WO2021003747A1 - 非授权频谱上的bwp切换指示方法、装置及存储介质 - Google Patents

非授权频谱上的bwp切换指示方法、装置及存储介质 Download PDF

Info

Publication number
WO2021003747A1
WO2021003747A1 PCT/CN2019/095644 CN2019095644W WO2021003747A1 WO 2021003747 A1 WO2021003747 A1 WO 2021003747A1 CN 2019095644 W CN2019095644 W CN 2019095644W WO 2021003747 A1 WO2021003747 A1 WO 2021003747A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna panel
bwp
base station
antenna
bwp switching
Prior art date
Application number
PCT/CN2019/095644
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020227004170A priority Critical patent/KR20220034825A/ko
Priority to JP2022501006A priority patent/JP7430242B2/ja
Priority to BR112022000387A priority patent/BR112022000387A2/pt
Priority to PCT/CN2019/095644 priority patent/WO2021003747A1/zh
Priority to EP19937203.8A priority patent/EP3998816A4/en
Priority to CN201980001330.3A priority patent/CN110521266B/zh
Priority to US17/625,857 priority patent/US20220264643A1/en
Publication of WO2021003747A1 publication Critical patent/WO2021003747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular to a method, device and storage medium for BWP (Bandwidth Part) switching indication on an unlicensed spectrum.
  • BWP Bandwidth Part
  • the base station and the terminal can communicate on the unlicensed spectrum, and the base station can configure multiple BWPs for the terminal, and select an activated BWP from them, and the terminal can communicate with the base station through the activated BWP.
  • the base station uses the current activated BWP to communicate with the terminal, if it finds that the channel quality of the current activated BWP is poor, or the current activated BWP bandwidth does not match the amount of data to be transmitted, the base station can choose to switch to another For a BWP, the base station can notify the terminal to switch to another BWP by sending BWP switching indication information to the terminal.
  • the base station in order to improve the spatial diversity gain, can communicate with the terminal through multiple antenna panels. In this scenario, how the base station provides BWP switching instructions to the terminal has not been There is a perfect solution.
  • the embodiments of the present disclosure provide a method, device and storage medium for BWP handover indication on an unlicensed spectrum.
  • the technical solution is as follows:
  • a BWP handover indication method on an unlicensed spectrum including:
  • the base station sends BWP switching indication information through the second antenna panel, where the BWP switching indication information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station;
  • the first target BWP includes N BWUs out of M BWUs (Bandwidth Units) whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the BWP switching indication information includes: antenna panel indication information and an identifier of the first target BWP;
  • the antenna panel indication information includes any one of the following: an identifier of the first antenna panel, a reference signal group identifier corresponding to the first antenna panel, and a reference signal identifier corresponding to the first antenna panel.
  • the second antenna panel is an antenna panel within a channel occupation time.
  • the second antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the second antenna panel is an antenna panel that detects that the channel is idle.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the BWP switching indication information is also used to indicate the second target BWP to which the second antenna panel is to be switched.
  • the base station sending BWP switching indication information through the second antenna panel includes:
  • the base station transmits PDCCH (Physical Downlink Control Channel, physical downlink control channel) signaling through the second antenna panel, and the PDCCH signaling includes the BWP switching indication information.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • a BWP handover indication method on an unlicensed spectrum including:
  • the terminal receives the BWP switching instruction information sent by the second antenna panel of the base station, where the BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station; wherein,
  • the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers;
  • the terminal switches to the first target BWP to communicate with the first antenna panel according to the BWP switching instruction information.
  • a BWP handover indication device on an unlicensed spectrum which is applied in a base station, and the device includes:
  • the information sending module is configured to send BWP switching instruction information through the second antenna panel, where the BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station;
  • the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the BWP switching indication information includes: antenna panel indication information and an identifier of the first target BWP;
  • the antenna panel indication information includes any one of the following: an identifier of the first antenna panel, a reference signal group identifier corresponding to the first antenna panel, and a reference signal identifier corresponding to the first antenna panel.
  • the second antenna panel is an antenna panel within a channel occupation time.
  • the second antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the second antenna panel is an antenna panel that detects that the channel is idle.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the BWP switching indication information is also used to indicate the second target BWP to which the second antenna panel is to be switched.
  • the information sending module is configured to send PDCCH signaling through the second antenna panel, and the PDCCH signaling includes the BWP switching indication information.
  • a BWP handover indication device on an unlicensed spectrum which is applied to a terminal, and the device includes:
  • the information receiving module is configured to receive BWP switching instruction information sent by the second antenna panel of the base station, where the BWP switching instruction information is used to instruct the terminal to switch to when communicating with the first antenna panel of the base station A target BWP; wherein the first target BWP includes N BWUs out of M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers;
  • the BWP switching module is configured to switch to the first target BWP to communicate with the first antenna panel according to the BWP switching instruction information.
  • a BWP handover indication device on an unlicensed spectrum which is applied in a base station, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station;
  • the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • a BWP handover indication device on an unlicensed spectrum which is applied to a terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers;
  • a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a non-transitory computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the steps of the method described in the second aspect are implemented.
  • the base station sends BWP switching instruction information through the second antenna panel, and the BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station. After receiving the BWP switching instruction information, it can switch to the first target BWP and communicate with the first antenna panel.
  • the embodiments of the present disclosure provide a solution for BWP switching in a multi-antenna panel scenario, which ensures the accuracy of BWP switching and reduces the power consumption caused by the terminal monitoring the BWP switching indication information sent by the base station, and realizes the communication between the terminal and the base station. Reliable transmission.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for BWP handover indication on an unlicensed spectrum according to an exemplary embodiment
  • Fig. 3 is a block diagram showing a BWP handover indication device on an unlicensed spectrum according to an exemplary embodiment
  • Fig. 4 is a block diagram showing a BWP handover indication device on an unlicensed spectrum according to another exemplary embodiment
  • Fig. 5 is a schematic structural diagram of a base station according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram showing a terminal according to an exemplary embodiment.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment.
  • the network architecture may include: a base station 110 and a terminal 120.
  • the base station 110 is deployed in the access network.
  • the access network in the 5G NR system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 110 and the terminal 120 communicate with each other through a certain air interface technology, for example, may communicate with each other through cellular technology.
  • the base station 110 is a device deployed in an access network to provide the terminal 120 with a wireless communication function.
  • the base station 110 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communication technology evolves, the name "base station" may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 120 are collectively referred to as base stations.
  • the base station 110 may also be an in-vehicle device, which is suitable for communication between vehicles in the Internet of Vehicles. When communicating between vehicles, the channels or signaling in the present disclosure are all channels or signaling suitable for sidelinks.
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in a cell managed by each base station 110.
  • the terminal 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), terminal device (terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the terminal 120 may also be an in-vehicle device, which is suitable for scenarios of communication between vehicles in the Internet of Vehicles.
  • the channels or signaling in the present disclosure are all channels or signaling suitable for side links.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system and the 5G NR vehicle networking system.
  • Fig. 2 is a flow chart showing a method for indicating BWP handover on an unlicensed spectrum according to an exemplary embodiment. This method can be applied to the network architecture shown in Figure 1. The method can include the following steps (201-202).
  • step 201 the base station sends BWP switching instruction information through the second antenna panel, and the BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station.
  • the base station and the terminal can each have multiple (that is, two or more) antenna panels.
  • the multiple antenna panels of the base station can belong to the same TRP (Transmitter Receiver Point) or multiple different TRPs. That is, each TRP may include one antenna panel or multiple antenna panels.
  • the base station can communicate with the terminal through multiple antenna panels, such as sending information to the terminal or receiving information sent by the terminal.
  • the aforementioned first target BWP includes N BWUs out of M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • BWU refers to the bandwidth unit of LBT (Listen before talk) channel detection, such as 20 MHz.
  • LBT Listen before talk
  • each carrier can contain multiple BWUs, and each BWP can also contain multiple BWUs.
  • each BWU may have its own number and correspond to a different position on the channel.
  • the bandwidth on the carrier may be 100 MHz, each BWU may be 20 MHz, and the carrier may include 5 BWUs.
  • the bandwidth on the carrier may be 400 MHz, each BWU may be 20 MHz, and the carrier may include 20 BWUs.
  • each carrier represents a serving cell.
  • a base station can provide multiple serving cells for the terminal, and multiple antenna panels can be used in each cell to communicate with the terminal in the cell.
  • the terminal only needs to monitor whether there are PDCCH and PDSCH on the BWU where the channel is detected to be idle, thereby saving the power consumption of the terminal.
  • PDCCH and PDSCH Physical Downlink Shared Channel
  • the base station has multiple (ie, two or more) antenna panels, and the base station can communicate with the terminal through the multiple antenna panels.
  • the above-mentioned first antenna panel and the second antenna panel are two different antenna panels.
  • the second antenna panel transmits BWP switching instruction information for instructing the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station, thereby realizing BWP switching indicating other antenna panels across the antenna panels.
  • the above-mentioned first antenna panel and the second antenna panel are the same antenna panel.
  • the antenna panel can send BWP switching instruction information by itself to indicate the target BWP to which it wants to switch.
  • the base station before the base station sends the BWP switching indication information through the second antenna panel, the base station can also perform the LBT process on each BWU of a certain carrier through multiple antenna panels, so as to determine whether the channel is idle on each BWU.
  • the antenna panel is the first antenna panel mentioned above.
  • the above-mentioned first target BWP refers to all BWPs configured by the base station for the terminal, including BWUs with the most free channels and BWPs of BWUs with the least busy channels.
  • the PDCCH monitoring bandwidth of the terminal is reduced as much as possible.
  • the foregoing BWP switching indication information may include: antenna panel indication information and an identifier of the first target BWP.
  • the above-mentioned antenna panel indication information is used to instruct the first antenna panel of the base station to communicate with the terminal and need to perform BWP switching.
  • the antenna panel indication information includes any one of the following: the identification of the first antenna panel, the identification of the reference signal group (group or set) corresponding to the first antenna panel, and the identification of the reference signal corresponding to the first antenna panel.
  • the identification of the first antenna panel is used to uniquely indicate the first antenna panel. Different antenna panels have different identifications.
  • the identification of the antenna panel can be recorded as panel ID, which can be a character string composed of at least one of numbers, letters, and characters.
  • the terminal can determine the first antenna panel according to the identification of the first antenna panel.
  • the reference signal group identifier corresponding to the first antenna panel is used to indicate the first antenna panel.
  • the reference signal group corresponding to the first antenna panel may include at least one reference signal.
  • the base station can include multiple antenna panels, each antenna panel can include multiple beams, and each beam can send different reference signals, and multiple different reference signals can be formed into a reference signal group.
  • a certain reference signal group identifier is used to uniquely indicate the reference signal group, and different antenna panels correspond to different reference signal groups. Therefore, the reference signal group corresponding to a certain antenna panel may represent the antenna panel, for example, the reference signal group identifier corresponding to the first antenna panel may represent the first antenna panel.
  • the terminal can determine the first antenna panel according to the reference signal group identifier corresponding to the first antenna panel.
  • the reference signal identifier corresponding to the first antenna panel is used to indicate the first antenna panel. Different antenna panels can send different reference signals. The identifier of a certain reference signal is used to uniquely indicate the reference signal. Therefore, the reference signal identifier corresponding to a certain antenna panel may represent the antenna panel, for example, the reference signal identifier corresponding to the first antenna panel may represent the first antenna panel. The terminal can determine the first antenna panel according to the reference signal identifier corresponding to the first antenna panel.
  • the above-mentioned reference signal can be an uplink reference signal, such as SRS (Sounding Reference Signal); it can also be a downlink reference signal, such as SSB (Synchronization Signal Block, synchronization signal block), CSI-RS (Channel State Information-Reference Signal) , Channel State Information Reference Signal) and DRS (Dedicated Reference Signal) and so on.
  • SRS Sounding Reference Signal
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • DRS Dedicated Reference Signal
  • the identifier of the first target BWP is used to uniquely identify the first target BWP. Different BWPs have different identifications, and the identification of the BWP can be recorded as BWP ID.
  • the base station configures the BWP for the terminal, it also configures the BWP ID.
  • the terminal can monitor synchronization signals during random access to obtain the initial (initial) BWP, the initial BWP ID can be recorded as 0; for the subsequent BWP configured by the base station for the terminal, the BWP ID can be recorded as 1, 2, 3... ....
  • the base station may also provide its bandwidth size and bandwidth location, as well as the number and location of each BWU included.
  • the foregoing base station sending BWP switching indication information through the second antenna panel may include: the base station sending PDCCH signaling through the second antenna panel, where the PDCCH signaling includes BWP switching indication information.
  • the foregoing PDCCH signaling may be group common (group common) PDCCH signaling, or may be user-specific (UE-specific) PDCCH signaling, which is not limited in the embodiments of the present disclosure.
  • the above BWP switching instruction information may not be sent, and the current BWP is directly used for communication.
  • step 202 the terminal switches to the first target BWP to communicate with the first antenna panel according to the BWP switching instruction information.
  • the terminal After the base station sends the foregoing BWP switching instruction information, correspondingly, the terminal receives the BWP switching instruction information sent by the second antenna panel of the base station. Furthermore, the terminal can switch to the first target BWP according to the BWP switching instruction information, and communicate with the first antenna panel.
  • the base station sends BWP switching instruction information through the second antenna panel.
  • the BWP switching instruction information is used to instruct the terminal to switch to when communicating with the first antenna panel of the base station.
  • the terminal can switch to the first target BWP and communicate with the first antenna panel.
  • the embodiments of the present disclosure provide a solution for BWP switching in a multi-antenna panel scenario, which ensures the accuracy of BWP switching and reduces the power consumption caused by the terminal monitoring the BWP switching indication information sent by the base station, and realizes the communication between the terminal and the base station. Reliable transmission.
  • embodiments of the present disclosure provide a solution for indicating BWP switching across antenna panels, which improves the flexibility of BWP switching indication.
  • the PDCCH monitoring bandwidth of the terminal is reduced as much as possible.
  • the selection of the second antenna panel may include the following two possible implementation manners:
  • the second antenna panel is an antenna panel within the channel occupation time. That is, the base station can send BWP switching instruction information to the terminal through the antenna panel within the channel occupation time.
  • the second antenna panel is in the channel occupation time, which means that when the first antenna panel of the base station detects that there is a BWU with an idle channel, the second antenna panel of the base station is in the process of communicating with the terminal. For example, the base station selects one antenna panel as the second antenna panel from the antenna panels within the channel occupation time, and sends BWP switching instruction information to the terminal.
  • the start position of the channel occupation time of the second antenna panel is earlier than the start position of the channel occupation time of the first antenna panel, and the first antenna panel of the base station
  • the channel occupation time of the second antenna panel has not yet ended. That is, before the first antenna panel detects that the channel is idle, the terminal has been monitoring the PDCCH and/or PDSCH sent by the second antenna panel of the base station. Then the base station uses the PDCCH sent by the second antenna panel to instruct the terminal to switch to the first target BWP to communicate with the first antenna panel of the base station, which saves the terminal from monitoring on the first antenna panel of the base station, thereby saving the terminal Electricity.
  • the second antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time.
  • the base station When the base station performs LBT, it needs to select a set of channel detection parameters, including channel occupation time, competition window size, channel reception priority level, and so on. According to the occupied time of the channel and the occupied channel time, the remaining channel occupied time can be determined.
  • the remaining channel occupancy time of panel#1 is 1ms
  • the remaining channel occupancy time of panel#2 is 3ms
  • the remaining channel occupancy time of panel#3 is 2ms
  • the second antenna panel is the antenna panel with the most BWUs that have detected channel idle.
  • the antenna panel can be selected to send information, as in the embodiment of the present disclosure BWP switching instructions.
  • panel#1 detects that the channel is free is 5 BWUs
  • panel#2 detects that the channel is free is 2 BWUs
  • panel#3 detects that the channel is free is 1 BWU
  • you can select the BWU that detects the channel is free The most antenna panel, panel #1, is used as the second antenna panel.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be idle.
  • the remaining channel occupancy time of panel#1 is 3ms
  • the remaining channel occupancy time of panel#2 is 3ms
  • the remaining channel occupancy time of panel#3 is 1ms
  • panel#1 detects that there are 5 BWUs with idle channels
  • panel #2 The number of BWUs with free channels detected is 2 and the number of BWUs with free channels detected by panel#3 is 1, then the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be free can be selected, namely panel#1 as The second antenna panel.
  • the base station when there are multiple antenna panels within the channel occupation time, the base station first selects the antenna panel with the largest remaining channel occupation time from the multiple antenna panels; if the remaining channel occupation time is the largest antenna panel If the number of antenna panels is 1, then directly determine this antenna panel as the second antenna panel; if the number of antenna panels with the largest remaining channel occupation time is greater than 1, then further select the detected antenna panels from the antenna panels with the largest remaining channel occupation time The antenna panel with the most BWUs with idle channels is used as the second antenna panel.
  • any antenna panel can be selected from the antenna panels with the largest number of BWUs detected to be idle As the second antenna panel, or an antenna panel can be selected as the second antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the second antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the base station when there are multiple antenna panels within the channel occupancy time, the base station first selects from the multiple antenna panels the antenna panel with the largest number of BWUs that detect the channel is idle; if it detects that the channel is free, the number of antenna panels with the largest number of BWUs If it is 1, then directly determine this antenna panel as the second antenna panel; if the number of antenna panels with the largest number of BWUs detected to be idle is greater than 1, then further select from these antenna panels with the largest number of BWUs detected to be idle The antenna panel with the longest remaining channel occupation time is used as the second antenna panel.
  • the antenna panel with the largest number of BWUs detected to be idle there are still multiple antenna panels with the largest remaining channel occupation time, you can select any antenna panel from the antenna panels with the largest remaining channel occupation time as the first antenna panel.
  • Two antenna panels, or one antenna panel can be selected as the second antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the second antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the second antenna panel is an antenna panel that detects that the channel is idle. That is, the second antenna panel and the first antenna panel of the base station detect that the channel is idle at the same time, and in the following channel occupation time, the base station can send the BWP switching instruction information to the terminal through the antenna panel with the idle channel detected. For example, the base station selects one antenna panel as the second antenna panel from the antenna panels where the channel is detected to be idle, and sends BWP switching instruction information to the terminal.
  • the channel occupation time of the second antenna panel and the channel occupation time of the first antenna panel start at the same time.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time.
  • the channel detection mechanism and/or channel detection parameters used are different, and the corresponding channel occupation time can be different.
  • Some antenna panels have a longer channel occupation time, while some antennas
  • the channel occupation time obtained by the panel is relatively small; further, the remaining channel occupation time of multiple antenna panels may also be different.
  • the remaining channel occupancy time of panel#1 is 1ms
  • the remaining channel occupancy time of panel 2 is 3ms
  • the remaining channel occupancy time of panel#3 is 2ms
  • the second antenna panel is the antenna panel with the most BWUs that have detected channel idle.
  • panel#1, panel#2, and panel#3 there are 3 antenna panels, such as panel#1, panel#2, and panel#3.
  • panel#1 detects that the channel is free is 5 BWUs
  • panel#2 detects that the channel is free is 2 BWUs
  • panel#3 detects that the channel is free is 1 BWU
  • you can select the BWU that detects the channel is free The most antenna panel, panel #1, is used as the second antenna panel.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be idle.
  • the remaining channel occupancy time of panel#1 is 3ms
  • the remaining channel occupancy time of panel#2 is 3ms
  • the remaining channel occupancy time of panel#3 is 1ms
  • panel#1 detects that there are 5 BWUs with idle channels
  • panel #2 The number of BWUs with free channels detected is 2 and the number of BWUs with free channels detected by panel#3 is 1, then the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be free can be selected, namely panel#1 as The second antenna panel.
  • the base station when detecting that there are multiple antenna panels with idle channels, the base station first selects the antenna panel with the largest remaining channel occupation time from the multiple antenna panels; if the antenna panel with the largest remaining channel occupation time is If the number is 1, directly determine this antenna panel as the second antenna panel; if the number of antenna panels with the largest remaining channel occupation time is greater than 1, then further select the detected channel from the antenna panels with the largest remaining channel occupation time The antenna panel with the most free BWU is used as the second antenna panel.
  • any antenna panel can be selected from the antenna panels with the largest number of BWUs detected to be idle As the second antenna panel, or an antenna panel can be selected as the second antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the second antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the base station when detecting that there are multiple antenna panels with idle channels, the base station first selects from the multiple antenna panels the antenna panel with the largest number of BWUs with the channel idle; if the number of antenna panels with the largest number of BWUs is detected 1, then directly determine this antenna panel as the second antenna panel; if the number of antenna panels with the largest number of BWUs detected to be idle is greater than 1, then further select the remaining antenna panels from the antenna panels with the largest number of BWUs detected to be idle The antenna panel with the longest channel occupation time is used as the second antenna panel.
  • the antenna panel with the largest number of BWUs detected to be idle there are still multiple antenna panels with the largest remaining channel occupation time, you can select any antenna panel from the antenna panels with the largest remaining channel occupation time as the first antenna panel.
  • Two antenna panels, or one antenna panel can be selected as the second antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the second antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the antenna panel with the longest remaining channel occupation time is preferentially selected as the second antenna panel; for the above-mentioned second possibility
  • the antenna panel with the largest number of BWUs detected as idle channels is preferentially selected as the second antenna panel.
  • the BWP switching instruction information can also be used to indicate the second target BWP to which the second antenna panel is to be switched. It should be noted that the above-mentioned first target BWP and second target BWP may be the same BWP or different BWP, which is not limited in the embodiment of the present disclosure.
  • the target BWP to be switched to when each of the multiple antenna panels communicate with the terminal may be the same BWP, or Can be different BWP.
  • the second antenna panel is the antenna panel with an idle channel.
  • the antenna panel whose channel is idle can send BWP switching instruction information by itself to indicate the target BWP to which it wants to switch.
  • the embodiments of the present disclosure provide multiple selection methods for the second antenna panel, which improves the flexibility of selecting the second antenna panel.
  • the technical solution of the present disclosure is introduced and explained only from the perspective of interaction between the terminal and the base station.
  • the above-mentioned steps performed by the terminal can be separately implemented as a BWP switching instruction method on the unlicensed spectrum on the terminal side
  • the above-mentioned steps performed by the base station can be separately implemented as a BWP switching instruction method on the unlicensed spectrum on the base station side.
  • Fig. 3 is a block diagram showing a BWP handover indication device on an unlicensed spectrum according to an exemplary embodiment.
  • the device has the function of realizing the example of the method on the side of the base station, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the base station described above, or it can be set in the base station.
  • the device 300 may include: an information sending module 310.
  • the information sending module 310 is configured to send BWP switching instruction information through the second antenna panel, where the BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station;
  • the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the base station sends BWP switching instruction information through the second antenna panel.
  • the BWP switching instruction information is used to instruct the terminal to switch to when communicating with the first antenna panel of the base station.
  • the terminal can switch to the first target BWP and communicate with the first antenna panel.
  • the embodiments of the present disclosure provide a solution for BWP switching in a multi-antenna panel scenario, which ensures the accuracy of BWP switching and reduces the power consumption caused by the terminal monitoring the BWP switching indication information sent by the base station, and realizes the communication between the terminal and the base station. Reliable transmission.
  • the BWP switching indication information includes: antenna panel indication information and the identifier of the first target BWP; wherein, the antenna panel indication information includes any one of the following: An identifier, a reference signal group identifier corresponding to the first antenna panel, and a reference signal identifier corresponding to the first antenna panel.
  • the second antenna panel is an antenna panel in a channel occupation time.
  • the second antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the second antenna panel is an antenna panel that detects that a channel is idle.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs detected with idle channels.
  • the BWP switching indication information is further used to indicate the second target BWP to which the second antenna panel is to be switched.
  • the information sending module 310 is configured to send PDCCH signaling through the second antenna panel, and the PDCCH signaling includes the BWP switching indication information.
  • Fig. 4 is a block diagram showing a BWP handover indication device on an unlicensed spectrum according to another exemplary embodiment.
  • the device has the function of realizing the above-mentioned method example on the terminal side, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the terminal described above, or it can be set in the terminal.
  • the device 400 may include: an information receiving module 410 and a BWP switching module 420.
  • the information receiving module 410 is configured to receive BWP switching instruction information sent by the second antenna panel of the base station, where the BWP switching instruction information is used to instruct the terminal to switch to when communicating with the first antenna panel of the base station
  • the first target BWP wherein the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the BWP switching module 420 is configured to switch to the first target BWP to communicate with the first antenna panel according to the BWP switching instruction information.
  • the base station sends BWP switching instruction information through the second antenna panel.
  • the BWP switching instruction information is used to instruct the terminal to switch to when communicating with the first antenna panel of the base station.
  • the terminal can switch to the first target BWP and communicate with the first antenna panel.
  • the embodiments of the present disclosure provide a solution for BWP switching in a multi-antenna panel scenario, which ensures the accuracy of BWP switching and reduces the power consumption caused by the terminal monitoring the BWP switching indication information sent by the base station, and realizes the communication between the terminal and the base station. Reliable transmission.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used for illustration. In actual applications, the above functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure also provides a BWP handover indication device on an unlicensed spectrum.
  • the device can be applied to the base station introduced above, and can realize the BWP on the unlicensed spectrum on the side of the base station provided by the present disclosure.
  • the device may include a processor, and a memory for storing executable instructions of the processor.
  • the processor is configured as:
  • BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station;
  • the first target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the first antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the BWP switching indication information includes: antenna panel indication information and the identifier of the first target BWP; wherein, the antenna panel indication information includes any one of the following: An identifier, a reference signal group identifier corresponding to the first antenna panel, and a reference signal identifier corresponding to the first antenna panel.
  • the second antenna panel is an antenna panel in a channel occupation time.
  • the second antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the second antenna panel is an antenna panel that detects that a channel is idle.
  • the second antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs detected with idle channels.
  • the BWP switching indication information is further used to indicate the second target BWP to which the second antenna panel is to be switched.
  • the processor is further configured to:
  • PDCCH signaling is sent through the second antenna panel, and the PDCCH signaling includes the BWP switching indication information.
  • An exemplary embodiment of the present disclosure also provides a BWP handover indication device on an unlicensed spectrum.
  • the device can be applied to the terminal described above, and can realize the BWP on the unlicensed spectrum on the terminal side provided by the present disclosure.
  • the device may include a processor, and a memory for storing executable instructions of the processor.
  • the processor is configured as:
  • BWP switching instruction information sent by the second antenna panel of the base station, where the BWP switching instruction information is used to indicate the first target BWP to be switched to when the terminal communicates with the first antenna panel of the base station;
  • the first target BWP includes N BWUs among M BWUs whose channels are detected to be idle by the first antenna panel, N is less than or equal to M, and both M and N are positive integers;
  • the base station and the terminal include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • the base station 500 includes a transmitter/receiver 501 and a processor 502.
  • the processor 502 may also be a controller, which is represented as "controller/processor 502" in FIG. 5.
  • the transmitter/receiver 501 is used to support the sending and receiving of information between the base station and the terminal in the foregoing embodiment, and to support communication between the base station and other network entities.
  • the processor 502 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via the antenna, demodulated by the receiver 501 (for example, the high-frequency signal is demodulated into a baseband signal), and further processed by the processor 502 to restore the terminal Send to business data and signaling information.
  • service data and signaling messages are processed by the processor 502, and modulated by the transmitter 501 (for example, the baseband signal is modulated into a high-frequency signal) to generate a downlink signal, which is transmitted to the terminal via an antenna .
  • the processor 502 is further configured to execute each step on the base station side in the foregoing method embodiment, and/or other steps of the technical solution described in the embodiment of the present disclosure.
  • the base station 500 may further include a memory 503, and the memory 503 is used to store program codes and data of the base station 500.
  • the base station may also include a communication unit 504.
  • the communication unit 504 is used to support the base station to communicate with other network entities (for example, network equipment in the core network, etc.).
  • the communication unit 504 may be an NG-U interface for supporting communication between a base station and a UPF (User Plane Function) entity; or, the communication unit 504 may also be an NG-C The interface is used to support access to AMF (Access and Mobility Management Function) entities for communication.
  • AMF Access and Mobility Management Function
  • FIG. 5 only shows a simplified design of the base station 500.
  • the base station 500 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 6 is a schematic structural diagram showing a terminal according to an exemplary embodiment.
  • the terminal 600 includes a transmitter 601, a receiver 602, and a processor 603.
  • the processor 603 may also be a controller, which is represented as "controller/processor 603" in FIG. 6.
  • the terminal 600 may further include a modem processor 605, where the modem processor 605 may include an encoder 606, a modulator 607, a decoder 608, and a demodulator 609.
  • the transmitter 601 adjusts (eg, analog conversion, filtering, amplification, and upconversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station via an antenna.
  • the antenna receives the downlink signal transmitted by the base station.
  • the receiver 602 conditions (eg, filters, amplifies, down-converts, and digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 606 receives service data and signaling messages to be transmitted on the uplink, and processes the service data and signaling messages (for example, formatting, encoding, and interleaving).
  • the modulator 607 further processes (for example, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 609 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 608 processes (e.g., deinterleaves and decodes) the symbol estimation and provides the decoded data and signaling messages sent to the terminal 600.
  • the encoder 606, the modulator 607, the demodulator 609, and the decoder 608 may be implemented by a synthesized modem processor 605. These units are processed according to the radio access technology adopted by the radio access network (for example, 5G NR and access technologies of other evolved systems). It should be noted that when the terminal 600 does not include the modem processor 605, the foregoing functions of the modem processor 605 may also be performed by the processor 603.
  • the processor 603 controls and manages the actions of the terminal 600, and is used to execute the processing procedure performed by the terminal 600 in the foregoing embodiment of the present disclosure.
  • the processor 603 is further configured to execute each step on the terminal side in the foregoing method embodiment, and/or other steps of the technical solution described in the embodiment of the present disclosure.
  • the terminal 600 may further include a memory 604, and the memory 604 is configured to store program codes and data for the terminal 600.
  • FIG. 6 only shows a simplified design of the terminal 600.
  • the terminal 600 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor of the base station, the BWP switching instruction method on the unlicensed spectrum on the base station side is implemented. .
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor of the terminal, the BWP switching instruction method on the unlicensed spectrum on the terminal side is implemented .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种非授权频谱上的BWP切换指示方法、装置及存储介质。所述方法包括:基站通过第二天线面板发送BWP切换指示信息,BWP切换指示信息用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,第一目标BWP包括第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。本公开实施例提供了一种多天线面板场景下BWP切换的方案,确保了BWP切换的准确性以及减少终端监听基站发送的BWP切换指示信息而带来的功耗,实现了终端与基站之间的可靠传输。

Description

非授权频谱上的BWP切换指示方法、装置及存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及一种非授权频谱上的BWP(Bandwidth Part,带宽部分)切换指示方法、装置及存储介质。
背景技术
随着通信技术的发展,提出了非授权频谱和BWP的概念。基站和终端之间可以在非授权频谱上进行通信,且基站可以给终端配置多个BWP,并从中选择一个激活BWP,终端可以通过该激活BWP与基站进行通信。
基站在采用当前的激活BWP与终端进行通信的过程中,如果发现该当前的激活BWP的信道质量较差,或者当前的激活BWP带宽与所要传输的数据量不匹配,则基站可以选择切换至另一BWP,基站可以通过向终端发送BWP切换指示信息,来告知终端切换至另一BWP。
在5G NR(New Radio,新空口)***中,为了提高空间分集增益,基站可以通过多个天线面板(panel)与终端进行通信,在这种场景下,基站如何向终端提供BWP切换指示,尚未有完善的解决方案。
发明内容
本公开实施例提供了一种非授权频谱上的BWP切换指示方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种非授权频谱上的BWP切换指示方法,所述方法包括:
基站通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU(Bandwidth Unit,带宽单元)中的N个BWU,N小于等于M,M和N都为正整数。
可选地,所述BWP切换指示信息包括:天线面板指示信息和所述第一目标BWP的标识;
其中,所述天线面板指示信息包括以下任意一种:所述第一天线面板的标识、所述第一天线面板对应的参考信号组标识、所述第一天线面板对应的参考信号标识。
可选地,所述第二天线面板是处于信道占用时间内的天线面板。
可选地,当处于信道占用时间内的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述第二天线面板是检测到信道空闲的天线面板。
可选地,当检测到信道空闲的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述BWP切换指示信息还用于指示所述第二天线面板所要切换至的第二目标BWP。
可选地,所述基站通过第二天线面板发送BWP切换指示信息,包括:
所述基站通过所述第二天线面板发送PDCCH(Physical Downlink Control Channel,物理下行控制信道)信令,所述PDCCH信令包括所述BWP切换指示信息。
根据本公开实施例的第二方面,提供了一种非授权频谱上的BWP切换指示方法,所述方法包括:
终端接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数;
所述终端根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
根据本公开实施例的第三方面,提供了一种非授权频谱上的BWP切换指示装置,应用于基站中,所述装置包括:
信息发送模块,被配置为通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个 BWU中的N个BWU,N小于等于M,M和N都为正整数。
可选地,所述BWP切换指示信息包括:天线面板指示信息和所述第一目标BWP的标识;
其中,所述天线面板指示信息包括以下任意一种:所述第一天线面板的标识、所述第一天线面板对应的参考信号组标识、所述第一天线面板对应的参考信号标识。
可选地,所述第二天线面板是处于信道占用时间内的天线面板。
可选地,当处于信道占用时间内的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述第二天线面板是检测到信道空闲的天线面板。
可选地,当检测到信道空闲的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述BWP切换指示信息还用于指示所述第二天线面板所要切换至的第二目标BWP。
可选地,所述信息发送模块,被配置为通过所述第二天线面板发送PDCCH信令,所述PDCCH信令包括所述BWP切换指示信息。
根据本公开实施例的第四方面,提供了一种非授权频谱上的BWP切换指示装置,应用于终端中,所述装置包括:
信息接收模块,被配置为接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数;
BWP切换模块,被配置为根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
根据本公开实施例的第五方面,提供了一种非授权频谱上的BWP切换指示装置,应用于基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于 指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
根据本公开实施例的第六方面,提供了一种非授权频谱上的BWP切换指示装置,应用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数;
根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
根据本公开实施例的第七方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
根据本公开实施例的第八方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面所述方法的步骤。
本公开实施例提供的技术方案可以包括以下有益效果:
本公开实施例提供的技术方案,基站通过第二天线面板发送BWP切换指示信息,该BWP切换指示信息用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP,终端在接收到该BWP切换指示信息之后,可以切换至第一目标BWP,并与第一天线面板进行通信。本公开实施例提供了一种多天线面板场景下BWP切换的方案,确保了BWP切换的准确性以及减少终端监听基站发送的BWP切换指示信息而带来的功耗,实现了终端与基站之间的可靠传输。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种非授权频谱上的BWP切换指示方法的流程图;
图3是根据一示例性实施例示出的一种非授权频谱上的BWP切换指示装置的框图;
图4是根据另一示例性实施例示出的一种非授权频谱上的BWP切换指示装置的框图;
图5是根据一示例性实施例示出的一种基站的结构示意图;
图6是根据一示例性实施例示出的一种终端的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1是根据一示例性实施例示出的一种网络架构的示意图。该网络架构可以包括:基站110和终端120。
基站110部署在接入网中。5G NR***中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。基站110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
基站110是一种部署在接入网中用以为终端120提供无线通信功能的装置。基站110可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用 不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,例如在5G NR***中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端120提供无线通信功能的装置统称为基站。基站110也可以是一个车载设备,适用于车联网中车车之间通信的场景。当车车通信时,本公开中的信道或信令都为适用于侧链路(sidelink)的信道或信令。
终端120的数量通常为多个,每一个基站110所管理的小区内可以分布一个或多个终端120。终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本公开实施例中,上面提到的设备统称为终端。终端120也可以是一个车载设备,适用于车联网中车车之间通信的场景。当车车通信时,本公开中的信道或信令都为适用于侧链路的信道或信令。
本公开实施例中的“5G NR***”也可以称为5G***或者NR***,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR***,也可以适用于5G NR***后续的演进***以及5G NR车联网***。
图2是根据一示例性实施例示出的一种非授权频谱上的BWP切换指示方法的流程图。该方法可应用于图1所示的网络架构中。该方法可以包括如下几个步骤(201~202)。
在步骤201中,基站通过第二天线面板发送BWP切换指示信息,该BWP切换指示信息用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP。
在5G NR***中,为了提高空间分集增益,基站和终端可以各自拥有多个(即两个或两个以上)天线面板。以基站拥有多个天线面板为例,基站的多个天线面板可以属于同一个TRP(Transmitter Receiver Point,传输接收点),也可以属于多个不同的TRP。也即,每个TRP可以包括一个天线面板,也可以包括多个天线面板。基站可以通过多个天线面板与终端进行通信,如向终端发送信息或接收终端发送的信息。
上述第一目标BWP包括第一天线面板检测到信道空闲的M个BWU中的N 个BWU,N小于等于M,M和N都为正整数。其中,BWU是指LBT(Listen before talk,先听后说)信道检测的带宽单元,比如为20MHz。在非授权频谱中,每个载波可以包含多个BWU,每个BWP也可以包含多个BWU。可选地,每个BWU可以具有各自编号,且对应于信道上不同的位置。
例如,载波上带宽可以为100MHz,每个BWU为20MHz,载波可以包括5个BWU。又例如,载波上带宽可以为400MHz,每个BWU为20MHz,载波可以包括20个BWU。
需要说明的是,每个载波表示一个服务小区。一个基站可以为终端提供多个服务小区,每个小区内可以用多个天线面板与该小区中的终端进行通信。
此时,若基站端信道检测结果指示在某个载波上,只有部分BWU检测到信道空闲,由于基站只能在信道空闲的BWU上发送PDCCH和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)等,因此终端只需要在检测到信道空闲的BWU上去监听是否有PDCCH和PDSCH等,从而节省了终端的功耗。
在本公开实施例中,基站具有多个(即两个或两个以上)天线面板,基站可以通过该多个天线面板与终端进行通信。
在一种可能的实施方式中,上述第一天线面板和第二天线面板是两个不同的天线面板。通过第二天线面板发送用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP的BWP切换指示信息,从而实现了跨天线面板指示其它天线面板的BWP切换。
在另一种可能的实施方式中,上述第一天线面板和第二天线面板是相同的天线面板。此时,该天线面板可以自己发送BWP切换指示信息,以指示其自身所要切换至的目标BWP。
可选地,在基站通过第二天线面板发送BWP切换指示信息之前,基站还可以通过多个天线面板在某个载波的各个BWU上分别进行LBT流程,以便确定在各个BWU上检测到信道空闲的天线面板,如上述第一天线面板。
可选地,上述第一目标BWP是指基站给终端配置的所有BWP中,包含最多个信道空闲的BWU,且包含最少个信道繁忙的BWU的BWP。通过将BWP切换到包含最多个信道空闲的BWU,且包含最少个信道繁忙的BWU的BWP上,从而尽可能地减少了终端的PDCCH监测带宽。
在示例性实施例中,上述BWP切换指示信息可以包括:天线面板指示信息和第一目标BWP的标识。
上述天线面板指示信息用于指示基站与终端进行通信且需要进行BWP切换的第一天线面板。其中,天线面板指示信息包括以下任意一种:第一天线面板的标识、第一天线面板对应的参考信号组(组为group或set)标识、第一天线面板对应的参考信号标识。
下面,对天线面板指示信息所包括的内容进行简单的介绍:
(1)上述第一天线面板的标识用于唯一指示该第一天线面板。不同的天线面板具有不同的标识。天线面板的标识可以记为panel ID,其可以是一个由数字、字母、字符中的至少一项所组成的字符串。终端根据第一天线面板的标识,可以确定第一天线面板。
(2)上述第一天线面板对应的参考信号组标识用于指示第一天线面板。第一天线面板对应的参考信号组可以包括至少一个参考信号。基站可以包含多个天线面板,每个天线面板可以包含多个波束,而每个波束可以发送不同的参考信号,多个不同的参考信号可以组成为一个参考信号组。某个参考信号组标识用于唯一指示该参考信号组,而不同的天线面板对应于不同的参考信号组。因此,某个天线面板对应的参考信号组可以代表该天线面板,如第一天线面板对应的参考信号组标识可以代表该第一天线面板。终端根据第一天线面板对应的参考信号组标识,可以确定第一天线面板。
(3)上述第一天线面板对应的参考信号标识用于指示第一天线面板。不同的天线面板可以发送不同的参考信号。某个参考信号的标识用于唯一指示该参考信号。因此,某个天线面板对应的参考信号的标识可以代表该天线面板,如第一天线面板对应的参考信号标识可以代表该第一天线面板。终端根据第一天线面板对应的参考信号标识,可以确定第一天线面板。
上述参考信号可以是上行参考信号,比如SRS(Sounding Reference Signal,探测参考信号);也可以是下行参考信号,比如SSB(Synchronization Signal Block,同步信号块)、CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)和DRS(Dedicated Reference Signal,专用参考信号)等等。例如,如果该参考信号是下行参考信号,基站是告诉终端:将发送该下行参考信号的天线面板作为第一天线面板。
上述第一目标BWP的标识用于唯一标识该第一目标BWP。不同的BWP具有不同的标识,BWP的标识可以记为BWP ID。当基站给终端配置BWP时,同时也配置了BWP ID。例如,终端在随机接入时可以监听同步信号等来获得初始 (initial)BWP,该初始BWP ID可以记为0;对于后续基站给终端配置的BWP,BWP ID可以记为1、2、3……。可选地,对于每个BWP,基站还可以给出其带宽大小和带宽位置,以及包含的每个BWU的编号和位置。
上述基站通过第二天线面板发送BWP切换指示信息,可以包括:基站通过第二天线面板发送PDCCH信令,该PDCCH信令包括BWP切换指示信息。
可选地,上述该PDCCH信令可以为群公共(group common)PDCCH信令,也可以为用户专属(UE-specific)PDCCH信令,本公开实施例对此不作限定。
另外,当不需要进行BWP切换时,则可以不发送上述BWP切换指示信息,直接使用当前的BWP进行通信。
在步骤202中,终端根据BWP切换指示信息,切换至第一目标BWP与第一天线面板进行通信。
基站发送上述BWP切换指示信息后,对应地,终端接收基站的第二天线面板发送的BWP切换指示信息。进而,终端可以根据该BWP切换指示信息,切换至第一目标BWP,并与第一天线面板进行通信。
综上所述,本公开实施例提供的技术方案,基站通过第二天线面板发送BWP切换指示信息,该BWP切换指示信息用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP,终端在接收到该BWP切换指示信息之后,可以切换至第一目标BWP,并与第一天线面板进行通信。本公开实施例提供了一种多天线面板场景下BWP切换的方案,确保了BWP切换的准确性以及减少终端监听基站发送的BWP切换指示信息而带来的功耗,实现了终端与基站之间的可靠传输。
另外,对于第一天线面板和第二天线面板是两个不同的天线面板的情况,本公开实施例提供了一种跨天线面板指示BWP切换的方案,提高了BWP切换指示的灵活性。
另外,通过将BWP切换到包含最多个信道空闲的BWU,且包含最少个繁忙的BWU的BWP上,从而尽可能地减少了终端的PDCCH监测带宽。
下面,对于第二天线面板的选择,可以包括以下两种可能的实施方式:
在第一种可能的实施方式中,第二天线面板是处于信道占用时间内的天线面板。也即,基站可以通过处于信道占用时间内的天线面板,向终端发送BWP切换指示信息。其中,第二天线面板处于信道占用时间内,是指当基站第一天 线面板检测到存在信道空闲的BWU时,基站的第二天线面板正处在与终端进行通信的过程中。例如,基站从处于信道占用时间内的天线面板中,选择一个天线面板作为第二天线面板,向终端发送BWP切换指示信息。
需要说明的一点是,与基站的第一天线面板相比较,上述第二天线面板的信道占用时间的起始位置,早于第一天线面板的信道占用时间的起始位置,且基站的第一天线面板检测到信道空闲时,第二天线面板的信道占用时间还未结束。即在第一天线面板检测到信道空闲时刻及之前,终端一直在监听基站的第二天线面板发送的PDCCH和/或PDSCH等。那么基站使用第二天线面板发送的PDCCH,指示终端切换到第一目标BWP上与基站的第一天线面板进行通信,这样省掉了终端对基站的第一天线面板上进行监听,从而为终端省电。
可选地,当处于信道占用时间内的天线面板有多个时,第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在一个示例中,第二天线面板是剩余信道占用时长最大的天线面板。
基站在进行LBT时,需要选取一套信道检测参数,其中包括信道占用时长、竞争窗口大小、信道接收优先级别等等。根据该信道占用时长,以及已经占用信道时长,即可确定剩余信道占用时长。
例如,当处于信道占用时间内的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为1ms,panel#2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为2ms,则可以选择剩余信道占用时长最大的天线面板,即panel#2作为第二天线面板。
在另一个示例中,第二天线面板是检测到信道空闲的BWU最多的天线面板。
对于多个天线面板,若某个天线面板上检测到信道空闲的BWU的数量较多,则表示该天线面板周围信道条件较好,因此可以选择该天线面板来发送信息,如本公开实施例中的BWP切换指示信息。
例如,当处于信道占用时间内的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择检测到信道空闲的BWU最多的天线面板,即panel#1作为第二天线面板。
在又一个示例中,第二天线面板是剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板。
例如,当处于信道占用时间内的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为3ms,panel#2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为1ms;但是panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板,即panel#1作为第二天线面板。
在其它可能的实施方式中,当处于信道占用时间内的天线面板有多个时,基站先从该多个天线面板中选择剩余信道占用时长最大的天线面板;如果剩余信道占用时长最大的天线面板的数量为1,则直接将这一个天线面板确定为第二天线面板;如果剩余信道占用时长最大的天线面板的数量大于1,则进一步从这些剩余信道占用时长最大的天线面板中,选择检测到信道空闲的BWU最多的天线面板,作为第二天线面板。如果这些剩余信道占用时长最大的天线面板中,检测到信道空闲的BWU最多的天线面板的数量仍然有多个,则可以从这些检测到信道空闲的BWU最多的天线面板中,选择任意一个天线面板作为第二天线面板,或者还可以依据其它选取规则选择一个天线面板作为第二天线面板,如选择负载最轻的一个天线面板作为第二天线面板,等等,本公开实施例对此不作限定。
或者,当处于信道占用时间内的天线面板有多个时,基站先从该多个天线面板中选择检测到信道空闲的BWU最多的天线面板;如果检测到信道空闲的BWU最多的天线面板的数量为1,则直接将这一个天线面板确定为第二天线面板;如果检测到信道空闲的BWU最多的天线面板的数量大于1,则进一步从这些检测到信道空闲的BWU最多的天线面板中,选择剩余信道占用时长最大的天线面板,作为第二天线面板。如果这些检测到信道空闲的BWU最多的天线面板中,剩余信道占用时长最大的天线面板的数量仍然有多个,则可以从这些剩余信道占用时长最大的天线面板中,选择任意一个天线面板作为第二天线面板,或者还可以依据其它选取规则选择一个天线面板作为第二天线面板,如选择负载最轻的一个天线面板作为第二天线面板,等等,本公开实施例对此不作限定。
在第二种可能的实施方式中,第二天线面板是检测到信道空闲的天线面板。也即,基站的第二天线面板和第一天线面板同时检测到信道空闲,接下来的信道占用时间内,基站可以通过检测到信道空闲的天线面板,向终端发送BWP切换指示信息。例如,基站从检测到信道空闲的天线面板中,选择一个天线面板 作为第二天线面板,向终端发送BWP切换指示信息。
需要说明的一点是,上述第二天线面板的信道占用时间与第一天线面板的信道占用时间同时开始。
可选地,当检测到信道空闲的天线面板有多个时,第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在一个示例中,第二天线面板是剩余信道占用时长最大的天线面板。
检测到信道空闲的多个天线面板,采用的信道检测机制和/或信道检测参数不同,则相应的获得的信道占用时长可以不同,有的天线面板获得的信道占用时长较大,而有的天线面板获得的信道占用时长较小;进一步,多个天线面板的剩余信道占用时长也可以不同。
例如,当检测到信道空闲的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为1ms,panel 2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为2ms,则可以选择剩余信道占用时长最大的天线面板,即panel#2作为第二天线面板。
在另一个示例中,第二天线面板是检测到信道空闲的BWU最多的天线面板。
例如,当检测到信道空闲的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择检测到信道空闲的BWU最多的天线面板,即panel#1作为第二天线面板。
在又一个示例中,第二天线面板是剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板。
例如,当检测到信道空闲的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为3ms,panel#2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为1ms;但是panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板,即panel#1作为第二天线面板。
在其它可能的实施方式中,当检测到信道空闲的天线面板有多个时,基站先从该多个天线面板中选择剩余信道占用时长最大的天线面板;如果剩余信道占用时长最大的天线面板的数量为1,则直接将这一个天线面板确定为第二天线 面板;如果剩余信道占用时长最大的天线面板的数量大于1,则进一步从这些剩余信道占用时长最大的天线面板中,选择检测到信道空闲的BWU最多的天线面板,作为第二天线面板。如果这些剩余信道占用时长最大的天线面板中,检测到信道空闲的BWU最多的天线面板的数量仍然有多个,则可以从这些检测到信道空闲的BWU最多的天线面板中,选择任意一个天线面板作为第二天线面板,或者还可以依据其它选取规则选择一个天线面板作为第二天线面板,如选择负载最轻的一个天线面板作为第二天线面板,等等,本公开实施例对此不作限定。
或者,当检测到信道空闲的天线面板有多个时,基站先从该多个天线面板中选择检测到信道空闲的BWU最多的天线面板;如果检测到信道空闲的BWU最多的天线面板的数量为1,则直接将这一个天线面板确定为第二天线面板;如果检测到信道空闲的BWU最多的天线面板的数量大于1,则进一步从这些检测到信道空闲的BWU最多的天线面板中,选择剩余信道占用时长最大的天线面板,作为第二天线面板。如果这些检测到信道空闲的BWU最多的天线面板中,剩余信道占用时长最大的天线面板的数量仍然有多个,则可以从这些剩余信道占用时长最大的天线面板中,选择任意一个天线面板作为第二天线面板,或者还可以依据其它选取规则选择一个天线面板作为第二天线面板,如选择负载最轻的一个天线面板作为第二天线面板,等等,本公开实施例对此不作限定。
可选地,对于上述第一种可能的实施方式,当处于信道占用时间内的天线面板有多个时,优先选择剩余信道占用时长最大的天线面板作为第二天线面板;对于上述第二种可能的实施方式,当检测到信道空闲的天线面板有多个时,优先选择检测到信道空闲的BWU最多的天线面板作为第二天线面板。
另外,在这种情况下,若第一天线面板和第二天线面板是两个不同的天线面板时,BWP切换指示信息还可以用于指示第二天线面板所要切换至的第二目标BWP。需要说明的一点是,上述第一目标BWP和第二目标BWP可以是相同的BWP,也可以是不同的BWP,本公开实施例对此不作限定。
此外,若上述BWP切换指示信息包含多个天线面板各自与终端进行通信时所要切换至的目标BWP,则多个天线面板各自与终端进行通信时所要切换至的目标BWP可以是相同的BWP,也可以是不同的BWP。
可选地,当检测到信道空闲的天线面板有一个时,第二天线面板即是该信道空闲的天线面板。该信道空闲的天线面板可以自己发送BWP切换指示信息,以指示该自身所要切换至的目标BWP。
综上所述,在选择向终端发送BWP切换指示信息的第二天线面板时,本公开实施例提供了第二天线面板的多种选择方式,提高了第二天线面板选择的灵活性。
需要说明的一点是,在上述方法实施例中,仅从终端和基站交互的角度,对本公开技术方案进行了介绍说明。上述有关终端执行的步骤,可以单独实现成为终端一侧的非授权频谱上的BWP切换指示方法,上述有关基站执行的步骤,可以单独实现成为基站一侧的非授权频谱上的BWP切换指示方法。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图3是根据一示例性实施例示出的一种非授权频谱上的BWP切换指示装置的框图。该装置具有实现上述基站一侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的基站,也可以设置在基站中。如图3所示,该装置300可以包括:信息发送模块310。
信息发送模块310,被配置为通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
综上所述,本公开实施例提供的技术方案,基站通过第二天线面板发送BWP切换指示信息,该BWP切换指示信息用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP,终端在接收到该BWP切换指示信息之后,可以切换至第一目标BWP,并与第一天线面板进行通信。本公开实施例提供了一种多天线面板场景下BWP切换的方案,确保了BWP切换的准确性以及减少终端监听基站发送的BWP切换指示信息而带来的功耗,实现了终端与基站之间的可靠传输。
在示例性实施例中,所述BWP切换指示信息包括:天线面板指示信息和所述第一目标BWP的标识;其中,所述天线面板指示信息包括以下任意一种:所述第一天线面板的标识、所述第一天线面板对应的参考信号组标识、所述第一 天线面板对应的参考信号标识。
在示例性实施例中,所述第二天线面板是处于信道占用时间内的天线面板。
在示例性实施例中,当处于信道占用时间内的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在示例性实施例中,所述第二天线面板是检测到信道空闲的天线面板。
在示例性实施例中,当检测到信道空闲的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在示例性实施例中,所述BWP切换指示信息还用于指示所述第二天线面板所要切换至的第二目标BWP。
在示例性实施例中,所述信息发送模块310,被配置为通过所述第二天线面板发送PDCCH信令,所述PDCCH信令包括所述BWP切换指示信息。
图4是根据另一示例性实施例示出的一种非授权频谱上的BWP切换指示装置的框图。该装置具有实现上述终端一侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端,也可以设置在终端中。如图4所示,该装置400可以包括:信息接收模块410和BWP切换模块420。
信息接收模块410,被配置为接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
BWP切换模块420,被配置为根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
综上所述,本公开实施例提供的技术方案,基站通过第二天线面板发送BWP切换指示信息,该BWP切换指示信息用于指示终端与基站的第一天线面板进行通信时所要切换至的第一目标BWP,终端在接收到该BWP切换指示信息之后,可以切换至第一目标BWP,并与第一天线面板进行通信。本公开实施例提供了一种多天线面板场景下BWP切换的方案,确保了BWP切换的准确性以及减少终端监听基站发送的BWP切换指示信息而带来的功耗,实现了终端与基站之间 的可靠传输。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种非授权频谱上的BWP切换指示装置,该装置可应用于上文介绍的基站中,能够实现本公开提供的基站一侧的非授权频谱上的BWP切换指示方法。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
在示例性实施例中,所述BWP切换指示信息包括:天线面板指示信息和所述第一目标BWP的标识;其中,所述天线面板指示信息包括以下任意一种:所述第一天线面板的标识、所述第一天线面板对应的参考信号组标识、所述第一天线面板对应的参考信号标识。
在示例性实施例中,所述第二天线面板是处于信道占用时间内的天线面板。
在示例性实施例中,当处于信道占用时间内的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在示例性实施例中,所述第二天线面板是检测到信道空闲的天线面板。
在示例性实施例中,当检测到信道空闲的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在示例性实施例中,所述BWP切换指示信息还用于指示所述第二天线面板所要切换至的第二目标BWP。
在示例性实施例中,所述处理器还别配置为:
通过所述第二天线面板发送PDCCH信令,所述PDCCH信令包括所述BWP切换指示信息。
本公开一示例性实施例还提供了一种非授权频谱上的BWP切换指示装置,该装置可应用于上文介绍的终端中,能够实现本公开提供的终端一侧的非授权频谱上的BWP切换指示方法。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数;
根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
上述主要从基站和终端的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,基站和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图5是根据一示例性实施例示出的一种基站的结构示意图。
基站500包括发射器/接收器501和处理器502。其中,处理器502也可以为控制器,图5中表示为“控制器/处理器502”。所述发射器/接收器501用于支持基站与上述实施例中的所述终端之间收发信息,以及支持所述基站与其它网络实体之间进行通信。所述处理器502执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器501进行解调(例如将高频信号解调为基带信号),并进一步由处理器502进行处理来恢复终 端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器502进行处理,并由发射器501进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器502完成。例如,处理器502还用于执行上述方法实施例中基站侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,基站500还可以包括存储器503,存储器503用于存储基站500的程序代码和数据。此外,基站还可以包括通信单元504。通信单元504用于支持基站与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在5G NR***中,该通信单元504可以是NG-U接口,用于支持基站与UPF(User Plane Function,用户平面功能)实体进行通信;或者,该通信单元504也可以是NG-C接口,用于支持接入AMF(Access and Mobility Management Function接入和移动性管理功能)实体进行通信。
可以理解的是,图5仅仅示出了基站500的简化设计。在实际应用中,基站500可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
图6是根据一示例性实施例示出的一种终端的结构示意图。
所述终端600包括发射器601,接收器602和处理器603。其中,处理器603也可以为控制器,图6中表示为“控制器/处理器603”。可选的,所述终端600还可以包括调制解调处理器605,其中,调制解调处理器605可以包括编码器606、调制器607、解码器608和解调器609。
在一个示例中,发射器601调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给基站。在下行链路上,天线接收基站发射的下行链路信号。接收器602调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器605中,编码器606接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器607进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器609处理(例如,解调)该输入采样并提供符号估计。解码器608处理(例如,解交织和解码)该符号估计并提供发送给终端600的 已解码的数据和信令消息。编码器606、调制器607、解调器609和解码器608可以由合成的调制解调处理器605来实现。这些单元根据无线接入网采用的无线接入技术(例如,5G NR及其他演进***的接入技术)来进行处理。需要说明的是,当终端600不包括调制解调处理器605时,调制解调处理器605的上述功能也可以由处理器603完成。
处理器603对终端600的动作进行控制管理,用于执行上述本公开实施例中由终端600进行的处理过程。例如,处理器603还用于执行上述方法实施例中的终端侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,终端600还可以包括存储器604,存储器604用于存储用于终端600的程序代码和数据。
可以理解的是,图6仅仅示出了终端600的简化设计。在实际应用中,终端600可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被基站的处理器执行时实现上述基站侧的非授权频谱上的BWP切换指示方法。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现上述终端侧的非授权频谱上的BWP切换指示方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种非授权频谱上的BWP切换指示方法,其特征在于,所述方法包括:
    基站通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
    其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个带宽单元BWU中的N个BWU,N小于等于M,M和N都为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述BWP切换指示信息包括:天线面板指示信息和所述第一目标BWP的标识;
    其中,所述天线面板指示信息包括以下任意一种:所述第一天线面板的标识、所述第一天线面板对应的参考信号组标识、所述第一天线面板对应的参考信号标识。
  3. 根据权利要求1所述的方法,其特征在于,所述第二天线面板是处于信道占用时间内的天线面板。
  4. 根据权利要求3所述的方法,其特征在于,当处于信道占用时间内的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
  5. 根据权利要求1所述的方法,其特征在于,所述第二天线面板是检测到信道空闲的天线面板。
  6. 根据权利要求5所述的方法,其特征在于,当检测到信道空闲的天线面板有多个时,所述第二天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
  7. 根据权利要求1所述的方法,其特征在于,所述BWP切换指示信息还用于指示所述第二天线面板所要切换至的第二目标BWP。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述基站通过第二天线面板发送BWP切换指示信息,包括:
    所述基站通过所述第二天线面板发送物理下行控制信道PDCCH信令,所述PDCCH信令包括所述BWP切换指示信息。
  9. 一种非授权频谱上的BWP切换指示方法,其特征在于,所述方法包括:
    终端接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个带宽单元BWU中的N个BWU,N小于等于M,M和N都为正整数;
    所述终端根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
  10. 一种非授权频谱上的BWP切换指示装置,其特征在于,应用于基站中,所述装置包括:
    信息发送模块,被配置为通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
    其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个带宽单元BWU中的N个BWU,N小于等于M,M和N都为正整数。
  11. 根据权利要求10所述的装置,其特征在于,
    所述信息发送模块,被配置为通过所述第二天线面板发送物理下行控制信道PDCCH信令,所述PDCCH信令包括所述BWP切换指示信息。
  12. 一种非授权频谱上的BWP切换指示装置,其特征在于,应用于终端中,所述装置包括:
    信息接收模块,被配置为接收基站的第二天线面板发送的BWP切换指示信 息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个带宽单元BWU中的N个BWU,N小于等于M,M和N都为正整数;
    BWP切换模块,被配置为根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
  13. 一种非授权频谱上的BWP切换指示装置,其特征在于,应用于基站中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    通过第二天线面板发送BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;
    其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个带宽单元BWU中的N个BWU,N小于等于M,M和N都为正整数。
  14. 一种非授权频谱上的BWP切换指示装置,其特征在于,应用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站的第二天线面板发送的BWP切换指示信息,所述BWP切换指示信息用于指示所述终端与所述基站的第一天线面板进行通信时所要切换至的第一目标BWP;其中,所述第一目标BWP包括所述第一天线面板检测到信道空闲的M个带宽单元BWU中的N个BWU,N小于等于M,M和N都为正整数;
    根据所述BWP切换指示信息,切换至所述第一目标BWP与所述第一天线面板进行通信。
  15. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征 在于,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述方法的步骤,或者实现如权利要求9所述方法的步骤。
PCT/CN2019/095644 2019-07-11 2019-07-11 非授权频谱上的bwp切换指示方法、装置及存储介质 WO2021003747A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227004170A KR20220034825A (ko) 2019-07-11 2019-07-11 비면허 스펙트럼에서의 bwp 전환 지시 방법, 장치 및 저장 매체
JP2022501006A JP7430242B2 (ja) 2019-07-11 2019-07-11 アンライセンススペクトル上のbwp切り替え指示方法、装置及び記憶媒体
BR112022000387A BR112022000387A2 (pt) 2019-07-11 2019-07-11 Método e aparelho para indicação de comutação de parte de largura de banda, e, meio de armazenamento legível por computador não transitório
PCT/CN2019/095644 WO2021003747A1 (zh) 2019-07-11 2019-07-11 非授权频谱上的bwp切换指示方法、装置及存储介质
EP19937203.8A EP3998816A4 (en) 2019-07-11 2019-07-11 METHOD AND DEVICE FOR INDICATION OF BWP SWITCHING ON UNLICENSED SPECTRUM AND STORAGE MEDIA
CN201980001330.3A CN110521266B (zh) 2019-07-11 2019-07-11 非授权频谱上的bwp切换指示方法、装置及存储介质
US17/625,857 US20220264643A1 (en) 2019-07-11 2019-07-11 Method and apparatus for bwp switching indication on unlicensed spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095644 WO2021003747A1 (zh) 2019-07-11 2019-07-11 非授权频谱上的bwp切换指示方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021003747A1 true WO2021003747A1 (zh) 2021-01-14

Family

ID=68634399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095644 WO2021003747A1 (zh) 2019-07-11 2019-07-11 非授权频谱上的bwp切换指示方法、装置及存储介质

Country Status (7)

Country Link
US (1) US20220264643A1 (zh)
EP (1) EP3998816A4 (zh)
JP (1) JP7430242B2 (zh)
KR (1) KR20220034825A (zh)
CN (1) CN110521266B (zh)
BR (1) BR112022000387A2 (zh)
WO (1) WO2021003747A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517912B (zh) * 2020-04-09 2023-06-20 华为技术有限公司 数据传输的方法和装置
CN113676957A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种切换方法及装置
CN116391409A (zh) * 2020-10-23 2023-07-04 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417739A (zh) * 2018-09-26 2019-03-01 北京小米移动软件有限公司 资源确定方法和装置
WO2019098750A1 (en) * 2017-11-16 2019-05-23 Samsung Electronics Co., Ltd. Communication method and apparatus in wireless communication system
CN109804662A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 带宽部分切换的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123344B2 (en) * 2013-03-06 2018-11-06 Qualcomm Incorporated Methods and apparatus for multi-subframe scheduling
CN109565316B (zh) * 2016-11-07 2021-03-30 华为技术有限公司 无线通信***中的方法和设备
US11399314B2 (en) * 2017-07-28 2022-07-26 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus and system for acquiring control information
CN111434067B (zh) * 2017-11-09 2021-08-31 北京小米移动软件有限公司 基于无线装置能力的通信方法、装置及基站
PL3873152T3 (pl) * 2018-10-30 2023-05-08 Beijing Xiaomi Mobile Software Co., Ltd. Sposób odbierania informacji sterowania łącza pobierania, sposób przesyłania i urządzenia
US20220201764A1 (en) * 2019-02-15 2022-06-23 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus supporting same
US11363625B2 (en) * 2019-03-28 2022-06-14 Ofinno, Llc Bandwidth part operation in new radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098750A1 (en) * 2017-11-16 2019-05-23 Samsung Electronics Co., Ltd. Communication method and apparatus in wireless communication system
CN109417739A (zh) * 2018-09-26 2019-03-01 北京小米移动软件有限公司 资源确定方法和装置
CN109804662A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 带宽部分切换的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Discussion on DL signals for NR-U", 3GPP TSG RAN WG1 MEETING #95 R1-1813361, 2 November 2018 (2018-11-02), XP051479676, DOI: 20200330170948X *

Also Published As

Publication number Publication date
EP3998816A4 (en) 2023-03-22
JP7430242B2 (ja) 2024-02-09
KR20220034825A (ko) 2022-03-18
EP3998816A1 (en) 2022-05-18
JP2022539471A (ja) 2022-09-09
BR112022000387A2 (pt) 2022-03-03
CN110521266B (zh) 2023-09-01
CN110521266A (zh) 2019-11-29
US20220264643A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
CN113840387B (zh) 下行数据接收方法、发送方法、装置和存储介质
JP7426403B2 (ja) ビーム失敗の報告方法、装置及び記憶媒体
CN109496456B (zh) 非授权频谱上的信道检测方法、装置和存储介质
WO2020232566A1 (zh) Bwp切换方法、装置及存储介质
CN109565834B (zh) 下行控制信息接收方法、装置及存储介质
CN110719632B (zh) 一种准共址确定方法、调度方法、终端及网络设备
CN109496457B (zh) Dci的接收方法、发送方法、装置及存储介质
WO2020168551A1 (zh) 数据传输方法、装置及存储介质
US20190173644A1 (en) Reference signal measurement method and apparatus
CN113873669B (zh) 下行数据接收方法、发送方法、装置和储存介质
US11997742B2 (en) Method for receiving system information, method for sending system information, and devices and storage media thereof
WO2021003747A1 (zh) 非授权频谱上的bwp切换指示方法、装置及存储介质
WO2021106837A1 (ja) 端末装置、基地局装置および通信方法
CN110521273B (zh) 非授权频谱上的信道状态指示方法、装置及存储介质
US12034507B2 (en) Method and device for channel state indication on unlicensed spectrum
RU2786414C1 (ru) Способ и устройство для индикации переключения частей полосы частот (BWP) в нелицензируемом спектре, а также носитель информации

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501006

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000387

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227004170

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019937203

Country of ref document: EP

Effective date: 20220211

ENP Entry into the national phase

Ref document number: 112022000387

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220110