WO2021002149A1 - Steering amount detection device - Google Patents

Steering amount detection device Download PDF

Info

Publication number
WO2021002149A1
WO2021002149A1 PCT/JP2020/022490 JP2020022490W WO2021002149A1 WO 2021002149 A1 WO2021002149 A1 WO 2021002149A1 JP 2020022490 W JP2020022490 W JP 2020022490W WO 2021002149 A1 WO2021002149 A1 WO 2021002149A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
incremental
vernier
magnetic
pole
Prior art date
Application number
PCT/JP2020/022490
Other languages
French (fr)
Japanese (ja)
Inventor
木村 誠
横田 忠治
高太郎 椎野
敦 磯部
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2021002149A1 publication Critical patent/WO2021002149A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • the present invention relates to a steering amount detection device.
  • Patent Document 1 a magnetic scale in which the north and south poles are magnetized at equal intervals and two magnetic sensors for detecting the magnetic flux generated from the magnetic scale are provided as a linear movement position detecting device.
  • the technology of linear encoders is disclosed.
  • Patent Document 1 when the linear encoder technique described in Patent Document 1 is applied to an automobile steering amount detection device, four magnetic sensors are used in a dual system in order to detect an abnormality in the output signal of the magnetic sensor. Generally, when one of the output signals of the magnetic sensor becomes abnormal, the abnormality can be detected, but it is difficult to determine which system of magnetic sensor has caused the abnormality, and after the abnormality is detected, it is difficult to determine. There was a problem that the position could not be detected.
  • the steering amount detecting device is a magnetic scale provided on a magnetic scale mounting portion, and has a first N pole, a first S pole, a second N pole, and a second S pole in the longitudinal direction of the steering shaft.
  • a sensor, a second magnetic sensor, a third magnetic sensor, and a fourth magnetic sensor are included, and the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are arranged in this order in the longitudinal direction of the steering shaft.
  • the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are periodic.
  • the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor each detect at the same timing, the phases do not match each other and have a half cycle. It has a magnetic sensor unit that does not match each other even if the phases are out of alignment.
  • the steering amount detecting device since the magnetic sensor in which the abnormality has occurred can be identified, accurate position detection can be continued even after the abnormality is detected.
  • FIG. It is an overall block diagram of the steering apparatus of Embodiment 1.
  • FIG. It is sectional drawing around the steering amount detection device of Embodiment 1.
  • FIG. (A) is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detecting device of the first embodiment
  • (b) is the vernier magnetic scale and the vernier of the steering amount detecting device of the first embodiment.
  • It is a partially enlarged sectional view of a magnetic sensor part.
  • It which shows the change of the output signal of the magnetic sensor part of Embodiment 1.
  • It is a block diagram of the control device for steering amount detection of Embodiment 1. It is a figure explaining the angle between four magnetic sensor signals of Embodiment 1.
  • (A) is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detecting device of the second embodiment, and (b) is the vernier magnetic scale and the vernier of the steering amount detecting device of the second embodiment. It is a partially enlarged sectional view of a magnetic sensor part.
  • (A) is a cross-sectional view of the steering amount detecting device of the third embodiment near the magnetic track, and (b) is a plan view of the steering amount detecting device of the third embodiment near the magnetic track.
  • (A) is a cross-sectional view of the steering amount detecting device of the fourth embodiment near the magnetic track, and (b) is a plan view of the steering amount detecting device of the fourth embodiment near the magnetic track.
  • FIG. 1 is an overall configuration diagram of the steering device of the first embodiment.
  • the steering device 1 of the first embodiment has a rod shape having an input shaft 3 connected to the steering wheel 2 and the steering wheel 2, a pinion gear 4 connected to the input shaft 3, and a rack gear 5c housed in the housing 8 and meshing with the pinion gear 4.
  • Rack bar (steering shaft) 5 a pair of tie rods 6 connected to both ends of the rack bar 5, a pair of steering wheels 7 connected to each pair of tie rods 6, and an electric motor 16 that assists steering force. have.
  • the housing 8 includes a housing main body 8a, a rack bar housing space (steering shaft housing space) 8b, and a sensor housing space 8c described later.
  • the housing main body 8a has a tubular shape, and the rack bar housing space 8b and the sensor housing space 8c are formed inside the housing main body 8a.
  • the rack bar 5 provided in the rack bar accommodating space 8b includes a rod-shaped rack bar main body (steering shaft main body) 5a, a magnetic scale mounting portion 5b, and a rack gear 5c, and racks in the rack bar accommodating space 8b.
  • the pair of steering wheels 7 can be steered by moving in the reference axis P direction, which is an axis parallel to the longitudinal direction of the rack bar 5 and passing through the center of the rack bar 5.
  • the magnetic scale mounting portion 5b is provided on the outer circumference opposite to the outer circumference where the rack gear 5c is provided so as to have a planar shape parallel to the reference axis P in the longitudinal direction of the rack bar 5.
  • the magnetic scale mounting portion 5b has a planar shape, the mountability of the incremental magnetic scale (magnetic scale) 9a and the vernier magnetic scale (magnetic scale) 9b can be improved.
  • the magnetic scale mounting portion 5b is provided with two incremental magnetic scales 9a and a vernier magnetic scale 9b parallel to the reference axis P direction in the longitudinal direction of the rack bar 5.
  • the region where the magnetic field lines are generated in the sensor direction is defined as the N pole
  • the region where the magnetic field lines are sucked in from the sensor direction is defined as the S pole.
  • the region where the suction is weak is defined as the non-magnetized region 9aa.
  • the incremental magnetic scale 9a has an incremental first N pole (first N pole) 9a1, an incremental first S pole (first S pole) 9a2, and an incremental second N pole (incremental first N pole) 9a2, which are magnetization regions, in the reference axis P direction in the longitudinal direction of the rack bar 5.
  • 2nd N pole) 9a3, Incremental 2nd S pole (2nd S pole) 9a4, Incremental 3N pole (3rd N pole) 9a5, Incremental 3rd S pole (3rd S pole) 9a6, Incremental 4N pole 9a7, Incremental 4S pole 9a8 The north pole and the south pole are alternately arranged up to the incremental sixth north pole 9a11 in the order of.
  • the vernier magnetic scale 9b also has a vernier first N pole (first N pole) 9b1, a vernier first S pole (first S pole) 9b2, and a vernier second N, which are magnetization regions, in the longitudinal reference axis P direction of the rack bar 5.
  • Pole (2nd N pole) 9b3, Vernier 2nd S pole (2nd S pole) 9b4, Vernier 3N pole (3rd N pole) 9b5, Vernier 3S pole (3rd S pole) 9b6, Vernier 4N pole 9b7, Vernier 4S N poles and S poles are alternately arranged in the order of poles 9b8 up to the vernier fifth S pole 9b10.
  • FIG. 2 is a cross-sectional view of the vicinity of the steering amount detection device of the first embodiment
  • FIG. 3A is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detection device of the first embodiment
  • FIG. 3B is a partially enlarged cross-sectional view of the vernier magnetic scale and the vernier magnetic sensor unit of the steering amount detection device of the first embodiment
  • FIG. 4 is a partially enlarged cross-sectional view of the output signal of the magnetic sensor unit of the first embodiment. It is a graph which shows the change.
  • the steering amount detecting device 100 of the first embodiment will be described.
  • the steering amount detection device 100 on the incremental magnetic scale 9a side includes an incremental magnetic sensor unit (magnetic sensor unit) 10.
  • the incremental magnetic sensor unit 10 is provided on the substrate 17a arranged in the sensor accommodation space 8c so as to face the incremental magnetic scale 9a at a distance ⁇ from the incremental magnetic scale 9a provided in the magnetic scale mounting unit 5b.
  • the magnetic sensor for detection remains, it is possible to continue accurate steering amount detection.
  • Incremental 4N pole 9a7, Incremental 4S pole 9a8, N pole and S pole alternately up to Incremental 6N pole 9a11
  • a non-magnetized region 9aa formed of a non-magnetic material is arranged between each of the arranged north and south poles.
  • the incremental first magnetic sensor 10a and the incremental second magnetic sensor 10b of the incremental magnetic sensor unit 10 When the incremental third magnetic sensor 10c and the incremental fourth magnetic sensor 10d periodically output a sine wave, the sine wave is more accurate than when the incremental first N pole 9a1 and the incremental first S pole 9a2 are adjacent to each other. It comes to be output, and the steering amount detection accuracy can be improved.
  • a non-magnetic layer 12 made of a non-magnetic material is also arranged between the incremental magnetic scale 9a and the magnetic scale mounting portion 5b of the rack bar 5.
  • the incremental magnetic scale 9a does not come into direct contact with the rack bar 5 formed of the magnetic material, so that the rack bar 5 is less likely to be magnetized by the magnetic field of the incremental magnetic scale 9a.
  • the outer edge of the non-magnetic layer 12 is formed so as to surround the outer edge of the incremental magnetic scale 9a.
  • the non-magnetic layer 12 is formed so as to surround the entire range of the incremental magnetic scale 9a. Therefore, in the entire range of the incremental magnetic scale 9a, the rack bar 5 formed of the magnetic material is formed on the incremental magnetic scale 9a. It is possible to suppress the influence of magnetization by the magnetic field.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are arranged in the order of the reference axis P in the longitudinal direction of the rack bar 5.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged so as to detect phases shifted by one-third cycle (120 °) from each other, and the incremental fourth magnetic sensor The 10d is arranged so as to detect a phase shifted by a quarter period (90 °) from the incremental third magnetic sensor 10c. That is, as shown in FIG. 4, the phases when the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d each detect at the same timing coincide with each other. It does not match even from the phase shifted by half cycle (180 °). As a result, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged in a well-balanced manner during one cycle, so that the steering amount can be detected with high accuracy.
  • the output signal of the incremental first magnetic sensor 10a has one cycle. It is arranged so as to be within the range of 1 pitch LP1 which is a length corresponding to the movement amount of the rack shaft 5 when the minute output is performed.
  • the 1-pitch LP1 is, for example, 4.0 mm. As a result, it is possible to suppress the increase in size of the incremental magnetic sensor unit 10.
  • the steering amount detecting device 100 on the vernier magnetic scale 9b side includes a vernier magnetic sensor unit (magnetic sensor unit) 11.
  • the vernier magnetic sensor unit 11 is provided on the substrate 17b arranged in the sensor accommodation space 8c so as to face the vernier magnetic scale 9b at a distance ⁇ from the vernier magnetic scale 9b provided on the magnetic scale mounting unit 5b.
  • the substrate 17b may be integrated with the substrate 17a or may be a separate body.
  • the vernier magnetic scale 9b has a vernier first N pole (first N pole) 9b1, a vernier first S pole (first S pole) 9b2, a vernier second N pole (second N pole) 9b3, and a vernier second S pole (second S pole) 9b4.
  • Vernier 3rd N pole (3rd N pole) 9b5 Vernier 3rd S pole (3rd S pole) 9b6, Vernier 4th N pole 9b7, Vernier 4th S pole 9b8, N pole and S pole alternate to Vernier 5th S pole 9b10
  • a non-magnetized region 9bb formed of a non-magnetic material is arranged between each of the arranged north and south poles.
  • the non-magnetizing region 9bb formed of the non-magnetic material is arranged between the N pole and the S pole, the vernier first magnetic sensor 11a and the vernier second magnetic sensor 11b of the vernier magnetic sensor unit 11
  • the sine wave is more accurate than when the vernier 1N pole 9b1 and the vernier 1S pole 9b2 are adjacent to each other. It comes to be output, and the steering amount detection accuracy can be improved.
  • a non-magnetic layer 12 made of a non-magnetic material is also arranged between the vernier magnetic scale 9b and the magnetic scale mounting portion 5b of the rack bar 5.
  • the vernier magnetic scale 9b does not come into direct contact with the rack bar 5 formed of the magnetic material, so that the rack bar 5 is less likely to be magnetized by the magnetic field of the vernier magnetic scale 9b.
  • the outer edge of the non-magnetic layer 12 is formed so as to surround the outer edge of the vernier magnetic scale 9b.
  • the rack bar 5 made of the magnetic material is formed on the vernier magnetic scale 9b in the entire range of the vernier magnetic scale 9b. It is possible to suppress the influence of magnetization by the magnetic field.
  • the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d are arranged in the order of the reference axis P in the longitudinal direction of the rack bar 5.
  • the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c are arranged so as to detect a phase shifted by one-third cycle (120 °) from each other, and the vernier fourth magnetic sensor The 11d is arranged so as to detect a phase shifted by a quarter period (90 °) from the vernier third magnetic sensor 11c. That is, although not shown, the phases when the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d each detect at the same timing, as in FIG. Do not match each other and do not match from a phase that is off by a half cycle (180 °). As a result, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c are arranged in a well-balanced manner during one cycle, so that the steering amount can be detected with high accuracy.
  • the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d have the output signals of the vernier first magnetic sensor for one cycle. It is arranged so as to be within the range of 1 pitch LP2 which is a length corresponding to the movement amount of the rack shaft 5 at the time of output.
  • the 1-pitch LP2 is, for example, 4.08 mm. As a result, it is possible to suppress the increase in size of the vernier magnetic sensor unit 11.
  • the incremental magnetic scale 9a and the incremental magnetic sensor unit 10 and the vernier magnetic scale 9b and the vernier magnetic sensor unit 11 are provided in this way, of the two incremental magnetic sensor units 10 or the vernier magnetic sensor unit 11. Even if the output signal of one of the magnetic sensors in one of the magnetic sensor units becomes abnormal, it is possible to continue accurate steering amount detection based on the output signal of the other magnetic sensor unit. In addition, only one of the incremental magnetic scale 9a and the incremental magnetic sensor unit 10 or the vernier magnetic scale 9b and the vernier magnetic sensor unit 11 may be provided.
  • FIG. 5 is a block diagram of the steering amount detection control device of the first embodiment.
  • the control device C / U receives output signals S1-S4 from the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d of the incremental magnetic sensor unit 10.
  • the first rack bar position information generation unit 13 that generates the position information of the rack bar 5, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier magnetic sensor unit 11.
  • the second rack bar position information generation unit 14 that receives the output signals S11-S14 from the magnetic sensor 11d and generates the position information of the rack bar 5, and the first rack bar position information generation unit 13 or the second rack bar position.
  • the steering control unit 15 for controlling the electric motor 16 that assists the steering force is provided based on the position information of the rack bar 5 of the information generation unit 14. Further, the output signals S1-S4 from the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are also input to the second rack bar position information generation unit 14. The output signals S11-S14 from the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d are also input to the first rack bar position information generation unit 13. Has been done.
  • the first rack bar position information generation unit 13 is based on at least the output signals S1-S3 of the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c of the incremental magnetic sensor unit 10.
  • the second rack bar position information generation unit 14 is of the rack bar 5 by at least the output signals S11-S13 of the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c of the vernier magnetic sensor unit 11. The position information is generated.
  • the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 include an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, an incremental third magnetic sensor 10c, and an incremental fourth magnetic sensor.
  • the first rack bar position information generation unit 13 or the second rack bar position information generation unit 14 is an incremental magnetic sensor unit while the power supply to the control device C / U is continuously continued.
  • the generation of the position information of the rack bar 5 may be continued based on the remaining two output signals of the 10 or the vernier magnetic sensor unit 11.
  • the current position information of the rack bar 5 is sequentially updated based on the two normal output signals, thereby steering.
  • the amount detection can be continued, and the usage time of the steering amount detection device 100 can be extended.
  • the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 include an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, an incremental third magnetic sensor 10c, and an incremental fourth magnetic sensor.
  • Output signal S1-S4 from 10d or at least three outputs of output signals S11-S14 from vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, vernier third magnetic sensor 11c, and vernier fourth magnetic sensor 11d.
  • the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 may generate the position information of the rack bar 5, and the incremental first magnetic sensor 10a and the incremental second magnetometer may be generated.
  • the magnetic flux density which is the output signal detected by the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c is as shown in the following equation.
  • the detected magnetic flux density Ba of the incremental first magnetic sensor 10a is given by the following equation 1.
  • the detected magnetic flux density Bb of the incremental second magnetic sensor 10b is given by the following equation 2.
  • the detected magnetic flux density Bc of the incremental third magnetic sensor 10c is given by the following equation 3.
  • COS ⁇ is calculated by the following formula 4-6 from the magnetic flux density Bb of the incremental second magnetic sensor 10b and the magnetic flux density Bc of the magnetic flux density of the incremental third magnetic sensor 10c.
  • the phase angle of the relative position can be calculated by the following equation 7.
  • the relative position x as the steering amount can be calculated by the following equation 8.
  • Lpitch The polar body pitch length of the magnetic track
  • the vernier magnetic sensor unit 11 can be calculated in the same manner.
  • the magnetic flux densities B ⁇ and B ⁇ which are the output signals detected by any two incremental magnetic sensors, are given by the following equations 9 and 10.
  • the following equation 11 is obtained.
  • the following equation 12-15 is obtained.
  • the phase angle of the relative position can be calculated by the following equation 16.
  • the relative position x as the steering amount can be calculated by the following equation 17.
  • Lpitch The polar body pitch length of the magnetic track
  • the vernier magnetic sensor unit 11 can be calculated in the same manner.
  • FIG. 6 is a diagram illustrating a phase angle between the four magnetic sensor signals of the first embodiment.
  • the angle between the output signal S1 of the incremental first magnetic sensor 10a and the output signal S2 of the incremental second magnetic sensor 10b of the incremental magnetic sensor unit 10 is ⁇ 12, and the output signal S2 of the incremental second magnetic sensor 10b and the incremental third magnetism.
  • the angle between the output signal S3 of the sensor 10c is ⁇ 23, the angle between the output signal S3 of the incremental third magnetic sensor 10c and the output signal S1 of the incremental first magnetic sensor 10a is ⁇ 31, and the output signal S4 of the incremental fourth magnetic sensor 10d.
  • the angle between the output signal S1 of the incremental first magnetic sensor 10a is ⁇ r1
  • the angle between the output signal S4 of the incremental fourth magnetic sensor 10d and the output signal S2 of the incremental second magnetic sensor 10b is ⁇ r2
  • the angle between the incremental fourth magnetic sensor 10d is ⁇ r2.
  • the angle between the output signal S4 and the output signal S3 of the incremental third magnetic sensor 10c is defined as ⁇ r3. The same applies to the vernier magnetic sensor unit 11.
  • FIG. 7 is a first flowchart of the steering amount detection control process of the control device of the first embodiment
  • FIG. 8 is a second flowchart of the steering amount detection control process of the control device of the first embodiment.
  • This flowchart is repeatedly executed at a predetermined calculation cycle.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d of the incremental magnetic sensor unit 10 will be described. The same applies to the vernier magnetic sensor unit 11.
  • step S1 the output signals S1, S2, S3, and S4 of the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are acquired.
  • step S2 the angle ⁇ 12 is calculated from the output signal S1 of the incremental first magnetic sensor 10a and the output signal S2 of the incremental second magnetic sensor 10b from the above equation 16.
  • step S3 the angle ⁇ 23 is calculated from the output signal S2 of the incremental second magnetic sensor 10b and the output signal S3 of the incremental third magnetic sensor 10c from the above-mentioned equation 16.
  • step S4 the angle ⁇ 31 is calculated from the output signal S3 of the incremental third magnetic sensor 10c and the output signal S1 of the incremental first magnetic sensor 10a from the above equation 16.
  • step S5 the angle ⁇ r1 is calculated from the output signal S1 of the incremental first magnetic sensor 10a and the output signal S4 of the incremental fourth magnetic sensor 10d from the above equation 16.
  • step S6 the angle ⁇ r2 is calculated from the output signal S2 of the incremental second magnetic sensor 10b and the output signal S4 of the incremental fourth magnetic sensor 10d from the above equation 16.
  • step S7 the angle ⁇ r3 is calculated from the output signal S3 of the incremental third magnetic sensor 10c and the output signal S4 of the incremental fourth magnetic sensor 10d from the above equation 16.
  • step S8 it is determined whether or not the absolute value of the difference between ⁇ 12 and ⁇ r1 or the absolute value of the difference between ⁇ 12 and ⁇ r2 is equal to or greater than the predetermined threshold value ⁇ th. If the absolute value of the difference between ⁇ 12 and ⁇ r1 and the absolute value of the difference between ⁇ 12 and ⁇ r2 are not equal to or greater than the predetermined threshold value ⁇ th, the process proceeds to step S9, and the absolute value of the difference between ⁇ 12 and ⁇ r1 or the absolute value of the difference between ⁇ 12 and ⁇ r2tp When the value is equal to or higher than the predetermined threshold value ⁇ th, the process proceeds to step S10.
  • step S9 FLAG_S12 is cleared to 0, and the process proceeds to step S11.
  • step S10 the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental fourth magnetic sensor 10d may be abnormal. Therefore, FLAG_S12 is set to 1 and the process proceeds to step S11.
  • step S11 it is determined whether or not the absolute value of the difference between ⁇ 23 and ⁇ r2 and the absolute value of the difference between ⁇ 23 and ⁇ r3 are equal to or greater than the predetermined threshold value ⁇ th. If the absolute value of the difference between ⁇ 23 and ⁇ r2 or the absolute value of the difference between ⁇ 23 and ⁇ r3 is not equal to or greater than the predetermined threshold value ⁇ th, the process proceeds to step S12, and the absolute value of the difference between ⁇ 23 and ⁇ r2 or the difference between ⁇ 23 and ⁇ r3. When the absolute value of is equal to or greater than the predetermined threshold value ⁇ th, the process proceeds to step S13. In step S12, FLAG_S23 is cleared to 0, and the process proceeds to step S14. In step S13, since there is a possibility that the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are abnormal, FLAG_S23 is set to 1 and the process proceeds to step S14.
  • step S14 it is determined whether or not the absolute value of the difference between ⁇ 31 and ⁇ r3 and the absolute value of the difference between ⁇ 31 and ⁇ r1 are equal to or greater than the predetermined threshold value ⁇ th. If the absolute value of the difference between ⁇ 31 and ⁇ r3 and the absolute value of the difference between ⁇ 31 and ⁇ r1 are not equal to or greater than the predetermined threshold value ⁇ th, the process proceeds to step S15, and the absolute value of the difference between ⁇ 31 and ⁇ r3 or the difference between ⁇ 31 and ⁇ r1 When the absolute value is equal to or greater than the predetermined threshold value ⁇ th, the process proceeds to step S16. In step S15, FLAG_S31 is cleared to 0, and the process proceeds to step S17. In step S16, since there is a possibility that the incremental first magnetic sensor 10a, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are abnormal, FLAG_S31 is set to 1 and the process proceeds to step S17.
  • step S17 the data of FLAG_S12, FLAG_S23, and FLAG_S31 are added to determine whether or not the data is 2 or more. This is because if two or more of FLAG_S12, FLAG_S23, and FLAG_S31 are not set to 1, the sensor in which the abnormality has occurred cannot be determined, so each flag data is added, and when it is 2 or more, the sensor in which the abnormality has occurred is confirmed. This is because processing is performed and when it is less than 2, it is determined that there is no abnormality in each sensor.
  • the data of FLAG_S12, FLAG_S23, and FLAG_S31 are added, and if it is not 2 or more, the process proceeds to step S18. If the data of FLAG_S12, FLAG_S23, FLAG_S31 is added, the process proceeds to step S19.
  • step S18 it is determined that there is no abnormality in the four incremental magnetic sensors 10a-10d, FLAG_NG_SEN is cleared to 0, and the process proceeds to step S26.
  • step S19 it is determined whether or not the data of FLAG_S12, FLAG_S23, and FLAG_S31 are all 1. When the data of FLAG_S12, FLAG_S23, and FLAG_S31 are all 1, the process proceeds to step S20, and when the data of FLAG_S12, FLAG_S23, and FLAG_S31 are not all 1, the process proceeds to step S21.
  • step S21 it is determined whether or not the data of FLAG_S12 is 0. When the data of FLAG_S12 is not 0, the process proceeds to step S22, and when the data of FLAG_S12 is 0, the process proceeds to step S23.
  • step S22 when the data of FLAG_S12 is 0, the data of FLAG_S23 and FLAG_S31 are 1, and the sensor in which the common abnormality has occurred can be determined to be the incremental third magnetic sensor 10c, so that the sensor in which the abnormality has occurred is determined.
  • FLAG_NG_SEN 10c is set, and the process proceeds to step S26.
  • step S23 it is determined whether or not the data of FLAG_S31 is 0. When the data of FLAG_S31 is not 0, the process proceeds to step S24, and when the data of FLAG_S31 is 0, the process proceeds to step S25.
  • step S24 when the data of FLAG_S31 is 0, the data of FLAG_S12 and FLAG_S23 are 1, and the sensor in which the abnormality has occurred in the common sensor can be determined to be the incremental second magnetic sensor 10b.
  • Set FLAG_NG_SEN 10b to be confirmed, and proceed to step S26.
  • step S25 when the data of FLAG_S23 is 0, the data of FLAG_S12 and FLAG_S31 are 1, and the sensor in which the abnormality has occurred in the common sensor can be determined to be the incremental first magnetic sensor 10a.
  • Set FLAG_NG_SEN 10a to be confirmed, and proceed to step S26.
  • step S26 it is determined whether or not the data of FLAG_NG_SEN is 0 or 10d.
  • the process proceeds to step S27, and when the data of FLAG_NG_SEN is not 0 or 10d, the process proceeds to step S28.
  • step S27 since the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are normal, the output signal S1 of the incremental first magnetic sensor 10a, the output signal S2 of the incremental second magnetic sensor 10b, The angle ⁇ 123 is calculated from the output signal S3 of the incremental third magnetic sensor 10c, and the relative position as the steering amount is calculated with the phase angle ⁇ of the relative position as the angle ⁇ 123.
  • step S28 it is determined whether or not the data of FLAG_NG_SEN is 10c.
  • the process proceeds to step S29, and when the data of FLAG_NG_SEN is not 10c, the process proceeds to step S30.
  • step S29 since the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental fourth magnetic sensor 10d are normal, the output signal S1 of the incremental first magnetic sensor 10a, the output signal S2 of the incremental second magnetic sensor 10b, The average value of the angles ⁇ 12 or ⁇ 12, ⁇ r1 and ⁇ r2 calculated from the output signal S4 of the incremental fourth magnetic sensor 10d is calculated, and the phase angle ⁇ of the relative position is set as the average value of the angles ⁇ 12 or ⁇ 12, ⁇ r1 and ⁇ r2. Calculate the relative position as the steering amount.
  • step S30 it is determined whether or not the data of FLAG_NG_SEN is 10b.
  • the process proceeds to step S31, and when the data of FLAG_NG_SEN is not 10b, the process proceeds to step S32.
  • step S30 since the incremental first magnetic sensor 10a, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are normal, the output signal S1 of the incremental first magnetic sensor 10a, the output signal S3 of the incremental third magnetic sensor 10c, The average value of the angles ⁇ 31 or ⁇ 31, ⁇ r1 and ⁇ r3 calculated from the output signal S4 of the incremental fourth magnetic sensor 10d is calculated, and the phase angle ⁇ of the relative position is set as the average value of the angles ⁇ 31 or ⁇ 31, ⁇ r1 and ⁇ r3. Calculate the relative position as the steering amount.
  • step S32 the data of FLAG_NG_SEN is confirmed as 10a, and the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are normal, so that the output signal S2 and the incremental second magnetic sensor 10b of the incremental second magnetic sensor 10b are normal.
  • 3 Calculate the average value of the angles ⁇ 23 or ⁇ 23, ⁇ r2, and ⁇ r3 calculated from the output signal S3 of the magnetic sensor 10c and the output signal S4 of the incremental fourth magnetic sensor 10d, and set the phase angle ⁇ of the relative position to the angle ⁇ 23 or ⁇ 23. , ⁇ r2, ⁇ r3, and the relative position as the steering amount is calculated as the average value.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged so as to detect phases shifted by one-third cycle (120 °) from each other, and the vernier first.
  • the 1 magnetic sensor 11a, the vernier 2nd magnetic sensor 11b, and the vernier 3rd magnetic sensor 11c are also arranged so as to detect a phase shifted by one-third cycle (120 °) from each other. Therefore, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c are in one cycle. Since they are arranged in a well-balanced manner, highly accurate steering amount detection is possible.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic. Arranged so as to be within the range of 1 pitch LP1 which is the length corresponding to the movement amount of the rack shaft 5 when the output signals of the sensor 10c and the incremental fourth magnetic sensor 10d are output for one cycle, the vernier first.
  • the magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d are the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth.
  • a non-magnetized region 9aa formed of a non-magnetic material is arranged between each of the north and south poles arranged up to, and the vernier magnetic scale 9b has a vernier first N pole (first N pole) 9b1 and a vernier.
  • the non-magnetizing region 9aa formed of the non-magnetic material is arranged between the north pole and the south pole of the incremental magnetic scale 9a, the incremental first magnetic sensor 10a and the incremental second magnetic sensor unit 10 of the incremental magnetic sensor unit 10 are arranged.
  • the magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d periodically output a sine wave, the sine is larger than when the incremental first N pole 9a1 and the incremental first S pole 9a2 are adjacent to each other.
  • the wave can be output accurately, the steering amount detection accuracy can be improved, and the non-magnetizing region 9bb formed of the non-magnetic material is also formed between the north and south poles of the vernier magnetic scale 9b.
  • the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d of the vernier magnetic sensor unit 11 periodically output a sine wave.
  • the sine wave can be output more accurately, and the steering amount detection accuracy can be improved.
  • the first rack bar position information generation unit 13 or the second rack bar position information generation unit 14 of the control device C / U has an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, and an incremental third magnetometer.
  • Output signal from sensor 10c, incremental fourth magnetic sensor 10d, or output signal from vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, vernier third magnetic sensor 11c, vernier fourth magnetic sensor 11d The position information of the rack bar 5 is generated based on at least three output signals of S11-S14, and the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnet are generated.
  • the vernier first magnetic sensor 11a When any one of the output signals of the sensor 10d, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d becomes abnormal, the remaining The generation of the position information of the rack bar 5 is continued based on the three output signals. Therefore, by continuing to generate the position information of the rack bar 5 based on the three normal output signals, it is possible to continue the accurate steering amount detection, and to extend the usage time of the steering amount detection device 100. Can be done.
  • the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 of the control device C / U are an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, and an incremental third magnetic sensor. 10c, output signal S1-S4 from the incremental fourth magnetic sensor 10d, or output signal S11 from the vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, vernier third magnetic sensor 11c, vernier fourth magnetic sensor 11d.
  • the generation of the position information of the rack bar 5 is continued based on the remaining two output signals. Therefore, by continuing to generate the position information of the rack bar 5 based on the two normal output signals, it is possible to extend the usage time of the steering amount detecting device 100.
  • the magnetic scale mounting portion 5b is provided on the outer circumference opposite to the outer circumference where the rack gear 5c is provided so as to have a planar shape parallel to the reference axis P in the longitudinal direction of the rack bar 5. Therefore, since the magnetic scale mounting portion 5b has a planar shape, the mountability of the incremental magnetic scale 9a or the vernier magnetic scale 9b can be improved.
  • a non-magnetic layer 12 made of a non-magnetic material is arranged between the incremental magnetic scale 9a and the vernier magnetic scale 9b and the magnetic scale mounting portion 5b of the rack bar 5. Therefore, since the incremental magnetic scale 9a and the vernier magnetic scale 9b do not come into direct contact with the rack bar 5 formed of the magnetic material, the rack bar 5 is less likely to be magnetized by the magnetic fields of the incremental magnetic scale 9a and the vernier magnetic scale 9b. As a result, when the incremental magnetic sensor unit 10 reads the information of the incremental magnetic scale 9a, or when the vernier magnetic sensor unit 11 reads the information of the vernier magnetic scale 9b, the influence of the magnetic characteristics received from the rack bar 5 is suppressed. Can be done.
  • the outer edge of the non-magnetic layer 12 is formed so as to surround the outer edge of the incremental magnetic scale 9a and the vernier magnetic scale 9b. Therefore, since the non-magnetic layer 12 is formed so as to surround the entire range of the incremental magnetic scale 9a and the vernier magnetic scale 9b, the non-magnetic layer 12 is formed of the magnetic material in the entire range of the incremental magnetic scale 9a and the vernier magnetic scale 9b. It is possible to suppress the rack bar 5 from being affected by the magnetic field of the incremental magnetic scale 9a and the vernier magnetic scale 9b.
  • Incremental magnetic scale 9a and incremental magnetic sensor unit 10 and vernier magnetic scale 9b and vernier magnetic sensor unit 11 are provided, and the first rack bar position information generation unit 13 is at least the incremental magnetic sensor unit 10.
  • the second rack bar position information generation unit 14 is at least the vernier first of the vernier magnetic sensor unit 11.
  • the position information of the rack bar 5 is generated by the output signals S11-S13 of the 1 magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c.
  • FIG. 9A is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detecting device of the second embodiment
  • FIG. 9B is a vernier magnetic scale of the steering amount detecting device of the second embodiment. It is a partially enlarged cross-sectional view of the vernier magnetic sensor unit.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental fourth magnetic sensor 10d are arranged so as to detect a phase shifted by one-third cycle (120 °) from each other.
  • the incremental third magnetic sensor 10c is arranged so as to detect a phase shifted by a quarter period (90 °) from the incremental second magnetic sensor 10b.
  • the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier fourth magnetic sensor 11d are arranged so as to detect a phase shifted by one-third cycle (120 °) from each other, and the vernier third magnetic sensor
  • the 11c is arranged so as to detect a phase shifted by a quarter period (90 °) from the vernier second magnetic sensor 11b.
  • the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged so as to detect phases shifted by one-third cycle (120 °) from each other, and the incremental fourth magnetic sensor
  • the 10d is arranged so as to detect a phase shifted by a quarter period (90 °) from the incremental second magnetic sensor 10b, and the vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, and vernier.
  • the third magnetic sensor 11c is arranged so as to detect a phase shifted by one-third cycle (120 °) from each other, and the vernier fourth magnetic sensor 11d has a quarter cycle (90) with the vernier second magnetic sensor 11b. °) Since the configuration is the same as that of the first embodiment except that the configurations are arranged so as to detect the shifted phase, the same reference numerals are given to the same configurations and the description thereof will be omitted.
  • FIG. 10A is a cross-sectional view of the steering amount detecting device of the third embodiment near the magnetic track
  • FIG. 10B is a plan view of the steering amount detecting device of the third embodiment near the magnetic track.
  • the non-magnetic layer 12 is not only between the magnetic scale mounting portion 5a of the rack bar 5 and the incremental magnetic scale 9a or the vernier magnetic scale 9b, but also the incremental magnetic scale 9a or the vernier magnetic scale 9b. It also covers the sides of. Except for this point, since the configuration is the same as that of the first embodiment, the same reference numerals are given to the same configurations and the description thereof will be omitted.
  • FIG. 11A is a cross-sectional view of the steering amount detecting device of the fourth embodiment near the magnetic track
  • FIG. 11B is a plan view of the steering amount detecting device of the fourth embodiment near the magnetic track.
  • the non-magnetic layer 12 is not only between the magnetic scale mounting portion 5a of the rack bar 5 and the incremental magnetic scale 9a or the vernier magnetic scale 9b, but also the incremental magnetic scale 9a or the vernier magnetic scale 9b. It also covers the sides and surface of the. That is, the incremental magnetic scale 9a or the vernier magnetic scale 9b is insert-molded into the non-magnetic layer 12 formed by molding with a resin material. Except for this point, since the configuration is the same as that of the first embodiment, the same reference numerals are given to the same configurations and the description thereof will be omitted.
  • the incremental magnetic scale 9a or the vernier magnetic scale 9b when the incremental magnetic scale 9a or the vernier magnetic scale 9b is installed on the magnetic scale mounting portion 5a of the rack bar 5, the incremental magnetic scale 9a or the vernier is installed. Since the magnetic scale 9b is protected by the non-magnetic layer 12, damage to the incremental magnetic scale 9a or the vernier magnetic scale 9b during assembly can be suppressed.
  • the steering amount detecting device is a housing, and includes a housing main body portion, a steering shaft accommodating space, and a sensor accommodating space.
  • the housing main body portion has a tubular shape, and the steering The shaft accommodating space is formed inside the housing main body portion, and the sensor accommodating space is formed inside the housing main body portion, and the steering shaft provided in the housing and the steering shaft accommodating space.
  • the steering shaft main body is provided with a steering shaft main body and a magnetic scale mounting portion, and the steering shaft main body has a rod shape and can steer the steering wheels by moving in the longitudinal direction in the steering shaft accommodating space.
  • the magnetic scale mounting portion is a steering shaft provided on the outer peripheral side of the steering shaft main body portion and a magnetic scale provided on the magnetic scale mounting portion in the longitudinal direction of the steering shaft.
  • the magnetic scale and the magnetic scale facing the magnetic scale wherein the N pole and the S pole are alternately arranged in the order of the first N pole, the first S pole, the second N pole, the second S pole, the third N pole, and the third S pole.
  • a magnetic sensor unit provided in the sensor accommodation space so as to include a first magnetic sensor, a second magnetic sensor, a third magnetic sensor, and a fourth magnetic sensor, and the above-mentioned in the longitudinal direction of the steering shaft.
  • the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are arranged in this order, and the magnetic scale passes in front of the magnetic sensor unit as the steering shaft moves.
  • the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor change periodically, and the first magnetic sensor, the second magnetic sensor, and the like.
  • the third magnetic sensor and the fourth magnetic sensor each detect at the same timing, the phases do not match each other, and the phases shifted by half a cycle do not match each other with the magnetic sensor unit.
  • the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other.
  • the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor output the output signal of the first magnetic sensor for one cycle. It is arranged so as to be within a range of a length corresponding to the amount of movement of the steering shaft at that time.
  • the magnetic scale has a first N pole, a first S pole, a second N pole, a second S pole, a third N pole, and a third S in the longitudinal direction of the steering shaft. There is an unmagnetized non-magnetized region between each of the poles.
  • the control device further comprises a control device, which is the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor.
  • the position information of the steering shaft is generated based on at least three of the output signals of the above, and the control device is the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the first.
  • the control device comprises any two of the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor. When an abnormality occurs, the remaining two continue to generate the position information of the steering shaft.
  • an axis that passes through the center of the steering shaft in a cross section perpendicular to the longitudinal direction of the steering shaft and is parallel to the longitudinal direction of the steering shaft is defined as a reference axis.
  • the magnetic scale mounting portion has a planar shape parallel to the reference axis.
  • the non-magnetic layer is further provided, the steering shaft is made of a magnetic material, and the non-magnetic layer is made of a non-magnetic material. It is provided between the magnetic scale mounting portion and the magnetic scale.
  • the outer edge of the non-magnetic layer is formed so as to surround the outer edge of the magnetic scale.
  • the non-magnetic film is formed of a resin material by molding, and the magnetic scale is insert-molded into the non-magnetic film.
  • the steering amount detecting device is a housing, and includes a housing main body portion, a steering shaft accommodating space, and a sensor accommodating space, and the housing main body portion has a tubular shape.
  • the steering shaft accommodating space is formed inside the housing main body, and the sensor accommodating space is provided in the housing and the steering shaft accommodating space formed inside the housing main body.
  • It is a steering shaft, and includes a steering shaft main body portion and a magnetic scale mounting portion.
  • the steering shaft main body portion has a rod shape and moves in the longitudinal direction in the steering shaft accommodating space to move the steering wheels.
  • the magnetic scale mounting portion is the steering shaft provided on the outer peripheral side of the steering shaft main body portion and the vernier magnetic scale provided on the magnetic scale mounting portion, and the steering shaft.
  • the north pole and the south pole are alternately arranged in the order of the vernier first N pole, the vernier first S pole, the vernier second N pole, the vernier second S pole, the vernier third N pole, and the vernier third S pole in the longitudinal direction of the above.
  • a vernier magnetic scale and an incremental magnetic scale provided on the magnetic scale mounting portion, wherein the incremental 4N pole, the incremental 4S pole, the incremental 5N pole, the incremental 5S pole, and the incremental magnetic scale are provided in the longitudinal direction of the steering shaft.
  • the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are included, and the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier first in the longitudinal direction of the steering shaft.
  • the three magnetic sensors are arranged in this order, and when the vernier magnetic scale passes in front of the vernier magnetic sensor unit as the steering shaft moves, the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier magnetic sensor are arranged.
  • the output signal of each of the vernier third magnetic sensors changes periodically, and the phase when the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor each detect at the same timing.
  • An incremental magnetic sensor unit provided in the sensor accommodating space so as to face each other, including an incremental first magnetic sensor, an incremental second magnetic sensor, and an incremental third magnetic sensor, in the longitudinal direction of the steering shaft.
  • the output signals of the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor change periodically, and the incremental first magnetic sensor, the incremental second magnetic sensor, and the above. It has the incremental magnetic sensor unit, in which the phases when each of the incremental third magnetic sensors are detected at the same timing do not match each other and do not match the phases shifted by one-third cycle.
  • the above embodiment further comprises a control device.
  • the control device generates position information of the steering shaft based on the output signals of the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor, and the incremental first magnetometer. Based on the output signals of the sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor, the position information of the steering shaft is generated, and the control device uses the vernier first magnetic sensor and the vernier second. When any one of the output signals of the magnetic sensor and the vernier third magnetic sensor becomes abnormal, the vernier magnetic sensor unit remains as long as the power supply of the control device is continued.
  • the control device uses the output signals of the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor, respectively. When any one of them becomes abnormal, the remaining two in the incremental magnetic sensor unit continue to generate the position information of the steering shaft while the power supply of the control device is continued.
  • the vernier magnetic sensor unit further comprises a vernier fourth magnetic sensor, and in the longitudinal direction of the steering shaft, the vernier first magnetic sensor and the vernier second.
  • the magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor are arranged in this order, and when the vernier magnetic scale passes in front of the vernier magnetic sensor unit as the steering shaft moves, the vernier first.
  • the output signals of the 1 magnetic sensor, the vernier 2nd magnetic sensor, the vernier 3rd magnetic sensor, and the vernier 4th magnetic sensor change periodically, and the vernier 1st magnetic sensor and the vernier 2nd magnetometer are changed.
  • the incremental magnetic sensor unit further includes an incremental fourth magnetic sensor, and in the longitudinal direction of the steering shaft, the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth.
  • the magnetic sensors are arranged in this order, and when the incremental magnetic scale passes in front of the incremental magnetic sensor unit as the steering shaft moves, the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental magnetic sensor are arranged in this order.
  • the output signals of the three magnetic sensors and the incremental fourth magnetic sensor change periodically, and the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth.
  • the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other.
  • the vernier first magnetic sensor, the vernier second magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor output the output signal of the vernier first magnetic sensor for one cycle.
  • the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor are arranged so as to be within a range of a length corresponding to the movement amount of the steering shaft.
  • the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth magnetic sensor are arranged so as to detect a phase shifted by one-third cycle, and the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental fourth magnetic sensor are the incremental. It is arranged so as to be within a range of a length corresponding to the amount of movement of the steering shaft when the output signal of the first magnetic sensor is output for one cycle.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Steering device 100 Steering amount detection device 5 Rack bar (steering shaft) 5a Rack bar main body (steering shaft main body) 5b Magnetic scale mounting part 7 Steering wheel 8 Housing 8a Housing main body 8b Steering shaft accommodation space 8c Sensor accommodation space 9a Incremental magnetic scale (magnetic scale) 9a1 Incremental 1st N pole (1st N pole) 9a2 Incremental 1st S pole (1st S pole) 9a3 Incremental 2nd N pole (2nd N pole) 9a4 Incremental 2nd S pole (2nd S pole) 9a5 Incremental 3rd N pole (3rd N pole) 9a6 Incremental 3rd S pole (3rd S pole) 9aa Non-magnetized region 9b Vernier magnetic scale (magnetic scale) 9b1 Vernier 1st N pole (1st N pole) 9b2 Vernier 1st S pole (1st S pole) 9b3 Vernier 2nd N pole (2nd N pole) 9b4 Vernier 2nd S pole (2nd

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Power Steering Mechanism (AREA)

Abstract

This steering amount detection device comprises a magnetic scale that is provided on a magnetic scale mounting part and in which a first N pole, first S pole, second N pole, second S pole, third N pole, and third S pole are disposed in that order along the longitudinal direction of a steering shaft such that the poles alternate between N and S, and a magnetic sensor unit that is provided in a sensor accommodation space so as to oppose the magnetic scale, comprises a first magnetic sensor, second magnetic sensor, third magnetic sensor, and fourth magnetic sensor that are disposed in order from the first magnetic sensor to the fourth magnetic sensor along the longitudinal direction of the steering shaft, and is such that when the magnetic scale passes in front of the magnetic sensor unit in conjunction with the movement of the steering shaft, the output signals of the first magnetic sensor to fourth magnetic sensor periodically change, and phases when detection by the first magnetic sensor to fourth magnetic sensor occurs at the same timing do not coincide with each other or with the phases that are shifted by half a cycle.

Description

操舵量検出装置Steering amount detection device
 本発明は、操舵量検出装置に関する。 The present invention relates to a steering amount detection device.
 特許文献1には、N極とS極が等間隔に着磁された磁気スケールと磁気スケールから発生している磁束を検出するための磁気センサが2個設けてある直線移動の位置検出装置としてのリニアエンコーダの技術が開示されている。 In Patent Document 1, a magnetic scale in which the north and south poles are magnetized at equal intervals and two magnetic sensors for detecting the magnetic flux generated from the magnetic scale are provided as a linear movement position detecting device. The technology of linear encoders is disclosed.
特開平9-264761号公報Japanese Unexamined Patent Publication No. 9-264761
 しかしながら、特許文献1に記載のリニアエンコーダの技術を自動車の操舵量検出装置に適用する場合、磁気センサの出力信号の異常を検知するために、磁気センサを4個使用して、2重系にすることが一般的であるが、磁気センサの出力信号の1つが異常になった場合に、異常は検知できるがどちらの系の磁気センサが異常を発生したかの判断が難しく、異常検知後の位置検出ができないという問題があった。 However, when the linear encoder technique described in Patent Document 1 is applied to an automobile steering amount detection device, four magnetic sensors are used in a dual system in order to detect an abnormality in the output signal of the magnetic sensor. Generally, when one of the output signals of the magnetic sensor becomes abnormal, the abnormality can be detected, but it is difficult to determine which system of magnetic sensor has caused the abnormality, and after the abnormality is detected, it is difficult to determine. There was a problem that the position could not be detected.
 本発明の目的の一つは、磁気センサの出力信号に異常が発生した場合でも、異常が発生した磁気センサを特定し、異常検知後も精度の良い位置検出ができる操舵量検出装置を提供することにある。
 本発明の一実施形態に係る操舵量検出装置は、磁気スケール搭載部に設けられた磁気スケールであって、操舵軸の長手方向において、第1N極、第1S極、第2N極、第2S極、第3N極、第3S極の順にN極とS極が交互に配置されている磁気スケールと、磁気スケールに対向するようにセンサ収容空間に設けられた磁気センサ部であって、第1磁気センサ、第2磁気センサ、第3磁気センサ、および第4磁気センサを含み、操舵軸の長手方向において、第1磁気センサ、第2磁気センサ、第3磁気センサ、第4磁気センサの順に配置されており、操舵軸の移動に伴い磁気スケールが磁気センサ部の前を通過するとき、第1磁気センサ、第2磁気センサ、第3磁気センサ、および第4磁気センサの夫々の出力信号は周期的に変化すると共に、第1磁気センサ、第2磁気センサ、第3磁気センサ、および第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない磁気センサ部とを有する。
One of the objects of the present invention is to provide a steering amount detecting device capable of identifying the magnetic sensor in which the abnormality has occurred even when an abnormality occurs in the output signal of the magnetic sensor and accurately detecting the position even after the abnormality is detected. There is.
The steering amount detecting device according to the embodiment of the present invention is a magnetic scale provided on a magnetic scale mounting portion, and has a first N pole, a first S pole, a second N pole, and a second S pole in the longitudinal direction of the steering shaft. , A magnetic scale in which N poles and S poles are alternately arranged in the order of the third N pole and the third S pole, and a magnetic sensor unit provided in the sensor accommodation space so as to face the magnetic scale, and the first magnetometer. A sensor, a second magnetic sensor, a third magnetic sensor, and a fourth magnetic sensor are included, and the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are arranged in this order in the longitudinal direction of the steering shaft. When the magnetic scale passes in front of the magnetic sensor unit as the steering shaft moves, the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are periodic. When the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor each detect at the same timing, the phases do not match each other and have a half cycle. It has a magnetic sensor unit that does not match each other even if the phases are out of alignment.
 よって、本発明の一実施形態に係る操舵量検出装置によれば、異常が発生した磁気センサを特定できるので、異常検知後も精度の良い位置検出が継続できる。 Therefore, according to the steering amount detecting device according to the embodiment of the present invention, since the magnetic sensor in which the abnormality has occurred can be identified, accurate position detection can be continued even after the abnormality is detected.
実施形態1の操舵装置の全体構成図である。It is an overall block diagram of the steering apparatus of Embodiment 1. FIG. 実施形態1の操舵量検出装置付近の断面図である。It is sectional drawing around the steering amount detection device of Embodiment 1. FIG. (a)は、実施形態1の操舵量検出装置のインクリメンタル磁気スケールとインクリメンタル磁気センサ部の一部拡大断面図であり、(b)は、実施形態1の操舵量検出装置のバーニア磁気スケールとバーニア磁気センサ部の一部拡大断面図である。(A) is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detecting device of the first embodiment, and (b) is the vernier magnetic scale and the vernier of the steering amount detecting device of the first embodiment. It is a partially enlarged sectional view of a magnetic sensor part. 実施形態1の磁気センサ部の出力信号の変化を示すグラフである。It is a graph which shows the change of the output signal of the magnetic sensor part of Embodiment 1. 実施形態1の操舵量検出用制御装置のブロック図である。It is a block diagram of the control device for steering amount detection of Embodiment 1. 実施形態1の4個の磁気センサ信号間の角度を説明する図である。It is a figure explaining the angle between four magnetic sensor signals of Embodiment 1. FIG. 実施形態1の制御装置の操舵量検出制御処理の第1フローチャートである。It is the first flowchart of the steering amount detection control processing of the control device of Embodiment 1. 実施形態1の制御装置の操舵量検出制御処理の第2フローチャートである。It is the 2nd flowchart of the steering amount detection control processing of the control device of Embodiment 1. (a)は、実施形態2の操舵量検出装置のインクリメンタル磁気スケールとインクリメンタル磁気センサ部の一部拡大断面図であり、(b)は、実施形態2の操舵量検出装置のバーニア磁気スケールとバーニア磁気センサ部の一部拡大断面図である。(A) is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detecting device of the second embodiment, and (b) is the vernier magnetic scale and the vernier of the steering amount detecting device of the second embodiment. It is a partially enlarged sectional view of a magnetic sensor part. (a)は、実施形態3の操舵量検出装置の磁気トラック付近の断面図、(b)は、実施形態3の操舵量検出装置の磁気トラック付近の平面図である。(A) is a cross-sectional view of the steering amount detecting device of the third embodiment near the magnetic track, and (b) is a plan view of the steering amount detecting device of the third embodiment near the magnetic track. (a)は、実施形態4の操舵量検出装置の磁気トラック付近の断面図、(b)は、実施形態4の操舵量検出装置の磁気トラック付近の平面図である。(A) is a cross-sectional view of the steering amount detecting device of the fourth embodiment near the magnetic track, and (b) is a plan view of the steering amount detecting device of the fourth embodiment near the magnetic track.
 〔実施形態1〕
 図1は、実施形態1の操舵装置の全体構成図である。
[Embodiment 1]
FIG. 1 is an overall configuration diagram of the steering device of the first embodiment.
(操舵装置の全体構成)
 実施形態1の操舵装置1について説明する。
 操舵装置1は、ステアリングホイール2とステアリングホイール2に接続された入力軸3と、入力軸3に接続されたピニオンギヤ4と、ハウジング8内に収容され、ピニオンギヤ4と噛合うラックギヤ5cを有する棒形状のラックバー(操舵軸)5と、ラックバー5の両端部に接続された一対のタイロッド6と、一対のタイロッド6にそれぞれ接続された一対の操舵輪7と、操舵力を補助する電動モータ16を有している。
(Overall configuration of steering device)
The steering device 1 of the first embodiment will be described.
The steering device 1 has a rod shape having an input shaft 3 connected to the steering wheel 2 and the steering wheel 2, a pinion gear 4 connected to the input shaft 3, and a rack gear 5c housed in the housing 8 and meshing with the pinion gear 4. Rack bar (steering shaft) 5, a pair of tie rods 6 connected to both ends of the rack bar 5, a pair of steering wheels 7 connected to each pair of tie rods 6, and an electric motor 16 that assists steering force. have.
 ハウジング8は、ハウジング本体部8aと、ラックバー収容部空間(操舵軸収容空間)8bと、後述するセンサ収容空間8cを備えている。
 ハウジング本体部8aは筒形状を有し、ラックバー収容部空間8bおよびセンサ収容空間8cはハウジング本体部8aの内側に形成されている。
The housing 8 includes a housing main body 8a, a rack bar housing space (steering shaft housing space) 8b, and a sensor housing space 8c described later.
The housing main body 8a has a tubular shape, and the rack bar housing space 8b and the sensor housing space 8c are formed inside the housing main body 8a.
 ラックバー収容部空間8bに設けられたラックバー5は、棒形状のラックバー本体部(操舵軸本体部)5aと磁気スケール搭載部5b、ラックギヤ5cを備え、ラックバー収容部空間8b内でラックバー5の長手方向に対し直角な断面において、ラックバー5の中心を通りラックバー5の長手方向と平行な軸線である基準軸線P方向に移動することで、一対の操舵輪7を操舵可能としている。
 磁気スケール搭載部5bは、ラックギヤ5cが設けられた外周とは逆側の外周に、ラックバー5の長手方向の基準軸線Pに対し平行な平面形状を有するように設けられている。
 これにより、磁気スケール搭載部5bが平面形状を有することで、インクリメンタル磁気スケール(磁気スケール)9aとバーニア磁気スケール(磁気スケール)9bの搭載性を向上することができる。
 磁気スケール搭載部5bには、2つのインクリメンタル磁気スケール9aとバーニア磁気スケール9bが、ラックバー5の長手方向の基準軸線P方向に対し平行に設けられている。
 本明細書では、分かりやすくするため、インクリメンタル磁気スケール9aにおいて、センサ方向に磁力線が湧き出す領域をN極、センサ方向から磁力線が吸い込まれる領域をS極とし、センサ方向への磁力線の湧き出しや吸い込みが弱い領域を非磁化領域9aaとする。
 インクリメンタル磁気スケール9aは、ラックバー5の長手方向の基準軸線P方向において、磁化領域であるインクリメンタル第1N極(第1N極)9a1、インクリメンタル第1S極(第1S極)9a2、インクリメンタル第2N極(第2N極)9a3、インクリメンタル第2S極(第2S極)9a4、インクリメンタル第3N極(第3N極)9a5、インクリメンタル第3S極(第3S極)9a6、インクリメンタル第4N極9a7、インクリメンタル第4S極9a8の順にN極とS極が交互にインクリメンタル第6N極9a11まで配置されている。
 バーニア磁気スケール9bも同様に、ラックバー5の長手方向の基準軸線P方向において、磁化領域であるバーニア第1N極(第1N極)9b1、バーニア第1S極(第1S極)9b2、バーニア第2N極(第2N極)9b3、バーニア第2S極(第2S極)9b4、バーニア第3N極(第3N極)9b5、バーニア第3S極(第3S極)9b6、バーニア第4N極9b7、バーニア第4S極9b8の順にN極とS極が交互にバーニア第5S極9b10まで配置されている。
The rack bar 5 provided in the rack bar accommodating space 8b includes a rod-shaped rack bar main body (steering shaft main body) 5a, a magnetic scale mounting portion 5b, and a rack gear 5c, and racks in the rack bar accommodating space 8b. In a cross section perpendicular to the longitudinal direction of the bar 5, the pair of steering wheels 7 can be steered by moving in the reference axis P direction, which is an axis parallel to the longitudinal direction of the rack bar 5 and passing through the center of the rack bar 5. There is.
The magnetic scale mounting portion 5b is provided on the outer circumference opposite to the outer circumference where the rack gear 5c is provided so as to have a planar shape parallel to the reference axis P in the longitudinal direction of the rack bar 5.
As a result, since the magnetic scale mounting portion 5b has a planar shape, the mountability of the incremental magnetic scale (magnetic scale) 9a and the vernier magnetic scale (magnetic scale) 9b can be improved.
The magnetic scale mounting portion 5b is provided with two incremental magnetic scales 9a and a vernier magnetic scale 9b parallel to the reference axis P direction in the longitudinal direction of the rack bar 5.
In the present specification, for the sake of clarity, in the incremental magnetic scale 9a, the region where the magnetic field lines are generated in the sensor direction is defined as the N pole, and the region where the magnetic field lines are sucked in from the sensor direction is defined as the S pole. The region where the suction is weak is defined as the non-magnetized region 9aa.
The incremental magnetic scale 9a has an incremental first N pole (first N pole) 9a1, an incremental first S pole (first S pole) 9a2, and an incremental second N pole (incremental first N pole) 9a2, which are magnetization regions, in the reference axis P direction in the longitudinal direction of the rack bar 5. 2nd N pole) 9a3, Incremental 2nd S pole (2nd S pole) 9a4, Incremental 3N pole (3rd N pole) 9a5, Incremental 3rd S pole (3rd S pole) 9a6, Incremental 4N pole 9a7, Incremental 4S pole 9a8 The north pole and the south pole are alternately arranged up to the incremental sixth north pole 9a11 in the order of.
Similarly, the vernier magnetic scale 9b also has a vernier first N pole (first N pole) 9b1, a vernier first S pole (first S pole) 9b2, and a vernier second N, which are magnetization regions, in the longitudinal reference axis P direction of the rack bar 5. Pole (2nd N pole) 9b3, Vernier 2nd S pole (2nd S pole) 9b4, Vernier 3N pole (3rd N pole) 9b5, Vernier 3S pole (3rd S pole) 9b6, Vernier 4N pole 9b7, Vernier 4S N poles and S poles are alternately arranged in the order of poles 9b8 up to the vernier fifth S pole 9b10.
 図2は、実施形態1の操舵量検出装置付近の断面図であり、図3(a)は、実施形態1の操舵量検出装置のインクリメンタル磁気スケールとインクリメンタル磁気センサ部の一部拡大断面図であり、図3(b)は、実施形態1の操舵量検出装置のバーニア磁気スケールとバーニア磁気センサ部の一部拡大断面図であり、図4は、実施形態1の磁気センサ部の出力信号の変化を示すグラフである。 FIG. 2 is a cross-sectional view of the vicinity of the steering amount detection device of the first embodiment, and FIG. 3A is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detection device of the first embodiment. FIG. 3B is a partially enlarged cross-sectional view of the vernier magnetic scale and the vernier magnetic sensor unit of the steering amount detection device of the first embodiment, and FIG. 4 is a partially enlarged cross-sectional view of the output signal of the magnetic sensor unit of the first embodiment. It is a graph which shows the change.
(操舵量検出装置の構成)
 実施形態1の操舵量検出装置100について説明する。
 インクリメンタル磁気スケール9a側の操舵量検出装置100は、インクリメンタル磁気センサ部(磁気センサ部)10を備えている。
 インクリメンタル磁気センサ部10は、磁気スケール搭載部5bに設けられたインクリメンタル磁気スケール9aとの間に距離α離間して、センサ収容空間8cに配置された基板17aにインクリメンタル磁気スケール9aに対向して設けられたインクリメンタル第1磁気センサ(第1磁気センサ)10a、インクリメンタル第2磁気センサ(第2磁気センサ)10b、インクリメンタル第3磁気センサ(第3磁気センサ)10c、インクリメンタル第4磁気センサ(第4磁気センサ)10dから構成されている。
 これにより、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dのうち1つに異常が発生した場合においても、その他の3種類の位相を検出する磁気センサが残るので、精度の良い操舵量検出の継続が可能となる。
(Structure of steering amount detection device)
The steering amount detecting device 100 of the first embodiment will be described.
The steering amount detection device 100 on the incremental magnetic scale 9a side includes an incremental magnetic sensor unit (magnetic sensor unit) 10.
The incremental magnetic sensor unit 10 is provided on the substrate 17a arranged in the sensor accommodation space 8c so as to face the incremental magnetic scale 9a at a distance α from the incremental magnetic scale 9a provided in the magnetic scale mounting unit 5b. Incremental 1st magnetic sensor (1st magnetic sensor) 10a, Incremental 2nd magnetic sensor (2nd magnetic sensor) 10b, Incremental 3rd magnetic sensor (3rd magnetic sensor) 10c, Incremental 4th magnetic sensor (4th magnetic) Sensor) It is composed of 10d.
As a result, even if an abnormality occurs in one of the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d, the other three types of phases can be displayed. Since the magnetic sensor for detection remains, it is possible to continue accurate steering amount detection.
 なお、インクリメンタル磁気スケール9aのインクリメンタル第1N極(第1N極)9a1、インクリメンタル第1S極(第1S極)9a2、インクリメンタル第2N極(第2N極)9a3、インクリメンタル第2S極(第2S極)9a4、インクリメンタル第3N極(第3N極)9a5、インクリメンタル第3S極(第3S極)9a6、インクリメンタル第4N極9a7、インクリメンタル第4S極9a8の順にN極とS極が交互にインクリメンタル第6N極9a11まで配置されているそれぞれのN極とS極の間には非磁性材料で形成された非磁化領域9aaが配置されている。
 これにより、N極とS極の間には非磁性材料で形成された非磁化領域9aaを配置しているので、インクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dが周期的に正弦波を出力する場合に、インクリメンタル第1N極9a1、インクリメンタル第1S極9a2とが隣接している場合に比べ正弦波が正確に出力されるようになり、操舵量検出精度を向上させることができる。
The incremental 1N pole (1st N pole) 9a1, the incremental 1S pole (1st S pole) 9a2, the incremental 2N pole (2nd N pole) 9a3, and the incremental 2S pole (2nd S pole) 9a4 of the incremental magnetic scale 9a. , Incremental 3N pole (3N pole) 9a5, Incremental 3S pole (3rd S pole) 9a6, Incremental 4N pole 9a7, Incremental 4S pole 9a8, N pole and S pole alternately up to Incremental 6N pole 9a11 A non-magnetized region 9aa formed of a non-magnetic material is arranged between each of the arranged north and south poles.
As a result, since the non-magnetizing region 9aa formed of the non-magnetic material is arranged between the N pole and the S pole, the incremental first magnetic sensor 10a and the incremental second magnetic sensor 10b of the incremental magnetic sensor unit 10 When the incremental third magnetic sensor 10c and the incremental fourth magnetic sensor 10d periodically output a sine wave, the sine wave is more accurate than when the incremental first N pole 9a1 and the incremental first S pole 9a2 are adjacent to each other. It comes to be output, and the steering amount detection accuracy can be improved.
 さらに、インクリメンタル磁気スケール9aとラックバー5の磁気スケール搭載部5bとの間にも、非磁性材料で形成された非磁性層12が配置されている。
 これにより、インクリメンタル磁気スケール9aが、磁性材料で形成されたラックバー5と直接接触しないので、インクリメンタル磁気スケール9aの磁界によりラックバー5が磁化されにくくなる。その結果、インクリメンタル磁気センサ部10がインクリメンタル磁気スケール9aの情報を読み取る際、ラックバー5から受ける磁気特性の影響を抑制することができる。
 また、非磁性層12の外縁は、インクリメンタル磁気スケール9aの外縁を包囲するように形成されている。
 これにより、非磁性層12がインクリメンタル磁気スケール9aの全範囲を包囲するように形成されているので、インクリメンタル磁気スケール9aの全範囲において、磁性材料で形成されたラックバー5がインクリメンタル磁気スケール9aの磁界による磁化の影響を受けるのを抑制することができる。
 なお、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dの順に、ラックバー5の長手方向の基準軸線P方向に配置されている。
 また、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cは、互いに3分の1周期(120°)ずれた位相を検出するように配置され、インクリメンタル第4磁気センサ10dは、インクリメンタル第3磁気センサ10cと4分の1周期(90°)ずれた位相を検出するように配置されている。
 すなわち、図4に示すように、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dがそれぞれ同じタイミングで検出した場合の位相は、互いに一致せず、かつ2分の1周期(180°)ずれた位相からも一致しない。
 これにより、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cが1周期の間にバランスよく配置されているので、高精度な操舵量検出が可能となる。
Further, a non-magnetic layer 12 made of a non-magnetic material is also arranged between the incremental magnetic scale 9a and the magnetic scale mounting portion 5b of the rack bar 5.
As a result, the incremental magnetic scale 9a does not come into direct contact with the rack bar 5 formed of the magnetic material, so that the rack bar 5 is less likely to be magnetized by the magnetic field of the incremental magnetic scale 9a. As a result, when the incremental magnetic sensor unit 10 reads the information of the incremental magnetic scale 9a, the influence of the magnetic characteristics received from the rack bar 5 can be suppressed.
Further, the outer edge of the non-magnetic layer 12 is formed so as to surround the outer edge of the incremental magnetic scale 9a.
As a result, the non-magnetic layer 12 is formed so as to surround the entire range of the incremental magnetic scale 9a. Therefore, in the entire range of the incremental magnetic scale 9a, the rack bar 5 formed of the magnetic material is formed on the incremental magnetic scale 9a. It is possible to suppress the influence of magnetization by the magnetic field.
The incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are arranged in the order of the reference axis P in the longitudinal direction of the rack bar 5.
Further, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged so as to detect phases shifted by one-third cycle (120 °) from each other, and the incremental fourth magnetic sensor The 10d is arranged so as to detect a phase shifted by a quarter period (90 °) from the incremental third magnetic sensor 10c.
That is, as shown in FIG. 4, the phases when the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d each detect at the same timing coincide with each other. It does not match even from the phase shifted by half cycle (180 °).
As a result, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged in a well-balanced manner during one cycle, so that the steering amount can be detected with high accuracy.
 また、図3に示すように、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dは、インクリメンタル第1磁気センサ10aの出力信号が1周期分出力されるときのラック軸5の移動量に相当する長さである1ピッチLP1の範囲内に収まるように配置されている。
 なお、1ピッチLP1は、例えば4.0mmである。
 これにより、インクリメンタル磁気センサ部10の大型化を抑制することができる。
Further, as shown in FIG. 3, in the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d, the output signal of the incremental first magnetic sensor 10a has one cycle. It is arranged so as to be within the range of 1 pitch LP1 which is a length corresponding to the movement amount of the rack shaft 5 when the minute output is performed.
The 1-pitch LP1 is, for example, 4.0 mm.
As a result, it is possible to suppress the increase in size of the incremental magnetic sensor unit 10.
 バーニア磁気スケール9b側の操舵量検出装置100は、バーニア磁気センサ部(磁気センサ部)11を備えている。
 バーニア磁気センサ部11は、磁気スケール搭載部5bに設けられたバーニア磁気スケール9bとの間に距離α離間して、センサ収容空間8cに配置された基板17bにバーニア磁気スケール9bに対向して設けられたバーニア第1磁気センサ(第1磁気センサ)11a、バーニア第2磁気センサ(第2磁気センサ)11b、バーニア第3磁気センサ(第3磁気センサ)11c、バーニア第4磁気センサ(第4磁気センサ)11dから構成されている。
 なお、基板17bは、基板17aと一体であってもよいし、別体であってもよい。
 これにより、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dのうち1つに異常が発生した場合においても、その他の3種類の位相を検出する磁気センサが残るので、精度の良い操舵量検出の継続が可能となる。
 なお、バーニア磁気スケール9bのバーニアル第1N極(第1N極)9b1、バーニア第1S極(第1S極)9b2、バーニアル第2N極(第2N極)9b3、バーニア第2S極(第2S極)9b4、バーニア第3N極(第3N極)9b5、バーニア第3S極(第3S極)9b6、バーニア第4N極9b7、バーニア第4S極9b8の順にN極とS極が交互にバーニア第5S極9b10まで配置されているそれぞれのN極とS極の間には非磁性材料で形成された非磁化領域9bbが配置されている。
 これにより、N極とS極の間には非磁性材料で形成された非磁化領域9bbを配置しているので、バーニア磁気センサ部11のバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dが周期的に正弦波を出力する場合に、バーニア第1N極9b1、バーニア第1S極9b2とが隣接している場合に比べ正弦波が正確に出力されるようになり、操舵量検出精度を向上させることができる。
The steering amount detecting device 100 on the vernier magnetic scale 9b side includes a vernier magnetic sensor unit (magnetic sensor unit) 11.
The vernier magnetic sensor unit 11 is provided on the substrate 17b arranged in the sensor accommodation space 8c so as to face the vernier magnetic scale 9b at a distance α from the vernier magnetic scale 9b provided on the magnetic scale mounting unit 5b. Vernier 1st magnetic sensor (1st magnetic sensor) 11a, Vernier 2nd magnetic sensor (2nd magnetic sensor) 11b, Vernier 3rd magnetic sensor (3rd magnetic sensor) 11c, Vernier 4th magnetic sensor (4th magnetometer) Sensor) It is composed of 11d.
The substrate 17b may be integrated with the substrate 17a or may be a separate body.
As a result, even if an abnormality occurs in one of the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d, the other three types of phases can be displayed. Since the magnetic sensor for detection remains, it is possible to continue accurate steering amount detection.
The vernier magnetic scale 9b has a vernier first N pole (first N pole) 9b1, a vernier first S pole (first S pole) 9b2, a vernier second N pole (second N pole) 9b3, and a vernier second S pole (second S pole) 9b4. , Vernier 3rd N pole (3rd N pole) 9b5, Vernier 3rd S pole (3rd S pole) 9b6, Vernier 4th N pole 9b7, Vernier 4th S pole 9b8, N pole and S pole alternate to Vernier 5th S pole 9b10 A non-magnetized region 9bb formed of a non-magnetic material is arranged between each of the arranged north and south poles.
As a result, since the non-magnetizing region 9bb formed of the non-magnetic material is arranged between the N pole and the S pole, the vernier first magnetic sensor 11a and the vernier second magnetic sensor 11b of the vernier magnetic sensor unit 11 When the vernier 3rd magnetic sensor 11c and the vernier 4th magnetic sensor 11d periodically output a sine wave, the sine wave is more accurate than when the vernier 1N pole 9b1 and the vernier 1S pole 9b2 are adjacent to each other. It comes to be output, and the steering amount detection accuracy can be improved.
 さらに、インクリメンタル磁気スケール9aと同様に、バーニア磁気スケール9bとラックバー5の磁気スケール搭載部5bとの間にも、非磁性材料で形成された非磁性層12が配置されている。
 これにより、バーニア磁気スケール9bが、磁性材料で形成されたラックバー5と直接接触しないので、バーニア磁気スケール9bの磁界によりラックバー5が磁化されにくくなる。その結果、バーニア磁気センサ部11がバーニア磁気スケール9bの情報を読み取る際、ラックバー5から受ける磁気特性の影響を抑制することができる。
 また、非磁性層12の外縁は、バーニア磁気スケール9bの外縁を包囲するように形成されている。
 これにより、非磁性層12がバーニア磁気スケール9bの全範囲を包囲するように形成されているので、バーニアル磁気スケール9bの全範囲において、磁性材料で形成されたラックバー5がバーニア磁気スケール9bの磁界による磁化の影響を受けるのを抑制することができる。
 なお、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dの順に、ラックバー5の長手方向の基準軸線P方向に配置されている。
 また、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cは、互いに3分の1周期(120°)ずれた位相を検出するように配置され、バーニア第4磁気センサ11dは、バーニア第3磁気センサ11cと4分の1周期(90°)ずれた位相を検出するように配置されている。
 すなわち、図示はしないが、図4と同様に、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dがそれぞれ同じタイミングで検出した場合の位相は、互いに一致せず、かつ2分の1周期(180°)ずれた位相からも一致しない。
 これにより、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cが1周期の間にバランスよく配置されているので、高精度な操舵量検出が可能となる。
Further, similarly to the incremental magnetic scale 9a, a non-magnetic layer 12 made of a non-magnetic material is also arranged between the vernier magnetic scale 9b and the magnetic scale mounting portion 5b of the rack bar 5.
As a result, the vernier magnetic scale 9b does not come into direct contact with the rack bar 5 formed of the magnetic material, so that the rack bar 5 is less likely to be magnetized by the magnetic field of the vernier magnetic scale 9b. As a result, when the vernier magnetic sensor unit 11 reads the information of the vernier magnetic scale 9b, the influence of the magnetic characteristics received from the rack bar 5 can be suppressed.
The outer edge of the non-magnetic layer 12 is formed so as to surround the outer edge of the vernier magnetic scale 9b.
As a result, since the non-magnetic layer 12 is formed so as to surround the entire range of the vernier magnetic scale 9b, the rack bar 5 made of the magnetic material is formed on the vernier magnetic scale 9b in the entire range of the vernier magnetic scale 9b. It is possible to suppress the influence of magnetization by the magnetic field.
The vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d are arranged in the order of the reference axis P in the longitudinal direction of the rack bar 5.
Further, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c are arranged so as to detect a phase shifted by one-third cycle (120 °) from each other, and the vernier fourth magnetic sensor The 11d is arranged so as to detect a phase shifted by a quarter period (90 °) from the vernier third magnetic sensor 11c.
That is, although not shown, the phases when the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d each detect at the same timing, as in FIG. Do not match each other and do not match from a phase that is off by a half cycle (180 °).
As a result, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c are arranged in a well-balanced manner during one cycle, so that the steering amount can be detected with high accuracy.
 また、図3に示すように、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dは、バーニア第1磁気センサの出力信号が1周期分出力されるときのラック軸5の移動量に相当する長さである1ピッチLP2の範囲内に収まるように配置されている。
 なお、1ピッチLP2は、例えば4.08mmである。
 これにより、バーニア磁気センサ部11の大型化を抑制することができる。
Further, as shown in FIG. 3, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d have the output signals of the vernier first magnetic sensor for one cycle. It is arranged so as to be within the range of 1 pitch LP2 which is a length corresponding to the movement amount of the rack shaft 5 at the time of output.
The 1-pitch LP2 is, for example, 4.08 mm.
As a result, it is possible to suppress the increase in size of the vernier magnetic sensor unit 11.
 このように、インクリメンタル磁気スケール9aとインクリメンタル磁気センサ部10、および、バーニア磁気スケール9bとバーニア磁気センサ部11とを設けるようにしたので、2つのインクリメンタル磁気センサ部10またはバーニア磁気センサ部11のうち、一方の磁気センサ部の中の磁気センサのうち1つの出力信号が異常となった場合においても、他方の磁気センサ部の出力信号に基づき、精度の良い操舵量検出の継続が可能となる。
 なお、インクリメンタル磁気スケール9a、インクリメンタル磁気センサ部10、または、バーニア磁気スケール9b、バーニア磁気センサ部11の一方のみを設けてもよい。
Since the incremental magnetic scale 9a and the incremental magnetic sensor unit 10 and the vernier magnetic scale 9b and the vernier magnetic sensor unit 11 are provided in this way, of the two incremental magnetic sensor units 10 or the vernier magnetic sensor unit 11. Even if the output signal of one of the magnetic sensors in one of the magnetic sensor units becomes abnormal, it is possible to continue accurate steering amount detection based on the output signal of the other magnetic sensor unit.
In addition, only one of the incremental magnetic scale 9a and the incremental magnetic sensor unit 10 or the vernier magnetic scale 9b and the vernier magnetic sensor unit 11 may be provided.
 図5は、実施形態1の操舵量検出用制御装置のブロック図である。 FIG. 5 is a block diagram of the steering amount detection control device of the first embodiment.
(制御装置の構成)
 制御装置C/Uは、インクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dからの出力信号S1-S4が入力され、ラックバー5の位置情報を生成する第1ラックバー位置情報生成部13と、バーニア磁気センサ部11のバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dからの出力信号S11-S14が入力され、ラックバー5の位置情報を生成する第2ラックバー位置情報生成部14と、第1ラックバー位置情報生成部13または第2ラックバー位置情報生成部14のラックバー5の位置情報に基づき、操舵力を補助する電動モータ16を制御する操舵制御部15を備えている。
 さらに、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dからの出力信号S1-S4は、第2ラックバー位置情報生成部14にも入力され、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dからの出力信号S11-S14は、第1ラックバー位置情報生成部13にも入力されている。
 なお、第1ラックバー位置情報生成部13は、少なくともインクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cの出力信号S1-S3により、また、第2ラックバー位置情報生成部14は、少なくともバーニア磁気センサ部11のバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cの出力信号S11-S13により、ラックバー5の位置情報を生成するようにしている。
 これにより、インクリメンタル磁気センサ部10またはバーニア磁気センサ部11の3つの磁気センサの出力信号うち、一方の磁気センサ部の中の磁気センサのうち1つの出力信号に異常が発生した場合においても、他方の磁気センサ部の出力信号に基づき、精度の良い操舵量検出の継続が可能となる。
 また、第1ラックバー位置情報生成部13と、第2ラックバー位置情報生成部14は、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dからの出力信号S1-S4、またはバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dからの出力信号S11-S14のうちいずれか2つが異常となったときには、制御装置C/Uに継続して電力の供給が継続している間は、第1ラックバー位置情報生成部13または第2ラックバー位置情報生成部14はインクリメンタル磁気センサ部10またはバーニア磁気センサ部11の残りの2つの出力信号に基づき、ラックバー5の位置情報の生成を継続するようにしてもよい。
 これにより、制御装置C/Uに継続して電力の供給が継続している間は、正常な2つの出力信号に基づき、現在のラックバー5の位置情報を逐次更新していくことで、操舵量検出を継続することができ、操舵量検出装置100の利用時間の拡大を図ることができる。
 さらに、第1ラックバー位置情報生成部13と、第2ラックバー位置情報生成部14は、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dからの出力信号S1-S4、またはバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dからの出力信号S11-S14のうち少なくとも3つの出力信号に基づき、第1ラックバー位置情報生成部13と、第2ラックバー位置情報生成部14は、ラックバー5の位置情報を生成してもよく、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10d、またはバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dの出力信号S11-S14のうち、いずれか1つが異常となったときには、第1ラックバー位置情報生成部13と、第2ラックバー位置情報生成部14は、インクリメンタル磁気センサ部10またはバーニア磁気センサ部11の残りの3つの出力信号に基づき、ラックバー5の位置情報の生成を継続することができる。
 これにより、正常な3つの出力信号に基づき、ラックバー5の位置情報の生成を継続することで、精度の良い操舵量検出の継続が可能となり、操舵量検出装置100の利用時間の拡大を図ることができる。
(Control device configuration)
The control device C / U receives output signals S1-S4 from the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d of the incremental magnetic sensor unit 10. , The first rack bar position information generation unit 13 that generates the position information of the rack bar 5, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier magnetic sensor unit 11. 4 The second rack bar position information generation unit 14 that receives the output signals S11-S14 from the magnetic sensor 11d and generates the position information of the rack bar 5, and the first rack bar position information generation unit 13 or the second rack bar position. The steering control unit 15 for controlling the electric motor 16 that assists the steering force is provided based on the position information of the rack bar 5 of the information generation unit 14.
Further, the output signals S1-S4 from the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are also input to the second rack bar position information generation unit 14. The output signals S11-S14 from the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d are also input to the first rack bar position information generation unit 13. Has been done.
The first rack bar position information generation unit 13 is based on at least the output signals S1-S3 of the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c of the incremental magnetic sensor unit 10. The second rack bar position information generation unit 14 is of the rack bar 5 by at least the output signals S11-S13 of the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c of the vernier magnetic sensor unit 11. The position information is generated.
As a result, even if an abnormality occurs in one of the output signals of the three magnetic sensors of the incremental magnetic sensor unit 10 or the vernier magnetic sensor unit 11 and one of the magnetic sensors in one of the magnetic sensor units, the other Based on the output signal of the magnetic sensor unit of the above, it is possible to continue accurate steering amount detection.
Further, the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 include an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, an incremental third magnetic sensor 10c, and an incremental fourth magnetic sensor. The output signal S1-S4 from 10d, or any two of the output signals S11-S14 from the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d When an abnormality occurs, the first rack bar position information generation unit 13 or the second rack bar position information generation unit 14 is an incremental magnetic sensor unit while the power supply to the control device C / U is continuously continued. The generation of the position information of the rack bar 5 may be continued based on the remaining two output signals of the 10 or the vernier magnetic sensor unit 11.
As a result, while the power supply to the control device C / U is continuously continued, the current position information of the rack bar 5 is sequentially updated based on the two normal output signals, thereby steering. The amount detection can be continued, and the usage time of the steering amount detection device 100 can be extended.
Further, the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 include an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, an incremental third magnetic sensor 10c, and an incremental fourth magnetic sensor. Output signal S1-S4 from 10d, or at least three outputs of output signals S11-S14 from vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, vernier third magnetic sensor 11c, and vernier fourth magnetic sensor 11d. Based on the signal, the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 may generate the position information of the rack bar 5, and the incremental first magnetic sensor 10a and the incremental second magnetometer may be generated. Output signals S11- of the sensor 10b, the incremental third magnetic sensor 10c, the incremental fourth magnetic sensor 10d, or the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d. When any one of S14 becomes abnormal, the first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 are the remaining of the incremental magnetic sensor unit 10 or the vernier magnetic sensor unit 11. The generation of the position information of the rack bar 5 can be continued based on the three output signals.
As a result, by continuing to generate the position information of the rack bar 5 based on the three normal output signals, it is possible to continue the accurate steering amount detection and to extend the usage time of the steering amount detection device 100. be able to.
 つぎに、例えば、インクリメンタル磁気センサ部10の位相120°のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cの3個の磁気センサが検出する磁束密度からの位相角および相対位置の演算方法を説明する。 Next, for example, the phase angle from the magnetic flux density detected by the three magnetic sensors of the incremental magnetic sensor unit 10 having a phase of 120 °, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c. And the calculation method of the relative position will be described.
 インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cの検出する出力信号である磁束密度は、下式の通りとなる。
 インクリメンタル第1磁気センサ10aの検出磁束密度Baは、下記式1となる。
Figure JPOXMLDOC01-appb-M000001
 インクリメンタル第2磁気センサ10bの検出磁束密度Bbは、下記式2となる。
Figure JPOXMLDOC01-appb-M000002
 インクリメンタル第3磁気センサ10cの検出磁束密度Bcは、下記式3となる。
Figure JPOXMLDOC01-appb-M000003
 つぎに、インクリメンタル第2磁気センサ10bの磁束密度Bbとインクリメンタル第3磁気センサ10cの磁束密度の磁束密度Bcより、COSθを下記式4-6で算出する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 相対位置の位相角は、下記式7により算出できる。
Figure JPOXMLDOC01-appb-M000007
 操舵量としての相対位置xは、下記式8により算出できる。
Figure JPOXMLDOC01-appb-M000008
 Lpitch:磁気トラックの極体ピッチ長
 バーニア磁気センサ部11についても、同様に演算することができる。
The magnetic flux density which is the output signal detected by the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c is as shown in the following equation.
The detected magnetic flux density Ba of the incremental first magnetic sensor 10a is given by the following equation 1.
Figure JPOXMLDOC01-appb-M000001
The detected magnetic flux density Bb of the incremental second magnetic sensor 10b is given by the following equation 2.
Figure JPOXMLDOC01-appb-M000002
The detected magnetic flux density Bc of the incremental third magnetic sensor 10c is given by the following equation 3.
Figure JPOXMLDOC01-appb-M000003
Next, COSθ is calculated by the following formula 4-6 from the magnetic flux density Bb of the incremental second magnetic sensor 10b and the magnetic flux density Bc of the magnetic flux density of the incremental third magnetic sensor 10c.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
The phase angle of the relative position can be calculated by the following equation 7.
Figure JPOXMLDOC01-appb-M000007
The relative position x as the steering amount can be calculated by the following equation 8.
Figure JPOXMLDOC01-appb-M000008
Lpitch: The polar body pitch length of the magnetic track The vernier magnetic sensor unit 11 can be calculated in the same manner.
 つぎに、任意の2個のインクリメンタル磁気センサからの位相角および相対位置演算方法を説明する。 Next, the phase angle and relative position calculation method from any two incremental magnetic sensors will be described.
 任意の2個のインクリメンタル磁気センサの検出する出力信号である磁束密度Bα、Bβは、下記式9、10となる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 上記式9、10を行列式にすると、下記式11となる。
Figure JPOXMLDOC01-appb-M000011
 また、逆行列を求めると、下記式12-15となる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 相対位置の位相角は、下記式16により算出できる。
Figure JPOXMLDOC01-appb-M000016
 操舵量としての相対位置xは、下記式17により算出できる。
Figure JPOXMLDOC01-appb-M000017
 Lpitch:磁気トラックの極体ピッチ長
 バーニア磁気センサ部11についても、同様に演算することができる。
The magnetic flux densities Bα and Bβ, which are the output signals detected by any two incremental magnetic sensors, are given by the following equations 9 and 10.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
When the above equations 9 and 10 are converted into a determinant, the following equation 11 is obtained.
Figure JPOXMLDOC01-appb-M000011
Further, when the inverse matrix is obtained, the following equation 12-15 is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
The phase angle of the relative position can be calculated by the following equation 16.
Figure JPOXMLDOC01-appb-M000016
The relative position x as the steering amount can be calculated by the following equation 17.
Figure JPOXMLDOC01-appb-M000017
Lpitch: The polar body pitch length of the magnetic track The vernier magnetic sensor unit 11 can be calculated in the same manner.
 図6は、実施形態1の4個の磁気センサ信号間の位相角度を説明する図である。 FIG. 6 is a diagram illustrating a phase angle between the four magnetic sensor signals of the first embodiment.
 例えば、インクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10aの出力信号S1とインクリメンタル第2磁気センサ10bの出力信号S2間の角度をθ12、インクリメンタル第2磁気センサ10bの出力信号S2とインクリメンタル第3磁気センサ10cの出力信号S3間の角度をθ23、インクリメンタル第3磁気センサ10cの出力信号S3とインクリメンタル第1磁気センサ10aの出力信号S1間の角度をθ31、インクリメンタル第4磁気センサ10dの出力信号S4とインクリメンタル第1磁気センサ10aの出力信号S1間の角度をθr1、インクリメンタル第4磁気センサ10dの出力信号S4とインクリメンタル第2磁気センサ10bの出力信号S2間の角度をθr2、インクリメンタル第4磁気センサ10dの出力信号S4とインクリメンタル第3磁気センサ10cの出力信号S3間の角度をθr3と定義する。
 バーニア磁気センサ部11についても、同様である。
For example, the angle between the output signal S1 of the incremental first magnetic sensor 10a and the output signal S2 of the incremental second magnetic sensor 10b of the incremental magnetic sensor unit 10 is θ12, and the output signal S2 of the incremental second magnetic sensor 10b and the incremental third magnetism. The angle between the output signal S3 of the sensor 10c is θ23, the angle between the output signal S3 of the incremental third magnetic sensor 10c and the output signal S1 of the incremental first magnetic sensor 10a is θ31, and the output signal S4 of the incremental fourth magnetic sensor 10d. The angle between the output signal S1 of the incremental first magnetic sensor 10a is θr1, the angle between the output signal S4 of the incremental fourth magnetic sensor 10d and the output signal S2 of the incremental second magnetic sensor 10b is θr2, and the angle between the incremental fourth magnetic sensor 10d is θr2. The angle between the output signal S4 and the output signal S3 of the incremental third magnetic sensor 10c is defined as θr3.
The same applies to the vernier magnetic sensor unit 11.
 図7は、実施形態1の制御装置の操舵量検出制御処理の第1フローチャートであり、図8は、実施形態1の制御装置の操舵量検出制御処理の第2フローチャートである。
 このフローチャートは、所定の演算周期で繰り返し実行される。
 なお、例えば、インクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dについて説明する。
 バーニア磁気センサ部11についても、同様である。
FIG. 7 is a first flowchart of the steering amount detection control process of the control device of the first embodiment, and FIG. 8 is a second flowchart of the steering amount detection control process of the control device of the first embodiment.
This flowchart is repeatedly executed at a predetermined calculation cycle.
In addition, for example, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d of the incremental magnetic sensor unit 10 will be described.
The same applies to the vernier magnetic sensor unit 11.
 ステップS1では、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dの出力信号S1、S2、S3、S4を取得する。
 ステップS2では、インクリメンタル第1磁気センサ10aの出力信号S1、インクリメンタル第2磁気センサ10bの出力信号S2から、前述した式16より角度θ12を算出する。
 ステップS3では、インクリメンタル第2磁気センサ10bの出力信号S2、インクリメンタル第3磁気センサ10cの出力信号S3から、前述した式16より角度θ23を算出する。
 ステップS4では、インクリメンタル第3磁気センサ10cの出力信号S3、インクリメンタル第1磁気センサ10aの出力信号S1から、前述した式16より角度θ31を算出する。
 ステップS5では、インクリメンタル第1磁気センサ10aの出力信号S1、インクリメンタル第4磁気センサ10dの出力信号S4から、前述した式16より角度θr1を算出する。
 ステップS6では、インクリメンタル第2磁気センサ10bの出力信号S2、インクリメンタル第4磁気センサ10dの出力信号S4から、前述した式16より角度θr2を算出する。
 ステップS7では、インクリメンタル第3磁気センサ10cの出力信号S3、インクリメンタル第4磁気センサ10dの出力信号S4から、前述した式16より角度θr3を算出する。
In step S1, the output signals S1, S2, S3, and S4 of the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are acquired.
In step S2, the angle θ12 is calculated from the output signal S1 of the incremental first magnetic sensor 10a and the output signal S2 of the incremental second magnetic sensor 10b from the above equation 16.
In step S3, the angle θ23 is calculated from the output signal S2 of the incremental second magnetic sensor 10b and the output signal S3 of the incremental third magnetic sensor 10c from the above-mentioned equation 16.
In step S4, the angle θ31 is calculated from the output signal S3 of the incremental third magnetic sensor 10c and the output signal S1 of the incremental first magnetic sensor 10a from the above equation 16.
In step S5, the angle θr1 is calculated from the output signal S1 of the incremental first magnetic sensor 10a and the output signal S4 of the incremental fourth magnetic sensor 10d from the above equation 16.
In step S6, the angle θr2 is calculated from the output signal S2 of the incremental second magnetic sensor 10b and the output signal S4 of the incremental fourth magnetic sensor 10d from the above equation 16.
In step S7, the angle θr3 is calculated from the output signal S3 of the incremental third magnetic sensor 10c and the output signal S4 of the incremental fourth magnetic sensor 10d from the above equation 16.
 ステップS8では、θ12とθr1との差の絶対値、またはθ12とθr2との差の絶対値が所定閾値θth以上か否かを判定する。
 θ12とθr1との差の絶対値およびθ12とθr2との差の絶対値が所定閾値θth以上でないときには、ステップS9へ進み、θ12とθr1との差の絶対値、またはθ12とθr2tpの差の絶対値が所定閾値θth以上であるときには、ステップS10へ進む。
 ステップS9では、FLAG_S12を0にクリアし、ステップS11へ進む。
 ステップS10では、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第4磁気センサ10dに異常の可能性がるので、FLAG_S12を1にセットし、ステップS11へ進む。
In step S8, it is determined whether or not the absolute value of the difference between θ12 and θr1 or the absolute value of the difference between θ12 and θr2 is equal to or greater than the predetermined threshold value θth.
If the absolute value of the difference between θ12 and θr1 and the absolute value of the difference between θ12 and θr2 are not equal to or greater than the predetermined threshold value θth, the process proceeds to step S9, and the absolute value of the difference between θ12 and θr1 or the absolute value of the difference between θ12 and θr2tp When the value is equal to or higher than the predetermined threshold value θth, the process proceeds to step S10.
In step S9, FLAG_S12 is cleared to 0, and the process proceeds to step S11.
In step S10, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental fourth magnetic sensor 10d may be abnormal. Therefore, FLAG_S12 is set to 1 and the process proceeds to step S11.
 ステップS11では、θ23とθr2との差の絶対値およびθ23とθr3との差の絶対値が所定閾値θth以上か否かを判定する。
 θ23とθr2との差の絶対値、またはθ23とθr3との差の絶対値が所定閾値θth以上でないときには、ステップS12へ進み、θ23とθr2との差の絶対値、またはθ23とθr3との差の絶対値が所定閾値θth以上であるときには、ステップS13へ進む。
 ステップS12では、FLAG_S23を0にクリアし、ステップS14へ進む。
 ステップS13では、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dに異常の可能性がるので、FLAG_S23を1にセットし、ステップS14へ進む。
In step S11, it is determined whether or not the absolute value of the difference between θ23 and θr2 and the absolute value of the difference between θ23 and θr3 are equal to or greater than the predetermined threshold value θth.
If the absolute value of the difference between θ23 and θr2 or the absolute value of the difference between θ23 and θr3 is not equal to or greater than the predetermined threshold value θth, the process proceeds to step S12, and the absolute value of the difference between θ23 and θr2 or the difference between θ23 and θr3. When the absolute value of is equal to or greater than the predetermined threshold value θth, the process proceeds to step S13.
In step S12, FLAG_S23 is cleared to 0, and the process proceeds to step S14.
In step S13, since there is a possibility that the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are abnormal, FLAG_S23 is set to 1 and the process proceeds to step S14.
 ステップS14では、θ31とθr3との差の絶対値およびθ31とθr1との差の絶対値が所定閾値θth以上か否かを判定する。
 θ31とθr3との差の絶対値およびθ31とθr1との差の絶対値が所定閾値θth以上でないときには、ステップS15へ進み、θ31とθr3との差の絶対値、またはθ31とθr1との差の絶対値が所定閾値θth以上であるときには、ステップS16へ進む。
 ステップS15では、FLAG_S31を0にクリアし、ステップS17へ進む。
 ステップS16では、インクリメンタル第1磁気センサ10a、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dに異常の可能性がるので、FLAG_S31を1にセットし、ステップS17へ進む。
In step S14, it is determined whether or not the absolute value of the difference between θ31 and θr3 and the absolute value of the difference between θ31 and θr1 are equal to or greater than the predetermined threshold value θth.
If the absolute value of the difference between θ31 and θr3 and the absolute value of the difference between θ31 and θr1 are not equal to or greater than the predetermined threshold value θth, the process proceeds to step S15, and the absolute value of the difference between θ31 and θr3 or the difference between θ31 and θr1 When the absolute value is equal to or greater than the predetermined threshold value θth, the process proceeds to step S16.
In step S15, FLAG_S31 is cleared to 0, and the process proceeds to step S17.
In step S16, since there is a possibility that the incremental first magnetic sensor 10a, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are abnormal, FLAG_S31 is set to 1 and the process proceeds to step S17.
 ステップS17では、FLAG_S12、FLAG_S23、FLAG_S31のデータを加算して、2以上か否かを判定する。
 これは、FLAG_S12、FLAG_S23、FLAG_S31の2個以上が1にセットされていないと、異常が発生したセンサが確定しないので各フラグデータを加算し、2以上のときに、異常が発生したセンサの確定処理を行い、2未満のときには各センサに異常はないと判定するためである。
 FLAG_S12、FLAG_S23、FLAG_S31のデータを加算して、2以上でないときには、ステップS18へ進み、FLAG_S12、FLAG_S23、FLAG_S31のデータを加算して、2以上のときには、ステップS19へ進む。
In step S17, the data of FLAG_S12, FLAG_S23, and FLAG_S31 are added to determine whether or not the data is 2 or more.
This is because if two or more of FLAG_S12, FLAG_S23, and FLAG_S31 are not set to 1, the sensor in which the abnormality has occurred cannot be determined, so each flag data is added, and when it is 2 or more, the sensor in which the abnormality has occurred is confirmed. This is because processing is performed and when it is less than 2, it is determined that there is no abnormality in each sensor.
The data of FLAG_S12, FLAG_S23, and FLAG_S31 are added, and if it is not 2 or more, the process proceeds to step S18. If the data of FLAG_S12, FLAG_S23, FLAG_S31 is added, the process proceeds to step S19.
 ステップS18では、4個のインクリメンタル磁気センサ10a-10dに、異常はないと判定し、FLAG_NG_SENを0クリアし、ステップS26へ進む。
 ステップS19では、FLAG_S12、FLAG_S23、FLAG_S31のデータがすべて1であるか否かを判定する。
 FLAG_S12、FLAG_S23、FLAG_S31のデータがすべて1であるときには、ステップS20へ進み、FLAG_S12、FLAG_S23、FLAG_S31のデータがすべて1でないときには、ステップS21へ進む。
 ステップS20では、FLAG_S12、FLAG_S23、FLAG_S31のデータがすべて1であるときには、共通する異常が発生したセンサは、インクリメンタル第4磁気センサ10dと確定できるので、異常が発生したセンサを確定するFLAG_NG_SEN=10dをセットし、ステップS26へ進む。
 ステップS21では、FLAG_S12のデータが0か否かを判定する。
 FLAG_S12のデータが0でないときには、ステップS22へ進み、FLAG_S12のデータが0であるときには、ステップS23へ進む。
In step S18, it is determined that there is no abnormality in the four incremental magnetic sensors 10a-10d, FLAG_NG_SEN is cleared to 0, and the process proceeds to step S26.
In step S19, it is determined whether or not the data of FLAG_S12, FLAG_S23, and FLAG_S31 are all 1.
When the data of FLAG_S12, FLAG_S23, and FLAG_S31 are all 1, the process proceeds to step S20, and when the data of FLAG_S12, FLAG_S23, and FLAG_S31 are not all 1, the process proceeds to step S21.
In step S20, when the data of FLAG_S12, FLAG_S23, and FLAG_S31 are all 1, the sensor in which the common abnormality has occurred can be determined to be the incremental fourth magnetic sensor 10d, so that FLAG_NG_SEN = 10d for determining the sensor in which the abnormality has occurred is set. Set and proceed to step S26.
In step S21, it is determined whether or not the data of FLAG_S12 is 0.
When the data of FLAG_S12 is not 0, the process proceeds to step S22, and when the data of FLAG_S12 is 0, the process proceeds to step S23.
 ステップS22では、FLAG_S12のデータが0の場合、FLAG_S23、FLAG_S31のデータは1であり、共通する異常が発生したセンサは、インクリメンタル第3磁気センサ10cと確定できるので、異常が発生したセンサを確定するFLAG_NG_SEN=10cをセットし、ステップS26へ進む。
 ステップS23では、FLAG_S31のデータが0か否かを判定する。
 FLAG_S31のデータが0でないときには、ステップS24へ進み、FLAG_S31のデータが0であるときには、ステップS25へ進む。
 ステップS24では、FLAG_S31のデータが0の場合、FLAG_S12、FLAG_S23のデータは1であり、共通するセンサで異常が発生したセンサは、インクリメンタル第2磁気センサ10bと確定できるので、異常が発生したセンサを確定するFLAG_NG_SEN=10bをセットし、ステップS26へ進む。
 ステップS25では、FLAG_S23のデータが0の場合、FLAG_S12、FLAG_S31のデータは1であり、共通するセンサで異常が発生したセンサは、インクリメンタル第1磁気センサ10aと確定できるので、異常が発生したセンサを確定するFLAG_NG_SEN=10aをセットし、ステップS26へ進む。
In step S22, when the data of FLAG_S12 is 0, the data of FLAG_S23 and FLAG_S31 are 1, and the sensor in which the common abnormality has occurred can be determined to be the incremental third magnetic sensor 10c, so that the sensor in which the abnormality has occurred is determined. FLAG_NG_SEN = 10c is set, and the process proceeds to step S26.
In step S23, it is determined whether or not the data of FLAG_S31 is 0.
When the data of FLAG_S31 is not 0, the process proceeds to step S24, and when the data of FLAG_S31 is 0, the process proceeds to step S25.
In step S24, when the data of FLAG_S31 is 0, the data of FLAG_S12 and FLAG_S23 are 1, and the sensor in which the abnormality has occurred in the common sensor can be determined to be the incremental second magnetic sensor 10b. Set FLAG_NG_SEN = 10b to be confirmed, and proceed to step S26.
In step S25, when the data of FLAG_S23 is 0, the data of FLAG_S12 and FLAG_S31 are 1, and the sensor in which the abnormality has occurred in the common sensor can be determined to be the incremental first magnetic sensor 10a. Set FLAG_NG_SEN = 10a to be confirmed, and proceed to step S26.
 ステップS26では、FLAG_NG_SENのデータが0または10dか否かを判定する。
 FLAG_NG_SENのデータが0または10dのときには、ステップS27へ進み、FLAG_NG_SENのデータが0または10dでないときには、ステップS28へ進む。
 ステップS27では、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cは正常なので、インクリメンタル第1磁気センサ10aの出力信号S1、インクリメンタル第2磁気センサ10bの出力信号S2、インクリメンタル第3磁気センサ10cの出力信号S3から角度θ123を算出し、相対位置の位相角φを角度θ123として、操舵量としての相対位置を算出する。
In step S26, it is determined whether or not the data of FLAG_NG_SEN is 0 or 10d.
When the data of FLAG_NG_SEN is 0 or 10d, the process proceeds to step S27, and when the data of FLAG_NG_SEN is not 0 or 10d, the process proceeds to step S28.
In step S27, since the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are normal, the output signal S1 of the incremental first magnetic sensor 10a, the output signal S2 of the incremental second magnetic sensor 10b, The angle θ123 is calculated from the output signal S3 of the incremental third magnetic sensor 10c, and the relative position as the steering amount is calculated with the phase angle φ of the relative position as the angle θ123.
 ステップS28では、FLAG_NG_SENのデータが10cか否かを判定する。
 FLAG_NG_SENのデータが10cのときには、ステップS29へ進み、FLAG_NG_SENのデータが10cでないときには、ステップS30へ進む。
 ステップS29では、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第4磁気センサ10dは正常なので、インクリメンタル第1磁気センサ10aの出力信号S1、インクリメンタル第2磁気センサ10bの出力信号S2、インクリメンタル第4磁気センサ10dの出力信号S4から算出した角度θ12、またはθ12、θr1、θr2の平均値を算出し、相対位置の位相角φを角度θ12、またはθ12、θr1、θr2の平均値として、操舵量としての相対位置を算出する。
In step S28, it is determined whether or not the data of FLAG_NG_SEN is 10c.
When the data of FLAG_NG_SEN is 10c, the process proceeds to step S29, and when the data of FLAG_NG_SEN is not 10c, the process proceeds to step S30.
In step S29, since the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental fourth magnetic sensor 10d are normal, the output signal S1 of the incremental first magnetic sensor 10a, the output signal S2 of the incremental second magnetic sensor 10b, The average value of the angles θ12 or θ12, θr1 and θr2 calculated from the output signal S4 of the incremental fourth magnetic sensor 10d is calculated, and the phase angle φ of the relative position is set as the average value of the angles θ12 or θ12, θr1 and θr2. Calculate the relative position as the steering amount.
 ステップS30では、FLAG_NG_SENのデータが10bか否かを判定する。
 FLAG_NG_SENのデータが10bのときには、ステップS31へ進み、FLAG_NG_SENのデータが10bでないときには、ステップS32へ進む。
 ステップS30では、インクリメンタル第1磁気センサ10a、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dは正常なので、インクリメンタル第1磁気センサ10aの出力信号S1、インクリメンタル第3磁気センサ10cの出力信号S3、インクリメンタル第4磁気センサ10dの出力信号S4から算出した角度θ31、またはθ31、θr1、θr3の平均値を算出し、相対位置の位相角φを角度θ31、またはθ31、θr1、θr3の平均値として、操舵量としての相対位置を算出する。
 ステップS32では、FLAG_NG_SENのデータが10aとして確定し、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dは正常なので、インクリメンタル第2磁気センサ10bの出力信号S2、インクリメンタル第3磁気センサ10cの出力信号S3、インクリメンタル第4磁気センサ10dの出力信号S4から算出した角度θ23、またはθ23、θr2、θr3の平均値を算出し、相対位置の位相角φを角度θ23、またはθ23、θr2、θr3の平均値として、操舵量としての相対位置を算出する。
In step S30, it is determined whether or not the data of FLAG_NG_SEN is 10b.
When the data of FLAG_NG_SEN is 10b, the process proceeds to step S31, and when the data of FLAG_NG_SEN is not 10b, the process proceeds to step S32.
In step S30, since the incremental first magnetic sensor 10a, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are normal, the output signal S1 of the incremental first magnetic sensor 10a, the output signal S3 of the incremental third magnetic sensor 10c, The average value of the angles θ31 or θ31, θr1 and θr3 calculated from the output signal S4 of the incremental fourth magnetic sensor 10d is calculated, and the phase angle φ of the relative position is set as the average value of the angles θ31 or θ31, θr1 and θr3. Calculate the relative position as the steering amount.
In step S32, the data of FLAG_NG_SEN is confirmed as 10a, and the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are normal, so that the output signal S2 and the incremental second magnetic sensor 10b of the incremental second magnetic sensor 10b are normal. 3 Calculate the average value of the angles θ23 or θ23, θr2, and θr3 calculated from the output signal S3 of the magnetic sensor 10c and the output signal S4 of the incremental fourth magnetic sensor 10d, and set the phase angle φ of the relative position to the angle θ23 or θ23. , Θr2, θr3, and the relative position as the steering amount is calculated as the average value.
 次に、作用効果を説明する。
 実施形態1の操舵量検出装置100の作用効果を以下に列挙する。(1)インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10d、または、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dの出力信号のうち、いずれか1つが異常となったときには、残りの3つの出力信号に基づき、ラックバー5の位置情報の生成を継続する。
 よって、正常な3つの出力信号に基づき、ラックバー5の位置情報の生成を継続することで、精度の良い操舵量検出の継続が可能となり、操舵量検出装置100の利用時間の拡大を図ることができる。
Next, the action and effect will be described.
The effects of the steering amount detecting device 100 of the first embodiment are listed below. (1) Incremental 1st magnetic sensor 10a, Incremental 2nd magnetic sensor 10b, Incremental 3rd magnetic sensor 10c, Incremental 4th magnetic sensor 10d, or Vernier 1st magnetic sensor 11a, Vernier 2nd magnetic sensor 11b, Vernier 3rd When any one of the output signals of the magnetic sensor 11c and the vernier fourth magnetic sensor 11d becomes abnormal, the generation of the position information of the rack bar 5 is continued based on the remaining three output signals.
Therefore, by continuing to generate the position information of the rack bar 5 based on the three normal output signals, it is possible to continue the accurate steering amount detection, and to extend the usage time of the steering amount detection device 100. Can be done.
(2)インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cは、互いに3分の1周期(120°)ずれた位相を検出するように配置し、また、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cも、互いに3分の1周期(120°)ずれた位相を検出するように配置するようにした。
 よって、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、およびバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cが1周期の間にバランスよく配置されているので、高精度な操舵量検出が可能となる。
(2) The incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged so as to detect phases shifted by one-third cycle (120 °) from each other, and the vernier first. The 1 magnetic sensor 11a, the vernier 2nd magnetic sensor 11b, and the vernier 3rd magnetic sensor 11c are also arranged so as to detect a phase shifted by one-third cycle (120 °) from each other.
Therefore, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c are in one cycle. Since they are arranged in a well-balanced manner, highly accurate steering amount detection is possible.
(3)インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dは、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dの出力信号が1周期分出力されるときのラック軸5の移動量に相当する長さである1ピッチLP1の範囲内に収まるように配置し、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dは、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dの出力信号が1周期分出力されるときのラック軸5の移動量に相当する長さである1ピッチLP2の範囲内に収まるように配置している。
 よって、インクリメンタル磁気センサ部10、バーニア磁気センサ部11の大型化を抑制することができる。
(3) The incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d are the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic. Arranged so as to be within the range of 1 pitch LP1 which is the length corresponding to the movement amount of the rack shaft 5 when the output signals of the sensor 10c and the incremental fourth magnetic sensor 10d are output for one cycle, the vernier first. The magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d are the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth. It is arranged so as to be within the range of 1 pitch LP2, which is the length corresponding to the movement amount of the rack shaft 5 when the output signal of the magnetic sensor 11d is output for one cycle.
Therefore, it is possible to suppress the increase in size of the incremental magnetic sensor unit 10 and the vernier magnetic sensor unit 11.
(4)インクリメンタル磁気スケール9aのインクリメンタル第1N極(第1N極)9a1、インクリメンタル第1S極(第1S極)9a2、インクリメンタル第2N極(第2N極)9a3、インクリメンタル第2S極(第2S極)9a4、インクリメンタル第3N極(第3N極)9a5、インクリメンタル第3S極(第3S極)9a6、インクリメンタル第4N極9a7、インクリメンタル第4S極9a8の順にN極とS極が交互にインクリメンタル第6N極9a11まで配置されているそれぞれのN極とS極の間には非磁性材料で形成された非磁化領域9aaを配置し、また、バーニア磁気スケール9bのバーニアル第1N極(第1N極)9b1、バーニア第1S極(第1S極)9b2、バーニアル第2N極(第2N極)9b3、バーニア第2S極(第2S極)9b4、バーニア第3N極(第3N極)9b5、バーニア第3S極(第3S極)9b6、バーニア第4N極9b7、バーニア第4S極9b8の順にN極とS極が交互にバーニア第5S極9b10まで配置されているそれぞれのN極とS極の間には非磁性材料で形成された非磁化領域9bbを配置するようにした。
 よって、インクリメンタル磁気スケール9aのN極とS極の間には非磁性材料で形成された非磁化領域9aaを配置しているので、インクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dが周期的に正弦波を出力する場合に、インクリメンタル第1N極9a1、インクリメンタル第1S極9a2とが隣接している場合に比べ正弦波が正確に出力されるようになり、操舵量検出精度を向上させることができ、また、バーニア磁気スケール9bのN極とS極の間にも非磁性材料で形成された非磁化領域9bbを配置しているので、バーニア磁気センサ部11のバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dが周期的に正弦波を出力する場合に、バーニア第1N極9b1、バーニア第1S極9b2とが隣接している場合に比べ正弦波が正確に出力されるようになり、操舵量検出精度を向上させることができる。
(4) Incremental 1st N pole (1st N pole) 9a1, Incremental 1st S pole (1st S pole) 9a2, Incremental 2nd N pole (2nd N pole) 9a3, Incremental 2nd S pole (2nd S pole) of the incremental magnetic scale 9a. 9a4, incremental 3N pole (3N pole) 9a5, incremental 3S pole (3rd S pole) 9a6, incremental 4N pole 9a7, incremental 4S pole 9a8, N pole and S pole alternately in the order of incremental 6N pole 9a11 A non-magnetized region 9aa formed of a non-magnetic material is arranged between each of the north and south poles arranged up to, and the vernier magnetic scale 9b has a vernier first N pole (first N pole) 9b1 and a vernier. 1st S pole (1st S pole) 9b2, vernier 2nd N pole (2nd N pole) 9b3, vernier 2nd S pole (2nd S pole) 9b4, vernier 3rd N pole (3rd N pole) 9b5, vernier 3rd S pole (3S) Pole) 9b6, vernier 4th N pole 9b7, vernier 4th S pole 9b8, N pole and S pole are arranged alternately up to vernier 5th S pole 9b10, and a non-magnetic material is used between each N pole and S pole. The formed non-magnetized region 9bb was arranged.
Therefore, since the non-magnetizing region 9aa formed of the non-magnetic material is arranged between the north pole and the south pole of the incremental magnetic scale 9a, the incremental first magnetic sensor 10a and the incremental second magnetic sensor unit 10 of the incremental magnetic sensor unit 10 are arranged. When the magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnetic sensor 10d periodically output a sine wave, the sine is larger than when the incremental first N pole 9a1 and the incremental first S pole 9a2 are adjacent to each other. The wave can be output accurately, the steering amount detection accuracy can be improved, and the non-magnetizing region 9bb formed of the non-magnetic material is also formed between the north and south poles of the vernier magnetic scale 9b. Since they are arranged, when the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d of the vernier magnetic sensor unit 11 periodically output a sine wave. As compared with the case where the vernier first N pole 9b1 and the vernier first S pole 9b2 are adjacent to each other, the sine wave can be output more accurately, and the steering amount detection accuracy can be improved.
(5)制御装置C/Uの第1ラックバー位置情報生成部13、または、第2ラックバー位置情報生成部14は、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dからの出力信号S1-S4、または、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dからの出力信号S11-S14のうち少なくとも3つの出力信号に基づき、ラックバー5の位置情報を生成しており、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10d、または、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dの出力信号のうち、いずれか1つが異常となったときには、残りの3つの出力信号に基づき、ラックバー5の位置情報の生成を継続するようにした。
 よって、正常な3つの出力信号に基づき、ラックバー5の位置情報の生成を継続することで、精度の良い操舵量検出の継続が可能となり、操舵量検出装置100の利用時間の拡大を図ることができる。
(5) The first rack bar position information generation unit 13 or the second rack bar position information generation unit 14 of the control device C / U has an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, and an incremental third magnetometer. Output signal from sensor 10c, incremental fourth magnetic sensor 10d, or output signal from vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, vernier third magnetic sensor 11c, vernier fourth magnetic sensor 11d The position information of the rack bar 5 is generated based on at least three output signals of S11-S14, and the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, the incremental third magnetic sensor 10c, and the incremental fourth magnet are generated. When any one of the output signals of the sensor 10d, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, the vernier third magnetic sensor 11c, and the vernier fourth magnetic sensor 11d becomes abnormal, the remaining The generation of the position information of the rack bar 5 is continued based on the three output signals.
Therefore, by continuing to generate the position information of the rack bar 5 based on the three normal output signals, it is possible to continue the accurate steering amount detection, and to extend the usage time of the steering amount detection device 100. Can be done.
(6)制御装置C/Uの第1ラックバー位置情報生成部13と、第2ラックバー位置情報生成部14は、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10c、インクリメンタル第4磁気センサ10dからの出力信号S1-S4、または、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11c、バーニア第4磁気センサ11dからの出力信号S11-S14のうち少なくとも2つが異常となったときには、残りの2つの出力信号に基づき、ラックバー5の位置情報の生成を継続するようにした。
 よって、正常な2つの出力信号に基づき、ラックバー5の位置情報の生成を継続することで、操舵量検出装置100の利用時間の拡大を図ることができる。
(6) The first rack bar position information generation unit 13 and the second rack bar position information generation unit 14 of the control device C / U are an incremental first magnetic sensor 10a, an incremental second magnetic sensor 10b, and an incremental third magnetic sensor. 10c, output signal S1-S4 from the incremental fourth magnetic sensor 10d, or output signal S11 from the vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, vernier third magnetic sensor 11c, vernier fourth magnetic sensor 11d. -When at least two of S14 become abnormal, the generation of the position information of the rack bar 5 is continued based on the remaining two output signals.
Therefore, by continuing to generate the position information of the rack bar 5 based on the two normal output signals, it is possible to extend the usage time of the steering amount detecting device 100.
(7)磁気スケール搭載部5bは、ラックギヤ5cが設けられた外周とは逆側の外周に、ラックバー5の長手方向の基準軸線Pに対し平行な平面形状を有するように設けるようにした。
 よって、磁気スケール搭載部5bが平面形状を有することで、インクリメンタル磁気スケール9a、または、バーニア磁気スケール9bの搭載性を向上することができる。
(7) The magnetic scale mounting portion 5b is provided on the outer circumference opposite to the outer circumference where the rack gear 5c is provided so as to have a planar shape parallel to the reference axis P in the longitudinal direction of the rack bar 5.
Therefore, since the magnetic scale mounting portion 5b has a planar shape, the mountability of the incremental magnetic scale 9a or the vernier magnetic scale 9b can be improved.
(8)インクリメンタル磁気スケール9aおよびバーニア磁気スケール9bとラックバー5の磁気スケール搭載部5bとの間に、非磁性材料で形成された非磁性層12を配置するようにした。
 よって、インクリメンタル磁気スケール9aおよびバーニア磁気スケール9bが、磁性材料で形成されたラックバー5と直接接触しないので、インクリメンタル磁気スケール9aおよびバーニア磁気スケール9bの磁界によりラックバー5が磁化されにくくなる。その結果、インクリメンタル磁気センサ部10がインクリメンタル磁気スケール9aの情報を読み取る際、または、バーニア磁気センサ部11がバーニア磁気スケール9bの情報を読み取る際、ラックバー5から受ける磁気特性の影響を抑制することができる。
(8) A non-magnetic layer 12 made of a non-magnetic material is arranged between the incremental magnetic scale 9a and the vernier magnetic scale 9b and the magnetic scale mounting portion 5b of the rack bar 5.
Therefore, since the incremental magnetic scale 9a and the vernier magnetic scale 9b do not come into direct contact with the rack bar 5 formed of the magnetic material, the rack bar 5 is less likely to be magnetized by the magnetic fields of the incremental magnetic scale 9a and the vernier magnetic scale 9b. As a result, when the incremental magnetic sensor unit 10 reads the information of the incremental magnetic scale 9a, or when the vernier magnetic sensor unit 11 reads the information of the vernier magnetic scale 9b, the influence of the magnetic characteristics received from the rack bar 5 is suppressed. Can be done.
(9)非磁性層12の外縁は、インクリメンタル磁気スケール9aおよびバーニア磁気スケール9bの外縁を包囲するように形成するようにした。
 よって、非磁性層12がインクリメンタル磁気スケール9aおよびバーニア磁気スケール9bの全範囲を包囲するように形成されているので、インクリメンタル磁気スケール9aおよびバーニア磁気スケール9bの全範囲において、磁性材料で形成されたラックバー5がインクリメンタル磁気スケール9aおよびバーニア磁気スケール9bの磁界による磁化の影響を受けるのを抑制することができる。
(9) The outer edge of the non-magnetic layer 12 is formed so as to surround the outer edge of the incremental magnetic scale 9a and the vernier magnetic scale 9b.
Therefore, since the non-magnetic layer 12 is formed so as to surround the entire range of the incremental magnetic scale 9a and the vernier magnetic scale 9b, the non-magnetic layer 12 is formed of the magnetic material in the entire range of the incremental magnetic scale 9a and the vernier magnetic scale 9b. It is possible to suppress the rack bar 5 from being affected by the magnetic field of the incremental magnetic scale 9a and the vernier magnetic scale 9b.
(10)インクリメンタル磁気スケール9aとインクリメンタル磁気センサ部10、および、バーニア磁気スケール9bとバーニア磁気センサ部11の2つを設け、第1ラックバー位置情報生成部13は、少なくともインクリメンタル磁気センサ部10のインクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cの出力信号S1-S3により、また、第2ラックバー位置情報生成部14は、少なくともバーニア磁気センサ部11のバーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cの出力信号S11-S13により、ラックバー5の位置情報を生成するようにしている。
 よって、インクリメンタル磁気センサ部10またはバーニア磁気センサ部11の3つの磁気センサの出力信号うち、一方の磁気センサ部の中の磁気センサのうち1つの出力信号に異常が発生した場合においても、他方の磁気センサ部の出力信号に基づき、精度の良い操舵量検出の継続が可能となる。
(10) Incremental magnetic scale 9a and incremental magnetic sensor unit 10, and vernier magnetic scale 9b and vernier magnetic sensor unit 11 are provided, and the first rack bar position information generation unit 13 is at least the incremental magnetic sensor unit 10. According to the output signals S1-S3 of the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c, and the second rack bar position information generation unit 14 is at least the vernier first of the vernier magnetic sensor unit 11. The position information of the rack bar 5 is generated by the output signals S11-S13 of the 1 magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier third magnetic sensor 11c.
Therefore, even if an abnormality occurs in one of the output signals of the three magnetic sensors of the incremental magnetic sensor unit 10 or the vernier magnetic sensor unit 11 and one of the magnetic sensors in one of the magnetic sensor units, the other Based on the output signal of the magnetic sensor unit, it is possible to continue accurate steering amount detection.
 〔実施形態2〕
 図9(a)は、実施形態2の操舵量検出装置のインクリメンタル磁気スケールとインクリメンタル磁気センサ部の一部拡大断面図であり、(b)は、実施形態2の操舵量検出装置のバーニア磁気スケールとバーニア磁気センサ部の一部拡大断面図である。
[Embodiment 2]
FIG. 9A is a partially enlarged cross-sectional view of the incremental magnetic scale and the incremental magnetic sensor unit of the steering amount detecting device of the second embodiment, and FIG. 9B is a vernier magnetic scale of the steering amount detecting device of the second embodiment. It is a partially enlarged cross-sectional view of the vernier magnetic sensor unit.
 実施形態2の操舵量検出装置の構成を説明する。 The configuration of the steering amount detection device of the second embodiment will be described.
 実施形態1とは異なり、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第4磁気センサ10dは、互いに3分の1周期(120°)ずれた位相を検出するように配置され、インクリメンタル第3磁気センサ10cは、インクリメンタル第2磁気センサ10bと4分の1周期(90°)ずれた位相を検出するように配置されている。
 また、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第4磁気センサ11dは、互いに3分の1周期(120°)ずれた位相を検出するように配置され、バーニア第3磁気センサ11cは、バーニア第2磁気センサ11bと4分の1周期(90°)ずれた位相を検出するように配置されている。
 すなわち、インクリメンタル第1磁気センサ10a、インクリメンタル第2磁気センサ10b、インクリメンタル第3磁気センサ10cは、互いに3分の1周期(120°)ずれた位相を検出するように配置され、インクリメンタル第4磁気センサ10dは、インクリメンタル第2磁気センサ10bと4分の1周期(90°)ずれた位相を検出するように配置している点、および、バーニア第1磁気センサ11a、バーニア第2磁気センサ11b、バーニア第3磁気センサ11cは、互いに3分の1周期(120°)ずれた位相を検出するように配置され、バーニア第4磁気センサ11dは、バーニア第2磁気センサ11bと4分の1周期(90°)ずれた位相を検出するように配置している点を除き、実施形態1と同じ構成であるため、同じ構成には同一符号を付して説明は省略する。
Unlike the first embodiment, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental fourth magnetic sensor 10d are arranged so as to detect a phase shifted by one-third cycle (120 °) from each other. The incremental third magnetic sensor 10c is arranged so as to detect a phase shifted by a quarter period (90 °) from the incremental second magnetic sensor 10b.
Further, the vernier first magnetic sensor 11a, the vernier second magnetic sensor 11b, and the vernier fourth magnetic sensor 11d are arranged so as to detect a phase shifted by one-third cycle (120 °) from each other, and the vernier third magnetic sensor The 11c is arranged so as to detect a phase shifted by a quarter period (90 °) from the vernier second magnetic sensor 11b.
That is, the incremental first magnetic sensor 10a, the incremental second magnetic sensor 10b, and the incremental third magnetic sensor 10c are arranged so as to detect phases shifted by one-third cycle (120 °) from each other, and the incremental fourth magnetic sensor The 10d is arranged so as to detect a phase shifted by a quarter period (90 °) from the incremental second magnetic sensor 10b, and the vernier first magnetic sensor 11a, vernier second magnetic sensor 11b, and vernier. The third magnetic sensor 11c is arranged so as to detect a phase shifted by one-third cycle (120 °) from each other, and the vernier fourth magnetic sensor 11d has a quarter cycle (90) with the vernier second magnetic sensor 11b. °) Since the configuration is the same as that of the first embodiment except that the configurations are arranged so as to detect the shifted phase, the same reference numerals are given to the same configurations and the description thereof will be omitted.
 よって、実施形態1と同様の作用効果を奏する。 Therefore, it has the same effect as that of the first embodiment.
 図10(a)は、実施形態3の操舵量検出装置の磁気トラック付近の断面図、(b)は、実施形態3の操舵量検出装置の磁気トラック付近の平面図である。 FIG. 10A is a cross-sectional view of the steering amount detecting device of the third embodiment near the magnetic track, and FIG. 10B is a plan view of the steering amount detecting device of the third embodiment near the magnetic track.
 実施形態3の操舵量検出装置の構成を説明する。 The configuration of the steering amount detection device according to the third embodiment will be described.
 実施形態1とは異なり、非磁性層12が、ラックバー5の磁気スケール搭載部5aとインクリメンタル磁気スケール9a、または、バーニア磁気スケール9b間だけではなく、インクリメンタル磁気スケール9a、または、バーニア磁気スケール9bの側面も覆っている。
 この点を除き、実施形態1と同じ構成であるため、同じ構成には同一符号を付して説明は省略する。
Unlike the first embodiment, the non-magnetic layer 12 is not only between the magnetic scale mounting portion 5a of the rack bar 5 and the incremental magnetic scale 9a or the vernier magnetic scale 9b, but also the incremental magnetic scale 9a or the vernier magnetic scale 9b. It also covers the sides of.
Except for this point, since the configuration is the same as that of the first embodiment, the same reference numerals are given to the same configurations and the description thereof will be omitted.
 よって、実施形態1と同様の作用効果を奏する。 Therefore, it has the same effect as that of the first embodiment.
 図11(a)は、実施形態4の操舵量検出装置の磁気トラック付近の断面図、(b)は、実施形態4の操舵量検出装置の磁気トラック付近の平面図である。 FIG. 11A is a cross-sectional view of the steering amount detecting device of the fourth embodiment near the magnetic track, and FIG. 11B is a plan view of the steering amount detecting device of the fourth embodiment near the magnetic track.
 実施形態4の操舵量検出装置の構成を説明する。 The configuration of the steering amount detection device according to the fourth embodiment will be described.
 実施形態1とは異なり、非磁性層12が、ラックバー5の磁気スケール搭載部5aとインクリメンタル磁気スケール9a、または、バーニア磁気スケール9b間だけではなく、インクリメンタル磁気スケール9a、または、バーニア磁気スケール9bの側面および表面も覆っている。
 すなわち、インクリメンタル磁気スケール9a、または、バーニア磁気スケール9bが、樹脂材料で型成形により形成された非磁性層12にインサートモールドされている。
 この点を除き、実施形態1と同じ構成であるため、同じ構成には同一符号を付して説明は省略する。
Unlike the first embodiment, the non-magnetic layer 12 is not only between the magnetic scale mounting portion 5a of the rack bar 5 and the incremental magnetic scale 9a or the vernier magnetic scale 9b, but also the incremental magnetic scale 9a or the vernier magnetic scale 9b. It also covers the sides and surface of the.
That is, the incremental magnetic scale 9a or the vernier magnetic scale 9b is insert-molded into the non-magnetic layer 12 formed by molding with a resin material.
Except for this point, since the configuration is the same as that of the first embodiment, the same reference numerals are given to the same configurations and the description thereof will be omitted.
 よって、実施形態4では、実施形態1の作用効果に加え、インクリメンタル磁気スケール9a、または、バーニア磁気スケール9bをラックバー5の磁気スケール搭載部5aに設置する際、インクリメンタル磁気スケール9a、または、バーニア磁気スケール9bが非磁性層12によって保護されているため、組立時におけるインクリメンタル磁気スケール9a、または、バーニア磁気スケール9bの損傷を抑制することができる。 Therefore, in the fourth embodiment, in addition to the effects of the first embodiment, when the incremental magnetic scale 9a or the vernier magnetic scale 9b is installed on the magnetic scale mounting portion 5a of the rack bar 5, the incremental magnetic scale 9a or the vernier is installed. Since the magnetic scale 9b is protected by the non-magnetic layer 12, damage to the incremental magnetic scale 9a or the vernier magnetic scale 9b during assembly can be suppressed.
 〔他の実施形態〕
 以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
[Other Embodiments]
Although the embodiments for carrying out the present invention have been described above, the specific configuration of the present invention is not limited to the configurations of the embodiments, and there are design changes and the like within a range that does not deviate from the gist of the invention. Is also included in the present invention.
 以上説明した実施形態から把握しうる技術的思想について、以下に記載する。
 操舵量検出装置は、その一つの態様において、ハウジングであって、ハウジング本体部と、操舵軸収容空間と、センサ収容空間と、を備え、前記ハウジング本体部は、筒形状を有し、前記操舵軸収容空間は、前記ハウジング本体部の内側に形成されており、前記センサ収容空間は、前記ハウジング本体部の内側に形成されている、前記ハウジングと、前記操舵軸収容空間に設けられた操舵軸であって、操舵軸本体部と、磁気スケール搭載部を備え、前記操舵軸本体部は、棒形状を有し、前記操舵軸収容空間内で長手方向に移動することで、操舵輪を操舵可能であり、前記磁気スケール搭載部は、前記操舵軸本体部の外周側に設けられている、前記操舵軸と、前記磁気スケール搭載部に設けられた磁気スケールであって、前記操舵軸の長手方向において、第1N極、第1S極、第2N極、第2S極、第3N極、第3S極の順にN極とS極が交互に配置されている、前記磁気スケールと、前記磁気スケールに対向するように前記センサ収容空間に設けられた磁気センサ部であって、第1磁気センサ、第2磁気センサ、第3磁気センサ、および第4磁気センサを含み、前記操舵軸の長手方向において、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、前記第4磁気センサの順に配置されており、前記操舵軸の移動に伴い前記磁気スケールが前記磁気センサ部の前を通過するとき、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号は周期的に変化すると共に、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない、前記磁気センサ部と、を有する。
 より好ましい態様では、上記態様において、前記第1磁気センサ、前記第2磁気センサ、および前記第3磁気センサの夫々は、互いに3分の1周期ずれた位相を検出するように配置されている。
 より好ましい態様では、上記態様において、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサは、前記第1磁気センサの出力信号が1周期分出力されるときの前記操舵軸の移動量に相当する長さの範囲内に収まるように配置されている。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記磁気スケールは、前記操舵軸の長手方向において、第1N極、第1S極、第2N極、第2S極、第3N極、および第3S極の夫々の間に、磁化されていない非磁化領域を有する。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、更に、制御装置を備え、前記制御装置は、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号のうち、少なくとも3つに基づき、前記操舵軸の位置情報を生成し、前記制御装置は、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号のうち、いずれか1つが異常となったとき、残りの3つで前記操舵軸の位置情報の生成を継続する。
 より好ましい態様では、上記態様において、前記制御装置は、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号のうち、いずれか2つが異常となったとき、残りの2つで前記操舵軸の位置情報の生成を継続する。
The technical ideas that can be grasped from the embodiments described above are described below.
In one aspect thereof, the steering amount detecting device is a housing, and includes a housing main body portion, a steering shaft accommodating space, and a sensor accommodating space. The housing main body portion has a tubular shape, and the steering The shaft accommodating space is formed inside the housing main body portion, and the sensor accommodating space is formed inside the housing main body portion, and the steering shaft provided in the housing and the steering shaft accommodating space. The steering shaft main body is provided with a steering shaft main body and a magnetic scale mounting portion, and the steering shaft main body has a rod shape and can steer the steering wheels by moving in the longitudinal direction in the steering shaft accommodating space. The magnetic scale mounting portion is a steering shaft provided on the outer peripheral side of the steering shaft main body portion and a magnetic scale provided on the magnetic scale mounting portion in the longitudinal direction of the steering shaft. The magnetic scale and the magnetic scale facing the magnetic scale, wherein the N pole and the S pole are alternately arranged in the order of the first N pole, the first S pole, the second N pole, the second S pole, the third N pole, and the third S pole. A magnetic sensor unit provided in the sensor accommodation space so as to include a first magnetic sensor, a second magnetic sensor, a third magnetic sensor, and a fourth magnetic sensor, and the above-mentioned in the longitudinal direction of the steering shaft. When the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are arranged in this order, and the magnetic scale passes in front of the magnetic sensor unit as the steering shaft moves. The output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor change periodically, and the first magnetic sensor, the second magnetic sensor, and the like. When the third magnetic sensor and the fourth magnetic sensor each detect at the same timing, the phases do not match each other, and the phases shifted by half a cycle do not match each other with the magnetic sensor unit. Has.
In a more preferred embodiment, in the above embodiment, the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other.
In a more preferred embodiment, in the above embodiment, the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor output the output signal of the first magnetic sensor for one cycle. It is arranged so as to be within a range of a length corresponding to the amount of movement of the steering shaft at that time.
In yet another preferred embodiment, in any of the above embodiments, the magnetic scale has a first N pole, a first S pole, a second N pole, a second S pole, a third N pole, and a third S in the longitudinal direction of the steering shaft. There is an unmagnetized non-magnetized region between each of the poles.
In yet another preferred embodiment, in any of the above embodiments, the control device further comprises a control device, which is the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor. The position information of the steering shaft is generated based on at least three of the output signals of the above, and the control device is the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the first. When any one of the output signals of the four magnetic sensors becomes abnormal, the remaining three continue to generate the position information of the steering shaft.
In a more preferred embodiment, in the above aspect, the control device comprises any two of the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor. When an abnormality occurs, the remaining two continue to generate the position information of the steering shaft.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記操舵軸の長手方向に対し直角な断面において前記操舵軸の中心を通り、かつ前記操舵軸の長手方向と平行な軸線を基準軸線としたとき、前記磁気スケール搭載部は、前記基準軸線に対し平行な平面形状を有している。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、更に、非磁性層を備え、前記操舵軸は、磁性材料で形成されており、前記非磁性層は、非磁性材料で形成されており、前記磁気スケール搭載部と前記磁気スケールの間に設けられている。
 さらに好ましい態様では、上記態様において、前記非磁性層の外縁は、前記磁気スケールの外縁を包囲するように形成されている。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記非磁性膜は、樹脂材料で型成形により形成されており、前記磁気スケールは、前記非磁性膜にインサートモールドされている。
In yet another preferred embodiment, in any of the above embodiments, an axis that passes through the center of the steering shaft in a cross section perpendicular to the longitudinal direction of the steering shaft and is parallel to the longitudinal direction of the steering shaft is defined as a reference axis. At this time, the magnetic scale mounting portion has a planar shape parallel to the reference axis.
In yet another preferred embodiment, in any of the above embodiments, the non-magnetic layer is further provided, the steering shaft is made of a magnetic material, and the non-magnetic layer is made of a non-magnetic material. It is provided between the magnetic scale mounting portion and the magnetic scale.
In a more preferred embodiment, in the above embodiment, the outer edge of the non-magnetic layer is formed so as to surround the outer edge of the magnetic scale.
In yet another preferred embodiment, in any of the above embodiments, the non-magnetic film is formed of a resin material by molding, and the magnetic scale is insert-molded into the non-magnetic film.
 操舵量検出装置は、その一つの態様において、ハウジングであって、ハウジング本体部と、操舵軸収容空間と、センサ収容空間と、を備えており、前記ハウジング本体部は、筒形状を有し、前記操舵軸収容空間は、前記ハウジング本体部の内側に形成されており、前記センサ収容空間は、前記ハウジング本体部の内側に形成されている、前記ハウジングと、前記操舵軸収容空間に設けられた操舵軸であって、操舵軸本体部と、磁気スケール搭載部を備え、前記操舵軸本体部は、棒形状を有し、前記操舵軸収容空間内で長手方向に移動することで、操舵輪を操舵可能であり、前記磁気スケール搭載部は、前記操舵軸本体部の外周側に設けられている、前記操舵軸と、前記磁気スケール搭載部に設けられたバーニア磁気スケールであって、前記操舵軸の長手方向において、バーニア第1N極、バーニア第1S極、バーニア第2N極、バーニア第2S極、バーニア第3N極、バーニア第3S極の順にN極とS極が交互に配置されている、前記バーニア磁気スケールと、前記磁気スケール搭載部に設けられたインクリメンタル磁気スケールであって、前記操舵軸の長手方向において、インクリメンタル第4N極、インクリメンタル第4S極、インクリメンタル第5N極、インクリメンタル第5S極、インクリメンタル第6N極、インクリメンタル第6S極の順にN極とS極が交互に配置されている、前記インクリメンタル磁気スケールと、前記バーニア磁気スケールに対向するように前記センサ収容空間に設けられたバーニア磁気センサ部であって、バーニア第1磁気センサ、バーニア第2磁気センサ、およびバーニア第3磁気センサを含み、前記操舵軸の長手方向において、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサの順に配置されており、前記操舵軸の移動に伴い前記バーニア磁気スケールが前記バーニア磁気センサ部の前を通過するとき、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々の出力信号は周期的に変化すると共に、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない、前記バーニア磁気センサ部と、前記インクリメンタル磁気スケールに対向するように前記センサ収容空間に設けられたインクリメンタル磁気センサ部であって、インクリメンタル第1磁気センサ、インクリメンタル第2磁気センサ、およびインクリメンタル第3磁気センサを含み、前記操舵軸の長手方向において、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサの順に配置されており、前記操舵軸の移動に伴い前記インクリメンタル磁気スケールが前記インクリメンタル磁気センサ部の前を通過するとき、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々の出力信号は周期的に変化すると共に、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、分の1周期ずれた位相とも互いに一致しない、前記インクリメンタル磁気センサ部と、を有する。 In one aspect thereof, the steering amount detecting device is a housing, and includes a housing main body portion, a steering shaft accommodating space, and a sensor accommodating space, and the housing main body portion has a tubular shape. The steering shaft accommodating space is formed inside the housing main body, and the sensor accommodating space is provided in the housing and the steering shaft accommodating space formed inside the housing main body. It is a steering shaft, and includes a steering shaft main body portion and a magnetic scale mounting portion. The steering shaft main body portion has a rod shape and moves in the longitudinal direction in the steering shaft accommodating space to move the steering wheels. It is steerable, and the magnetic scale mounting portion is the steering shaft provided on the outer peripheral side of the steering shaft main body portion and the vernier magnetic scale provided on the magnetic scale mounting portion, and the steering shaft. The north pole and the south pole are alternately arranged in the order of the vernier first N pole, the vernier first S pole, the vernier second N pole, the vernier second S pole, the vernier third N pole, and the vernier third S pole in the longitudinal direction of the above. A vernier magnetic scale and an incremental magnetic scale provided on the magnetic scale mounting portion, wherein the incremental 4N pole, the incremental 4S pole, the incremental 5N pole, the incremental 5S pole, and the incremental magnetic scale are provided in the longitudinal direction of the steering shaft. An incremental magnetic scale in which N poles and S poles are alternately arranged in the order of the 6th N pole and the incremental 6th S pole, and a vernier magnetic sensor unit provided in the sensor accommodation space so as to face the vernier magnetic scale. The vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are included, and the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier first in the longitudinal direction of the steering shaft. The three magnetic sensors are arranged in this order, and when the vernier magnetic scale passes in front of the vernier magnetic sensor unit as the steering shaft moves, the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier magnetic sensor are arranged. The output signal of each of the vernier third magnetic sensors changes periodically, and the phase when the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor each detect at the same timing. To the vernier magnetic sensor unit and the incremental magnetic scale, which do not match each other and do not match each other with a phase shifted by half a cycle. An incremental magnetic sensor unit provided in the sensor accommodating space so as to face each other, including an incremental first magnetic sensor, an incremental second magnetic sensor, and an incremental third magnetic sensor, in the longitudinal direction of the steering shaft. When the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor are arranged in this order and the incremental magnetic scale passes in front of the incremental magnetic sensor unit as the steering shaft moves. The output signals of the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor change periodically, and the incremental first magnetic sensor, the incremental second magnetic sensor, and the above. It has the incremental magnetic sensor unit, in which the phases when each of the incremental third magnetic sensors are detected at the same timing do not match each other and do not match the phases shifted by one-third cycle.
 さらに好ましい態様では、上記態様において、更に、制御装置を備え、
 前記制御装置は、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々の出力信号に基づき、前記操舵軸の位置情報を生成すると共に、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々の出力信号に基づき、前記操舵軸の位置情報を生成し、前記制御装置は、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々の出力信号のうち、いずれか1つが異常となったとき、前記制御装置の電力の供給が継続されている間は、前記バーニア磁気センサ部に残る2つで前記操舵軸の位置情報の生成を継続すると共に、前記制御装置は、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々の出力信号のうち、いずれか1つが異常となったとき、前記制御装置の電力の供給が継続されている間は、前記インクリメンタル磁気センサ部に残る2つで前記操舵軸の位置情報の生成を継続する。
In a more preferred embodiment, the above embodiment further comprises a control device.
The control device generates position information of the steering shaft based on the output signals of the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor, and the incremental first magnetometer. Based on the output signals of the sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor, the position information of the steering shaft is generated, and the control device uses the vernier first magnetic sensor and the vernier second. When any one of the output signals of the magnetic sensor and the vernier third magnetic sensor becomes abnormal, the vernier magnetic sensor unit remains as long as the power supply of the control device is continued. While continuing to generate the position information of the steering shaft, the control device uses the output signals of the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor, respectively. When any one of them becomes abnormal, the remaining two in the incremental magnetic sensor unit continue to generate the position information of the steering shaft while the power supply of the control device is continued.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記バーニア磁気センサ部は、更に、バーニア第4磁気センサを備え、前記操舵軸の長手方向において、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、前記バーニア第4磁気センサの順に配置されており、前記操舵軸の移動に伴い前記バーニア磁気スケールが前記バーニア磁気センサ部の前を通過するとき、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、および前記バーニア第4磁気センサの夫々の出力信号は周期的に変化すると共に、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、および前記バーニア第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致せず、前記インクリメンタル磁気センサ部は、更に、インクリメンタル第4磁気センサを備え、前記操舵軸の長手方向において、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、前記インクリメンタル第4磁気センサの順に配置されており、前記操舵軸の移動に伴い前記インクリメンタル磁気スケールが前記インクリメンタル磁気センサ部の前を通過するとき、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、および前記インクリメンタル第4磁気センサの夫々の出力信号は周期的に変化すると共に、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、および前記インクリメンタル第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない。 In yet another preferred embodiment, in any of the above embodiments, the vernier magnetic sensor unit further comprises a vernier fourth magnetic sensor, and in the longitudinal direction of the steering shaft, the vernier first magnetic sensor and the vernier second. The magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor are arranged in this order, and when the vernier magnetic scale passes in front of the vernier magnetic sensor unit as the steering shaft moves, the vernier first. The output signals of the 1 magnetic sensor, the vernier 2nd magnetic sensor, the vernier 3rd magnetic sensor, and the vernier 4th magnetic sensor change periodically, and the vernier 1st magnetic sensor and the vernier 2nd magnetometer are changed. When the sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor each detect at the same timing, the phases do not match each other, and the phases shifted by half a cycle do not match each other. The incremental magnetic sensor unit further includes an incremental fourth magnetic sensor, and in the longitudinal direction of the steering shaft, the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth. The magnetic sensors are arranged in this order, and when the incremental magnetic scale passes in front of the incremental magnetic sensor unit as the steering shaft moves, the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental magnetic sensor are arranged in this order. The output signals of the three magnetic sensors and the incremental fourth magnetic sensor change periodically, and the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth. When each of the magnetic sensors detects at the same timing, the phases do not match each other, and the phases shifted by half a cycle do not match each other.
 さらに好ましい態様では、上記態様において、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々は、互いに3分の1周期ずれた位相を検出するように配置されており、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、および前記バーニア第4磁気センサは、前記バーニア第1磁気センサの出力信号が1周期分出力されるときの前記操舵軸の移動量に相当する長さの範囲内に収まるように配置されており、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々は、互いに3分の1周期ずれた位相を検出するように配置されており、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、および前記インクリメンタル第4磁気センサは、前記インクリメンタル第1磁気センサの出力信号が1周期分出力されるときの前記操舵軸の移動量に相当する長さの範囲内に収まるように配置されている。 In a more preferred embodiment, in the above embodiment, the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other. When the vernier first magnetic sensor, the vernier second magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor output the output signal of the vernier first magnetic sensor for one cycle. The incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor are arranged so as to be within a range of a length corresponding to the movement amount of the steering shaft. The incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth magnetic sensor are arranged so as to detect a phase shifted by one-third cycle, and the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental fourth magnetic sensor are the incremental. It is arranged so as to be within a range of a length corresponding to the amount of movement of the steering shaft when the output signal of the first magnetic sensor is output for one cycle.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 本願は、2019年7月4日付出願の日本国特許出願第2019-124906号に基づく優先権を主張する。2019年7月4日付出願の日本国特許出願第2019-124906号の明細書、特許請求の範囲、図面、および要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2019-124906 filed on July 4, 2019. The entire disclosure, including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2019-124906 filed July 4, 2019, is incorporated herein by reference in its entirety.
1 操舵装置100 操舵量検出装置5 ラックバー(操舵軸)5a ラックバー本体部(操舵軸本体部)5b 磁気スケール搭載部7 操舵輪8 ハウジング8a ハウジング本体部8b 操舵軸収容空間部8c センサ収容空間9a インクリメンタル磁気スケール(磁気スケール)9a1 インクリメンタル第1N極(第1N極)9a2 インクリメンタル第1S極(第1S極)9a3 インクリメンタル第2N極(第2N極)9a4 インクリメンタル第2S極(第2S極)9a5 インクリメンタル第3N極(第3N極)9a6 インクリメンタル第3S極(第3S極)9aa 非磁化領域9b バーニア磁気スケール(磁気スケール)9b1 バーニア第1N極(第1N極)9b2 バーニア第1S極(第1S極)9b3 バーニア第2N極(第2N極)9b4 バーニア第2S極(第2S極)9b5 バーニア第3N極(第3N極)9b6 バーニア第3S極(第3S極)9bb 非磁化領域10 インクリメンタル磁気センサ部(磁気センサ部)10a インクリメンタル第1磁気センサ(第1磁気センサ)10b インクリメンタル第2磁気センサ(第2磁気センサ)10c インクリメンタル第3磁気センサ(第3磁気センサ)10d インクリメンタル第4磁気センサ(第4磁気センサ)11 バーニア磁気センサ部(磁気センサ部)11a バーニア第1磁気センサ(第1磁気センサ)11b バーニア第2磁気センサ(第2磁気センサ)11c バーニア第3磁気センサ(第3磁気センサ)11d バーニア第4磁気センサ(第4磁気センサ)12 非磁性層C/U 制御装置LP1 インクリメンタル第1磁気センサの出力信号が1周期分出力されるときのラック軸5の移動量に相当する長さLP2 バーニア第1磁気センサの1出力信号が1周期分出力されるときのラック軸5の移動量に相当する長さP 基準軸線 1 Steering device 100 Steering amount detection device 5 Rack bar (steering shaft) 5a Rack bar main body (steering shaft main body) 5b Magnetic scale mounting part 7 Steering wheel 8 Housing 8a Housing main body 8b Steering shaft accommodation space 8c Sensor accommodation space 9a Incremental magnetic scale (magnetic scale) 9a1 Incremental 1st N pole (1st N pole) 9a2 Incremental 1st S pole (1st S pole) 9a3 Incremental 2nd N pole (2nd N pole) 9a4 Incremental 2nd S pole (2nd S pole) 9a5 Incremental 3rd N pole (3rd N pole) 9a6 Incremental 3rd S pole (3rd S pole) 9aa Non-magnetized region 9b Vernier magnetic scale (magnetic scale) 9b1 Vernier 1st N pole (1st N pole) 9b2 Vernier 1st S pole (1st S pole) 9b3 Vernier 2nd N pole (2nd N pole) 9b4 Vernier 2nd S pole (2nd S pole) 9b5 Vernier 3N pole (3rd N pole) 9b6 Vernier 3rd S pole (3rd S pole) 9bb Non-magnetometer region 10 Incremental magnetometer unit ( Magnetic sensor unit) 10a Incremental first magnetic sensor (first magnetic sensor) 10b Incremental second magnetic sensor (second magnetic sensor) 10c Incremental third magnetic sensor (third magnetic sensor) 10d Incremental fourth magnetic sensor (fourth magnetometer) Sensor) 11 Vernier magnetic sensor unit (magnetic sensor unit) 11a Vernier 1st magnetic sensor (1st magnetic sensor) 11b Vernier 2nd magnetic sensor (2nd magnetic sensor) 11c Vernier 3rd magnetic sensor (3rd magnetic sensor) 11d Vernier 4th magnetic sensor (4th magnetic sensor) 12 Non-magnetic layer C / U controller LP1 Incremental Length LP2 vernier corresponding to the amount of movement of the rack shaft 5 when the output signal of the 1st magnetic sensor is output for one cycle Length P reference axis corresponding to the amount of movement of the rack shaft 5 when one output signal of the first magnetic sensor is output for one cycle

Claims (14)

  1.  操舵量検出装置であって、
     ハウジングであって、ハウジング本体部と、操舵軸収容空間と、センサ収容空間と、を備え、
     前記ハウジング本体部は、筒形状を有し、
     前記操舵軸収容空間は、前記ハウジング本体部の内側に形成されており、
     前記センサ収容空間は、前記ハウジング本体部の内側に形成されている、
     前記ハウジングと、
     前記操舵軸収容空間に設けられた操舵軸であって、操舵軸本体部と、磁気スケール搭載部を備え、
     前記操舵軸本体部は、棒形状を有し、前記操舵軸収容空間内で長手方向に移動することで、操舵輪を操舵可能であり、
     前記磁気スケール搭載部は、前記操舵軸本体部の外周側に設けられている、
     前記操舵軸と、
     前記磁気スケール搭載部に設けられた磁気スケールであって、前記操舵軸の長手方向において、第1N極、第1S極、第2N極、第2S極、第3N極、第3S極の順にN極とS極が交互に配置されている、
     前記磁気スケールと、
     前記磁気スケールに対向するように前記センサ収容空間に設けられた磁気センサ部であって、第1磁気センサ、第2磁気センサ、第3磁気センサ、および第4磁気センサを含み、
     前記操舵軸の長手方向において、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、前記第4磁気センサの順に配置されており、
     前記操舵軸の移動に伴い前記磁気スケールが前記磁気センサ部の前を通過するとき、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号は周期的に変化すると共に、
     前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない、
     前記磁気センサ部と、を有する、
     操舵量検出装置。
    It is a steering amount detection device,
    The housing includes a housing body, a steering shaft accommodation space, and a sensor accommodation space.
    The housing body has a tubular shape and has a tubular shape.
    The steering shaft accommodation space is formed inside the housing main body.
    The sensor accommodation space is formed inside the housing body.
    With the housing
    It is a steering shaft provided in the steering shaft accommodation space, and includes a steering shaft main body portion and a magnetic scale mounting portion.
    The steering shaft main body has a rod shape, and the steering wheels can be steered by moving in the longitudinal direction in the steering shaft accommodation space.
    The magnetic scale mounting portion is provided on the outer peripheral side of the steering shaft main body portion.
    With the steering shaft
    A magnetic scale provided on the magnetic scale mounting portion, in which the first N pole, the first S pole, the second N pole, the second S pole, the third N pole, and the third S pole are N poles in this order in the longitudinal direction of the steering shaft. And S poles are arranged alternately,
    With the magnetic scale
    A magnetic sensor unit provided in the sensor accommodation space so as to face the magnetic scale, including a first magnetic sensor, a second magnetic sensor, a third magnetic sensor, and a fourth magnetic sensor.
    In the longitudinal direction of the steering shaft, the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are arranged in this order.
    When the magnetic scale passes in front of the magnetic sensor unit as the steering shaft moves, the outputs of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor are obtained. The signal changes periodically and
    When the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor each detect at the same timing, the phases do not match each other and are shifted by a half cycle. The phases do not match each other,
    It has the magnetic sensor unit and
    Steering amount detection device.
  2.  請求項1に記載の操舵量検出装置であって、
     前記第1磁気センサ、前記第2磁気センサ、および前記第3磁気センサの夫々は、互いに3分の1周期ずれた位相を検出するように配置されている、
     操舵量検出装置。
    The steering amount detecting device according to claim 1.
    The first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other.
    Steering amount detection device.
  3.  請求項2に記載の操舵量検出装置であって、
     前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサは、前記第1磁気センサの出力信号が1周期分出力されるときの前記操舵軸の移動量に相当する長さの範囲内に収まるように配置されている、
     操舵量検出装置。
    The steering amount detecting device according to claim 2.
    The first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor determine the amount of movement of the steering shaft when the output signal of the first magnetic sensor is output for one cycle. Arranged to fit within the corresponding length range,
    Steering amount detection device.
  4.  請求項1に記載の操舵量検出装置であって、
     前記磁気スケールは、前記操舵軸の長手方向において、第1N極、第1S極、第2N極、第2S極、第3N極、および第3S極の夫々の間に、磁化されていない非磁化領域を有する、
     操舵量検出装置。
    The steering amount detecting device according to claim 1.
    The magnetic scale is an unmagnetized non-magnetized region between the first N pole, the first S pole, the second N pole, the second S pole, the third N pole, and the third S pole in the longitudinal direction of the steering shaft. Have,
    Steering amount detection device.
  5.  請求項1に記載の操舵量検出装置であって、
     更に、制御装置を備え、
     前記制御装置は、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号のうち、少なくとも3つに基づき、前記操舵軸の位置情報を生成し、
     前記制御装置は、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号のうち、いずれか1つが異常となったとき、残りの3つで前記操舵軸の位置情報の生成を継続する、
     操舵量検出装置。
    The steering amount detecting device according to claim 1.
    In addition, it is equipped with a control device
    The control device obtains the position information of the steering shaft based on at least three of the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor. Generate and
    When any one of the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor becomes abnormal, the control device provides the remaining three. Then, the generation of the position information of the steering shaft is continued.
    Steering amount detection device.
  6.  請求項5に記載の操舵量検出装置であって、
     前記制御装置は、前記第1磁気センサ、前記第2磁気センサ、前記第3磁気センサ、および前記第4磁気センサの夫々の出力信号のうち、いずれか2つが異常となったとき、残りの2つで前記操舵軸の位置情報の生成を継続する、
     操舵量検出装置。
    The steering amount detecting device according to claim 5.
    When any two of the output signals of the first magnetic sensor, the second magnetic sensor, the third magnetic sensor, and the fourth magnetic sensor becomes abnormal, the control device provides the remaining two. Then, the generation of the position information of the steering shaft is continued.
    Steering amount detection device.
  7.  請求項1に記載の操舵量検出装置であって、
     前記操舵軸の長手方向に対し直角な断面において前記操舵軸の中心を通り、かつ前記操舵軸の長手方向と平行な軸線を基準軸線としたとき、前記磁気スケール搭載部は、前記基準軸線に対し平行な平面形状を有している、
     操舵量検出装置。
    The steering amount detecting device according to claim 1.
    When the axis that passes through the center of the steering shaft and is parallel to the longitudinal direction of the steering shaft is set as the reference axis in a cross section perpendicular to the longitudinal direction of the steering shaft, the magnetic scale mounting portion is relative to the reference axis. Has a parallel planar shape,
    Steering amount detection device.
  8.  請求項1に記載の操舵量検出装置であって、
     更に、非磁性層を備え、
     前記操舵軸は、磁性材料で形成されており、
     前記非磁性層は、非磁性材料で形成されており、前記磁気スケール搭載部と前記磁気スケールの間に設けられている、
     操舵量検出装置。
    The steering amount detecting device according to claim 1.
    In addition, it has a non-magnetic layer
    The steering shaft is made of a magnetic material and
    The non-magnetic layer is made of a non-magnetic material and is provided between the magnetic scale mounting portion and the magnetic scale.
    Steering amount detection device.
  9.  請求項8に記載の操舵量検出装置であって、
     前記非磁性層の外縁は、前記磁気スケールの外縁を包囲するように形成されている、
     操舵量検出装置。
    The steering amount detecting device according to claim 8.
    The outer edge of the non-magnetic layer is formed so as to surround the outer edge of the magnetic scale.
    Steering amount detection device.
  10.  請求項8に記載の操舵量検出装置であって、
     前記非磁性層は、樹脂材料で型成形により形成されており、
     前記磁気スケールは、前記非磁性層にインサートモールドされている、
     操舵量検出装置。
    The steering amount detecting device according to claim 8.
    The non-magnetic layer is made of a resin material and is formed by molding.
    The magnetic scale is insert-molded into the non-magnetic layer.
    Steering amount detection device.
  11.  操舵量検出装置であって、
     ハウジングであって、ハウジング本体部と、操舵軸収容空間と、センサ収容空間と、を備えており、
     前記ハウジング本体部は、筒形状を有し、
     前記操舵軸収容空間は、前記ハウジング本体部の内側に形成されており、
     前記センサ収容空間は、前記ハウジング本体部の内側に形成されている、
     前記ハウジングと、
     前記操舵軸収容空間に設けられた操舵軸であって、操舵軸本体部と、磁気スケール搭載部を備え、
     前記操舵軸本体部は、棒形状を有し、前記操舵軸収容空間内で長手方向に移動することで、操舵輪を操舵可能であり、
     前記磁気スケール搭載部は、前記操舵軸本体部の外周側に設けられている、
     前記操舵軸と、
     前記磁気スケール搭載部に設けられたバーニア磁気スケールであって、前記操舵軸の長手方向において、バーニア第1N極、バーニア第1S極、バーニア第2N極、バーニア第2S極、バーニア第3N極、バーニア第3S極の順にN極とS極が交互に配置されている、
     前記バーニア磁気スケールと、
     前記磁気スケール搭載部に設けられたインクリメンタル磁気スケールであって、前記操舵軸の長手方向において、インクリメンタル第1N極、インクリメンタル第1S極、インクリメンタル第2N極、インクリメンタル第2S極、インクリメンタル第3N極、インクリメンタル第3S極の順にN極とS極が交互に配置されている、
     前記インクリメンタル磁気スケールと、
     前記バーニア磁気スケールに対向するように前記センサ収容空間に設けられたバーニア磁気センサ部であって、バーニア第1磁気センサ、バーニア第2磁気センサ、およびバーニア第3磁気センサを含み、
     前記操舵軸の長手方向において、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサの順に配置されており、
     前記操舵軸の移動に伴い前記バーニア磁気スケールが前記バーニア磁気センサ部の前を通過するとき、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々の出力信号は周期的に変化すると共に、
     前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない、
     前記バーニア磁気センサ部と、
     前記インクリメンタル磁気スケールに対向するように前記センサ収容空間に設けられたインクリメンタル磁気センサ部であって、インクリメンタル第1磁気センサ、インクリメンタル第2磁気センサ、およびインクリメンタル第3磁気センサを含み、
     前記操舵軸の長手方向において、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサの順に配置されており、
     前記操舵軸の移動に伴い前記インクリメンタル磁気スケールが前記インクリメンタル磁気センサ部の前を通過するとき、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々の出力信号は周期的に変化すると共に、
     前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない、
     前記インクリメンタル磁気センサ部と、
     を有する操舵量検出装置。
    It is a steering amount detection device,
    It is a housing, and includes a housing main body, a steering shaft accommodation space, and a sensor accommodation space.
    The housing body has a tubular shape and has a tubular shape.
    The steering shaft accommodation space is formed inside the housing main body.
    The sensor accommodation space is formed inside the housing body.
    With the housing
    It is a steering shaft provided in the steering shaft accommodation space, and includes a steering shaft main body portion and a magnetic scale mounting portion.
    The steering shaft main body has a rod shape, and the steering wheels can be steered by moving in the longitudinal direction in the steering shaft accommodation space.
    The magnetic scale mounting portion is provided on the outer peripheral side of the steering shaft main body portion.
    With the steering shaft
    A vernier magnetic scale provided on the magnetic scale mounting portion, in the longitudinal direction of the steering shaft, a vernier 1N pole, a vernier 1st S pole, a vernier 2nd N pole, a vernier 2nd S pole, a vernier 3N pole, and a vernier. N poles and S poles are arranged alternately in the order of the third S pole,
    With the vernier magnetic scale
    An incremental magnetic scale provided on the magnetic scale mounting portion, wherein in the longitudinal direction of the steering shaft, the incremental 1N pole, the incremental 1S pole, the incremental 2N pole, the incremental 2S pole, the incremental 3N pole, and the incremental N poles and S poles are arranged alternately in the order of the third S pole,
    With the incremental magnetic scale
    A vernier magnetic sensor unit provided in the sensor accommodation space so as to face the vernier magnetic scale, including a vernier first magnetic sensor, a vernier second magnetic sensor, and a vernier third magnetic sensor.
    In the longitudinal direction of the steering shaft, the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are arranged in this order.
    When the vernier magnetic scale passes in front of the vernier magnetic sensor unit as the steering shaft moves, the output signals of the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are respectively. Changes periodically and
    When the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor each detect at the same timing, the phases do not match each other and are shifted by half a cycle. Do not match each other
    With the vernier magnetic sensor unit
    An incremental magnetic sensor unit provided in the sensor accommodation space so as to face the incremental magnetic scale, which includes an incremental first magnetic sensor, an incremental second magnetic sensor, and an incremental third magnetic sensor.
    In the longitudinal direction of the steering shaft, the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor are arranged in this order.
    When the incremental magnetic scale passes in front of the incremental magnetic sensor unit with the movement of the steering shaft, the output signals of the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor are respectively. Changes periodically and
    When the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor each detect at the same timing, the phases do not match each other and are shifted by half a cycle. Do not match each other
    With the incremental magnetic sensor unit
    Steering amount detection device having.
  12.  請求項11に記載の操舵量検出装置であって、
     更に、制御装置を備え、
     前記制御装置は、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々の出力信号に基づき、前記操舵軸の位置情報を生成すると共に、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々の出力信号に基づき、前記操舵軸の位置情報を生成し、
     前記制御装置は、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々の出力信号のうち、いずれか1つが異常となったとき、前記制御装置の電力の供給が継続されている間は、前記バーニア磁気センサ部に残る2つで前記操舵軸の位置情報の生成を継続すると共に、
     前記制御装置は、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々の出力信号のうち、いずれか1つが異常となったとき、前記制御装置の電力の供給が継続されている間は、前記インクリメンタル磁気センサ部に残る2つで前記操舵軸の位置情報の生成を継続する、
     操舵量検出装置。
    The steering amount detecting device according to claim 11.
    In addition, it is equipped with a control device
    The control device generates position information of the steering shaft based on the output signals of the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor, and the incremental first magnetic. Based on the output signals of the sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor, the position information of the steering shaft is generated.
    When any one of the output signals of the vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor becomes abnormal, the control device receives power from the control device. While the supply is continued, the two remaining in the vernier magnetic sensor unit continue to generate the position information of the steering shaft, and at the same time,
    When any one of the output signals of the incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor becomes abnormal, the control device receives power of the control device. While the supply is continued, the two remaining in the incremental magnetic sensor unit continue to generate the position information of the steering shaft.
    Steering amount detection device.
  13.  請求項11に記載の操舵量検出装置であって、
     前記バーニア磁気センサ部は、更に、バーニア第4磁気センサを備え、
     前記操舵軸の長手方向において、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、前記バーニア第4磁気センサの順に配置されており、
     前記操舵軸の移動に伴い前記バーニア磁気スケールが前記バーニア磁気センサ部の前を通過するとき、前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、および前記バーニア第4磁気センサの夫々の出力信号は周期的に変化すると共に、
     前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、および前記バーニア第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致せず、
     前記インクリメンタル磁気センサ部は、更に、インクリメンタル第4磁気センサを備え、前記操舵軸の長手方向において、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、前記インクリメンタル第4磁気センサの順に配置されており、
     前記操舵軸の移動に伴い前記インクリメンタル磁気スケールが前記インクリメンタル磁気センサ部の前を通過するとき、前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、および前記インクリメンタル第4磁気センサの夫々の出力信号は周期的に変化すると共に、
     前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、および前記インクリメンタル第4磁気センサの夫々が同じタイミングで検出した場合の位相は、互いに一致せず、かつ、2分の1周期ずれた位相とも互いに一致しない、
     操舵量検出装置。
    The steering amount detecting device according to claim 11.
    The vernier magnetic sensor unit further includes a vernier fourth magnetic sensor.
    In the longitudinal direction of the steering shaft, the vernier first magnetic sensor, the vernier second magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor are arranged in this order.
    When the vernier magnetic scale passes in front of the vernier magnetic sensor unit with the movement of the steering shaft, the vernier first magnetic sensor, the vernier second magnetic sensor, the vernier third magnetic sensor, and the vernier fourth. The output signal of each magnetic sensor changes periodically and
    When the vernier first magnetic sensor, the vernier second magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor each detect at the same timing, the phases do not match each other and are two minutes. Does not match each other with the phase shifted by one cycle of
    The incremental magnetic sensor unit further includes an incremental fourth magnetic sensor, and in the longitudinal direction of the steering shaft, the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth. They are arranged in the order of magnetic sensors,
    When the incremental magnetic scale passes in front of the incremental magnetic sensor unit with the movement of the steering shaft, the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth The output signal of each magnetic sensor changes periodically and
    When the incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth magnetic sensor each detect at the same timing, the phases do not match each other and are 2 minutes. Does not match each other with the phase shifted by one cycle of
    Steering amount detection device.
  14.  請求項13に記載の操舵量検出装置であって、
     前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、および前記バーニア第3磁気センサの夫々は、互いに3分の1周期ずれた位相を検出するように配置されており、
     前記バーニア第1磁気センサ、前記バーニア第2磁気センサ、前記バーニア第3磁気センサ、および前記バーニア第4磁気センサは、前記バーニア第1磁気センサの出力信号が1周期分出力されるときの前記操舵軸の移動量に相当する長さの範囲内に収まるように配置されており、
     前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、および前記インクリメンタル第3磁気センサの夫々は、互いに3分の1周期ずれた位相を検出するように配置されており、
     前記インクリメンタル第1磁気センサ、前記インクリメンタル第2磁気センサ、前記インクリメンタル第3磁気センサ、および前記インクリメンタル第4磁気センサは、前記インクリメンタル第1磁気センサの出力信号が1周期分出力されるときの前記操舵軸の移動量に相当する長さの範囲内に収まるように配置されている、
     操舵量検出装置。
    The steering amount detecting device according to claim 13.
    The vernier first magnetic sensor, the vernier second magnetic sensor, and the vernier third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other.
    The vernier first magnetic sensor, the vernier second magnetic sensor, the vernier third magnetic sensor, and the vernier fourth magnetic sensor are steered when the output signal of the vernier first magnetic sensor is output for one cycle. It is arranged so that it fits within the range of the length corresponding to the amount of movement of the shaft.
    The incremental first magnetic sensor, the incremental second magnetic sensor, and the incremental third magnetic sensor are arranged so as to detect phases that are one-third out of phase with each other.
    The incremental first magnetic sensor, the incremental second magnetic sensor, the incremental third magnetic sensor, and the incremental fourth magnetic sensor are steered when the output signal of the incremental first magnetic sensor is output for one cycle. It is arranged so that it fits within the range of the length corresponding to the movement amount of the axis.
    Steering amount detection device.
PCT/JP2020/022490 2019-07-04 2020-06-08 Steering amount detection device WO2021002149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124906 2019-07-04
JP2019124906A JP2021012046A (en) 2019-07-04 2019-07-04 Steering amount detector

Publications (1)

Publication Number Publication Date
WO2021002149A1 true WO2021002149A1 (en) 2021-01-07

Family

ID=74100577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022490 WO2021002149A1 (en) 2019-07-04 2020-06-08 Steering amount detection device

Country Status (2)

Country Link
JP (1) JP2021012046A (en)
WO (1) WO2021002149A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056304U (en) * 1991-07-10 1993-01-29 光洋精工株式会社 Steering angle detector
JPH10197544A (en) * 1996-11-12 1998-07-31 Daido Gakuen Revolving speed sensing device
US20050024044A1 (en) * 2002-07-26 2005-02-03 Norman Poirier Angular positioning sensing system and method
JP2009543097A (en) * 2006-07-11 2009-12-03 コンティネンタル オートモーティブ システムズ ユーエス, インコーポレイティッド Rotation angle detection system
JP2010223595A (en) * 2009-03-19 2010-10-07 Ribekkusu:Kk Position detection device
JP2013061346A (en) * 2008-02-06 2013-04-04 Nsk Ltd Rotation information calculation apparatus, steering apparatus, electric power steering apparatus, bearing apparatus with sensor, vehicle, abnormality detection apparatus, rotation information calculation method, and abnormality detection method
WO2013176104A1 (en) * 2012-05-22 2013-11-28 三菱電機株式会社 Magnetic rotation angle detector
JP2017052448A (en) * 2015-09-10 2017-03-16 株式会社ジェイテクト Steering control device
JP2019506614A (en) * 2016-02-24 2019-03-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Rotation angle sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716954B2 (en) * 2011-01-17 2015-05-13 株式会社ジェイテクト Rotation angle detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056304U (en) * 1991-07-10 1993-01-29 光洋精工株式会社 Steering angle detector
JPH10197544A (en) * 1996-11-12 1998-07-31 Daido Gakuen Revolving speed sensing device
US20050024044A1 (en) * 2002-07-26 2005-02-03 Norman Poirier Angular positioning sensing system and method
JP2009543097A (en) * 2006-07-11 2009-12-03 コンティネンタル オートモーティブ システムズ ユーエス, インコーポレイティッド Rotation angle detection system
JP2013061346A (en) * 2008-02-06 2013-04-04 Nsk Ltd Rotation information calculation apparatus, steering apparatus, electric power steering apparatus, bearing apparatus with sensor, vehicle, abnormality detection apparatus, rotation information calculation method, and abnormality detection method
JP2010223595A (en) * 2009-03-19 2010-10-07 Ribekkusu:Kk Position detection device
WO2013176104A1 (en) * 2012-05-22 2013-11-28 三菱電機株式会社 Magnetic rotation angle detector
JP2017052448A (en) * 2015-09-10 2017-03-16 株式会社ジェイテクト Steering control device
JP2019506614A (en) * 2016-02-24 2019-03-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Rotation angle sensor

Also Published As

Publication number Publication date
JP2021012046A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN101929834B (en) Rotational angle-measurement apparatus and rotational speed-measurement apparatus
EP2843370B1 (en) Rotation detector
US9429632B2 (en) Magnetic position detection device
JP6359079B2 (en) Hall sensor insensitive to external magnetic field
US20120038359A1 (en) Rotating field sensor
US20120038351A1 (en) Rotating field sensor
JP2011038855A (en) Magnetic sensor
CN105222812A (en) There is the sensing system of three half-bridge structures
JP5062454B2 (en) Magnetic sensor
JP6969581B2 (en) Rotation angle detector
US20110303001A1 (en) Rotary angle and rotary torque sensing device
JP5201493B2 (en) Position detection device and linear drive device
CN110006466B (en) Arithmetic processing device, angle sensor, and power steering device
JP5511748B2 (en) Motion detection device
WO2021002149A1 (en) Steering amount detection device
JP4900838B2 (en) Position detection device and linear drive device
CN111220935B (en) Magnetic sensor device
CN110749276B (en) Angle sensor correction device and angle sensor
WO2019171763A1 (en) Linear position sensor
CN116164778A (en) Position sensor with main rail and Norus rail
JP2010181310A (en) Rotational angle/torque detection device
CN110926506B (en) Angle sensor system
JP2011080783A (en) Relative angle detector, rotation angle detector, and power steering device
JP5062453B2 (en) Magnetic sensor
JP5477429B2 (en) Physical quantity detection value correction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835374

Country of ref document: EP

Kind code of ref document: A1