WO2021001884A1 - エレベーターの制御装置 - Google Patents

エレベーターの制御装置 Download PDF

Info

Publication number
WO2021001884A1
WO2021001884A1 PCT/JP2019/026094 JP2019026094W WO2021001884A1 WO 2021001884 A1 WO2021001884 A1 WO 2021001884A1 JP 2019026094 W JP2019026094 W JP 2019026094W WO 2021001884 A1 WO2021001884 A1 WO 2021001884A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
information
motor
landing
control device
Prior art date
Application number
PCT/JP2019/026094
Other languages
English (en)
French (fr)
Inventor
一文 平林
英二 横山
英敬 石黒
酒井 雅也
坂野 裕一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980095653.3A priority Critical patent/CN114026037B/zh
Priority to JP2021529565A priority patent/JP7168085B2/ja
Priority to PCT/JP2019/026094 priority patent/WO2021001884A1/ja
Publication of WO2021001884A1 publication Critical patent/WO2021001884A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/44Means for stopping the cars, cages, or skips at predetermined levels and for taking account of disturbance factors, e.g. variation of load weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators

Definitions

  • the present invention relates to an elevator control device.
  • Patent Document 1 discloses an elevator control device. According to the control device, the releveling operation for matching the heights of the car floor and the landing floor can be accurately performed.
  • An object of the present invention is to provide an elevator control device capable of accurately performing a relevel operation without requiring a continuously detected value of a relative error between a car floor and a landing floor.
  • the elevator control device provides information on the necessity of releveling when the elevator car is stopped at the landing, and the state of the brake of the motor of the elevator when the car is stopped at the landing.
  • a car that estimates the position of the car based on the information, the information on the open / closed state of the door of the car, the information on the weight applied to the car, the information on the position of the motor, and the information on the speed of the motor. It is provided with a position estimation unit and a control unit that performs a relevel operation of the car based on the position of the car estimated by the car position estimation unit.
  • the position of the car is estimated from information such as the necessity of releveling.
  • the releveling operation is based on the estimated position of the car. Therefore, the relevel operation can be performed accurately without requiring a continuously detected value of the relative error between the car floor and the landing floor.
  • FIG. 5 is a configuration diagram of an elevator system to which the elevator control device according to the first embodiment is applied. It is a figure which shows the example of the relevel operation determination function used for the control device of an elevator in Embodiment 1.
  • FIG. It is a figure which shows the operation waveform of a plurality of detection sensors used for the control device of an elevator in Embodiment 1.
  • FIG. It is a block diagram for demonstrating the method of generating the car position estimation signal by the control device of the elevator in Embodiment 1.
  • FIG. FIG. 5 is a block diagram of a first simulated means of an elevator control device according to the first embodiment.
  • FIG. 5 is a block diagram of a third simulated means of an elevator control device according to the first embodiment.
  • FIG. 5 is a block diagram of an instantaneous state observer of an elevator control device according to the first embodiment. It is a figure of the time axis waveform which shows the relevel operation by the control device of the elevator in Embodiment 1.
  • FIG. 5 is a hardware block diagram of the control device of an elevator in Embodiment 1.
  • FIG. FIG. 5 is a configuration diagram of an elevator system to which the elevator control device according to the second embodiment is applied.
  • FIG. 1 is a configuration diagram of an elevator system to which the elevator control device according to the first embodiment is applied.
  • the elevator motor 1 is provided in a machine room or the like.
  • the sheave 2 is attached to the rotating shaft of the motor 1.
  • the rope 3 is wound around the sheave 2.
  • the basket 4 is hung at one end of the rope 3.
  • the balance weight 5 is hung on the other end of the rope 3.
  • the brake 6 is provided so that the motor 1 can transition between a braking state and an open state.
  • the scale 17 is provided on the floor of the car 4.
  • the scale 17 is provided so that the weight applied to the floor of the car 4 can be measured.
  • the detection signal of the scale 17 is defined as Wgt.
  • the encoder 11 is provided in the motor 1.
  • the encoder 11 is provided so as to be able to detect the rotation angle of the motor 1.
  • the control device S includes a speed command generation unit 14, a speed calculation unit 12, a subtraction unit 15, a speed control unit 16, a current control unit 9, a brake operation command unit 7, a car position estimation unit 19, and a subtraction unit 13.
  • the speed command generation unit 14 outputs the speed command signal v_ref.
  • the speed calculation unit 12 receives the input of the motor angle detection signal x_m, which is the output of the encoder 11.
  • the speed calculation unit 12 converts the motor angle detection signal x_m into an angular velocity signal of the motor 1.
  • the speed calculation unit 12 converts the angular velocity signal of the motor 1 into the speed signal v_m of the car 4.
  • the speed calculation unit 12 outputs the speed signal v_m of the car 4.
  • the subtraction unit 15 obtains the speed error signal v_err by subtracting the speed signal v_m which is the output of the speed calculation unit 12 from the speed command signal v_ref which is the output of the speed command generation unit 14.
  • the speed control unit 16 receives the input of the speed error signal v_err.
  • the speed control unit 16 outputs a speed control signal iq_v_cont which is the result of proportional / integral / differential calculation so that the speed control is stable and a predetermined performance can be obtained.
  • the current control unit 9 receives the input of the speed control signal iq_v_cont, which is the output of the speed control unit 16, as the input of the torque current command signal.
  • the current control unit 9 functions so that the motor drive current iq from the current detecting means 10 becomes the value of the torque current command signal iq_v_cont.
  • the current control unit 9 supplies the motor 1 with a drive current iq such that the value of the torque current command signal iq_v_cont is obtained.
  • a speed control system is realized. Specifically, the speed of the car 4 is controlled so that the speed error signal v_errr follows the speed command signal v_ref within a preset value.
  • the brake operation command unit 7 When the car 4 arrives at the landing on the target floor from the preset floor, the brake operation command unit 7 outputs the brake control signal BK.
  • the brake control unit 8 shifts the state of the brake 6 from the open state to the braking state based on the brake control signal BK.
  • the car 4 stops at the landing on the target floor. After that, the door operation command unit 20 outputs the door operation command signal. The door of the car 4 opens with respect to the landing based on the door operation command signal.
  • the relevel operation determination function 18 determines whether or not the position fluctuation of the car 4 is within the range in which the relevel operation should be performed.
  • the car position estimation unit 19 receives inputs of the relevel operation determination function 18, the scale 17, the encoder 11, the speed calculation unit 12, and the door operation command unit 20.
  • the car position estimation unit 19 outputs a car position estimation signal as an estimation signal of the car stop position deviation.
  • the subtraction unit 13 subtracts the car position estimation signal x_c_h from 0, which is the target position, to obtain a car position error signal.
  • the speed command generation unit 14 outputs the speed command signal v_ref as the relevel control unit so that the position error signal output from the subtraction unit 13 converges to 0.
  • a car position control system is realized. Specifically, the position v_x of the car 4 converges with respect to the landing target position.
  • FIG. 2 is a diagram showing an example of a relevel operation determination function used in the elevator control device according to the first embodiment.
  • FIG. 2A is a schematic view when the position of the car 4 is below the landing target position.
  • FIG. 2B is a schematic view when the position of the car 4 is at the landing target position.
  • Plates 181 and 182 are provided inside the hoistway around the landing.
  • the plate 181 and the plate 182 have the same length with respect to the moving direction of the car 4.
  • the lower end of the plate 181 is set by shifting by -A with respect to the landing target position.
  • the upper end of the plate 182 is installed so as to be offset by + A with respect to the landing target position.
  • the value of A is selected to the length at which the relevel operation is determined to be necessary.
  • the plate detection sensor group 183 is provided in the car 4.
  • the plate detection sensor group 183 includes a detection sensor 183a and a detection sensor 183b. As shown in FIG. 2B, in the plate detection sensor group 183, when the car 4 is in the landing target position, the car position detection line overlaps the landing target position of the plate 181 and the plate 182. Be placed.
  • the detection sensor 183a determines whether or not the plate 181 crosses the car position detection line.
  • the detection sensor 183b determines whether the plate 182 crosses the car position detection line.
  • FIG. 3 is a diagram showing operation waveforms of a plurality of detection sensors used in the elevator control device according to the first embodiment.
  • FIG. 3A shows the output waveform Rlvl_sig_down of the detection sensor 183a.
  • the horizontal axis is the car position error from the landing target position.
  • the vertical axis is the output of the detection sensor 183a.
  • the output of the detection sensor 183a is a binary detection value.
  • the output of the detection sensor 183a is L.
  • the output of the detection sensor 183a becomes H.
  • FIG. 3 shows the output waveform Rlvl_sig_up of the detection sensor 183b.
  • the horizontal axis is the car position error from the landing target position.
  • the vertical axis is the output of the detection sensor 183b.
  • the output of the detection sensor 18ba is a binary detection value.
  • the output of the detection sensor 183b is H.
  • the output of the detection sensor 183b becomes L.
  • FIG. 4 is a block diagram for explaining a method of generating a car position estimation signal by the elevator control device according to the first embodiment.
  • the plurality of functional blocks represent the transmission characteristics from the position of the motor 1 to the position of the car 4 in FIG.
  • the first conversion characteristic 300 converts the motor position x_m into a force F_m transmitted to the car 4 by the motor position fluctuation.
  • the first conversion characteristic 300 is determined by the mechanical characteristics of the rope 3.
  • the adder 301 outputs a resultant force F_c which is the sum of the force F_m transmitted to the car 4 due to the change in the motor position and the gravity change F_l due to the change in the load capacity of the car.
  • the second conversion characteristic 302 converts the resultant force F_c to the car position x_c.
  • the second conversion characteristic 302 becomes a secondary transmission characteristic having the car mass, the rope rigidity, and the rope viscosity as parameters.
  • the relevel operation determination function 18 outputs 2Rlvl_sig_down and the relevel operation determination signal Rlvl_sig_up as relevel operation determination signals based on the car position x_c.
  • the car position estimation unit 19 includes four functional blocks of a first simulated means 191 and a second simulated means 192, an adder 193, and a third simulated means 194.
  • the four functional blocks are models that simulate the behavior of an actual system.
  • the first simulation means 191 simulates the characteristics of converting the motor position and the motor speed into a car transmission force.
  • the first simulating means 191 corresponds to the first conversion characteristic 300.
  • the second simulated means 192 calculates the gravity fluctuation due to the change in the car load capacity after landing.
  • the second simulated means 192 and the adder 193 correspond to the adder 301.
  • the third simulating means 194 simulates the characteristic of converting the car acting force into the car position.
  • the third simulation means 194 corresponds to the second conversion characteristic 302.
  • the first simulated means 191 accepts inputs of the motor position x_m, the brake control signal BK, and the motor speed signal v_m.
  • the first simulated means 191 outputs an estimated value F_m_h of the force transmitted to the car 4 due to the change in the motor position as a value corresponding to the force F_m transmitted to the car 4 due to the change in the motor position.
  • the second simulation means 192 accepts the input of wgt, which is the output of the scale 17.
  • the second simulated means 192 converts wgt with the value of wgt at the timing immediately before the door of the car 4 opens as a reference value, and further multiplies the converted signal by the gravitational acceleration to change the gravity due to the change in the car load capacity.
  • the measured value F_l_h of is calculated.
  • the second simulated means 192 outputs the measured value F_l_h of the gravity fluctuation due to the change in the car load capacity as a value corresponding to the gravity fluctuation F_l due to the change in the car load capacity.
  • the timing immediately before the door of the car 4 opens is determined by the door operation command signal DR, which is the output of the door operation command unit 20.
  • the adder 193 adds a signal F_c_h that simulates the resultant force F_c applied to the car 4 by adding the estimated value F_m_h of the force transmitted to the car 4 due to the change in the motor position and the measured value F_l_h of the gravity fluctuation due to the change in the load capacity of the car. It is generated as a value corresponding to the resultant force F_c.
  • the third simulating means 194 receives the input of the signal F_c_h simulating the resultant force F_c applied to the car 4.
  • the third simulation means 194 receives inputs of the output signal Rlvl_sig_up and the output signal Rlvl_sig_down of the relevel operation determination function 18.
  • the third simulated means 194 outputs the estimated value x_c_h of the car position based on the landing position as a value corresponding to the car position x_c based on these input signals.
  • FIG. 5 is a block diagram of the first simulated means of the elevator control device according to the first embodiment.
  • the first simulating means 191 includes a motor position changing means 191a and a car transmission force converting characteristic simulating means 191b.
  • the motor position changing means 191a accepts an input of the motor position x_m.
  • the motor position conversion means 191a converts the motor position x_m into the motor position x_m'using the value of the motor position x_m at the timing when the brake control signal BK is activated, that is, the timing when the car 4 stops at the target floor as a reference value.
  • the car transmission force conversion characteristic simulating means 191b accepts the input of the motor position x_m'.
  • the car transmission force conversion characteristic simulating means 191b outputs an estimated value F_m_h of the force transmitted to the car by the motor position change calculated from the motor speed v_m and the motor position x_m'. The calculation is performed based on an equation with the elastic modulus and the viscosity coefficient of the rope 3 as parameters.
  • FIG. 6 is a block diagram of a third simulated means of the elevator control device according to the first embodiment.
  • the third simulated means 194 includes a car position error detecting means 194a and an instantaneous state observer 194b.
  • the car position error detecting means 194a receives inputs of the output signal Rlvl_sig_up and the output signal Rlvl_sig_down of the relevel operation determination function 18.
  • the car position error detecting means 194a discretely detects x_c_d as a car position error from the landing target position by a preset algorithm.
  • the instantaneous state observer 194b obtains x_c_h as continuous car position information based on the car position error x_c_d from the landing target position and the signal F_c_h simulating the resultant force F_c applied to the car 4.
  • FIG. 7 is a flowchart illustrating an outline of processing of the car position error detecting means of the elevator control device according to the first embodiment.
  • step S1 the car position error detecting means 194a determines whether or not both Rlvl_sig_up and Rlvl_sig_down are H.
  • step S1 If the determination in step S1 is YES, the car position error detecting means 194a performs the process of step S2.
  • step S2 the car position error detecting means 194a outputs L as the relevel determination switching timing signal Rlvl_tmg and outputs 0 as the relevel amount designation signal Rlvl_th. After that, the car position error detecting means 194a performs the process of step S1.
  • step S1 determines whether or not Rlvl_sig_up is L and Rlvl_sig_down is H.
  • step S4 the car position error detecting means 194a performs the process of step S4.
  • step S4 the car position error detecting means 194a pulse-outputs H for a period preset as Rlvl_tmg, and outputs A as a relevel amount designation signal Rlvl_th. After that, the car position error detecting means 194a performs the process of step S1.
  • step S3 determines whether or not Rlvl_sig_up is H and Rlvl_sig_down is L.
  • step S6 the car position error detecting means 194a pulse-outputs H for a period preset as Rlvl_tmg, and outputs -A as a relevel amount designation signal Rlvl_th. After that, the car position error detecting means 194a performs the process of step S1.
  • step S5 determines whether the determination in step S5 is NO. If the determination in step S5 is NO, the car position error detecting means 194a performs the process of step S7.
  • step S7 the car position error detecting means 194a recognizes that it is in an abnormal state, outputs L as Rlvl_tmg, and outputs 0 as the relevel amount designation signal Rlvl_th. After that, the car position error detecting means 194a ends the process.
  • FIG. 8 is a diagram showing the detection characteristics of the car position error detection signal from the landing target position with respect to the car position error from the landing target position by the elevator control device in the first embodiment.
  • the characteristic of the dotted line is an ideal detection characteristic without an error.
  • the characteristics of the solid line are the detection characteristics of x_c_d.
  • X_c_d is an accurate output only when the car position error from the landing target position on the horizontal axis is ⁇ A.
  • x_c_d becomes an output of 0.
  • x_c_d becomes the output of -A.
  • x_c_d becomes the output of A.
  • Rlvl_tm which is another output of x_c_d, may be substituted by a pulse starting from the state transition of Rlvl_th. In this case, Rlvl_tm becomes unnecessary.
  • FIG. 9 is a block diagram of an instantaneous state observer of the elevator control device according to the first embodiment.
  • A, B, and C are matrix functions when the controlled system is represented by the following equations (1) and (2).
  • Equation (1) is an equation of state.
  • Equation (2) is an output equation.
  • u is an input vector.
  • x is a state variable vector.
  • y is an output vector.
  • the breakdown of the state variable vector is the velocity of the car 4, the position of the car 4, and the disturbance force acting on the car 4.
  • the disturbance force acting on the car 4 is defined by the time-dependent change of the mechanism parameters constituting the A matrix or the error from the true value.
  • the instantaneous state observer 194b includes a functional block 400, a subtractor 401, a functional block 402, an integrator 403, a functional block 404, a subtractor 405, a switch 406, and a coefficient vector K407.
  • the functional block 400, the subtractor 401, the functional block 402, the integrator 403, and the functional block 404 are blocks corresponding to equations (1) and (2) as models of the controlled system.
  • the subtractor 405 outputs an error between the model and the actual system by subtracting the actually measured car position measurement value Rlvl_th from the model car position estimated value x_c_h.
  • the coefficient vector K407 outputs the result of multiplying the output of the subtractor 405 by the vector coefficient K.
  • the output of the coefficient vector K407 is fed back in front of the integrator 403 via the subtractor 401. As a result, the error between the model and the real system converges to zero.
  • Switch 406 controls the feedback of the error between the model and the actual system.
  • Rlvl_tmg which is the timing when the value of the car position measurement value Rlvl_th becomes a true value
  • the switch 406 turns on the feedback. If Rlvl_tmg, which is the timing at which the value of the car position measurement value Rlvl_th does not become a true value, is not H, the switch 406 turns off the feedback.
  • the functional block 400, the subtractor 401, the functional block 402 integrator 403, and the functional block continuously calculate the car position estimated value x_c_h based on the input signal F_c_h.
  • FIG. 10 is a diagram of a time axis waveform showing a relevel operation by the elevator control device according to the first embodiment.
  • FIG. 10A is a diagram showing gravity fluctuation F_l_h due to a change in the load capacity of the car after landing.
  • FIG. 10B is a diagram showing a car position estimated value x_c_h.
  • FIG. 10 (c) is a diagram showing a car position error detection value x_c_d (Rlvl_th).
  • FIG. 10D is a diagram showing a car position error detection value x_c_d (Rlvl_tmg).
  • the dotted line in FIG. 10B is the true value of the car position. If the model and the real system match, the solid and dotted lines will overlap. In this example, the solid line and the dotted line do not overlap because a slight error has occurred.
  • (D) in FIG. 10 is a switch control signal that functions to correct an error between the model and the actual system.
  • this signal becomes H
  • the error between the model and the actual system disappears.
  • the car position estimated value x_c_h is corrected to the true value. After that, a small error is maintained while simulating the dynamic characteristics.
  • the position of the car 4 is estimated from the information on the necessity of releveling and the like.
  • the relevel operation is performed by feedback control based on the signal at the estimated position of the car 4. Therefore, the releveling operation can be performed stably and accurately even when the position of the car 4 fluctuates due to the getting on and off of a person or the like without requiring a continuously detected value of the relative error between the car floor and the landing floor.
  • control device S estimates the position of the car 4 with high accuracy. Therefore, the relevel operation can be performed with higher accuracy.
  • FIG. 11 is a hardware configuration diagram of the elevator control device according to the first embodiment.
  • Each function of the control device S can be realized by a processing circuit.
  • the processing circuit includes at least one processor 1000a and at least one memory 1000b.
  • the processing circuit comprises at least one dedicated hardware 2000.
  • each function of the control device S is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in at least one memory 1000b. At least one processor 1000a realizes each function of the control device S by reading and executing a program stored in at least one memory 1000b. At least one processor 1000a is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • at least one memory 1000b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD or the like.
  • the processing circuit comprises at least one dedicated hardware 2000
  • the processing circuit may be implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • each function of the control device S is realized by a processing circuit.
  • each function of the control device S is collectively realized by a processing circuit.
  • a part may be realized by the dedicated hardware 2000, and the other part may be realized by software or firmware.
  • the function of the car position estimation unit 19 is realized by a processing circuit as dedicated hardware 2000, and at least one processor 1000a is stored in at least one memory 1000b for functions other than the function of the car position estimation unit 19. It may be realized by reading and executing the program.
  • the processing circuit realizes each function of the control device S by hardware 2000, software, firmware, or a combination thereof.
  • FIG. 12 is a configuration diagram of an elevator system to which the elevator control device according to the second embodiment is applied.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • the car position estimation unit 19 does not require the input of the motor speed signal v_m.
  • the car position estimation unit 19 obtains the motor speed signal v_m by time-differentiating the motor position signal x_m.
  • the car position estimation unit 19 estimates the position of the car 4 with high accuracy even if the motor speed signal v_m is not input. Therefore, the releveling operation can be performed stably and accurately even when the position of the car 4 fluctuates due to getting on and off by a person or the like without requiring a continuously detected value of the relative error between the car floor and the landing floor.
  • the elevator control device according to the present invention can be used for the elevator system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)

Abstract

かご床と乗場床との相対誤差の連続的な検出値を要することなく、リレベル動作を正確に行うことができるエレベーターの制御装置を提供する。エレベーターの制御装置は、エレベーターのかごが乗場に停止している際におけるリレベルの要否の情報と、前記かごが乗場に停止している際における前記エレベーターのモータのブレーキの状態の情報と、前記かごのドアの開閉状態の情報と、前記かごにかかる重量の情報と、前記モータの位置の情報と、前記モータの速度の情報と、に基づいて前記かごの位置を推定するかご位置推定部と、前記かご位置推定部により推定された前記かごの位置に基づいて前記かごのリレベル動作を行う制御部と、を備えた。

Description

エレベーターの制御装置
 この発明は、エレベーターの制御装置に関する。
 特許文献1は、エレベーターの制御装置を開示する。当該制御装置によれば、かご床と乗場床との高さを合わせるリレベル動作が正確に行われ得る。
日本特許第5329570号公報
 しかしながら、特許文献1に記載の制御装置において、かご床と乗場床との相対誤差の連続的な検出値が必要となる。このため、ガバナー等のセンサが必要となる。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、かご床と乗場床との相対誤差の連続的な検出値を要することなく、リレベル動作を正確に行うことができるエレベーターの制御装置を提供することである。
 この発明に係るエレベーターの制御装置は、エレベーターのかごが乗場に停止している際におけるリレベルの要否の情報と、前記かごが乗場に停止している際における前記エレベーターのモータのブレーキの状態の情報と、前記かごのドアの開閉状態の情報と、前記かごにかかる重量の情報と、前記モータの位置の情報と、前記モータの速度の情報と、に基づいて前記かごの位置を推定するかご位置推定部と、前記かご位置推定部により推定された前記かごの位置に基づいて前記かごのリレベル動作を行う制御部と、を備えた。
 この発明によれば、かごの位置は、リレベルの要否の情報等から推定される。リレベル動作は、かごの推定位置に基づいて行われる。このため、かご床と乗場床との相対誤差の連続的な検出値を要することなく、リレベル動作を正確に行うことができる。
実施の形態1におけるエレベーターの制御装置が適用されるエレベーターシステムの構成図である。 実施の形態1におけるエレベーターの制御装置に利用されるリレベル動作判定機能の例を示す図である。 実施の形態1におけるエレベーターの制御装置に利用される複数の検出センサの動作波形を示す図である。 実施の形態1におけるエレベーターの制御装置によるかご位置推定信号の生成方法を説明するためのブロック図である。 実施の形態1におけるエレベーターの制御装置の第1模擬手段のブロック図である。 実施の形態1におけるエレベーターの制御装置の第3模擬手段のブロック図である。 実施の形態1におけるエレベーターの制御装置のかご位置誤差検出手段の処理の概要を説明するフローチャートである。 実施の形態1におけるエレベーターの制御装置による着床目標位置からのかご位置誤差に対する着床目標位置からのかご位置誤差検出信号の検出特性を示す図である。 実施の形態1におけるエレベーターの制御装置の瞬時状態オブザーバのブロック図である。 実施の形態1におけるエレベーターの制御装置によるリレベル動作を示す時間軸波形の図である。 実施の形態1におけるエレベーターの制御装置のハードウェア構成図である。 実施の形態2におけるエレベーターの制御装置が適用されるエレベーターシステムの構成図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1は実施の形態1におけるエレベーターの制御装置が適用されるエレベーターシステムの構成図である。
 図1のエレベーターシステムにおいて、エレベーターのモータ1は、機械室等に設けられる。シーブ2は、モータ1の回転軸に取り付けられる。ロープ3は、シーブ2に巻き掛けられる。かご4は、ロープ3の一端に吊るされる。釣合おもり5は、ロープ3の他端に吊るされる。ブレーキ6は、モータ1に対して制動状態と開放状態との間を遷移し得るように設けられる。
 秤17は、かご4の床に設けられる。秤17は、かご4の床にかかる重量を測定し得るように設けられる。秤17の検出信号は、Wgtと定義される。
 エンコーダ11は、モータ1に設けられる。エンコーダ11は、モータ1の回転角度を検出し得るように設けられる。
 制御装置Sは、速度指令発生部14と速度演算部12と減算部15と速度制御部16と電流制御部9とブレーキ動作指令部7とかご位置推定部19と減算部13とを備える。
 速度指令発生部14は、速度指令信号v_refを出力する。
 速度演算部12は、エンコーダ11の出力であるモータ角度検出信号x_mの入力を受け付ける。速度演算部12は、モータ角度検出信号x_mをモータ1の角速度信号に変換する。速度演算部12は、モータ1の角速度信号をかご4の速度信号v_mに変換する。速度演算部12は、かご4の速度信号v_mを出力する。
 減算部15は、速度指令発生部14の出力である速度指令信号v_refから速度演算部12の出力である速度信号v_mを減算することで速度エラー信号v_errを得る。
 速度制御部16は、速度エラー信号v_errの入力を受け付ける。速度制御部16は、速度制御が安定かつ所定の性能が得られるように比例・積分・微分演算された結果である速度制御信号iq_v_contを出力する。
 電流制御部9は、速度制御部16の出力である速度制御信号iq_v_contの入力をトルク電流指令信号の入力として受け付ける。電流制御部9は、電流検出手段10からのモータ駆動電流iqがトルク電流指令信号iq_v_contの値となるように機能する。具体的には、電流制御部9は、モータ1に対して、トルク電流指令信号iq_v_contの値となるような駆動電流iqを供給する。
 上記構成にて、速度制御系が実現される。具体的には、かご4の速度は、速度指令信号v_refに対して速度エラー信号v_errが予め設定された値以内で追従するように制御される。
 かご4が予め設定された階から目標階の乗場に到着すると、ブレーキ動作指令部7は、ブレーキ制御信号BKを出力する。ブレーキ制御部8は、当該ブレーキ制御信号BKに基づいてブレーキ6の状態を開放状態から制動状態に遷移させる。
 ブレーキ6が制動状態になると、かご4は目標階の乗場に停止する。その後、ドア動作指令部20は、ドア動作指令信号を出力する。かご4のドアは、当該ドア動作指令信号に基づいて乗場に対して開く。
 高層ビルまたは超高層ビルにおいて、かご4が比較的低い乗場にある場合、ロープ3の剛性が低くなる。このため、ロープ3は、かご4から乗客、貨物等の乗降によるかご荷重変化によって伸縮する。その結果、かご4の位置が変動する。
 この際、リレベル動作判定機能18は、かご4の位置変動がリレベル動作すべき範囲であるか否かを判定する。
 かご位置推定部19は、リレベル動作判定機能18の出力と秤17の出力とエンコーダ11の出力と速度演算部12の出力とドア動作指令部20の出力との入力を受け付ける。かご位置推定部19は、かご停止位置ずれの推定信号としてかご位置推定信号を出力する。
 減算部13は、目標位置である0からかご位置推定信号x_c_hを減算してかご位置エラー信号を得る。
 速度指令発生部14は、リレベル制御部として、減算部13の出力である位置エラー信号が0に収束するように速度指令信号v_refを出力する。
 上記の構成にて、かご位置制御系が実現される。具体的には、かご4の位置v_xが着床目標位置に対し収束する。
 次に、図2を用いて、リレベル動作判定機能18の例を説明する。
 図2は実施の形態1におけるエレベーターの制御装置に利用されるリレベル動作判定機能の例を示す図である。
 図2の(a)は、かご4の位置が着床目標位置に対し下方にある場合の模式図である。図2の(b)は、かご4の位置が着床目標位置にある場合の模式図である。
 プレート181とプレート182は、乗場の周囲において昇降路の内部に設けられる。プレート181とプレート182とは、かご4の移動方向に対して同じ長さである。
 例えば、プレート181の下端は、着床目標位置に対して-Aだけずらして設定される。例えば、プレート182の上端は、着床目標位置に対して+Aだけずらして設置される。Aの値は、リレベル動作が必要と判定する長さに選択される。
 プレート検出センサ群183は、かご4に設けられる。プレート検出センサ群183は、検出センサ183aと検出センサ183bとを備える。図2の(b)に示されるように、プレート検出センサ群183は、かご4が着床目標位置にあるとき、プレート181とプレート182との着床目標位置にかご位置検出線が重なるように配置される。
 検出センサ183aは、プレート181がかご位置検出線を横切っているか否かを判定する。検出センサ183bは、プレート182がかご位置検出線を横切っているか否かを判定する。
 次に、図3を用いて、かご4が着床目標位置を下方から上方へ横切った際の検出センサ183aと検出センサ183bとの動作波形を説明する。
 図3は実施の形態1におけるエレベーターの制御装置に利用される複数の検出センサの動作波形を示す図である。
 図3の(a)は、検出センサ183aの出力波形Rlvl_sig_downを示す。横軸は、着床目標位置からのかご位置誤差である。縦軸は、検出センサ183aの出力である。検出センサ183aの出力は、2値の検出値である。かご位置誤差の値が-A未満である場合、検出センサ183aの出力は、Lである。かご位置誤差の値が-A以上になると、検出センサ183aの出力は、Hになる。
 図3の(b)は、検出センサ183bの出力波形Rlvl_sig_upを示す。横軸は、着床目標位置からのかご位置誤差である。縦軸は、検出センサ183bの出力である。検出センサ18baの出力は、2値の検出値である。かご位置誤差の値が+A以下である場合、検出センサ183bの出力は、Hである。かご位置誤差の値が+Aよりも大きくなると、検出センサ183bの出力は、Lになる。
 次に、図4を用いて、かご位置推定信号x_c_hの生成方法を説明する。
 図4は実施の形態1におけるエレベーターの制御装置によるかご位置推定信号の生成方法を説明するためのブロック図である。
 図4の上部において、複数の機能ブロックは、図1におけるモータ1の位置からかご4の位置までの伝達特性を表す。
 第1変換特性300は、モータ位置x_mをモータ位置変動によりかご4に伝達する力F_mに変換する。第1変換特性300は、ロープ3の機械特性で決まる。加算器301は、モータ位置変動によりかご4に伝達する力F_mとかご積載量変化による重力変動F_lとを加算した合力F_cを出力する。
 第2変換特性302は、合力F_cをかご位置x_cに変換する。かご4とロープ3とからなる機構系がバネマス系に近似された場合、第2変換特性302は、かご質量、ロープ剛性、ロープ粘性をパラメータとした2次の伝達特性となる。リレベル動作判定機能18は、かご位置x_cに基づいて2Rlvl_sig_downとリレベル動作判定信号Rlvl_sig_upとをリレベル動作判定信号として出力する。
 かご位置推定部19は、第1模擬手段191と第2模擬手段192と加算器193と第3模擬手段194との4つの機能ブロックを備える。当該4つの機能ブロックは、実際のシステムの挙動を模擬するモデルである。
 第1模擬手段191は、モータ位置とモータ速度とをかご伝達力に変換する特性を模擬する。第1模擬手段191は、第1変換特性300に対応する。第2模擬手段192は、着床後のかご積載量変化による重力変動を計算する。第2模擬手段192と加算器193とは、加算器301に対応する。第3模擬手段194は、かご作用力をかご位置に変換する特性を模擬する。第3模擬手段194は、第2変換特性302に対応する。
 第1模擬手段191は、モータ位置x_mとブレーキ制御信号BKとモータ速度信号v_mとの入力を受け付ける。第1模擬手段191は、モータ位置変化によりかご4に伝達する力の推定値F_m_hをモータ位置変動によりかご4に伝達する力F_mに対応した値として出力する。
 第2模擬手段192は、秤17の出力であるwgtの入力を受け付ける。第2模擬手段192は、wgtを、かご4のドアが開く直前のタイミングにおけるwgtの値を基準値として変換し、さらに変換後の信号に重力加速度を乗算することでかご積載量変化による重力変動の計測値F_l_hを計算する。第2模擬手段192は、かご積載量変化による重力変動の計測値F_l_hをかご積載量変化による重力変動F_lに対応した値として出力する。なお、かご4のドアが開く直前のタイミングは、ドア動作指令部20の出力であるドア動作指令信号DRによって決定される。
 加算器193は、モータ位置変化によりかご4に伝達する力の推定値F_m_hとかご積載量変化による重力変動の計測値F_l_hとを加算することで、かご4に加わる合力F_cを模擬した信号F_c_hを合力F_cに対応した値として生成する。
 第3模擬手段194は、かご4に加わる合力F_cを模擬した信号F_c_hの入力を受け付ける。第3模擬手段194は、リレベル動作判定機能18の出力信号Rlvl_sig_upと出力信号Rlvl_sig_downとの入力を受け付ける。第3模擬手段194は、これらの入力信号に基づいて着床位置基準のかご位置推定値x_c_hをかご位置x_cに対応した値として出力する。
 次に、図5を用いて、第1模擬手段191を説明する。
 図5は実施の形態1におけるエレベーターの制御装置の第1模擬手段のブロック図である。
 図5に示されるように、第1模擬手段191は、モータ位置変換手段191aとかご伝達力変換特性模擬手段191bとを備える。
 モータ位置変換手段191aは、モータ位置x_mの入力を受け付ける。モータ位置変換手段191aは、モータ位置x_mを、ブレーキ制御信号BKのブレーキ起動時タイミング、つまりかご4が目標階に停止したタイミングにおけるモータ位置x_mの値を基準値としてモータ位置x_m’に変換する。
 かご伝達力変換特性模擬手段191bは、モータ位置x_m’の入力を受け付ける。かご伝達力変換特性模擬手段191bは、モータ速度v_mとモータ位置x_m‘とから演算されるモータ位置変化によりかごに伝達する力の推定値F_m_hを出力する。当該演算は、ロープ3の弾性係数、粘性係数をパラメータとした式に基づいて行われる。
 次に、図6を用いて、第3模擬手段194を説明する。
 図6は実施の形態1におけるエレベーターの制御装置の第3模擬手段のブロック図である。
 第3模擬手段194は、かご位置誤差検出手段194aと瞬時状態オブザーバ194bとを備える。
 かご位置誤差検出手段194aは、リレベル動作判定機能18の出力信号Rlvl_sig_upと出力信号Rlvl_sig_downとの入力を受け付ける。かご位置誤差検出手段194aは、予め設定されたアルゴリズムによって、着床目標位置からのかご位置誤差としてx_c_dを離散的に検出する。
 瞬時状態オブザーバ194bは、着床目標位置からのかご位置誤差x_c_dとかご4に加わる合力F_cを模擬した信号F_c_hとに基づいて連続的なかご位置情報としてx_c_hを得る。
 次に、図7を用いて、かご位置誤差検出手段194aの処理を説明する。
 図7は実施の形態1におけるエレベーターの制御装置のかご位置誤差検出手段の処理の概要を説明するフローチャートである。
 ステップS1では、かご位置誤差検出手段194aは、Rlvl_sig_upとRlvl_sig_downとの双方がHであるか否かを判定する。
 ステップS1での判定がYESの場合は、かご位置誤差検出手段194aは、ステップS2の処理を行う。ステップS2では、かご位置誤差検出手段194aは、リレベル判定切り替えタイミング信号Rlvl_tmgとしてLを出力し、リレベル量指定信号Rlvl_thとして0を出力する。その後、かご位置誤差検出手段194aは、ステップS1の処理を行う。
 ステップS1での判定がNOの場合は、かご位置誤差検出手段194aは、ステップS3の処理を行う。ステップS3では、かご位置誤差検出手段194aは、Rlvl_sig_upがLかつRlvl_sig_downがHであるか否かを判定する。
 ステップS3での判定がYESの場合は、かご位置誤差検出手段194aは、ステップS4の処理を行う。ステップS4では、かご位置誤差検出手段194aは、Rlvl_tmgとして予め設定された期間だけHをパルス出力し、リレベル量指定信号Rlvl_thとしてAを出力する。その後、かご位置誤差検出手段194aは、ステップS1の処理を行う。
 ステップS3での判定がNOの場合は、かご位置誤差検出手段194aは、ステップS5の処理を行う。ステップS5では、かご位置誤差検出手段194aは、Rlvl_sig_upがHかつRlvl_sig_downがLであるか否かを判定する。
 ステップS5での判定がYESの場合は、かご位置誤差検出手段194aは、ステップS6の処理を行う。ステップS6では、かご位置誤差検出手段194aは、Rlvl_tmgとして予め設定された期間だけHをパルス出力し、リレベル量指定信号Rlvl_thとして-Aを出力する。その後、かご位置誤差検出手段194aは、ステップS1の処理を行う。
 ステップS5での判定がNOの場合は、かご位置誤差検出手段194aは、ステップS7の処理を行う。ステップS7では、かご位置誤差検出手段194aは、異常状態である認識を行い、Rlvl_tmgとしてLを出力し、リレベル量指定信号Rlvl_thとして0を出力する。その後、かご位置誤差検出手段194aは、処理を終了する。
 次に、図8を用いて、着床目標位置からのかご位置誤差に対する着床目標位置からのかご位置誤差検出信号x_c_d(Rlvl_th)の検出特性を示す。
 図8は実施の形態1におけるエレベーターの制御装置による着床目標位置からのかご位置誤差に対する着床目標位置からのかご位置誤差検出信号の検出特性を示す図である。
 図8において、点線の特性は、誤差の無い理想的な検出特性である。実線の特性は、x_c_dの検出特性である。
 x_c_dは、横軸である着床目標位置からのかご位置誤差が±Aのときに限り正確な出力となる。着床目標位置からのかご位置誤差の絶対値がA未満である場合、x_c_dは、0の出力となる。着床目標位置からのかご位置誤差が-Aよりも小さい場合、x_c_dは、-Aの出力となる。着床目標位置からのかご位置誤差がAよりも大きい場合、x_c_dは、Aの出力となる。
 x_c_dのもう一つの出力であるRlvl_tmは、Rlvl_thの状態遷移を起点としたパルスで代用される場合もある。この場合、Rlvl_tmは不要となる。
 次に、図9を用いて、瞬時状態オブザーバ194bの概要を説明する。
 図9は実施の形態1におけるエレベーターの制御装置の瞬時状態オブザーバのブロック図である。
 図9において、A、B、Cは、制御対象システムが次の(1)式および(2)式で表現された場合の行列関数である。
Figure JPOXMLDOC01-appb-M000001
y=Cx (2)
 ここで、制御対象システムは、図4のかご作用力をかご位置に変換する特性を線形近似してモデル化した状態方程式で表示される。(1)式は状態方程式である。(2)は出力方程式である。uは入力ベクトルである。xは状態変数ベクトルである。yは出力ベクトルである。状態変数ベクトルの内訳は、かご4の速度とかご4の位置とかご4に作用する外乱力とである。かご4に作用する外乱力は、A行列を構成する機構パラメータの経時変化あるいは真値との誤差で定義される。
 瞬時状態オブザーバ194bは、機能ブロック400と減算器401と機能ブロック402と積分器403と機能ブロック404と減算器405とスイッチ406と係数ベクトルK407とを備える。
 機能ブロック400と減算器401と機能ブロック402と積分器403と機能ブロック404とは、制御対象システムのモデルとして(1)式と(2)式とに対応したブロックである。
 減算器405は、モデルのかご位置推定値x_c_hから実際に測定されたかご位置測定値Rlvl_thを減算することで、モデルと実システムとの誤差を出力する。
 係数ベクトルK407は、減算器405の出力にベクトル係数Kを乗算した結果を出力する。係数ベクトルK407の出力は、積分器403の手前に減算器401を介して帰還される。その結果、モデルと実システムとの誤差は、0に収束する。
 スイッチ406は、モデルと実システムとの誤差の帰還を制御する。かご位置測定値Rlvl_thの値が真値になるタイミングであるRlvl_tmgがHである場合、スイッチ406は、当該帰還をONとする。かご位置測定値Rlvl_thの値が真値にならないタイミングであるRlvl_tmgがHでない場合、スイッチ406は、当該帰還をOFFとする。
 その結果、かご位置測定値Rlvl_thの値が真値である場合、モデルと実システムとの誤差は修正される。この際、かご位置推定値x_c_hは、真のかご位置とほぼ略一致する。かご位置測定値Rlvl_thの値が真値でない場合、モデルと実システムとの誤差は修正されない。この際、機能ブロック400と減算器401と機能ブロック402積分器403と機能ブロックとは、入力信号F_c_hに基づいて、かご位置推定値x_c_hを連続的に計算する。
 積分器403の存在により、かご位置推定値x_c_hの推定時において、モデルと実システムとの誤差は、修正された値に保持される。このため、モデルが実システムと合致している場合、正確なかご位置推定値x_c_hが得られる。
 次に、図10を用いて、リレベル動作を説明する。
 図10は実施の形態1におけるエレベーターの制御装置によるリレベル動作を示す時間軸波形の図である。
 図10の(a)は、着床後のかご積載量変化による重力変動F_l_hを示す図である。図10の(b)は、かご位置推定値x_c_hを示す図である。図10の(c)は、かご位置誤差検出値x_c_d(Rlvl_th)を示す図である。図10の(d)は、かご位置誤差検出値x_c_d(Rlvl_tmg)を示す図である。
 かご4の着床後、人、貨物等が乗ってかご積載量変化による重力変動が発生する。この際、図10の(a)に示されるように、ステップ状の波形が得られる。これに伴い、図10の(b)の実線に示されるように、かご位置推定値x_c_hは増加し、リレベル動作判定閾値Aを横切ってオーバシュートした後、減衰振動しながら予め設定された値に収束しようとする。図10の(a)に示されるように、リレベル動作と同時にブレーキ開放されることで、かご位置推定値x_c_hは0に収束される。
 なお、図10の(b)の点線は、かご位置の真値である。モデルと実システムとが合致していれば、実線と点線とは重なる。本例では、若干の誤差が発生しているため、実線と点線とは重ならない。
 図10の(d)は、モデルと実システムとの誤差修正を機能させるスイッチ制御信号である。この信号がHになったタイミングで、モデルと実システムの誤差がなくなる。その結果、かご位置推定値x_c_hが真値に修正される。その後、動特性を模擬したまま小さな誤差が維持される。
 かご位置推定値x_c_hを真値として代用してリレベル動作を行うと、かご位置ずれはほぼ0となる。
 以上で説明した実施の形態1によれば、かご4の位置は、リレベルの要否の情報等から推定される。リレベル動作は、かご4の推定位置の信号に基づいた帰還制御で行われる。このため、かご床と乗場床との相対誤差の連続的な検出値を要することなく、人等の乗降によりかご4の位置が変動する場合でも、リレベル動作を安定かつ正確に行うことができる。
 また、制御装置Sは、かご4の位置を高精度に推定する。このため、リレベル動作をより高精度に行うことができる。
 次に、図11を用いて、制御装置Sの例を説明する。
 図11は実施の形態1におけるエレベーターの制御装置のハードウェア構成図である。
 制御装置Sの各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ1000aと少なくとも1つのメモリ1000bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア2000を備える。
 処理回路が少なくとも1つのプロセッサ1000aと少なくとも1つのメモリ1000bとを備える場合、制御装置Sの各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ1000bに格納される。少なくとも1つのプロセッサ1000aは、少なくとも1つのメモリ1000bに記憶されたプログラムを読み出して実行することにより、制御装置Sの各機能を実現する。少なくとも1つのプロセッサ1000aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ1000bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア2000を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、制御装置Sの各機能は、それぞれ処理回路で実現される。例えば、制御装置Sの各機能は、まとめて処理回路で実現される。
 制御装置Sの各機能について、一部を専用のハードウェア2000で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、かご位置推定部19の機能については専用のハードウェア2000としての処理回路で実現し、かご位置推定部19の機能以外の機能については少なくとも1つのプロセッサ1000aが少なくとも1つのメモリ1000bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア2000、ソフトウェア、ファームウェア、またはこれらの組み合わせで制御装置Sの各機能を実現する。
実施の形態2.
 図12は実施の形態2におけるエレベーターの制御装置が適用されるエレベーターシステムの構成図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態2において、かご位置推定部19は、モータ速度信号v_mの入力を不要とする。かご位置推定部19は、モータ位置信号x_mを時間微分することでモータ速度信号v_mを得る。
 以上で説明した実施の形態2によれば、かご位置推定部19は、モータ速度信号v_mの入力がなくても、かご4の位置を高精度に推定する。このため、かご床と乗場床との相対誤差の連続的な検出値を要することなく、人等の乗降によりかご4の位置が変動する場合でも、リレベル動作を安定かつ正確に行うことができる。
 以上のように、この発明に係るエレベーターの制御装置は、エレベーターシステムに利用できる。
 1 モータ、 2 シーブ、 3 ロープ、 4 かご、 5 釣合おもり、 6 ブレーキ、 7 ブレーキ動作指令部、 8 ブレーキ制御部、 9 電流制御部、 10 電流検出手段、 11 エンコーダ、 12 速度演算部、 13 減算部、 14 速度指令発生部、 15 減算部、 16 速度制御部、 17 秤、 18 リレベル動作判定機能、 18a 検出センサ、 18b 検出センサ、 19 かご位置推定部、 20 ドア動作指令部、  181 プレート、 182 プレート、 183 プレート検出センサ群、 183a 検出センサ、 183b 検出センサ、 191 第1模擬手段、 191a モータ位置変換手段、 191b かご伝達力変換特性模擬手段、 192 第2模擬手段、 193 加算器、 194 第3模擬手段、 194a かご位置誤差検出手段、 194b 瞬時状態オブザーバ、 300 第1変換特性、 301 加算器、 302 第2変換特性、400 減算器401 減算器401 減算器、  402 積分器403 機能ブロック、404 機能ブロック、 405 減算器、 406 スイッチ、1000a プロセッサ、 1000b メモリ、 2000 ハードウェア

Claims (4)

  1.  エレベーターのかごが乗場に停止している際におけるリレベルの要否の情報と、
     前記かごが乗場に停止している際における前記エレベーターのモータのブレーキの状態の情報と、
     前記かごのドアの開閉状態の情報と、
     前記かごにかかる重量の情報と、
     前記モータの位置の情報と、
     前記モータの速度の情報と、
    に基づいて前記かごの位置を推定するかご位置推定部と、
     前記かご位置推定部により推定された前記かごの位置に基づいて前記かごのリレベル動作を行う制御部と、
    を備えたエレベーターの制御装置。
  2.  前記かご位置推定部は、
     前記モータの位置と速度とを前記かごの伝達力に変換する特性を模擬した第1模擬手段と、
     前記かごが前記乗場に着床後のかご積載量変化による重量変動を計算する第2模擬手段と、
     前記かごの作用力を前記かごの位置に変換する特性を模擬し、前記かごの前記乗場での着床目標位置からの位置誤差の推定値を出力する第3模擬手段と、
    を備えた請求項1に記載のエレベーターの制御装置。
  3.  前記かご位置推定部は、
     前記かごが乗場に停止している際におけるリレベルの要否の情報と、
     前記かごが乗場に停止している際における前記ブレーキの状態の情報と、
     前記かごのドアの開閉状態の情報と、
     前記かごにかかる重量の情報と、
     前記モータの位置の情報と、
     前記モータの速度の情報と、
    を入力として、前記かごの位置を推定する請求項1または請求項2に記載のエレベーターの制御装置。
  4.  前記かご位置推定部は、
     前記かごが乗場に停止している際におけるリレベルの要否の情報と、
     前記かごが乗場に停止している際における前記ブレーキの状態の情報と、
     前記かごのドアの開閉状態の情報と、
     前記かごにかかる重量の情報と、
     前記モータの位置の情報と、
    を入力として、前記モータの位置の情報に基づいて前記モータの速度の情報を得て、前記かごの位置を推定する請求項1または請求項2に記載のエレベーターの制御装置。
PCT/JP2019/026094 2019-07-01 2019-07-01 エレベーターの制御装置 WO2021001884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980095653.3A CN114026037B (zh) 2019-07-01 2019-07-01 电梯的控制装置
JP2021529565A JP7168085B2 (ja) 2019-07-01 2019-07-01 エレベーターの制御装置
PCT/JP2019/026094 WO2021001884A1 (ja) 2019-07-01 2019-07-01 エレベーターの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026094 WO2021001884A1 (ja) 2019-07-01 2019-07-01 エレベーターの制御装置

Publications (1)

Publication Number Publication Date
WO2021001884A1 true WO2021001884A1 (ja) 2021-01-07

Family

ID=74100532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026094 WO2021001884A1 (ja) 2019-07-01 2019-07-01 エレベーターの制御装置

Country Status (3)

Country Link
JP (1) JP7168085B2 (ja)
CN (1) CN114026037B (ja)
WO (1) WO2021001884A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592877A (ja) * 1991-10-01 1993-04-16 Mitsubishi Electric Corp エレベータの着床制御装置
JPH05310377A (ja) * 1992-05-11 1993-11-22 Mitsubishi Electric Corp エレベータのかご位置検出装置
JPH07309542A (ja) * 1994-05-17 1995-11-28 Hitachi Ltd 自動搬送装置対応油圧エレベーター
JPH0958938A (ja) * 1995-08-25 1997-03-04 Toshiba Corp エレベータの制御装置
US20170174472A1 (en) * 2014-02-06 2017-06-22 Otis Elevator Company Brake operation management in elevators

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605990B2 (ja) * 1991-03-04 1997-04-30 三菱電機株式会社 エレベータの制御装置
US5747755A (en) * 1995-12-22 1998-05-05 Otis Elevator Company Elevator position compensation system
KR100202719B1 (ko) * 1996-12-30 1999-06-15 이종수 엘리베이터의 재층상 맞춤 방법 및 장치
JP2005060074A (ja) * 2003-08-19 2005-03-10 Otis Elevator Co エレベータの荷重ファクター自動調節装置および荷重ファクター自動調節方法
CN101959783B (zh) * 2008-02-26 2014-03-12 奥蒂斯电梯公司 电梯轿厢再平层期间的动态补偿
WO2011158301A1 (ja) * 2010-06-18 2011-12-22 株式会社 日立製作所 エレベータシステム
JP5637642B2 (ja) * 2013-01-09 2014-12-10 東芝エレベータ株式会社 エレベータのリニューアルシステム
CN108622746B (zh) * 2017-03-24 2022-07-05 奥的斯电梯公司 用于电梯***的动态补偿控制

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592877A (ja) * 1991-10-01 1993-04-16 Mitsubishi Electric Corp エレベータの着床制御装置
JPH05310377A (ja) * 1992-05-11 1993-11-22 Mitsubishi Electric Corp エレベータのかご位置検出装置
JPH07309542A (ja) * 1994-05-17 1995-11-28 Hitachi Ltd 自動搬送装置対応油圧エレベーター
JPH0958938A (ja) * 1995-08-25 1997-03-04 Toshiba Corp エレベータの制御装置
US20170174472A1 (en) * 2014-02-06 2017-06-22 Otis Elevator Company Brake operation management in elevators

Also Published As

Publication number Publication date
CN114026037B (zh) 2023-07-14
CN114026037A (zh) 2022-02-08
JPWO2021001884A1 (ja) 2021-01-07
JP7168085B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
US8069714B2 (en) Method to test a brake of a robot
JP2017160050A (ja) エレベーターかごに接続されるエレベーターケーブルの揺れを制御する方法とエレベーターシステム
JP4363058B2 (ja) モータ、モータの制御装置、モータ制御システム及びモータの同定方法
JP5659727B2 (ja) クレーン振れ角検出方法及び装置、並びにクレーン振れ止め制御方法及び装置
JP6490238B2 (ja) エレベーターの制御装置
US20050046376A1 (en) System for collision avoidance of rotary atomizer
KR20110048870A (ko) 4축 팔레타이징 로봇용 부하 추정 방법
CN111252638B (zh) 用于监测电梯***的装置和方法
EP3848320A1 (en) Method for operating an elevator
JP6104409B2 (ja) 制御パラメータ検出方法、エレベーター群管理シミュレーション方法、制御パラメータ検出装置及びエレベーター群管理シミュレーション装置
KR101263568B1 (ko) 엘리베이터 제어 장치
WO2021001884A1 (ja) エレベーターの制御装置
JP2012533470A (ja) 航空機のパイロットに対してパイロット警告信号を提供する方法、コンピュータプログラム製品、及び警告デバイス
JP4727234B2 (ja) エレベータ装置
KR102084917B1 (ko) 엘리베이터의 제어 장치
WO2019008650A1 (ja) エレベーター制御装置およびエレベーター制御方法
JP7384025B2 (ja) 懸架式クレーンの制御装置及びインバータ装置
JP3639170B2 (ja) 電気ブレーキの制御方法及びその装置
JPWO2021186680A5 (ja)
JP4850642B2 (ja) エレベータ
JP3908323B2 (ja) エレベーターの速度制御装置
KR102513401B1 (ko) 엘리베이터의 제어 장치
US20230348229A1 (en) Solution for monitoring an orientation of an elevator car
JPH1045379A (ja) 吊り荷の振れ状態検出装置
JPH11193190A (ja) エレベータ速度制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936496

Country of ref document: EP

Kind code of ref document: A1