sheets may be added depending on the purpose.
  • one or more selected from Ti, B, Cr, and Mo may be added.
  • a plating layer may be provided on the surface of the steel sheet.
  • the type of plating method for forming a plating layer on the surface is not particularly limited, and may be electroplating or hot-dip galvanizing.
  • a tin-free steel may be obtained by providing two layers of metallic chromium and chromium hydrated oxide on the surface of the steel sheet.
  • a slab (steel material) having the above-mentioned composition is hot-rolled and then primary cold-rolled. Then, the primary cold-rolled cold-rolled coil is subjected to box-shaped annealing at 650 to 750 ° C. for 2 to 16 hours, and then secondary cold rolling (DR rolling) is performed at a reduction ratio of 10 to 25%.
  • DR rolling secondary cold rolling
  • molten steel which is the raw material for box-type annealed DR steel sheets
  • the steel is melted in a general converter or electric furnace to have the above-mentioned composition.
  • refining may be carried out by degassing treatment.
  • the steel having the above-mentioned composition is made into a slab by continuous casting, ingot-bulk rolling, or the like. This slab becomes the material (steel material) for the box-type annealed DR steel sheet.
  • Hot rolling it is preferable that the slab is reheated to a temperature of 1050 to 1300 ° C. and then finish-rolled at an Ar3 transformation point or higher.
  • the winding temperature after hot rolling is preferably between 450 and 750 ° C.
  • the Ar3 transformation point can be measured by the Formaster test.
  • the slab after casting may be directly rolled without being reheated.
  • Primary cold rolling in primary cold rolling can be performed by a conventional method.
  • the reduction rate is not particularly limited, but is preferably 70 to 98%.
  • Box-shaped annealing 2 to 16 hours at 650 to 750 ° C.
  • the cold-rolled primary cold-rolled coil is box-shaped annealed at 650 to 750 ° C. for 2 to 16 hours.
  • the annealing time is less than 2 hours or the annealing temperature is less than 650 ° C.
  • recrystallization does not proceed sufficiently and total elongation of 4% or more cannot be obtained.
  • the annealing time exceeds 16 hours or the annealing temperature exceeds 750 ° C. oxides are likely to be formed on the surface of the steel sheet, and the surface appearance is deteriorated.
  • the annealing time is preferably 3 hours or more, and the annealing temperature is 680 ° C. or more. Further, from the viewpoint of suppressing the formation of oxides, the annealing time is preferably 12 hours or less, and the annealing temperature is 740 ° C. or less.
  • Secondary cold rolling rolling ratio 10 to 25% Secondary cold rolling is performed at a rolling reduction of 10 to 25%. If the reduction rate is less than 10%, the strength at the yield point of 450 to 650 MPa cannot be obtained. On the other hand, when the reduction ratio exceeds 25%, oxides on the surface of the steel sheet are deposited on the work roll and transferred to the steel sheet to deteriorate the surface appearance of the steel sheet. From the viewpoint of ensuring strength, the reduction rate is preferably 15% or more.
  • the box-type annealed DR steel sheet obtained as described above may be passed through an electroplating line or the like to be electroplated.
  • tinplate may be applied to make tinplate.
  • the box-type annealed DR steel sheet may be subjected to electrolytic chromic acid treatment to obtain tin-free steel having two layers of metallic chromium and chromium hydrated oxide on the surface.
  • a box-type annealed DR steel sheet having the above-mentioned composition, a yield point of 450 to 650 MPa, and a total elongation of 4% or more can be obtained.
  • the cold-rolled primary cold-rolled coil was subjected to box-type annealing and secondary cold-rolling (DR rolling) under the conditions shown in Table 1 to obtain a box-type annealed DR steel sheet having a plate thickness of 0.20 mm.
  • DR rolling secondary cold-rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are a box-type annealed DR steel sheet having excellent surface appearance and a method for manufacturing same. This box-type annealed DR steel sheet has a component composition including, in mass%, 0.020-0.080% of C, not more than 0.05% of Si, 0.10-0.50% of Mn, not more than 0.020% of P, not more than 0.020% of S, 0.001-0.100% of Al, 0.014-0.020% of N, and 0.014-0.020% of Nb, Mn+25Nb≤0.85 being satisfied, the remaining portion being Fe and unavoidable impurities, and has a yield point of 450-650 MPa and a total elongation not less than 4%. Here, in Mn+25Nb, Mn and Nb represent the contents (mass%) of the respective elements.

Description

箱型焼鈍DR鋼板およびその製造方法Box-type annealed DR steel sheet and its manufacturing method
 本発明は、表面外観に優れた箱型焼鈍DR鋼板およびその製造方法に関する。 The present invention relates to a box-type annealed DR steel sheet having an excellent surface appearance and a method for manufacturing the same.
 近年、容器用等の鋼板について、所望の機械的特性を有するとともに、優れた表面外観を有することがますます求められている。めっき処理前の鋼板の色調がめっき処理後の外観にも表れる製品においては、めっき処理前の鋼板の色調むらが、製品の品質劣化につながる。このため、めっき処理前の鋼板の表面外観を向上させる技術が求められている。 In recent years, steel sheets for containers, etc. are increasingly required to have desired mechanical properties and excellent surface appearance. In a product in which the color tone of the steel sheet before the plating treatment appears in the appearance after the plating treatment, the color tone unevenness of the steel sheet before the plating treatment leads to deterioration of the quality of the product. Therefore, there is a demand for a technique for improving the surface appearance of a steel sheet before plating.
 容器用の鋼板等、加工性が要求される鋼板の製造工程においては、冷間圧延後の鋼板に対し、軟質化を目的として箱型焼鈍による焼鈍処理が一般的に行われている。しかし、箱型焼鈍を経た鋼板には、テンパーカラーと呼ばれる色調むらが発生する場合がある。テンパーカラーは、焼鈍中に鋼板表面に濃化する鋼中の成分(例えば、Mn、Al、Si)が酸化することにより鋼板表面に生じる酸化被膜に起因する表面欠陥であり、鋼板の表面外観を劣化させる。 In the manufacturing process of steel sheets that require workability, such as steel sheets for containers, the steel sheets after cold rolling are generally annealed by box-type annealing for the purpose of softening. However, the steel sheet that has undergone box-type annealing may have color unevenness called temper color. Temper color is a surface defect caused by an oxide film formed on the surface of a steel sheet due to oxidation of components (for example, Mn, Al, Si) in the steel that are concentrated on the surface of the steel sheet during annealing, and gives the surface appearance of the steel sheet. Deteriorate.
 特許文献1では、箱型焼鈍DR鋼板によりエキスパンド成形性を改善する技術が提案されている。 Patent Document 1 proposes a technique for improving expand moldability by using a box-type annealed DR steel sheet.
特許第5000452号公報Japanese Patent No. 5000452
 特許文献1は、エキスパンド成形後のストレッチャーストレインの発生有無について調査しているものの、色調むらに関して言及していない。特許文献1の技術では、箱型焼鈍時に鋼板元素であるSiやMnが表層に濃化して、テンパーカラーが生じる課題がある。また、テンパーカラーとして認知されなかった場合でも、酸化したSiやMnによる表層の酸化膜(表層酸化物)が不可避的に形成されていると考えられる。箱型焼鈍DR鋼板の製造においては焼鈍後に二次冷間圧延が行われる。このため、特許文献1の技術では、二次冷間圧延時に、上述の表層酸化物がワークロール(WR)に転写し、WR表面上に蓄積した酸化物が再度鋼板表面に転写することで表面外観を劣化させるという課題があった。 Patent Document 1 investigates the presence or absence of stretcher strain after expand molding, but does not mention uneven color tone. The technique of Patent Document 1 has a problem that Si and Mn, which are steel sheet elements, are concentrated on the surface layer during box annealing, and a temper color is generated. Further, even if it is not recognized as a temper color, it is considered that an oxide film (surface oxide) on the surface layer due to oxidized Si or Mn is inevitably formed. In the production of box-type annealed DR steel sheets, secondary cold rolling is performed after annealing. Therefore, in the technique of Patent Document 1, the above-mentioned surface oxide is transferred to the work roll (WR) during the secondary cold rolling, and the oxide accumulated on the WR surface is transferred to the surface of the steel sheet again. There was a problem of deteriorating the appearance.
 上述の事情に鑑み、本発明は、所望の機械的特性および表面外観に優れた箱型焼鈍DR鋼板およびその製造方法を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a box-type annealed DR steel sheet having excellent desired mechanical properties and surface appearance and a method for producing the same.
 本発明者らは、箱型焼鈍DR鋼板の表面外観を改善すべく、鋼板成分および製造方法についての検討を重ねた。そして、鋼板の製造時において、二次冷間圧延(DR圧延)時の圧下率を25%以下とすることにより箱型焼鈍DR鋼板の表面外観が改善されることを突き止めた。一方で、二次冷間圧延時の圧下率を低く抑えることにより強度が期待できなくなるため、鋼板の強度を確保するために成分について検討を重ねた。そして、強化元素として、易酸化性であるMnの含有量を制限し、Nbの含有量を増加させることで鋼板の強度も確保できるとの知見を得た。 The present inventors have repeatedly studied the steel sheet composition and the manufacturing method in order to improve the surface appearance of the box-type annealed DR steel sheet. Then, it was found that the surface appearance of the box-type annealed DR steel sheet is improved by setting the rolling reduction ratio at the time of secondary cold rolling (DR rolling) to 25% or less at the time of manufacturing the steel sheet. On the other hand, since the strength cannot be expected by keeping the rolling reduction during the secondary cold rolling low, the components were repeatedly examined in order to secure the strength of the steel sheet. Then, it was found that the strength of the steel sheet can be secured by limiting the content of Mn, which is easily oxidized, and increasing the content of Nb as a reinforcing element.
 本発明の要旨は以下の通りである。
[1] 質量%で、C:0.020~0.080%、Si:0.05%以下、Mn:0.10~0.50%、P:0.020%以下、S:0.020%以下、Al:0.001~0.100%、N:0.014~0.020%、Nb:0.014~0.020%を含有し、Mn+25Nb≦0.85であり、残部がFeおよび不可避的不純物からなる成分組成を有し、降伏点が450~650MPa、全伸びが4%以上である、箱型焼鈍DR鋼板。
ここで、前記Mn+25Nbにおいて、MnおよびNbは各元素の含有量(質量%)を指す。
[2] [1]に記載の成分組成を有する鋼素材に対し、熱間圧延の後、一次冷間圧延を施し、次いで、650~750℃で2~16hの箱型焼鈍を施し、前記箱型焼鈍の後、圧下率10~25%で二次冷間圧延を行う、箱型焼鈍DR鋼板の製造方法。
The gist of the present invention is as follows.
[1] In terms of mass%, C: 0.020 to 0.080%, Si: 0.05% or less, Mn: 0.10 to 0.50%, P: 0.020% or less, S: 0.020 % Or less, Al: 0.001 to 0.100%, N: 0.014 to 0.020%, Nb: 0.014 to 0.020%, Mn + 25Nb ≦ 0.85, and the balance is Fe. A box-type annealed DR steel sheet having a component composition consisting of unavoidable impurities, a yield point of 450 to 650 MPa, and a total elongation of 4% or more.
Here, in the Mn + 25Nb, Mn and Nb refer to the content (mass%) of each element.
[2] The steel material having the component composition described in [1] is subjected to hot rolling and then primary cold rolling, and then box-shaped annealing at 650 to 750 ° C. for 2 to 16 hours. A method for producing a box-type annealed DR steel sheet, in which secondary cold rolling is performed at a rolling reduction of 10 to 25% after mold annealing.
 本発明によれば、所望の機械的特性および表面外観に優れた箱型焼鈍DR鋼板が得られる。 According to the present invention, a box-type annealed DR steel sheet having excellent desired mechanical properties and surface appearance can be obtained.
 なお、本発明における所望の機械的特性とは、降伏点が450~650MPa、全伸びが4%以上をいう。 The desired mechanical properties in the present invention are a yield point of 450 to 650 MPa and a total elongation of 4% or more.
 <箱型焼鈍DR鋼板の成分組成>
 本発明の箱型焼鈍DR鋼板は、質量%で、C:0.020~0.080%、Si:0.05%以下、Mn:0.10~0.50%、P:0.020%以下、S:0.020%以下、Al:0.001~0.100%、N:0.014~0.020%、Nb:0.014~0.020%を含有し、Mn+25Nb≦0.85であり、残部がFeおよび不可避的不純物からなる成分組成を有する。
<Component composition of box-type annealed DR steel sheet>
The box-type annealed DR steel sheet of the present invention has a mass% of C: 0.020 to 0.080%, Si: 0.05% or less, Mn: 0.10 to 0.50%, P: 0.020%. Hereinafter, S: 0.020% or less, Al: 0.001 to 0.100%, N: 0.014 to 0.020%, Nb: 0.014 to 0.020% are contained, and Mn + 25Nb ≦ 0. It is 85 and has a component composition in which the balance is composed of Fe and unavoidable impurities.
 以下に、本発明の箱型焼鈍DR鋼板が有する成分組成の範囲の限定理由を説明する。なお、成分の含有量に関する%は「質量%」を意味する。 The reason for limiting the range of the component composition of the box-type annealed DR steel sheet of the present invention will be described below. In addition,% regarding the content of a component means "mass%".
 C:0.020~0.080%
 Cは、鋼板の強度を向上させる元素である。降伏点が450~650MPaの強度を得るために、C含有量は0.020%以上とする。好ましくは、0.025%以上である。一方で、C含有量が過剰となると、素材の高強度化により、冷間圧延時の変形抵抗が大きくなり、全伸びが低下する。このため、C含有量は0.080%以下とする。好ましくは、0.050%以下である。
C: 0.020 to 0.080%
C is an element that improves the strength of the steel sheet. In order to obtain a strength with a yield point of 450 to 650 MPa, the C content is set to 0.020% or more. Preferably, it is 0.025% or more. On the other hand, if the C content is excessive, the strength of the material is increased, so that the deformation resistance during cold rolling increases and the total elongation decreases. Therefore, the C content is set to 0.080% or less. Preferably, it is 0.050% or less.
 Si:0.05%以下
 Siは鋼板の表面性状を劣化させる。このため、Si含有量は0.05%以下とする。好ましくは、0.03%以下である。なお、精錬の観点でコストアップにならない範囲にする必要性から、Si含有量は0.001%以上が好ましい。
Si: 0.05% or less Si deteriorates the surface texture of the steel sheet. Therefore, the Si content is set to 0.05% or less. Preferably, it is 0.03% or less. From the viewpoint of refining, the Si content is preferably 0.001% or more because it is necessary to keep the cost within a range that does not increase.
 Mn:0.10~0.50%
 Mnは、鋼板の強度を向上させる元素である。所望の強度を得るために、Mn含有量は0.10%以上とする。好ましくは、0.20%以上である。一方で、Mn含有量が0.50%超えである場合、箱型焼鈍の際に酸化して酸化物がその後の二次冷間圧延の際にWR表面に堆積して表面外観を劣化してしまう。また、鋼板の全伸びも低下させる。このため、Mn含有量は0.50%以下とする。好ましくは、0.35%以下である。
Mn: 0.10 to 0.50%
Mn is an element that improves the strength of the steel sheet. In order to obtain the desired strength, the Mn content is 0.10% or more. Preferably, it is 0.20% or more. On the other hand, when the Mn content exceeds 0.50%, it is oxidized during box annealing and oxides are deposited on the WR surface during the subsequent secondary cold rolling to deteriorate the surface appearance. It ends up. It also reduces the total elongation of the steel sheet. Therefore, the Mn content is set to 0.50% or less. Preferably, it is 0.35% or less.
 P:0.020%以下
 Pは、鋼板中の結晶粒界に偏析し加工性を低下させるほか、耐食性を劣化させる元素である。このため、P含有量は0.020%以下とする。好ましくは、0.015%以下である。
P: 0.020% or less P is an element that segregates at the grain boundaries in the steel sheet to reduce workability and deteriorate corrosion resistance. Therefore, the P content is set to 0.020% or less. Preferably, it is 0.015% or less.
 S:0.020%以下
 Sは、連続鋳造時にMnSとして粒界に析出し、スラブ割れを起こす。このため、S含有量は0.020%以下とする。好ましくは、0.015%以下である。
S: 0.020% or less S precipitates at the grain boundaries as MnS during continuous casting and causes slab cracking. Therefore, the S content is set to 0.020% or less. Preferably, it is 0.015% or less.
 Al:0.001~0.100%
 AlはNとAlNを形成することが知られている。AlNを形成しないNは固溶Nとして存在する。固溶Nは鋼板の強度向上に寄与する。固溶Nとして存在するN量をコントロールするためには、Al量をコントロールする必要がある。必要な固溶N量を確保するため、Al含有量は0.100%以下とする。好ましくは、0.08%以下である。一方で、精錬の観点でコストアップにならない範囲にする必要性から、Al含有量は0.001%以上とする。
Al: 0.001 to 0.100%
Al is known to form N and AlN. N that does not form AlN exists as a solid solution N. The solid solution N contributes to the improvement of the strength of the steel sheet. In order to control the amount of N existing as the solid solution N, it is necessary to control the amount of Al. The Al content is 0.100% or less in order to secure the required solid solution N amount. Preferably, it is 0.08% or less. On the other hand, the Al content is set to 0.001% or more because it is necessary to keep the cost within a range that does not increase the cost from the viewpoint of refining.
 N:0.014~0.020%
 NはAlとAlNを形成し、AlNを形成しないNは固溶Nとして存在する。固溶Nは鋼板の強度向上に寄与する。このため、N含有量は0.014%以上とする。好ましくは、0.015%以上である。一方で、N含有量が0.020%を超えると、鋼板の脆化につながり、4%以上の全伸びが確保できなくなる。このため、N含有量は0.020%以下とする。好ましくは、0.019%以下である。
N: 0.014-0.020%
N forms Al and AlN, and N that does not form AlN exists as a solid solution N. The solid solution N contributes to the improvement of the strength of the steel sheet. Therefore, the N content is set to 0.014% or more. Preferably, it is 0.015% or more. On the other hand, if the N content exceeds 0.020%, the steel sheet becomes embrittled and the total elongation of 4% or more cannot be secured. Therefore, the N content is set to 0.020% or less. Preferably, it is 0.019% or less.
 Nb:0.014~0.020%
 Nbは鋼板の強度を向上させる元素である。所望の強度を得るため、Nb含有量は0.014%以上とする。好ましくは、0.015%以上である。一方で、Nb含有量が0.020%超えの場合、Nbの添加により再結晶温度が上昇するため、再結晶が十分に進まず、全伸びが低下する。このため、Nb含有量は0.020%以下とする。好ましくは、0.018%以下である。
Nb: 0.014-0.020%
Nb is an element that improves the strength of the steel sheet. In order to obtain the desired strength, the Nb content is 0.014% or more. Preferably, it is 0.015% or more. On the other hand, when the Nb content exceeds 0.020%, the recrystallization temperature rises due to the addition of Nb, so that the recrystallization does not proceed sufficiently and the total elongation decreases. Therefore, the Nb content is set to 0.020% or less. Preferably, it is 0.018% or less.
 Mn+25Nb≦0.85
 MnおよびNbは、ともに鋼板の強度を確保するために必要な元素である。しかし、前述のとおり、Mnは易酸化性であるがゆえに焼鈍の際に表層酸化物を形成し、最終製品の表面外観を劣化させる。そのため、Nb量に応じてMn上限量を適正に制御する必要がある。種々の実験結果から、Mn+25Nb≦0.85であれば、表面外観の劣化が無く、強度の確保も可能であることが分かった。
なお、MnおよびNbは、それぞれ各元素の含有量(質量%)を指す。
Mn + 25Nb ≦ 0.85
Both Mn and Nb are elements necessary for ensuring the strength of the steel sheet. However, as described above, since Mn is easily oxidized, it forms a surface oxide during annealing and deteriorates the surface appearance of the final product. Therefore, it is necessary to appropriately control the upper limit amount of Mn according to the amount of Nb. From various experimental results, it was found that when Mn + 25Nb ≦ 0.85, there is no deterioration in the surface appearance and the strength can be ensured.
In addition, Mn and Nb indicate the content (mass%) of each element, respectively.
 残部はFeおよび不可避的不純物である。不可避的不純物としては、例えばNiやCuが挙げられ、Niは0.1%以下、Cuは0.1%以下であれば許容できる。 The rest is Fe and unavoidable impurities. Examples of unavoidable impurities include Ni and Cu, and Ni is 0.1% or less and Cu is 0.1% or less, which is acceptable.
 以上の成分が本発明の基本の成分である。本発明では、上記の元素に加え、さらに、公知の容器用鋼板中に一般的に存在する元素を目的に応じて添加してもよい。例えば、Ti、B、Cr、Moのうちから選ばれた1種類または2種類以上を添加してもよい。 The above components are the basic components of the present invention. In the present invention, in addition to the above elements, elements generally present in known container steel sheets may be added depending on the purpose. For example, one or more selected from Ti, B, Cr, and Mo may be added.
 また、箱型焼鈍DR鋼板に耐食性を付与するために、鋼板表面にめっき層を設けてもよい。表面にめっき層を形成するためのめっき法の種類は特に限定されず、電気めっきでも溶融めっきでもよい。また、鋼板表面に金属クロムとクロム水和酸化物の二層を設け、ティンフリースチールとしてもよい。 Further, in order to impart corrosion resistance to the box-type annealed DR steel sheet, a plating layer may be provided on the surface of the steel sheet. The type of plating method for forming a plating layer on the surface is not particularly limited, and may be electroplating or hot-dip galvanizing. Further, a tin-free steel may be obtained by providing two layers of metallic chromium and chromium hydrated oxide on the surface of the steel sheet.
 <箱型焼鈍DR鋼板の製造方法>
 次に、本発明の箱型焼鈍DR鋼板の製造方法について説明する。
<Manufacturing method of box-type annealed DR steel sheet>
Next, a method for manufacturing the box-type annealed DR steel sheet of the present invention will be described.
 本発明では、上記の成分組成を有するスラブ(鋼素材)を熱間圧延した後、一次冷間圧延する。その後、一次冷間圧延された冷延コイルに対し650~750℃で2~16hの箱型焼鈍を施し、次いで、圧下率10~25%で二次冷間圧延(DR圧延)を施すことにより、箱型焼鈍DR鋼板を製造する。以下、各工程について説明する。 In the present invention, a slab (steel material) having the above-mentioned composition is hot-rolled and then primary cold-rolled. Then, the primary cold-rolled cold-rolled coil is subjected to box-shaped annealing at 650 to 750 ° C. for 2 to 16 hours, and then secondary cold rolling (DR rolling) is performed at a reduction ratio of 10 to 25%. , Manufactures box-type annealed DR steel sheets. Hereinafter, each step will be described.
 箱型焼鈍DR鋼板の原材料である溶鋼を溶製する方法について特に制限はなく、一般的な転炉もしくは電気炉で溶製し、上述の成分組成を有する鋼とする。なお、溶製後、脱ガス処理にて精錬を実施してもよい。そして、上述の成分組成を有する鋼を、連続鋳造または造塊-分塊圧延法等でスラブとする。このスラブが、箱型焼鈍DR鋼板の素材(鋼素材)となる。 There are no particular restrictions on the method of melting molten steel, which is the raw material for box-type annealed DR steel sheets, and the steel is melted in a general converter or electric furnace to have the above-mentioned composition. After melting, refining may be carried out by degassing treatment. Then, the steel having the above-mentioned composition is made into a slab by continuous casting, ingot-bulk rolling, or the like. This slab becomes the material (steel material) for the box-type annealed DR steel sheet.
 熱間圧延
 熱間圧延では、スラブを1050~1300℃の温度に再加熱した後、Ar3変態点以上で仕上げ圧延するのが好ましい。熱間圧延後の巻取り温度は、450~750℃の間にするのが好ましい。ここで、Ar3変態点は、フォーマスタ試験により測定することができる。なお、鋳造後のスラブを再加熱することなく、直送圧延してもよい。
Hot rolling In hot rolling, it is preferable that the slab is reheated to a temperature of 1050 to 1300 ° C. and then finish-rolled at an Ar3 transformation point or higher. The winding temperature after hot rolling is preferably between 450 and 750 ° C. Here, the Ar3 transformation point can be measured by the Formaster test. The slab after casting may be directly rolled without being reheated.
 一次冷間圧延
 一次冷間圧延における冷間圧延は常法にて行うことができる。圧下率に特に制限はないが、70~98%とするのが好ましい。
Primary cold rolling Cold rolling in primary cold rolling can be performed by a conventional method. The reduction rate is not particularly limited, but is preferably 70 to 98%.
 箱型焼鈍:650~750℃で2~16h
 4%以上の全伸びを確保するため、一次冷間圧延した冷延コイルを650~750℃で2~16h箱型焼鈍する。焼鈍時間が2h未満または焼鈍温度が650℃未満の場合、再結晶が十分に進まず、4%以上の全伸びが得られない。一方で、焼鈍時間が16h超えまたは焼鈍温度が750℃超えの場合、鋼板表面に酸化物が形成しやすくなり、表面外観が劣化する。なお、再結晶を促進する観点から、好ましくは、焼鈍時間は3h以上であり、焼鈍温度は680℃以上である。また、酸化物の形成を抑制する観点から、好ましくは、焼鈍時間は12h以下であり、焼鈍温度は740℃以下である。
Box-shaped annealing: 2 to 16 hours at 650 to 750 ° C.
In order to secure a total elongation of 4% or more, the cold-rolled primary cold-rolled coil is box-shaped annealed at 650 to 750 ° C. for 2 to 16 hours. When the annealing time is less than 2 hours or the annealing temperature is less than 650 ° C., recrystallization does not proceed sufficiently and total elongation of 4% or more cannot be obtained. On the other hand, when the annealing time exceeds 16 hours or the annealing temperature exceeds 750 ° C., oxides are likely to be formed on the surface of the steel sheet, and the surface appearance is deteriorated. From the viewpoint of promoting recrystallization, the annealing time is preferably 3 hours or more, and the annealing temperature is 680 ° C. or more. Further, from the viewpoint of suppressing the formation of oxides, the annealing time is preferably 12 hours or less, and the annealing temperature is 740 ° C. or less.
 二次冷間圧延(DR圧延):圧下率10~25%
 二次冷間圧延は、圧下率10~25%で行われる。圧下率が10%未満の場合、降伏点450~650MPaの強度が得られない。一方で、圧下率が25%超えの場合、鋼板表面の酸化物がワークロールに堆積し、鋼板に転写して鋼板の表面外観が劣化する。なお、強度を確保する観点から、好ましくは、圧下率は15%以上である。
Secondary cold rolling (DR rolling): rolling ratio 10 to 25%
Secondary cold rolling is performed at a rolling reduction of 10 to 25%. If the reduction rate is less than 10%, the strength at the yield point of 450 to 650 MPa cannot be obtained. On the other hand, when the reduction ratio exceeds 25%, oxides on the surface of the steel sheet are deposited on the work roll and transferred to the steel sheet to deteriorate the surface appearance of the steel sheet. From the viewpoint of ensuring strength, the reduction rate is preferably 15% or more.
 めっき処理
 上記のようにして得られた箱型焼鈍DR鋼板を電気めっきライン等に通板して、電気めっき処理を施してもよい。例えば、電気錫めっき処理を施して、ぶりきとしてもよい。または、箱型焼鈍DR鋼板に対し電解クロム酸処理を施して、金属クロムとクロム水和酸化物の二層を表面に有するティンフリースチールとしてもよい。
Plating treatment The box-type annealed DR steel sheet obtained as described above may be passed through an electroplating line or the like to be electroplated. For example, tinplate may be applied to make tinplate. Alternatively, the box-type annealed DR steel sheet may be subjected to electrolytic chromic acid treatment to obtain tin-free steel having two layers of metallic chromium and chromium hydrated oxide on the surface.
 以上の製造方法により、上述の成分組成を有し、降伏点が450~650MPa、全伸びが4%以上である、表面外観に優れた箱型焼鈍DR鋼板が得られる。 By the above manufacturing method, a box-type annealed DR steel sheet having the above-mentioned composition, a yield point of 450 to 650 MPa, and a total elongation of 4% or more can be obtained.
 以下、本発明の実施例を説明する。なお、本発明は以下の実施例に限定されない。
1.箱型焼鈍DR鋼板の製造
 表1に示す成分組成を有するスラブを鋳造して製造した。スラブを1050~1300℃に再加熱した後、仕上げ圧延終了温度850~950℃で熱間圧延を行って熱延板とした。熱延板は、450~750℃の巻取り温度で巻き取った。その後、熱延板を70~98%の圧下率で一次冷間圧延した。一次冷間圧延した冷延コイルに対し、表1に示す条件で箱型焼鈍と二次冷間圧延(DR圧延)を施し、板厚0.20mmの箱型焼鈍DR鋼板とした。
2.材質評価
 以上のようにして得た鋼板からJIS5号サイズの引張試験片を切り出し、引張試験(JIS Z 2241に準拠)を実施して降伏点(MPa)および全伸び(%)を求めた。結果を表1に示す。
3.外観評価
 以上のようにして得た鋼板について、テンパーカラーの混入率により、鋼板の表面外観を評価した。求められた混入率に基づき、外観を、最良(「◎」で示す):混入率が2%以下、良(「〇」で示す):2%超え5%以下、不良(「×」で示す):5%超え、と評価した。このうち、「最良」と「良」を合格とし、「表面外観に優れる」と評価した。結果を表1に示す。
Hereinafter, examples of the present invention will be described. The present invention is not limited to the following examples.
1. 1. Production of Box-Annealed DR Steel Sheet A slab having the composition shown in Table 1 was cast and produced. After reheating the slab to 1050 to 1300 ° C., hot rolling was performed at a finish rolling end temperature of 850 to 950 ° C. to obtain a hot-rolled plate. The hot-rolled plate was wound at a winding temperature of 450 to 750 ° C. Then, the hot-rolled sheet was first cold-rolled at a reduction rate of 70 to 98%. The cold-rolled primary cold-rolled coil was subjected to box-type annealing and secondary cold-rolling (DR rolling) under the conditions shown in Table 1 to obtain a box-type annealed DR steel sheet having a plate thickness of 0.20 mm.
2. 2. Material Evaluation A JIS No. 5 size tensile test piece was cut out from the steel sheet obtained as described above, and a tensile test (based on JIS Z 2241) was carried out to determine the yield point (MPa) and total elongation (%). The results are shown in Table 1.
3. 3. Appearance evaluation With respect to the steel sheet obtained as described above, the surface appearance of the steel sheet was evaluated by the mixing ratio of the temper color. Based on the obtained mixing rate, the appearance is best (indicated by "◎"): mixing rate is 2% or less, good (indicated by "○"): more than 2% and 5% or less, defective (indicated by "x"). ): Evaluated to exceed 5%. Of these, "best" and "good" were passed, and "excellent surface appearance" was evaluated. The results are shown in Table 1.
 表1より、MnおよびNbの含有量を本発明の範囲内にし、箱型焼鈍およびDR圧延の条件を本発明の範囲内にすることにより、所望の機械的特性および優れた表面外観を有する箱型焼鈍DR鋼板を提供することができた。 From Table 1, by keeping the contents of Mn and Nb within the range of the present invention and the conditions of box annealing and DR rolling within the range of the present invention, a box having desired mechanical properties and excellent surface appearance. We were able to provide a die-annealed DR steel sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (2)

  1.  質量%で、
    C:0.020~0.080%、
    Si:0.05%以下、
    Mn:0.10~0.50%、
    P:0.020%以下、
    S:0.020%以下、
    Al:0.001~0.100%、
    N:0.014~0.020%、
    Nb:0.014~0.020%
    を含有し、Mn+25Nb≦0.85であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
    降伏点が450~650MPa、全伸びが4%以上である、
    箱型焼鈍DR鋼板。
    ここで、前記Mn+25Nbにおいて、MnおよびNbは各元素の含有量(質量%)を指す。
    By mass%
    C: 0.020 to 0.080%,
    Si: 0.05% or less,
    Mn: 0.10 to 0.50%,
    P: 0.020% or less,
    S: 0.020% or less,
    Al: 0.001 to 0.100%,
    N: 0.014-0.020%,
    Nb: 0.014-0.020%
    Mn + 25Nb ≦ 0.85, and the balance has a component composition of Fe and unavoidable impurities.
    The yield point is 450 to 650 MPa, and the total elongation is 4% or more.
    Box-type annealed DR steel sheet.
    Here, in the Mn + 25Nb, Mn and Nb refer to the content (mass%) of each element.
  2.  請求項1に記載の成分組成を有する鋼素材に対し、
    熱間圧延の後、一次冷間圧延を施し、
    次いで、650~750℃で2~16hの箱型焼鈍を施し、
    前記箱型焼鈍の後、圧下率10~25%で二次冷間圧延を行う、
    箱型焼鈍DR鋼板の製造方法。
    For a steel material having the component composition according to claim 1.
    After hot rolling, primary cold rolling is performed,
    Then, box-shaped annealing was performed at 650 to 750 ° C. for 2 to 16 hours.
    After the box-shaped annealing, secondary cold rolling is performed at a rolling reduction of 10 to 25%.
    A method for manufacturing a box-type annealed DR steel sheet.
PCT/JP2020/010173 2019-07-18 2020-03-10 Box-type annealed dr steel sheet and method for manufacturing same WO2021009966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020536832A JP6838685B1 (en) 2019-07-18 2020-03-10 Box-type annealed DR steel sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-132652 2019-07-18
JP2019132652 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021009966A1 true WO2021009966A1 (en) 2021-01-21

Family

ID=74210563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010173 WO2021009966A1 (en) 2019-07-18 2020-03-10 Box-type annealed dr steel sheet and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6838685B1 (en)
TW (1) TWI717237B (en)
WO (1) WO2021009966A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734193A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JP2000160289A (en) * 1998-11-25 2000-06-13 Kawasaki Steel Corp Steel sheet for can, and its manufacture
JP2008138234A (en) * 2006-11-30 2008-06-19 Jfe Steel Kk High-strength and high-ductility steel sheet for can, and manufacturing method therefor
WO2008102006A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Packaging steel, method of producing said packaging steel and its use
WO2017150066A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Steel sheet for cans and manufacturing method therefor
JP2018059196A (en) * 2016-10-04 2018-04-12 Jfeスチール株式会社 High strength ultrathin steel sheet and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734193A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JP2000160289A (en) * 1998-11-25 2000-06-13 Kawasaki Steel Corp Steel sheet for can, and its manufacture
JP2008138234A (en) * 2006-11-30 2008-06-19 Jfe Steel Kk High-strength and high-ductility steel sheet for can, and manufacturing method therefor
WO2008102006A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Packaging steel, method of producing said packaging steel and its use
WO2017150066A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Steel sheet for cans and manufacturing method therefor
JP2018059196A (en) * 2016-10-04 2018-04-12 Jfeスチール株式会社 High strength ultrathin steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
TW202104612A (en) 2021-02-01
JPWO2021009966A1 (en) 2021-09-13
JP6838685B1 (en) 2021-03-03
TWI717237B (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP5047970B2 (en) DR steel sheet for EOE and manufacturing method thereof
TWI564403B (en) Steel sheet for can and method for manufacturing the same
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
TWI473887B (en) High strength cold rolled steel sheet having excellent deep drawing property and bake hardening property and a method for manufacturing the same
JP2013028842A (en) Steel plate for high strength high workability can and method for manufacturing the same
KR20190121810A (en) Steel plate for two-piece can and its manufacturing method
TWI479031B (en) Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
CN110983179A (en) Steel for one-time cold rolling and continuous annealing packaging and preparation method thereof
JP5884161B2 (en) Steel plate for cans and method for producing steel plate for cans
JP4265574B2 (en) Steel plate for two-piece deformable can and manufacturing method thereof
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP6123735B2 (en) Crown steel sheet, method for producing the same, and crown
JP6198011B2 (en) Manufacturing method of steel plate for hard container
JP6838685B1 (en) Box-type annealed DR steel sheet and its manufacturing method
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP6019719B2 (en) Manufacturing method of high strength and high ductility steel sheet
JP2015151620A (en) Steel sheet for can and production method of steel sheet for can
JP5929739B2 (en) Steel plate for aerosol can bottom and manufacturing method thereof
JP6822617B1 (en) Steel sheet for cans and its manufacturing method
KR102549938B1 (en) Steel sheet for cans and its manufacturing method
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JPH07157844A (en) Hot rolled steel sheet excellent in workability and production thereof
KR20030035697A (en) A method for manufacturing high intensity tin plating steel plate having good aging property and corrosion-resistance and broken-resistance
JP4283574B2 (en) Steel plate for high age-hardening containers with excellent canability and method for producing the same
JP3598550B2 (en) Method of manufacturing thin steel sheet for high-strength can with small anisotropy

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020536832

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840483

Country of ref document: EP

Kind code of ref document: A1