WO2021002244A1 - Glass article production device and production method - Google Patents

Glass article production device and production method Download PDF

Info

Publication number
WO2021002244A1
WO2021002244A1 PCT/JP2020/024604 JP2020024604W WO2021002244A1 WO 2021002244 A1 WO2021002244 A1 WO 2021002244A1 JP 2020024604 W JP2020024604 W JP 2020024604W WO 2021002244 A1 WO2021002244 A1 WO 2021002244A1
Authority
WO
WIPO (PCT)
Prior art keywords
lid
glass article
molten glass
manufacturing
flange
Prior art date
Application number
PCT/JP2020/024604
Other languages
French (fr)
Japanese (ja)
Inventor
周作 玉村
幸祐 岡田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020217039378A priority Critical patent/KR20220031548A/en
Priority to CN202080039106.6A priority patent/CN113874331A/en
Publication of WO2021002244A1 publication Critical patent/WO2021002244A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/094Means for heating, cooling or insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • C03B5/262Drains, i.e. means to dump glass melt or remove unwanted materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/086Plunger mechanisms

Definitions

  • the present invention relates to a glass article manufacturing apparatus and a manufacturing method, and more particularly to an improvement of a state adjusting tank provided in a transfer apparatus for transferring molten glass from a melting furnace to a molding apparatus.
  • a glass article manufacturing apparatus includes a melting furnace that produces molten glass from a glass raw material, a molding apparatus that molds the molten glass, and a transfer apparatus that transfers the molten glass flowing out of the melting furnace to the molding apparatus.
  • a clarification tank, a stirring tank, a state adjusting tank, and the like are provided in the transfer device in order from the upstream side.
  • the clarification tank removes air bubbles in the molten glass that has flowed out of the melting furnace.
  • the molten glass is stirred with a stirrer to homogenize it.
  • the state adjusting tank mainly adjusts the viscosity and flow rate of the molten glass immediately before supplying the molten glass to the molding apparatus.
  • Patent Document 1 discloses that devitrification is suppressed by lowering the liquid level of the molten glass in the state adjusting tank.
  • the opening at the upper end is open.
  • This opening serves as an insertion port for the plunger that blocks the downward flow of the molten glass.
  • the gas in the state adjusting tank (mainly vaporized vapor of molten glass) is discharged to the outside from the opening.
  • attention has not been paid to this released gas and the reality is that it is left as it is. This is because most of the bubbles in the molten glass are removed in the clarification tank, and it was thought that the amount of gas generated by the bubbles was very small in the state adjustment tank.
  • tin oxide and the like as a fining agent remain in the molten glass in the state adjustment tank.
  • the opening at the upper end of the state adjusting tank is open, volatile matter may adhere to the inner surface near the opening due to the volatilization of residual tin oxide or the like.
  • the volatile matter since the temperature of the vicinity of the opening is lowered due to the influence of the outside air, the volatile matter is liquefied or solidified and easily adheres, and the volatile matter after the adhesion is likely to be aggregated. Together with these things, the volatile matter adhering to the inner surface near the opening falls into the molten glass over time and becomes a foreign substance. As a result, the quality of the glass article as a product deteriorates or the product yield deteriorates.
  • the first aspect of the present invention which was devised to solve the above problems, is a glass article in which a state adjusting tank for adjusting the state of the molten glass is provided in a transfer device for transferring the molten glass from the melting furnace to the molding device.
  • the state adjusting tank is a manufacturing apparatus, and is characterized in that the state adjusting tank includes a tubular portion having a central axis along the vertical direction and an opening at an upper end, and a lid covering the opening of the tubular portion. ..
  • the opening of the tubular portion is covered with a lid, especially when the molten glass is molded by the molding apparatus. Therefore, it is possible to avoid the harmful effects that may occur when the opening of the tubular portion is open. Specifically, even if tin oxide or the like remaining in the molten glass in the state adjustment tank volatilizes, the vicinity of the opening of the tubular portion is always maintained at a high temperature, so that the volatile matter is liquefied or solidified. It is possible to prevent it from adhering to the inner surface near the opening. Therefore, it is possible to appropriately prevent the adhered volatile matter from falling into the molten glass and becoming a foreign substance.
  • the amount of heat radiated from the opening is significantly reduced, the effect of preventing devitrification of the molten glass near the liquid surface can be obtained. As a result, it is possible to improve the quality of the glass article as a product or the product yield.
  • the lid preferably has a refractory material and a covering material made of platinum or a platinum alloy that covers at least the lower surface of the refractory material.
  • the "covering material” means a plate (thin plate), a layer by thermal spraying, or the like.
  • the term "refractory” as used herein means a refractory such as dense zircon, mullite, alumina type, and zirconia type.
  • the lower surface of the lid which is a portion easily eroded, is covered with a covering material made of platinum or a platinum alloy, so that erosion of the lid can be efficiently suppressed and durability can be improved. it can.
  • the entire lid is made of platinum or a platinum alloy, the cost will rise and the weight will increase.
  • the refractory is covered with a covering material made of platinum or a platinum alloy, the cost can be reduced. Weight reduction is realized.
  • the tubular portion has a flange at its upper end that protrudes from the outer peripheral end of the lid to the outer peripheral side, and the state adjusting tank is above the portion of the flange that protrudes from the lid.
  • a cooling pipe mounted on the lid and a flow rate reducing means for reducing the flow rate of gas flowing out from a gap between the upper end of the tubular portion and the lid and toward the cooling pipe may be provided.
  • the state adjusting tank is usually energized and heated to adjust the temperature of the molten glass inside.
  • the electrode for energizing and heating the state adjusting tank is usually mounted on the above flange. Therefore, the flange is cooled by the cooling pipe, and the electrodes are protected from heat accordingly.
  • the cooling pipe is mounted on the upper side of the flange. Therefore, when the gas generated from the molten glass (mainly the vaporized vapor of the molten glass) flows out from the gap between the upper end of the tubular portion and the lid in the state adjustment tank, the gas flows above the flange.
  • the cooling pipe may be damaged or damaged due to corrosion due to oxidation. If the cooling pipe is torn, the coolant leaking from the cooling pipe may fall into the state adjusting tank through the gap between the upper end of the tubular portion and the lid. On the other hand, since the flow rate reducing means for reducing the flow rate of the gas toward the cooling pipe is provided, it becomes difficult for the gas to hit the cooling pipe, and the probability of damage or breakage of the cooling pipe can be reduced. ..
  • the flow rate reducing means may be a gas flow path provided in the lid.
  • the gas flow path provided in the lid causes the internal gas to flow out in preference to the gap between the upper end of the tubular portion and the lid, so that the flow rate of the gas toward the cooling pipe Can be reduced. Therefore, the lid body is effectively used for constructing the flow rate reducing means, and an inexpensive and compact flow rate reducing means is realized.
  • the inlet and outlet of the gas flow path may be formed at different positions in a plan view.
  • the inflow port does not exist in the path where the volatile matter adhering to the inner peripheral surface of the inflow port falls vertically downward. .. As a result, it is possible to avoid a situation in which the volatile matter passes through the inflow port and falls into the molten glass.
  • the inlet and outlet of the gas flow path may be formed so that the gas flow directions are different.
  • the gas flow direction differs between the inflow port and the outflow port, so that even if the volatile matter adhering to the inner peripheral surface of the outflow port falls, it is easy to stop in the middle of the gas flow path. It becomes difficult to reach the inflow port. This also prevents the volatile matter from passing through the inflow port and falling into the molten glass.
  • the flow rate reducing means may be a shielding wall arranged between the outer peripheral end of the lid and the cooling pipe.
  • the shielding wall prevents the gas from hitting the cooling pipe. As a result, the probability of damage or breakage of the cooling pipe can be reduced.
  • the tubular portion has a flange at the upper end thereof
  • the state adjusting tank includes a cooling pipe mounted on the flange, and the cooling pipe is mounted on the lower side of the flange. Good.
  • the second aspect of the present invention which was devised to solve the above problems, includes a transfer step of transferring the molten glass from the melting furnace to the molding apparatus by the transfer device, and in the transfer step, the state of being deployed in the transfer device.
  • the state adjusting tank has a tubular portion having an opening along the vertical direction and an opening at the upper end, and a lid. It is characterized in that it has a body and the lid covers the opening of the tubular portion when the state adjustment process is performed.
  • the harmful effects that may occur due to the opening of the state adjusting tank deployed in the transfer device are suppressed.
  • FIG. 1 illustrates the overall configuration of a glass article manufacturing apparatus according to the present invention.
  • the manufacturing apparatus 1 is roughly divided into a melting furnace 2 which is deployed at the upstream end to generate molten glass Gm from a glass raw material and a molten glass Gm flowing out from the melting furnace 2 on the downstream side.
  • a transfer device 3 for transferring toward the glass and a molding device 4 for forming the molten glass Gm supplied from the transfer device 3 into a strip-shaped flat glass Gp are provided.
  • the transfer device 3 has a clarification tank 5, one or more (two in the example) stirring tank 6, and a state adjusting tank 7 in this order from the upstream side.
  • the clarification tank 5 removes air bubbles in the molten glass Gm flowing out of the melting furnace 2.
  • the stirring tank 6 the molten glass Gm is stirred and homogenized by the stirrer 8.
  • the state adjusting tank 7 mainly adjusts the viscosity of the molten glass Gm and the flow rate of the molten glass Gm supplied to the molding apparatus 4.
  • the melting furnace 2 communicates with the clarification tank 5 via the upstream connection pipe 9.
  • the clarification tank 5 communicates with the stirring tank 6 on the upstream side via an intermediate connection pipe 10.
  • the stirring tank 6 on the upstream side communicates with the stirring tank 6 on the downstream side via the downstream connecting pipe 11.
  • the stirring tank 6 on the downstream side communicates with the state adjusting tank 7 via the cooling pipe 12.
  • the state adjusting tank 7 is composed of a tubular portion 13 as a large-diameter pipe, a reduced-diameter portion 14 as a conical pipe, and a lower portion 15 as a small-diameter pipe.
  • the tubular portion 13 has an opening 16 at the upper end and along the central axis in the vertical direction.
  • the inner diameter of the reduced diameter portion 14 is gradually reduced as it is connected to the lower end of the tubular portion 13 and moves downward.
  • the lower portion 15 is connected to the lower end of the reduced diameter portion 14.
  • the inflow port 17 of the state adjusting tank 7 is provided on the side wall of the tubular portion 13 and leads to the cooling pipe 12.
  • the outlet 18 of the state adjusting tank 7 is the lower end opening of the lower portion 15.
  • the molding apparatus 4 has a molded body 19 for forming a flat glass Gp by flowing down the molten glass Gm by an overflow down draw method, and a large-diameter introduction pipe 20 for guiding the molten glass Gm to the molded body 19.
  • the lower portion 15 of the state adjusting tank 7 is inserted into the introduction pipe 20, and the lower end portion of the lower portion 15 is immersed in the molten glass Gm in the introduction pipe 20. With this configuration, the molten glass Gm is supplied from the state adjusting tank 7 to the introduction pipe 20.
  • the method for producing a glass article according to the present invention includes a melting step of heating a glass raw material in a melting furnace 2 to generate molten glass Gm and a transfer of the molten glass Gm being transferred from the melting furnace 2 to the molding apparatus 4 by a transfer device 3. It includes a step and a molding step of molding the molten glass Gm supplied from the transfer device 3 by the molding device 4. In the molding process, the glass article is molded by the overflow down method. In the transfer step, a state adjustment process for adjusting the state of the molten glass Gm is performed by the state adjustment tank 7 provided in the transfer device 3.
  • FIG. 2 is a perspective view showing the superstructure of the state adjusting tank 7 according to the first embodiment of the present invention
  • FIG. 3 is a vertical sectional front view cut along the line AA of FIG.
  • the opening 16 at the upper end of the tubular portion 13 is covered with the lid 21 when the transfer step and the molding step are executed.
  • the tubular portion 13 has a flange 22 at the upper end.
  • the lid 21 is placed on the inner peripheral side portion 22a of the flange 22 while covering the opening 16, and can be easily attached and detached.
  • the tubular portion 13 is made of platinum or a platinum alloy.
  • the flange 22 is made of platinum or a platinum alloy or other metal.
  • the opening area of the opening 16 of the tubular portion 13 is substantially the same as the pipeline area of the tubular portion 13, but the former may be smaller than the latter. It can be large. Further, the height of the liquid level GL of the molten glass Gm may be an intermediate position (particularly a position near the upper end) between the upper end and the lower end of the inflow port 17 (see FIG. 1) formed in the tubular portion 13. preferable.
  • the outer peripheral side portion 22b of the flange 22 protrudes from the outer peripheral end 21a of the lid 21.
  • a cooling pipe 23 is mounted on the upper side of the outer peripheral side portion 22b of the flange 22. Specifically, the cooling pipe 23 is fixed to the upper surface of the outer peripheral side portion 22b of the flange 22 so as to make substantially one turn along the circumferential direction. Then, the cooling liquid circulates in the cooling pipe 23 to cool the flange 22 in particular, the outer peripheral side portion 22b.
  • An electrode (not shown) for energizing and heating the state adjusting tank 7 is attached to the outer peripheral side portion 22b of the flange 22.
  • FIG. 4 is a perspective view showing the configuration of the lid 21.
  • the lid 21 is composed of a plurality of refractories 24 (two in the example) and a thin plate 25 as a covering material made of platinum or a platinum alloy covering the refractories 24.
  • the thin plate 25 is provided between the lower thin plate 25a that covers the lower surfaces of the two refractories 24, the outer peripheral thin plate 25b that covers the entire outer peripheral surface of the two refractories 24, and the two refractories 24. It has a partition thin plate 25c. Each of these thin plates 25a, 25b, and 25c is integrated. As shown in FIG.
  • the two refractories 24 are separately covered with the lower thin plate 25a, the outer peripheral thin plate 25b, and the partition thin plate 25c, and the two partition thin plates 25c are brought into contact with each other so as to be separated from each other. It may be configured to be joined so that it cannot be separated. Further, the thin plate 25 may cover the entire surface including the upper surface of the refractory 24, or may cover only the lower surface of the refractory 24.
  • the covering material is not limited to the thin plate 25, and may be a layer made of platinum or a platinum alloy formed by spraying the refractory material 24.
  • the refractory material 24 is, for example, a refractory material made of dense zircon, mullite, alumina type, zirconia type, or the like (the same applies to the “refractory material” described below).
  • the following effects are exhibited.
  • the opening 16 of the tubular portion 13 in the state adjusting tank 7 is covered with the lid 21. Therefore, the harmful effects that may occur when the opening 16 is open can be avoided. Specifically, even if tin oxide or the like remaining in the molten glass Gm in the state adjusting tank 7 volatilizes, the vicinity of the opening 16 of the tubular portion 13 is always maintained at a high temperature, so that the volatile matter is generated. It can be prevented from liquefying or solidifying and adhering to the inner surface near the opening.
  • the lower surface of the lid 21, which is a portion easily eroded is covered with a thin plate (covering material) 25 made of platinum or a platinum alloy, erosion of the lid 21 is efficiently suppressed and durability is achieved. Can be improved.
  • the entire lid 21 is made of platinum or a platinum alloy, the cost will increase and the weight will increase.
  • the cost can be reduced by covering the refractory 24 with a thin plate 25 made of platinum or a platinum alloy. And weight reduction is realized.
  • the internal gas (mainly molten glass) passes through the gap 26 between the upper end of the tubular portion 13 and the lid 21. Vaporized steam) may flow out.
  • the gas may flow above the outer peripheral side portion 22b of the flange 22 toward the outer peripheral side and hit the cooling pipe 23. Since the gas has a high temperature, the cooling pipe 23 may be damaged or damaged due to corrosion due to oxidation. Then, if the cooling pipe 23 is torn, the cooling liquid leaking from the cooling pipe 23 may fall into the state adjusting tank 7 through the gap 26.
  • FIG. 7 is a vertical sectional front view showing the superstructure of the state adjusting tank 7 according to the second embodiment of the present invention.
  • a through hole 27 is formed in the central portion of the lid 21 to allow the gas inside to flow upward as shown by the arrow b.
  • the inner peripheral surface of the through hole 27 is also covered with a covering material made of platinum or a platinum alloy. Since the other configurations are the same as those of the first embodiment described above, the components common to both embodiments are designated by the same reference numerals in FIG. 7, and the description thereof will be omitted.
  • the gas inside flows out from the through hole 27 in the upward direction indicated by the arrow b in preference to the gap 26, so that there is an advantage that the gas is less likely to hit the cooling pipe 23. can get.
  • the through hole 27 can be effectively used as a hole for inserting the shaft of the plunger when using a plunger that blocks the downward flow of the molten glass Gm.
  • the temperature of the outflow side (upper part) of the inner peripheral surface of the through hole 27 formed in the lid 21 is lowered due to the influence of the outside air. Therefore, the outflow side of the inner peripheral surface of the through hole 27 is in a state in which volatile substances such as tin oxide are liquefied or solidified and easily adhere to the inner peripheral surface, and the volatile substances after the adhesion are likely to be aggregated. Then, the volatile matter adhering to the outflow side of the inner peripheral surface of the through hole 27 may fall into the molten glass Gm over time and become a foreign substance.
  • the amount of volatile matter adhering in this case is smaller than the amount of volatile matter adhering to the vicinity of the inner surface of the opening when the opening of the conventional state adjusting tank is opened.
  • FIG. 8 is a perspective view showing the superstructure of the state adjusting tank 7 according to the third embodiment of the present invention
  • FIG. 9 is a vertical sectional front view cut according to the line BB of FIG.
  • the lid 21 is provided with a gas flow path 30. More specifically, the lid 21 has a flat base wall portion 31 that covers the upper end of the tubular portion 13 and the upper surface of the inner peripheral side portion 22a of the flange 22, and an annular or tubular portion installed on the base wall portion 31. A flat side wall portion 32 and a flat plate-shaped ceiling wall portion 33 that covers the upper side of the side wall portion 32 are provided.
  • the gas flow path 30 is composed of an inflow port 34, an internal space 35 leading to the inflow port, and an outflow port 36 communicating with the internal space 35.
  • the inflow port 34 is a through hole formed in the central portion of the base wall portion 31.
  • the internal space 35 is a space surrounded by the side wall portion 32 and the ceiling wall portion 33.
  • the outlet 36 is a notch formed in the upper portion of the side wall portion 32 at one location in the circumferential direction.
  • the inflow port 34 and the outflow port 36 are different in position in a plan view.
  • the central axis of the inflow port 34 is along the vertical direction, while the central axis of the outflow port 36 is along the horizontal direction. Therefore, the gas flow direction at the inflow port 34 is an upward direction (arrow c direction) substantially along the vertical direction, whereas the gas flow direction at the outflow port 36 is a lateral direction substantially along the horizontal direction. (Arrow d direction).
  • the base wall portion 31 has the same configuration as the lid 21 in the above-mentioned second embodiment (see FIG. 7). Further, it is preferable that both the side wall portion 32 and the ceiling wall portion 33 are formed only of a refractory material, but at least a portion of the refractory material in contact with gas is covered with a platinum or platinum alloy covering material. You may.
  • the opening area of the inflow port 34 is M1 and the opening area of the opening 16 is M2
  • the lower limit value of M1 / M2 is preferably 1/200 and the upper limit value is preferably 1/10. It is more preferable that the lower limit value is 1/100 and the upper limit value is 1/20.
  • the opening area of the outflow port 36 is smaller than the opening area of the inflow port 34.
  • the height position of the outlet 36 is set to be equal to or higher than the height position of the upper part of the cooling pipe 23.
  • the outlet 36 is not limited to one location in the circumferential direction of the side wall portion 32, and may be formed at a plurality of locations in the circumferential direction.
  • the following effects are exhibited.
  • the gas in the state adjusting tank 7 flows into the internal space 35 from the inflow port 34 of the gas flow path 30 in preference to the above-mentioned gap 26, and then flows out from the outflow port 36 to the outside.
  • volatile substances such as tin oxide contained in the gas are liquefied or solidified on the inner peripheral surface. Easy to adhere. When the volatile matter adheres to the inner peripheral surface of the outlet 36, the volatile matter may fall over time.
  • the inflow port 34 and the outflow port 36 have different positions and gas flow directions in a plan view, the inflow port 34 does not exist in the path where the volatile matter falls, and the volatile matter is contained in the outflow port 36. It is received by the bottom of the peripheral surface and the upper surface of the base wall portion 31. Therefore, the volatile matter is prevented from falling into the molten glass Gm. Since the inner peripheral surface of the inflow port 34 is not easily affected by the outside air, it is maintained at a high temperature. Therefore, it is possible to prevent volatile substances such as tin oxide from adhering to the inner peripheral surface of the inflow port 34.
  • the height position of the outlet 36 is set to be equal to or higher than the height position of the upper end of the cooling pipe 23, the gas flowing out from the outlet 36 in the arrow d direction is less likely to hit the cooling pipe 23. .. Since the gas flowing out from the outflow port 36 has a higher temperature than the outside air, the gas gradually moves upward immediately after the outflow. Therefore, the situation where the gas hits the cooling pipe 23 can be more reliably avoided.
  • FIG. 10 is a vertical sectional front view showing the superstructure of the state adjusting tank 7 according to the fourth embodiment of the present invention.
  • the configuration according to the fourth embodiment is different from the configuration according to the third embodiment described above, in that the receiving member 37 is installed on the base wall portion 31 of the lid 21. There is.
  • the receiving member 37 has a hanging portion 37a extending downward from the lower portion of the base wall portion 31 and a receiving portion 37b extending laterally (horizontally) from the lower end of the hanging portion 37a.
  • the receiving portion 37b is arranged in the upper space of the liquid level GL of the molten glass Gm.
  • the area of the receiving portion 37b (area in a plan view) is made larger than the opening area of the inflow port 34, and the inflow port 34 fits within the upper surface region of the receiving portion 37b in a plan view. Since the other configurations are the same as the configurations according to the third embodiment described above, the components common to both embodiments are designated by the same reference numerals in FIG. 10 and the description thereof will be omitted. According to the configuration according to the fourth embodiment, even if the volatile matter adhering to the inner peripheral surface of the inflow port 34 falls, or the volatile matter falls from the internal space 35 through the inflow port 34, the volatile matter remains. It is received by the receiving portion 37b of the receiving member 37. Therefore, it is possible to more reliably prevent the situation where the volatile matter falls into the molten glass Gm and becomes a platinum foreign substance or the like. The other effects are substantially the same as those in the third embodiment described above.
  • FIG. 11 is a vertical sectional front view showing the superstructure of the state adjusting tank 7 according to the fifth embodiment of the present invention.
  • the configuration according to the fifth embodiment is different from the configuration according to the third embodiment described above in that the lid 21 is biased to one side from the central portion of the base wall portion 31.
  • the inflow port 34 is formed at this position, and the outflow port 36 is formed at a position deviated from the central portion of the ceiling wall portion 33 to the other side. Therefore, the inflow port 34 and the outflow port 36 are different in position in a plan view.
  • the gas flow direction at the inflow port 34 and the gas flow direction at the outflow port 36 are the same, and both are upward directions (arrow e direction and arrow f direction) substantially along the vertical line. Is.
  • the side wall portion 32 is not formed with a notch.
  • the internal space 35 of the gas flow path 30 is wider in the lateral direction than in the third embodiment described above. Since the other configurations are the same as those in the second example described above, the components common to both examples are designated by the same reference numerals in FIG. 14, and the description thereof will be omitted.
  • the inflow port 34 and the outflow port 36 have different positions in a plan view, the inflow port 34 does not exist in the path where the volatile matter falls, and the volatile matter is present. It is received by the upper surface of the base wall portion 31. Therefore, the volatile matter is prevented from falling into the molten glass Gm. Further, since the gas flowing out from the outflow port 36 goes upward (in the direction of arrow f) immediately after the outflow, it is difficult for the gas to surely hit the cooling pipe 23.
  • FIG. 12 is a perspective view showing the superstructure of the state adjusting tank 7 according to the sixth embodiment of the present invention
  • FIG. 13 is a vertical sectional front view cut according to the line CC of FIG.
  • the lid body 21 has an annular or tubular side wall portion 32 arranged on the inner peripheral side portion 22a of the flange 22, and a flat plate-shaped ceiling covering the upper side of the side wall portion 32.
  • a wall portion 33 is provided.
  • the gas flow path 30 is composed of an internal space 35 and an outlet 36.
  • the internal space 35 is a space surrounded by the side wall portion 32 and the ceiling wall portion 33.
  • the outlet 36 is a notch formed in the upper portion of the side wall portion 32 at one location in the circumferential direction.
  • the gas in the state adjusting tank 7 has priority over the gap 26 between the upper end of the tubular portion 13 and the side wall portion 32, and the gas in the gas flow path 30 has an internal space 35. It flows out from the outflow port 36 to the outside.
  • the volatile matter is the bottom of the inner peripheral surface of the outlet 36, the upper surface of the inner peripheral side portion 22a of the flange 22, and the tubular portion 13. It is received by the upper end surface of. Therefore, the fall of the volatile matter into the molten glass Gm can be prevented.
  • the space above the opening 16 (internal space 35) is maintained at a high temperature because it is surrounded by the side wall portion 32 and the ceiling wall portion 33. Therefore, in the vicinity of the opening 16, volatile substances such as tin oxide are unlikely to adhere and agglomeration of the volatile substances after the adhesion is unlikely to occur. As a result, adhesion or aggregation of volatiles to the vicinity of the opening 16 can be avoided, and a situation in which the volatiles fall into the molten glass Gm from the vicinity of the opening 16 can be prevented. Further, since the gas flow direction at the outflow port 36 is the lateral direction as shown by the arrow g, the gas flow resistance when passing through the gas flow path 30 increases.
  • the height position of the outlet 36 is set to be equal to or higher than the height position of the upper end of the cooling pipe 23. Therefore, the gas flowing out from the outlet 36 in the direction of arrow g is less likely to hit the cooling pipe 23.
  • FIG. 14 is a perspective view showing the superstructure of the state adjusting tank 7 according to the seventh embodiment of the present invention
  • FIG. 15 is a vertical sectional front view showing a state of being cut and exaggerated according to the DD line of FIG. Is.
  • the configuration according to the seventh embodiment is different from the first embodiment described above (see FIGS. 2 and 3) in that the flow rate reducing means is provided between the outer peripheral end 21a of the lid 21 and the cooling pipe 23. It is where the shielding wall 40 is arranged.
  • the shielding wall 40 is fixed to the upper surface of the flange 22 and has an annular shape or a tubular shape. The upper end of the shielding wall 40 is higher than the upper end of the cooling pipe 23.
  • the components common to both embodiments are designated by the same reference numerals with reference to FIGS. 14 and 15, and the description thereof will be omitted.
  • the shielding wall 40 causes the gas to flow out.
  • the gas is prevented from hitting the cooling pipe 23.
  • the probability of damage or breakage of the cooling pipe 23 can be reduced.
  • the other effects are substantially the same as those of the first embodiment described above.
  • FIG. 16 is a perspective view showing the superstructure of the state adjusting tank 7 according to the eighth embodiment of the present invention
  • FIG. 17 is a vertical sectional front view cut along the line EE of FIG.
  • the configuration according to the eighth embodiment is different from the first embodiment described above (see FIGS. 2 and 3) in that the cooling pipe 23 is attached to the lower side of the outer peripheral side portion 22b of the flange 22. is there. Since the other configurations are the same as those of the first embodiment described above, the components common to both embodiments are designated by the same reference numerals in FIGS. 16 and 17, and the description thereof will be omitted.
  • the gas is flanged. It flows above 22.
  • the cooling pipe 23 is mounted on the lower side of the flange 22, the gas does not hit the cooling pipe 23.
  • the flange 22 does not have to protrude from the outer peripheral end of the lid 21 to the outer peripheral side.
  • FIG. 18 is a perspective view showing the superstructure of the state adjusting tank 7 according to the ninth embodiment of the present invention
  • FIG. 19 is a longitudinal front view cut along the line FF of FIG.
  • the configuration according to the ninth embodiment is different from the first embodiment described above (see FIGS. 2 and 3) in that the cooling pipe 23 is mounted on the lower side of the outer peripheral side portion 22b of the flange 22 and the flange.
  • a recess 41 recessed downward is formed in the inner peripheral side portion 22a of 22, and the lid 21 is fitted in the recess 41.
  • the cooling pipe 23 may be mounted on the upper side of the flange 22.
  • the tubular portion 13 provided in the upper part of the state adjusting tank is cylindrical in the example, but it may be a quadrangular or polygonal rectangular tube in a plan view.
  • the flange 22 formed at the upper end of the tubular portion 13 and the lid 21 covering the opening 16 of the tubular portion 13 are circular in the plan view, but are rectangular in the plan view. It may be a polygon or the like.

Abstract

A transport device 3 for transporting molten glass Gm from a melting furnace 2 to a forming device 4 is equipped with a state adjustment tank 7 for adjusting the state of the molten glass Gm, and the state adjustment tank 7 comprises: a cylindrical section 13 having a central axis line running along the top-down direction and an opening section 16 on the upper end thereof; and a lid body 21 covering the opening section 16 of the cylindrical section 13.

Description

ガラス物品の製造装置及び製造方法Manufacturing equipment and manufacturing method for glass articles
 本発明は、ガラス物品の製造装置及び製造方法に係り、詳しくは、溶融炉から成形装置まで溶融ガラスを移送する移送装置に配備される状態調整槽の改良に関する。 The present invention relates to a glass article manufacturing apparatus and a manufacturing method, and more particularly to an improvement of a state adjusting tank provided in a transfer apparatus for transferring molten glass from a melting furnace to a molding apparatus.
 周知のように、ガラス物品の製造装置は、ガラス原料から溶融ガラスを生成する溶融炉と、溶融ガラスを成形する成形装置と、溶融炉から流出した溶融ガラスを成形装置まで移送する移送装置とを備える。移送装置には、上流側から順に、例えば、清澄槽、攪拌槽、状態調整槽などが配備される。 As is well known, a glass article manufacturing apparatus includes a melting furnace that produces molten glass from a glass raw material, a molding apparatus that molds the molten glass, and a transfer apparatus that transfers the molten glass flowing out of the melting furnace to the molding apparatus. Be prepared. For example, a clarification tank, a stirring tank, a state adjusting tank, and the like are provided in the transfer device in order from the upstream side.
 清澄槽は、溶融炉から流出した溶融ガラス中の気泡を除去する。攪拌槽は、スターラで溶融ガラスを攪拌して均質化する。状態調整槽は、成形装置に溶融ガラスを供給する直前で主として溶融ガラスの粘度や流量を調整する。 The clarification tank removes air bubbles in the molten glass that has flowed out of the melting furnace. In the stirring tank, the molten glass is stirred with a stirrer to homogenize it. The state adjusting tank mainly adjusts the viscosity and flow rate of the molten glass immediately before supplying the molten glass to the molding apparatus.
 状態調整槽は、槽内での溶融ガラスの流れが停滞しやすいため、溶融ガラスの液面周辺で失透(結晶化)を招くおそれがある。この問題に対して、特許文献1には、状態調整槽内での溶融ガラスの液面を低下させることで、失透を抑えることが開示されている。 In the state adjustment tank, the flow of the molten glass in the tank tends to be stagnant, which may lead to devitrification (crystallization) around the liquid surface of the molten glass. To solve this problem, Patent Document 1 discloses that devitrification is suppressed by lowering the liquid level of the molten glass in the state adjusting tank.
特開2017-14067号公報JP-A-2017-14067
 ところで、特許文献1に開示された状態調整槽は、上端の開口部が開放している。この開口部は、溶融ガラスの下方に向かう流れを堰き止めるプランジャの挿入口としての役割を果たす。また、開口部からは、状態調整槽内のガス(主に溶融ガラスが気化した蒸気)が外部に放出される。しかし、従来においては、この放出されるガスについて着目されておらず、そのまま放置されているのが実情である。これは、清澄槽で溶融ガラス中の泡の大部分が除去されるので、状態調整槽では、泡によるガスの発生が微量であると考えられていたことによる。 By the way, in the state adjusting tank disclosed in Patent Document 1, the opening at the upper end is open. This opening serves as an insertion port for the plunger that blocks the downward flow of the molten glass. Further, the gas in the state adjusting tank (mainly vaporized vapor of molten glass) is discharged to the outside from the opening. However, in the past, attention has not been paid to this released gas, and the reality is that it is left as it is. This is because most of the bubbles in the molten glass are removed in the clarification tank, and it was thought that the amount of gas generated by the bubbles was very small in the state adjustment tank.
 本発明者等は、鋭意研究を重ねた結果、成形装置で溶融ガラスが成形されている際に、状態調整槽の開口部から放出されるガスに起因して様々な弊害が生じ得ることを知見した。 As a result of diligent research, the present inventors have found that when molten glass is molded by a molding apparatus, various harmful effects may occur due to the gas released from the opening of the state adjusting tank. did.
 その弊害の一例を説明すると、状態調整槽内の溶融ガラス中には、清澄剤としての酸化スズ等が残存している。状態調整槽の上端の開口部が開放していると、残存する酸化スズ等が揮発することに起因して、開口部付近の内面に揮発物が付着し得る。しかも、開口部付近は、外気の影響を受けて温度が低下しているため、揮発物が液化又は固化して付着し易く且つ付着後の揮発物の凝集等も生じ易い状態になる。これらの事が相俟って、開口部付近の内面に付着した揮発物は、時間経過により溶融ガラス中に落下して異物になる。その結果、製品であるガラス物品の品質低下或いは製品歩留まりの悪化が生じる。 To explain an example of the harmful effects, tin oxide and the like as a fining agent remain in the molten glass in the state adjustment tank. If the opening at the upper end of the state adjusting tank is open, volatile matter may adhere to the inner surface near the opening due to the volatilization of residual tin oxide or the like. Moreover, since the temperature of the vicinity of the opening is lowered due to the influence of the outside air, the volatile matter is liquefied or solidified and easily adheres, and the volatile matter after the adhesion is likely to be aggregated. Together with these things, the volatile matter adhering to the inner surface near the opening falls into the molten glass over time and becomes a foreign substance. As a result, the quality of the glass article as a product deteriorates or the product yield deteriorates.
 以上の観点から、本発明は、移送装置に配備される状態調整槽の開口部が開放されていることにより生じ得る弊害を回避することを課題とする。 From the above viewpoint, it is an object of the present invention to avoid the harmful effects that may occur due to the opening of the state adjusting tank deployed in the transfer device.
 上記課題を解決するために創案された本発明の第一の側面は、溶融炉から成形装置まで溶融ガラスを移送する移送装置に、溶融ガラスの状態を調整する状態調整槽を配備したガラス物品の製造装置であって、前記状態調整槽は、中心軸線が上下方向に沿い且つ上端に開口部を有する筒状部と、前記筒状部の開口部を覆う蓋体とを備えることに特徴づけられる。 The first aspect of the present invention, which was devised to solve the above problems, is a glass article in which a state adjusting tank for adjusting the state of the molten glass is provided in a transfer device for transferring the molten glass from the melting furnace to the molding device. The state adjusting tank is a manufacturing apparatus, and is characterized in that the state adjusting tank includes a tubular portion having a central axis along the vertical direction and an opening at an upper end, and a lid covering the opening of the tubular portion. ..
 このガラス物品の製造装置によれば、特に、成形装置によって溶融ガラスを成形している際に、筒状部の開口部が蓋体で覆われる。そのため、筒状部の開口部が開放していることにより生じ得る弊害を回避することができる。具体的には、状態調整槽内の溶融ガラス中に残存する酸化スズ等が揮発しても、筒状部の開口部付近が常に高温に維持されていることから、揮発物が液化又は固化して開口部付近の内面に付着するのを防止できる。このため、付着した揮発物が溶融ガラス中に落下して異物になる事態を適切に抑止することができる。また、開口部からの放熱量が大幅に減少するため、溶融ガラスの液面付近での失透を未然に防止する効果も得られる。以上の結果、製品であるガラス物品の品質向上或いは製品歩留まりの改善を実現できる。 According to this glass article manufacturing apparatus, the opening of the tubular portion is covered with a lid, especially when the molten glass is molded by the molding apparatus. Therefore, it is possible to avoid the harmful effects that may occur when the opening of the tubular portion is open. Specifically, even if tin oxide or the like remaining in the molten glass in the state adjustment tank volatilizes, the vicinity of the opening of the tubular portion is always maintained at a high temperature, so that the volatile matter is liquefied or solidified. It is possible to prevent it from adhering to the inner surface near the opening. Therefore, it is possible to appropriately prevent the adhered volatile matter from falling into the molten glass and becoming a foreign substance. Further, since the amount of heat radiated from the opening is significantly reduced, the effect of preventing devitrification of the molten glass near the liquid surface can be obtained. As a result, it is possible to improve the quality of the glass article as a product or the product yield.
 この場合、前記蓋体は、耐火物と、前記耐火物の少なくとも下面を覆う白金または白金合金からなる覆設材とを有することが好ましい。ここで、「覆設材」とは、板(薄板)或いは溶射による層などを意味する。また、ここでいう「耐火物」は、例えばデンスジルコン、ムライト、アルミナ系、ジルコニア系などの耐火物を意味する。 In this case, the lid preferably has a refractory material and a covering material made of platinum or a platinum alloy that covers at least the lower surface of the refractory material. Here, the "covering material" means a plate (thin plate), a layer by thermal spraying, or the like. Further, the term "refractory" as used herein means a refractory such as dense zircon, mullite, alumina type, and zirconia type.
 このようにすれば、蓋体の浸食され易い部位である下面が、白金または白金合金からなる覆設材で覆われるため、蓋体の浸食等を効率良く抑止して耐久性を向上させることができる。また、蓋体の全体を白金または白金合金で形成した場合は、コストの高騰や重量増を招くが、耐火物を白金または白金合金からなる覆設材で覆うようにすれば、低コスト化や軽量化が実現する。 In this way, the lower surface of the lid, which is a portion easily eroded, is covered with a covering material made of platinum or a platinum alloy, so that erosion of the lid can be efficiently suppressed and durability can be improved. it can. In addition, if the entire lid is made of platinum or a platinum alloy, the cost will rise and the weight will increase. However, if the refractory is covered with a covering material made of platinum or a platinum alloy, the cost can be reduced. Weight reduction is realized.
 以上の構成において、前記筒状部は、その上端に前記蓋体の外周端から外周側に食み出すフランジを有し、前記状態調整槽は、前記フランジにおける蓋体から食み出す部位の上側に装着された冷却管と、前記筒状部の上端と前記蓋体との間の隙間から流出して前記冷却管に向かうガスの流量を低減する流量低減手段とを備えるようにしてもよい。 In the above configuration, the tubular portion has a flange at its upper end that protrudes from the outer peripheral end of the lid to the outer peripheral side, and the state adjusting tank is above the portion of the flange that protrudes from the lid. A cooling pipe mounted on the lid and a flow rate reducing means for reducing the flow rate of gas flowing out from a gap between the upper end of the tubular portion and the lid and toward the cooling pipe may be provided.
 このようにすれば、例えば、状態調整槽の通電加熱が良好に行われる。詳しくは、状態調整槽は、内部の溶融ガラスの温度調整等のために通電加熱されるのが通例である。そして、状態調整槽を通電加熱するための電極は、レイアウトの観点から、上記のフランジに装着されることも通例である。そのため、フランジが冷却管によって冷却され、これに伴って電極が熱から保護される。この場合、冷却管は、フランジの上側に装着されている。そのため、状態調整槽内で溶融ガラスから発生したガス(主として溶融ガラスが気化した蒸気)が筒状部の上端と蓋体との間の隙間から流出した場合には、ガスがフランジの上方を流れて冷却管に当たり得る。このガスが高温であるため、冷却管が酸化により腐食するなどして損傷または破損するおそれがある。そして、冷却管が破れてしまった場合には、冷却管から漏れ出た冷却液が筒状部の上端と蓋体との間の隙間を通じて状態調整槽内に落下するおそれがある。これに対しては、冷却管に向かうガスの流量を低減する流量低減手段が設けられているため、冷却管にガスが当たり難くなり、冷却管の損傷や破損の発生確率を小さくすることができる。 In this way, for example, energization and heating of the state adjustment tank can be performed satisfactorily. Specifically, the state adjusting tank is usually energized and heated to adjust the temperature of the molten glass inside. Then, from the viewpoint of layout, the electrode for energizing and heating the state adjusting tank is usually mounted on the above flange. Therefore, the flange is cooled by the cooling pipe, and the electrodes are protected from heat accordingly. In this case, the cooling pipe is mounted on the upper side of the flange. Therefore, when the gas generated from the molten glass (mainly the vaporized vapor of the molten glass) flows out from the gap between the upper end of the tubular portion and the lid in the state adjustment tank, the gas flows above the flange. Can hit the cooling pipe. Since this gas has a high temperature, the cooling pipe may be damaged or damaged due to corrosion due to oxidation. If the cooling pipe is torn, the coolant leaking from the cooling pipe may fall into the state adjusting tank through the gap between the upper end of the tubular portion and the lid. On the other hand, since the flow rate reducing means for reducing the flow rate of the gas toward the cooling pipe is provided, it becomes difficult for the gas to hit the cooling pipe, and the probability of damage or breakage of the cooling pipe can be reduced. ..
 この場合、前記流量低減手段は、前記蓋体に設けられたガス流路であってもよい。 In this case, the flow rate reducing means may be a gas flow path provided in the lid.
 このようにすれば、蓋体に設けられたガス流路が、筒状部の上端と蓋体との間の隙間に優先して内部のガスを流出させることで、冷却管に向かうガスの流量を低減することができる。従って、蓋体が、流量低減手段を構築するために有効利用され、安価でコンパクトな流量低減手段が実現する。 In this way, the gas flow path provided in the lid causes the internal gas to flow out in preference to the gap between the upper end of the tubular portion and the lid, so that the flow rate of the gas toward the cooling pipe Can be reduced. Therefore, the lid body is effectively used for constructing the flow rate reducing means, and an inexpensive and compact flow rate reducing means is realized.
 この構成において、前記ガス流路の流入口と流出口とが、平面視で異なる位置に形成されていてもよい。 In this configuration, the inlet and outlet of the gas flow path may be formed at different positions in a plan view.
 ここで、ガス流路の流出口付近は、外気の影響を受けて温度が低下しているため、酸化スズ等の揮発物が、流出口の内周面に付着し易くなる。そのため、付着した揮発物が時間経過に伴って溶融ガラス中に落下するおそれがある。これに対しては、流出口と流入口との平面視での位置が異なることによって、流出口の内周面に付着した揮発物が鉛直下方に向かって落下する経路に流入口が存在しなくなる。これにより、揮発物が流入口を通過して溶融ガラス中に落下する事態が回避され得る。 Here, since the temperature of the vicinity of the outflow port of the gas flow path is lowered due to the influence of the outside air, volatile substances such as tin oxide easily adhere to the inner peripheral surface of the outflow port. Therefore, the attached volatile matter may fall into the molten glass with the passage of time. On the other hand, because the positions of the inflow port and the inflow port are different in a plan view, the inflow port does not exist in the path where the volatile matter adhering to the inner peripheral surface of the inflow port falls vertically downward. .. As a result, it is possible to avoid a situation in which the volatile matter passes through the inflow port and falls into the molten glass.
 この構成において、前記ガス流路の流入口と流出口とが、前記ガスの流れ方向が異なるように形成されていてもよい。 In this configuration, the inlet and outlet of the gas flow path may be formed so that the gas flow directions are different.
 このようにすれば、流入口と流出口とでガスの流れ方向が異なることによって、流出口の内周面に付着した揮発物が落下しても、ガス流路の途中で停止しやすくなり、流入口に到達しにくくなる。これによっても、揮発物が流入口を通過して溶融ガラス中に落下する事態が回避され得る。 By doing so, the gas flow direction differs between the inflow port and the outflow port, so that even if the volatile matter adhering to the inner peripheral surface of the outflow port falls, it is easy to stop in the middle of the gas flow path. It becomes difficult to reach the inflow port. This also prevents the volatile matter from passing through the inflow port and falling into the molten glass.
 また、前記流量低減手段は、前記蓋体の外周端と前記冷却管との間に配置された遮蔽壁であってもよい。 Further, the flow rate reducing means may be a shielding wall arranged between the outer peripheral end of the lid and the cooling pipe.
 このようにすれば、溶融ガラスから発生したガスが筒状部の上端と蓋体との間の隙間から流出しても、遮蔽壁によって、そのガスが冷却管に当たることが阻止される。その結果、冷却管の損傷や破損の発生確率を小さくすることができる。 In this way, even if the gas generated from the molten glass flows out from the gap between the upper end of the tubular portion and the lid, the shielding wall prevents the gas from hitting the cooling pipe. As a result, the probability of damage or breakage of the cooling pipe can be reduced.
 さらに、前記筒状部は、その上端にフランジを有し、前記状態調整槽は、前記フランジに装着された冷却管を備え、前記冷却管は、前記フランジの下側に装着される構成としてもよい。 Further, the tubular portion has a flange at the upper end thereof, the state adjusting tank includes a cooling pipe mounted on the flange, and the cooling pipe is mounted on the lower side of the flange. Good.
 このようにすれば、溶融ガラスから発生したガスが筒状部の上端と蓋体との間の隙間から流出しても、そのガスは、フランジの上方を流れるため、フランジの下側に装着されている冷却管には当たらなくなる。これにより、冷却管の損傷や破損が確実に回避され得る。 In this way, even if the gas generated from the molten glass flows out from the gap between the upper end of the tubular portion and the lid, the gas flows above the flange and is therefore mounted on the lower side of the flange. It will not hit the cooling pipe. This can ensure that damage or breakage of the cooling pipe is avoided.
 上記課題を解決するために創案された本発明の第二の側面は、溶融炉から成形装置まで溶融ガラスを移送装置によって移送する移送工程を備え、前記移送工程では、前記移送装置に配備した状態調整槽により溶融ガラスの状態を調整する状態調整処理を行うガラス物品の製造方法であって、前記状態調整槽は、中心軸線が上下方向に沿い且つ上端に開口部を有する筒状部と、蓋体とを有し、前記状態調整処理を行う際に、前記筒状部の開口部を前記蓋体が覆うことに特徴づけられる。 The second aspect of the present invention, which was devised to solve the above problems, includes a transfer step of transferring the molten glass from the melting furnace to the molding apparatus by the transfer device, and in the transfer step, the state of being deployed in the transfer device. A method for manufacturing a glass article in which a state adjusting process for adjusting the state of molten glass is performed by an adjusting tank. The state adjusting tank has a tubular portion having an opening along the vertical direction and an opening at the upper end, and a lid. It is characterized in that it has a body and the lid covers the opening of the tubular portion when the state adjustment process is performed.
 この製造方法によれば、既述の製造装置の場合と同様にして、揮発物の溶融ガラス中への落下が適切に抑止され得る。 According to this manufacturing method, falling of volatile substances into the molten glass can be appropriately suppressed as in the case of the manufacturing apparatus described above.
 本発明によれば、移送装置に配備される状態調整槽の開口部が開放していることにより生じ得る弊害が抑止される。 According to the present invention, the harmful effects that may occur due to the opening of the state adjusting tank deployed in the transfer device are suppressed.
本発明の実施形態に係るガラス物品の製造装置の全体構成を示す概略側面図である。It is a schematic side view which shows the whole structure of the manufacturing apparatus of the glass article which concerns on embodiment of this invention. 本発明の第1実施形態に係る状態調整槽の上部構造を示す斜視図である。It is a perspective view which shows the superstructure of the state adjustment tank which concerns on 1st Embodiment of this invention. 図2のA-A線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to the line AA of FIG. 本発明の第1実施形態で使用される蓋体の一例を示す斜視図である。It is a perspective view which shows an example of the lid body used in 1st Embodiment of this invention. 本発明の第1実施形態で使用される蓋体の他の例を示す斜視図である。It is a perspective view which shows another example of the lid body used in 1st Embodiment of this invention. 本発明の第1実施形態の問題点を説明するための縦断正面図である。It is a longitudinal front view for demonstrating the problem of 1st Embodiment of this invention. 本発明の第2実施形態に係る状態調整槽の上部構造を示す縦断正面図である。It is a vertical sectional front view which shows the superstructure of the state adjustment tank which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る状態調整槽の上部構造を示す斜視図である。It is a perspective view which shows the superstructure of the state adjustment tank which concerns on 3rd Embodiment of this invention. 図8のB-B線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to line BB of FIG. 本発明の第4実施形態に係る状態調整槽の上部構造を示す縦断正面図である。It is a vertical sectional front view which shows the superstructure of the state adjustment tank which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る状態調整槽の上部構造を示す縦断正面図である。It is a vertical sectional front view which shows the superstructure of the state adjustment tank which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る状態調整槽の上部構造を示す斜視図である。It is a perspective view which shows the superstructure of the state adjustment tank which concerns on 6th Embodiment of this invention. 図12のC-C線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to line CC of FIG. 本発明の第7実施形態に係る状態調整槽の上部構造を示す斜視図である。It is a perspective view which shows the superstructure of the state adjustment tank which concerns on 7th Embodiment of this invention. 図14のD-D線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to the DD line of FIG. 本発明の第8実施形態に係る状態調整槽の上部構造を示す斜視図である。It is a perspective view which shows the superstructure of the state adjustment tank which concerns on 8th Embodiment of this invention. 図16のE-E線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to line EE of FIG. 本発明の第9実施形態に係る状態調整槽の上部構造を示す斜視図である。It is a perspective view which shows the superstructure of the state adjustment tank which concerns on 9th Embodiment of this invention. 図18のF-F線に従って切断した縦断正面図である。It is a vertical sectional front view cut along the line FF of FIG.
 以下、本発明の実施形態に係るガラス物品の製造装置及び製造方法について添付図面を参照して説明する。 Hereinafter, the manufacturing apparatus and manufacturing method of the glass article according to the embodiment of the present invention will be described with reference to the attached drawings.
 [ガラス物品の製造装置]
 図1は、本発明に係るガラス物品の製造装置の全体構成を例示している。同図に示すように、この製造装置1は、大別すると、上流端に配備されてガラス原料から溶融ガラスGmを生成する溶融炉2と、溶融炉2から流出した溶融ガラスGmを下流側に向かって移送する移送装置3と、移送装置3から供給される溶融ガラスGmを帯状の板ガラスGpに成形する成形装置4とを備える。
[Glass article manufacturing equipment]
FIG. 1 illustrates the overall configuration of a glass article manufacturing apparatus according to the present invention. As shown in the figure, the manufacturing apparatus 1 is roughly divided into a melting furnace 2 which is deployed at the upstream end to generate molten glass Gm from a glass raw material and a molten glass Gm flowing out from the melting furnace 2 on the downstream side. A transfer device 3 for transferring toward the glass and a molding device 4 for forming the molten glass Gm supplied from the transfer device 3 into a strip-shaped flat glass Gp are provided.
 移送装置3は、上流側から順に、清澄槽5と、1個または複数個(図例では2個)の攪拌槽6と、状態調整槽7とを有する。清澄槽5は、溶融炉2から流出した溶融ガラスGm中の気泡を除去する。攪拌槽6は、スターラ8で溶融ガラスGmを攪拌して均質化する。状態調整槽7は、成形装置4に溶融ガラスGmを供給する直前で主として溶融ガラスGmの粘度や成形装置4に供給する溶融ガラスGmの流量を調整する。 The transfer device 3 has a clarification tank 5, one or more (two in the example) stirring tank 6, and a state adjusting tank 7 in this order from the upstream side. The clarification tank 5 removes air bubbles in the molten glass Gm flowing out of the melting furnace 2. In the stirring tank 6, the molten glass Gm is stirred and homogenized by the stirrer 8. Immediately before supplying the molten glass Gm to the molding apparatus 4, the state adjusting tank 7 mainly adjusts the viscosity of the molten glass Gm and the flow rate of the molten glass Gm supplied to the molding apparatus 4.
 溶融炉2は、上流側接続パイプ9を介して清澄槽5に連通している。清澄槽5は、中間接続パイプ10を介して上流側の攪拌槽6に連通している。上流側の攪拌槽6は、下流側接続パイプ11を介して下流側の攪拌槽6に連通している。下流側の攪拌槽6は、冷却パイプ12を介して状態調整槽7に連通している。状態調整槽7は、大径パイプとしての筒状部13と、円錐パイプとしての縮径部14と、小径パイプとしての下方部15とで構成される。筒状部13は、中心軸線が上下方向に沿い且つ上端に開口部16を有する。縮径部14は、筒状部13の下端に繋がり且つ下方に移行するに連れて内径が漸次小さくなっている。下方部15は、縮径部14の下端に繋がっている。状態調整槽7の流入口17は、筒状部13の側壁に設けられ、冷却パイプ12に通じている。状態調整槽7の流出口18は、下方部15の下端開口部とされる。 The melting furnace 2 communicates with the clarification tank 5 via the upstream connection pipe 9. The clarification tank 5 communicates with the stirring tank 6 on the upstream side via an intermediate connection pipe 10. The stirring tank 6 on the upstream side communicates with the stirring tank 6 on the downstream side via the downstream connecting pipe 11. The stirring tank 6 on the downstream side communicates with the state adjusting tank 7 via the cooling pipe 12. The state adjusting tank 7 is composed of a tubular portion 13 as a large-diameter pipe, a reduced-diameter portion 14 as a conical pipe, and a lower portion 15 as a small-diameter pipe. The tubular portion 13 has an opening 16 at the upper end and along the central axis in the vertical direction. The inner diameter of the reduced diameter portion 14 is gradually reduced as it is connected to the lower end of the tubular portion 13 and moves downward. The lower portion 15 is connected to the lower end of the reduced diameter portion 14. The inflow port 17 of the state adjusting tank 7 is provided on the side wall of the tubular portion 13 and leads to the cooling pipe 12. The outlet 18 of the state adjusting tank 7 is the lower end opening of the lower portion 15.
 成形装置4は、オーバーフローダウンドロー法により溶融ガラスGmを流下させて板ガラスGpを成形する成形体19と、成形体19に溶融ガラスGmを導く大径の導入パイプ20とを有する。導入パイプ20内には、状態調整槽7の下方部15が挿入され、下方部15の下端部は、導入パイプ20内の溶融ガラスGm中に浸漬している。この構成によって、状態調整槽7から導入パイプ20に溶融ガラスGmが供給されるようになっている。 The molding apparatus 4 has a molded body 19 for forming a flat glass Gp by flowing down the molten glass Gm by an overflow down draw method, and a large-diameter introduction pipe 20 for guiding the molten glass Gm to the molded body 19. The lower portion 15 of the state adjusting tank 7 is inserted into the introduction pipe 20, and the lower end portion of the lower portion 15 is immersed in the molten glass Gm in the introduction pipe 20. With this configuration, the molten glass Gm is supplied from the state adjusting tank 7 to the introduction pipe 20.
 [ガラス物品の製造方法]
 本発明に係るガラス物品の製造方法は、溶融炉2でガラス原料を加熱して溶融ガラスGmを生成する溶融工程と、溶融炉2から成形装置4まで溶融ガラスGmを移送装置3によって移送する移送工程と、移送装置3から供給された溶融ガラスGmを成形装置4によって成形する成形工程とを備える。成形工程では、オーバーフローダウン法によってガラス物品が成形される。移送工程では、移送装置3に配備した状態調整槽7によって溶融ガラスGmの状態を調整する状態調整処理が行われる。
[Manufacturing method of glass articles]
The method for producing a glass article according to the present invention includes a melting step of heating a glass raw material in a melting furnace 2 to generate molten glass Gm and a transfer of the molten glass Gm being transferred from the melting furnace 2 to the molding apparatus 4 by a transfer device 3. It includes a step and a molding step of molding the molten glass Gm supplied from the transfer device 3 by the molding device 4. In the molding process, the glass article is molded by the overflow down method. In the transfer step, a state adjustment process for adjusting the state of the molten glass Gm is performed by the state adjustment tank 7 provided in the transfer device 3.
 以下、本発明の主要部である状態調整槽7の上部についての第1~第9実施形態を説明する。 Hereinafter, the first to ninth embodiments of the upper part of the state adjusting tank 7, which is the main part of the present invention, will be described.
 [第1実施形態]
 図2は、本発明の第1実施形態に係る状態調整槽7の上部構造を示す斜視図であり、図3は、図2のA-A線に従って切断した縦断正面図である。これら各図に示すように、移送工程及び成形工程の実行時には、筒状部13の上端の開口部16が、蓋体21により覆われている。詳述すると、筒状部13は、上端にフランジ22を有する。蓋体21は、開口部16を覆う状態で、フランジ22の内周側部位22aに載置されており、容易に取り付け及び取り外しが可能である。筒状部13は、白金または白金合金で形成されている。フランジ22は、白金または白金合金或いはその他の金属で形成されている。ここで、図示例では、筒状部13の開口部16の開口面積が、筒状部13の管路面積と実質的に同一の大きさであるが、前者が後者よりも小さくても良く或いは大きくても良い。また、溶融ガラスGmの液面GLの高さは、筒状部13に形成された流入口17(図1参照)の上端と下端との間の中間位置(特に上端寄り位置)であることが好ましい。
[First Embodiment]
FIG. 2 is a perspective view showing the superstructure of the state adjusting tank 7 according to the first embodiment of the present invention, and FIG. 3 is a vertical sectional front view cut along the line AA of FIG. As shown in each of these figures, the opening 16 at the upper end of the tubular portion 13 is covered with the lid 21 when the transfer step and the molding step are executed. More specifically, the tubular portion 13 has a flange 22 at the upper end. The lid 21 is placed on the inner peripheral side portion 22a of the flange 22 while covering the opening 16, and can be easily attached and detached. The tubular portion 13 is made of platinum or a platinum alloy. The flange 22 is made of platinum or a platinum alloy or other metal. Here, in the illustrated example, the opening area of the opening 16 of the tubular portion 13 is substantially the same as the pipeline area of the tubular portion 13, but the former may be smaller than the latter. It can be large. Further, the height of the liquid level GL of the molten glass Gm may be an intermediate position (particularly a position near the upper end) between the upper end and the lower end of the inflow port 17 (see FIG. 1) formed in the tubular portion 13. preferable.
 フランジ22の外周側部位22bは、蓋体21の外周端21aから食み出している。このフランジ22の外周側部位22bの上側に、冷却管23が装着されている。詳しくは、冷却管23は、フランジ22の外周側部位22bの上面に、周方向に沿って略一回りするように固定されている。そして、この冷却管23の管内を冷却液が循環することで、フランジ22の特に外周側部位22bが冷却されている。フランジ22の外周側部位22bには、状態調整槽7を通電加熱するための電極(図示略)が取り付けられている。 The outer peripheral side portion 22b of the flange 22 protrudes from the outer peripheral end 21a of the lid 21. A cooling pipe 23 is mounted on the upper side of the outer peripheral side portion 22b of the flange 22. Specifically, the cooling pipe 23 is fixed to the upper surface of the outer peripheral side portion 22b of the flange 22 so as to make substantially one turn along the circumferential direction. Then, the cooling liquid circulates in the cooling pipe 23 to cool the flange 22 in particular, the outer peripheral side portion 22b. An electrode (not shown) for energizing and heating the state adjusting tank 7 is attached to the outer peripheral side portion 22b of the flange 22.
 図4は、蓋体21の構成を示す斜視図である。同図に示すように、蓋体21は、複数個(図例では2個)の耐火物24と、これら耐火物24を覆う白金または白金合金からなる覆設材としての薄板25とで構成される。薄板25としては、2個の耐火物24の下面を覆う下薄板25aと、2個の耐火物24の外周面全周を覆う外周薄板25bと、2個の耐火物24の相互間に介設された仕切り薄板25cとを有する。これらの各薄板25a、25b、25cは、一体化されている。なお、図5に示すように、2個の耐火物24をそれぞれ別々に下薄板25aと外周薄板25bと仕切り薄板25cとで覆い、2枚の仕切り薄板25cを離反できるように接触させるか、或いは離反できないように接合させる構成としてもよい。また、薄板25は、耐火物24の上面を含む全表面を覆うものであってもよく、或いは耐火物24の下面のみを覆うものであってもよい。なお、覆設材は、薄板25に限られず、耐火物24に溶射をすることで形成される白金または白金合金からなる層であってもよい。ここで、耐火物24は、例えば、デンスジルコン、ムライト、アルミナ系、または、ジルコニア系などからなる耐火物である(以下に記述する「耐火物」も同様)。 FIG. 4 is a perspective view showing the configuration of the lid 21. As shown in the figure, the lid 21 is composed of a plurality of refractories 24 (two in the example) and a thin plate 25 as a covering material made of platinum or a platinum alloy covering the refractories 24. To. The thin plate 25 is provided between the lower thin plate 25a that covers the lower surfaces of the two refractories 24, the outer peripheral thin plate 25b that covers the entire outer peripheral surface of the two refractories 24, and the two refractories 24. It has a partition thin plate 25c. Each of these thin plates 25a, 25b, and 25c is integrated. As shown in FIG. 5, the two refractories 24 are separately covered with the lower thin plate 25a, the outer peripheral thin plate 25b, and the partition thin plate 25c, and the two partition thin plates 25c are brought into contact with each other so as to be separated from each other. It may be configured to be joined so that it cannot be separated. Further, the thin plate 25 may cover the entire surface including the upper surface of the refractory 24, or may cover only the lower surface of the refractory 24. The covering material is not limited to the thin plate 25, and may be a layer made of platinum or a platinum alloy formed by spraying the refractory material 24. Here, the refractory material 24 is, for example, a refractory material made of dense zircon, mullite, alumina type, zirconia type, or the like (the same applies to the “refractory material” described below).
 この第1実施形態に係るガラス物品の製造装置1によれば、以下に示すような作用効果を奏する。成形装置4によって溶融ガラスGmを成形する際には、状態調整槽7における筒状部13の開口部16が蓋体21によって覆われている。そのため、開口部16が開放していることにより生じ得る弊害が回避され得る。具体的には、状態調整槽7内の溶融ガラスGm中に残存する酸化スズ等が揮発しても、筒状部13の開口部16付近が常に高温に維持されていることから、揮発物が液化又は固化して開口部付近の内面に付着するのを防止できる。このため、付着した揮発物が溶融ガラスGm中に落下して異物になる事態を適切に抑止することができる。また、開口部16からの放熱量が大幅に減少するため、溶融ガラスGmの液面GL付近での失透を未然に防止する効果も得られる。以上の結果、製品であるガラス物品(ガラス板)の品質向上或いは製品歩留まりの改善を実現できる。 According to the glass article manufacturing apparatus 1 according to the first embodiment, the following effects are exhibited. When the molten glass Gm is formed by the forming apparatus 4, the opening 16 of the tubular portion 13 in the state adjusting tank 7 is covered with the lid 21. Therefore, the harmful effects that may occur when the opening 16 is open can be avoided. Specifically, even if tin oxide or the like remaining in the molten glass Gm in the state adjusting tank 7 volatilizes, the vicinity of the opening 16 of the tubular portion 13 is always maintained at a high temperature, so that the volatile matter is generated. It can be prevented from liquefying or solidifying and adhering to the inner surface near the opening. Therefore, it is possible to appropriately prevent the adhered volatile matter from falling into the molten glass Gm and becoming a foreign substance. Further, since the amount of heat radiated from the opening 16 is significantly reduced, the effect of preventing devitrification of the molten glass Gm in the vicinity of the liquid level GL can be obtained. As a result, it is possible to improve the quality of the glass article (glass plate) which is a product or the product yield.
 また、蓋体21は、浸食され易い部位である下面が、白金または白金合金からなる薄板(覆設材)25で覆われているため、蓋体21の浸食等を効率良く抑止して耐久性を向上させることができる。この場合、蓋体21の全体を白金または白金合金で形成していると、コストの高騰や重量増を招くが、耐火物24を白金または白金合金からなる薄板25で覆うことによって、低コスト化や軽量化が実現する。 Further, since the lower surface of the lid 21, which is a portion easily eroded, is covered with a thin plate (covering material) 25 made of platinum or a platinum alloy, erosion of the lid 21 is efficiently suppressed and durability is achieved. Can be improved. In this case, if the entire lid 21 is made of platinum or a platinum alloy, the cost will increase and the weight will increase. However, the cost can be reduced by covering the refractory 24 with a thin plate 25 made of platinum or a platinum alloy. And weight reduction is realized.
 なお、上述の第1実施形態に係る構成では、図6に誇張して示すように、筒状部13の上端と蓋体21との間の隙間26を通じて、内部のガス(主に溶融ガラスが気化した蒸気)が流出するおそれがある。ガスが隙間26を通じて矢印aで示すように流出した場合、そのガスは、フランジ22の外周側部位22bの上方を外周側に向かって流れて、冷却管23に当たり得る。ガスは高温であるので、冷却管23が酸化により腐食するなどして損傷または破損するおそれがある。そして、冷却管23が破れてしまった場合には、冷却管23から漏れ出た冷却液が隙間26を通じて状態調整槽7内に落下するおそれがある。 In the configuration according to the first embodiment described above, as shown in an exaggerated manner in FIG. 6, the internal gas (mainly molten glass) passes through the gap 26 between the upper end of the tubular portion 13 and the lid 21. Vaporized steam) may flow out. When the gas flows out through the gap 26 as shown by the arrow a, the gas may flow above the outer peripheral side portion 22b of the flange 22 toward the outer peripheral side and hit the cooling pipe 23. Since the gas has a high temperature, the cooling pipe 23 may be damaged or damaged due to corrosion due to oxidation. Then, if the cooling pipe 23 is torn, the cooling liquid leaking from the cooling pipe 23 may fall into the state adjusting tank 7 through the gap 26.
 [第2実施形態]
 このような不具合を回避したのが本発明の第2実施形態である。図7は、本発明の第2実施形態に係る状態調整槽7の上部構造を示す縦断正面図である。同図に示すように、蓋体21の中央部には、内部のガスを、矢印bで示すように上方に向かって流出させる貫通孔27が形成されている。この貫通孔27の内周面も、白金または白金合金からなる覆設材で覆われている。その他の構成は、上述の第1実施形態と同一であるため、両実施形態で共通する構成要素については図7に同一符号を付し、その説明を省略する。このようにすれば、内部のガスは、上記の隙間26に優先して、貫通孔27から矢印bで示す上方向に向かって流出するため、冷却管23にそのガスが当たり難くなるという利点が得られる。また、貫通孔27は、溶融ガラスGmの下方に向かう流れを堰き止めるプランジャを使用する際、プランジャのシャフトを挿通する孔として有効利用され得る。
[Second Embodiment]
It is the second embodiment of the present invention that avoids such a problem. FIG. 7 is a vertical sectional front view showing the superstructure of the state adjusting tank 7 according to the second embodiment of the present invention. As shown in the figure, a through hole 27 is formed in the central portion of the lid 21 to allow the gas inside to flow upward as shown by the arrow b. The inner peripheral surface of the through hole 27 is also covered with a covering material made of platinum or a platinum alloy. Since the other configurations are the same as those of the first embodiment described above, the components common to both embodiments are designated by the same reference numerals in FIG. 7, and the description thereof will be omitted. In this way, the gas inside flows out from the through hole 27 in the upward direction indicated by the arrow b in preference to the gap 26, so that there is an advantage that the gas is less likely to hit the cooling pipe 23. can get. Further, the through hole 27 can be effectively used as a hole for inserting the shaft of the plunger when using a plunger that blocks the downward flow of the molten glass Gm.
 上述の第2実施形態に係る構成では、蓋体21に形成した貫通孔27の内周面の流出側(上部)が、外気の影響を受けて温度が低下する。そのため、貫通孔27の内周面の流出側は、酸化スズ等の揮発物が液化又は固化して付着し易く且つ付着後の揮発物の凝集等も生じ易い状態になる。そして、貫通孔27の内周面の流出側に付着した揮発物は、時間経過により溶融ガラスGm中に落下して異物になるおそれがある。なお、この場合の揮発物の付着量は、従来の状態調整槽の開口部を開放している場合に開口部の内面付近に付着する揮発物の付着量と比べ、軽微である。 In the configuration according to the second embodiment described above, the temperature of the outflow side (upper part) of the inner peripheral surface of the through hole 27 formed in the lid 21 is lowered due to the influence of the outside air. Therefore, the outflow side of the inner peripheral surface of the through hole 27 is in a state in which volatile substances such as tin oxide are liquefied or solidified and easily adhere to the inner peripheral surface, and the volatile substances after the adhesion are likely to be aggregated. Then, the volatile matter adhering to the outflow side of the inner peripheral surface of the through hole 27 may fall into the molten glass Gm over time and become a foreign substance. The amount of volatile matter adhering in this case is smaller than the amount of volatile matter adhering to the vicinity of the inner surface of the opening when the opening of the conventional state adjusting tank is opened.
 [第3実施形態]
 このような不具合を回避したのが本発明の第3実施形態である。図8は、本発明の第3実施形態に係る状態調整槽7の上部構造を示す斜視図であり、図9は、図8のB-B線に従って切断した縦断正面図である。これら各図に示すように、蓋体21にはガス流路30が設けられている。詳述すると、蓋体21は、筒状部13の上端及びフランジ22の内周側部位22aの上面を覆う平板状のベース壁部31と、ベース壁部31の上に設置された環状または筒状の側壁部32と、側壁部32の上方を覆う平板状の天井壁部33とを備えている。そして、ガス流路30は、流入口34と、流入口に通じる内部空間35と、内部空間35に通じる流出口36とから構成される。流入口34は、ベース壁部31の中央部に形成された貫通孔である。内部空間35は、側壁部32と天井壁部33とにより包囲された空間である。流出口36は、側壁部32の周方向一箇所の上部に形成された切欠き部である。この場合、流入口34と流出口36とでは、平面視での位置が異なっている。また、流入口34の中心軸線は鉛直方向に沿うのに対して、流出口36の中心軸線は水平方向に沿っている。従って、流入口34でのガスの流れ方向は、鉛直方向に略沿う上方向(矢印c方向)であるのに対して、流出口36でのガスの流れ方向は、水平方向に略沿う横方向(矢印d方向)である。
[Third Embodiment]
It is the third embodiment of the present invention that avoids such a problem. FIG. 8 is a perspective view showing the superstructure of the state adjusting tank 7 according to the third embodiment of the present invention, and FIG. 9 is a vertical sectional front view cut according to the line BB of FIG. As shown in each of these figures, the lid 21 is provided with a gas flow path 30. More specifically, the lid 21 has a flat base wall portion 31 that covers the upper end of the tubular portion 13 and the upper surface of the inner peripheral side portion 22a of the flange 22, and an annular or tubular portion installed on the base wall portion 31. A flat side wall portion 32 and a flat plate-shaped ceiling wall portion 33 that covers the upper side of the side wall portion 32 are provided. The gas flow path 30 is composed of an inflow port 34, an internal space 35 leading to the inflow port, and an outflow port 36 communicating with the internal space 35. The inflow port 34 is a through hole formed in the central portion of the base wall portion 31. The internal space 35 is a space surrounded by the side wall portion 32 and the ceiling wall portion 33. The outlet 36 is a notch formed in the upper portion of the side wall portion 32 at one location in the circumferential direction. In this case, the inflow port 34 and the outflow port 36 are different in position in a plan view. Further, the central axis of the inflow port 34 is along the vertical direction, while the central axis of the outflow port 36 is along the horizontal direction. Therefore, the gas flow direction at the inflow port 34 is an upward direction (arrow c direction) substantially along the vertical direction, whereas the gas flow direction at the outflow port 36 is a lateral direction substantially along the horizontal direction. (Arrow d direction).
 ここで、ベース壁部31は、上述の第2実施形態(図7参照)における蓋体21と同一の構成である。また、側壁部32及び天井壁部33は何れも、耐火物のみで形成されることが好ましいが、これら耐火物の少なくともガスと接触する部位は、白金または白金合金の覆設材で覆われていてもよい。ここで、流入口34の開口面積をM1とし、開口部16の開口面積をM2とした場合、M1/M2は、下限値が1/200で、上限値が1/10であることが好ましく、下限値が1/100で、上限値が1/20であることがより好ましい。また、流出口36の開口面積は、流入口34の開口面積よりも小さくされている。さらに、流出口36の高さ位置は、冷却管23の上部の高さ位置と同程度またはそれよりも高くされている。なお、流出口36は、側壁部32の周方向一箇所に限らず、周方向の複数箇所に形成してもよい。 Here, the base wall portion 31 has the same configuration as the lid 21 in the above-mentioned second embodiment (see FIG. 7). Further, it is preferable that both the side wall portion 32 and the ceiling wall portion 33 are formed only of a refractory material, but at least a portion of the refractory material in contact with gas is covered with a platinum or platinum alloy covering material. You may. Here, when the opening area of the inflow port 34 is M1 and the opening area of the opening 16 is M2, the lower limit value of M1 / M2 is preferably 1/200 and the upper limit value is preferably 1/10. It is more preferable that the lower limit value is 1/100 and the upper limit value is 1/20. Further, the opening area of the outflow port 36 is smaller than the opening area of the inflow port 34. Further, the height position of the outlet 36 is set to be equal to or higher than the height position of the upper part of the cooling pipe 23. The outlet 36 is not limited to one location in the circumferential direction of the side wall portion 32, and may be formed at a plurality of locations in the circumferential direction.
 この第3実施形態に係るガラス物品の製造装置1によれば、以下に示すような作用効果を奏する。状態調整槽7内のガスは、上記の隙間26に優先して、ガス流路30の流入口34から内部空間35に流入した後、流出口36から外部に流出する。この場合、流出口36の内周面は、外気の影響を受けて温度が低下しているため、その内周面には、ガスに含まれている酸化スズ等の揮発物が液化又は固化して付着し易い。そして、揮発物が流出口36の内周面に付着した場合には、その揮発物が時間経過により落下するおそれがある。しかし、流入口34と流出口36とでは、平面視での位置及びガスの流れ方向が異なるため、揮発物が落下する経路には流入口34が存在せず、揮発物は流出口36の内周面の底部やベース壁部31の上面で受け止められる。そのため、揮発物の溶融ガラスGm中への落下が阻止される。なお、流入口34の内周面は外気の影響を受け難いため、高温に維持さる。そのため、流入口34の内周面に、酸化スズ等の揮発物が付着するのを防止できる。 According to the glass article manufacturing apparatus 1 according to the third embodiment, the following effects are exhibited. The gas in the state adjusting tank 7 flows into the internal space 35 from the inflow port 34 of the gas flow path 30 in preference to the above-mentioned gap 26, and then flows out from the outflow port 36 to the outside. In this case, since the temperature of the inner peripheral surface of the outlet 36 is lowered due to the influence of the outside air, volatile substances such as tin oxide contained in the gas are liquefied or solidified on the inner peripheral surface. Easy to adhere. When the volatile matter adheres to the inner peripheral surface of the outlet 36, the volatile matter may fall over time. However, since the inflow port 34 and the outflow port 36 have different positions and gas flow directions in a plan view, the inflow port 34 does not exist in the path where the volatile matter falls, and the volatile matter is contained in the outflow port 36. It is received by the bottom of the peripheral surface and the upper surface of the base wall portion 31. Therefore, the volatile matter is prevented from falling into the molten glass Gm. Since the inner peripheral surface of the inflow port 34 is not easily affected by the outside air, it is maintained at a high temperature. Therefore, it is possible to prevent volatile substances such as tin oxide from adhering to the inner peripheral surface of the inflow port 34.
 また、流出口36の高さ位置は、冷却管23の上端の高さ位置と同程度またはそれよりも高くされるため、流出口36から矢印d方向に流出したガスは、冷却管23に当たり難くなる。なお、流出口36から流出したガスは、外気よりも高温であるため、そのガスが流出直後から徐々に上方に向かう。従って、そのガスが冷却管23に当たる事態がより確実に回避され得る。 Further, since the height position of the outlet 36 is set to be equal to or higher than the height position of the upper end of the cooling pipe 23, the gas flowing out from the outlet 36 in the arrow d direction is less likely to hit the cooling pipe 23. .. Since the gas flowing out from the outflow port 36 has a higher temperature than the outside air, the gas gradually moves upward immediately after the outflow. Therefore, the situation where the gas hits the cooling pipe 23 can be more reliably avoided.
 [第4実施形態]
 図10は、本発明の第4実施形態に係る状態調整槽7の上部構造を示す縦断正面図である。同図に示すように、この第4実施形態に係る構成が、上述の第3実施形態に係る構成と相違している点は、蓋体21のベース壁部31に、受け部材37を設置したところにある。この受け部材37は、ベース壁部31の下部から下方に延びる垂下部37aと、垂下部37aの下端から横方向(水平方向)に延びる受止部37bとを有する。受止部37bは、溶融ガラスGmの液面GLの上部空間に配置される。この受止部37bの面積(平面視での面積)は、流入口34の開口面積よりも大きくされ、平面視で、流入口34が受止部37bの上面領域内に収まる。その他の構成は、上述の第3実施形態に係る構成と同一であるため、両実施形態で共通する構成要素については図10に同一符号を付し、その説明を省略する。この第4実施形態に係る構成によれば、流入口34の内周面に付着した揮発物が落下し、或いは内部空間35から流入口34を通じて揮発物が落下しても、その揮発物は、受け部材37の受止部37bで受け止められる。従って、揮発物が溶融ガラスGm中に落下して白金異物等になる事態をより一層確実に抑止することができる。これ以外の作用効果は、上述の第3実施形態と実質的に同一である。
[Fourth Embodiment]
FIG. 10 is a vertical sectional front view showing the superstructure of the state adjusting tank 7 according to the fourth embodiment of the present invention. As shown in the figure, the configuration according to the fourth embodiment is different from the configuration according to the third embodiment described above, in that the receiving member 37 is installed on the base wall portion 31 of the lid 21. There is. The receiving member 37 has a hanging portion 37a extending downward from the lower portion of the base wall portion 31 and a receiving portion 37b extending laterally (horizontally) from the lower end of the hanging portion 37a. The receiving portion 37b is arranged in the upper space of the liquid level GL of the molten glass Gm. The area of the receiving portion 37b (area in a plan view) is made larger than the opening area of the inflow port 34, and the inflow port 34 fits within the upper surface region of the receiving portion 37b in a plan view. Since the other configurations are the same as the configurations according to the third embodiment described above, the components common to both embodiments are designated by the same reference numerals in FIG. 10 and the description thereof will be omitted. According to the configuration according to the fourth embodiment, even if the volatile matter adhering to the inner peripheral surface of the inflow port 34 falls, or the volatile matter falls from the internal space 35 through the inflow port 34, the volatile matter remains. It is received by the receiving portion 37b of the receiving member 37. Therefore, it is possible to more reliably prevent the situation where the volatile matter falls into the molten glass Gm and becomes a platinum foreign substance or the like. The other effects are substantially the same as those in the third embodiment described above.
 [第5実施形態]
 図11は、本発明の第5実施形態に係る状態調整槽7の上部構造を示す縦断正面図である。同図に示すように、この第5実施形態に係る構成が、上述の第3実施形態に係る構成と相違している点は、蓋体21のベース壁部31の中央部から一方側に偏倚した位置に流入口34を形成し、天井壁部33の中央部から他方側に偏倚した位置に流出口36を形成したところにある。従って、流入口34と流出口36とは、平面視での位置が異なっている。この場合、流入口34でのガスの流れ方向と、流出口36でのガスの流れ方向とは同一であって、何れもが、鉛直線に略沿う上方向(矢印e方向及び矢印f方向)である。なお、側壁部32には切欠き部が形成されていない。また、ガス流路30の内部空間35は、上述の第3実施形態よりも横方向に広くなっている。その他の構成は、上述の第2例と同一であるため、両例で共通する構成要素については図14に同一符号を付し、その説明を省略する。この第5実施形態に係る構成によれば、流入口34と流出口36とでは、平面視での位置が異なるため、揮発物が落下する経路には流入口34が存在せず、揮発物はベース壁部31の上面で受け止められる。そのため、揮発物の溶融ガラスGm中への落下が阻止される。また、流出口36から流出するガスは流出直後から上方向(矢印f方向)に向かうため、そのガスが冷却管23に確実に当たり難くなる。
[Fifth Embodiment]
FIG. 11 is a vertical sectional front view showing the superstructure of the state adjusting tank 7 according to the fifth embodiment of the present invention. As shown in the figure, the configuration according to the fifth embodiment is different from the configuration according to the third embodiment described above in that the lid 21 is biased to one side from the central portion of the base wall portion 31. The inflow port 34 is formed at this position, and the outflow port 36 is formed at a position deviated from the central portion of the ceiling wall portion 33 to the other side. Therefore, the inflow port 34 and the outflow port 36 are different in position in a plan view. In this case, the gas flow direction at the inflow port 34 and the gas flow direction at the outflow port 36 are the same, and both are upward directions (arrow e direction and arrow f direction) substantially along the vertical line. Is. The side wall portion 32 is not formed with a notch. Further, the internal space 35 of the gas flow path 30 is wider in the lateral direction than in the third embodiment described above. Since the other configurations are the same as those in the second example described above, the components common to both examples are designated by the same reference numerals in FIG. 14, and the description thereof will be omitted. According to the configuration according to the fifth embodiment, since the inflow port 34 and the outflow port 36 have different positions in a plan view, the inflow port 34 does not exist in the path where the volatile matter falls, and the volatile matter is present. It is received by the upper surface of the base wall portion 31. Therefore, the volatile matter is prevented from falling into the molten glass Gm. Further, since the gas flowing out from the outflow port 36 goes upward (in the direction of arrow f) immediately after the outflow, it is difficult for the gas to surely hit the cooling pipe 23.
 [第6実施形態]
 図12は、本発明の第6実施形態に係る状態調整槽7の上部構造を示す斜視図であり、図13は、図12のC-C線に従って切断した縦断正面図である。この第6実施形態に係る構成は、蓋体21が、フランジ22の内周側部位22aの上に配置された環状また筒状の側壁部32と、側壁部32の上方を覆う平板状の天井壁部33とを備える。ガス流路30は、内部空間35と流出口36とで構成される。内部空間35は、側壁部32と天井壁部33とにより包囲される空間である。流出口36は、側壁部32の周方向一箇所の上部に形成された切欠き部である。この第6実施形態に係る構成によれば、状態調整槽7内のガスは、筒状部13の上端と側壁部32との間の隙間26に優先して、ガス流路30の内部空間35を通過して流出口36から外部に流出する。この場合、流出口36の内周面に付着した揮発物が落下しても、その揮発物は流出口36の内周面の底部やフランジ22の内周側部位22aの上面、筒状部13の上端面で受け止められる。そのため、揮発物の溶融ガラスGm中への落下が阻止され得る。この場合、開口部16の上方空間(内部空間35)は、側壁部32と天井壁部33とによって包囲されているため、高温に維持される。そのため、開口部16の付近は、酸化スズ等の揮発物が付着し難く且つ付着後の揮発物の凝集等も生じ難い状態にある。これにより、開口部16の付近への揮発物の付着や凝集等が回避され、開口部16の付近から揮発物が溶融ガラスGm中に落下する事態が阻止され得る。また、流出口36でのガスの流れ方向は、矢印gで示すように横方向になるため、ガス流路30を通過する際のガスの流通抵抗が大きくなる。これにより、ガス流路30を通過するガスの流量が過多になる事態が回避され得る。また、流出口36の高さ位置は、冷却管23の上端の高さ位置と同程度またはそれよりも高くされる。そのため、流出口36から矢印g方向に流出したガスが、冷却管23に当たり難くなる。
[Sixth Embodiment]
FIG. 12 is a perspective view showing the superstructure of the state adjusting tank 7 according to the sixth embodiment of the present invention, and FIG. 13 is a vertical sectional front view cut according to the line CC of FIG. In the configuration according to the sixth embodiment, the lid body 21 has an annular or tubular side wall portion 32 arranged on the inner peripheral side portion 22a of the flange 22, and a flat plate-shaped ceiling covering the upper side of the side wall portion 32. A wall portion 33 is provided. The gas flow path 30 is composed of an internal space 35 and an outlet 36. The internal space 35 is a space surrounded by the side wall portion 32 and the ceiling wall portion 33. The outlet 36 is a notch formed in the upper portion of the side wall portion 32 at one location in the circumferential direction. According to the configuration according to the sixth embodiment, the gas in the state adjusting tank 7 has priority over the gap 26 between the upper end of the tubular portion 13 and the side wall portion 32, and the gas in the gas flow path 30 has an internal space 35. It flows out from the outflow port 36 to the outside. In this case, even if the volatile matter adhering to the inner peripheral surface of the outlet 36 falls, the volatile matter is the bottom of the inner peripheral surface of the outlet 36, the upper surface of the inner peripheral side portion 22a of the flange 22, and the tubular portion 13. It is received by the upper end surface of. Therefore, the fall of the volatile matter into the molten glass Gm can be prevented. In this case, the space above the opening 16 (internal space 35) is maintained at a high temperature because it is surrounded by the side wall portion 32 and the ceiling wall portion 33. Therefore, in the vicinity of the opening 16, volatile substances such as tin oxide are unlikely to adhere and agglomeration of the volatile substances after the adhesion is unlikely to occur. As a result, adhesion or aggregation of volatiles to the vicinity of the opening 16 can be avoided, and a situation in which the volatiles fall into the molten glass Gm from the vicinity of the opening 16 can be prevented. Further, since the gas flow direction at the outflow port 36 is the lateral direction as shown by the arrow g, the gas flow resistance when passing through the gas flow path 30 increases. As a result, it is possible to avoid a situation in which the flow rate of the gas passing through the gas flow path 30 becomes excessive. Further, the height position of the outlet 36 is set to be equal to or higher than the height position of the upper end of the cooling pipe 23. Therefore, the gas flowing out from the outlet 36 in the direction of arrow g is less likely to hit the cooling pipe 23.
 [第7実施形態]
 図14は、本発明の第7実施形態に係る状態調整槽7の上部構造を示す斜視図であり、図15は、図14のD-D線に従って切断し且つ誇張した状態を示す縦断正面図である。この第7実施形態に係る構成が、既述の第1実施形態(図2及び図3参照)と相違する点は、蓋体21の外周端21aと冷却管23との間に、流量低減手段としての遮蔽壁40を配置したところにある。遮蔽壁40は、フランジ22の上面に固定され、環状または筒状をなす。遮蔽壁40の上端は冷却管23の上端よりも高くされている。その他の構成は、既述の第1実施形態と同一であるため、両実施形態で共通する構成要素については図14及び図15に同一符号を付し、その説明を省略する。この第7実施形態によれば、状態調整槽7内で溶融ガラスGmから発生したガスが、筒状部13の上端と蓋体21との間の隙間26から流出しても、遮蔽壁40によって、そのガスが冷却管23に当たることが阻止される。その結果、冷却管23の損傷や破損の発生確率を小さくすることができる。これ以外の作用効果は、既述の第1実施形態と実質的に同一である。
[7th Embodiment]
FIG. 14 is a perspective view showing the superstructure of the state adjusting tank 7 according to the seventh embodiment of the present invention, and FIG. 15 is a vertical sectional front view showing a state of being cut and exaggerated according to the DD line of FIG. Is. The configuration according to the seventh embodiment is different from the first embodiment described above (see FIGS. 2 and 3) in that the flow rate reducing means is provided between the outer peripheral end 21a of the lid 21 and the cooling pipe 23. It is where the shielding wall 40 is arranged. The shielding wall 40 is fixed to the upper surface of the flange 22 and has an annular shape or a tubular shape. The upper end of the shielding wall 40 is higher than the upper end of the cooling pipe 23. Since the other configurations are the same as those of the first embodiment described above, the components common to both embodiments are designated by the same reference numerals with reference to FIGS. 14 and 15, and the description thereof will be omitted. According to the seventh embodiment, even if the gas generated from the molten glass Gm in the state adjusting tank 7 flows out from the gap 26 between the upper end of the tubular portion 13 and the lid 21, the shielding wall 40 causes the gas to flow out. , The gas is prevented from hitting the cooling pipe 23. As a result, the probability of damage or breakage of the cooling pipe 23 can be reduced. The other effects are substantially the same as those of the first embodiment described above.
 [第8実施形態]
 図16は、本発明の第8実施形態に係る状態調整槽7の上部構造を示す斜視図であり、図17は、図16のE-E線に従って切断した縦断正面図である。この第8実施形態に係る構成が、既述の第1実施形態(図2及び図3参照)と相違する点は、フランジ22の外周側部位22bの下側に冷却管23を装着したところにある。その他の構成は、既述の第1実施形態と同一であるため、両実施形態で共通する構成要素については図16及び図17に同一符号を付し、その説明を省略する。この第8実施形態によれば、状態調整槽7内で溶融ガラスGmから発生したガスが、筒状部13の上端と蓋体21との間の隙間26から流出しても、そのガスはフランジ22の上側を流れる。これに対して、冷却管23は、フランジ22の下側に装着されているため、上記のガスは冷却管23に当たらなくなる。これ以外の作用効果は、既述の第1実施形態と実質的に同一である。なお、第8実施形態では、フランジ22は、蓋体21の外周端から外周側に食み出さなくてもよい。
[8th Embodiment]
FIG. 16 is a perspective view showing the superstructure of the state adjusting tank 7 according to the eighth embodiment of the present invention, and FIG. 17 is a vertical sectional front view cut along the line EE of FIG. The configuration according to the eighth embodiment is different from the first embodiment described above (see FIGS. 2 and 3) in that the cooling pipe 23 is attached to the lower side of the outer peripheral side portion 22b of the flange 22. is there. Since the other configurations are the same as those of the first embodiment described above, the components common to both embodiments are designated by the same reference numerals in FIGS. 16 and 17, and the description thereof will be omitted. According to the eighth embodiment, even if the gas generated from the molten glass Gm in the state adjusting tank 7 flows out from the gap 26 between the upper end of the tubular portion 13 and the lid 21, the gas is flanged. It flows above 22. On the other hand, since the cooling pipe 23 is mounted on the lower side of the flange 22, the gas does not hit the cooling pipe 23. The other effects are substantially the same as those of the first embodiment described above. In the eighth embodiment, the flange 22 does not have to protrude from the outer peripheral end of the lid 21 to the outer peripheral side.
 [第9実施形態]
 図18は、本発明の第9実施形態に係る状態調整槽7の上部構造を示す斜視図であり、図19は、図18のF-F線に従って切断した縦断正面図である。この第9実施形態に係る構成が、既述の第1実施形態(図2及び図3参照)と相違する点は、フランジ22の外周側部位22bの下側に冷却管23が装着され、フランジ22の内周側部位22aに下側に窪む凹部41が形成され、その凹部41に蓋体21が嵌め込まれているところにある。この第9実施形態によれば、筒状部13の上端と蓋体21との間の屈曲する隙間26からガスがフランジ22の上側に流出しても、そのガスはフランジ22の下側に装着されている冷却管23には当たらなくなる。また、上記の隙間26が屈曲していることで、流出するガスは流出直後から上方向に向かう。これによっても、ガスが冷却管23に当たらなくなる。このため、本実施形態では、冷却管23をフランジ22の上側に装着してもよい。
[9th Embodiment]
FIG. 18 is a perspective view showing the superstructure of the state adjusting tank 7 according to the ninth embodiment of the present invention, and FIG. 19 is a longitudinal front view cut along the line FF of FIG. The configuration according to the ninth embodiment is different from the first embodiment described above (see FIGS. 2 and 3) in that the cooling pipe 23 is mounted on the lower side of the outer peripheral side portion 22b of the flange 22 and the flange. A recess 41 recessed downward is formed in the inner peripheral side portion 22a of 22, and the lid 21 is fitted in the recess 41. According to the ninth embodiment, even if gas flows out to the upper side of the flange 22 from the bending gap 26 between the upper end of the tubular portion 13 and the lid 21, the gas is attached to the lower side of the flange 22. It will not hit the cooling pipe 23. Further, since the gap 26 is bent, the outflowing gas goes upward immediately after the outflow. This also prevents the gas from hitting the cooling pipe 23. Therefore, in the present embodiment, the cooling pipe 23 may be mounted on the upper side of the flange 22.
 なお、以上の実施形態では、状態調整槽の上部に設けられる筒状部13を、図例では円筒状としたが、平面視で四角形や多角形の角筒状であってもよい。また、その筒状部13の上端に形成されるフランジ22と、その筒状部13の開口部16を覆う蓋体21とを、図例では平面視で円形としたが、平面視で四角形や多角形などであってもよい。 In the above embodiment, the tubular portion 13 provided in the upper part of the state adjusting tank is cylindrical in the example, but it may be a quadrangular or polygonal rectangular tube in a plan view. Further, the flange 22 formed at the upper end of the tubular portion 13 and the lid 21 covering the opening 16 of the tubular portion 13 are circular in the plan view, but are rectangular in the plan view. It may be a polygon or the like.
1     製造装置
2     溶融炉
3     移送装置
4     成形装置
5     清澄槽
6     攪拌槽
7     状態調整槽
13   筒状部
16   開口部
21   蓋体
21a 蓋体の外周端
22   フランジ
22a フランジの内周側部位
22b フランジの外周側部位
23   冷却管
24   耐火物
25   覆設材(薄板)
26   隙間
30   ガス流路
34   流入口
36   流出口
40   遮蔽壁
41   凹部
Gm   溶融ガラス
1 Manufacturing equipment 2 Melting furnace 3 Transfer equipment 4 Molding equipment 5 Clarification tank 6 Stirring tank 7 Condition adjustment tank 13 Cylindrical part 16 Opening 21 Lid body 21a Outer peripheral end of lid 22 Flange 22a Inner peripheral side part of flange 22b Flange Outer peripheral side 23 Cooling pipe 24 Refractory 25 Covering material (thin plate)
26 Gap 30 Gas flow path 34 Inflow port 36 Outlet 40 Shielding wall 41 Recess Gm Molten glass

Claims (9)

  1.  溶融炉から成形装置まで溶融ガラスを移送する移送装置に、溶融ガラスの状態を調整する状態調整槽を配備したガラス物品の製造装置であって、
     前記状態調整槽は、中心軸線が上下方向に沿い且つ上端に開口部を有する筒状部と、前記筒状部の開口部を覆う蓋体とを備えること特徴とするガラス物品の製造装置。
    A glass article manufacturing device equipped with a state adjustment tank that adjusts the state of the molten glass in a transfer device that transfers the molten glass from the melting furnace to the molding device.
    The state adjusting tank is an apparatus for manufacturing a glass article, comprising: a tubular portion having a central axis along the vertical direction and an opening at an upper end, and a lid covering the opening of the tubular portion.
  2.  前記蓋体は、耐火物と、前記耐火物の少なくとも下面を覆う白金または白金合金からなる覆設材とを有する請求項1に記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to claim 1, wherein the lid has a refractory material and a covering material made of platinum or a platinum alloy that covers at least the lower surface of the refractory material.
  3.  前記筒状部は、その上端に前記蓋体の外周端から外周側に食み出すフランジを有し、
     前記状態調整槽は、前記フランジにおける前記蓋体から食み出す部位の上側に装着された冷却管と、前記筒状部の上端と前記蓋体との間の隙間から流出して前記冷却管に向かうガスの流量を低減する流量低減手段とを備える請求項1または2に記載のガラス物品の製造装置。
    The tubular portion has a flange at the upper end thereof that protrudes from the outer peripheral end of the lid to the outer peripheral side.
    The state adjusting tank flows out from the gap between the cooling pipe mounted on the upper side of the portion of the flange that protrudes from the lid and the upper end of the tubular portion and the lid, and flows into the cooling pipe. The apparatus for manufacturing a glass article according to claim 1 or 2, further comprising a flow rate reducing means for reducing the flow rate of the toward gas.
  4.  前記流量低減手段は、前記蓋体に設けられたガス流路である請求項3に記載のガラス物品の製造装置。 The device for manufacturing a glass article according to claim 3, wherein the flow rate reducing means is a gas flow path provided in the lid.
  5.  前記ガス流路の流入口と流出口とが、平面視で異なる位置に形成されている請求項4に記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to claim 4, wherein the inlet and outlet of the gas flow path are formed at different positions in a plan view.
  6.  前記ガス流路の流入口と流出口とが、前記ガスの流れ方向が異なるように形成されている請求項5に記載のガラス物品の製造装置。 The apparatus for manufacturing a glass article according to claim 5, wherein the inlet and outlet of the gas flow path are formed so that the flow directions of the gas are different.
  7.  前記流量低減手段は、前記蓋体の外周端と前記冷却管との間に配置された遮蔽壁である請求項3に記載のガラス物品の製造装置。 The device for manufacturing a glass article according to claim 3, wherein the flow rate reducing means is a shielding wall arranged between the outer peripheral end of the lid and the cooling pipe.
  8.  前記筒状部は、その上端にフランジを有し、
     前記状態調整槽は、前記フランジに装着された冷却管を備え、
     前記冷却管は、前記フランジの下側に装着されている請求項1または2に記載のガラス物品の製造装置。
    The tubular portion has a flange at its upper end and has a flange.
    The state adjusting tank includes a cooling pipe mounted on the flange.
    The apparatus for manufacturing a glass article according to claim 1 or 2, wherein the cooling pipe is mounted on the lower side of the flange.
  9.  溶融炉から成形装置まで溶融ガラスを移送装置によって移送する移送工程を備え、前記移送工程では、前記移送装置に配備した状態調整槽により溶融ガラスの状態を調整する状態調整処理を行うガラス物品の製造方法であって、
     前記状態調整槽は、中心軸線が上下方向に沿い且つ上端に開口部を有する筒状部と、蓋体とを有し、前記状態調整処理を行う際に、前記筒状部の開口部を前記蓋体が覆うことを特徴とするガラス物品の製造方法。
    Manufacture of a glass article comprising a transfer step of transferring molten glass from a melting furnace to a molding apparatus by a transfer device, and in the transfer step, performing a state adjustment process for adjusting the state of the molten glass by a state adjusting tank provided in the transfer device. It's a method
    The state adjusting tank has a tubular portion having an opening at the upper end along the central axis in the vertical direction and a lid, and when the state adjusting process is performed, the opening of the tubular portion is opened. A method for manufacturing a glass article, which comprises covering with a lid.
PCT/JP2020/024604 2019-07-03 2020-06-23 Glass article production device and production method WO2021002244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217039378A KR20220031548A (en) 2019-07-03 2020-06-23 Glass article manufacturing apparatus and manufacturing method
CN202080039106.6A CN113874331A (en) 2019-07-03 2020-06-23 Glass article manufacturing device and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124632 2019-07-03
JP2019124632A JP7330433B2 (en) 2019-07-03 2019-07-03 Glass article manufacturing apparatus and manufacturing method

Publications (1)

Publication Number Publication Date
WO2021002244A1 true WO2021002244A1 (en) 2021-01-07

Family

ID=74101059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024604 WO2021002244A1 (en) 2019-07-03 2020-06-23 Glass article production device and production method

Country Status (4)

Country Link
JP (1) JP7330433B2 (en)
KR (1) KR20220031548A (en)
CN (1) CN113874331A (en)
WO (1) WO2021002244A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234083A1 (en) * 2022-06-03 2023-12-07 日本電気硝子株式会社 Glass article manufacturing apparatus and glass article manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023084387A (en) * 2021-12-07 2023-06-19 日本電気硝子株式会社 Glass transfer device, device for manufacturing glass article and method for manufacturing glass article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511461A (en) * 1991-03-07 1994-12-22 グラステク インコーポレイテッド melting equipment
JP2007076939A (en) * 2005-09-13 2007-03-29 Asahi Glass Co Ltd Refractory structure with electrode and glass manufacturing apparatus
WO2007052489A1 (en) * 2005-10-31 2007-05-10 Ohara Inc. Optical glass, apparatus for producing optical glass, and process for producing the same
JP2015086131A (en) * 2013-09-25 2015-05-07 AvanStrate株式会社 Production method of glass substrate, and production device of glass substrate
JP2018052792A (en) * 2016-09-30 2018-04-05 AvanStrate株式会社 Production method of glass substrate, and production apparatus of glass substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI271500B (en) * 2002-07-26 2007-01-21 Nissei Ltd Molten material discharge device and molten material heating device of a molten furnace
KR100681091B1 (en) * 2004-09-21 2007-02-08 호야 가부시키가이샤 Mold-press forming apparatus and method of manufacturing a formed product
WO2015194642A1 (en) 2014-06-20 2015-12-23 旭硝子株式会社 Structure for discharging extraneous base material from molten glass, device for manufacturing glass product, and manufacturing method
JP2016216323A (en) * 2015-05-26 2016-12-22 旭硝子株式会社 Molten glass supply apparatus
JP6665435B2 (en) 2015-07-01 2020-03-13 日本電気硝子株式会社 Method for manufacturing glass articles
JP6752851B2 (en) * 2017-09-12 2020-09-09 株式会社Kokusai Electric Manufacturing methods for cooling units, substrate processing equipment, and semiconductor equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511461A (en) * 1991-03-07 1994-12-22 グラステク インコーポレイテッド melting equipment
JP2007076939A (en) * 2005-09-13 2007-03-29 Asahi Glass Co Ltd Refractory structure with electrode and glass manufacturing apparatus
WO2007052489A1 (en) * 2005-10-31 2007-05-10 Ohara Inc. Optical glass, apparatus for producing optical glass, and process for producing the same
JP2015086131A (en) * 2013-09-25 2015-05-07 AvanStrate株式会社 Production method of glass substrate, and production device of glass substrate
JP2018052792A (en) * 2016-09-30 2018-04-05 AvanStrate株式会社 Production method of glass substrate, and production apparatus of glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234083A1 (en) * 2022-06-03 2023-12-07 日本電気硝子株式会社 Glass article manufacturing apparatus and glass article manufacturing method

Also Published As

Publication number Publication date
CN113874331A (en) 2021-12-31
JP2021011393A (en) 2021-02-04
KR20220031548A (en) 2022-03-11
JP7330433B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
JP6463384B2 (en) Equipment for use in direct resistance heating of platinum containing containers
WO2021002244A1 (en) Glass article production device and production method
JP5841685B2 (en) Method and apparatus for removing volatile material from an enclosed space in a glass manufacturing process
JP7223345B2 (en) Glass article manufacturing method, manufacturing apparatus, and glass substrate
JP5751252B2 (en) Molten glass feeder
JP5652707B2 (en) Molten glass transfer tube
KR102612688B1 (en) Method of manufacturing glass articles
KR102662482B1 (en) glass transfer device
WO2024038740A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
EP4051645B1 (en) Glass fining using an objective and molten metal
KR20220020802A (en) glass conveying device
KR101796818B1 (en) Transfer apparatus for glass melt
JP2021091569A (en) Glass melting device, manufacturing method for glass article, and capacity adjustment member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834266

Country of ref document: EP

Kind code of ref document: A1