WO2021005914A1 - 硬化物、オーバーコート膜、及びフレキシブル配線板 - Google Patents

硬化物、オーバーコート膜、及びフレキシブル配線板 Download PDF

Info

Publication number
WO2021005914A1
WO2021005914A1 PCT/JP2020/021412 JP2020021412W WO2021005914A1 WO 2021005914 A1 WO2021005914 A1 WO 2021005914A1 JP 2020021412 W JP2020021412 W JP 2020021412W WO 2021005914 A1 WO2021005914 A1 WO 2021005914A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
curable resin
mass
resin composition
cured product
Prior art date
Application number
PCT/JP2020/021412
Other languages
English (en)
French (fr)
Inventor
圭孝 石橋
こゆき 召田
未央 山下
和弥 木村
Original Assignee
日本ポリテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリテック株式会社 filed Critical 日本ポリテック株式会社
Priority to JP2021530525A priority Critical patent/JPWO2021005914A1/ja
Priority to CN202080049525.8A priority patent/CN114080408B/zh
Priority to KR1020227003320A priority patent/KR20220032573A/ko
Publication of WO2021005914A1 publication Critical patent/WO2021005914A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4045Mixtures of compounds of group C08G18/58 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a cured product, an overcoat film, and a flexible wiring board.
  • the flexible wiring board is coated with an overcoat film to protect the surface.
  • This overcoat film is formed by applying a curable resin composition to the surface of a flexible substrate on which wiring is formed by a printing method or the like and curing it.
  • the curable resin composition for forming the overcoat film causes the flexible substrate to warp as compared with the conventional one. Difficult performance is required. If the flexible substrate is warped, the alignment accuracy of the mounting position of the IC chip is adversely affected in the mounting process of mounting the IC chip on the flexible wiring board, so that the yield in the manufacturing process may be lowered.
  • curable resin compositions for forming an overcoat film of a flexible wiring plate used in electronic devices and the like have been conventionally proposed.
  • a diisocyanate compound is reacted with a plurality of types of diol compounds.
  • the curable resin composition containing the obtained polyurethane is disclosed.
  • the curable resin composition disclosed in Patent Document 1 it is possible to obtain an overcoat film for a flexible wiring board which is excellent in low warpage, flexibility, long-term insulation reliability, and wire breakage suppression property.
  • the distance (pitch) between the wires of the flexible wiring board will be further narrowed (for example, 20 ⁇ m or less). Therefore, the low warpage of the flexible wiring board and the flexible wiring board Further improvement in wire breakage suppression was desired.
  • the present invention has low warpage (hereinafter, the performance that makes it difficult for the flexible wiring board to warp and the performance that the flexible wiring board has a small warp may be referred to as "low warpage”) and the ability to suppress disconnection of wiring (hereinafter,).
  • a cured product, an overcoat film, and a flexible material having excellent performance of suppressing disconnection of wiring on a flexible wiring board and performance of preventing disconnection of wiring on a flexible wiring board are sometimes referred to as "wiring disconnection suppressing property").
  • An object is to provide a wiring board.
  • a free-induced decay signal of magnetization strength for determining the spin-spin relaxation time T2 of a proton which is a cured product of a curable resin composition and is measured at a measurement frequency of 20 MHz by a pulse nuclear magnetic resonance method.
  • f (t) is approximated by the following formula, it is calculated from A (1), A (2), T2 (1), and T2 (2) in the formula [A (1) ⁇ T2 ( 1) + A (2) ⁇ T2 (2)] is 0.015 ms or less, and T2 (3) is 0.50 ms or more.
  • the (offset) of the fourth term of the above-mentioned mathematical expression consisting of four terms is an offset term.
  • T2 (1), T2 (2), and T2 (3) in the above formula are spin-spin relaxation times T2, respectively, and T2 (1) ⁇ T2 (2) ⁇ T2 (3).
  • W (1), W (2), and W (3) in the above formula are Weibull coefficients, which are numbers 1 or more and 2 or less.
  • t in the above formula is time, and exp is an exponential function with the Napier number e as the base.
  • the curable resin composition comprises a polyurethane (a) having a functional group reactive with an epoxy group, a solvent (b), and an epoxy compound having two or more epoxy groups in one molecule. c) and the cured product according to [1] containing.
  • the polyurethane (a) has a first urethane structural unit having at least one of a polyester structure and a polycarbonate structure, and at least one urethane structural unit of a second urethane structural unit having a carboxy group [[3] 2] The cured product according to.
  • the ratio of the content of the solvent (b) to the total amount of the curable resin composition is 25% by mass or more and 75% by mass or less, and the ratio of the content of the polyurethane (a) to the total amount of the epoxy compound (c).
  • the ratio of the content of the solvent (b) to the total amount of the curable resin composition is 25% by mass or more and 75% by mass or less, the polyurethane (a), the solvent (b), and the epoxy compound (c).
  • the ratio of the content of the fine particles (d) to the total amount of the fine particles (d) is 0.1% by mass or more and 60% by mass or less, and the ratio of the content of the fine particles (d) to the total amount of the polyurethane (a) and the epoxy compound (c).
  • [14] A method for producing a cured product according to any one of [1] to [13], wherein the curable resin composition is cured by heat or active energy rays.
  • a flexible wiring board in which a portion of the surface of a flexible substrate on which wiring is formed is covered with the overcoat film according to [15].
  • the cured product, overcoat film, and flexible wiring board according to the present invention are excellent in low warpage and wire breakage suppression.
  • the present inventors have conducted intensive studies on a cured product obtained by curing a curable resin composition.
  • the spin-spin relaxation time T2 of protons measured by a pulsed nuclear magnetic resonance method has been studied.
  • the cured product whose free induction decay signal f (t) shows a specific result is excellent in low warpage property and wire disconnection suppression property, and has completed the present invention.
  • the cured product of the present embodiment is a cured product of the curable resin composition, and is used for determining the spin-spin relaxation time T2 of the proton measured at a measurement frequency of 20 MHz by the pulse nuclear magnetic resonance method.
  • the free induction decay signal f (t) of the magnetization intensity is approximated by the following formula, it is calculated from A (1), A (2), T2 (1), and T2 (2) in the formula [
  • the value of A (1) ⁇ T2 (1) + A (2) ⁇ T2 (2)] is 0.015 ms or less, and T2 (3) is 0.50 ms or more.
  • the value of [A (1) ⁇ T2 (1) + A (2) ⁇ T2 (2)] is preferably 0.002 ms or more and 0.013 ms or less.
  • T2 (3) is preferably 0.70 ms or more and 2.00 ms or less.
  • the (offset) of the fourth term of the above-mentioned mathematical expression consisting of four terms is an offset term.
  • T2 (1), T2 (2), and T2 (3) in the above formula are spin-spin relaxation times T2, respectively, and T2 (1) ⁇ T2 (2) ⁇ T2 (3).
  • W (1), W (2), and W (3) in the above formula are Weibull coefficients, which are numbers 1 or more and 2 or less.
  • t in the above formula is time, and exp is an exponential function with the Napier number e as the base.
  • the above approximation is an approximation of the free induction decay signal f (t) of the magnetization strength of the cured product by synthesizing curves showing three different spin-spin relaxation times T2, and can be interpreted as follows. That is, the first, second, and third terms of the above formula are terms indicating the properties of the three components having relatively different molecular motility, and T2 (1) ⁇ T2 (2) ⁇ T2. Since it is (3), it is represented in order from the one having the lowest molecular motion. That is, the first term is a term indicating the properties of the hard portion having low molecular mobility, the third term is a term indicating the properties of the soft portion having high molecular mobility, and the second term is the term indicating the properties of the hard portion. It is a term indicating the property of the intermediate portion having molecular mobility between the soft portion and the soft portion.
  • the term in which the decay of the free induction decay signal f (t) is relatively fastest is the first term
  • the term in which the decay is relatively slowest is the third term
  • the term in the middle speed is the second term. Therefore, the characteristics of the cured product are expressed by the above approximate expression by synthesizing these three components. In other words, it can be said that the characteristics of the cured product are expressed by the approximate expression decomposed into the above three terms.
  • a (1), A (2), and A (3) in the above formula are constants indicating the component ratios of the hard portion, the intermediate portion, and the soft portion in the cured product.
  • T2 (1), T2 (2), and T2 (3) in the above formula are spin-spin relaxation times T2 of the hard portion, the intermediate portion, and the soft portion.
  • W (1), W (2), and W (3) in the above formula are Weibull coefficients of the hard portion, the intermediate portion, and the soft portion.
  • the cured product of the present embodiment has good flexibility, so that it has excellent low warpage and wire disconnection suppressing property.
  • the overcoat film of the present embodiment containing the cured product of the present embodiment is excellent in low warpage property and wire disconnection suppressing property.
  • the flexible wiring board of the present embodiment in which the portion of the surface of the flexible substrate on which the wiring is formed is covered with the overcoat film of the present embodiment has low warpage and suppresses disconnection of the wiring. Excellent in sex.
  • the evaluation of the cured product has been performed by measuring the bending resistance, warpage, mechanical properties, etc. of the cured product.
  • the type of resin contained in the curable resin composition it is possible to improve bending resistance and reduce warpage, but it is an empirical factor because it is a matrix search. It was not easy to design the function intentionally.
  • the hard and soft parts in the cured product which are indicators of the mechanical properties of the cured product, that is, the hard and soft components constituting the molecular chain of the resin contained in the curable resin composition.
  • the relative amount and the degree of hardness and softness thereof are quantitatively evaluated using the spin-spin relaxation time T2 obtained by the pulse nuclear magnetic resonance method.
  • the cured product and the overcoat film are provided with excellent low warpage property and wire disconnection suppressing property.
  • Quantitative evaluation of the hard and soft parts in the cured product makes it possible to intentionally design the function in addition to the conventional empirical method.
  • the method of measuring the free induction decay signal f (t) of the magnetization intensity for determining the spin-spin relaxation time T2 of the proton by the pulse nuclear magnetic resonance method is not particularly limited. However, it can be measured by the following method, for example. That is, the curable resin composition is coated on a base material or the like to form a film, and is cured by heating to, for example, 120 to 150 ° C. to obtain a film-like cured product having a thickness of, for example, 20 ⁇ m.
  • a free induction decay signal f (t) of the magnetization intensity for determining the spin-spin relaxation time T2 of the proton is obtained by a pulse nuclear magnetic resonance method at a measurement frequency of 20 MHz, for example, a solid echo method.
  • the sample a sample cut into strips having a length of 3 cm and a width of several mm is used. This sample is packed in a glass sample tube having a diameter of 10 mm so that the total mass is about 500 mg, and the glass sample tube is installed in the pulse nuclear magnetic resonance apparatus so that the sample is located in the coil portion of the pulse nuclear magnetic resonance apparatus.
  • the measurement nucleus is a hydrogen nucleus, and the measurement is performed under the measurement conditions of a measurement temperature of 40 ° C., a frequency of 20 MHz, and a 90 ° pulse width of 0.1 s. Measurements are performed on three samples, and a free induction decay signal f (t) is obtained from the measurement results.
  • the spin-lattice relaxation time T1 is obtained by the Innovation Recovery method.
  • An example of the measurement conditions for the spin-lattice relaxation time T1 is shown below.
  • An example of the measurement conditions for the spin-spin relaxation time T2 is shown below.
  • Curve fitting (7. Gauss-Decay Extended) is performed on the free induction decay signal f (t) thus obtained, and the spin-spin relaxation time T2 is calculated.
  • an approximate function can be obtained by arbitrarily changing the ratio of the exponential function / Gaushan function or the Abragamian function.
  • the spin-spin relaxation time T2 can be obtained by using the fitting calculation formula as the above formula.
  • the fitting is performed for a decay time t in the range of 0 ms to 0.3 ms.
  • a (3), T2 (1), T2 (2), T2 (3), and offset are calculated.
  • the cured product, the overcoat film, and the flexible wiring board of the present embodiment will be described in more detail below.
  • a curable resin composition that produces a cured product of the present embodiment by curing will be described.
  • the curable resin composition of the present embodiment is used for manufacturing a flexible wiring board in which a portion of the surface of a flexible substrate on which wiring is formed is coated with an overcoat film. This is a cured product that forms an overcoat film.
  • the composition of the curable resin composition of the present embodiment is particularly limited as long as it contains a component that can be cured by heat or active energy rays (for example, ultraviolet rays, electron beams, X-rays) to produce a cured product.
  • a curable resin for example, the curable resin composition of the present embodiment preferably contains polyurethane (a), a solvent (b), and an epoxy compound (c) having two or more epoxy groups in one molecule. ..
  • the polyurethane (a), solvent (b), and epoxy compound (c) described above will be described in detail below.
  • polyurethane (a) The type of polyurethane (a) is not particularly limited as long as it has a functional group having reactivity with the epoxy group of the epoxy compound (c) and is cured by reacting with the epoxy compound (c). Absent.
  • the functional group having reactivity with the epoxy group of the epoxy compound (c) include a carbamate group (-NHCOO-), a carboxy group, an isocyanato group, a hydroxy group, an amide group and a cyclic acid anhydride group. ..
  • the polyurethane (a) may contain one of these functional groups, or may contain two or more of these functional groups.
  • the cyclic acid anhydride group refers to an acid anhydride group formed by dehydration of two carboxy groups in the molecule when the acid anhydride group forms a part of the ring structure.
  • a carboxy group, an isocyanato group, an amide group, and a cyclic acid anhydride group are preferable in consideration of the reactivity of the epoxy compound (c) with the epoxy group. Further, considering the balance between the storage stability of the polyurethane (a) and the reactivity of the epoxy compound (c) with the epoxy group, a carboxy group and a cyclic acid anhydride group are more preferable, and a carboxy group is further preferable.
  • the carbamate group is preferable in consideration of the ease of introducing the functional group into the polyurethane (a).
  • Polyurethane (a) may be provided with these functional groups at the end of the molecule, or may be provided so as to branch off from the molecular chain.
  • the polyurethane (a) may have a first urethane structural unit having at least one of a polyester structure and a polycarbonate structure, and at least one urethane structural unit of a second urethane structural unit having a carboxy group in the molecule. preferable. Further, it is preferable that the polyurethane (a) further has a third urethane structural unit having a fluorene structure in addition to at least one of the first urethane structural unit and the second urethane structural unit.
  • the polyurethane (a) preferably has a trans-type 1,4-cyclohexanedimethylene group. If the polyurethane (a) has the above-mentioned urethane structural unit or a trans-type 1,4-cyclohexanedimethylene group, it imparts excellent low warpage property and wiring disconnection suppressing property to the overcoat film and the flexible wiring board. can do.
  • the method for synthesizing the polyurethane (a) is not particularly limited, but for example, a polyol compound having two or more hydroxy groups in one molecule in the presence or absence of a urethanization catalyst such as dibutyltin dilaurylate.
  • a polyol compound having two or more hydroxy groups in one molecule in the presence or absence of a urethanization catalyst such as dibutyltin dilaurylate.
  • examples thereof include a method of polymerizing (for example, a diol compound) and a polyisocyanate compound having two or more isocyanato groups in one molecule (for example, a diisocyanate compound) in a solvent or the like.
  • the polyol compound and the polyisocyanate compound one type may be used alone, or a plurality of types may be used in combination.
  • At least one of a monohydroxy compound having one hydroxy group in one molecule and a monoisocyanate compound having one isocyanato group in one molecule is allowed to coexist, and the above polymerization reaction is carried out. May be done. Further, it is preferable to carry out the above polymerization reaction without a catalyst or in the presence of a small amount of catalyst because the long-term insulation reliability of the overcoat film described later is improved.
  • the type of the polyisocyanate compound is not particularly limited, and examples thereof include cyclic aliphatic polyisocyanates, polyisocyanates having an aromatic ring, chain aliphatic polyisocyanates, and polyisocyanates having a heterocycle.
  • examples of the cyclic aliphatic polyisocyanate include 1,3-cyclohexanediisocyanate, 1,4-cyclohexanediisocyanate, isophoronediisocyanate, methylenebis (4-cyclohexylisocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, and 1,4.
  • Examples thereof include biuret forms of -bis (isocyanatomethyl) cyclohexane (particularly trans-1,4-bis (isocyanatomethyl) cyclohexane), norbornene diisocyanate, norbornan diisocyanate, and isophorone diisocyanate.
  • polyisocyanate having an aromatic ring examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, and 1,4-xylylene diisocyanate. Isocyanate can be mentioned.
  • chain aliphatic polyisocyanate examples include a biuret form of hexamethylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and 2,2,4-trimethylhexanemethylene diisocyanate. Can be mentioned.
  • polyisocyanate having a heterocycle examples include an isocyanurate form of isophorone diisocyanate and an isocyanurate form of hexamethylene diisocyanate.
  • One of these polyisocyanates may be used alone, or two or more thereof may be used in combination.
  • the type of the diol compound is not particularly limited, but preferred diol compounds include, for example, polyester diols, polycarbonate diols, and diols having a carboxy group in the molecule (hereinafter, may be referred to as "carboxy group-containing diol").
  • Polyester diols can be synthesized by esterification of dicarboxylic acids with diols.
  • One type of polyester diol may be used alone, or two or more types may be used in combination.
  • Examples of the dicarboxylic acid include orthophthalic acid, isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1, Examples thereof include 3-dicarboxylic acid, 5-methyl-benzene-1,3-dicarboxylic acid, 2-methyl-benzene-1,4-dicarboxylic acid and the like.
  • the dicarboxylic acid one of these may be used alone, or two or more thereof may be used in combination.
  • diol examples include 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1,5. -Pentanediol, 1,8-octanediol, 1,9-nonanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol and the like can be mentioned. it can.
  • the diol one of these may be used alone, or two or more thereof may be used in combination. By using such a diol, the value of T2 (3) can be made larger.
  • phthalic acid isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid are particularly preferable.
  • preferred ones are 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 3-methyl-1,5-pentanediol. It is particularly preferable that it is 1,6-hexanediol or 3-methyl-1,5-pentanediol.
  • the number average molecular weight of the polyester diol is preferably 800 or more and 5000 or less, more preferably 800 or more and 4000 or less, and further preferably 900 or more and 3500 or less.
  • a low molecular weight polyol can also be used as the polyol compound.
  • 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neo Pentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like can be used.
  • Polycarbonate diol can be synthesized by a polycondensation reaction of phosgene and diol.
  • One type of polycarbonate diol may be used alone, or two or more types may be used in combination.
  • the diol suitable as a raw material for the polycarbonate diol is the same as that for the polyester diol, and thus the description thereof will be omitted.
  • the preferable number average molecular weight of the polycarbonate diol is the same as that of the polyester diol, the description thereof will be omitted.
  • carboxy group-containing diol is not particularly limited, but for example, dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, N, N-bis (hydroxyethyl) glycine, N, N-bis (hydroxy). Ethyl) glycine and the like can be mentioned.
  • carboxy group-containing diol one of these may be used alone, or two or more thereof may be used in combination.
  • 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferable from the viewpoint of solubility in a reaction solvent during polyurethane production.
  • the type of diol having a fluorene structure is not particularly limited, but preferred ones include, for example, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene.
  • the type of diol having a phenyl group or a biphenyl group is not particularly limited, but preferred ones are, for example, 1,1-dimethyl-bis [4- (2-hydroxyethoxy) phenyl] methane and bis-4. Examples thereof include- (2-hydroxyethoxy) biphenyl and 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane.
  • polyurethane (a) using a diol having a high aromatic ring concentration as a monomer was used. It is preferable to use it, and in order to increase the value of T2 (3), it is preferable to use a polyurethane (a) in which a diol having a high aliphatic concentration is used as a monomer.
  • the number average molecular weight of the polyurethane (a) is not particularly limited, but is preferably 7,000 or more and 50,000 or less, preferably 7500, in consideration of the ease of adjusting the viscosity of the curable resin composition of the present embodiment described later. It is more preferably 40,000 or more, and further preferably 8,000 or more and 30,000 or less.
  • the "number average molecular weight" referred to here is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (hereinafter referred to as "GPC").
  • GPC gel permeation chromatography
  • the acid value of the polyurethane (a) is not particularly limited, but is preferably 10 mgKOH / g or more and 70 mgKOH / g or less, more preferably 15 mgKOH / g or more and 50 mgKOH / g or less, and 20 mgKOH / g or more. It is more preferably 35 mgKOH / g or less.
  • the polyurethane (a) has sufficient reactivity with the epoxy group. Therefore, in the curable resin composition described later, the reactivity with other components such as the epoxy compound (c) having two or more epoxy groups in one molecule is unlikely to be insufficient, so that the curable resin composition The heat resistance of the cured product is unlikely to decrease, and the cured product of the curable resin composition does not become too hard and brittle. In addition, it becomes easy to balance the solvent resistance of the overcoat film described later with the warp of the flexible wiring board described later.
  • the acid value of polyurethane is the value of the acid value measured by the potentiometric titration method specified in JIS K0070.
  • the aromatic ring concentration of the polyurethane (a) is not particularly limited, but is preferably 0.1 mmol / g or more and 5.0 mmol / g or less, and 0.5 mmol / g or more and 4.5 mmol / g or less. More preferably, it is 1.0 mmol / g or more and 4.0 mmol / g or less.
  • the aromatic ring concentration is within the above range, it becomes easy to balance the solvent resistance of the overcoat film described later and the warp of the flexible wiring board described later. Further, the value of [A (1) ⁇ T2 (1) + A (2) ⁇ T2 (2)] can be made smaller.
  • the aromatic ring concentration means the number (number of moles) of aromatic rings contained in 1 g of the compound. For example, if a polyurethane having a molecular weight of 438.5 as a repeating unit (structural unit) has four aromatic rings (for example, phenyl groups) per repeating unit, the number of repeating units in 1 g of this polyurethane is 2. Since it is .28 mmol, the aromatic ring concentration is 9.12 mmol / g (4 ⁇ 2.28 mmol / 1 g).
  • the type of aromatic ring is not particularly limited as long as it is a cyclic functional group having aromaticity with 3 or more ring members, and for example, a monocyclic aromatic hydrocarbon group such as a phenyl group, a biphenyl group, or a fluorene group.
  • a monocyclic aromatic hydrocarbon group such as a phenyl group, a biphenyl group, or a fluorene group.
  • examples thereof include a polycyclic aromatic hydrocarbon group such as, a condensed ring aromatic hydrocarbon group such as a naphthalene group and an indenyl group, and a heteroaromatic hydrocarbon group such as a pyridyl group.
  • the number of aromatic rings is not one but the number of cyclic structural parts.
  • a fluorene group has two benzene rings which are cyclic structure sites
  • the number of aromatic rings possessed by the polyurethane is 1 repeating unit. Two per piece.
  • the number of aromatic rings is 2, in the case of an anthracene group or phenanthrene group, the number of aromatic rings is 3, and in the case of a triphenylene group or binaphthyl group, the number of aromatic rings is 4.
  • the aromatic ring concentration can be calculated from the charging ratio of the monomers, but can be obtained by 1 H-NMR analysis after determining the structure of the polyurethane by spectroscopic methods such as 1 H-NMR, 13 C-NMR, and IR. It can also be calculated by comparing the number of protons derived from the aromatic ring with the number of protons derived from one repeating unit using the integration curve.
  • the polymerization reaction for synthesizing polyurethane (a) may be carried out in a solvent, but the type of solvent used as the polymerization solvent when carried out in a solvent is particularly as long as it is a solvent capable of dissolving polyurethane (a). Not limited.
  • the solvent used for synthesizing the polyurethane (a) include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, and tri.
  • Ether-based solvents such as ethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, and tripropylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl.
  • Ether acetate dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ⁇ -Examples include ester solvents such as butyrolactone, hydrocarbon solvents such as decahydronaphthalin, and ketone solvents such as cyclohexanone. One of these solvents may be used alone, or two or more of these solvents may be used in combination.
  • ⁇ -butyrolactone, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate considering the ease of adjusting the molecular weight of polyurethane and the printability of the curable resin composition described later during screen printing, Diethylene glycol monomethyl ether acetate is preferable, and ⁇ -butyrolactone, diethylene glycol monoethyl ether acetate, and diethylene glycol diethyl ether are more preferable, and a single solvent of ⁇ -butyrolactone, a mixed solvent of ⁇ -butyrolactone and diethylene glycol monoethyl ether acetate, and ⁇ -butyrolactone.
  • a two-kind mixed solvent of diethylene glycol diethyl ether and a three-kind mixed solvent of ⁇ -butyrolactone, diethylene glycol monoethyl ether acetate, and diethylene glycol diethyl ether are more preferable.
  • the solid content concentration of the solution of polyurethane (a) is not particularly limited, but is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 70% by mass or less, and 20% by mass or more and 60% by mass or less. The following is more preferable.
  • a polyurethane solution having a solid content concentration of 20% by mass or more and 60% by mass or less is used to produce a curable resin composition described later, the viscosity of the solution of polyurethane (a) is described in the section of Examples. Under the measurement conditions described later, for example, it is preferably 5,000 mPa ⁇ s or more and one million mPa ⁇ s or less from the viewpoint of uniform dispersion.
  • the order in which the raw materials such as monomers are charged into the reaction vessel when the polymerization reaction for synthesizing the polyurethane (a) is performed is not particularly limited, but may be charged in the following order, for example. That is, after the diol compound is dissolved in the solvent in the reaction vessel, the diisocyanate compound is added little by little to the reaction vessel at 30 ° C. or higher and 140 ° C. or lower, preferably 60 ° C. or higher and 120 ° C. or lower, and 50 ° C. or higher and 160 ° C. or lower. , Preferably at 60 ° C. or higher and 150 ° C. or lower, each of the above monomers is reacted to carry out polymerization.
  • the molar ratio of the monomer charged is adjusted according to the molecular weight and acid value of the target polyurethane (a).
  • a monohydroxy compound may be used as a raw material for the polyurethane (a) in order to adjust the molecular weight of the polyurethane (a). In that case, when the molecular weight of the polyurethane being polymerized reaches the target number average molecular weight (or approaches the target number average molecular weight) by the above method, the isocyanato group at the molecular end of the polyurethane being polymerized is sealed.
  • a monohydroxy compound is added for the purpose of stopping and suppressing a further increase in the number average molecular weight.
  • a monohydroxy compound When a monohydroxy compound is used, it is the total number of hydroxy groups obtained by subtracting the total number of hydroxy groups of the monohydroxy compound from the total number of hydroxy groups of all the raw materials of polyurethane (a) (that is, the raw material of polyurethane (a)).
  • the total number of isocyanato groups contained in all the raw materials of polyurethane (a) may be smaller or the same as the total number of hydroxy groups contained in a compound having two or more hydroxy groups in one molecule. , Or more.
  • the excess monohydroxy compound may be used as it is as a part of the solvent. Alternatively, it may be removed by an operation such as distillation.
  • the reason why the monohydroxy compound is used as the raw material of the polyurethane (a) is to suppress the increase in the molecular weight of the polyurethane (a) (that is, to stop the polymerization reaction), and to add the monohydroxy compound in the reaction solution at 30 ° C. or higher and 150 ° C. or higher. Add in small portions at ° C. or lower, preferably 70 ° C. or higher and 140 ° C. or lower, and then hold at the above temperature to complete the reaction.
  • a monoisocyanate compound may be used as a raw material for the polyurethane (a) in order to adjust the molecular weight of the polyurethane (a).
  • the total number of hydroxy groups of the polyurethane (a) is larger than the total number of hydroxy groups of all the raw materials of the polyurethane (a) so that the molecular end of the polyurethane (a) at the time of adding the monoisocyanate compound becomes a hydroxy group.
  • the total number of isocyanato groups obtained by subtracting the total number of isocyanato groups contained in the monoisocyanate compound from the total number of isocyanato groups contained in the raw material (that is, the compound having two or more isocyanato groups in one molecule which is the raw material of the polyurethane (a)) has. It is necessary to reduce the total number of isocyanato groups).
  • the temperature of the polyurethane solution during polyurethane production is set to 30 ° C. or higher and 150 ° C. or lower, preferably 70 ° C. or higher and 140 ° C. or lower, and then the monoisocyanate compound is added little by little to the polyurethane solution and then maintained at the above temperature. To complete the reaction.
  • the blending amount of each component of the raw material is preferably as follows.
  • the type of the solvent (b), which is one of the essential components of the curable resin composition of the present embodiment, is not particularly limited as long as the polyurethane (a) can be dissolved, but for example, diethylene glycol dimethyl ether, etc.
  • Ether-based solvent can be mentioned.
  • Examples of the solvent (b) include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, and dipropylene glycol monoethyl ether acetate.
  • Examples thereof include ester solvents such as diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, and ⁇ -butyrolactone.
  • examples of the solvent (b) include hydrocarbon solvents such as decahydronaphthalene and ketone solvents such as cyclohexanone. One of these solvents may be used alone, or two or more of these solvents may be used in combination.
  • ⁇ -butyrolactone, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate and diethylene glycol monomethyl ether acetate are preferable, and ⁇ -butyrolactone and diethylene glycol are preferable in consideration of the balance between printability during screen printing and solvent volatility. More preferably, monoethyl ether acetate and diethylene glycol diethyl ether are a single solvent of ⁇ -butyrolactone, a mixed solvent of ⁇ -butyrolactone and diethylene glycol monoethyl ether acetate, a mixed solvent of ⁇ -butyrolactone and diethylene glycol diethyl ether, and ⁇ -. A three-kind mixed solvent of butyrolactone, diethylene glycol monoethyl ether acetate, and diethylene glycol diethyl ether is more preferable.
  • a combination of these preferable solvents is suitable because it is excellent as a solvent for screen printing ink.
  • the synthetic solvent used in producing the polyurethane (a) can be used as it is. This is preferable in terms of process because the curable resin composition of the present embodiment can be easily produced.
  • the content of the solvent (b) in the curable resin composition of the present embodiment is preferably 25% by mass or more and 75% by mass or less, preferably 35% by mass, based on the total amount of the curable resin composition of the present embodiment. More preferably, it is% or more and 65% by mass or less.
  • the total amount of the curable resin composition of the present embodiment is the total amount of the polyurethane (a), the solvent (b), and the epoxy compound (c) having two or more epoxy groups in one molecule. is there.
  • the curable resin composition of the present embodiment contains other components such as fine particles (d) described later, the total amount of the curable resin composition of the present embodiment is the polyurethane (a).
  • the viscosity of the curable resin composition is determined by the screen printing method.
  • the viscosity is good for printing, and the spread of the curable resin composition due to bleeding after screen printing is not so large.
  • the phenomenon that the printed area of the curable resin composition actually printed is larger than the portion where the curable resin composition is to be coated (that is, the shape of the printing plate) is less likely to occur, which is preferable.
  • Epoxy compound having two or more epoxy groups in one molecule (c)
  • the epoxy compound (c) which is one of the essential components of the curable resin composition of the present embodiment, reacts with functional groups such as carboxy group and hydroxy group contained in polyurethane (a) and is cured in the curable resin composition. It functions as an agent. Since the functional groups such as the carboxy group and the hydroxy group of the polyurethane (a) have reactivity with the epoxy group, they react with the epoxy group of the epoxy compound (c).
  • the type of the epoxy compound (c) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, and examples thereof include a novolak type epoxy resin obtained by epoxidizing a novolak resin.
  • Specific examples of the novolak type epoxy resin include phenol novolac type epoxy resin and orthocresol novolac type epoxy resin.
  • the novolak resin includes phenols such as phenol, cresol, xylenol, resorcin, and catechol, and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene, and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde. It is a resin obtained by condensing or co-condensing a compound having an aldehyde group such as the above under an acidic catalyst.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include diglycidyl ethers of phenols and glycidyl ethers of alcohols.
  • examples of the above-mentioned phenols include bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenols, and stillben-based phenols. That is, the diglycidyl ethers of these phenols are bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, biphenyl type epoxy compound, and stillben type epoxy compound.
  • examples of the alcohol include butanediol, polyethylene glycol, polypropylene glycol and the like.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid, and aniline and bis (4).
  • glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid and tetrahydrophthalic acid, and aniline and bis (4).
  • -Aminophenyl Nitrogen contained in glycidyl-type or methylglycidyl-type epoxy resins, which are compounds in which active hydrogen bonded to nitrogen atoms of methane, isocyanuric acid, etc. is replaced with glycidyl groups, and aminophenols such as p-aminophenol.
  • Examples thereof include glycidyl-type or methylglycidyl-type epoxy resins, which are compounds in which active hydrogen bonded to an atom and active hydrogen of a phenolic hydroxy group are substituted with glycidyl groups, respectively.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 2- (3).
  • 4-Epoxy) Cyclohexyl-5,5-Spiro (3,4-Epoxy) Cyclohexane-m-dioxane and other alicyclic epoxy resins can be mentioned.
  • These alicyclic epoxy resins are obtained by epoxidizing the olefin bonds of an alicyclic hydrocarbon compound having an olefin bond in the molecule.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include glycidyl ether of paraxylylene and / or metaxylylene-modified phenol resin, glycidyl ether of terpene-modified phenol resin, and dicyclopentadiene-modified phenol resin.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include a halogenated phenol novolac type epoxy resin, a hydroquinone type epoxy resin, a trimethylol propane type epoxy resin, and a linear aliphatic epoxy resin.
  • a product obtained by oxidizing an olefin bond of a linear aliphatic hydrocarbon compound having an olefin bond in the molecule with a peracid such as peracetic acid and a diphenylmethane type epoxy resin can be mentioned.
  • epoxy compound (c) having two or more epoxy groups in one molecule for example, an epoxidized product of an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin, a sulfur atom-containing epoxy resin, or a tricyclo [5.2.1.0 2,6 ]
  • an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin
  • sulfur atom-containing epoxy resin or a tricyclo [5.2.1.0 2,6 ]
  • examples thereof include diglycidyl ether of decandimethanol and an epoxy resin having an adamantan structure.
  • Examples of epoxy resins having an adamantane structure include 1,3-bis (1-adamantyl) -4,6-bis (glycidyloyl) benzene, 1- [2', 4'-bis (glycidiroyl) phenyl] adamantane, 1 , 3-Bis (4'-glycidyl phenyl) adamantane, 1,3-bis [2', 4'-bis (glycidyl phenyl) phenyl] adamantane and the like.
  • One of these epoxy compounds (c) may be used alone, or two or more thereof may be used in combination.
  • an epoxy compound having two or more epoxy groups in one molecule and having an aromatic ring structure and / or an alicyclic structure is preferable.
  • a cured product having a low water absorption rate can be obtained. Therefore, one molecule has two or more epoxy groups and has an aromatic ring structure and /.
  • a compound having two or more epoxy groups in one molecule and having a tricyclodecane structure and an aromatic ring structure is preferable.
  • Specific examples of the compound having two or more epoxy groups in one molecule and having a tricyclodecane structure and an aromatic ring structure include glycidyl ether of a dicyclopentadiene-modified phenol resin (that is, two or more in one molecule).
  • epoxy compounds having two or more epoxy groups in one molecule and having an aromatic ring structure and / or an alicyclic structure two in one molecule.
  • a compound having the above epoxy group and having an amino group and an aromatic ring structure is preferable.
  • glycidyl is an active hydrogen bonded to a nitrogen atom of aniline and bis (4-aminophenyl) methane.
  • Glycidyl-type or methylglycidyl-type epoxy resin which is a compound substituted with a group
  • glycidyl which is a compound in which active hydrogen bonded to a nitrogen atom of aminophenols and active hydrogen of a phenolic hydroxy group are each substituted with a glycidyl group.
  • Examples thereof include type or methylglycidyl type epoxy resins and compounds represented by the following chemical formula (2). Among these, the compound represented by the following chemical formula (2) is particularly preferable.
  • the preferable content of the epoxy compound (c) with respect to the content of the polyurethane (a) is a functional group (for example, a carboxy group) of the polyurethane (a) that can react with the epoxy group. It cannot be said unconditionally because it depends on the amount of.
  • the ratio of the number of functional groups capable of reacting with the epoxy group of the polyurethane (a) to the number of epoxy groups of the epoxy compound (c) is preferably in the range of 1/3 to 2/1, and more preferably in the range of 1 / 2.5 to 1.5 / 1.
  • the ratio is in the range of 1/3 to 2/1, when the curable resin composition of the present embodiment is cured, a large amount of unreacted epoxy compound does not remain. Not so many functional groups that can react with the epoxy group remain, and the functional group that can react with the epoxy group and the epoxy group in the epoxy compound can react in a well-balanced manner.
  • the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable resin composition of the present embodiment is preferably 1% by mass or more and 60% by mass or less. It is more preferably 2% by mass or more and 50% by mass or less, and further preferably 3% by mass or more and 40% by mass or less. That is, the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable resin composition of the present embodiment is 40% by mass or more and 99% by mass or less. It is more preferably 50% by mass or more and 98% by mass or less, and further preferably 60% by mass or more and 97% by mass or less.
  • the overcoat film described later is coated, which will be described later. It is possible to balance the low warpage of the flexible wiring board and the ability to suppress disconnection of the wiring.
  • Fine particles At least one kind of fine particles (d) selected from the group consisting of inorganic fine particles and organic fine particles may be added to the curable resin composition of the present embodiment.
  • the inorganic fine particles include silica (SiO 2 ), alumina (Al 2 O 3 ), titanium (TIO 2 ), titanium oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and silicon nitride (Si 3 N 4 ).
  • organic fine particles fine particles of a heat-resistant resin having an amide bond, an imide bond, an ester bond or an ether bond are preferable.
  • these resins include polyimide resins or precursors thereof, polyamideimide resins or precursors thereof, or polyamide resins from the viewpoint of heat resistance and mechanical properties.
  • silica fine particles and hydrotalcite fine particles are preferable, and the curable resin composition of the present embodiment preferably contains at least one selected from silica fine particles and hydrotalcite fine particles.
  • the silica fine particles used in the curable resin composition of the present embodiment are in the form of powder, and may be silica fine particles having a coating on the surface or silica fine particles chemically surface-treated with an organic compound.
  • the silica fine particles used in the curable resin composition of the present embodiment are not particularly limited as long as they are dispersed in the curable resin composition to form a paste, but for example, Nippon Aerosil Co., Ltd. Aerosil (trade name) provided by the company can be mentioned.
  • Silica fine particles typified by Aerosil (trade name) are sometimes used to impart printability during screen printing to a curable resin composition, and in that case, they are used for the purpose of imparting thixophilicity. Ru.
  • Hydrotalcite particles used in the curable resin composition of the present embodiment is a kind of clay minerals naturally occurring typified by Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O and the like, layered It is an inorganic compound of. Hydrotalcite can also be obtained synthetically.
  • Mg 1-x Al x (OH) 2 (CO 3 ) x / 2 ⁇ mH 2 O and the like can be obtained synthetically. That is, the hydrotalcite is Mg / Al-based layered compound, by ion exchange with carbonate groups in the interlayer, chloride ion - fixing an anion and / or sulfate ions (SO 4 2-) (Cl) Can be converted.
  • chloride ions that cause migration of copper and tin (Cl -) and trapping the sulfate ion (SO 4 2-) it is possible to improve the long-term insulation reliability of the cured product.
  • Examples of commercially available hydrotalcite products include STABIACE HT-1, STABIACE HT-7, and STABIACE HT-P of Sakai Chemical Industry Co., Ltd., and DHT-4A, DHT-4A2, and DHT-4C of Kyowa Chemical Industry Co., Ltd. Can be mentioned.
  • the mass average particle diameter of these inorganic fine particles and organic fine particles is preferably 0.01 to 10 ⁇ m, and more preferably 0.1 to 5 ⁇ m.
  • the content of the fine particles (d) in the curable resin composition of the present embodiment is 0.1 with respect to the total amount of the polyurethane (a), the solvent (b), the epoxy compound (c) and the fine particles (d). It is preferably mass% or more and 60 mass% or less, more preferably 0.5 mass% or more and 40 mass% or less, and further preferably 1 mass% or more and 20 mass% or less.
  • the content of the fine particles (d) in the curable resin composition of the present embodiment is within the above range, the viscosity of the curable resin composition is good for printing by the screen printing method, and , The spread of the curable resin composition after screen printing due to bleeding does not become so large. As a result, the phenomenon that the printed area of the curable resin composition actually printed is larger than the portion where the curable resin composition is to be coated (that is, the shape of the printing plate) is less likely to occur, which is preferable.
  • the content of the solvent (b) in the curable resin composition of the present embodiment is determined by the curable resin composition of the present embodiment. It is preferably 25% by mass or more and 75% by mass or less, preferably 30% by mass, based on the total amount of the substance, that is, the total amount of the polyurethane (a), the solvent (b), the epoxy compound (c) and the fine particles (d). It is more preferably 75% by mass or less, and further preferably 35% by mass or more and 70% by mass or less.
  • the viscosity of the curable resin composition is determined by the screen printing method.
  • the viscosity is good for printing, and the spread of the curable resin composition due to bleeding after screen printing is not so large.
  • the printed area of the curable resin composition actually printed is less likely to be larger than the portion to which the curable resin composition is to be coated (that is, the shape of the printing plate), in addition to the fact that it is unlikely to occur.
  • the printability of screen printing (good plate release, etc.) is improved.
  • the epoxy compound (with respect to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable resin composition of the present embodiment is preferably 1% by mass or more and 60% by mass or less, more preferably 2% by mass or more and 50% by mass or less, and 3% by mass or more and 40% by mass or less. More preferred. That is, the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable resin composition of the present embodiment is 40% by mass or more and 99% by mass or less. It is more preferably 50% by mass or more and 98% by mass or less, and further preferably 60% by mass or more and 97% by mass or less.
  • the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) is 1% by mass or more.
  • it is 60% by mass or less, it is possible to balance the low warpage property of the flexible wiring board described later, which is coated with the overcoat film described later, and the disconnection suppressing property of the wiring.
  • a curing accelerator (e) may be added to the curable resin composition of the present embodiment.
  • the type of the curing accelerator is not particularly limited as long as it is a compound that promotes the reaction between the functional group such as the carboxy group of the polyurethane (a) and the epoxy group of the epoxy compound (c), but the functional group is not particularly limited.
  • the group is a carboxy group, for example, the following compounds can be mentioned.
  • curing accelerators include melamine, acetoguanamine, benzoguanamine, 2,4-diamino-6-methacryloyloxyethyl-s-triazine, 2,4-methacryloyloxyethyl-s-triazine, and 2,4-diamino.
  • examples thereof include triazine compounds such as -6-vinyl-s-triazine and 2,4-diamino-6-vinyl-s-triazine / isocyanuric acid adduct.
  • curing accelerators examples include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1-benzyl-2-methyl.
  • Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-aminoethyl-2-ethyl-4-methylimidazole, 1-amino Ethyl-2-methylimidazole, 1- (cyanoethylaminoethyl) -2-methylimidazole, N- [2- (2-methyl-1-imidazolyl) ethyl] urea, 1-cyanoethyl-2-undecylimidazole, 1- Cyanoethyl-2-methylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimerite, 1-cyanoethyl-2-undecylimidazole Rium trimerite, 2,4-dia
  • examples of the curing accelerator include cycloamidine compounds such as diazabicycloalkene and salts thereof and derivatives thereof.
  • examples of the diazabicycloalkene include 1,5-diazabicyclo (4.3.0) nonene-5 and 1,8-diazabicyclo (5.4.0) undecene-7.
  • curing accelerators include triphenylphosphine, diphenyl (p-tryl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkyl alkoxyphenyl) phosphine, tris (dialkylphenyl).
  • Trisphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples include organic phosphine compounds such as alkyldiarylphosphine.
  • examples of the curing accelerator include amine compounds such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol, and dicyandiazide.
  • amine compounds such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol, and dicyandiazide.
  • One of these curing accelerators may be used alone, or two or more thereof may be used in combination.
  • melamine imidazole compound, cycloamidine compound and its derivative, phosphine compound, and amine compound are considered in consideration of both the curing promoting action and the electrical insulation performance of the cured product of the present embodiment described later.
  • melamine 1,5-diazabicyclo (4.3.0) nonen-5 and a salt thereof, 1,8-diazabicyclo (5.4.0) undecene-7 and a salt thereof are more preferable.
  • the content of the curing accelerator (e) in the curable resin composition of the present embodiment is not particularly limited as long as the curing promoting effect is exhibited, but the curing of the curable resin composition of the present embodiment is not particularly limited.
  • the curing accelerator (e) is used with the total amount of the polyurethane (a) and the epoxy compound (c) being 100 parts by mass. It is preferably blended in the range of 0.05 parts by mass or more and 5 parts by mass or less, and more preferably in the range of 0.1 parts by mass or more and 3 parts by mass or less.
  • the curable resin composition of the present embodiment can be cured in a short time, and will be described later.
  • the cured product of this embodiment and the overcoat film have good electrical insulation characteristics and water resistance.
  • the curable resin composition of the present embodiment is used, for example, as a resist ink for insulating protection of wiring. It can be used as a composition such as.
  • the curable resin composition of the present embodiment is used as a composition for resist ink for insulating and protecting wiring (that is, an overcoating agent for flexible wiring boards), the generation of bubbles during printing is prevented or suppressed.
  • the antifoaming agent (f) may be added for the purpose of
  • the type of defoaming agent is such that the generation of bubbles can be prevented or suppressed when the curable resin composition of the present embodiment is printed and applied on the surface of the flexible substrate at the time of manufacturing the flexible wiring board.
  • the following antifoaming agent is mentioned as an example, although it is not particularly limited. That is, examples of defoamers include BYK-077 (manufactured by Big Chemie Japan Co., Ltd.), SN Deformer 470 (manufactured by Sannopco Co., Ltd.), TSA750S (manufactured by Momentive Performance Materials Co., Ltd.), and silicone oil SH-203 (manufactured by Momentive Performance Materials).
  • Silicone defoamers such as Toray Dow Corning Co., Ltd., Dappo SN-348 (San Nopco Co., Ltd.), Dappo SN-354 (San Nopco Co., Ltd.), Dappo SN-368 (San Nopco Co., Ltd.), Acrylic polymerization system defoamers such as Disparon 230HF (manufactured by Kusumoto Kasei Co., Ltd.), Surfinol DF-110D (manufactured by Nisshin Chemical Industry Co., Ltd.), Surfinol DF-37 (manufactured by Nisshin Chemical Industry Co., Ltd.), etc. Examples thereof include an acetylene diol-based defoaming agent and a fluorine-containing silicone-based defoaming agent such as FA-630.
  • the content of the defoaming agent (f) in the curable resin composition of the present embodiment is not particularly limited, but is limited to polyurethane (a), solvent (b), epoxy compound (c), and fine particles ( It is preferable that the defoaming agent (f) is blended in the range of 0.01 part by mass or more and 5 parts by mass or less, with the total amount of d) being 100 parts by mass, and within the range of 0.05 parts by mass or more and 4 parts by mass or less. It is more preferable to blend in the range of 0.1 parts by mass or more and 3 parts by mass or less.
  • the curable resin composition of the present embodiment may contain a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene, if necessary.
  • a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene, if necessary.
  • a colorant such as black can be added.
  • an antioxidant such as a phenol-based antioxidant, a phosphite-based antioxidant, or a thioether-based antioxidant. It is preferably added to the curable resin composition of the embodiment. Further, a flame retardant or a lubricant can be added to the curable resin composition of the present embodiment, if necessary.
  • a part or all of the components to be blended that is, polyurethane (a), solvent (b), epoxy compound (c), fine particles (d), etc.
  • the components to be blended that is, polyurethane (a), solvent (b), epoxy compound (c), fine particles (d), etc.
  • a part of the components to be blended is mixed, the remaining components can be mixed when the curable resin composition of the present embodiment is actually used.
  • the viscosity of the curable resin composition of the present embodiment at 25 ° C. is preferably 10,000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, and more preferably 20,000 mPa ⁇ s or more and 60,000 mPa ⁇ s or less.
  • the viscosity of the curable resin composition of the present embodiment at 25 ° C. is determined by using a cone / plate viscometer (manufactured by Brookfield, model DV-II + Pro, spindle model number CPE-52). The viscosity is measured 7 minutes after the start of rotation under the condition of a rotation speed of 10 rpm.
  • thixotropy index of curable resin composition When the curable resin composition of the present embodiment is used as a composition for resist ink for insulation protection of wiring (that is, an overcoat agent for a flexible wiring board), printing of the curable resin composition of the present embodiment In order to improve the properties, it is preferable that the thixotropy index of the curable resin composition of the present embodiment is within a certain range.
  • the chixotropy index of the curable resin composition of the embodiment is preferably 1.1 or more, more preferably 1.1 or more and 3.0 or less, and 1.1 or more and 2.5 or less. It is more preferably within the range.
  • the curable resin composition of the present embodiment When the curable resin composition of the present embodiment is used as an overcoat agent for a flexible wiring board, if the chixotropy index of the curable resin composition of the present embodiment is within the range of 1.1 or more and 3.0 or less. Since the printed curable resin composition of the present embodiment does not easily flow and can be maintained in the form of a film having a constant thickness, it is easy to maintain the printed pattern.
  • a method of setting the thixotropy index of the curable resin composition to 1.1 or more a method of adjusting the thixotropy index by using the above-mentioned inorganic fine particles or organic fine particles, or a method of adjusting the thixotropy index by using a polymer additive.
  • a method of adjusting the thixotropy index using inorganic fine particles or organic fine particles is preferable.
  • the thixotropy index of the curable resin composition of the present embodiment is the ratio of the viscosity measured at a rotation speed of 1 rpm at 25 ° C. to the viscosity measured at a rotation speed of 10 rpm at 25 ° C. ([Rotation speed]. [Viscosity at 1 rpm] / [Viscosity at rotation speed of 10 rpm]). These viscosities can be measured using a cone / plate viscometer (Brookfield, model DV-II + Pro, spindle model number CPE-52).
  • the cured product of the present embodiment is a cured product obtained by curing the curable resin composition of the present embodiment.
  • the method for curing the curable resin composition of the present embodiment is not particularly limited, and it can be cured by heat or active energy rays (for example, ultraviolet rays, electron beams, X-rays). Therefore, a polymerization initiator such as a thermal radical generator or a photoradical generator may be added to the curable resin composition of the present embodiment.
  • the cured product of this embodiment can be used as an insulating protective film (overcoat film).
  • the cured product of this embodiment can be used as an insulating protective film for wiring by covering all or part of the wiring of a flexible wiring board such as a chip-on film (COF).
  • COF chip-on film
  • the overcoat film containing the cured product of the present embodiment is formed on the surface of the flexible substrate, it is possible to form a flexible wiring board having both excellent low warpage property and wire disconnection suppressing property. Further, since the cured product of the present embodiment has low stringiness and excellent defoaming property of the curable resin composition of the present embodiment, it can be produced with excellent workability and productivity. Further, the cured product of the present embodiment has good low warpage, flexibility, and moisture resistance, and also has excellent long-term insulation reliability. Further, the cured product of the present embodiment has good adhesion to a base material such as a flexible substrate. Further, the cured product of the present embodiment is less likely to cause a tack phenomenon on the surface.
  • Overcoat film and flexible wiring board and method for manufacturing the overcoat film of the present embodiment is a film containing a cured product of the present embodiment, and is manufactured by curing the curable resin composition of the present embodiment. Can be done. More specifically, the overcoat film of the present embodiment is formed by applying the curable resin composition of the present embodiment to all or a part of the surface of the flexible substrate on which the wiring is formed. It can be produced by curing the film-like curable resin composition by heating or the like to obtain a film-like cured product.
  • the overcoat film of this embodiment is suitable as an overcoat film for a flexible wiring board.
  • the flexible wiring board of the present embodiment all or a part of the surface of the flexible substrate on which the wiring is formed is covered with an overcoat film.
  • the flexible wiring board of the present embodiment can be manufactured from the curable resin composition of the present embodiment and a flexible substrate. More specifically, the flexible wiring board of the present embodiment is formed by applying the curable resin composition of the present embodiment to all or a part of the surface of the flexible substrate on which the wiring is formed. It can be produced by curing the film-like curable resin composition to form an overcoat film.
  • the wiring covered with the overcoat film is preferably tin-plated copper wiring in consideration of antioxidant and economical aspects of the wiring.
  • the overcoat film and the flexible wiring board of the present embodiment can be formed, for example, through the following steps 1, 2, and 3.
  • Step 1 A printing step of forming a printing film on the wiring pattern portion by printing the curable resin composition of the present embodiment on at least a part of the wiring pattern portion of the flexible substrate.
  • Step 2 A solvent removing step of evaporating part or all of the solvent in the printing film by placing the printing film obtained in step 1 in an atmosphere of 40 to 100 ° C.
  • Step 3) A curing step of forming an overcoat film by curing the printing film obtained in step 1 or the printing film obtained in step 2 by heating at 100 to 170 ° C.
  • the printing method of the curable resin composition in step 1 is not particularly limited.
  • the curable resin composition of the present embodiment can be applied to a flexible substrate by a screen printing method, a roll coater method, a spray method, a curtain coater method, or the like.
  • a printed film can be obtained by coating.
  • Step 2 is an operation performed as needed, and step 3 may be performed immediately after step 1, and the curing reaction and solvent removal may be performed simultaneously in step 3.
  • the temperature is preferably 40 ° C. or higher and 100 ° C. or lower, and 60 ° C. or higher and 100 ° C. or lower, in consideration of the evaporation rate of the solvent and the rapid transition to the thermosetting operation.
  • the temperature is 70 ° C. or higher and 90 ° C. or lower.
  • the time for evaporating the solvent in step 3 and step 2 is not particularly limited, but is preferably 10 minutes or more and 120 minutes or less, and more preferably 20 minutes or more and 100 minutes or less.
  • the thermosetting temperature in step 3 is preferably 105 ° C. or higher and 160 ° C. or lower from the viewpoint of preventing diffusion of the plating layer and imparting low warpage and flexibility suitable as a protective film to the overcoat film. , 110 ° C. or higher and 150 ° C. or lower is more preferable.
  • the thermosetting time performed in the step 3 is not particularly limited, but is preferably 10 minutes or more and 150 minutes or less, and more preferably 15 minutes or more and 120 minutes or less.
  • the flexible wiring board of the present embodiment is also excellent in flexibility and flexibility, and the flexible wiring board is shaken. Even so, it is difficult for wiring to break (excellent in suppressing wiring breaks). Therefore, the flexible wiring board of the present embodiment is less likely to cause cracks, and is suitable for a flexible printed wiring board used in a technique such as chip-on-film (COF).
  • COF chip-on-film
  • the flexible wiring board of the present embodiment since the curable resin composition of the present embodiment is less likely to shrink during curing, the flexible wiring board of the present embodiment has a small warp. Therefore, in the process of mounting the IC chip on the flexible wiring board of the present embodiment, it is easy to align the mounting position of the IC chip. Further, since the overcoat film has excellent long-term insulation reliability, the flexible wiring board of the present embodiment also has excellent long-term insulation reliability.
  • polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal
  • 122.1 g of polyester diol made from acid 12.9 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
  • the viscosity of the obtained polyurethane solution A1 was 133000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A1 (hereinafter referred to as “polyurethane AU1”) is 8000, the weight average molecular weight (Mw) is 74000, and the z average molecular weight (Mz). ) Is 658600, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 8.9.
  • the acid value of polyurethane AU1 was 25.0 mgKOH / g.
  • the aromatic ring concentration was 3.21 mmol / g.
  • the solid content concentration in the polyurethane solution A1 was 40.5% by mass.
  • polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal.
  • polyester diol made from acid, 11.8 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
  • Methylethyloxime (Ube Kosan Co., Ltd.) (Manufactured) 1.7 g was added dropwise to the reaction solution, and the reaction was further carried out at 80 ° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as "polyurethane solution A2") was obtained. After cooling the polyurethane solution A2 to room temperature, 45.1 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • polyurethane solution A2 After cooling the polyurethane solution A2 to room temperature, 45.1 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • the viscosity of the obtained polyurethane solution A2 was 131000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A2 (hereinafter referred to as "polyurethane AU2") is 10,000, the weight average molecular weight (Mw) is 61,000, and the z average molecular weight (Mz). ) Is 359,900, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 5.9.
  • the acid value of polyurethane AU2 was 23.9 mgKOH / g.
  • the aromatic ring concentration was 2.51 mmol / g.
  • the solid content concentration in the polyurethane solution A2 was 42.5% by mass.
  • polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal
  • polyester diol made from acid, 12.8 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
  • Methylethyloxime (Ube Kosan Co., Ltd.) (Manufactured) 2.0 g was added dropwise to the reaction solution, and the reaction was further carried out at 80 ° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as "polyurethane solution A3") was obtained. After cooling the polyurethane solution A3 to room temperature, 45.5 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • polyurethane solution A3 After cooling the polyurethane solution A3 to room temperature, 45.5 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • the viscosity of the obtained polyurethane solution A3 was 150,000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group (hereinafter referred to as "polyurethane AU3") contained in the polyurethane solution A3 is 12000, the weight average molecular weight (Mw) is 57,000, and the z average molecular weight (Mz). ) Is 221730, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 3.89.
  • the acid value of polyurethane AU3 was 24.8 mgKOH / g.
  • the aromatic ring concentration was 2.73 mmol / g.
  • the solid content concentration in the polyurethane solution A3 was 44.5% by mass.
  • polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal
  • polyester diol made from acid, 12.9 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
  • Methylethyloxime (Ube Kosan Co., Ltd.) (Manufactured) 2.1 g was added dropwise to the reaction solution, and the reaction was further carried out at 80 ° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as "polyurethane solution A4") was obtained. After cooling the polyurethane solution A4 to room temperature, 45.6 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • polyurethane solution A4 After cooling the polyurethane solution A4 to room temperature, 45.6 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • the viscosity of the obtained polyurethane solution A4 was 166000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group (hereinafter referred to as "polyurethane AU4") contained in the polyurethane solution A4 is 12600, the weight average molecular weight (Mw) is 59000, and the z average molecular weight (Mz). ) Is 248,390, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 4.21.
  • the acid value of polyurethane AU4 was 25.1 mgKOH / g.
  • the aromatic ring concentration was 2.77 mmol / g.
  • the solid content concentration in the polyurethane solution A4 was 41.2% by mass.
  • polyester diol Polylite (registered trademark) OD-X-2900 manufactured by DIC Co., Ltd., hydroxyl value 53.4 mgKOH / g, 1,6-hexanediol and anhydrous phthal
  • polyester diol made from acid, 12.9 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
  • Methylethyloxime (Ube Kosan Co., Ltd.) (Manufactured) 2.0 g was added dropwise to the reaction solution, and the reaction was further carried out at 80 ° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as "polyurethane solution A5") was obtained. After cooling the polyurethane solution A5 to room temperature, 45.4 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • polyurethane solution A5 After cooling the polyurethane solution A5 to room temperature, 45.4 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • the viscosity of the obtained polyurethane solution A5 was 106000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A5 (hereinafter referred to as "polyurethane AU5") is 8300, the weight average molecular weight (Mw) is 95,000, and the z average molecular weight (Mz). ) Is 263150, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 2.77.
  • the acid value of polyurethane AU5 was 24.7 mgKOH / g.
  • the aromatic ring concentration was 2.69 mmol / g.
  • the solid content concentration in the polyurethane solution A5 was 38.7% by mass.
  • polyester diol Polylite (registered trademark) HS-2H-209P manufactured by DIC Co., Ltd., hydroxyl value 28.8 mgKOH / g, 1,6-hexanediol and anhydrous phthal. 121.5 g of polyester diol made from acid, 12.9 g of 2,2-dimethylol propanoic acid (manufactured by Nippon Kasei Co., Ltd.), which is a carboxy group-containing diol, and diols other than polyester diol and carboxy group-containing diol.
  • Methylethyloxime (Ube Kosan Co., Ltd.) (Manufactured) 1.7 g was added dropwise to the reaction solution, and the reaction was further carried out at 80 ° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as "polyurethane solution A6") was obtained. After cooling the polyurethane solution A6 to room temperature, 45.0 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • polyurethane solution A6 After cooling the polyurethane solution A6 to room temperature, 45.0 g of ⁇ -butyrolactone and 43.8 g of diethylene glycol diethyl ether were added to adjust the viscosity.
  • the viscosity of the obtained polyurethane solution A6 was 123000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A6 (hereinafter referred to as "polyurethane AU6") is 10500, the weight average molecular weight (Mw) is 89000, and the z average molecular weight (Mz). ) Is 335530, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 3.77.
  • the acid value of polyurethane AU6 was 25.1 mgKOH / g.
  • the aromatic ring concentration was 1.64 mmol / g.
  • the solid content concentration in the polyurethane solution A6 was 41.2% by mass.
  • the temperature was lowered to 120 ° C. when the amount of distilled water reached 18 g, and the reaction was stopped.
  • a polyester diol PE1 having a fluorene skeleton was obtained.
  • the hydroxyl value of the obtained polyester diol PE1 was measured, the hydroxyl value was 60.0 mgKOH / g. Therefore, the number average molecular weight of the polyester diol PE1 is 3360.
  • the viscosity of the obtained polyurethane solution A7 was 77,000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A7 (hereinafter referred to as "polyurethane AU7") is 12000, the weight average molecular weight (Mw) is 78,000, and the z average molecular weight (Mz). ) Is 399,360, and the parameter Mz / Mw representing the spread of the molecular weight distribution was calculated to be 5.12.
  • the acid value of polyurethane AU7 was 25.0 mgKOH / g.
  • the aromatic ring concentration was 1.88 mmol / g.
  • the solid content concentration in the polyurethane solution A7 was 43.2% by mass.
  • Table 1 The data for polyurethanes AU1 to AU7 are summarized in Table 1.
  • the number average molecular weight, weight average molecular weight, and z average molecular weight of the synthesized polyurethane are polystyrene-equivalent number average molecular weight (Mn), weight average molecular weight (Mw), and z average molecular weight (Mz) measured by GPC.
  • Mn polystyrene-equivalent number average molecular weight
  • Mw weight average molecular weight
  • Mz z average molecular weight
  • the viscosity of the polyurethane solution was measured using a cone / plate viscometer (manufactured by Brookfield, model DV-II + Pro, spindle model number CPE-52) at a temperature of 25.0 ° C. and a rotation speed of 5 rpm. The measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Moreover, in the measurement of the viscosity, about 0.8 g of the polyurethane solution was used.
  • an antifoaming agent manufactured by Momentive Performance Materials, trade name TSA750S
  • TSA750S a spatula
  • the same operations as for the main agent formulation C1 were carried out except that the type of the polyurethane solution was changed from the polyurethane solution A1 to any of the polyurethane solutions A2 to A7 to obtain the main agent formulations C2 to C7, respectively.
  • ⁇ Manufacturing of curable resin composition 90 parts by mass of the main agent formulation C1 and 4.0 parts by mass of the curing agent solution E1 were placed in a plastic container, and 5.0 parts by mass of diethylene glycol diethyl ether and 1.5 parts by mass of diethylene glycol ethyl ether acetate were added as solvents. ..
  • the curable resin composition F1 was obtained by stirring with a spatula at room temperature for 5 minutes.
  • Curable resin compositions F2 to F7 were obtained in the same manner as in the case of the curable resin composition F1 except that any of the main agent formulations C2 to C7 was used instead of the main agent formulation C1 (Table 2). See). Further, the curable resin compositions F8 and F9 were obtained in the same manner as in the case of the curable resin composition F1 except that the curing agent solution E2 or the curing agent solution E3 was used instead of the curing agent solution E1. See Table 2).
  • the curable resin composition was applied onto the flexible wiring board by a screen printing method.
  • the thickness of the film of the printed curable resin composition was set so that the thickness of the film of the curable resin composition on the polyimide surface after drying was 10 ⁇ m.
  • the flexible wiring plate thus obtained was placed in a hot air circulation dryer having a temperature of 80 ° C. for 30 minutes, and then placed in a hot air circulation dryer having a temperature of 120 ° C. for 120 minutes to cure the flexible wiring plate formed on the flexible wiring plate.
  • the film of the sex resin composition was cured.
  • a MIT test was performed by the method described in JIS C5016 to evaluate the disconnection inhibitory property of the wiring of the flexible wiring board.
  • the test conditions for the MIT test are as follows.
  • the substrate coated with the curable resin composition thus obtained is placed in a hot air circulation dryer having a temperature of 80 ° C. for 30 minutes, and then placed in a hot air circulation dryer having a temperature of 120 ° C. for 60 minutes. ,
  • the coating film of the curable resin composition formed on the substrate was cured.
  • the base material having the cured product film was cut with a circle cutter to obtain a circular base material having a cured product film and having a diameter of 50 mm (hereinafter referred to as “substrate”).
  • substrate exhibits a deformation in which the vicinity of the center warps in a convex or concave shape.
  • the substrate is placed on a flat plate in a downwardly convex state. That is, the convex portion near the center of the warped substrate is placed on the flat plate with the convex portion facing downward so that the convex portion of the warped substrate is in contact with the horizontal plane of the flat plate. Then, the distance of the portion of the peripheral edge of the warped substrate farthest from the horizontal plane of the flat plate and the distance of the closest portion were measured, the average value was obtained, and the warpage property was evaluated by this average value. The results are shown in Table 2.
  • the numerical values shown in Table 2 indicate the direction of warpage, and when the substrate is allowed to stand in a downwardly convex state, if the film of the cured product is on the upper side with respect to the polyimide base material, it is "+", and on the lower side. If it becomes, it is set to "-". Then, the case where the size of the warp was more than -3.0 mm + less than 3.0 mm was regarded as acceptable.
  • the curable resin composition was applied onto the flexible wiring board by a screen printing method.
  • the thickness of the film of the printed curable resin composition was set so that the thickness of the film of the curable resin composition on the polyimide surface after drying was 15 ⁇ m.
  • the flexible wiring plate thus obtained was placed in a hot air circulation dryer having a temperature of 80 ° C. for 30 minutes, and then placed in a hot air circulation dryer having a temperature of 120 ° C. for 120 minutes to cure the flexible wiring plate formed on the flexible wiring plate.
  • the film of the sex resin composition was cured.
  • a film of the cured product was cut out with a cutter knife to prepare a strip-shaped sample having a length of 3 cm and a width of 5 mm. Then, this sample is packed in a glass sample tube having a diameter of 10 mm so that the total mass is about 500 mg, and the glass sample tube is installed in the pulse nuclear magnetic resonance device so that the sample is located in the coil portion of the pulse nuclear magnetic resonance device. did. Measurements were performed on the three samples under the following conditions, curve fitting (Mono-exponential) was performed on the free induction decay signal f (t) obtained by the measurement, and the spin-lattice relaxation time T1 was calculated. The results are shown in Table 2.
  • a (1), A (2), T2 (1), T2 (2), and T2 (3) were obtained by curve fitting. Further, from the obtained A (1), A (2), T2 (1), and T2 (2), the value of [A (1) ⁇ T2 (1) + A (2) ⁇ T2 (2)] is obtained. Calculated. These results are shown in Table 2.
  • the film containing the cured product of the curable resin compositions F1 to F9 is useful as an insulating protective film for a flexible wiring board.
  • the flexible wiring board having an overcoat film containing the cured products of the curable resin compositions F1 to F9 has excellent low warpage, so that the processability is improved in the printing process and the curing process.
  • the alignment accuracy of the mounting position of the IC chip is improved, so that the yield in the manufacturing process is increased.
  • the flexible wiring boards 1 and 2 were insufficient in low warpage property and wire disconnection suppression property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Epoxy Resins (AREA)

Abstract

フレキシブル配線板に反りを生じさせにくい性能及びフレキシブル配線板の配線の断線を抑制する性能が優れている硬化物を提供する。硬化性樹脂組成物の硬化物は、パルス核磁気共鳴法により測定周波数20MHzにて測定された、プロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)を、下記数式で近似した場合に、前記数式中のA(1)、A(2)、T2(1)、及びT2(2)から算出される[A(1)×T2(1)+A(2)×T2(2)]の値が0.015ms以下であり、且つ、T2(3)が0.50ms以上である。

Description

硬化物、オーバーコート膜、及びフレキシブル配線板
 本発明は、硬化物、オーバーコート膜、及びフレキシブル配線板に関する。
 フレキシブル配線板には、表面保護のためにオーバーコート膜が被覆される。このオーバーコート膜は、配線が形成されたフレキシブル基板の表面に硬化性樹脂組成物を印刷法等によって塗工し硬化させることによって形成される。フレキシブル配線板に形成される回路の微細配線加工化、モジュールの軽量小型化に伴い、オーバーコート膜を形成するための硬化性樹脂組成物には、従来に比べて、フレキシブル基板に反りを生じさせにくい性能が求められている。フレキシブル基板に反りが生じると、フレキシブル配線板にICチップを搭載する実装工程において、ICチップの搭載位置の位置合わせ精度に悪影響が生じるため、製造プロセスにおける歩留まりが低くなるおそれがある。
 電子機器等に用いられるフレキシブル配線板のオーバーコート膜を形成するための硬化性樹脂組成物が従来多数提案されており、例えば特許文献1には、ジイソシアネート化合物と複数種のジオール化合物とを反応させて得られるポリウレタンを含有する硬化性樹脂組成物が開示されている。特許文献1に開示の硬化性樹脂組成物を用いれば、低反り性、可撓性、長期絶縁信頼性、及び配線の断線抑制性に優れたフレキシブル配線板用オーバーコート膜を得ることができる。
国際公開第2017/110591号
 しかしながら、セミアディティブ法の発展に伴いフレキシブル配線板の配線間距離(ピッチ)の更なる狭小化(例えば20μm以下)が予想されているため、フレキシブル配線板の低反り性、及び、フレキシブル配線板の配線の断線抑制性については、さらなる向上が望まれていた。
 本発明は、低反り性(以下、フレキシブル配線板に反りを生じさせにくい性能及びフレキシブル配線板の反りが小さい性能を「低反り性」と記すこともある)及び配線の断線抑制性(以下、フレキシブル配線板の配線の断線を抑制する性能及びフレキシブル配線板の配線の断線が生じにくい性能を「配線の断線抑制性」と記すこともある)が優れている硬化物、オーバーコート膜、及びフレキシブル配線板を提供することを課題とする。
 本発明の一態様は、以下の[1]~[17]の通りである。
[1] 硬化性樹脂組成物の硬化物であって、パルス核磁気共鳴法により測定周波数20MHzにて測定された、プロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)を、下記数式で近似した場合に、前記数式中のA(1)、A(2)、T2(1)、及びT2(2)から算出される[A(1)×T2(1)+A(2)×T2(2)]の値が0.015ms以下であり、且つ、T2(3)が0.50ms以上である硬化物。
Figure JPOXMLDOC01-appb-M000002
 ここで、4つの項からなる前記数式の第4項の(offset)はオフセット項である。また、前記数式中のA(1)、A(2)、A(3)は、それぞれ定数であり、A(1)+A(2)+A(3)=1である。前記数式中のT2(1)、T2(2)、T2(3)は、それぞれスピン-スピン緩和時間T2であり、T2(1)<T2(2)<T2(3)である。さらに、前記数式中のW(1)、W(2)、W(3)はそれぞれワイブル係数であり、1以上2以下の数である。さらに、前記数式中のtは時間であり、expはネイピア数eを底とする指数関数である。
[2] 前記硬化性樹脂組成物が、エポキシ基との反応性を有する官能基を備えるポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を含有する[1]に記載の硬化物。
[3] 前記ポリウレタン(a)は、ポリエステル構造及びポリカーボネート構造の少なくとも一方を有する第1のウレタン構造単位、並びに、カルボキシ基を有する第2のウレタン構造単位のうち少なくとも一方のウレタン構造単位を有する[2]に記載の硬化物。
[4] 前記ポリウレタン(a)は、フルオレン構造を有する第3のウレタン構造単位をさらに有する[3]に記載の硬化物。
[5] 前記ポリウレタン(a)は、trans型の1,4-シクロヘキサンジメチレン基を有する[2]~[4]のいずれか一項に記載の硬化物。
[6] 前記ポリウレタン(a)の数平均分子量が10000以上50000以下である[2]~[5]のいずれか一項に記載の硬化物。
[7] 前記ポリウレタン(a)の酸価が10mgKOH/g以上70mgKOH/g以下である[2]~[6]のいずれか一項に記載の硬化物。
[8] 前記ポリウレタン(a)の芳香環濃度が0.1mmol/g以上5.0mmol/g以下である[2]~[7]のいずれか一項に記載の硬化物。
[9] 前記硬化性樹脂組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である[2]~[8]のいずれか一項に記載の硬化物。
[10] 前記硬化性樹脂組成物が、無機微粒子及び有機微粒子からなる群より選ばれる少なくとも1種の微粒子(d)をさらに含有する[2]~[9]のいずれか一項に記載の硬化物。
[11] 前記微粒子(d)がシリカ微粒子を含む[10]に記載の硬化物。
[12] 前記微粒子(d)がハイドロタルサイト微粒子を含む[10]に記載の硬化物。
[13] 前記硬化性樹脂組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下、前記ポリウレタン(a)と前記溶剤(b)と前記エポキシ化合物(c)と前記微粒子(d)との総量に対する前記微粒子(d)の含有量の割合が0.1質量%以上60質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である[10]~[12]のいずれか一項に記載の硬化物。
[14] [1]~[13]のいずれか一項に記載の硬化物を製造する方法であって、前記硬化性樹脂組成物を熱又は活性エネルギー線によって硬化させる硬化物の製造方法。
[15] [1]~[13]のいずれか一項に記載の硬化物を含有するオーバーコート膜。
[16] 配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分が、[15]に記載のオーバーコート膜によって被覆されたフレキシブル配線板。
[17] 前記配線が錫メッキ銅配線である[16]に記載のフレキシブル配線板。
 本発明に係る硬化物、オーバーコート膜、及びフレキシブル配線板は、低反り性及び配線の断線抑制性が優れている。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本発明者らは、上記課題を解決するべく、硬化性樹脂組成物を硬化させて得た硬化物について鋭意研究を重ねたところ、パルス核磁気共鳴法により測定したプロトンのスピン-スピン緩和時間T2の自由誘導減衰シグナルf(t)が特定の結果を示す硬化物が、低反り性及び配線の断線抑制性が優れていることを見出し、本発明を完成するに至った。
 すなわち、本実施形態の硬化物は、硬化性樹脂組成物の硬化物であって、パルス核磁気共鳴法により測定周波数20MHzにて測定された、プロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)を、下記数式で近似した場合に、該数式中のA(1)、A(2)、T2(1)、及びT2(2)から算出される[A(1)×T2(1)+A(2)×T2(2)]の値が0.015ms以下であり、且つ、T2(3)が0.50ms以上である。[A(1)×T2(1)+A(2)×T2(2)]の値は、好ましくは0.002ms以上0.013ms以下である。T2(3)は、好ましくは0.70ms以上2.00ms以下である。
Figure JPOXMLDOC01-appb-M000003
 ここで、4つの項からなる前記数式の第4項の(offset)はオフセット項である。また、前記数式中のA(1)、A(2)、A(3)は、それぞれ定数であり、A(1)+A(2)+A(3)=1である。前記数式中のT2(1)、T2(2)、T2(3)は、それぞれスピン-スピン緩和時間T2であり、T2(1)<T2(2)<T2(3)である。さらに、前記数式中のW(1)、W(2)、W(3)はそれぞれワイブル係数であり、1以上2以下の数である。さらに、前記数式中のtは時間であり、expはネイピア数eを底とする指数関数である。
 前記の近似は、硬化物の磁化強度の自由誘導減衰シグナルf(t)を、3種の異なるスピン-スピン緩和時間T2を示す曲線の合成で近似したものであり、以下のように解釈できる。すなわち、前記数式の第1項、第2項、及び第3項は、分子運動性が相対的に異なる3つの成分の性質を示す項であって、T2(1)<T2(2)<T2(3)であることから、分子運動性が低いものから順に表している。すなわち、第1項は、分子運動性が低いハード部の性質を示す項であり、第3項は、分子運動性が高いソフト部の性質を示す項であり、第2項は、前記ハード部と前記ソフト部の間の分子運動性を有する中間部の性質を示す項である。
 つまり、自由誘導減衰シグナルf(t)の減衰が相対的に最も速い項が第1項であり、相対的に最も遅い項が第3項であり、その中間の速さの項が第2項であり、それら3つの成分を合成して硬化物の特性を前記の近似式で表すこととなる。言い換えれば、硬化物の特性を前記3つの項に分解した近似式で表しているとも言える。
 また、前記数式中のA(1)、A(2)、A(3)は、硬化物におけるハード部、中間部、ソフト部の成分比率を示す定数である。前記数式中のT2(1)、T2(2)、T2(3)は、ハード部、中間部、ソフト部のスピン-スピン緩和時間T2である。さらに、前記数式中のW(1)、W(2)、W(3)はハード部、中間部、ソフト部のワイブル係数である。
 上記構成であれば、本実施形態の硬化物は、可撓性が良好であるため、低反り性及び配線の断線抑制性が優れている。また、本実施形態の硬化物を含有する本実施形態のオーバーコート膜は、低反り性及び配線の断線抑制性が優れている。さらに、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分が、本実施形態のオーバーコート膜によって被覆された本実施形態のフレキシブル配線板は、低反り性及び配線の断線抑制性が優れている。
 本実施形態においては、パルス核磁気共鳴法により測定した磁化強度の自由誘導減衰シグナルf(t)の近似から、[A(1)×T2(1)+A(2)×T2(2)]とT2(3)を得る。[A(1)×T2(1)+A(2)×T2(2)]は、硬化物のうち分子運動性が低いハード部及びハード部とソフト部の間の分子運動性を有する中間部の性質を示すので、[A(1)×T2(1)+A(2)×T2(2)]の値が小さければ、硬化物中のハード部はより硬い構造であることを意味する。また、分子運動性が高いソフト部の性質を示すT2(3)の値が大きければ、硬化物中のソフト部はより柔らかい構造であることを意味する。
 従来、硬化物(オーバーコート膜)の評価は、硬化物の耐屈曲性、反り、機械特性等を測定することにより行ってきた。硬化性樹脂組成物に含有される樹脂の種類を変化させることで、耐屈曲性を向上させたり、反りを低減させたりすることが可能であるが、行列的模索となるため、経験的な要素が多く、意図して機能を設計することは容易ではなかった。
 本発明においては、硬化物の機械的特性の指標となる硬化物中のハード部とソフト部、すなわち、硬化性樹脂組成物に含有される樹脂の分子鎖を構成するハード成分とソフト成分について、その相対量と、その硬さ及び柔らかさの程度とを、パルス核磁気共鳴法によって得られるスピン-スピン緩和時間T2を用いて定量的に評価するものである。
 そして、硬化物中のハード部をより硬くし、ソフト部をより柔らかくすることにより、硬化物及びオーバーコート膜に優れた低反り性及び配線の断線抑制性を付与するというものである。硬化物中のハード部とソフト部の定量的な評価により、従来の経験的手法に加え、意図して機能を設計することが可能となる。
 本実施形態の硬化物について、プロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)をパルス核磁気共鳴法により測定する方法は、特に限定されるものではないが、例えば、以下の方法により測定することができる。すなわち、硬化性樹脂組成物を基材等に塗工して膜状に形成し、例えば120~150℃に加熱して硬化させ、例えば厚さ20μmの膜状の硬化物を得る。そして、測定周波数20MHzでのパルス核磁気共鳴法の例えばソリッドエコー法によりプロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)を得る。
 ここで、プロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)をパルス核磁気共鳴法により測定する具体的方法の一例を、以下に示す。
 サンプルとしては、縦3cm、幅数mmの短冊状に切った試料を用いる。この試料を、質量が合計約500mgになるように直径10mmのガラス試料管内に詰め、パルス核磁気共鳴装置のコイル部に試料が位置するようにガラス試料管をパルス核磁気共鳴装置に設置する。そして、パルス核磁気共鳴装置を用い、測定核を水素原子核とし、測定温度40℃、周波数20MHz、90°パルス幅0.1sの測定条件で、測定を行う。3点の試料について測定を行い、それらの測定結果から自由誘導減衰シグナルf(t)を得る。
 まず、スピン-スピン緩和時間T2のパラメータ中のRECYCLE Delay=T1×5sを決定するために、Inversion Recovery法によってスピン-格子緩和時間T1を求める。スピン-格子緩和時間T1の測定条件の一例を、以下に示す。
  装置:Bruker社製のBiospin the minispec mq20
  測定周波数:20MHz
  温度:40℃
  パルスプログラム:T1 Inversion Recovery法(反転回復法)
  First Pulse Separation:5ms
  Final Pulse Separation:1000ms
  Recycle delay:1s
  Gain:95dB
  Data Points:20
  Delay Sampling Window:0.050ms
  Sampling Window:0.020ms
  Scan:16回
  Acquisition scale:0.3ms
 このようにして得られた信号スペクトルに対して曲線フィッティング(Mono-exponential)を行い、スピン-格子緩和時間T1を算出する。そして、算出したスピン-格子緩和時間T1に基づいてRECYCLE Delay=T1×5sを設定して、スピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)を測定する。スピン-スピン緩和時間T2の測定条件の一例を、以下に示す。
  装置:Bruker社製のBiospin the minispec mq20
  測定周波数:20MHz
  温度:40℃
  パルスプログラム:T2 ソリッドエコー法
  Recycle delay:1s
  Gain:77dB
  Data Points:100
  Scan:16回
  Acquisition scale:0.3ms
 このようにして得られた自由誘導減衰シグナルf(t)に対して曲線フィッティング(7.Gauss-Decay Extended)を行い、スピン-スピン緩和時間T2を算出する。スピン-スピン緩和時間T2の曲線フィッティング時には、指数関数/ガウシャン関数の比率又はAbragamian関数を任意で変更することにより、近似関数が得られる。
 フィッティングの計算式を前記数式とし、スピン-スピン緩和時間T2を求めることができる。フィッティングは、減衰時間tが0msから0.3msまでの範囲に対して行う。この際には、ワイブル係数をW(1)=2.0、W(2)=1.0、W(3)=1.0に設定し、前記数式のA(1)、A(2)、A(3)、T2(1)、T2(2)、T2(3)、及びoffsetを算出する。
 以下に、本実施形態の硬化物、オーバーコート膜、及びフレキシブル配線板について、さらに詳細に説明する。まず、硬化することにより本実施形態の硬化物を生成する硬化性樹脂組成物について説明する。
I.硬化性樹脂組成物
 本実施形態の硬化性樹脂組成物は、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分にオーバーコート膜を被覆したフレキシブル配線板の製造に用いられるものであり、硬化物とすることによりオーバーコート膜を形成するものである。
 本実施形態の硬化性樹脂組成物は、熱や活性エネルギー線(例えば紫外線、電子線、X線)によって硬化し硬化物を生成することができる成分を含有していれば、その組成は特に限定されるものではないが、硬化可能な樹脂を含有することが好ましい。
 例えば、本実施形態の硬化性樹脂組成物は、ポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を含有することが好ましい。上記のポリウレタン(a)、溶剤(b)、エポキシ化合物(c)について、以下に詳細に説明する。
(I-1)ポリウレタン(a)
 ポリウレタン(a)の種類は、エポキシ化合物(c)が有するエポキシ基との反応性を有する官能基を備え、エポキシ化合物(c)と反応して硬化するものであれば、特に限定されるものではない。エポキシ化合物(c)が有するエポキシ基との反応性を有する官能基としては、例えば、カルバメート基(-NHCOO-)、カルボキシ基、イソシアナト基、ヒドロキシ基、アミド基、環状酸無水物基が挙げられる。ポリウレタン(a)は、これらの官能基のうち1種類を備えていてもよいし、これらの官能基のうち2種以上を備えていてもよい。なお、環状酸無水物基とは、分子内の2つのカルボキシ基が脱水して形成された酸無水物基が環構造の一部を形成している場合に、その酸無水物基を指す。
 上記の例示した官能基の中では、エポキシ化合物(c)が有するエポキシ基との反応性を考慮すると、カルボキシ基、イソシアナト基、アミド基、環状酸無水物基が好ましい。また、ポリウレタン(a)の保存安定性とエポキシ化合物(c)が有するエポキシ基との反応性とのバランスを考慮すると、カルボキシ基、環状酸無水物基がより好ましく、カルボキシ基がさらに好ましい。ポリウレタン(a)への官能基の導入しやすさを考慮すると、カルバメート基が好ましい。ポリウレタン(a)は、これら官能基を分子末端に備えていてもよいし、分子鎖から分岐するように備えていてもよい。
 ポリウレタン(a)は、ポリエステル構造及びポリカーボネート構造の少なくとも一方を有する第1のウレタン構造単位、並びに、カルボキシ基を有する第2のウレタン構造単位のうち少なくとも一方のウレタン構造単位を分子中に有することが好ましい。
 また、ポリウレタン(a)は、第1のウレタン構造単位及び第2のウレタン構造単位のうち少なくとも一方に加えて、フルオレン構造を有する第3のウレタン構造単位をさらに有することが好ましい。
 さらに、ポリウレタン(a)は、trans型の1,4-シクロヘキサンジメチレン基を有することが好ましい。
 ポリウレタン(a)が上記のウレタン構造単位やtrans型の1,4-シクロヘキサンジメチレン基を有していれば、オーバーコート膜やフレキシブル配線板に優れた低反り性及び配線の断線抑制性を付与することができる。
 ポリウレタン(a)の合成方法は特に限定されるものではないが、例えば、ジブチル錫ジラウリレート等のウレタン化触媒の存在下又は非存在下で、1分子中に2個以上のヒドロキシ基を有するポリオール化合物(例えばジオール化合物)と1分子中に2個以上のイソシアナト基を有するポリイソシアネート化合物(例えばジイソシアネート化合物)とを、溶媒中などで重合させる方法が挙げられる。ポリオール化合物やポリイソシアネート化合物は、それぞれ1種を単独で用いてもよいし、それぞれ複数種を併用してもよい。
 なお、所望により、1分子中に1個のヒドロキシ基を有するモノヒドロキシ化合物、及び、1分子中に1個のイソシアナト基を有するモノイソシアネート化合物のうち少なくとも1種を共存させて、上記の重合反応を行ってもよい。
 また、上記の重合反応を無触媒又は少量の触媒の存在下で実施した方が、後述するオーバーコート膜の長期絶縁信頼性が向上するため好ましい。
 ポリイソシアネート化合物の種類は特に限定されるものではないが、例えば、環状脂肪族ポリイソシアネート、芳香環を有するポリイソシアネート、鎖状脂肪族ポリイソシアネート、複素環を有するポリイソシアネート等が挙げられる。
 環状脂肪族ポリイソシアネートとしては、例えば、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン(特にtrans-1,4-ビス(イソシアナトメチル)シクロヘキサン)や、ノルボルネンジイソシアネート、ノルボルナンジイソシアネート、及びイソホロンジイソシアネートのビウレット体が挙げられる。
 芳香環を有するポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネートが挙げられる。
 鎖状脂肪族ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネートのビウレット体、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートが挙げられる。
 複素環を有するポリイソシアネートとしては、例えば、イソホロンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体が挙げられる。
 これらのポリイソシアネートは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 ジオール化合物の種類は特に限定されるものではないが、好ましいジオール化合物としては、例えば、ポリエステルジオール、ポリカーボネートジオール、分子中にカルボキシ基を有するジオール(以下「カルボキシ基含有ジオール」と記すこともある)、フルオレン構造を有するジオール、フェニル基又はビフェニル基を有するジオールが挙げられる。
 ポリエステルジオールは、ジカルボン酸とジオールとのエステル化によって合成することができる。ポリエステルジオールは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 ジカルボン酸としては、例えば、オルトフタル酸、イソフタル酸、テレフタル酸、3-メチル-ベンゼン-1,2-ジカルボン酸、4-メチル-ベンゼン-1,2-ジカルボン酸、4-メチル-ベンゼン-1,3-ジカルボン酸、5-メチル-ベンゼン-1,3-ジカルボン酸、2-メチル-ベンゼン-1,4-ジカルボン酸等を挙げることができる。ジカルボン酸は、これらの中の1種を単独で使用してもよいし、2種以上を併用してもよい。
 また、ジオールとしては、例えば、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール等を挙げることができる。ジオールは、これらの中の1種を単独で使用してもよいし、2種以上を併用してもよい。
 このようなジオールを使用することにより、T2(3)の値をより大きくすることができる。
 上記のジカルボン酸の中で好ましいものは、フタル酸、イソフタル酸、テレフタル酸、3-メチル-ベンゼン-1、2-ジカルボン酸、4-メチル-ベンゼン-1、2-ジカルボン酸であり、特に好ましくはフタル酸である。
 また、上記のジオールの中で好ましいものは、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオールであり、特に好ましくは1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオールである。
 ポリエステルジオールの数平均分子量は、800以上5000以下であることが好ましく、800以上4000以下であることがより好ましく、900以上3500以下であることがさらに好ましい。
 なお、ポリオール化合物として、低分子量のポリオールを用いることもできる。例えば、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等を用いることができる。
 ポリカーボネートジオールは、ホスゲンとジオールとの重縮合反応によって合成することができる。ポリカーボネートジオールは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 ポリカーボネートジオールの原料として好適なジオールは、ポリエステルジオールの場合と同様であるので、説明は省略する。また、ポリカーボネートジオールの好適な数平均分子量も、ポリエステルジオールの場合と同様であるので、説明は省略する。
 カルボキシ基含有ジオールの種類は特に限定されるものではないが、例えば、ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、N,N-ビス(ヒドロキシエチル)グリシン、N,N-ビス(ヒドロキシエチル)グリシン等を挙げることができる。カルボキシ基含有ジオールは、これらの中の1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらのカルボキシ基含有ジオールの中では、ポリウレタン製造時の反応溶媒への溶解性の点から、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸が特に好ましい。
 フルオレン構造を有するジオールの種類は特に限定されるものではないが、好ましいものとしては、例えば、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンが挙げられる。
 フェニル基又はビフェニル基を有するジオールの種類は特に限定されるものではないが、好ましいものとしては、例えば、1,1-ジメチル-ビス[4-(2-ヒドロキシエトキシ)フェニル]メタン、ビス-4-(2-ヒドロキシエトキシ)ビフェニル、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサンが挙げられる。
 なお、[A(1)×T2(1)+A(2)×T2(2)]の値をより小さくするためには、ポリウレタン(a)として、芳香環濃度の高いジオールをモノマーとしたものを使用することが好ましく、T2(3)の値をより大きくするためには、ポリウレタン(a)として、脂肪族濃度の高いジオールをモノマーとしたものを使用することが好ましい。
 ポリウレタン(a)の数平均分子量は特に限定されるものではないが、後述する本実施形態の硬化性樹脂組成物の粘度調整の容易さを考慮すると、7000以上50000以下であることが好ましく、7500以上40000以下であることがより好ましく、8000以上30000以下であることがさらに好ましい。
 数平均分子量が上記範囲内であると、ポリウレタン(a)の溶剤溶解性が良好であるとともに、ポリウレタン溶液の粘度が高くなりにくいので、後述する硬化性樹脂組成物を後述するオーバーコート膜やフレキシブル配線板の製造に使用する際に好適である。さらに、後述する硬化物やオーバーコート膜の伸度、可撓性、及び強度が良好となりやすい。
 ここで言う「数平均分子量」とは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と記す。)で測定したポリスチレン換算の数平均分子量である。なお、本明細書においては、特に断りのない限り、GPCの測定条件は以下の通りである。
   装置名:日本分光株式会社製HPLCユニット HSS-2000
   カラム:昭和電工株式会社製ShodexカラムLF-804×3本(直列)
   移動相:テトラヒドロフラン
   流速 :1.0mL/min
   検出器:日本分光株式会社製RI-2031Plus
   温度 :40.0℃
   試料量:サンプルループ 100μL
   試料濃度:約0.1質量%
 ポリウレタン(a)の酸価は特に限定されるものではないが、10mgKOH/g以上70mgKOH/g以下であることが好ましく、15mgKOH/g以上50mgKOH/g以下であることがより好ましく、20mgKOH/g以上35mgKOH/g以下であることがさらに好ましい。
 酸価が上記範囲内であれば、ポリウレタン(a)はエポキシ基との十分な反応性を有する。よって、後述する硬化性樹脂組成物において、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)等の他の成分との反応性が不十分となりにくいので、硬化性樹脂組成物の硬化物の耐熱性が低くなりにくく、且つ、硬化性樹脂組成物の硬化物が硬く脆くなりすぎることがない。また、後述するオーバーコート膜の耐溶剤性と後述するフレキシブル配線板の反りのバランスをとることが容易になる。
 なお、本明細書においては、ポリウレタンの酸価は、JIS K0070に規定された電位差滴定法で測定された酸価の値である。
 ポリウレタン(a)の芳香環濃度は特に限定されるものではないが、0.1mmol/g以上5.0mmol/g以下であることが好ましく、0.5mmol/g以上4.5mmol/g以下であることがより好ましく、1.0mmol/g以上4.0mmol/g以下であることがさらに好ましい。
 芳香環濃度が上記範囲内であれば、後述するオーバーコート膜の耐溶剤性と後述するフレキシブル配線板の反りのバランスをとることが容易になる。また、[A(1)×T2(1)+A(2)×T2(2)]の値を、より小さくすることができる。
 なお、芳香環濃度とは、1gの化合物が有する芳香環の個数(モル数)を意味する。例えば、繰り返し単位(構造単位)の分子量が438.5のポリウレタンが繰り返し単位1個当たり芳香環(例えばフェニル基)を4個有しているとすると、このポリウレタン1g中の繰り返し単位の個数は2.28mmolなので、芳香環濃度は9.12mmol/g(4×2.28mmol/1g)となる。
 芳香環の種類は、環員数3以上の芳香族性を有する環状官能基であれば特に限定されるものではなく、例えば、フェニル基等の単環式芳香族炭化水素基、ビフェニル基、フルオレン基等の多環式芳香族炭化水素基、ナフタレン基、インデニル基等の縮合環式芳香族炭化水素基、ピリジル基等の複素芳香族炭化水素基が挙げられる。
 ただし、多環式芳香族炭化水素基、縮合環式芳香族炭化水素基のように、環状構造部位を複数有する官能基の場合は、芳香環の個数は1個ではなく環状構造部位の個数とする。例えば、フルオレン基は環状構造部位であるベンゼン環を2個有するので、繰り返し単位1個当たりフルオレン基を1個有するポリウレタンの場合であれば、ポリウレタンが有している芳香環の個数は繰り返し単位1個当たり2個とする。
 同様に、ビフェニル基やナフタレン基の場合は芳香環の個数は2個、アントラセン基やフェナントレン基の場合は芳香環の個数は3個、トリフェニレン基やビナフチル基の場合は芳香環の個数は4個とする。
 なお、芳香環濃度は、モノマーの仕込み比から算出できるが、1H-NMR、13C-NMR、IR等の分光学的手法によりポリウレタンの構造を決定した後に、1H-NMR分析により得られる積分曲線を用いて、芳香環由来のプロトン数と1個の繰り返し単位由来のプロトン数とを比較することによっても算出できる。
 ポリウレタン(a)を合成する重合反応は溶媒中で行われることがあるが、溶媒中で行われる場合に重合溶媒として使用される溶剤の種類は、ポリウレタン(a)を溶解できる溶剤であれば特に限定されない。ポリウレタン(a)を合成する際に使用される溶剤としては、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル系溶剤や、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤や、デカヒドロナフタリン等の炭化水素系溶剤や、シクロヘキサノン等のケトン系溶剤が挙げられる。これらの溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの溶剤の中では、ポリウレタンの分子量の調整の容易さ、及び、後述の硬化性樹脂組成物のスクリーン印刷時の印刷性を考慮すると、γ-ブチロラクトン、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテートが好ましく、γ-ブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテルがより好ましく、γ-ブチロラクトンの単独溶剤、γ-ブチロラクトンとジエチレングリコールモノエチルエーテルアセテートの2種混合溶剤、γ-ブチロラクトンとジエチレングリコールジエチルエーテルの2種混合溶剤、及びγ-ブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテルの3種混合溶剤がさらに好ましい。
 ポリウレタン(a)の溶液の固形分濃度は特に限定されるものではないが、10質量%以上90質量%以下が好ましく、15質量%以上70質量%以下がより好ましく、20質量%以上60質量%以下がさらに好ましい。また、固形分濃度が20質量%以上60質量%以下のポリウレタン溶液を使用して、後述の硬化性樹脂組成物を製造する場合は、ポリウレタン(a)の溶液の粘度は、実施例の項に後述する測定条件において、例えば5千mPa・s以上百万mPa・s以下であることが、均一分散の観点から好ましい。
 また、ポリウレタン(a)を合成する重合反応を行う際にモノマー等の原料を反応容器へ仕込む順序については、特に制約はないが、例えば、以下の順序で仕込んでもよい。すなわち、ジオール化合物を反応容器中で溶媒に溶解させた後に、30℃以上140℃以下で、好ましくは60℃以上120℃以下で、ジイソシアネート化合物を反応容器に少量ずつ加え、50℃以上160℃以下、好ましくは60℃以上150℃以下で、上記各モノマーを反応させ重合を行う。
 モノマーの仕込みモル比は、目的とするポリウレタン(a)の分子量及び酸価に応じて調節する。ポリウレタン(a)の分子量の調節のために、ポリウレタン(a)の原料としてモノヒドロキシ化合物を用いてもよい。その場合には、上記方法により重合中のポリウレタンの分子量が目的とする数平均分子量になったら(あるいは、目的とする数平均分子量に近づいたら)、重合中のポリウレタンの分子末端のイソシアナト基を封止し、数平均分子量の更なる上昇を抑制する目的で、モノヒドロキシ化合物を添加する。
 モノヒドロキシ化合物を使用する場合は、ポリウレタン(a)の全原料が有するヒドロキシ基の総数からモノヒドロキシ化合物が有するヒドロキシ基の総数を差し引いたヒドロキシ基の総数(すなわち、ポリウレタン(a)の原料である1分子中に2個以上のヒドロキシ基を有する化合物が有するヒドロキシ基の総数)よりも、ポリウレタン(a)の全原料が有するイソシアナト基の総数を少なくしてもよいし、同じにしてもよいし、あるいは多くしてもよい。
 過剰量のモノヒドロキシ化合物を使用した場合には、未反応のモノヒドロキシ化合物が残存する結果となるが、この場合には、過剰のモノヒドロキシ化合物をそのまま溶媒の一部として使用してもよいし、あるいは、蒸留等の操作により除去してもよい。
 モノヒドロキシ化合物をポリウレタン(a)の原料として用いるのは、ポリウレタン(a)の分子量の増大を抑制(すなわち、重合反応を停止)するためであり、反応溶液中にモノヒドロキシ化合物を30℃以上150℃以下、好ましくは70℃以上140℃以下で少量ずつ加え、その後に上記温度で保持して反応を完結させる。
 また、ポリウレタン(a)の分子量の調節のために、ポリウレタン(a)の原料としてモノイソシアネート化合物を用いてもよい。その場合には、モノイソシアネート化合物を添加する時点のポリウレタン(a)の分子末端がヒドロキシ基となるように、ポリウレタン(a)の全原料が有するヒドロキシ基の総数よりも、ポリウレタン(a)の全原料が有するイソシアナト基の総数からモノイソシアネート化合物が有するイソシアナト基の総数を差し引いたイソシアナト基の総数(すなわち、ポリウレタン(a)の原料である1分子中に2個以上のイソシアナト基を有する化合物が有するイソシアナト基の総数)を少なくする必要がある。
 ポリウレタン(a)の全原料が有するヒドロキシ基とジイソシアネート化合物のイソシアナト基との反応がほぼ終了した時点で、製造中のポリウレタン(a)の分子末端に残存しているヒドロキシ基とモノイソシアネート化合物のイソシアナト基とを反応させる。そのためには、ポリウレタン製造中のポリウレタン溶液の温度を30℃以上150℃以下、好ましくは70℃以上140℃以下とした後に、ポリウレタン溶液にモノイソシアネート化合物を少量ずつ加え、その後に上記温度に保持して反応を完結させる。
 ポリウレタン(a)を製造するに際して、原料の各成分の配合量は、以下の通りであることが好ましい。ポリウレタン(a)の原料であるジオール化合物が有するヒドロキシ基の総数と、ポリウレタン(a)の原料であるジイソシアネート化合物が有するイソシアナト基の総数との比は、ヒドロキシ基:イソシアナト基=1:0.9~0.9:1であることが好ましく、ヒドロキシ基:イソシアナト基=1:0.92~0.92:1であることがより好ましい。
(I-2)溶媒(b)
 本実施形態の硬化性樹脂組成物の必須成分の1つである溶剤(b)の種類は、ポリウレタン(a)を溶解可能であるならば特に限定されるものではないが、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル系溶剤を挙げることができる。
 また、溶剤(b)としては、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤を挙げることができる。
 さらに、溶剤(b)としては、デカヒドロナフタリン等の炭化水素系溶剤や、シクロヘキサノン等のケトン系溶剤を挙げることができる。
 これらの溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの溶剤の中では、スクリーン印刷時の印刷性及び溶剤の揮発性のバランスを考慮すると、γ-ブチロラクトン、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテートが好ましく、γ-ブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテルがより好ましく、γ-ブチロラクトンの単独溶剤、γ-ブチロラクトンとジエチレングリコールモノエチルエーテルアセテートの2種混合溶剤、γ-ブチロラクトンとジエチレングリコールジエチルエーテルの2種混合溶剤、及びγ-ブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテルの3種混合溶剤がさらに好ましい。
 これらの好ましい溶剤の組み合わせは、スクリーン印刷用インクの溶剤として優れているために好適である。
 また、本実施形態の硬化性樹脂組成物が含有する溶剤(b)の一部又は全部として、ポリウレタン(a)を製造する際に使用する合成用の溶剤をそのまま使用することが可能であり、その方が本実施形態の硬化性樹脂組成物の製造が容易となるためプロセス的に好ましい。
 本実施形態の硬化性樹脂組成物における溶剤(b)の含有量は、本実施形態の硬化性樹脂組成物の総量に対して、25質量%以上75質量%以下であることが好ましく、35質量%以上65質量%以下であることがより好ましい。ここで、本実施形態の硬化性樹脂組成物の総量とは、ポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)との総量である。ただし、本実施形態の硬化性樹脂組成物が、後述する微粒子(d)等のその他の成分を含有する場合には、本実施形態の硬化性樹脂組成物の総量とは、ポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、微粒子(d)等のその他の成分との総量である。
 溶剤(b)の含有量が、本実施形態の硬化性樹脂組成物の総量に対して25質量%以上75質量%以下の範囲内であると、硬化性樹脂組成物の粘度がスクリーン印刷法での印刷に対して良好な粘度となり、且つ、スクリーン印刷後の硬化性樹脂組成物のにじみによる広がりがそれほど大きくならない。その結果、硬化性樹脂組成物を塗工したい部位(すなわち印刷版の形状)よりも、実際に印刷した硬化性樹脂組成物の印刷面積の方が大きくなるという現象が生じにくく、好適である。
(I-3)1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)
 本実施形態の硬化性樹脂組成物の必須成分の1つであるエポキシ化合物(c)は、ポリウレタン(a)が有するカルボキシ基、ヒドロキシ基等の官能基と反応し、硬化性樹脂組成物において硬化剤として機能するものである。ポリウレタン(a)が有するカルボキシ基、ヒドロキシ基等の官能基は、エポキシ基との反応性を有するので、エポキシ化合物(c)が有するエポキシ基と反応する。
 エポキシ化合物(c)の種類は、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されるものではないが、例えば、ノボラック樹脂をエポキシ化したノボラック型エポキシ樹脂が挙げられ、ノボラック型エポキシ樹脂の具体例としては、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等が挙げられる。
 なお、ノボラック樹脂とは、フェノール、クレゾール、キシレノール、レゾルシン、カテコール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを、酸性触媒下で縮合又は共縮合させて得られる樹脂である。
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、フェノール類のジグリシジルエーテルやアルコールのグリシジルエーテルが挙げられる。ここで、上記のフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール、スチルベン系フェノール類等が挙げられる。すなわち、これらフェノール類のジグリシジルエーテルは、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビフェニル型エポキシ化合物、スチルベン型エポキシ化合物である。また、上記のアルコールとしては、ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエステル型エポキシ樹脂や、アニリン、ビス(4-アミノフェニル)メタン、イソシアヌル酸等が有する窒素原子に結合した活性水素をグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、p-アミノフェノール等のアミノフェノール類が有する窒素原子に結合した活性水素及びフェノール性ヒドロキシ基が有する活性水素をそれぞれグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂が挙げられる。
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、ビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂が挙げられる。これら脂環型エポキシ樹脂は、分子内にオレフィン結合を有する脂環式炭化水素化合物のオレフィン結合をエポキシ化して得られる。
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル、テルペン変性フェノール樹脂のグリシジルエーテル、ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテル、シクロペンタジエン変性フェノール樹脂のグリシジルエーテル、多環芳香環変性フェノール樹脂のグリシジルエーテル、ナフタレン環含有フェノール樹脂のグリシジルエーテルが挙げられる。
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、ハロゲン化フェノールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、線状脂肪族エポキシ樹脂(分子内にオレフィン結合を有する線状脂肪族炭化水素化合物のオレフィン結合を過酢酸等の過酸で酸化して得られるもの)、ジフェニルメタン型エポキシ樹脂が挙げられる。
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物や、硫黄原子含有エポキシ樹脂や、トリシクロ[5.2.1.02,6]デカンジメタノールのジグリシジルエーテルや、アダマンタン構造を有するエポキシ樹脂が挙げられる。アダマンタン構造を有するエポキシ樹脂の例としては、1,3-ビス(1-アダマンチル)-4,6-ビス(グリシジロイル)ベンゼン、1-[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン、1,3-ビス(4’-グリシジロイルフェニル)アダマンタン、及び1,3-ビス[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン等が挙げられる。
 これらのエポキシ化合物(c)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらのエポキシ化合物(c)の中でも、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物が好ましい。
 後述する本実施形態の硬化物の長期絶縁性能を重視する場合には、吸水率の低い硬化物が得られることから、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物の中でも、1分子中に2個以上のエポキシ基を有し且つトリシクロデカン構造及び芳香環構造を有する化合物が好ましい。
 1分子中に2個以上のエポキシ基を有し且つトリシクロデカン構造及び芳香環構造を有する化合物の具体例としては、ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテル(すなわち、1分子中に2個以上のエポキシ基を有し且つトリシクロ[5.2.1.02,6]デカン構造及び芳香環構造を有する化合物)や、1,3-ビス(1-アダマンチル)-4,6-ビス(グリシジロイル)ベンゼン、1-[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン、1,3-ビス(4’-グリシジロイルフェニル)アダマンタン、及び1,3-ビス[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン等のアダマンタン構造を有するエポキシ樹脂(すなわち、1分子中に2個以上のエポキシ基を有し且つトリシクロ[3.3.1.13,7]デカン構造及び芳香環構造を有する化合物)や、下記化学式(1)で表される化合物が挙げられる。これらの中では、下記化学式(1)で表される化合物が特に好ましい。なお、下記化学式(1)中のkは1以上の整数であり、好ましくは1以上10以下の整数である。
Figure JPOXMLDOC01-appb-C000004
 一方、ポリウレタンとの反応性を重視する場合には、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物の中でも、1分子中に2個以上のエポキシ基を有し且つアミノ基及び芳香環構造を有する化合物が好ましい。
 1分子中に2個以上のエポキシ基を有し且つアミノ基及び芳香環構造を有する化合物の具体例としては、アニリン、ビス(4-アミノフェニル)メタンが有する窒素原子に結合した活性水素をグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、アミノフェノール類が有する窒素原子に結合した活性水素及びフェノール性ヒドロキシ基が有する活性水素をそれぞれグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、下記化学式(2)で表される化合物が挙げられる。これらの中では、下記化学式(2)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000005
 本実施形態の硬化性樹脂組成物において、ポリウレタン(a)の含有量に対するエポキシ化合物(c)の好ましい含有量は、ポリウレタン(a)が有する、エポキシ基と反応可能な官能基(例えばカルボキシ基)の量によって異なるため、一概には言えない。
 しかし、ポリウレタン(a)が有する、エポキシ基と反応可能な官能基の数と、エポキシ化合物(c)が有するエポキシ基の数との比([エポキシ基と反応可能な官能基の数]/[エポキシ基の数])は、1/3~2/1の範囲内であることが好ましく、1/2.5~1.5/1の範囲内であることがより好ましい。
 前記比が1/3~2/1の範囲内である場合には、本実施形態の硬化性樹脂組成物を硬化させた場合に、未反応のエポキシ化合物が多く残存するようなこともなく且つエポキシ基と反応可能な官能基もそれほど多く残ることもなく、エポキシ基と反応可能な官能基とエポキシ化合物中のエポキシ基がバランスよく反応することができる。
 本実施形態の硬化性樹脂組成物中のポリウレタン(a)とエポキシ化合物(c)との総量に対するエポキシ化合物(c)の含有量の割合は、1質量%以上60質量%以下であることが好ましく、2質量%以上50質量%以下であることがより好ましく、3質量%以上40質量%以下であることがさらに好ましい。すなわち、本実施形態の硬化性樹脂組成物中のポリウレタン(a)とエポキシ化合物(c)との総量に対するポリウレタン(a)の含有量の割合は、40質量%以上99質量%以下であることが好ましく、50質量%以上98質量%以下であることがより好ましく、60質量%以上97質量%以下であることがさらに好ましい。
 ポリウレタン(a)とエポキシ化合物(c)との総量に対するエポキシ化合物(c)の含有量の割合が、1質量%以上60質量%以下であると、後述のオーバーコート膜が被覆されている後述のフレキシブル配線板の低反り性と配線の断線抑制性とのバランスをとることができる。
(I-4)微粒子(d)
 本実施形態の硬化性樹脂組成物には、無機微粒子及び有機微粒子からなる群より選ばれる少なくとも1種の微粒子(d)を添加してもよい。
 無機微粒子としては、例えば、シリカ(SiO2)、アルミナ(Al23)、チタニア(TiO2)、酸化タンタル(Ta25)、ジルコニア(ZrO2)、窒化珪素(Si34)、チタン酸バリウム(BaO・TiO2)、炭酸バリウム(BaCO3)、チタン酸鉛(PbO・TiO2)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸、ランタン鉛(PLZT)、酸化ガリウム(Ga23)、スピネル(MgO・Al23)、ムライト(3Al23・2SiO2)、コーディエライト(2MgO・2Al23・5SiO2)、タルク(3MgO・4SiO2・H2O)、チタン酸アルミニウム(TiO2-Al23)、イットリア含有ジルコニア(Y23-ZrO2)、珪酸バリウム(BaO・8SiO2)、窒化ホウ素(BN)、炭酸カルシウム(CaCO3)、硫酸カルシウム(CaSO4)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO2)、硫酸バリウム(BaSO4)、有機ベントナイト、カーボン(C)、ハイドロタルサイトなどが挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 有機微粒子としては、アミド結合、イミド結合、エステル結合又はエーテル結合を有する耐熱性樹脂の微粒子が好ましい。これらの樹脂の例としては、耐熱性及び機械特性の観点から、ポリイミド樹脂若しくはその前駆体、ポリアミドイミド樹脂若しくはその前駆体、又はポリアミド樹脂が挙げられる。
 これらの微粒子の中でもシリカ微粒子、ハイドロタルサイト微粒子が好ましく、本実施形態の硬化性樹脂組成物は、シリカ微粒子及びハイドロタルサイト微粒子から選ばれる少なくとも一方を含有することが好ましい。
 本実施形態の硬化性樹脂組成物に使用されるシリカ微粒子は、粉末状であり、表面に被覆物を設けたシリカ微粒子や有機化合物により化学的に表面処理を施したシリカ微粒子でもよい。
 本実施形態の硬化性樹脂組成物に使用されるシリカ微粒子は、硬化性樹脂組成物中で分散してペーストを形成するものであれば、特に限定されるものではないが、例えば、日本アエロジル株式会社より提供されているアエロジル(商品名)等を挙げることができる。アエロジル(商品名)に代表されるシリカ微粒子は、硬化性樹脂組成物にスクリーン印刷時の印刷性を付与するために使用されることもあり、その場合にはチクソ性の付与を目的として使用される。
 本実施形態の硬化性樹脂組成物に使用されるハイドロタルサイト微粒子は、Mg6Al2(OH)16CO3・4H2O等に代表される天然に産出する粘土鉱物の一種であり、層状の無機化合物である。また、ハイドロタルサイトは合成でも得ることができ、例えばMg1-xAlx(OH)2(CO3x/2・mH2O等は合成で得ることができる。すなわち、ハイドロタルサイトは、Mg/Al系層状化合物であり、層間にある炭酸基とのイオン交換により、塩化物イオン(Cl-)及び/又は硫酸イオン(SO4 2-)の陰イオンを固定化できる。この機能を使用して、銅や錫のマイグレーションの原因となる塩化物イオン(Cl-)や硫酸イオン(SO4 2-)を捕捉し、硬化物の長期絶縁信頼性を向上することができる。
 ハイドロタルサイトの市販品としては、例えば、堺化学株式会社のSTABIACE HT-1、STABIACE HT-7、STABIACE HT-Pや、協和化学工業株式会社のDHT-4A、DHT-4A2、DHT-4C等が挙げられる。
 これらの無機微粒子、有機微粒子の質量平均粒子径は、好ましくは0.01~10μm、さらに好ましくは0.1~5μmである。
 本実施形態の硬化性樹脂組成物中の微粒子(d)の含有量は、ポリウレタン(a)と溶剤(b)とエポキシ化合物(c)と微粒子(d)との総量に対して、0.1質量%以上60質量%以下であることが好ましく、0.5質量%以上40質量%以下であることがより好ましく、1質量%以上20質量%以下であることがさらに好ましい。
 本実施形態の硬化性樹脂組成物中の微粒子(d)の含有量が上記の範囲内であれば、硬化性樹脂組成物の粘度がスクリーン印刷法での印刷に対して良好な粘度となり、且つ、スクリーン印刷後の硬化性樹脂組成物のにじみによる広がりがそれほど大きくならない。その結果、硬化性樹脂組成物を塗工したい部位(すなわち印刷版の形状)よりも、実際に印刷した硬化性樹脂組成物の印刷面積の方が大きくなるという現象が生じにくく、好適である。
 さらに、本実施形態の硬化性樹脂組成物が微粒子(d)を含有する場合には、本実施形態の硬化性樹脂組成物における溶剤(b)の含有量は、本実施形態の硬化性樹脂組成物の総量、すなわち、ポリウレタン(a)と溶剤(b)とエポキシ化合物(c)と微粒子(d)との総量に対して、25質量%以上75質量%以下であることが好ましく、30質量%以上75質量%以下であることがより好ましく、35質量%以上70質量%以下であることがさらに好ましい。
 溶剤(b)の含有量が、本実施形態の硬化性樹脂組成物の総量に対して25質量%以上75質量%以下の範囲内であると、硬化性樹脂組成物の粘度がスクリーン印刷法での印刷に対して良好な粘度となり、且つ、スクリーン印刷後の硬化性樹脂組成物のにじみによる広がりがそれほど大きくならない。その結果、硬化性樹脂組成物を塗工したい部位(すなわち印刷版の形状)よりも、実際に印刷した硬化性樹脂組成物の印刷面積の方が大きくなるという現象が生じにくいことに加えて、スクリーン印刷の印刷性(良好な版離れ等)が良好となる。
 また、本実施形態の硬化性樹脂組成物が微粒子(d)を含有する場合でも、本実施形態の硬化性樹脂組成物中のポリウレタン(a)とエポキシ化合物(c)との総量に対するエポキシ化合物(c)の含有量の割合は、1質量%以上60質量%以下であることが好ましく、2質量%以上50質量%以下であることがより好ましく、3質量%以上40質量%以下であることがさらに好ましい。すなわち、本実施形態の硬化性樹脂組成物中のポリウレタン(a)とエポキシ化合物(c)との総量に対するポリウレタン(a)の含有量の割合は、40質量%以上99質量%以下であることが好ましく、50質量%以上98質量%以下であることがより好ましく、60質量%以上97質量%以下であることがさらに好ましい。
 本実施形態の硬化性樹脂組成物が微粒子(d)を含有する場合でも、ポリウレタン(a)とエポキシ化合物(c)との総量に対するエポキシ化合物(c)の含有量の割合が、1質量%以上60質量%以下であると、後述のオーバーコート膜が被覆されている後述のフレキシブル配線板の低反り性と配線の断線抑制性とのバランスをとることができる。
(I-5)硬化促進剤(e)
 本実施形態の硬化性樹脂組成物には硬化促進剤(e)を添加してもよい。硬化促進剤の種類は、ポリウレタン(a)が有するカルボキシ基等の官能基とエポキシ化合物(c)が有するエポキシ基との反応を促進する化合物であれば特に限定されるものではないが、前記官能基がカルボキシ基である場合には、例えば下記の化合物が挙げられる。
 すなわち、硬化促進剤の例としては、メラミン、アセトグアナミン、ベンゾグアナミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジン、2,4-メタクリロイルオキシエチル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジン・イソシアヌル酸付加物等のトリアジン化合物が挙げられる。
 また、硬化促進剤の例としては、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-アミノエチル-2-エチル-4-メチルイミダゾール、1-アミノエチル-2-メチルイミダゾール、1-(シアノエチルアミノエチル)-2-メチルイミダゾール、N-[2-(2-メチル-1-イミダゾリル)エチル]尿素、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテート、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-ビス(2-メチル-1-イミダゾリルエチル)アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-メチルイミダゾール・イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン・イソシアヌル酸付加物、2-メチル-4-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチルフォルミルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール、ビニルイミダゾール、1-メチルイミダゾール、1-アリルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、2-ブチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ベンジル-2-フェニルイミダゾール臭化水素塩、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド等のイミダゾール化合物が挙げられる。
 さらに、硬化促進剤の例としては、ジアザビシクロアルケン及びその塩等のシクロアミジン化合物及びその誘導体が挙げられる。ジアザビシクロアルケンとしては、例えば、1,5-ジアザビシクロ(4.3.0)ノネン-5や1,8-ジアザビシクロ(5.4.0)ウンデセン-7が挙げられる。
 さらに、硬化促進剤の例としては、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の有機ホスフィン化合物が挙げられる。
 さらに、硬化促進剤の例としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等のアミン化合物や、ジシアンジアジドが挙げられる。
 これらの硬化促進剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの硬化促進剤の中では、その硬化促進作用及び後述する本実施形態の硬化物の電気絶縁性能の両立を考慮すると、メラミン、イミダゾール化合物、シクロアミジン化合物及びその誘導体、ホスフィン化合物、及びアミン化合物が好ましく、メラミン、1,5-ジアザビシクロ(4.3.0)ノネン-5及びその塩、1,8-ジアザビシクロ(5.4.0)ウンデセン-7及びその塩がより好ましい。
 本実施形態の硬化性樹脂組成物中の硬化促進剤(e)の含有量は、硬化促進効果が奏されれば特に限定されるものではないが、本実施形態の硬化性樹脂組成物の硬化性及び後述する本実施形態の硬化物、オーバーコート膜の電気絶縁特性や耐水性の観点から、ポリウレタン(a)とエポキシ化合物(c)の総量を100質量部として、硬化促進剤(e)を0.05質量部以上5質量部以下の範囲内で配合することが好ましく、0.1質量部以上3質量部以下の範囲内で配合することがより好ましい。
 本実施形態の硬化性樹脂組成物中の硬化促進剤(e)の含有量が上記範囲内であれば、本実施形態の硬化性樹脂組成物を短時間で硬化させることができるとともに、後述する本実施形態の硬化物、オーバーコート膜の電気絶縁特性や耐水性が良好である。
(I-6)その他の添加剤
 本実施形態の硬化性樹脂組成物には、微粒子(d)、硬化促進剤(e)の他に各種添加剤を添加してもよい。本実施形態の硬化性樹脂組成物に配合可能な添加剤について、以下に説明する。
 本実施形態の硬化性樹脂組成物を硬化させると、電気絶縁特性の良好な硬化物を得ることができるため、本実施形態の硬化性樹脂組成物は、例えば、配線の絶縁保護用レジストインキ用途などの組成物として使用可能である。本実施形態の硬化性樹脂組成物を配線の絶縁保護用レジストインキ用途の組成物(すなわち、フレキシブル配線板用オーバーコート剤)として使用する場合には、印刷の際に泡の発生を防止又は抑制する目的で、消泡剤(f)を添加してもよい。
 消泡剤の種類は、フレキシブル配線板の製造時においてフレキシブル基板の表面に本実施形態の硬化性樹脂組成物を印刷して塗工する際に、泡の発生を防止又は抑制することができるならば特に限定されるものではないが、例えば下記の消泡剤が例として挙げられる。
 すなわち、消泡剤の例としては、BYK-077(ビックケミー・ジャパン株式会社製)、SNデフォーマー470(サンノプコ株式会社製)、TSA750S(モメンティブ・パフォーマンス・マテリアルズ社製)、シリコーンオイルSH-203(東レ・ダウコーニング株式会社製)等のシリコーン系消泡剤や、ダッポーSN-348(サンノプコ株式会社製)、ダッポーSN-354(サンノプコ株式会社製)、ダッポーSN-368(サンノプコ株式会社製)、ディスパロン230HF(楠本化成株式会社製)等のアクリル重合体系消泡剤や、サーフィノールDF-110D(日信化学工業株式会社製)、サーフィノールDF-37(日信化学工業株式会社製)等のアセチレンジオール系消泡剤や、FA-630等のフッ素含有シリコーン系消泡剤等を挙げることができる。
 本実施形態の硬化性樹脂組成物中の消泡剤(f)の含有量は、特に限定されるものではないが、ポリウレタン(a)、溶剤(b)、エポキシ化合物(c)、及び微粒子(d)の総量を100質量部として、消泡剤(f)を0.01質量部以上5質量部以下の範囲内で配合することが好ましく、0.05質量部以上4質量部以下の範囲内で配合することがより好ましく、0.1質量部以上3質量部以下の範囲内で配合することがさらに好ましい。
 さらに、本実施形態の硬化性樹脂組成物には、必要に応じて、レベリング剤等の界面活性剤や、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、カーボンブラック、ナフタレンブラック等の着色剤を添加することができる。
 また、ポリウレタン(a)の酸化劣化及び加熱時の変色を抑制することが必要な場合には、フェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤等の酸化防止剤を本実施形態の硬化性樹脂組成物に添加することが好ましい。
 さらに、本実施形態の硬化性樹脂組成物には、必要に応じて、難燃剤や滑剤を添加することもできる。
 本実施形態の硬化性樹脂組成物は、配合する成分(すなわち、ポリウレタン(a)、溶剤(b)、エポキシ化合物(c)、及び微粒子(d)等)のうち一部又は全部をロールミル、ビーズミル等で均一に混練、混合することによって得ることができる。配合する成分の一部を混合した場合には、本実施形態の硬化性樹脂組成物を実際に使用するときに、残りの成分を混合することができる。
<硬化性樹脂組成物の粘度>
 本実施形態の硬化性樹脂組成物の25℃における粘度は、10000mPa・s以上100000mPa・s以下が好ましく、20000mPa・s以上60000mPa・s以下がより好ましい。
 なお、本明細書においては、本実施形態の硬化性樹脂組成物の25℃における粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて、回転速度10rpmの条件で、回転開始から7分経過後に測定した粘度である。
<硬化性樹脂組成物のチクソトロピー指数>
 本実施形態の硬化性樹脂組成物を、配線の絶縁保護用レジストインキ用途の組成物(すなわち、フレキシブル配線板用オーバーコート剤)として使用する場合は、本実施形態の硬化性樹脂組成物の印刷性を良好にするために、本実施形態の硬化性樹脂組成物のチクソトロピー指数を一定の範囲内とすることが好ましい。
 本実施形態の硬化性樹脂組成物をフレキシブル配線板用オーバーコート剤として使用する場合は、本実施形態の硬化性樹脂組成物の印刷性(例えばスクリーン印刷における印刷性)を良好するために、本実施形態の硬化性樹脂組成物のチクソトロピー指数は、1.1以上であることが好ましく、1.1以上3.0以下の範囲内であることがより好ましく、1.1以上2.5以下の範囲内であることがさらに好ましい。
 本実施形態の硬化性樹脂組成物をフレキシブル配線板用オーバーコート剤として使用する場合に、本実施形態の硬化性樹脂組成物のチクソトロピー指数が1.1以上3.0以下の範囲内であれば、印刷した本実施形態の硬化性樹脂組成物が流動しにくく、一定の厚さの膜状に維持することができるので、印刷パターンを維持することが容易である。
 硬化性樹脂組成物のチクソトロピー指数を1.1以上とする方法としては、前述の無機微粒子や有機微粒子を用いてチクソトロピー指数を調整する方法や、高分子添加剤を用いてチクソトロピー指数を調整する方法等があるが、無機微粒子や有機微粒子を用いてチクソトロピー指数を調整する方法の方が好ましい。
 なお、本明細書においては、本実施形態の硬化性樹脂組成物のチクソトロピー指数は、25℃において回転速度1rpmで測定した粘度と25℃において回転速度10rpmで測定した粘度との比([回転速度1rpmの場合の粘度]/[回転速度10rpmの場合の粘度])である。これら粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて測定することができる。
II.硬化物
 本実施形態の硬化物は、本実施形態の硬化性樹脂組成物を硬化させて得られる硬化物である。本実施形態の硬化性樹脂組成物を硬化させる方法は特に限定されるものではなく、熱や活性エネルギー線(例えば紫外線、電子線、X線)によって硬化させることができる。よって、本実施形態の硬化性樹脂組成物には、熱ラジカル発生剤、光ラジカル発生剤等の重合開始剤を添加してもよい。
 本実施形態の硬化物は、絶縁保護膜(オーバーコート膜)として用いることができる。特に、例えばチップオンフィルム(COF)のようなフレキシブル配線板の配線の全部又は一部を被覆することにより、本実施形態の硬化物を配線の絶縁保護膜として用いることができる。
 本実施形態の硬化物を含有するオーバーコート膜をフレキシブル基板の表面に形成すれば、低反り性と配線の断線抑制性とが共に優れるフレキシブル配線板を形成することが可能である。また、本実施形態の硬化物は、本実施形態の硬化性樹脂組成物の糸引き性が低く且つ消泡性が優れるため、優れた作業性と生産性で製造することが可能である。さらに、本実施形態の硬化物は、低反り性、可撓性、及び耐湿性が良好で、しかも長期絶縁信頼性が優れている。さらに、本実施形態の硬化物は、フレキシブル基板等の基材との密着性が良好である。さらに、本実施形態の硬化物は、表面にタック現象が生じにくい。
III.オーバーコート膜並びにフレキシブル配線板及びその製造方法
 本実施形態のオーバーコート膜は、本実施形態の硬化物を含有する膜であり、本実施形態の硬化性樹脂組成物を硬化させることによって製造することができる。詳述すると、本実施形態のオーバーコート膜は、本実施形態の硬化性樹脂組成物を、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分の全部又は一部に膜状に配した後に、膜状の硬化性樹脂組成物を加熱等により硬化させて膜状の硬化物とすることによって製造することができる。本実施形態のオーバーコート膜は、フレキシブル配線板用のオーバーコート膜として好適である。
 本実施形態のフレキシブル配線板は、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分の全部又は一部が、オーバーコート膜によって被覆されたものである。
 本実施形態のフレキシブル配線板は、本実施形態の硬化性樹脂組成物とフレキシブル基板から製造することができる。詳述すると、本実施形態のフレキシブル配線板は、本実施形態の硬化性樹脂組成物を、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分の全部又は一部に膜状に配した後に、膜状の硬化性樹脂組成物を硬化させてオーバーコート膜とすることによって製造することができる。なお、オーバーコート膜によって被覆される配線は、配線の酸化防止及び経済的な面を考慮すると、錫メッキ銅配線であることが好ましい。
 本実施形態のオーバーコート膜及びフレキシブル配線板の製造方法の一例を、以下に説明する。本実施形態のオーバーコート膜及びフレキシブル配線板は、例えば、以下の工程1、工程2、工程3を経て、形成することができる。
(工程1)本実施形態の硬化性樹脂組成物を、フレキシブル基板の配線パターン部の少なくとも一部に印刷することで、該配線パターン部上に印刷膜を形成する印刷工程。
(工程2)工程1で得られた印刷膜を40~100℃の雰囲気下におくことで、印刷膜中の溶剤の一部又は全部を蒸発させる溶剤除去工程。
(工程3)工程1で得られた印刷膜又は工程2で得られた印刷膜を、100~170℃で加熱することによって硬化させ、オーバーコート膜を形成する硬化工程。
 工程1での硬化性樹脂組成物の印刷方法に特に制限はなく、例えば、スクリーン印刷法、ロールコーター法、スプレー法、カーテンコーター法などにより、本実施形態の硬化性樹脂組成物をフレキシブル基板に塗工して印刷膜を得ることができる。
 工程2は必要に応じて行われる操作であり、工程1の後にすぐに工程3を行い、工程3において硬化反応と溶剤の除去とを同時に行ってもよい。工程2を行う場合は、その温度は、溶剤の蒸発速度及び熱硬化の操作への速やかな移行を考慮すると、40℃以上100℃以下であることが好ましく、60℃以上100℃以下であることがより好ましく、70℃以上90℃以下であることがさらに好ましい。工程3や工程2において溶剤を蒸発させる時間は特に限定されるものではないが、10分以上120分以下であることが好ましく、20分以上100分以下であることがより好ましい。
 工程3における熱硬化の温度は、メッキ層の拡散を防ぎ、且つ、オーバーコート膜に保護膜として好適な低反り性、柔軟性を付与する観点から、105℃以上160℃以下であることが好ましく、110℃以上150℃以下であることがより好ましい。工程3で行われる熱硬化の時間は、特に限定されるものではないが、10分以上150分以下であることが好ましく、15分以上120分以下であることがより好ましい。
 上記のような方法により、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分の全部又は一部が、オーバーコート膜によって被覆されたフレキシブル配線板を得ることができる。このようにして得られたオーバーコート膜は柔軟性、可撓性が優れているため、本実施形態のフレキシブル配線板も柔軟性、可撓性が優れているとともに、フレキシブル配線板が揺り動かされたとしても配線の断線が生じにくい(配線の断線抑制性に優れる)。よって、本実施形態のフレキシブル配線板は、クラックが生じにくく、例えばチップオンフィルム(COF)等の技術に用いられるフレキシブルプリント配線板に好適である。
 さらに、本実施形態の硬化性樹脂組成物は硬化時に収縮が生じにくいので、本実施形態のフレキシブル配線板は反りが小さい。よって、本実施形態のフレキシブル配線板にICチップを搭載する工程において、ICチップの搭載位置の位置合わせが容易である。さらに、オーバーコート膜の長期絶縁信頼性が優れているため、本実施形態のフレキシブル配線板も長期絶縁信頼性が優れている。
 以下に実施例及び比較例を示して、本発明をより詳細に説明する。
<ポリエステルジオールの合成(参考合成例)>
 攪拌装置、温度計及び蒸留装置付きコンデンサーを備えた反応容器に、無水フタル酸983.5g(6.74mol)、1,6-ヘキサンジオール879.2g(7.44mol)を投入し、オイルバスを用いて反応容器の内温を140℃に昇温して、攪拌を4時間継続した。その後、攪拌を継続しながら、モノ-n-ブチル錫オキサイド1.74gを添加した。
 そして、徐々に反応容器の内温を昇温しながら、真空ポンプによって少しずつ反応容器内の圧力を減圧していき、減圧蒸留により水を反応容器外に除去していった。最終的には、内温を220℃まで昇温し、圧力を133.32Paまで減圧した。15時間経過して水が完全に留去しなくなったのを確認して、反応を終了した。
 得られたポリエステルジオールの水酸基価を測定したところ、水酸基価は53.1mgKOH/gであった。
<ポリウレタンの合成>
(実施合成例1)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)122.1gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)12.9gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)21.4gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)203.5gとを仕込み、100℃に加熱して全ての原料を溶解した。
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるtrans-1,4-ビス(イソシアナトメチル)シクロヘキサン(三井化学株式会社製のフォルティモ(登録商標))20.9gとジシクロヘキシルメタン-4,4’-ジイソシアネート(三井化学株式会社製)28.3gとを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)1.7gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A1」と記す。)を得た。ポリウレタン溶液A1を室温まで冷却した後に、γ-ブチロラクトン44.7gとジエチレングリコールジエチルエーテル43.8gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A1の粘度は133000mPa・sであった。また、ポリウレタン溶液A1中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU1」と記す。)の数平均分子量(Mn)は8000、重量平均分子量(Mw)は74000、z平均分子量(Mz)は658600であり、分子量分布の広がりを表すパラメータMz/Mwは8.9と算出された。ポリウレタンAU1の酸価は25.0mgKOH/gであった。芳香環濃度は3.21mmol/gであった。また、ポリウレタン溶液A1中の固形分濃度は40.5質量%であった。
(実施合成例2)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)112.0gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)11.8gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)9.79gと、下記化学式(3)で表されるフルオレン基含有ジオール(大阪ガスケミカル株式会社製、商品名BPEF-9EO)19.62gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)203.1gとを仕込み、100℃に加熱して全ての原料を溶解した。
Figure JPOXMLDOC01-appb-C000006
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))51.8gを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)1.7gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A2」と記す。)を得た。ポリウレタン溶液A2を室温まで冷却した後に、γ-ブチロラクトン45.1gとジエチレングリコールジエチルエーテル43.8gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A2の粘度は131000mPa・sであった。また、ポリウレタン溶液A2中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU2」と記す。)の数平均分子量(Mn)は10000、重量平均分子量(Mw)は61000、z平均分子量(Mz)は359900であり、分子量分布の広がりを表すパラメータMz/Mwは5.9と算出された。ポリウレタンAU2の酸価は23.9mgKOH/gであった。芳香環濃度は2.51mmol/gであった。また、ポリウレタン溶液A2中の固形分濃度は42.5質量%であった。
(実施合成例3)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)112.9gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)12.8gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである1,1-ジメチル-ビス[4-(2-ヒドロキシエトキシ)フェニル]メタン(明和化成株式会社製のBis-A-2EO)20.4gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)204.7gとを仕込み、100℃に加熱して全ての原料を溶解した。
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))58.6gを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)2.0gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A3」と記す。)を得た。ポリウレタン溶液A3を室温まで冷却した後に、γ-ブチロラクトン45.5gとジエチレングリコールジエチルエーテル43.8gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A3の粘度は150000mPa・sであった。また、ポリウレタン溶液A3中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU3」と記す。)の数平均分子量(Mn)は12000、重量平均分子量(Mw)は57000、z平均分子量(Mz)は221730であり、分子量分布の広がりを表すパラメータMz/Mwは3.89と算出された。ポリウレタンAU3の酸価は24.8mgKOH/gであった。芳香環濃度は2.73mmol/gであった。また、ポリウレタン溶液A3中の固形分濃度は44.5質量%であった。
(実施合成例4)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)110.6gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)12.9gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールであるビス-4-(2-ヒドロキシエトキシ)ビフェニル(明和化成株式会社製のBP-2EO)20.0gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)204.6gとを仕込み、100℃に加熱して全ての原料を溶解した。
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))61.1gを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)2.1gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A4」と記す。)を得た。ポリウレタン溶液A4を室温まで冷却した後に、γ-ブチロラクトン45.6gとジエチレングリコールジエチルエーテル43.8gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A4の粘度は166000mPa・sであった。また、ポリウレタン溶液A4中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU4」と記す。)の数平均分子量(Mn)は12600、重量平均分子量(Mw)は59000、z平均分子量(Mz)は248390であり、分子量分布の広がりを表すパラメータMz/Mwは4.21と算出された。ポリウレタンAU4の酸価は25.1mgKOH/gであった。芳香環濃度は2.77mmol/gであった。また、ポリウレタン溶液A4中の固形分濃度は41.2質量%であった。
(実施合成例5)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)OD-X-2900、水酸基価53.4mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)114.4gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)12.9gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン(明和化成株式会社製のBis-Z-2EO)20.5gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)204.8gとを仕込み、100℃に加熱して全ての原料を溶解した。
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))57.0gを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)2.0gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A5」と記す。)を得た。ポリウレタン溶液A5を室温まで冷却した後に、γ-ブチロラクトン45.4gとジエチレングリコールジエチルエーテル43.8gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A5の粘度は106000mPa・sであった。また、ポリウレタン溶液A5中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU5」と記す。)の数平均分子量(Mn)は8300、重量平均分子量(Mw)は95000、z平均分子量(Mz)は263150であり、分子量分布の広がりを表すパラメータMz/Mwは2.77と算出された。ポリウレタンAU5の酸価は24.7mgKOH/gであった。芳香環濃度は2.69mmol/gであった。また、ポリウレタン溶液A5中の固形分濃度は38.7質量%であった。
(実施合成例6)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、ポリエステルジオール(DIC株式会社製のポリライト(登録商標)HS-2H-209P、水酸基価28.8mgKOH/g、1,6-ヘキサンジオールと無水フタル酸を原料とするポリエステルジオール)121.5gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)12.9gと、ポリエステルジオール及びカルボキシ基含有ジオール以外のジオールである9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)22.3gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)203.2gとを仕込み、100℃に加熱して全ての原料を溶解した。
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))48.6gを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)1.7gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A6」と記す。)を得た。ポリウレタン溶液A6を室温まで冷却した後に、γ-ブチロラクトン45.0gとジエチレングリコールジエチルエーテル43.8gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A6の粘度は123000mPa・sであった。また、ポリウレタン溶液A6中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU6」と記す。)の数平均分子量(Mn)は10500、重量平均分子量(Mw)は89000、z平均分子量(Mz)は335530であり、分子量分布の広がりを表すパラメータMz/Mwは3.77と算出された。ポリウレタンAU6の酸価は25.1mgKOH/gであった。芳香環濃度は1.64mmol/gであった。また、ポリウレタン溶液A6中の固形分濃度は41.2質量%であった。
(実施合成例7)
〔ポリエステルジオールの合成〕
 攪拌装置、温度計及び反応にて生成する副生物の水を留出可能なリービッヒ型コンデンサーを備えた反応容器に、1,6-ヘキサンジオール(クラレ株式会社製)98.7g、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)109.6g、ヘキサヒドロ無水フタル酸(三菱瓦斯化学株式会社製)154.1gを投入し、オイルバスを用いて反応容器の内温を210℃に昇温して、全ての原料を溶解した。
 副生する水を除去しながら210℃で4日間反応を継続した後に、留出した水の量が18gとなった時点で温度を120℃に降温して、反応を停止した。これにより、フルオレン骨格を有するポリエステルジオールPE1を得た。
 得られたポリエステルジオールPE1の水酸基価を測定したところ、水酸基価は60.0mgKOH/gであった。よって、ポリエステルジオールPE1の数平均分子量は3360である。
〔ポリウレタンの合成〕
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、上記のポリエステルジオールPE1(水酸基価60.0mgKOH/g)93.1gと、カルボキシ基含有ジオールである2,2-ジメチロールプロパン酸(日本化成株式会社製)7.5gと、溶媒であるγ-ブチロラクトン(三菱化学株式会社製)125.0gとを仕込み、100℃に加熱して全ての原料を溶解した。
 反応溶液の温度を90℃まで下げた後に、ジイソシアネート化合物であるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製のデスモジュール-W(商品名))23.3gを、滴下ロートで30分間かけて滴下した。
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)1.1gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A7」と記す。)を得た。ポリウレタン溶液A7を室温まで冷却した後に、γ-ブチロラクトン27.9gとジエチレングリコールジエチルエーテル27.0gを添加し、粘度調整を行った。
 得られたポリウレタン溶液A7の粘度は77000mPa・sであった。また、ポリウレタン溶液A7中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU7」と記す。)の数平均分子量(Mn)は12000、重量平均分子量(Mw)は78000、z平均分子量(Mz)は399360であり、分子量分布の広がりを表すパラメータMz/Mwは5.12と算出された。ポリウレタンAU7の酸価は25.0mgKOH/gであった。芳香環濃度は1.88mmol/gであった。また、ポリウレタン溶液A7中の固形分濃度は43.2質量%であった。
 ポリウレタンAU1~AU7についてのデータを、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
(酸価の測定)
 合成したポリウレタンの酸価の測定方法について説明する。ポリウレタン溶液中の溶媒を加熱下で減圧留去してポリウレタンを得て、JIS K0070に規定された電位差滴定法に準拠して酸価を測定した。電位差滴定法による酸価の測定には、例えば、京都電子工業株式会社製の電位差自動滴定装置AT-510と複合ガラス電極C-173を用いることができる。
(ポリウレタンの数平均分子量、重量平均分子量、z平均分子量の測定)
 合成したポリウレタンの数平均分子量、重量平均分子量、z平均分子量は、GPCで測定したポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)である。GPCの測定条件は、前述の通りである。
(ポリウレタン溶液の粘度の測定)
 ポリウレタン溶液の粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて、温度25.0℃、回転速度5rpmの条件で測定した。なお、測定値は、スピンドルの回転開始から7分経過後に測定した粘度である。また、粘度の測定においては、ポリウレタン溶液を約0.8g使用した。
<主剤配合物の製造>
 ポリウレタン溶液A1にγ-ブチロラクトンを添加して固形分濃度を40質量%に調整したもの160.0質量部と、シリカ微粒子(日本アエロジル株式会社製、商品名アエロジルR-974)6.3質量部と、硬化促進剤であるメラミン(日産化学工業株式会社製)0.72質量部と、ジエチレングリコールジエチルエーテル8.4質量部とを、三本ロールミル(株式会社井上製作所製、型式S-4 3/4×11)を用いて混合した。そこに、消泡剤(モメンティブ・パフォーマンス・マテリアルズ社製、商品名TSA750S)2.0質量部を添加して、スパチュラを用いて混合して、主剤配合物C1を得た。
 ポリウレタン溶液の種類をポリウレタン溶液A1からポリウレタン溶液A2~A7のいずれかに変更した点以外は、主剤配合物C1と同様の操作を行って、主剤配合物C2~C7をそれぞれ得た。
<硬化剤溶液の製造>
(硬化剤溶液の製造例1)
 攪拌機、温度計及びコンデンサーを備えた容器に、上記化学式(2)で表されるエポキシ化合物(三菱ケミカル株式会社製、グレード名:JER604、エポキシ当量120g/eqv)16.85質量部と、ジエチレングリコールジエチルエーテル18.25質量部とを投入し、攪拌しながら容器の内温を40℃に昇温した後、30分間攪拌を継続した。エポキシ化合物が完全に溶解したことを確認したら、室温まで冷却し、濃度48質量%のエポキシ化合物溶液を得た。このエポキシ化合物溶液を硬化剤溶液E1とする。
(硬化剤溶液の製造例2)
 攪拌機、温度計及びコンデンサーを備えた容器に、シクロヘキサンジメタノールエポキシ樹脂(昭和電工株式会社製、グレード名:ショウフリー(登録商標)CDMDG、エポキシ当量126g/eqv)21.66質量部と、ジエチレングリコールジエチルエーテル18.25質量部とを投入し、攪拌しながら容器の内温を40℃に昇温した後、30分間攪拌を継続した。エポキシ樹脂が完全に溶解したことを確認したら、室温まで冷却し、濃度48質量%のエポキシ樹脂溶液を得た。このエポキシ樹脂溶液を硬化剤溶液E2とする。
(硬化剤溶液の製造例3)
 攪拌機、温度計及びコンデンサーを備えた容器に、シクロヘキサンジメタノールエポキシ樹脂(昭和電工株式会社製、グレード名:ショウフリー(登録商標)PETG、エポキシ当量90g/eqv)15.47質量部と、ジエチレングリコールジエチルエーテル18.25質量部とを投入し、攪拌しながら容器の内温を40℃に昇温した後、30分間攪拌を継続した。エポキシ樹脂が完全に溶解したことを確認したら、室温まで冷却し、濃度48質量%のエポキシ樹脂溶液を得た。このエポキシ樹脂溶液を硬化剤溶液E3とする。
<硬化性樹脂組成物の製造>
 主剤配合物C1 90質量部と硬化剤溶液E1 4.0質量部とをプラスチック容器に入れ、そこに、溶媒としてジエチレングリコールジエチルエーテル5.0質量部及びジエチレングリコールエチルエーテルアセテート1.5質量部を添加した。スパーテルを用いて室温で5分間攪拌して、硬化性樹脂組成物F1を得た。
 主剤配合物C1に代えて、主剤配合物C2~C7のいずれかを用いる点以外は、硬化性樹脂組成物F1の場合と同様にして、硬化性樹脂組成物F2~F7を得た(表2を参照)。また、硬化剤溶液E1に代えて、硬化剤溶液E2又は硬化剤溶液E3を用いる点以外は、硬化性樹脂組成物F1の場合と同様にして、硬化性樹脂組成物F8、F9を得た(表2を参照)。
Figure JPOXMLDOC01-appb-T000008
 さらに、日本ポリテック株式会社製のFREX SOLDER MASK NPR(登録商標)-3400 A(主剤配合物に相当する)700質量部と、日本ポリテック株式会社製の硬化剤HARDENER NPR(登録商標)-3400 B(硬化剤溶液に相当する)120質量部とを混合して、硬化性樹脂組成物G1を得た。
 さらに、日立化成株式会社製のSN-9000F A(主剤配合物に相当する)100質量部と、日立化成株式会社製の硬化剤SN-9000F B(硬化剤溶液に相当する)10質量部とを混合して、硬化性樹脂組成物G2を得た。
 上記NPR-3400 A、B及びSN-9000F A、Bは、フレキシブル配線板のオーバーコート膜形成用の硬化性組成物として市販されているものである。
<オーバーコート膜とフレキシブル配線板の評価>
 硬化性樹脂組成物F1~F9及びG1、G2を用いて、オーバーコート膜を有するフレキシブル配線板(実施例1~9及び比較例1、2)を製造し、可撓性、配線の断線抑制性、反り性、及び長期絶縁信頼性の評価を行った。
(可撓性の評価)
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックス、銅厚8μm、ポリイミド厚38μm)の銅上に、幅75mm、長さ110mmの大きさで、且つ、硬化後の膜厚が15μmになるように、硬化性樹脂組成物をスクリーン印刷により塗工した。硬化性樹脂組成物が印刷されたフレキシブル銅張り積層板を、室温で10分間保持した後に、温度120℃の熱風循環式乾燥機に60分間入れて、硬化性樹脂組成物を硬化させた。
 フレキシブル銅張り積層板の裏打ちのPETフィルムを剥離した後、カッターナイフで切り出して幅10mmの短冊状の試験片を作製した。硬化物の膜が形成された面が外側になるように試験片を約180度折り曲げ、圧縮機を用いて0.5±0.2MPaの圧力で3秒間圧縮した。そして、試験片の屈曲部を曲げた状態で、顕微鏡を用いて30倍に拡大して硬化物の膜を観察し、クラックの発生の有無を確認した。結果を表2に記す。
(配線の断線抑制性の評価)
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックスUS、銅厚8μm、ポリイミド厚38μm)をエッチングして、一般社団法人日本電子回路工業会(JPCA)の規格であるJPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間隔=15μm/15μm)とし、さらにこの微細くし形パターン形状の基板に錫メッキ処理を施してフレキシブル配線板を製造した。
 次に、このフレキシブル配線板上に硬化性樹脂組成物をスクリーン印刷法により塗工した。印刷された硬化性樹脂組成物の膜の厚さは、ポリイミド面上の硬化性樹脂組成物の膜の乾燥後の厚さが10μmとなるような厚さとした。
 こうして得られたフレキシブル配線板を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に120分間入れることにより、フレキシブル配線板上に形成された硬化性樹脂組成物の膜を硬化させた。そして、この試験片を用いて、JIS C5016に記載の方法によりMIT試験を行って、フレキシブル配線板の配線の断線抑制性を評価した。MIT試験の試験条件は以下の通りである。
  試験機:テスター産業株式会社製MITテスターBE202
  折り曲げ速度:10回/分
  荷重:200g
  折り曲げ角度:±90°
  つかみ具先端部の半径:0.5mm
 上記試験条件でMIT試験を行い、10回折り曲げるごとに目視にて配線のクラックの有無を観察し、クラックが発生した折り曲げ回数により配線の断線抑制性を評価した。結果を表2に記す。
(反り性の評価)
 #180メッシュポリエステル印刷版を用いてスクリーン印刷を行い、ポリイミド基材(東レ・デュポン社製のカプトン(登録商標)100EN、厚さ25μm)上に硬化性樹脂組成物を塗工した。
 こうして得られた、硬化性樹脂組成物が塗工された基材を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に60分間入れることにより、基材上に形成された硬化性樹脂組成物の塗工膜を硬化させた。
 硬化物の膜を有する基材を、サークルカッターを用いてカットして、硬化物の膜を有する直径50mmの円形の基材(以下「基板」と記す)を得た。得られた基板は、中心付近が凸状又は凹状に反る形の変形を呈する。
 基板を23℃で1時間放置した後に、基板を下に凸の状態で平板上に載置する。すなわち、反った基板の中心付近の凸状部を下方に向けて平板上に載置し、反った基板の凸状部が平板の水平面に接するようにする。そして、反った基板の周縁部のうち平板の水平面から最も離れた部分の距離と、最も近い部分の距離とを測定し、その平均値を求め、この平均値によって反り性を評価した。結果を表2に記す。
 表2に示す数値の符号は反りの方向を表し、下に凸の状態で基板を静置した際に、ポリイミド基材に対し硬化物の膜が上側になる場合は「+」、下側になる場合は「-」とした。そして、反りの大きさが-3.0mm超過+3.0mm未満の場合を合格とした。
(長期絶縁信頼性の評価)
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックスUS、銅厚8μm、ポリイミド厚38μm)をエッチングして、一般社団法人日本電子回路工業会(JPCA)の規格であるJPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間隔=15μm/15μm)とし、さらにこの微細くし形パターン形状の基板に錫メッキ処理を施してフレキシブル配線板を製造した。
 次に、このフレキシブル配線板上に硬化性樹脂組成物をスクリーン印刷法により塗工した。印刷された硬化性樹脂組成物の膜の厚さは、ポリイミド面上の硬化性樹脂組成物の膜の乾燥後の厚さが15μmとなるような厚さとした。
 こうして得られたフレキシブル配線板を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に120分間入れることにより、フレキシブル配線板上に形成された硬化性樹脂組成物の膜を硬化させた。
 そして、この試験片に、IMV社製のMIGRATION TESTER MODEL MIG-8600を用いてバイアス電圧60Vを印加し、温度120℃、湿度85%RHの条件で温湿度定常試験を行った。
 温湿度定常試験のスタート初期、スタートしてから100時間後、250時間後、400時間後に、フレキシブル配線板の抵抗値をそれぞれ測定した。結果を表2に示す。
(パルス核磁気共鳴法によるスピン-スピン緩和時間T2の測定)
 離型処理が施されたPETフィルム(東レ株式会社製、グレード名:ルミラー、厚さ125μm)上に、幅75mm、長さ110mmの大きさで、且つ、硬化後の膜厚が30μmになるように、硬化性樹脂組成物をバーコート印刷により塗工した。硬化性樹脂組成物が印刷されたPETフィルムを、室温で10分間保持した後に、温度120℃の熱風循環式乾燥機に60分間入れ、その後、温度150℃の熱風循環式乾燥機に120分間入れることにより、PETフィルム上に形成された硬化性樹脂組成物の膜を硬化させて硬化物の膜とした。
 PETフィルムを剥離した後、硬化物の膜をカッターナイフで切り出して、長さ3cm、幅5mmの短冊状の試料を作製した。そして、この試料を、質量が合計約500mgになるように直径10mmのガラス試料管内に詰め、パルス核磁気共鳴装置のコイル部に試料が位置するようにガラス試料管をパルス核磁気共鳴装置に設置した。3点の試料について下記の条件で測定を行い、該測定で得られた自由誘導減衰シグナルf(t)に対して曲線フィッティング(Mono-exponential)を行い、スピン-格子緩和時間T1を算出した。結果を表2に示す。
  装置:Bruker社製のBiospin the minispec mq20
  測定核種:水素原子核
  測定温度:40℃
  測定周波数:20MHz
  パルスプログラム:T1 Inversion Recovery法(反転回復法)
  First Pulse Separation:5ms
  Final Pulse Separation:1000ms
  Recycle delay:1s
  Gain:95dB
  Data Points:20
  Delay Sampling Window:0.050ms
  Sampling Window:0.020ms
  Scan:16回
  Acquisition scale:0.3ms
 算出されたスピン-格子緩和時間T1は、いずれも1sよりも十分に小さい値であり、スピン-スピン緩和時間の測定においてRECYCLE Delay=T1×5sを1sに設定すれば、十分な緩和時間であると言える。そこで、Recycle Delayを1sに設定し、スピン-格子緩和時間T1の場合とほぼ同様の方法で、3点の試料について、下記の条件でパルス核磁気共鳴法によるスピン-スピン緩和時間(T2)の測定を行った。
  装置:Bruker社製のBiospin the minispec mq20
  測定核種:水素原子核
  測定周波数:20MHz
  温度:40℃
  パルスプログラム:T2 Solid Echo法
  Recycle delay:1s
  Gain:77dB
  Data Points:100
  Scan:16回
  Acquisition scale:0.3ms
 上記測定で得られた自由誘導減衰シグナルf(t)に対して、フィッティングの計算式として前記数式を用いて、曲線フィッティング(7.Gauss-Decay Extended)を行った。その際には、ワイブル係数をW(1)=2.0、W(2)=1.0、W(3)=1.0に設定した。また、減衰時間tが0.3msまでの領域について、曲線フィッティングを行った。
 曲線フィッティングにより、A(1)、A(2)、T2(1)、T2(2)、及びT2(3)を得た。また、得られたA(1)、A(2)、T2(1)、及びT2(2)から、[A(1)×T2(1)+A(2)×T2(2)]の値を算出した。これらの結果を表2に示す。
 表2に示す結果から、[A(1)×T2(1)+A(2)×T2(2)]の値が0.015ms以下であり、且つ、T2(3)が0.50ms以上である実施例1~9のフレキシブル配線板は、低反り性、可撓性、配線の断線抑制性、及び長期絶縁信頼性が優れていることが分かる。
 よって、硬化性樹脂組成物F1~F9の硬化物を含有する膜は、フレキシブル配線板用の絶縁保護膜として有用である。特に、硬化性樹脂組成物F1~F9の硬化物を含有するオーバーコート膜を有するフレキシブル配線板は、低反り性が優れているので、印刷工程、硬化工程において加工性が高まる。例えば、フレキシブル配線板にICチップを搭載する実装工程において、ICチップの搭載位置の位置合わせ精度が向上するため、製造プロセスにおける歩留まりが高くなる。
 これに対して、[A(1)×T2(1)+A(2)×T2(2)]の値が0.015ms超過であり、且つ、T2(3)が0.50ms未満である比較例1、2のフレキシブル配線板は、低反り性、配線の断線抑制性が不十分であった。

Claims (17)

  1.  硬化性樹脂組成物の硬化物であって、パルス核磁気共鳴法により測定周波数20MHzにて測定された、プロトンのスピン-スピン緩和時間T2を決定するための磁化強度の自由誘導減衰シグナルf(t)を、下記数式で近似した場合に、前記数式中のA(1)、A(2)、T2(1)、及びT2(2)から算出される[A(1)×T2(1)+A(2)×T2(2)]の値が0.015ms以下であり、且つ、T2(3)が0.50ms以上である硬化物。
    Figure JPOXMLDOC01-appb-M000001
     ここで、4つの項からなる前記数式の第4項の(offset)はオフセット項である。また、前記数式中のA(1)、A(2)、A(3)は、それぞれ定数であり、A(1)+A(2)+A(3)=1である。前記数式中のT2(1)、T2(2)、T2(3)は、それぞれスピン-スピン緩和時間T2であり、T2(1)<T2(2)<T2(3)である。さらに、前記数式中のW(1)、W(2)、W(3)はそれぞれワイブル係数であり、1以上2以下の数である。さらに、前記数式中のtは時間であり、expはネイピア数eを底とする指数関数である。
  2.  前記硬化性樹脂組成物が、エポキシ基との反応性を有する官能基を備えるポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を含有する請求項1に記載の硬化物。
  3.  前記ポリウレタン(a)は、ポリエステル構造及びポリカーボネート構造の少なくとも一方を有する第1のウレタン構造単位、並びに、カルボキシ基を有する第2のウレタン構造単位のうち少なくとも一方のウレタン構造単位を有する請求項2に記載の硬化物。
  4.  前記ポリウレタン(a)は、フルオレン構造を有する第3のウレタン構造単位をさらに有する請求項3に記載の硬化物。
  5.  前記ポリウレタン(a)は、trans型の1,4-シクロヘキサンジメチレン基を有する請求項2~4のいずれか一項に記載の硬化物。
  6.  前記ポリウレタン(a)の数平均分子量が10000以上50000以下である請求項2~5のいずれか一項に記載の硬化物。
  7.  前記ポリウレタン(a)の酸価が10mgKOH/g以上70mgKOH/g以下である請求項2~6のいずれか一項に記載の硬化物。
  8.  前記ポリウレタン(a)の芳香環濃度が0.1mmol/g以上5.0mmol/g以下である請求項2~7のいずれか一項に記載の硬化物。
  9.  前記硬化性樹脂組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である請求項2~8のいずれか一項に記載の硬化物。
  10.  前記硬化性樹脂組成物が、無機微粒子及び有機微粒子からなる群より選ばれる少なくとも1種の微粒子(d)をさらに含有する請求項2~9のいずれか一項に記載の硬化物。
  11.  前記微粒子(d)がシリカ微粒子を含む請求項10に記載の硬化物。
  12.  前記微粒子(d)がハイドロタルサイト微粒子を含む請求項10に記載の硬化物。
  13.  前記硬化性樹脂組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下、前記ポリウレタン(a)と前記溶剤(b)と前記エポキシ化合物(c)と前記微粒子(d)との総量に対する前記微粒子(d)の含有量の割合が0.1質量%以上60質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である請求項10~12のいずれか一項に記載の硬化物。
  14.  請求項1~13のいずれか一項に記載の硬化物を製造する方法であって、前記硬化性樹脂組成物を熱又は活性エネルギー線によって硬化させる硬化物の製造方法。
  15.  請求項1~13のいずれか一項に記載の硬化物を含有するオーバーコート膜。
  16.  配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分が、請求項15に記載のオーバーコート膜によって被覆されたフレキシブル配線板。
  17.  前記配線が錫メッキ銅配線である請求項16に記載のフレキシブル配線板。
PCT/JP2020/021412 2019-07-08 2020-05-29 硬化物、オーバーコート膜、及びフレキシブル配線板 WO2021005914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021530525A JPWO2021005914A1 (ja) 2019-07-08 2020-05-29
CN202080049525.8A CN114080408B (zh) 2019-07-08 2020-05-29 固化物、外涂膜以及柔性配线板
KR1020227003320A KR20220032573A (ko) 2019-07-08 2020-05-29 경화물, 오버코트막, 및 플렉시블 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-126908 2019-07-08
JP2019126908 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021005914A1 true WO2021005914A1 (ja) 2021-01-14

Family

ID=74114513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021412 WO2021005914A1 (ja) 2019-07-08 2020-05-29 硬化物、オーバーコート膜、及びフレキシブル配線板

Country Status (5)

Country Link
JP (1) JPWO2021005914A1 (ja)
KR (1) KR20220032573A (ja)
CN (1) CN114080408B (ja)
TW (1) TWI800737B (ja)
WO (1) WO2021005914A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008327A1 (ja) * 2021-07-29 2023-02-02 東洋インキScホールディングス株式会社 電子部品搭載基板、電子部品保護シート、及び電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017797A1 (ja) * 2014-08-01 2016-02-04 積水化学工業株式会社 難燃性ポリウレタン樹脂組成物
WO2017110326A1 (ja) * 2015-12-25 2017-06-29 昭和電工株式会社 硬化性組成物、硬化物、オーバーコート膜、被覆フレキシブル配線板およびその製造方法
WO2017110591A1 (ja) * 2015-12-25 2017-06-29 昭和電工株式会社 新規ポリウレタン、硬化性組成物、オーバーコート膜ならびにフレキシブル配線板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045056B2 (ja) * 2010-11-30 2016-12-14 日東電工株式会社 表面保護シート
JP5710353B2 (ja) * 2011-04-15 2015-04-30 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
JP6206013B2 (ja) * 2013-05-14 2017-10-04 株式会社リコー トナー、現像剤、及び画像形成装置
CN107428792B (zh) 2014-12-15 2023-01-24 埃默里大学 用于治疗乙型肝炎病毒的磷酰胺
US11001690B2 (en) * 2017-07-10 2021-05-11 Nhk Spring Co., Ltd. Cushion material, seat cushion material, and seat
JP6498265B1 (ja) * 2017-12-15 2019-04-10 日本発條株式会社 座席用クッション材、および座席
JP2021012123A (ja) * 2019-07-08 2021-02-04 昭和電工株式会社 硬化物特性値推定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017797A1 (ja) * 2014-08-01 2016-02-04 積水化学工業株式会社 難燃性ポリウレタン樹脂組成物
WO2017110326A1 (ja) * 2015-12-25 2017-06-29 昭和電工株式会社 硬化性組成物、硬化物、オーバーコート膜、被覆フレキシブル配線板およびその製造方法
WO2017110591A1 (ja) * 2015-12-25 2017-06-29 昭和電工株式会社 新規ポリウレタン、硬化性組成物、オーバーコート膜ならびにフレキシブル配線板およびその製造方法

Also Published As

Publication number Publication date
CN114080408A (zh) 2022-02-22
JPWO2021005914A1 (ja) 2021-01-14
KR20220032573A (ko) 2022-03-15
CN114080408B (zh) 2023-08-25
TW202106741A (zh) 2021-02-16
TWI800737B (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
CN108368336B (zh) 固化性组合物、固化物、外涂膜、覆盖柔性配线板及其制造方法
JP6901973B2 (ja) 新規ポリウレタン、硬化性組成物、オーバーコート膜ならびにフレキシブル配線板およびその製造方法
KR101503987B1 (ko) 열경화성 조성물
EP2390276B1 (en) Carboxyl group-containing polyurethane
WO2017183497A1 (ja) 硬化性組成物、該組成物を用いる硬化膜およびオーバーコート膜
WO2010073981A1 (ja) 硬化性組成物
WO2021005914A1 (ja) 硬化物、オーバーコート膜、及びフレキシブル配線板
JP2021012123A (ja) 硬化物特性値推定方法
WO2020246221A1 (ja) ポリウレタンの製造方法及びフレキシブル配線板用オーバーコート膜の製造方法
WO2020246154A1 (ja) ポリウレタンの製造方法及びフレキシブル配線板用オーバーコート膜の製造方法
TWI753456B (zh) 硬化性組成物、硬化物、保護膜以及可撓性電路板及其製造方法
CN114096579B (zh) 聚氨酯以及固化性组合物
WO2020137347A1 (ja) ポリウレタンの製造方法、硬化性組成物の製造方法、硬化物の製造方法、オーバーコート膜の製造方法、及びフレキシブル配線板の製造方法
JP2021011545A (ja) ポリウレタン及び硬化性組成物
JP2021095478A (ja) ポリウレタン及び硬化性組成物
JP2021127375A (ja) ポリウレタン及び硬化性組成物
JP2021095458A (ja) ポリウレタン及び硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530525

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227003320

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20836944

Country of ref document: EP

Kind code of ref document: A1