WO2021008834A1 - Groupe de pompage - Google Patents

Groupe de pompage Download PDF

Info

Publication number
WO2021008834A1
WO2021008834A1 PCT/EP2020/067619 EP2020067619W WO2021008834A1 WO 2021008834 A1 WO2021008834 A1 WO 2021008834A1 EP 2020067619 W EP2020067619 W EP 2020067619W WO 2021008834 A1 WO2021008834 A1 WO 2021008834A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
pumping
primary vacuum
roots
primary
Prior art date
Application number
PCT/EP2020/067619
Other languages
English (en)
Inventor
Christophe SANTI
Eric MANDALLAZ
Thibaut Bourrilhon
Original Assignee
Pfeiffer Vacuum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum filed Critical Pfeiffer Vacuum
Priority to JP2022502125A priority Critical patent/JP2022541763A/ja
Priority to KR1020227000082A priority patent/KR20220035090A/ko
Priority to DE112020003410.0T priority patent/DE112020003410T5/de
Priority to US17/626,634 priority patent/US11815096B2/en
Priority to CN202080050947.7A priority patent/CN114144572A/zh
Publication of WO2021008834A1 publication Critical patent/WO2021008834A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • F04C2240/102Stators with means for discharging condensate or liquid separated from the gas pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor

Definitions

  • the present invention relates to a pumping unit comprising a primary vacuum pump and a Roots vacuum pump mounted in series and upstream of the primary vacuum pump.
  • Primary vacuum pumps comprise a plurality of pumping stages connected in series, in which a gas to be pumped circulates between a suction and a discharge.
  • a gas to be pumped circulates between a suction and a discharge.
  • Primary vacuum pumps include two rotors of identical profiles, rotating inside a stator in the opposite direction. During rotation, the gas to be pumped is trapped in the volume generated by the rotors and the stator, and is driven by the rotors to the next stage and then step by step until the discharge of the vacuum pump. Operation is carried out without any mechanical contact between the rotors and the stator, which eliminates the use of oil in the pumping stages.
  • a Roots type vacuum pump is generally used (also known under the name of "Roots Blower” in English) mounted in series and upstream of the vacuum pump primary.
  • the flow generated by the Roots vacuum pump can be of the order of twenty times the flow generated by the primary vacuum pump.
  • This vacuum pump generally has one, or even two, pumping stages as well as a motor to drive the rotors in rotation at a rotation frequency generally greater than that of the motor of the primary vacuum pump.
  • the primary vacuum pump is generally the first component of the pumping unit which fails. It is also the most expensive component. In fact, primary vacuum pumps are subject to numerous stresses, in particular thermal and mechanical, because they are the ones which provide the highest compression ratio making it possible to guarantee low ultimate vacuum pressures (in no pumped flux) and pumping speeds satisfactory to relieve the Roots vacuum pumps sufficiently.
  • An object of the present invention is to provide a pumping unit
  • the invention relates to a pumping unit comprising a primary vacuum pump and a Roots vacuum pump connected in series and upstream of the primary vacuum pump in the direction of flow of the pumped gases , characterized in that:
  • the Roots vacuum pump has three pumping stages in which the rotors are configured to be driven simultaneously in rotation by a motor of the Roots vacuum pump, and
  • the ratio of the flow generated by the first pumping stage of the primary vacuum pump in the direction of flow of the pumped gases to the flow generated by the last pumping stage of the primary vacuum pump is less than or equal to four.
  • Said ratio is for example less than or equal to three, such as equal to two.
  • a smaller primary vacuum pump can reduce costs because it requires less material, costs for surface treatment, such as nickel plating, and transportation costs, especially by air, are reduced.
  • the lowering of thermal and mechanical stresses due to the low compression ratio of the primary vacuum pump further improves the reliability of the primary vacuum pump. This makes it possible to be able to increase the frequency of rotation, for example to absorb stronger flows of gas by the primary vacuum pump or to reduce the dimensions of the pumping stages and thus the size of the primary vacuum pump.
  • Such a primary vacuum pump, having a low compression ratio is not standard. It is specific to the pumping unit because it cannot function alone like a conventional primary vacuum pump, but is specially designed to operate downstream of a Roots vacuum pump with three pumping stages according to the invention.
  • the pumping unit may further include one or more of
  • the primary vacuum pump comprises for example at least three pumping stages, such as three to five, like three or four, in which the rotors are configured to be driven simultaneously in rotation by a motor of the vacuum pump primary.
  • primary is for example less than or equal to 500m 3 / h, such as between 200m 3 / h and 300m 3 / h.
  • Roots is for example greater than ten times, as well as greater than twenty times, the flow rate generated by the first pumping stage of the primary vacuum pump.
  • the flow generated by the first pumping stage of the Roots vacuum pump is for example greater than 5000m 3 / h, such as 6000m 3 / h.
  • the flow generated by the first pumping stage of the Roots vacuum pump is for example between 2100m 3 / h and 3500m 3 / h.
  • the flow rate generated by the second pumping stage of the Roots vacuum pump is for example between 447m 3 / h and 744m 3 / h.
  • the flow generated by the third (and last) pumping stage of the Roots vacuum pump is, for example, between 298m 3 / h and 496m 3 / h.
  • the primary is for example between 248m 3 / h and 298m 3 / h.
  • the flow rate generated by the second pumping stage of the primary vacuum pump is for example between 124m 3 / h and 149m 3 / h.
  • the flow generated by the third stage of pumping of the primary vacuum pump is for example between 124m 3 / h and 149m 3 / h.
  • the pumping unit comprises a frame supporting the Roots vacuum pump and the primary vacuum pump one above the other, the primary vacuum pump being arranged above the Roots vacuum pump.
  • the pumping unit 1 comprises a frame supporting the Roots vacuum pump and the primary vacuum pump one above the other, the Roots vacuum pump being arranged above- above the primary vacuum pump.
  • the motor of the primary vacuum pump can be configured to be variable to generate a high rotational frequency, for example greater than 100Hz, and / or a low rotational frequency, for example less than 50Hz and a rotational frequency nominal between the high rotation frequency and the low rotation frequency.
  • a high rotational frequency for example greater than 100Hz
  • a low rotational frequency for example less than 50Hz
  • a rotational frequency nominal between the high rotation frequency and the low rotation frequency it is possible to reduce more significantly the frequency of rotation of the primary vacuum pump in order to save energy, in particular in the ultimate vacuum standby phases, without risking losing pumping performance, those - here being ensured by the high compression ratio of the three-stage Roots vacuum pump.
  • the primary vacuum pump can thus be operational over a wide range of rotation frequency, making it possible, on the one hand, to absorb large gas flows at high rotation frequency and, on the other hand, to reduce the electrical consumption for harmful or negligible flow at low rotation frequency.
  • the pumping unit comprises a
  • bypass line putting in communication a discharge of the Roots vacuum pump with a discharge of the primary vacuum pump, the bypass line being provided with a valve device configured to open when the suction pressure of the Roots-type vacuum pump is above a pressure threshold.
  • the pressure threshold is for example between 400mbars and 600mbars, such as for example 500mbars.
  • the valve device comprises for example a non-return valve.
  • the bypass pipe thus provides a bypass path for the primary vacuum pump when pumping high pressure gases, for example for pressures greater than 500mbars. This is made possible by the presence of a third pumping stage on the Roots type vacuum pump.
  • This third stage allows the Roots type vacuum pump to be able to operate alone for longer without failing.
  • Such a pumping unit bypassing the high pressure primary pumping, makes it possible to increase the pumping speed at high pressure as well as to reduce the power consumption and the time required for the pressure drop.
  • This embodiment is particularly applicable in the case of cyclic pumping of loading and unloading locks of substrates (called "loak look" in English).
  • the primary vacuum pump can also allow the stator of the pumping stages of the primary vacuum pump to be produced at least partially by two half-shells assembled on an assembly surface passing through the axes of the shafts carrying the rotors.
  • the assembly of such a pump is much faster and the risks of misalignment of the various stator elements are reduced. Reducing the assembly time of the primary vacuum pump reduces costs.
  • FIG.1 shows a very schematic view of a pumping unit according to a first embodiment.
  • FIG.2 is a schematic view showing an embodiment of a primary vacuum pump where only the elements necessary for operation are shown.
  • FIG.3 is a diagram similar to that of Figure 1 for a second embodiment of the pumping unit.
  • FIG.4 is a diagram similar to that of Figure 1 for a third
  • limit pressure or "limit vacuum” is defined as the minimum pressure
  • a primary vacuum pump is defined as a positive-displacement vacuum pump, which is configured to, using two rotors, suck, transfer and then discharge a gas to be pumped at atmospheric pressure.
  • the rotors are carried by two shafts driven in rotation by a motor of the primary vacuum pump.
  • the rotors can be of the Roots, Claw or screw type.
  • Roots vacuum pump (also called “Roots Blower”) is defined as a positive displacement vacuum pump configured for, using two Roots rotors, sucking, transferring and then discharging a gas to be pumped.
  • the Roots vacuum pump is mounted upstream and in series from a primary vacuum pump.
  • the rotors are carried by two shafts driven in rotation by a motor of the Roots vacuum pump.
  • the Roots vacuum pump differs mainly from the vacuum pump
  • Roots vacuum pump does not deliver at atmospheric pressure but must be used in series assembly upstream of a primary vacuum pump.
  • upstream is meant an element which is placed before another relative to the direction of flow of the pumped gases.
  • downstream is understood to mean an element placed after another relative to the direction of flow of the pumped gases, the element located upstream being at a lower pressure than the element located downstream at a pressure. higher.
  • Figure 1 shows a first example of pumping unit 1.
  • the pumping unit 1 comprises a primary vacuum pump 2 and a
  • the primary vacuum pump 2 is a multistage vacuum pump configured to deliver the gases to be pumped at atmospheric pressure.
  • the primary vacuum pump 2 comprises at least three pumping stages, such as three to five, for example three or four pumping stages T 1, T2, T3, (three in Figures 1 and 2), mounted in series between a suction 4 and a discharge 5 of the primary vacuum pump 2 and in which a gas to be pumped can circulate.
  • three pumping stages such as three to five, for example three or four pumping stages T 1, T2, T3, (three in Figures 1 and 2), mounted in series between a suction 4 and a discharge 5 of the primary vacuum pump 2 and in which a gas to be pumped can circulate.
  • Each T1 -T3 pumping stage is formed by a chamber of
  • the compression chamber comprising a respective inlet and outlet.
  • the successive pumping stages T1-T3 are connected in series one after the other by respective inter-stage channels 7 connecting the outlet (or the delivery) of the preceding pumping stage to the inlet (or the suction) of the next stage (see Figure 2).
  • the inlet of the first pumping stage T 1 also called the low pressure stage, communicates with the suction 4 of the primary vacuum pump 2 and the outlet of the last pumping stage T3, also called the discharge stage, communicates with the discharge 5 of the primary vacuum pump 2.
  • the primary vacuum pump 2 also comprises two rotors 10 extending into the pumping stages T1 -T3.
  • the shafts of the rotors 10 are driven, for example on the side of the low pressure stage T 1, by a motor M1 of the primary vacuum pump 2 (FIG. 1).
  • the rotors 10 of the pumping stages T1 -T3 are simultaneously driven in rotation by the motor M1 of the primary vacuum pump 2.
  • the rotors 10 shown in Figure 2 are of the "Roots" type (section in the shape of "eight" or “bean”).
  • the invention also applies to other types of dry multi-stage primary vacuum pumps, such as of the "Claw” type or of the spiral or screw type or of another similar principle of a vacuum pump. volumetric vacuum.
  • the rotors 10 are angularly offset and driven to rotate synchronously in the opposite direction in the compression chamber of each stage T1 -T3. During rotation, the gas sucked from the inlet is trapped in the volume generated by the rotors 10 and the stator 6, then is driven by the rotors 10 to the next stage (the direction of flow of the pumped gases is illustrated by the arrows G in Figures 1 and 2).
  • the primary vacuum pump 2 is called "dry" because in operation, the rotors 10 rotate inside the stator 6 without any mechanical contact with the stator 6, which makes it possible not to use oil in the pumping stages T1 - T3.
  • Roots vacuum pump 3 is connected in series and upstream of the primary vacuum pump 2 in the direction of flow G of the pumped gases.
  • the Roots vacuum pump 3 has three pumping stages B1, B2, B3
  • each pumping stage B1 -B3 of the Roots vacuum pump 3 is formed by a compression chamber comprising a respective inlet and outlet.
  • the successive pumping stages B1 -B3 are connected in series one after the other by respective inter-stage channels connecting the outlet (or the discharge) of the pumping stage which precedes the inlet (or the suction) of the next floor.
  • the entrance to first pumping stage B1, also called low pressure stage communicates with the suction 11 of the Roots vacuum pump 3 and the output of the third and last pumping stage B3, also called the discharge stage, communicates with the discharge 12 of the Roots vacuum pump 3 and therefore with the suction 4 of the primary vacuum pump 2.
  • the Roots vacuum pump 3 also has two rotors 10 extending into the pump stages B1 -B3.
  • the shafts of the rotors 10 are driven, for example on the side of the discharge stage B3, by a motor M2 of the Roots 3 vacuum pump ( Figure 1).
  • the rotors 10 of the pumping stages B1 -B3 are simultaneously driven in rotation by the motor M2 of the vacuum pump Roots 3.
  • the rotors 10 of the Roots vacuum pump 3 are of the "Roots" type (section in the shape of "eight” or “bean”), as shown in the illustration of the primary vacuum pump 2 in Figure 2 .
  • the Roots 3 vacuum pump is also a so-called "dry" vacuum pump.
  • the Roots 3 vacuum pump is
  • the frame 8 of the pumping unit 1 also supporting the primary vacuum pump 2, the frame 8 possibly further comprising feet 8a and / or casters 8b so as to move and store the two vacuum pumps 2, 3 together, spatially one above the other.
  • the discharge pressure of the primary vacuum pump 2 is atmospheric pressure.
  • the primary vacuum pump 2 can also include a silencer 9, at the outlet of the last pumping stage T3, at the outlet 5, as shown in Figure 1.
  • the ratio of the flow generated by the first pumping stage T1 of the primary vacuum pump 2 in the direction of flow G of the pumped gases over the flow generated by the last pumping stage T3 of the pump empty primary 2 is less than or equal to four, such as less than or equal to three. It is for example equal to two.
  • Such a primary vacuum pump 2 is not standard. It is specific to pumping group 1 because it cannot operate alone like a conventional primary vacuum pump, but is specially designed to operate downstream of a Roots 3 vacuum pump with three pumping stages B1,
  • the flow rate generated by the first pumping stage T1 of the primary vacuum pump 2 is for example less than or equal to 500 m 3 / h, such as between 200 m 3 / h and 300 m 3 / h.
  • the flow rate generated by the first pumping stage B1 of the Roots vacuum pump 3 is for example greater than ten times, as greater than twenty times, the flow rate generated by the first pumping stage T1 of the primary vacuum pump 2.
  • the flow generated by the first pumping stage B1 of the Roots vacuum pump 3 is for example greater than 5000m 3 / h, such as 6000m 3 / h.
  • the flow rate generated by the first pumping stage B1 of the Roots vacuum pump 3 is for example between 2100 m 3 / h and 3500m 3 / h; the flow rate generated by the second pumping stage B2 of the Roots vacuum pump 3 is for example between 447m 3 / h and 744m 3 / h; the flow rate generated by the third and last pumping stage B3 of the Roots vacuum pump 3 is for example between 298m 3 / h and 496m 3 / h.
  • the flow generated by the first pumping stage T1 of the primary vacuum pump 2 is for example between
  • the flow rate generated by the second pumping stage T2 of the primary vacuum pump 2 is for example between 124m 3 / h and 149m 3 / h.
  • the flow rate generated by the third pumping stage T3 of the primary vacuum pump 2 is for example equal to the second pumping stage T2, it is for example between 124m 3 / h and 149m 3 / h.
  • the ratio of the flow generated by the first pumping stage T1 of the primary vacuum pump 2 to the flow generated by the last pumping stage T3 is thus equal to 2.
  • a pumping stage of the primary vacuum pump of the prior art is “offset" at the level of the Roots vacuum pump 3.
  • the first pumping stage of the primary vacuum pump becomes the last pumping stage of the Roots 3 vacuum pump. In fact, it can in particular run faster because it is driven by the M2 motor of the Roots 3 vacuum pump.
  • a smaller primary vacuum pump 2 saves costs because it requires less material, than surface treatment costs, such as nickel plating, and costs transport, especially by air, are reduced.
  • a low compression ratio of the primary vacuum pump 2 further allows the use of a low power M1 engine.
  • the lowering of thermal and mechanical stresses due to the low compression ratio of the primary vacuum pump 2 further improves the reliability of the primary vacuum pump 2. This makes it possible to increase the frequency of rotation, for example for absorb stronger gas flows by the vacuum pump primary 2 or to reduce the dimensions of the pumping stages and thus the size of the primary vacuum pump 2.
  • the motor M1 of the primary vacuum pump 2 can for this be configured to be variable in order to generate a high rotational frequency, for example greater than 100Hz and / or a low rotational frequency, for example less than 50Hz and a nominal rotational frequency between the high rotational frequency and the low rotational frequency, the generated flow rates and ratios described above being defined for the nominal rotational speed.
  • the primary vacuum pump 2 can thus be operational over a wide range
  • a low compression ratio can allow the at least partial production of a stator 6 of the pumping stages T1, T2, T3 of the primary vacuum pump 2 by two half-shells 6b, 6c joining together along an assembly surface S passing through the axes of the shafts (see for example Figure 2).
  • the stator 6 of all the pumping stages of the primary vacuum pump is for example produced by two half-shells.
  • only the stator of the last two or three pumping stages T2, T3 is produced by two half-shells 6b, 6c.
  • FIG. 3 illustrates a second example of a pumping unit 1.
  • Roots vacuum pump 3 is arranged below the primary vacuum pump 2.
  • the three pumping stages B1 -B3 of the Roots vacuum pump 3 having a larger footprint than the primary vacuum pump 2 due to the larger volume generated by the Roots vacuum pump 3 and, where appropriate, of the Because of the smaller center-to-center distance of primary vacuum pump 2, the Roots vacuum pump 3 becomes the largest and heaviest component in pumping group 1.
  • Roots vacuum pump 3 By placing the Roots vacuum pump 3 spatially below the primary vacuum pump 2, the center of gravity of the pumping unit 1 is lowered, which in particular makes it possible to give it better stability.
  • FIG. 4 shows another embodiment of the pumping unit 1.
  • the pumping unit 1 comprises a bypass pipe 13 putting in communication a discharge 12 of the Roots vacuum pump 3 with a discharge 5 of the primary vacuum pump 2.
  • bypass line 13 is provided with a valve device 14 configured to open when the suction pressure 11 of the Roots-type vacuum pump 3 is above a pressure threshold.
  • the pressure threshold is for example between 400mbars and 600mbars, such as for example 500mbars.
  • the valve device 14 comprises for example a non-return valve.
  • the non-return valve allows the automatic bypass of the primary vacuum pump 2 at the calibration threshold of the non-return valve.
  • the calibration threshold is set so that the non-return valve opens when the pressure at the suction 11 of the Roots 3 type vacuum pump is greater than said pressure threshold.
  • valve device 14 comprises a valve
  • controllable for example by means of information representative of a high pressure of the gases to be pumped, such as a signal from a pressure sensor.
  • the bypass pipe 13 thus provides a bypass path for the primary vacuum pump 2 when pumping high pressure gas, by example for pressures greater than 500mbars. This is made possible by the presence of a third pumping stage B3 on the Roots 3 type vacuum pump.
  • the third and last B3 pumping stage with a low flow rate, enables the Roots 3 type vacuum pump. to be able to operate longer without failing, without primary pumping.
  • Such a pumping unit 1, bypassing the primary pumping at high pressure makes it possible to increase the pumping speed at high pressure as well as to reduce the electrical consumption and the time required for the pressure drop.
  • cyclic locks for loading and unloading substrates (called "load look" in English).
  • a loading and unloading lock opens at atmospheric pressure for loading at least one substrate and discharges the substrate into a process chamber after evacuation. Each loading of substrates thus requires lowering and then raising the pressure in the airlock.
  • Loading and unloading locks are used in particular for the manufacture of flat display screens or photovoltaic substrates or for the manufacture of semiconductor substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Groupe de pompage (1) comportant une pompe à vide primaire (2) et une pompe à vide Roots (3) raccordée en série et en amont de la pompe à vide primaire (2) dans le sens d'écoulement (G) des gaz pompés, caractérisé en ce que: - la pompe à vide Roots (3) comporte trois étages de pompage (B1-B3) dans lesquels des rotors (10) sont configurés pour être entrainés simultanément en rotation par un moteur (M2) de la pompe à vide Roots (3), et - le rapport du débit engendré par le premier étage de pompage (T1) de la pompe à vide primaire (2) dans le sens d'écoulement (G) des gaz pompés sur le débit engendré par le dernier étage de pompage (T3) de la pompe à vide primaire (2) est inférieur ou égal à quatre.

Description

Description
Titre de l'invention : Groupe de pompage
[0001 ] La présente invention se rapporte à un groupe de pompage comportant une pompe à vide primaire et une pompe à vide Roots montée en série et en amont de la pompe à vide primaire.
[0002] Les pompes à vide primaire comportent une pluralité d’étages de pompage montés en série, dans lesquels circule un gaz à pomper entre une aspiration et un refoulement. On distingue parmi les pompes à vide primaire connues, celles à lobes rotatifs également connues sous le nom « Roots » avec deux ou trois lobes ou celles à double bec, également connues sous le nom « Claw ».
[0003] Les pompes à vide primaire comprennent deux rotors de profils identiques, tournant à l’intérieur d’un stator en sens opposé. Lors de la rotation, le gaz à pomper est emprisonné dans le volume engendré par les rotors et le stator, et est entraîné par les rotors vers l’étage suivant puis de proche en proche jusqu’au refoulement de la pompe à vide. Le fonctionnement s’effectue sans aucun contact mécanique entre les rotors et le stator, ce qui permet de ne pas utiliser d’huile dans les étages de pompage.
[0004] Pour augmenter les performances de pompage, en particulier le débit, on utilise généralement une pompe à vide de type Roots (également connue sous le nom de « Roots Blower » en anglais) montée en série et en amont de la pompe à vide primaire. Le débit engendré par la pompe à vide Roots peut être de l’ordre de vingt fois le débit engendré par la pompe à vide primaire. Cette pompe à vide comporte généralement un, voire deux, étages de pompage ainsi qu’un moteur pour entraîner les rotors en rotation à une fréquence de rotation généralement supérieure à celle du moteur de la pompe à vide primaire.
[0005] La pompe à vide primaire est généralement le premier composant du groupe de pompage qui défaille. C’est également le composant le plus coûteux. En effet, les pompes à vide primaire subissent de nombreuses contraintes, notamment thermiques et mécaniques car ce sont elles qui assurent le plus fort rapport de compression permettant de garantir des basses pressions de vide limite (en l’absence de flux pompés) et des vitesses de pompage satisfaisantes pour soulager suffisamment les pompes à vide Roots.
[0006] Pour garantir ce fort rapport de compression, les pompes à vide primaire comportent un nombre important d’étages de pompage, entre cinq et sept dans la plupart des cas. Elles doivent également être conçues pour garantir des jeux de fonctionnement maîtrisés entre les rotors et avec le stator.
[0007] Egalement, les pressions des gaz pompés par les pompes à vide primaire étant bien plus élevées que dans les pompes à vide Roots, le risque d’attaques corrosives est plus important pour les pompes à vide primaire, notamment dans les derniers étages de pompage.
[0008] Il est par ailleurs difficile d’optimiser les fréquences des pompes à vide pour économiser de l’énergie. Il est en effet connu d’abaisser la fréquence de rotation en phases d’attente dites de vide limite, pour réduire la consommation électrique de la pompe à vide. Cependant, il est seulement permis de modifier la fréquence de tous les étages de pompage de la pompe à vide primaire pris simultanément, les rotors étant entraînés par un même moteur. Une réduction trop importante de la fréquence de rotation de la pompe à vide primaire peut donc entraîner une perte significative des performances de pompage. L’efficacité est donc limitée.
[0009] Un but de la présente invention est de proposer un groupe de pompage
amélioré résolvant au moins partiellement un des inconvénients de l’état de la technique.
[0010] A cet effet, l’invention a pour objet un groupe de pompage comportant une pompe à vide primaire et une pompe à vide Roots raccordée en série et en amont de la pompe à vide primaire dans le sens d’écoulement des gaz pompés, caractérisé en ce que :
- la pompe à vide Roots comporte trois étages de pompage dans lesquels des rotors sont configurés pour être entraînés simultanément en rotation par un moteur de la pompe à vide Roots, et
- le rapport du débit engendré par le premier étage de pompage de la pompe à vide primaire dans le sens d’écoulement des gaz pompés sur le débit engendré par le dernier étage de pompage de la pompe à vide primaire est inférieur ou égal à quatre. [0011 ] Ledit rapport est par exemple inférieur ou égal à trois, tel qu’égal à deux.
[0012] En utilisant une pompe à vide Roots de trois étages de pompage, on «
déporte » un étage de pompage de la pompe à vide primaire de l’art antérieur au niveau de la pompe à vide Roots. Le premier étage de pompage de la pompe à vide primaire devient le dernier étage de pompage de la pompe à vide Roots. De fait, il peut notamment tourner plus vite car entraîné par le moteur de la pompe à vide Roots.
[0013] Ce transfert de l’étage de pompage permet de réduire de manière importante le rapport de compression de la pompe à vide primaire et par conséquent, les contraintes s’exerçant sur la pompe à vide primaire, ces contraintes étant en partie déplacées sur la pompe à vide Roots. Cela permet d’espacer les durées entre maintenances de la pompe à vide primaire. La pompe à vide Roots fonctionnant à plus basse pression, ces contraintes sont moins critiques.
[0014] En particulier, un faible rapport de compression permet de réduire les
contraintes de flexion s’exerçant sur les arbres. Il est alors possible de réduire l’entraxe entre les arbres portant les rotors, ce qui permet de réduire
l’encombrement de la pompe à vide primaire. Une pompe à vide primaire plus petite permet de réduire les coûts du fait qu’elle nécessite moins de matière, que les coûts de traitement de surface, tel que de nickelage, et les coûts de transport, notamment par voie aérienne, sont réduits.
[0015] Cela donne en outre un fort couple de dégommage pour redémarrer la pompe à vide primaire arrêtée, notamment dans le cas de pompage d’espèces susceptibles de se déposer sur les parties mobiles de la pompe à vide primaire.
[0016] Un faible rapport de compression de la pompe à vide primaire permet en
outre d’utiliser un moteur de faible puissance.
[0017] L’abaissement des contraintes thermiques et mécaniques dû au faible rapport de compression de la pompe à vide primaire améliore en outre la fiabilité de la pompe à vide primaire. Cela permet de pouvoir augmenter la fréquence de rotation, par exemple pour absorber de plus forts flux de gaz par la pompe à vide primaire ou pour réduire les dimensions des étages de pompage et ainsi l’encombrement de la pompe à vide primaire. [0018] Une telle pompe à vide primaire, présentant un faible rapport de compression, n’est pas standard. Elle est spécifique au groupe de pompage car elle ne peut pas fonctionner seule comme une pompe à vide primaire classique, mais est conçue spécialement pour fonctionner en aval d’une pompe à vide Roots à trois étages de pompage selon l’invention.
[0019] Le groupe de pompage peut en outre comporter une ou plusieurs des
caractéristiques qui sont décrites ci-après, prise seule ou en combinaison.
[0020] La pompe à vide primaire comporte par exemple au moins trois étages de pompage, tel que de trois à cinq, comme trois ou quatre, dans lesquels des rotors sont configurés pour être entraînés simultanément en rotation par un moteur de la pompe à vide primaire.
[0021 ] Le débit engendré par le premier étage de pompage de la pompe à vide
primaire est par exemple inférieur ou égal à 500m3/h, tel que compris entre 200m3/h et 300m3/h.
[0022] Le débit engendré par le premier étage de pompage de la pompe à vide
Roots est par exemple supérieur à dix fois, comme supérieur à vingt fois, le débit engendré par le premier étage de pompage de la pompe à vide primaire.
[0023] Selon un exemple de réalisation, le débit engendré par le premier étage de pompage de la pompe à vide Roots est par exemple supérieur à 5000m3/h, comme 6000m3/h.
[0024] Selon un exemple de réalisation, le débit engendré par le premier étage de pompage de la pompe à vide Roots est par exemple compris entre 2100m3/h et 3500m3/h. Le débit engendré par le deuxième étage de pompage de la pompe à vide Roots est par exemple compris entre 447m3/h et 744m3/h. Le débit engendré par le troisième (et dernier) étage de pompage de la pompe à vide Roots est par exemple compris entre 298m3/h et 496m3/h.
[0025] Le débit engendré par le premier étage de pompage de la pompe à vide
primaire est par exemple compris entre 248m3/h et 298m3/h. Le débit engendré par le deuxième étage de pompage de la pompe à vide primaire est par exemple compris entre 124m3/h et 149m3/h. Le débit engendré par le troisième étage de pompage de la pompe à vide primaire est par exemple compris entre 124m3/h et 149m3/h.
[0026] Selon un exemple de réalisation, le groupe de pompage comporte un bâti supportant la pompe à vide Roots et la pompe à vide primaire l’une au-dessus de l’autre, la pompe à vide primaire étant disposée au-dessus de la pompe à vide Roots. En disposant spatialement la pompe à vide Roots au-dessous de la pompe à vide primaire, on abaisse le centre de gravité du groupe de pompage, ce qui permet notamment de lui conférer une meilleure stabilité.
[0027] Selon un autre exemple de réalisation, le groupe de pompage 1 comporte un bâti supportant la pompe à vide Roots et la pompe à vide primaire l’une au- dessus de l’autre, la pompe à vide Roots étant disposée au-dessus de la pompe à vide primaire.
[0028] Le moteur de la pompe à vide primaire peut être configuré pour être variable pour générer une fréquence de rotation haute, par exemple supérieur à 100Hz, et/ou une fréquence de rotation basse, par exemple inférieure à 50Hz et une fréquence de rotation nominale comprise entre la fréquence de rotation haute et la fréquence de rotation basse. En effet, il est possible de réduire de façon plus importante la fréquence de rotation de la pompe à vide primaire pour économiser de l’énergie, notamment dans les phases d’attente de vide limite, sans risquer de perdre en performances de pompage, celles-ci étant assurées par le fort rapport de compression de la pompe à vide Roots tri-étagée. La pompe à vide primaire peut ainsi être opérationnelle sur une large gamme de fréquence de rotation, permettant d’une part, d’absorber des flux de gaz importants à fréquence de rotation haute et d’autre part, de réduire la consommation électrique pour les flux nuis ou négligeables à fréquence de rotation basse.
[0029] Selon un exemple de réalisation, le groupe de pompage comporte une
canalisation de contournement mettant en communication un refoulement de la pompe à vide Roots avec un refoulement de la pompe à vide primaire, la canalisation de contournement étant munie d’un dispositif à vanne configuré pour s’ouvrir lorsque la pression à l’aspiration de la pompe à vide de type Roots est supérieure à un seuil de pression. [0030] Le seuil de pression est par exemple compris entre 400mbars et 600mbars, comme par exemple 500mbars.
[0031 ] Le dispositif à vanne comporte par exemple un clapet anti-retour.
[0032] La canalisation de contournement offre ainsi une voie de contournement de la pompe à vide primaire lors du pompage des gaz à haute pression, par exemple pour les pressions supérieures à 500mbars. Ceci est rendu possible du fait de la présence d’un troisième étage de pompage sur la pompe à vide de type Roots.
Ce troisième étage, de petit débit, permet à la pompe à vide de type Roots de pouvoir fonctionner seule plus longtemps sans faillir. Un tel groupe de pompage, contournant le pompage primaire à haute pression, permet d’augmenter la vitesse de pompage à haute pression ainsi que de diminuer la consommation électrique et le temps nécessaire pour la descente en pression. Ce mode de réalisation s’applique notamment dans le cas de pompage cyclique de sas de chargement et de déchargement de substrats (appelé « loak look » en anglais).
[0033] La réduction des contraintes mécaniques et thermiques exercées sur la
pompe à vide primaire peut en outre permettre de réaliser au moins partiellement le stator des étages de pompage de la pompe à vide primaire par deux demi- coquilles s’assemblant sur une surface d’assemblage passant par les axes des arbres portant les rotors. Le montage d’une telle pompe est beaucoup plus rapide et on réduit les risques de désalignement des différents éléments de stator. La réduction du temps d’assemblage de la pompe à vide primaire permet de réduire les coûts.
[0034] D'autres avantages et caractéristiques apparaîtront à la lecture de la
description suivante d'un mode de réalisation particulier de l’invention, mais nullement limitatif, ainsi que des dessins annexés sur lesquels :
[0035] [Fig.1 ] représente une vue très schématique d’un groupe de pompage selon un premier exemple de réalisation.
[0036] [Fig.2] est une vue schématique montrant un exemple de réalisation d’une pompe à vide primaire où seuls les éléments nécessaires au fonctionnement sont représentés. [0037] [Fig.3] est un schéma similaire à celui de la Figure 1 pour un deuxième exemple de réalisation du groupe de pompage.
[0038] [Fig.4] est un schéma similaire à celui de la Figure 1 pour un troisième
exemple de réalisation du groupe de pompage.
[0039] Sur ces Figures, les éléments identiques portent les mêmes numéros de
référence.
[0040] Les réalisations suivantes sont des exemples. Bien que la description se
réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas
nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées ou interchangées pour fournir d'autres réalisations.
[0041 ] On définit par « débit engendré », la cylindrée correspondante au volume
engendré entre les rotors et le stator de la pompe à vide multipliée par le nombre de tours par seconde.
[0042] On définit par « pression limite » ou « vide limite », la pression minimale
obtenue pour un dispositif de pompage lorsqu’aucun flux de gaz à pomper n’est injecté dans la pompe à vide.
[0043] On définit par pompe à vide primaire, une pompe à vide volumétrique, qui est configurée pour, à l’aide de deux rotors, aspirer, transférer, puis refouler un gaz à pomper à pression atmosphérique. Les rotors sont portés par deux arbres entraînés en rotation par un moteur de la pompe à vide primaire. Les rotors peuvent être de type Roots, Claw ou à vis.
[0044] On définit par pompe à vide Roots (également appelé « Roots Blower » en anglais), une pompe à vide volumétrique configurée pour, à l’aide de deux rotors Roots, aspirer, transférer puis refouler un gaz à pomper. La pompe à vide Roots est montée en amont et en série d’une pompe à vide primaire. Les rotors sont portés par deux arbres entraînés en rotation par un moteur de la pompe à vide Roots.
[0045] La pompe à vide Roots se différencie principalement de la pompe à vide
primaire par des dimensions plus grandes d’étages de pompage du fait des capacités de pompage plus importantes, par des tolérances de jeux plus grandes et par le fait que la pompe à vide Roots ne refoule pas à pression atmosphérique mais doit être utilisée en montage série en amont d’une pompe à vide primaire.
[0046] On entend par « en amont », un élément qui est placé avant un autre par rapport au sens d’écoulement des gaz pompés. A contrario, on entend par « en aval », un élément placé après un autre par rapport au sens d’écoulement des gaz pompés, l’élément situé en amont étant à une pression plus basse que l’élément situé en aval à une pression plus élevée.
[0047] Les termes « au-dessus » et « au-dessous » sont définis en référence à la disposition des éléments d’un groupe de pompage posé au sol.
[0048] La Figure 1 représente un premier exemple de groupe de pompage 1.
[0049] Le groupe de pompage 1 comporte une pompe à vide primaire 2 et une
pompe à vide Roots 3.
[0050] La pompe à vide primaire 2 est une pompe à vide multiétagée configurée pour refouler les gaz à pomper à pression atmosphérique.
[0051 ] La pompe à vide primaire 2 comporte au moins trois étages de pompage, tel que de trois à cinq, comme par exemple trois ou quatre étages de pompage T 1 , T2, T3, (trois sur les Figures 1 et 2), montés en série entre une aspiration 4 et un refoulement 5 de la pompe à vide primaire 2 et dans lesquels un gaz à pomper peut circuler.
[0052] Chaque étage de pompage T1 -T3 est formé par une chambre de
compression ménagée dans un stator 6 de la pompe à vide primaire 2, la chambre de compression comprenant une entrée et une sortie respectives. Les étages de pompage successifs T1-T3 sont raccordés en série les uns à la suite des autres par des canaux inter-étages 7 respectifs raccordant la sortie (ou le refoulement) de l'étage de pompage qui précède à l'entrée (ou l’aspiration) de l'étage qui suit (voir Figure 2). L’entrée du premier étage de pompage T 1 , également appelé étage basse pression, communique avec l’aspiration 4 de la pompe à vide primaire 2 et la sortie du dernier étage de pompage T3, également appelé étage de refoulement, communique avec le refoulement 5 de la pompe à vide primaire 2. [0053] La pompe à vide primaire 2 comporte également deux rotors 10 s’étendant dans les étages de pompage T1 -T3. Les arbres des rotors 10 sont entraînés, par exemple du côté de l’étage basse pression T 1 , par un moteur M1 de la pompe à vide primaire 2 (Figure 1 ). Les rotors 10 des étages de pompage T1 -T3 sont entraînés simultanément en rotation par le moteur M1 de la pompe à vide primaire 2.
[0054] Les rotors 10 représentés sur la Figure 2 sont de type « Roots » (section en forme de « huit » ou de « haricot »). Bien entendu, l’invention s’applique également à d’autres types de pompes à vide primaire multi-étagées sèches, telles que de type « Claw » ou de type à spirale ou à vis ou d’un autre principe similaire de pompe à vide volumétrique.
[0055] Les rotors 10 sont angulairement décalés et entraînés pour tourner de façon synchronisée en sens inverse dans la chambre de compression de chaque étage T1 -T3. Lors de la rotation, le gaz aspiré depuis l’entrée est emprisonné dans le volume engendré par les rotors 10 et le stator 6, puis est entraîné par les rotors 10 vers l’étage suivant (le sens d’écoulement des gaz pompés est illustré par les flèches G sur les Figures 1 et 2).
[0056] La pompe à vide primaire 2 est dite « sèche » car en fonctionnement, les rotors 10 tournent à l’intérieur du stator 6 sans aucun contact mécanique avec le stator 6, ce qui permet de ne pas utiliser d’huile dans les étages de pompage T1 - T3.
[0057] La pompe à vide Roots 3 est raccordée en série et en amont de la pompe à vide primaire 2 dans le sens d’écoulement G des gaz pompés.
[0058] La pompe à vide Roots 3 comporte trois étages de pompage B1 , B2, B3
(Figure 1 ), montés en série entre une aspiration 11 et un refoulement 12 de la pompe à vide Roots 3 et dans lesquels un gaz à pomper peut circuler.
[0059] Comme pour la pompe à vide primaire 1 , chaque étage de pompage B1 -B3 de la pompe à vide Roots 3 est formé par une chambre de compression comprenant une entrée et une sortie respectives. Les étages de pompage B1 -B3 successifs sont raccordés en série les uns à la suite des autres par des canaux inter-étages respectifs raccordant la sortie (ou le refoulement) de l'étage de pompage qui précède à l'entrée (ou l’aspiration) de l'étage qui suit. L’entrée du premier étage de pompage B1 , également appelé étage basse pression, communique avec l’aspiration 11 de la pompe à vide Roots 3 et la sortie du troisième et dernier étage de pompage B3, également appelé étage de refoulement, communique avec le refoulement 12 de la pompe à vide Roots 3 et par conséquent, avec l’aspiration 4 de la pompe à vide primaire 2.
[0060] La pompe à vide Roots 3 comporte également deux rotors 10 s’étendant dans les étages de pompage B1 -B3. Les arbres des rotors 10 sont entraînés, par exemple du côté de l’étage de refoulement B3, par un moteur M2 de la pompe à vide Roots 3 (Figure 1 ). Les rotors 10 des étages de pompage B1 -B3 sont entraînés simultanément en rotation par le moteur M2 de la pompe à vide Roots 3.
[0061 ] Les rotors 10 de la pompe à vide Roots 3 sont de type « Roots » (section en forme de « huit » ou de « haricot »), comme représenté sur l’illustration de la pompe à vide primaire 2 en Figure 2.
[0062] La pompe à vide Roots 3 est également une pompe à vide dite « sèche ».
[0063] Dans ce premier exemple de réalisation, la pompe à vide Roots 3 est
disposée au-dessus de la pompe à vide primaire 2. Elle est par exemple supportée par un bâti 8 du groupe de pompage 1 , supportant également la pompe à vide primaire 2, le bâti 8 pouvant comporter en outre des pieds 8a et/ou roulettes 8b de manière à déplacer et entreposer les deux pompes à vide 2, 3 ensemble, spatialement l’une au-dessus de l’autre.
[0064] Les étages de pompage B1 -B3, T1 -T3 des deux pompes à vide 2, 3
présentent un volume engendré, c'est-à-dire un volume de gaz pompé, décroissant (ou égal) avec les étages de pompage, le premier étage de pompage B1 présentant le débit engendré le plus élevé et le dernier étage de pompage T3 présentant le débit engendré le plus faible. La pression de refoulement de la pompe à vide primaire 2 est la pression atmosphérique. La pompe à vide primaire 2 peut également comporter un silencieux 9, en sortie du dernier étage de pompage T3, au refoulement 5, comme représenté sur la Figure 1.
[0065] En outre, le rapport du débit engendré par le premier étage de pompage T1 de la pompe à vide primaire 2 dans le sens d’écoulement G des gaz pompés sur le débit engendré par le dernier étage de pompage T3 de la pompe à vide primaire 2 est inférieur ou égal à quatre, tel que inférieur ou égal à trois. Il est par exemple égal à deux. Une telle pompe à vide primaire 2 n’est pas standard. Elle est spécifique au groupe de pompage 1 car elle ne peut pas fonctionner seule comme une pompe à vide primaire classique, mais est conçue spécialement pour fonctionner en aval d’une pompe à vide Roots 3 à trois étages de pompage B1 ,
B2, B3 selon l’invention.
[0066] Le débit engendré par le premier étage de pompage T1 de la pompe à vide primaire 2 est par exemple inférieur ou égal à 500m3/h, tel que compris entre 200m3/h et 300m3/h.
[0067] Le débit engendré par le premier étage de pompage B1 de la pompe à vide Roots 3 est par exemple supérieur à dix fois, comme supérieur à vingt fois, le débit engendré par le premier étage de pompage T1 de la pompe à vide primaire 2.
[0068] Selon un exemple de réalisation, le débit engendré par le premier étage de pompage B1 de la pompe à vide Roots 3 est par exemple supérieur à 5000m3/h, comme 6000m3/h.
[0069] Selon un exemple d’étagement du groupe de pompage 1 , dans la pompe à vide Roots 3, le débit engendré par le premier étage de pompage B1 de la pompe à vide Roots 3 est par exemple compris entre 2100m3/h et 3500m3/h ; le débit engendré par le deuxième étage de pompage B2 de la pompe à vide Roots 3 est par exemple compris entre 447m3/h et 744m3/h ; le débit engendré par le troisième et dernier étage de pompage B3 de la pompe à vide Roots 3 est par exemple compris entre 298m3/h et 496m3/h.
[0070] Dans la pompe à vide primaire 2, le débit engendré par le premier étage de pompage T1 de la pompe à vide primaire 2 est par exemple compris entre
248m3/h et 298m3/h. Le débit engendré par le deuxième étage de pompage T2 de la pompe à vide primaire 2 est par exemple compris entre 124m3/h et 149m3/h. Le débit engendré par le troisième étage de pompage T3 de la pompe à vide primaire 2 est par exemple égal au deuxième étage de pompage T2, il est par exemple compris entre 124m3/h et 149m3/h. [0071 ] Dans cet exemple, le rapport du débit engendré par le premier étage de pompage T1 de la pompe à vide primaire 2 sur le débit engendré par le dernier étage de pompage T3 est ainsi égal à 2.
[0072] En utilisant une pompe à vide Roots 3 de trois étages de pompage B1 , B2, B3, on « déporte » un étage de pompage de la pompe à vide primaire de l’art antérieur au niveau de la pompe à vide Roots 3. Le premier étage de pompage de la pompe à vide primaire devient le dernier étage de pompage de la pompe à vide Roots 3. De fait, il peut notamment tourner plus vite car entraîné par le moteur M2 de la pompe à vide Roots 3.
[0073] Ce transfert de l’étage de pompage permet de réduire de manière importante le rapport de compression de la pompe à vide primaire 2 et par conséquent, les contraintes s’exerçant sur la pompe à vide primaire 2, ces contraintes étant en partie déplacées sur la pompe à vide Roots 3. Cela permet d’espacer les durées entre maintenances de la pompe à vide primaire 2. La pompe à vide Roots 3 fonctionnant à plus basse pression, ces contraintes sont moins critiques.
[0074] En particulier, un faible rapport de compression permet de réduire les
contraintes de flexion s’exerçant sur les arbres. Il est alors possible de réduire l’entraxe entre les arbres portant les rotors 10, ce qui permet de réduire
l’encombrement de la pompe à vide primaire 2. Une pompe à vide primaire 2 plus petite permet de réduire les coûts du fait qu’elle nécessite moins de matière, que les coûts de traitement de surface, tel que de nickelage, et les coûts de transport, notamment par voie aérienne, sont réduits.
[0075] Cela donne en outre un fort couple de dégommage pour redémarrer la pompe à vide primaire 2 arrêtée, notamment dans le cas de pompage d’espèces susceptibles de se déposer sur les parties mobiles de la pompe à vide primaire 2.
[0076] Un faible rapport de compression de la pompe à vide primaire 2 permet en outre d’utiliser un moteur M1 de faible puissance.
[0077] L’abaissement des contraintes thermiques et mécaniques dû au faible rapport de compression de la pompe à vide primaire 2 améliore en outre la fiabilité de la pompe à vide primaire 2. Cela permet de pouvoir augmenter la fréquence de rotation, par exemple pour absorber de plus forts flux de gaz par la pompe à vide primaire 2 ou pour réduire les dimensions des étages de pompage et ainsi l’encombrement de la pompe à vide primaire 2.
[0078] En outre, en raison de ce découpage de l’étagement du groupe de pompage 1 , il est plus facile de jouer sur la fréquence des deux pompes à vide 2, 3 pour économiser l’énergie consommée. En effet, il est possible de réduire de façon plus importante la fréquence de rotation de la pompe à vide primaire 2 sans risquer de perdre les performances de pompage en pression de vide limite, celles-ci étant assurées par le fort rapport de compression de la pompe à vide Roots 3 tri-étagée.
[0079] Le moteur M1 de la pompe à vide primaire 2 peut pour cela être configuré pour être variable afin de générer une fréquence de rotation haute, par exemple supérieure à 100Hz et/ou une fréquence de rotation basse, par exemple inférieure à 50Hz et une fréquence de rotation nominale comprise entre la fréquence de rotation haute et la fréquence de rotation basse, les débits engendrés et rapports précédemment décrits étant définis pour la vitesse de rotation nominale.
[0080] La pompe à vide primaire 2 peut ainsi être opérationnelle sur une large
gamme de fréquence de rotation, permettant d’une part, d’absorber des flux de gaz importants à fréquence de rotation haute et d’autre part, de réduire la consommation électrique pour les flux nuis ou négligeables à fréquence de rotation basse.
[0081 ] Par ailleurs, un faible rapport de compression peut permettre la réalisation au moins partielle d’un stator 6 des étages de pompage T1 , T2, T3 de la pompe à vide primaire 2 par deux demi-coquilles 6b, 6c s’assemblant selon une surface d’assemblage S passant par les axes des arbres (voir par exemple la Figure 2). Le stator 6 de tous les étages de pompage de la pompe à vide primaire est par exemple réalisé par deux demi-coquilles. Selon un autre exemple, seul le stator des deux ou trois derniers étages de pompage T2, T3 est réalisé par deux demi- coquilles 6b, 6c.
[0082] Le montage d’une telle pompe est beaucoup plus rapide et on réduit les
risques de désalignement des différents éléments de stator. La réduction du temps d’assemblage de la pompe à vide primaire 2 permet de réduire les coûts. [0083] La Figure 3 illustre un deuxième exemple de groupe de pompage 1.
[0084] Cet exemple se différencie du précédent par le fait qu’ici, la pompe à vide Roots 3 est disposée au-dessous de la pompe à vide primaire 2.
[0085] Les trois étages de pompage B1 -B3 de la pompe à vide Roots 3 présentant un encombrement plus élevé que la pompe à vide primaire 2 du fait du volume engendré plus important de la pompe à vide Roots 3 et le cas échéant, du fait de l’entraxe plus petit de la pompe à vide primaire 2, la pompe à vide Roots 3 devient le composant le plus volumineux et le plus lourd du groupe de pompage 1 .
[0086] En disposant spatialement la pompe à vide Roots 3 au-dessous de la pompe à vide primaire 2, on abaisse le centre de gravité du groupe de pompage 1 , ce qui permet notamment de lui conférer une meilleure stabilité.
[0087] La Figure 4 montre un autre exemple de réalisation du groupe de pompage 1.
[0088] Dans cet exemple, le groupe de pompage 1 comporte une canalisation de contournement 13 mettant en communication un refoulement 12 de la pompe à vide Roots 3 avec un refoulement 5 de la pompe à vide primaire 2. La
canalisation de contournement 13 est munie d’un dispositif à vanne 14 configuré pour s’ouvrir lorsque la pression à l’aspiration 11 de la pompe à vide de type Roots 3 est supérieure à un seuil de pression.
[0089] Le seuil de pression est par exemple compris entre 400mbars et 600mbars, comme par exemple 500mbars.
[0090] Le dispositif à vanne 14 comporte par exemple un clapet anti-retour. Le clapet anti-retour permet le contournement automatique de la pompe à vide primaire 2 au seuil de tarage du clapet anti-retour. Le seuil de tarage est réglé pour que le clapet anti-retour s’ouvre lorsque la pression à l’aspiration 11 de la pompe à vide de type Roots 3 est supérieure audit seuil de pression.
[0091 ] Selon un autre exemple, le dispositif à vanne 14 comporte une vanne
contrôlable, par exemple au moyen d’une information représentative d’une haute pression des gaz à pomper, tel qu’un signal d’un capteur de pression.
[0092] La canalisation de contournement 13 offre ainsi une voie de contournement de la pompe à vide primaire 2 lors du pompage des gaz à haute pression, par exemple pour les pressions supérieures à 500mbars. Ceci est rendu possible du fait de la présence d’un troisième étage de pompage B3 sur la pompe à vide de type Roots 3. Le troisième et dernier étage de pompage B3, de petit débit, permet à la pompe à vide de type Roots 3 de pouvoir fonctionner plus longtemps sans faillir, sans pompage primaire. Un tel groupe de pompage 1 , contournant le pompage primaire à haute pression, permet d’augmenter la vitesse de pompage à haute pression ainsi que diminuer la consommation électrique et le temps nécessaire pour la descente en pression.
[0093] Ce mode de réalisation s’applique notamment dans le cas de pompages
cycliques de sas de chargement et de déchargement de substrats (appelé « load look » en anglais). De façon connue en soi, un sas de chargement et de déchargement s’ouvre à pression atmosphérique pour le chargement d’au moins un substrat et décharge le substrat dans une chambre de procédés après mise sous vide. Chaque chargement de substrats nécessite ainsi de descendre puis de remonter la pression dans le sas. Les sas de chargement et de déchargement sont notamment utilisés pour la fabrication des écrans plats d’affichage ou de substrats photovoltaïques ou pour la fabrication de substrats semi-conducteurs.

Claims

Revendications
[Revendication 1 ] Groupe de pompage (1 ) comportant une pompe à vide primaire (2) et une pompe à vide Roots (3) raccordée en série et en amont de la pompe à vide primaire (2) dans le sens d’écoulement (G) des gaz pompés, caractérisé en ce que :
-la pompe à vide Roots (3) comporte trois étages de pompage (B1 -B3) dans lesquels des rotors (10) sont configurés pour être entraînés simultanément en rotation par un moteur (M2) de la pompe à vide Roots (3), et
-le rapport du débit engendré par le premier étage de pompage (T1 ) de la pompe à vide primaire (2) dans le sens d’écoulement (G) des gaz pompés sur le débit engendré par le dernier étage de pompage (T3) de la pompe à vide primaire (2) est inférieur ou égal à quatre.
[Revendication 2] Groupe de pompage (1 ) selon la revendication
précédente, caractérisée en ce que ledit rapport est inférieur ou égal à trois.
[Revendication 3] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisée en ce que la pompe à vide primaire (2) comporte de trois à cinq étages de pompage, comme trois ou quatre étages de pompage (T1 -T3) dans lesquels des rotors (10) sont configurés pour être entraînés simultanément en rotation par un moteur (M1 ) de la pompe à vide primaire (2).
[Revendication 4] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisé en ce que le débit engendré par le premier étage de pompage (T1 ) de la pompe à vide primaire (2) est inférieur ou égal à 500m3/h, tel que compris entre 200m3/h et 300m3/h.
[Revendication 5] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisé en ce que le débit engendré par le premier étage de pompage (B1 ) de la pompe à vide Roots (3) est supérieur à dix fois, comme supérieur à vingt fois, le débit engendré par le premier étage de pompage (T1 ) de la pompe à vide primaire (2).
[Revendication 6] Groupe de pompage (1 ) selon l’une de revendications précédentes, caractérisé en ce que le débit engendré par le premier étage de pompage (T1 ) de la pompe à vide primaire (2) est compris entre 248m3/h et 298m3/h, le débit engendré par le deuxième étage de pompage (T2) de la pompe à vide primaire (2) est compris entre 124m3/h et 149m3/h et le débit engendré par le troisième étage de pompage (T3) de la pompe à vide primaire (2) est compris entre 124m3/h et 149m3/h.
[Revendication 7] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisé en ce qu’il comporte un bâti (8) supportant la pompe à vide Roots (3) et la pompe à vide primaire (2) l’une au-dessus de l’autre, la pompe à vide primaire (2) étant disposée au-dessus de la pompe à vide Roots (3).
[Revendication 8] Groupe de pompage (1 ) selon l’une des revendications 1 à 6, caractérisé en ce qu’il comporte un bâti (8) supportant la pompe à vide Roots (3) et la pompe à vide primaire (2) l’une au-dessus de l’autre, la pompe à vide Roots (3) étant disposée au-dessus de la pompe à vide primaire (2).
[Revendication 9] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisé en ce que le moteur (M1 ) de la pompe à vide primaire (2) est configuré pour être variable pour générer une fréquence de rotation haute et/ou une fréquence de rotation basse et une fréquence de rotation nominale comprise entre la fréquence de rotation haute et la fréquence de rotation basse.
[Revendication 10] Groupe de pompage (1 ) selon la revendication
précédente, caractérisé en ce que la fréquence de rotation haute est supérieure à 100Hz et la fréquence de rotation basse est inférieure à 50Hz.
[Revendication 11 ] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisé en ce qu’il comporte une canalisation de
contournement (13) mettant en communication un refoulement (12) de la pompe à vide Roots (3) avec un refoulement (5) de la pompe à vide primaire (2), la canalisation de contournement (13) étant munie d’un dispositif à vanne (14) configuré pour s’ouvrir lorsque la pression à l’aspiration (11 ) de la pompe à vide de type Roots (3) est supérieure à un seuil de pression.
[Revendication 12] Groupe de pompage (1 ) selon l’une des revendications précédentes, caractérisé en ce que le stator (6) des étages de pompage (T 1 , T2, T3) de la pompe à vide primaire (2) est au moins partiellement réalisé par deux demi-coquilles (6b, 6c) s’assemblant sur une surface d’assemblage (S) passant par les axes des arbres portant les rotors (10). ]
PCT/EP2020/067619 2019-07-17 2020-06-24 Groupe de pompage WO2021008834A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022502125A JP2022541763A (ja) 2019-07-17 2020-06-24 ポンプユニット
KR1020227000082A KR20220035090A (ko) 2019-07-17 2020-06-24 펌프 유닛
DE112020003410.0T DE112020003410T5 (de) 2019-07-17 2020-06-24 Pumpenaggregat
US17/626,634 US11815096B2 (en) 2019-07-17 2020-06-24 Pump unit
CN202080050947.7A CN114144572A (zh) 2019-07-17 2020-06-24 泵送单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1908088 2019-07-17
FR1908088A FR3098869B1 (fr) 2019-07-17 2019-07-17 Groupe de pompage

Publications (1)

Publication Number Publication Date
WO2021008834A1 true WO2021008834A1 (fr) 2021-01-21

Family

ID=67875766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/067619 WO2021008834A1 (fr) 2019-07-17 2020-06-24 Groupe de pompage

Country Status (8)

Country Link
US (1) US11815096B2 (fr)
JP (1) JP2022541763A (fr)
KR (1) KR20220035090A (fr)
CN (1) CN114144572A (fr)
DE (1) DE112020003410T5 (fr)
FR (1) FR3098869B1 (fr)
TW (1) TW202120792A (fr)
WO (1) WO2021008834A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3098869B1 (fr) * 2019-07-17 2021-07-16 Pfeiffer Vacuum Groupe de pompage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090332A1 (fr) * 2003-04-10 2004-10-21 Ebara Corporation Pompe a vide seche et son procede de demarrage
DE202014005481U1 (de) * 2014-07-04 2014-07-18 Oerlikon Leybold Vacuum Gmbh Vakuumpumpvorrichtung mit mindestens einem Pumpenmodul
GB2528450A (en) * 2014-07-21 2016-01-27 Edwards Ltd Vacuum pump
WO2018010970A1 (fr) * 2016-07-13 2018-01-18 Pfeiffer Vacuum Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
WO2018184853A1 (fr) * 2017-04-07 2018-10-11 Pfeiffer Vacuum Groupe de pompage et utilisation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922110A (en) * 1974-01-28 1975-11-25 Henry Huse Multi-stage vacuum pump
FR2813104B1 (fr) * 2000-08-21 2002-11-29 Cit Alcatel Joint etancheite pour pompe a vide
FR2822200B1 (fr) * 2001-03-19 2003-09-26 Cit Alcatel Systeme de pompage pour gaz a faible conductivite thermique
US20040173312A1 (en) * 2001-09-06 2004-09-09 Kouji Shibayama Vacuum exhaust apparatus and drive method of vacuum apparatus
JP2003343469A (ja) * 2002-03-20 2003-12-03 Toyota Industries Corp 真空ポンプ
JP4218756B2 (ja) * 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
EP2221482B1 (fr) * 2007-11-14 2015-04-15 Ulvac, Inc. Pompe désamorcée à plusieurs étages
FR2952683B1 (fr) * 2009-11-18 2011-11-04 Alcatel Lucent Procede et dispositif de pompage a consommation d'energie reduite
GB0922564D0 (en) * 2009-12-24 2010-02-10 Edwards Ltd Pump
TWI518245B (zh) * 2010-04-19 2016-01-21 荏原製作所股份有限公司 乾真空泵裝置、排氣單元,以及消音器
WO2017031807A1 (fr) * 2015-08-27 2017-03-02 上海伊莱茨真空技术有限公司 Pompe à vide non coaxiale à multiples chambres d'entraînement
CN108194353B (zh) * 2018-02-02 2019-12-13 中山市天元真空设备技术有限公司 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵
FR3078748B1 (fr) * 2018-03-07 2020-03-27 Pfeiffer Vacuum Pompe a vide de type seche
FR3098869B1 (fr) * 2019-07-17 2021-07-16 Pfeiffer Vacuum Groupe de pompage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090332A1 (fr) * 2003-04-10 2004-10-21 Ebara Corporation Pompe a vide seche et son procede de demarrage
DE202014005481U1 (de) * 2014-07-04 2014-07-18 Oerlikon Leybold Vacuum Gmbh Vakuumpumpvorrichtung mit mindestens einem Pumpenmodul
GB2528450A (en) * 2014-07-21 2016-01-27 Edwards Ltd Vacuum pump
WO2018010970A1 (fr) * 2016-07-13 2018-01-18 Pfeiffer Vacuum Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
WO2018184853A1 (fr) * 2017-04-07 2018-10-11 Pfeiffer Vacuum Groupe de pompage et utilisation

Also Published As

Publication number Publication date
TW202120792A (zh) 2021-06-01
US11815096B2 (en) 2023-11-14
FR3098869B1 (fr) 2021-07-16
JP2022541763A (ja) 2022-09-27
KR20220035090A (ko) 2022-03-21
FR3098869A1 (fr) 2021-01-22
CN114144572A (zh) 2022-03-04
DE112020003410T5 (de) 2022-04-07
US20220299030A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
EP3607204B1 (fr) Groupe de pompage et utilisation
EP1886024A1 (fr) Compresseur frigorifique a spirales
EP2767717A1 (fr) Pompe à vide multi-étagée de type sèche
FR3006387A1 (fr) Compresseur a spirale
FR2962772A1 (fr) Machine a fluide de type roots
EP3485168A1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
EP2549112B1 (fr) Pompe à vide multi-étagée de type sèche
WO2019137700A1 (fr) Pompe à vide de type sèche et procédé de commande d'un moteur synchrone de pompe à vide
FR3031786A1 (fr) Integration d'une pompe en fut de pignon
WO2021008834A1 (fr) Groupe de pompage
WO2009040412A1 (fr) Pompe a vide a deux rotors helicoïdaux
WO2020201218A1 (fr) Pompe à vide de type sèche et installation de pompage
EP3775558B1 (fr) Pompe à vide de type sèche
EP3105455B1 (fr) Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement
FR3112172A1 (fr) Pompe à vide sèche
FR3086012A1 (fr) Pompe a vide de type seche
FR3128747A1 (fr) Pompe à vide multi-étagée
FR2482208A1 (fr)
WO2024088630A1 (fr) Groupe de pompage
EP2823182B1 (fr) Installation de pompage amelioree et le procede de controle d'une telle installation de pompage
FR3118650A1 (fr) Etage de pompage et pompe à vide sèche
FR2984423A1 (fr) Dispositif de pompage et equipement de fabrication d'ecrans plats correspondant
FR3121716A1 (fr) Pompe à vide
EP1249610A1 (fr) Atténuateur dynamique du bruit de refoulement sur les machines à vide rotatives
FR3135306A1 (fr) Pompe à vide turbomoléculaire et procédé d’assemblage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20734196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502125

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20734196

Country of ref document: EP

Kind code of ref document: A1