WO2021000783A1 - 指示数据传输情况的方法和装置 - Google Patents

指示数据传输情况的方法和装置 Download PDF

Info

Publication number
WO2021000783A1
WO2021000783A1 PCT/CN2020/098132 CN2020098132W WO2021000783A1 WO 2021000783 A1 WO2021000783 A1 WO 2021000783A1 CN 2020098132 W CN2020098132 W CN 2020098132W WO 2021000783 A1 WO2021000783 A1 WO 2021000783A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
successfully transmitted
information
largest
network node
Prior art date
Application number
PCT/CN2020/098132
Other languages
English (en)
French (fr)
Inventor
韩锋
仇力炜
杨旭东
晋英豪
谭巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022000028A priority Critical patent/BR112022000028A2/pt
Priority to EP20835626.1A priority patent/EP3996305A4/en
Publication of WO2021000783A1 publication Critical patent/WO2021000783A1/zh
Priority to US17/565,694 priority patent/US11817957B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for indicating data transmission conditions.
  • 5G fifth generation
  • 5G will support various types of network deployments and application types, including, for example, higher speed experience and greater bandwidth access capabilities, lower latency and highly reliable information interaction, and larger-scale and low-cost machines Access and management of communication (machine type communication, MTC) equipment, etc.
  • a first network node such as a distributed unit (DU)
  • DU distributed unit
  • CU centralized unit
  • the transmission of the data reported by the first network node is particularly important for the second network node to make accurate flow control.
  • This application provides a method and device for indicating data transmission conditions, so as to effectively indicate data transmission conditions, facilitate more precise flow control, and save transmission resources.
  • a communication method may include: a first network node sends data to a terminal device; the first network node sends first indication information and second indication information to a second network node, wherein: The first indication information is used to indicate: the information of the sequence number SN with the largest sequence number successfully transmitted in the data, and the second indication information is used to indicate: the sequence number that is the largest in the data successfully transmitted SN information transmitted after the SN.
  • the information of the sequence number SN (Highest Transmitted NR PDCP SN Ind) successfully transmitted in the data may include the packet data convergence protocol sequence number (packet data convergence protocol sequence number, PDCP SN), or may include New radio user plane sequence number (NR-U SN).
  • packet data convergence protocol sequence number packet data convergence protocol sequence number, PDCP SN
  • NR-U SN New radio user plane sequence number
  • the first network node indicates to the second network node the information of the SN to be transmitted after the successfully transmitted sequence number (SN) is the largest in sequence.
  • the second network node can learn that The information of the SN that is transmitted after the SN with the largest sequence is successfully transmitted, so that the data packet that failed to be transmitted can be determined more accurately, that is, the second network node can more accurately determine the retransmitted data packet.
  • the second network node can more accurately send the data that needs to be retransmitted to other network nodes when the link between the first network node and the terminal device fails, thereby reducing the transmission of redundant data and resource consumption. waste.
  • the second network node in order to support some services, such as high-reliability and low-latency services, the second network node often sends downlink repeated data to multiple network nodes (such as two network nodes).
  • the second network node can more accurately determine the data that has been successfully received by the terminal device and the data that has not been successfully received by the terminal device based on the information of the SN transmitted after the largest sequence number that is successfully transmitted by the first network node. data. Therefore, the second network node can more accurately send only data packets that have not been successfully received by the terminal device to other network nodes, thereby reducing the transmission of redundant data while ensuring high-reliability and low-latency service performance.
  • the second network node by enabling the second network node to know the information of the SN that is transmitted after the SN with the largest sequence of successful transmissions, a more comprehensive data transmission situation can be learned, a more accurate flow control mechanism can be implemented, and redundant data can be reduced. Transmission, effective retransmission of failed transmission data, improving transmission efficiency.
  • the data sent by the first network node to the terminal device may be initially transmitted data or retransmitted data.
  • the initial transmission may be that the second network node sends it to the terminal device through other network nodes, and the retransmission is sent through the first network node.
  • the initial transmission may be that the second network node sends it to the terminal device through the first network node, and the retransmission is still sent through the first network node.
  • the information of the SN transmitted after the largest SN successfully transmitted in the data includes one or more of the following: The information of the first successfully transmitted SN after the successfully transmitted SN in sequence; or, the information of the last successfully transmitted SN after the successfully transmitted SN in sequence; or , In the data, information about all successfully transmitted SNs after the SN with the largest sequence of successful transmissions; or, in the data, information about all SNs that have failed transmission after the SN with the largest sequence of successful transmissions Or, in the data, the number of SNs that are successfully transmitted after the sequentially largest SN that is successfully transmitted; or, in the data, the number of SNs that fail to be transmitted after the sequentially largest SN that is successfully transmitted Or, the number of SN ranges successfully transmitted after the largest SN successfully transmitted in the data.
  • the SN information transmitted after the SN with the largest sequence successfully transmitted in the data may include any one or more of the above information.
  • the second network node can learn the information of the SN successfully transmitted and the SN of the failed transmission after the SN with the largest sequence of successful transmissions, so that it can more accurately determine the need for retransmission.
  • the data may include any one or more of the above information.
  • the multiple pieces of information may be information within the range of the same SN.
  • the information of the SN transmitted after the largest SN successfully transmitted includes: the information of the first SN successfully transmitted after the largest SN successfully transmitted, and the information of the last SN successfully transmitted
  • it can indicate the information of the first successfully transmitted SN and the last successfully transmitted SN within the range of one SN transmitted after the largest SN successfully transmitted in the data.
  • the multiple pieces of information may also be information within different SN ranges.
  • the information of the SN transmitted after the largest SN successfully transmitted includes: the information of the first SN successfully transmitted after the largest SN successfully transmitted within the range of the first SN, and the same The information of the last successfully transmitted SN in the range of an SN; the information of the first successfully transmitted SN after the largest SN successfully transmitted in the first SN range in the second SN range, and the last SN in the same SN range Information of the successfully transmitted SN. And so on.
  • the second indication information indicates through a bitmap the SN information and/or that are successfully transmitted after the SN that is successfully transmitted in the order of the largest in the data. Or failed to transmit SN information.
  • the first network node can use a bitmap to indicate the SN information successfully transmitted and/or the SN information of the failed transmission after the SN with the largest sequence of successful transmission in the data, so that not only Quickly determine whether the data is transmitted successfully or failed, and can save signaling overhead.
  • bitmap to indicate the SN information successfully transmitted and/or the SN information of the failed transmission after the SN with the largest sequence of successful transmission in the data, so that not only Quickly determine whether the data is transmitted successfully or failed, and can save signaling overhead.
  • the second indication information further includes indication information for indicating the number of bits of the bitmap.
  • the first network node may also indicate to the second network node the number of bits included in the bitmap.
  • the number of bits included in the bitmap represents the number of data indicated by the bitmap.
  • the method further includes: the first network node sends third indication information to the second network node, where the third indication information is used to indicate : Whether the data includes a successfully transmitted SN after the SN with the largest sequence of successfully transmitted.
  • the third indication information may indicate whether the successfully transmitted SN is included after the successfully transmitted SN in the largest order through a m1 bit field, where m1 is an integer greater than or equal to 1.
  • the third indication information indicates whether there is an indication of a bitmap after the SN with the largest sequence that is successfully transmitted.
  • a field of m2 bits is used to indicate whether there is an indication of bitmap after the SN with the largest sequence that is successfully transmitted, where m2 is an integer greater than or equal to 1.
  • the third indication information indicates whether there is an indication of the SN range after the SN with the largest sequence that is successfully transmitted.
  • an m3 bit field is used to indicate whether there is an indication of the SN range after the SN with the largest sequence after the transmission is successful, where m3 is an integer greater than or equal to 1.
  • the third indication information indicates whether to indicate by way of SN range or by way of bitmap after the SN with the largest order after the transmission is successful.
  • a field of m4 bits is used to indicate whether to indicate by means of SN range or by means of bitmap after the SN with the largest order after the transmission is successful, where m4 is an integer greater than or equal to 1.
  • the presence or absence of the m2-bit field and the m3-bit field indicates whether the transmission is successfully followed by the largest SN in the order indicated by the SN range or the bitmap.
  • the first network node can indicate to the second network node whether the successfully transmitted SN is included in the data after the SN with the largest sequence of successful transmission, so that the second network node can quickly determine the sequence of successful transmission. Whether to include the successfully transmitted SN after the largest SN. Further, the second network node may also determine the form of the SN to be transmitted after the SN with the largest sequence that indicates the successful transmission. Specifically, the following embodiments describe.
  • the first network node is a distributed unit, and the second network node is a centralized unit; or, the first network node is a base station, so The second network node is a base station.
  • a communication method may include: a second network node sends data to a first network node; and the second network node receives first indication information and second information sent by the first network node.
  • Indication information where the first indication information is used to indicate: the information of the highest sequence number SN successfully transmitted in the data, and the second indication information is used to indicate: Information about the SN that is transmitted after the largest SN in the transmitted sequence.
  • the first network node indicates to the second network node the information of the SN to be transmitted after the successfully transmitted sequence number (SN) is the largest in sequence.
  • the second network node can learn that The information of the SN that is transmitted after the SN with the largest order of success is transmitted, so that the failed data packet can be determined more accurately. That is, the second network node can more accurately determine the retransmitted data packet, thereby reducing redundancy. Data transmission and waste of resources.
  • the second network node by enabling the second network node to know the information of the SN that is transmitted after the SN with the largest sequence of successful transmissions, a more comprehensive data transmission situation can be learned, a more accurate flow control mechanism can be implemented, and redundant data can be reduced. Transmission, effective retransmission of failed transmission data, improving transmission efficiency.
  • the data sent by the first network node to the terminal device may be initially transmitted data or retransmitted data.
  • the following examples are described in detail.
  • the information of the SN transmitted after the largest SN successfully transmitted in the data includes one or more of the following: The information of the first successfully transmitted SN after the successfully transmitted SN in sequence; or, the information of the last successfully transmitted SN after the successfully transmitted SN in sequence; or , In the data, information about all successfully transmitted SNs after the SN with the largest sequence of successful transmissions; or, in the data, information about all SNs that have failed transmission after the SN with the largest sequence of successful transmissions Or, in the data, the number of SNs that are successfully transmitted after the sequentially largest SN that is successfully transmitted; or, in the data, the number of SNs that fail to be transmitted after the sequentially largest SN that is successfully transmitted Or, the number of SN ranges successfully transmitted after the largest SN successfully transmitted in the data.
  • the SN information transmitted after the SN with the largest sequence successfully transmitted in the data may include any one or more of the above information.
  • the second network node can learn the information of the SN successfully transmitted and the SN of the failed transmission after the SN with the largest sequence of successful transmissions, so that it can more accurately determine the need for retransmission.
  • the data may include any one or more of the above information.
  • the multiple pieces of information may be information within the range of the same SN.
  • the data includes the information of the first successfully transmitted SN after the SN successfully transmitted in the sequence, and the information of the last SN successfully transmitted in the data, it can indicate that the data is the largest in the sequence of successful transmission.
  • the information of the first successfully transmitted SN and the last successfully transmitted SN within the range of one SN transmitted after the SN.
  • the multiple pieces of information may also be information within the range of different SNs.
  • the information of the SN transmitted after the largest SN successfully transmitted in the data may include: the information of the first SN successfully transmitted after the largest SN successfully transmitted in the range of each SN, and the SN range The information of the last successfully transmitted SN within.
  • the information of the SN transmitted after the largest SN successfully transmitted in the data can include: the information of the first SN successfully transmitted after the largest SN successfully transmitted within the range of the first SN, and the same SN The information of the last successfully transmitted SN in the range; the information of the first successfully transmitted SN after the largest SN successfully transmitted in the first SN range of the second SN, and the last successfully transmitted SN in the same SN range SN information, etc.
  • the second indication information indicates, through a bitmap, the SN information and/or that are successfully transmitted after the SN that is successfully transmitted in the largest order in the data. Or failed to transmit SN information.
  • the first network node can use a bitmap to indicate the SN information successfully transmitted and/or the SN information of the failed transmission after the SN with the largest sequence of successful transmission in the data, so that not only Quickly determine whether the data is transmitted successfully or failed, and can save signaling overhead.
  • bitmap to indicate the SN information successfully transmitted and/or the SN information of the failed transmission after the SN with the largest sequence of successful transmission in the data, so that not only Quickly determine whether the data is transmitted successfully or failed, and can save signaling overhead.
  • the second indication information further includes indication information used to indicate the number of bits of the bitmap.
  • the first network node may also indicate to the second network node the number of bits included in the bitmap.
  • the number of bits included in the bitmap represents the number of data indicated by the bitmap.
  • the method further includes: the first network node sends third indication information to the second network node, and the third indication information is used to indicate : Whether the data includes a successfully transmitted SN after the SN with the largest sequence of successfully transmitted.
  • the third indication information may indicate whether the successfully transmitted SN is included after the successfully transmitted SN in the largest order through a m1 bit field, where m1 is an integer greater than or equal to 1.
  • the third indication information indicates whether there is an indication of a bitmap after the SN with the largest sequence that is successfully transmitted.
  • a field of m2 bits is used to indicate whether there is an indication of bitmap after the SN with the largest sequence that is successfully transmitted, where m2 is an integer greater than or equal to 1.
  • the third indication information indicates whether there is an indication of the SN range after the SN with the largest sequence that is successfully transmitted.
  • an m3 bit field is used to indicate whether there is an indication of the SN range after the SN with the largest sequence after the transmission is successful, where m3 is an integer greater than or equal to 1.
  • the third indication information indicates whether to indicate by way of SN range or by way of bitmap after the SN with the largest order after the transmission is successful.
  • a field of m4 bits is used to indicate whether to indicate by means of SN range or by means of bitmap after the SN with the largest order after the transmission is successful, where m4 is an integer greater than or equal to 1.
  • the presence or absence of the m2-bit field and the m3-bit field indicates whether the transmission is successfully followed by the largest SN in the order indicated by the SN range or by the bitmap.
  • the first network node can indicate to the second network node whether the successfully transmitted SN is included in the data after the SN with the largest sequence of successful transmission, so that the second network node can quickly determine the sequence of successful transmission. Whether to include the successfully transmitted SN after the largest SN. Further, the second network node may also determine the form of the SN to be transmitted after the SN with the largest sequence that indicates the successful transmission. Specifically, the following embodiments describe.
  • the first network node is a distributed unit, and the second network node is a centralized unit; or, the first network node is a base station, so The second network node is a base station.
  • a communication device is provided.
  • the device is a first network node and has the method function of the first aspect or the second aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device is provided.
  • the device is a second network node and has the method function of the first aspect or the second aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device is provided.
  • the device is a first network node.
  • the device includes a memory, a communication interface, and a processor, where the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the communication interface is used to send data to the terminal device; the communication interface is also used to send the first indication information and the second indication information to the second network node, where the first indication information is used to indicate: The information of the SN with the largest sequence number successfully transmitted in the data, and the second indication information is used to indicate: the information of the SN in the data that is transmitted after the SN with the largest sequence successfully transmitted.
  • the processor is configured to: generate the first indication information and the second indication information.
  • the information of the SN transmitted after the largest SN successfully transmitted in sequence includes one or more of the following: The information of the first successfully transmitted SN after the successfully transmitted SN in sequence; or, the information of the last successfully transmitted SN after the successfully transmitted SN in sequence; or , In the data, information about all successfully transmitted SNs after the SN with the largest sequence of successful transmissions; or, in the data, information about all SNs that have failed transmission after the SN with the largest sequence of successful transmissions Or, in the data, the number of SNs that are successfully transmitted after the sequentially largest SN that is successfully transmitted; or, in the data, the number of SNs that fail to be transmitted after the sequentially largest SN that is successfully transmitted Or, the number of SN ranges successfully transmitted after the largest SN successfully transmitted in the data.
  • the second indication information indicates, through a bitmap, the SN information and/or successfully transmitted after the SN that was successfully transmitted in the largest sequence in the data. Or failed to transmit SN information.
  • the second indication information further includes indication information for indicating the number of bits of the bitmap.
  • the communication interface is further configured to send third indication information to the second network node, and the third indication information is used to indicate: the data Whether the successfully transmitted SN is included after the SN with the largest sequence of successfully transmitted.
  • the device is a distributed unit, and the second network node is a centralized unit; or, the device is a base station, and the second network node is Base station.
  • the communication interface may be a receiver or a transmitter, or may also be a transceiver.
  • a communication device is provided.
  • the device is a second network node.
  • the device includes a memory, a communication interface, and a processor.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the communication interface is used to: send data to the first network node; the communication interface is also used to: receive the first indication information and the second indication information sent by the first network node, wherein the first indication
  • the information is used to indicate: information of the sequence number SN with the largest sequence number successfully transmitted in the data
  • the second indication information is used to indicate: the data that is transmitted after the sequence number SN with the largest sequence number successfully transmitted in the data. SN information.
  • the processor is configured to: determine the information of the SN transmitted after the SN with the largest sequence of successful transmission in the data, and determine the data SN information transmitted after the largest SN successfully transmitted in sequence.
  • the information of the SN transmitted after the largest SN successfully transmitted in sequence includes one or more of the following: The information of the first successfully transmitted SN after the successfully transmitted SN in sequence; or, the information of the last successfully transmitted SN after the successfully transmitted SN in sequence; or , In the data, information about all successfully transmitted SNs after the SN with the largest sequence of successful transmissions; or, in the data, information about all SNs that have failed transmission after the SN with the largest sequence of successful transmissions Or, in the data, the number of SNs that are successfully transmitted after the sequentially largest SN that is successfully transmitted; or, in the data, the number of SNs that fail to be transmitted after the sequentially largest SN that is successfully transmitted Or, the number of SN ranges successfully transmitted after the largest SN successfully transmitted in the data.
  • the second indication information indicates, through a bitmap, the SN information and/or that are successfully transmitted after the SN that is successfully transmitted in the largest order in the data. Or failed to transmit SN information.
  • the second indication information further includes indication information for indicating the number of bits of the bitmap.
  • the communication interface is further configured to: receive third indication information sent by the first network node, where the third indication information is used to indicate: the Whether the data includes the successfully transmitted SN after the SN with the largest sequence of successful transmission.
  • the first network node is a distributed unit, and the device is a centralized unit; or, the first network node is a base station, and the device is a base station .
  • the communication interface may be a receiver or a transmitter, or may also be a transceiver.
  • a chip in a seventh aspect, includes a processing module and a communication interface, the processing module is used to control the communication interface to communicate with the outside, and the processing module is also used to implement the first aspect or the second aspect Provided method.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect or the second aspect, and the first or second aspect.
  • the method in any possible implementation of the two aspects.
  • a computer program product containing instructions is provided, when the instructions are executed by a computer, the communication device realizes the method provided in the first aspect or the second aspect.
  • a communication system including the aforementioned first network node and second network node.
  • a communication system including the aforementioned first network node, second network node, and terminal equipment.
  • Figures 1 and 2 are schematic diagrams of application scenarios applicable to embodiments of the present application.
  • Figure 4 is a schematic diagram of a network node feeding back data transmission conditions
  • Figure 5 is a schematic interaction diagram of the method proposed according to an embodiment of the present application.
  • FIGS. 7 and 8 are schematic diagrams of bitmaps applicable to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a retransmission scenario applicable to another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • 5th generation 5G system or new radio (NR) or other performance
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a Global System of Mobile Communication (GSM) system or Code Division Multiple Access (CDMA)
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • BTS base station
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Base Station Evolution
  • NodeB eNB, or eNodeB
  • it can also be a wireless controller in Cloud Radio Access Network (CRAN) scenarios, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • CRAN Cloud Radio Access Network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a radio access network (Radio Access Network) including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • Radio Access Network Radio Access Network
  • RAN radio access network equipment
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a radio access network (Radio Access Network) including a CU node and a DU node.
  • RAN radio access network
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node RAN equipment
  • the first network node may be a DU
  • the second network node may be a CU
  • Fig. 1 is a schematic diagram of an application scenario suitable for an embodiment of the present application.
  • the core network device 113 for example, the fifth-generation core network 1 (the 5 th generation core network , 5GC), connect either complete access network device 111 may also include a connection CU101 access network and DU102 Equipment 112.
  • the access network equipment may be, for example, a next generation Node Base station (gNB).
  • gNB next generation Node Base station
  • CU101 and DU102 can be softwareized or virtualized.
  • the wireless access network functions that need to be flexibly combined will run in CU101, such as the Service Data Adaptation Protocol (SDAP) layer, Packet Data Convergence Protocol (Packet Data Convergence Protocol) , PDCP), Radio Resource Control (Radio Resource Control, RRC) and other high-level functions; and RAN functions that are strongly related to hardware and require high real-time performance will run in DU102, such as Radio Link Control (Radio Link Control, RLC) layer, physical layer (physical layer, PHY), media access control layer (Media Access Control, MAC) and other underlying functions.
  • SDAP Service Data Adaptation Protocol
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • PDCP Packet Data Convergence Protocol
  • Radio Resource Control Radio Resource Control
  • RAN functions that are strongly related to hardware and require high real-time performance will run in DU102, such as Radio Link Control (Radio Link Control, RLC) layer,
  • CU101 and DU102 are connected through a communication interface.
  • the CU101 and the core network equipment are also connected through a communication interface.
  • the communication interface between CU101 and DU102 may be referred to as an F1 interface.
  • the interface between the CU101 and the core network equipment can be called an N2 interface or an NG interface.
  • one access network device 112 may include one CU101 and one or more DU102.
  • CU101 and DU102 are connected by F1 interface.
  • One DU102 can only be connected to one CU101, and one CU101 can be connected to one or more DU102.
  • the gNB may include one or more gNB-DUs and one gNB-CU.
  • One gNB-DU is connected to one gNB-CU, and one gNB-CU can be connected to multiple gNB-DUs.
  • the gNB-CU and the gNB-DUs it is connected to are seen by other gNBs and 5GCs as a gNB.
  • Fig. 2 is a schematic diagram of another application scenario applicable to an embodiment of the present application.
  • the CU includes a centralized unit-user plane (CU-UP) 201 and a centralized unit-control plane (CU-CP) 202.
  • the CU-UP201 and CU-CP202 can be on different physical devices. There may be an open interface between CU-UP201 and CU-CP202, and this interface may be called an E1 interface.
  • CU-UP201 and CU-CP202 and DU can each have their own interfaces. For example, the interface between CU-CP202 and DU can be called F1-C interface, and the interface between CU-UP201 and DU can be called F1. -U interface.
  • an access network device may include one CU-CP202, one or more CU-UP202, and multiple DUs.
  • One DU can be connected to one CU-CP202.
  • One CU-UP201 can only connect to one CU-CP202.
  • One DU can be connected to multiple CU-UP201s under the control of the same CU-CP202.
  • One CU-UP201 can be connected to multiple DUs under the control of the same CU-CP202.
  • one gNB-DU and gNB-CU-UP are both connected to only one gNB-CU-CP.
  • one gNB-DU can be connected to multiple gNB-CU-UPs
  • one gNB-CU-UP can be connected to multiple gNB-DUs.
  • Fig. 3 is a schematic diagram of another application scenario suitable for an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a 5G network suitable for the embodiment of the present application.
  • the communication system 300 may include at least two access network devices, such as an access network device 311 and an access network device 312.
  • the communication system 300 may also include at least one core network device, such as a core network device 313.
  • the communication system 300 may also include at least one terminal device.
  • the terminal device can establish a wireless link with the access network device 311 and the access network device 312 through dual connectivity (DC) technology or multi-connection technology, or the terminal device can communicate with the access network device 311 and the access network device 312 through dual connectivity technology or multiple connection technology.
  • the access network device 311 and the access network device 312 establish a wireless link.
  • the terminal device can establish a communication connection between the access network device 311 and the access network device 312 and the core network device 313.
  • the access network device 311 and the access network device 312 can provide the terminal device with the core network device 313. ,CN) between the connection.
  • the access network device 311 or the access network device 312, for example, may be a radio network controller (RNC), or may be a base station.
  • the radio network controller can be set in the base station or can exist as a separate entity.
  • the core network device 313 may include, but is not limited to, any one or more of the following: user plane function (UPF) entity, access and mobility management function (Access and Mobility Management function, AMF), or session management function (Session Management function, SMF) entities, etc.
  • UPF user plane function
  • AMF Access and Mobility Management function
  • SMF Session Management function
  • the access network device 311 may be, for example, a primary base station, and the access network device 312 may be, for example, a secondary base station.
  • the access network device 311 may be the access network device when the terminal device initially accesses, and is responsible for radio resource control (RRC) communication with the terminal device
  • RRC radio resource control
  • the access network device 312 may be RRC It is added during reconfiguration to provide additional wireless resources.
  • the access network device 311 can be called a master node (master node, MN), for example, the master node can be an MeNB or MgNB, which is not limited to this; then another access network device, such as an access network device 312, which may be referred to as a secondary node (SN).
  • the secondary node may be an SeNB or SgNB, and is not limited thereto.
  • multiple serving cells in the master node may form a master cell group (master cell group, MCG), including a primary cell (primary cell, PCell) and optionally one or more serving cells (serving cell, SCell).
  • Multiple serving cells in the secondary node may form a secondary cell group (secondary cell group, SCG), including one primary and secondary cell (PSCell) and optionally one or more SCells.
  • SCG secondary cell group
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • the NG-U interface is the interface between the access network device and the core network device (such as the UPF entity), and the Xn-U interface is the interface between the access network device and the access network device.
  • FIG. 3 shows a schematic diagram of a 4G core network suitable for the embodiment of the present application.
  • the communication system 300 may include at least two access network devices, such as an access network device 314 and an access network device 315.
  • the communication system 300 may also include at least one core network device, such as a core network device 316.
  • the communication system 300 may also include at least one terminal device.
  • the terminal device can establish a wireless link with the access network device 314 and the access network device 315 through dual connectivity (DC) technology or multi-connection technology, or the terminal device can communicate with the access network device 314 and the access network device 315 through dual connectivity technology or multiple connection technology.
  • the access network device 314 and the access network device 315 establish a wireless link.
  • the terminal device can establish a communication connection between the access network device 314 and the access network device 315 and the core network device 316.
  • the access network device 314 and the access network device 315 can provide the terminal device with the core network connection.
  • the access network device 314 or the access network device 315 may be a radio network controller, or may be a base station.
  • the radio network controller can be set in the base station or can exist as a separate entity.
  • the core network device 316 may include, but is not limited to, any one or more of the following: a serving gateway (S-GW) entity, a mobility management entity (mobility management entity, MME), or a packet data network gateway (packet data network). gateway, P-GW) and so on.
  • S-GW serving gateway
  • MME mobility management entity
  • P-GW packet data network gateway
  • the access network device 314 may be, for example, a primary base station, and the access network device 315 may be, for example, a secondary base station.
  • the access network device 314 may be the access network device when the terminal device initially accesses, and is responsible for radio resource control (RRC) communication with the terminal device.
  • RRC radio resource control
  • the access network device 315 may be RRC It is added during reconfiguration to provide additional wireless resources.
  • the master node can be an MeNB or MgNB, which is not limited to this; then another access network device, such as the access network device 316, can be called
  • the secondary node for example, the secondary node may be an SeNB or SgNB, and is not limited thereto.
  • multiple serving cells in the master node may form a master cell group (master cell group, MCG), including a primary cell (primary cell, PCell) and optionally one or more serving cells (serving cell, SCell).
  • Multiple serving cells in the secondary node may form a secondary cell group (secondary cell group, SCG), including one primary and secondary cell (PSCell) and optionally one or more SCells.
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • the S1-U interface is the interface between the access network device and the core network device (such as the S-GW entity), and the X2-U interface is the interface between the access network device and the core network device. Interface between access network devices.
  • a terminal device can also have a communication connection with multiple access network devices at the same time and can send and receive data.
  • one access network device may be responsible for exchanging radio resource control messages with the terminal device.
  • And is responsible for interacting with the core network control plane entity.
  • the access network device can be called MN, and the other access network devices can be called SN.
  • the first network node may be an SN, and the second network node may be an MN; or, the first network node may be an MN, and the second network node may be an SN.
  • the radio bearer whose PDCP layer is located in the MN (a radio bearer for which PDCP is located in the MN)
  • the MN terminated radio bearer (MN terminated bearer: in MR-DC, a radio bearer for which PDCP) is located in the MN
  • the first network node may be SN
  • the second network node may be MN.
  • the first network node may be MN
  • the second network node may be SN.
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • flow control can be performed by transmitting data transmission conditions.
  • the first network node (such as DU) sends the downlink data transmission status (DL data delivery status) to the second network node (node with NR PDCP, such as CU), so that the second network node can control each
  • the data stream of the data radio bearer (DRB) can be used for downstream flow control.
  • the embodiment of the present application proposes a solution that can effectively perform flow control and reduce the transmission of redundant data.
  • FIG. 5 is a schematic interaction diagram of a method 500 provided by an embodiment of the present application.
  • the method 500 may include the following steps.
  • the first network node sends data to the terminal device.
  • the first network node can send data to the terminal device in any of the following scenarios.
  • Scene 1 First pass scene.
  • the data is newly transmitted data from the first network node to the terminal device.
  • the first network node sends the data to the terminal device for the first time.
  • Scenario 2 Retransmission scenario.
  • the data is data retransmitted by the first network node to the terminal device. It can be understood that the previous transmission of the data failed, and the first network node retransmits the data to the terminal device. For example, other network nodes failed to transmit the data to the terminal device before; for another example, the first network node failed to transmit the data to the terminal device before.
  • the method 500 may further include: the second network node sends the data to the first network node. After receiving the data, the first network node sends the data to the terminal device.
  • the first network node After the first network node sends data to the terminal device, it can feed back the data transmission status to the second network node.
  • the first network node sends first indication information and second indication information to the second network node, where the first indication information is used to indicate: the sequence number (sequence number, SN) of the data successfully transmitted Information, the second indication information is used to indicate: the information of the SN that is transmitted after the SN that is the largest in sequence successfully transmitted in the data.
  • first indication information is used to indicate: the sequence number (sequence number, SN) of the data successfully transmitted Information
  • the second indication information is used to indicate: the information of the SN that is transmitted after the SN that is the largest in sequence successfully transmitted in the data.
  • Data transmission generally includes two types: successful data transmission and failed data transmission.
  • Successful data transmission in other words, successful data transmission, is used to indicate that the first network node sends data to the terminal device, and the data is successfully received by the terminal device.
  • the first network node may determine that the data is successfully transmitted by receiving an acknowledgement (acknowledgement, ACK) message for the data feedback from the terminal device, such as an RLC confirmation message or a HARQ confirmation message.
  • the successfully transmitted data may be initial transmission data or retransmission data. In the following, the successful data transmission is used to indicate.
  • the success of data transmission may indicate that the initial data transmission is successful, or it may indicate that the data retransmission is successful.
  • Data transmission failure in other words, data transmission failure, are used to indicate that the first network node sends data to the terminal device, and the data is not successfully received by the terminal device.
  • the first network node may determine that the data transmission fails by receiving a negative acknowledgement (NACK) message, such as an RLC response or a HARQ response, from the terminal device for the data feedback.
  • NACK negative acknowledgement
  • the first network node may determine that the data transmission fails by not receiving a feedback message from the terminal device for the data.
  • Failure of data transmission may be that the first network node fails to send data; it may also be that the terminal device fails to receive data, such as incorrect demodulation, etc.
  • the embodiment of the present application does not limit the reasons for the failure of data transmission. In the following, it is indicated by data transmission failure.
  • the failure of data transmission may indicate that the initial transmission of data failed, or may indicate that the data retransmission failed.
  • the first network node After sending the data to the terminal device, the first network node sends the first indication information and the second indication information to the second network node according to the data transmission situation. It can also be understood that the first network node sends the first indication information and the second indication information to the second network node, and the second network node can learn the data transmission status according to the first indication information and the second indication information.
  • the second network node knows the data transmission situation, that is, the second network node can determine which data transmission is successful and which data transmission fails, and then can determine the information of the data that needs to be retransmitted, thereby further optimizing the flow control mechanism and reducing redundancy Transmission of invalid data.
  • the first indication information and the second indication information may be carried in one signaling, or may also be carried in two signalings, which is not limited in this embodiment of the present application.
  • the first indication information is used to indicate: the information of the largest sequence number SN in the data that is successfully transmitted.
  • the first network node indicates to the second network node the highest successful delivered NR PDCP Sequence Number (NR PDCP Sequence Number).
  • the second indication information is used to indicate: information of the SN transmitted after the SN with the largest sequence in the data that is successfully transmitted.
  • the first network node indicates to the second network node the information of the SN after the successfully transmitted SN in the order, so that the second network node can determine the information of the SN successfully transmitted after the SN in the order that is successfully transmitted, and
  • the information of the failed SN is transmitted after the successfully transmitted SN with the largest sequence, so that the data transmission situation can be obtained more accurately.
  • the information of the SN that is transmitted after the SN with the largest sequence that is successfully transmitted may include one or more of the following: information about the SN that is first successfully transmitted after the SN with the largest sequence that is successfully transmitted; or , The information of the last successfully transmitted SN after the successful transmission of the largest SN; or, the information of all the successfully transmitted SNs after the successful transmission of the largest SN; or, the information of the largest successful transmission Information of all SNs that failed to be transmitted after the SN; or, the number of SNs that were successfully transmitted after the largest SN that was successfully transmitted; or, the number of SNs that failed to be transmitted after the largest SN that was successfully transmitted; or, The range of SNs that are successfully transmitted after the largest SN that is successfully transmitted.
  • N is an integer greater than or equal to 1.
  • the data packet corresponding to the SN with the largest sequence number successfully transmitted is recorded as the first data packet, and the first SN successfully transmitted after the SN with the largest sequence successfully transmitted corresponds to The data packet of is recorded as the second data packet, and the data packet corresponding to the last successfully transmitted SN after the SN with the largest sequence of successful transmission is recorded as the third data packet.
  • Scene 1 First pass scene.
  • the data sent by the first network node to the terminal device includes: data packet 196, data packet 197, data packet 198, data packet 199, data packet 200, data packet 201, data packet 202, data Packet 203, data packet 204, data packet 205, data packet 206, data packet 207.
  • the transmission of the data packet 201 fails, and the other data packets are successfully transmitted.
  • the transmission of the data packet 201 and the data packet 204 fails, and the other data packets are successfully transmitted.
  • the first indication information is used to indicate the information of the highest transmitted NR PDCP SN Ind in the data with the highest sequence number that is successfully transmitted. It can be understood that the first indication information is used to indicate the highest transmitted PDCP SN in the sequence. That is, the first indication information is used to indicate the SN of the first data packet. For example, taking FIG. 6 as an example, the first indication information is used to indicate the PDCP SN of the data packet 200, that is, 200. In the example shown in FIG. 6, the first data packet represents the data packet 200.
  • the second indication information is used to indicate the information of the SN that is transmitted after the SN with the largest sequence in the data that is successfully transmitted. For example, in the example shown in FIG. 6, the second indication information may be used to indicate that the data packet 200 is successfully transmitted afterwards. The information of the SN, and/or the second indication information may be used to indicate the information of the SN that failed to be transmitted after the data packet 200.
  • FIG. 6 is only an exemplary illustration, and the embodiment of the present application is not limited thereto.
  • more successfully transmitted data packets may be included, or, after the data packet 200, more data packets may be included. Multiple failed data packets, etc.
  • the following describes the different information that may be included in the information of the SN transmitted after the SN with the largest sequence successfully transmitted.
  • SN can be the packet data convergence protocol sequence number (PDCP SN), or the new radio user plane sequence number (NR-).
  • PDCP SN packet data convergence protocol sequence number
  • NR- new radio user plane sequence number
  • scenario 1 mainly takes SN as PDCP SN as an example for exemplification.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: the information of the SN that is transmitted first after the SN with the largest sequence that is successfully transmitted.
  • the first network node indicates the SN information of the second data packet to the second network node.
  • the second data packet may be the first data packet successfully transmitted among all the data packets after the SN with the largest sequence that is successfully transmitted.
  • the first data packet successfully transmitted after the SN with the largest sequence of successful transmission is the second data packet, data packet 202.
  • the first network node may indicate the PDCP SN: 202 of the data packet 202 to the second network node.
  • the first network node may indicate the NR-U SN: 202 of the data packet 202 to the second network node.
  • the first network node indicates to the second network node: the information of the SN with the largest sequence successfully transmitted (that is, the information of the first data packet), and the SN of the first SN successfully transmitted after the SN with the largest sequence successfully transmitted.
  • Information that is, the information of the second data packet
  • the second network node can determine the data packet whose transmission failed, that is, the second network node can determine the retransmitted data packet. For example, as shown in FIG. 6, after receiving the information, the second network node can determine that the transmission of the data packet 201 has failed, that is, the data packet 201 needs to be retransmitted.
  • the information of the SN transmitted after the SN with the largest sequence after the successful transmission includes: the information of the SN with the first successful transmission after the SN with the largest sequence after the transmission, and the SN with the largest sequence after the transmission is successful The number of SN ranges successfully transmitted afterwards.
  • the first network node indicates to the second network node: the information of the SN of the second data packet and the number of SN ranges that are successfully transmitted after the SN in the order of the largest transmission.
  • the second indication information may indicate, through a field, the number of SN ranges that are successfully transmitted after the largest SN that is successfully transmitted.
  • an x-bit field indicates the number of SN ranges that are successfully transmitted after the largest SN that is successfully transmitted, where x is an integer greater than or equal to 1.
  • a fixed-bit field (for example, 8 bits) is used to indicate the number of SN ranges that are successfully transmitted after the largest SN that is successfully transmitted. For example, 00000001 means the SN range is 1, and 00000010 means the SN range is 2.
  • the transmission is successful after the SN with the largest sequence that is successfully transmitted, it may indicate: one or more data packets that failed to be transmitted, and one or more data packets that were successfully transmitted. Or, all data packets are successfully transmitted within the range of the SN successfully transmitted after the SN with the largest order of transmission.
  • the SN range that is successfully transmitted after the SN with the largest sequence of successful transmission is referred to as the SN range for short.
  • the SN range can represent: data packet 201 to data packet 207, and a data packet (data packet 201) that fails to be transmitted is included in the SN range.
  • the SN range may indicate: data packet 202 to data packet 207, and all data packets within the SN range are successfully transmitted. Regardless of how the SN range is expressed, taking (1) in Figure 6 as an example, the number of SN ranges is 1.
  • the SN range can indicate: data packet 201 to data packet 203, data packet 204 to data packet 207, that is, there are 2 SN ranges, and each SN range includes a data packet that fails to transmit (data packet 201, data packet 204 ).
  • the SN range may indicate: data packet 202 to data packet 203, data packet 205 to data packet 207, that is, there are 2 SN ranges, and all data packets within each SN range are successfully transmitted. No matter which way the SN range is expressed, taking (2) in Figure 6 as an example, the number of SN ranges is 2.
  • the SN range may include only successfully transmitted data packets; or, the SN range may also include both successfully transmitted data packets and failed data packets.
  • the first P data packets in each SN range are data packets that have failed transmission, and P is greater than 1 or an integer equal to 1, and P can be a preset value.
  • P can be a preset value.
  • the first data packet in the range of each SN is the data packet whose transmission failed.
  • the number of SN ranges is an integer greater than or equal to zero.
  • the second indication information may indicate that the number of SN ranges is 1 through a 1-bit field.
  • the second indication information may use an 8-bit field, with a value of 1 indicating that the number of SN ranges is 1.
  • the second indication information may indicate the number of SN ranges through the number of bitmaps.
  • the bitmap can be used to indicate the information of the SN that is transmitted after the SN with the largest sequence that is successfully transmitted, and the number of the bitmap represents the number of SN ranges. For example, taking (1) in FIG. 6 as an example, a bitmap can be used to indicate the information of the SN to be transmitted after the SN with the largest sequence that is successfully transmitted. In other words, in this implementation, the number of bitmap lists is equal to the number of SN ranges. The embodiment of this application does not limit how to indicate the number of bitmap lists.
  • the first network node indicates to the second network node: the information of the first data packet, the information of the second data packet, and the number of SN ranges.
  • the second network node can determine the transmission failure after receiving the information
  • the data packet that is, the second network node can determine the retransmitted data packet.
  • the second data packet may include the first data packet successfully transmitted within the range of each SN after the SN with the largest sequence of successful transmission.
  • the second data packet is the data packet 202.
  • the second network node can determine that the transmission of the data packet 201 has failed, that is, the data packet 201 needs to be retransmitted.
  • the second network node determines that the second data packet is the data packet 202 and the number of the SN range is 1, the second network node can determine that the data packets following the second data packet are all successfully transmitted.
  • the second data packet includes a data packet 202 and a data packet 205.
  • the second network node can determine that the data packet 201 and the data packet 204 have failed to be transmitted, that is, the data packet 201 and the data packet 204 need to be retransmitted.
  • the second network node includes the data packet 202 and the data packet 204 according to the second data packet, and the number of the SN range is 2, the second network node can determine that the remaining data packets are all successfully transmitted.
  • the information of the SN transmitted after the SN with the largest sequence of transmission successfully includes: the information of the SN that is successfully transmitted first after the SN with the largest sequence of transmission, the number of SN ranges, and the number of SNs that are successfully transmitted. The number of SNs successfully transmitted after the largest SN in sequence.
  • the first network node indicates to the second network node: the information of the SN of the second data packet, the number of SN ranges, and the number of SNs that are successfully transmitted after the largest SN that is successfully transmitted.
  • the second data packet may be the first data packet that is successfully transmitted among all the data packets after the SN with the largest sequence that is successfully transmitted.
  • the second data packet is the data packet 202.
  • the second data packet is the data packet 202.
  • the second data packet may include the first data packet successfully transmitted within the range of each SN after the SN with the largest sequence of successful transmission.
  • the second data packet is the data packet 202.
  • the second data packet includes a data packet 202 and a data packet 205.
  • the number of SNs that are successfully transmitted after the largest SN that is successfully transmitted may be the number of SNs that are successively successfully transmitted after the largest SN that is successfully transmitted, that is, the number of SNs that are successfully transmitted within the range of each SN
  • the number of SNs can include one or more. For example, taking Fig. 6(1) as an example, the number of successfully transmitted SNs is 6 after the SN with the largest sequence of successful transmissions. For another example, taking Fig. 6(2) as an example, there are two values for the number of SNs that are successfully transmitted after the SN with the largest sequence that is successfully transmitted, which are 2 and 3 respectively.
  • Number of SN ranges 1 PDCP SN of the second data packet 202 The number of successfully transmitted SNs after the largest SN in sequence 6
  • the first network node can indicate to the second network node that the number of SN ranges is 1.
  • the first network node may also indicate to the second network node the PDCP SN (Start of Successfully Transmitted PDCP Sequence Number Range) that is the first to be successfully transmitted after the SN with the largest sequence that is successfully transmitted, that is, 202.
  • the first network node may also indicate to the second network node that the number of successfully transmitted data packets (Number of Successful Transmitted PDCP Sequence Number Ranges Reported) in the data packet within the range is 6.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted can be shown in Table 2 below.
  • the second data packet includes a data packet 202 and a data packet 205, for distinction, they are respectively marked as the second data packet within the first SN range and the second data packet within the second SN range .
  • Number of SN ranges 2 PDCP SN of the second data packet within the range of the first SN 202 The number of successfully transmitted SNs in the range of the first SN after the sequentially largest SN successfully transmitted 2 PDCP SN of the second data packet within the range of the second SN 205
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may also include: the SN of the second data packet and the SN that is successfully transmitted after the SN with the largest sequence that is successfully transmitted. quantity.
  • the second network node can also determine the data transmission situation according to the SN information of the second data packet and the number of SNs that are successfully transmitted after the SN that is the largest in sequence.
  • the first network node indicates to the second network node: the information of the first data packet, the PDCP SN of the second data packet, the number of SN ranges, and the number of SNs that are successfully transmitted after the largest SN in the order The number of SNs.
  • the second network node can determine the data packet whose transmission failed.
  • the number of SN ranges is one.
  • the second network node can determine that the transmission of the data packet 201 has failed, that is, the data packet 201 needs to be retransmitted, and the other data packets are all successfully transmitted.
  • the number of SN ranges is two. Assume that the second data packet includes the first successfully transmitted data packet in each SN range after the SN with the largest sequence of successful transmissions. Then for the first SN range, the number of successfully transmitted data packets is 2 (that is, data packet 202 and data packet 203), and for the second SN range, the number of successfully transmitted data packets is 3 (that is, data packet 205, Data packet 206, and data packet 207). After receiving the instruction information, the second network node can determine that the data packet 201 and the data packet 204 have failed to be transmitted, that is, the data packet 201 and the data packet 204 need to be retransmitted, and the remaining data packets are all successfully transmitted.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: information about all the SNs that are successfully transmitted after the SN with the largest sequence that is successfully transmitted.
  • Solution 4 can be implemented by at least one of the following implementation methods.
  • Implementation method 1 using a y-bit bitmap to indicate whether the data packet is successfully transmitted, where y is an integer greater than or equal to 1.
  • Each bit can indicate a data packet, or in other words, each bit can indicate a data packet transmission success or transmission failure, for example, 1 indicates that the transmission needs to be successful, and 0 indicates that the transmission fails.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may be shown in Table 3 below.
  • the first network node may indicate to the second network node the number of bits included in the bitmap, and the number of bits included in the bitmap is the same as the number of data packets indicated by the bitmap. It can also be understood that the first network node may indicate the number of data packets to the second network node.
  • the y-bit bitmap may be based on the first data packet among the N data packets.
  • the bitmap of y bits can be based on the data packet 196.
  • the successfully transmitted data packets include: data packet 196, data packet 197, data packet 198, data packet 199, data packet 200, data packet 202, data packet 203, data packet 204, data Packet 205, data packet 206, data packet 207, the failed data packet includes: data packet 201, then data packet 196 can be used as a reference, starting from data packet 196, that is, a 12-bit bitmap can be used to indicate the transmission data pack. As shown in Fig. 7, the 12-bit indication in the figure is a binary number (111110111111), and each bit can indicate a data packet. 1 means the transmission is successful, and 0 means the transmission is successful. This means that the data packet 201 corresponding to "0" is the data packet 201 that has failed to be transmitted.
  • the first network node may indicate to the second network node the number of bits included in the bitmap, for example, 12, which is equivalent to that the bitmap is used to indicate the transmission status of 12 data packets.
  • the y-bit bitmap may be based on the first data packet.
  • the y-bit bitmap can be based on the data packet 200.
  • the successfully transmitted data packets include: data packet 196, data packet 197, data packet 198, data packet 199, data packet 200, data packet 202, data packet 203, data packet 204, data Packet 205, data packet 206, data packet 207, the data packets that failed to be transmitted include: data packet 201, then the data packet 200 can be used as a reference, and the indication can be started from the next data packet of the data packet 200, that is, 7-bit bits can be used.
  • Figure to indicate the transmitted data packet As shown in Figure 8, the 7-bit indication in the figure is a binary number (0111111), and each bit can indicate a data packet. A 1 indicates successful transmission, and a 0 indicates successful transmission. This means that the data packet 201 corresponding to "0" is the data packet 201 that has failed to be transmitted.
  • the first network node may indicate to the second network node the number of bits included in the bitmap, for example 7, which is equivalent to that the bitmap is used to indicate the transmission status of 7 data packets.
  • a field can be used to indicate the number of bits occupied by the bitmap (that is, the number of bits included in the bitmap). As shown in Table 3, assuming that the bitmap occupies 15 bits of 2 bytes, the number of bits occupied by the bitmap is 15.
  • a field can be used to indicate the number of bytes occupied by the bitmap, and the number of bits included in the bitmap can be determined according to the value of the field.
  • a field of fixed bits (such as 8 bits) may be used to indicate the number of bits included in the bitmap. For example, 00001000 indicates that the bitmap is 8 bits, that is, the number of bits included in the bitmap is 8 bits; and 00010001 indicates that the bitmap is 9 bits, that is, the number of bits included in the bitmap is 9 bits.
  • the y-bit bitmap when the y-bit bitmap is based on the data packet 200, it can also be indicated from the beginning of the data packet 200, that is, an 8-bit bitmap can be used to indicate the transmitted data packet.
  • the 8-bit indicator is a binary number (10111111 ) Indicates that the next data packet of the data packet 200, that is, the transmission of the data packet 201 has failed, and the transmission of the remaining data packets is successful.
  • a 6-bit bitmap can be used to indicate the transmitted data packet, for example, a 6-bit indicator is a binary number ( 111111), indicating that the data packet 202 and subsequent data packets are successfully transmitted.
  • the second network node may also determine that the remaining data packets are data packets that have failed transmission.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: each SN that is successfully transmitted after the SN with the largest sequence that is successfully transmitted.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted can be shown in Table 4 below.
  • the first network node can indicate to the second network node the PDCP SN (Successfully transmitted PDCP Sequence Number) of the data packet that is successfully transmitted after the SN with the largest sequence of transmission success, as shown in Table 4 PDCP Sequence Number 1, Successfully Transmitted PDCP Sequence Number 2,.... Taking (1) in Figure 6 as an example, the first network node can indicate to the second network node that the successfully transmitted data packets among the N2 data packets include: data packet 202, data packet 203, data packet 204, data packet 205, Data packet 206, data packet 207.
  • the second network node may also indicate to the first network node the number of successfully transmitted data packets (Number of Successful Transmitted PDCP Sequence Number Reported) after the SN with the largest sequence of successful transmissions.
  • the first network node indicates to the second network node: the information of the first data packet and the information of the data packet successfully transmitted after the SN with the largest sequence of transmission success, and the second network node receives the information Later, the failed data packet can be determined. For example, as shown in FIG. 6, after receiving the indication information, the second network node can determine that the transmission of the data packet 201 has failed, that is, the data packet 201 needs to be retransmitted, and the remaining data packets are all successfully transmitted.
  • Solution 5 The information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: the information of the second data packet and the information of the third data packet.
  • the first network node indicates the information of the second data packet and the information of the third data packet to the second network node.
  • the second data packet may be the first data packet successfully transmitted among all the data packets after the SN with the largest sequence that is successfully transmitted.
  • the second data packet may include the first data packet successfully transmitted in the range of each SN after the SN with the largest sequence of successful transmission.
  • the third data packet may be the last data packet successfully transmitted among all the data packets after the SN with the largest sequence of successful transmission.
  • the third data packet is the data packet 207.
  • the third data packet is a data packet 207.
  • the third data packet may include the last data packet successfully transmitted within the range of each SN after the SN with the largest sequence of successful transmission.
  • the third data packet may include the data packet with the largest SN in the sequence that is successfully transmitted after the SN with the largest sequence that is successfully transmitted and after the second data packet.
  • the third data packet is the data packet 207.
  • the third data packet includes a data packet 203 and a data packet 207.
  • Scheme 5 mainly takes the second data packet and the third data packet as data packets within a SN range, as an example for illustration. That is to say, the second data packet includes the first successfully transmitted data packet in each SN after the SN with the largest sequence of successful transmission; the third data packet includes the largest SN in the sequence after the successful transmission, The last data packet successfully transmitted in each SN range.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted can be shown in Table 5 below.
  • the first network node can indicate the PDCP SN of the second data packet to the second network node, that is, the first network node can indicate to the second network node that the SN that is the largest in sequence after the transmission is successful PDCP SN (Start of Successfully Transmitted PDCP Sequence Number Range) of the first successfully transmitted data packet in the SN range.
  • the first network node may also indicate the PDCP SN of the third data packet to the second network node, that is, the first network node may indicate to the second network node that the last one successfully transmitted after the SN with the largest order of transmission is successful.
  • PDCP SN End of successfully transmitted PDCP Sequence Number range
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may also include: the number of SN ranges, that is, the number of SN ranges after the largest SN that is successfully transmitted (Number of successful transmitted PDCP Sequence Number ranges reported). That is to say, the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may include: information of the second data packet, information of the third data packet, and the number of SN ranges.
  • Number of SN ranges 1 PDCP SN of the second data packet 202 PDCP SN of the third data packet 207
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may be as shown in Table 7 below.
  • the third data packet includes a data packet 203 and a data packet 207. For distinction, they are respectively recorded as the third data packet in the range of the first SN and the third data packet in the range of the second SN.
  • the first network node may also indicate to the second network node the number of successfully transmitted SN ranges (Number of successful transmitted PDCP Sequence Number) after the SN with the largest sequence of successful transmissions. ranges Reported).
  • the first network node may also report to the second network node the number of data packets successfully transmitted in all the data packets.
  • the first network node indicates to the second network node: the PDCP SN of the first data packet, the PDCP SN of the second data packet, and the PDCP SN of the third data packet.
  • the second network node After the second network node receives the information, it can Identify the packets that failed to be transmitted.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes information about the data packets that have failed to be transmitted after the SN with the largest sequence that is successfully transmitted.
  • Solution 6 can be implemented by at least one of the following implementation methods.
  • a possible implementation is to use a y-bit bitmap to indicate whether the data packet is successfully transmitted, where y is an integer greater than or equal to 1.
  • Each bit can indicate a data packet, or in other words, each bit can indicate a data packet transmission success or transmission failure, for example, 1 indicates that the transmission needs to be successful, and 0 indicates that the transmission fails.
  • Another possible implementation manner is to indicate the PDCP SN of the data packet that fails to be transmitted after the SN with the largest sequence that is successfully transmitted.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted can be shown in Table 8 below.
  • the first network node may indicate to the second network node the PDCP SN (Failed Transmitted PDCP Sequence Number) of the data packet that fails to be transmitted after the SN with the largest sequence of transmission success.
  • PDCP SN failed Transmitted PDCP Sequence Number
  • the second network node may also indicate to the first network node the number of data packets that have failed transmission (Number of failed transmitted PDCP Sequence Number reported) after the SN with the largest sequence of successful transmissions. For example, Failed Transmitted PDCP Sequence Number 1, Failed Transmitted PDCP Sequence Number 2, ... in Table 8.
  • the first network node may also report to the second network node the number of data packets that have failed transmission (Number of failed transmitted PDCP Sequence Number reported) among the N data packets.
  • the first network node indicates to the second network node: the information of the first data packet and the information of the data packet that fails to be transmitted after the SN with the largest sequence of successful transmission, and the second network node receives the information Later, the failed data packet can be determined.
  • the first data packet is data packet 200
  • the data packet that fails to be transmitted after the SN with the largest sequence of successful transmission includes data packet 201.
  • the second network node can determine that the transmission of data packet 201 has failed, that is, data packet 201 needs to be retransmitted, and the remaining data packets are transmitted successfully.
  • the first data packet is data packet 200.
  • the data packets that fail to be transmitted after the SN with the largest sequence of transmission success include data packets 201 and 204.
  • the second network node can determine data packet 201 and data packet 204 The transmission fails, that is, the data packet 201 and the data packet 204 need to be retransmitted, and the other data packets are all transmitted successfully.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: the information of the SN that is successfully transmitted last after the SN with the largest sequence that is successfully transmitted.
  • the first network node indicates the SN information of the third data packet to the second network node.
  • the third data packet may be the last data packet successfully transmitted among all the data packets after the SN with the largest sequence of successful transmission.
  • the third data packet may include the last data packet successfully transmitted in the range of each SN after the SN with the largest sequence of successful transmission.
  • the third data packet is a data packet 207
  • the first network node may indicate to the second network node: the PDCP SN (that is, 207) of the third data packet.
  • the first network node may also indicate to the second network node: the PDCP SN (that is, 200) of the first data packet.
  • the second network node may determine that the transmission of the data packet 201 fails according to the information of the first data packet and the information of the third data packet.
  • the second network node can determine the data packet between the first data packet and the third data packet according to an agreement or a preset rule In another possible implementation manner, the second network node may determine that all data packets following the second data packet are successfully transmitted according to an agreement or a preset rule.
  • the third data packet includes a data packet 203 and a data packet 207
  • the first network node may indicate to the second network node: the PDCP SN of the third data packet (that is, 203 and 207).
  • the first network node may also indicate to the second network node: the PDCP SN (that is, 200) of the first data packet.
  • the second network node may determine that the transmission of the data packet 201 and the data packet 204 fails according to the information of the first data packet and the information of the third data packet.
  • the second network node can determine the data packet between the first data packet and the third data packet according to an agreement or a preset rule In another possible implementation manner, the second network node may determine that all data packets following the second data packet are successfully transmitted according to an agreement or a preset rule.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may include information about the second data packet and the number of data packets that have failed to be transmitted after the SN with the largest sequence that is successfully transmitted.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may include: information about the third data packet and the number of data packets that have failed to be transmitted after the SN with the largest sequence that is successfully transmitted.
  • scheme 1 and scheme 7 are used in combination, that is, the second indication information is used to indicate the information of the second data packet and the information of the third data packet, then the second network node will use the information of the second data packet and the third data packet.
  • the information of the data packet determines the data packet that failed to be transmitted, or in other words, the data packet that needs to be retransmitted.
  • the second data packet may be the first data packet successfully transmitted among all the data packets after the SN with the largest sequence that is successfully transmitted.
  • the second data packet may include the first data packet successfully transmitted in the range of each SN after the SN with the largest sequence of successful transmission.
  • the third data packet may be the last data packet successfully transmitted among all the data packets after the SN with the largest sequence of successful transmission.
  • the third data packet may include the last data packet successfully transmitted in the range of each SN after the SN with the largest sequence of successful transmission.
  • the above solution can be used for each SN range, that is, the information of the SN in each SN range is determined.
  • the above solution can also be used for multiple SN ranges, that is, information about SNs in multiple SN ranges is determined. There is no restriction on this.
  • the first network node indicates to the second network node the information of the SN to be transmitted after the SN with the largest sequence of transmission success. After receiving the information, the second network node can more accurately determine the failed data packet. In other words, the second network node can determine the retransmitted data packet more accurately, thereby reducing the transmission of redundant data.
  • the second network node can more accurately send the data that needs to be retransmitted to other network nodes when the link between the first network node and the terminal device fails, thereby reducing the transmission of redundant data and resource consumption. waste.
  • the second network node in order to support some services, such as high-reliability and low-latency services, the second network node often sends downlink repeated data to multiple network nodes (such as two network nodes).
  • the second network node can more accurately determine the data that has been successfully received by the terminal device and the data that has not been successfully received by the terminal device based on the information of the SN transmitted after the largest sequence number that is successfully transmitted by the first network node. data. Therefore, the second network node can more accurately send only data packets that have not been successfully received by the terminal device to other network nodes, thereby reducing the transmission of redundant data while ensuring high-reliability and low-latency service performance.
  • the second network node determines that all the data packets after the first data packet have failed to transmit, thereby retransmitting the first data All packets after the packet. For example, as shown in FIG. 6, the second network node can determine that all data packets after the data packet 200 have failed to be transmitted after receiving the instruction information, that is, the second network node determines that the data packet 201, the data packet 202, and the data packet need to be retransmitted. 203, data packet 204, data packet 205, data packet 206, and data packet 207. It causes unnecessary retransmission of data packets and wastes resources.
  • scenario 2 is introduced below.
  • Scenario 2 Retransmission scenario.
  • the data packet 102 and the data packet 104 are data packets that have failed to be retransmitted on another network node different from the first network node. It can be understood that when another network node sends data to the terminal device, the transmission of the data packet 102 and the data packet 104 fails, and the other network node reports the transmission failure of the data packet 102 and the data packet 104 to the second network node.
  • Data packet 95, data packet 96, and data packet 97 are data packets that have failed to be retransmitted on the first network node.
  • the transmission of the data packet 95, the data packet 96, and the data packet 97 fails, and the first network node reports the data packet 95, the data packet 96, and the data packet to the second network node. Transmission of packet 97 failed. Or, when the second network node sends data to the first network node, the transmission of the data packet 95, the data packet 96, and the data packet 97 fails or is lost, and the first network node reports the data packet 95 and the data packet 96 to the second network node , And data packet 97 transmission failed or lost. Thus, the second network node retransmits the data packet 95, the data packet 96, and the data packet 97 to the first network node.
  • data packet 102, data packet 104, data packet 95, data packet 96, and data packet 97 are all retransmitted on the second network node.
  • the first network node retransmits the failed data packet to the terminal device.
  • the NR-Us associated with data packet 102, data packet 104, data packet 95, data packet 96, and data packet 97 are 15, 16, 17, 18, and 19, respectively.
  • the sequence of the data packets sent by the second network node to the first network node is: 102, 104, 95, 96, and 97, and the associated NR-U is: 15, 16, 17, 18, and 19 respectively.
  • the first network node retransmits these data packets to the terminal device.
  • the order of the first network node to retransmit the data packet to the terminal device is: data packet 95, data packet 96, data packet 97, data packet 102, and data packet 104.
  • the sequence of the data packet may not be adjusted.
  • the first indication information is used to indicate the information of the SN with the largest sequence in the data successfully transmitted, that is, the first indication information is used to indicate the information of the SN of the first data packet.
  • the first indication information may be used to indicate the PDCP SN of the data packet 102, which is 102, or the first indication information may be used to indicate the NR-U SN of the data packet 102, which is 15.
  • the first data packet represents the data packet 102.
  • the information of the SN with the largest sequence successfully transmitted in the data may refer to the information of the NR-U SN with the largest sequence successfully transmitted in the data.
  • the second indication information is used to indicate the information of the SN that is transmitted after the SN with the largest sequence in the data that is successfully transmitted.
  • the second indication information may be the information of the SN that is transmitted after the data packet 102.
  • the second data packet represents data packet 95
  • the SN information of the second data packet may be, for example, the PDCP SN of the second data packet, that is, 95, or the NR- of the second data packet.
  • U is 17; that is, the information of the second data packet indicated by the first network node to the second network node is the information of the data packet 95, such as indicating 95 or 17.
  • the third data packet is data packet 97.
  • the SN information of the third data packet may be, for example, the PDCP SN of the third data packet, which is 97, or the NR-U of the third data packet, which is 19; that is, The information of the third data packet indicated by the first network node to the second network node is the information of the data packet 97, such as indication 97 or 19.
  • FIG. 9 is only an exemplary illustration, and the embodiment of the present application is not limited thereto.
  • SN information can not only indicate PDCP SN, but also NR-U SN.
  • NR-U SN In the following, combining the above-mentioned multiple solutions, a brief description of the SN information is NR-U SN.
  • a successfully transmitted data packet is a data packet that is successfully retransmitted.
  • a data packet that is successfully retransmitted during the retransmission process a data packet that fails to be transmitted.
  • a data packet that fails to be transmitted is a data packet that fails to be retransmitted, in other words, a data packet that fails to be retransmitted during the retransmission process.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: the information of the SN that is transmitted first after the SN with the largest sequence that is successfully transmitted.
  • the first network node may indicate the NR-U SN of the second data packet to the second network node.
  • the first data packet successfully transmitted after the SN with the largest sequence of successful transmission is data packet 95. That is, the first network node may indicate to the second network node: the NR-U SN of the data packet 95 (that is, 17).
  • the first network node indicates to the second network node: the information of the SN with the largest sequence successfully transmitted (that is, the information of the first data packet), and the SN of the first SN successfully transmitted after the SN with the largest sequence successfully transmitted.
  • Information that is, the NR-U SN of the second data packet
  • the second network node can determine the data packet that has failed transmission, that is, the second network node can determine the retransmitted data packet. For example, as shown in FIG. 9, after receiving the information, the second network node can determine that the transmission of the data packet 104 has failed, that is, the data packet 104 needs to be retransmitted.
  • the second network node may default to successful transmission of all other data packets except for the data packet 104.
  • the information of the SN transmitted after the SN with the largest sequence after the successful transmission includes: the information of the SN with the first successful transmission after the SN with the largest sequence after the transmission, and the SN with the largest sequence after the transmission is successful The number of SN ranges successfully transmitted afterwards.
  • the first network node indicates to the second network node the NR-U SN of the second data packet and the number of SN ranges successfully transmitted after the SN in the order of the largest transmission.
  • the first network node indicates to the second network node: the information of the first data packet, the NR-U SN of the second data packet, and the SN range, and the second network node can determine that the transmission failed after receiving the information That is, the second network node can determine the retransmitted data packet.
  • the second network node can determine that the transmission of the data packet 104 has failed, that is, the data packet 104 needs to be retransmitted. In addition, if the second network node is data packet 95 according to the second data packet, and the number of SN ranges is 1, then the second network node can transmit both the data packets following the second data packet (ie, data packet 96 and data packet 97) success.
  • the information of the SN transmitted after the SN with the largest sequence of transmission successfully includes: the information of the SN that is successfully transmitted first after the SN with the largest sequence of transmission, the number of SN ranges, and the number of SNs that are successfully transmitted. The number of SNs successfully transmitted after the largest SN in sequence.
  • the first network node indicates to the second network node: the NR-U SN of the second data packet, the number of SN ranges, and the number of SNs that are successfully transmitted after the SN with the largest sequence that is successfully transmitted.
  • the first network node can indicate the number of SN ranges to the second network node, that is, the number of SN ranges (Number of successful transmitted NR-U Sequence Number ranges reported) after the largest SN in sequence. Is 1.
  • the first network node may indicate to the second network node the NR-U SN of the second data packet, that is, the first network node may indicate to the second network node that the first transmission within the SN range after the SN with the highest order of transmission is successful.
  • the NR-U SN (Start of Successfully Transmitted NR-U Sequence Number Range) of the successful packet is 17.
  • the first network node may also indicate to the second network node that the number of successfully transmitted data packets within the SN range (Number of Successfully Transmitted NR-U Sequence Number Ranges Reported) is 3.
  • the first network node indicates to the second network node: the information of the first data packet, the NR-U SN of the second data packet, the number of SN ranges, and the transmission after the SN with the largest order of success. The number of successful SNs.
  • the second network node can determine the data packet that failed to be transmitted. For example, as shown in FIG. 9, the second network node can determine that the transmission of the data packet 104 fails after receiving the instruction information, that is, the data packet 104 needs to be retransmitted, and the other data packets are all successfully transmitted.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: information about all the SNs that are successfully transmitted after the SN with the largest sequence that is successfully transmitted.
  • Solution 4 can refer to the description of Solution 4 in Scenario 1 above, and only need to replace PDCP SN with NR-U SN.
  • Scheme 5 The information of the SN transmitted after the SN with the largest sequence of success is transmitted, including: the information of the second data packet and the information of the third data packet.
  • Solution 5 can refer to the description of solution 5 in scenario 1 above, and only need to replace PDCP SN with NR-U SN.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes information about the data packet that fails to be transmitted after the SN with the largest sequence that is successfully transmitted.
  • Solution 6 can refer to the description of Solution 6 in Scenario 1 above. In another implementation manner, it is only necessary to replace PDCP SN with NR-U SN.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted includes: the information of the third data packet.
  • the third data packet is a data packet 97
  • the second network node may indicate to the first network node: NR-U SN (19) of the second data packet.
  • Solution 7 can refer to the description of solution 7 in scenario 1 above, and only need to replace PDCP SN with NR-U SN.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may further include: the number of data packets that are successfully transmitted after the SN with the largest sequence that is successfully transmitted. That is to say, the first network node may also indicate to the second network node the number of successfully transmitted data packets (that is, 3) after the SN with the largest sequence of successful transmission.
  • the information of the SN transmitted after the SN with the largest sequence that is successfully transmitted may be shown in Table 10 below.
  • the first network node can indicate the number of SN ranges to the second network node, that is, the number of SN ranges (Number of successful transmitted NR-U Sequence Number ranges reported) after the largest SN in sequence. Is 1.
  • the first network node can indicate to the second network node the NR-U SN of the third data packet, that is, the first network node can indicate to the second network node that the last transmission is successful in the SN range after the SN with the largest sequence of transmission success.
  • the NR-U SN (End of successfully transmitted NR-U Sequence Number range) of the data packet is 19.
  • the first network node may indicate to the second network node that the NR-U SN of the third data packet is 19.
  • the first network node may also indicate to the second network node that the number of successfully transmitted data packets within the SN range (Number of Successfully Transmitted NR-U Sequence Number Ranges Reported) is 3.
  • schemes 1 to 7 can be used in scenario 1, and can also be used in scenario 2.
  • the embodiment of the present application is not limited to this, and the multiple schemes can also be used in other scenarios, such as a scenario where multiple transmissions are repeated. under.
  • the SN information can represent either PDCP SN or NR-U SN. That is to say, in scenario 2, SN information can be replaced with "PDCP SN", or SN information can be replaced with "NR-U SN”.
  • the first network node indicates to the second network node the information of the SN to be transmitted after the SN with the largest sequence of transmission success. After receiving the information, the second network node can more accurately determine the failed data packet. In other words, the second network node can more accurately determine the retransmitted data packet.
  • the second network node determines that all the data packets after the first data packet have failed to transmit, thereby retransmitting the first data All packets after the packet. For example, as shown in FIG. 9, the second network node can determine that all data packets after the data packet 102 have failed to be transmitted after receiving the instruction information, that is, the second network node determines that the data packet 104, the data packet 95, and the data packet need to be retransmitted. 96, and data packet 97. It causes unnecessary retransmission of data packets and wastes resources.
  • the SN information may be PDCP SN, NR-U SN, or other information, and any form of SN information falls within the protection scope of the embodiments of the present application.
  • Table 11 and Table 12 may be improvements and adjustments made on the basis of existing agreements.
  • Number of successful delivered PDCP SN range (the number of successfully transmitted SN ranges), that is, the number of SN ranges after the largest SN that is successfully transmitted in sequence.
  • Start of successfully delivered PDCP SN range (the first PDCP SN in the range of SN), which means the first PDCP SN that is successfully transmitted after the SN with the largest sequence of successful transmissions, if it can be within the range of each SN The first PDCP SN that was successfully transmitted.
  • End of successfully delivered PDCP SN range (the last successfully transmitted PDCP SN in the SN range), that is, the last successfully transmitted PDCP SN after the largest SN in the SN range, if it can be the last one in each SN range PDCP SN that was transmitted successfully.
  • the "retain the unchanged part" in Table 11 and Table 12 means to retain other information.
  • other information may include: Desired buffer size for the data radio bearer and expected data radio bearer Data rate (Desired Data Rate), etc., are not limited.
  • the range size may indicate the number of successfully transmitted data packets within the SN range, or may also indicate the number of failed data packets within the SN range.
  • Table 11 and Table 12 are only exemplary descriptions, and the embodiments of the present application are not limited thereto, and the variant forms related to the foregoing Table 11 or Table 12 fall within the protection scope of the embodiments of the present application.
  • Start of successfully delivered PDCP SN range can be replaced with the SN that is transmitted after the largest SN that is successfully transmitted in the scenarios mentioned in the scenarios in scenario 1 and scenario 2.
  • Start of successfully delivered PDCP SN range can be replaced with the SN that is transmitted after the largest SN that is successfully transmitted in the scenarios mentioned in the scenarios in scenario 1 and scenario 2.
  • scenario 1 and scenario 2 which will not be repeated here.
  • scenario 1 and scenario 2 may also exist at the same time. For example, they may be indicated in the form described in Table 13. To distinguish, the second indication information in scenario 1 (ie, the new transmission scenario) is recorded as the newly transmitted instruction information, and the second indication information in scenario 2 (ie, the retransmission scenario) is recorded as the retransmission instruction information.
  • Number of successful delivered PDCP SN range (the number of successfully transmitted SN ranges), that is, in scenario 1, the number of SN ranges after the largest SN that is successfully transmitted in sequence.
  • Start of successfully delivered PDCP SN range (the first PDCP SN within the range of SN), which means that in scenario 1, the first PDCP SN that is successfully transmitted after the SN with the largest sequence of successful transmissions, if it can be every The first PDCP SN successfully transmitted within the range of SN.
  • End of successfully delivered PDCP SN range (the last successfully transmitted PDCP SN in the SN range), which means that in scenario 1, the last successfully transmitted PDCP SN after the largest SN that was successfully transmitted, if it can be each SN The last successful PDCP SN in the range.
  • Number of successful retransmitted delivered PDCP SN range means the number of SN ranges in Scenario 2 after the SN with the largest sequence of successful retransmissions.
  • Start of successfully retransmitted delivered PDCP SN range (the first successfully retransmitted PDCP SN in the SN range), which means that in scenario 2, the first successfully retransmitted PDCP SN after the retransmitted SN with the largest sequence, For example, it can be the first PDCP SN in the range of each SN to successfully retransmit.
  • End of successfully retransmitted delivered PDCP SN range (the last successfully retransmitted PDCP SN in the SN range), that is, in scenario 2, the last successfully retransmitted PDCP SN after the SN with the largest retransmission sequence, if possible It is the last PDCP SN in the range of each SN that successfully retransmitted.
  • Table 13 is only an exemplary description, and the embodiments of the present application are not limited thereto.
  • the first network node is a DU
  • the second network node is a CU
  • the first network node is a base station
  • the second network node is a base station
  • first network node may be replaced with DU
  • second network node may be replaced with CU
  • both the first network node and the second network node described above are replaced with base stations.
  • the first network node may also send third indication information to the second network node, where the third indication information is used to indicate: Whether to include the successfully transmitted SN after the SN.
  • the third indication information may be used in scene 1 or scene 2, or the third indication information may be used in a situation where scene 1 and scene 2 exist at the same time.
  • the third indication information uses a field of m1 bits to indicate whether the successfully transmitted SN is included after the successfully transmitted SN in the largest order, where m1 is an integer greater than or equal to 1.
  • 0 corresponds to the SN that is successfully transmitted after the largest SN that is successfully transmitted
  • 1 corresponds to the SN that does not include the SN that is successfully transmitted after the largest SN that is successfully transmitted.
  • the 1-bit field is "0" it means that there is data after the SN with the largest sequence that is successfully transmitted; when the 1-bit field is "1", it means that the SN with the largest sequence that is successfully transmitted is followed by If there is no successful data transmission, the transmission fails.
  • 1 corresponds to the SN that is successfully transmitted after the SN with the largest sequence that is successfully transmitted
  • 0 corresponds to the SN that does not include the SN that is successfully transmitted after the largest SN that is successfully transmitted. It should be understood that the specific instructions are not limited in the embodiment of the present application.
  • the third indication information indicates whether there is an indication of bitmap after the SN with the largest sequence that is successfully transmitted.
  • a field of m2 bits is used to indicate whether there is an indication of bitmap after the SN with the largest sequence that is successfully transmitted, where m2 is an integer greater than or equal to 1.
  • bitmap indication mode you can refer to the above description, such as any one of the modes mentioned in scheme 4, which will not be repeated here.
  • 0 corresponds to an indication that there is a bitmap after the SN with the largest sequence that is successfully transmitted
  • 1 corresponds to an indication that there is no bitmap after the SN with the largest sequence that is successfully transmitted.
  • 1 corresponds to an indication that there is a bitmap after the SN with the largest sequence that is successfully transmitted
  • 0 corresponds to an indication that there is no bitmap after the SN with the largest sequence that is successfully transmitted. It should be understood that the specific instructions are not limited in the embodiment of the present application.
  • the third indication information indicates whether there is an indication of the SN range after the SN with the largest sequence that is successfully transmitted.
  • an m3 bit field is used to indicate whether there is an indication of the SN range after the SN with the largest sequence after the transmission is successful, where m3 is an integer greater than or equal to 1.
  • 0 corresponds to an indication that there is an SN range after the SN with the largest sequence that is successfully transmitted
  • 1 corresponds to an indication that there is no SN range after the SN with the largest sequence that is successfully transmitted.
  • the 1-bit field is "0" it means that the successfully transmitted data is followed by the largest SN and the data transmission status is indicated by the SN range; when the 1-bit field is "1", There is no indication of the SN range after the SN with the largest sequence that indicates a successful transmission.
  • 1 corresponds to an indication that there is an SN range after the SN with the largest sequence that is successfully transmitted
  • 0 corresponds to an indication that there is no SN range after the SN that is successfully transferred in the largest sequence. It should be understood that the specific instructions are not limited in the embodiment of the present application.
  • the third indication information indicates whether to indicate by means of SN range or by means of bitmap after the SN with the largest sequence of successful transmission.
  • the third indication information may indicate the form of the second indication information, that is, the third indication information may indicate whether the second indication information is indicated by means of SN range or by means of bitmap.
  • a field of m4 bits may be used to indicate whether to indicate by way of SN range or by way of bitmap after the SN with the largest order after the transmission is successful, where m4 is an integer greater than or equal to 1.
  • 0 corresponds to the indication of the SN range after the successfully transmitted SN in the largest order
  • 1 corresponds to the indication of the bitmap after the successful transmission of the largest SN.
  • 1 corresponds to the indication of passing the SN range after the successfully transmitted SN in the largest order
  • 0 corresponds to the indication by means of bitmap after the successful transmission of the largest SN. It should be understood that the specific instructions are not limited in the embodiment of the present application.
  • 01 corresponds to the indication of the SN range after the SN that is successfully transmitted in order
  • 10 corresponds to the indication of the bitmap after the SN that is successfully transmitted in the order.
  • 10 corresponds to the indication of passing the SN range after the successfully transmitted SN with the largest sequence
  • 01 corresponds to the indication by means of bitmap after the successful transmission of the largest SN. It should be understood that the specific instructions are not limited in the embodiment of the present application.
  • 00 can correspond to the indication of neither the SN range nor the bitmap after the successfully transmitted SN in the order of the largest. In other words, 00 corresponds to no transmission after the successful transmission of the largest SN in the order.
  • Successful data may correspond to the SN range indication and the bitmap mode indication after the SN with the largest sequence that is successfully transmitted. In other words, 11 corresponds to the SN including the transmission after the SN with the largest sequence that is successfully transmitted. For successful data, the data is indicated by way of SN range and bitmap.
  • the third indication information indicates whether it is indicated by a bitmap or an SN range after the SN with the largest sequence that is successfully transmitted.
  • L is an integer greater than or equal to 1.
  • it can also indicate whether the L is one byte, three bytes, or another number of bytes.
  • the third indication information is used to indicate whether the successfully transmitted SN is included after the SN with the largest sequence of successful transmission, that is, it may indicate whether the second indication information exists.
  • the presence or absence of the m2-bit field and the m3-bit field can also be used to indicate whether the transmission is successfully followed by the largest SN in the order indicated by the SN range or by the bitmap.
  • the interface control signaling may be sent from the first network node to the second network node to indicate whether to indicate the SN range or the bitmap after the SN with the largest sequence that is successfully transmitted.
  • the interface control signaling can be sent from the first network node to the second network node to indicate that for each radio bearer (Radio Bearer), after the SN with the largest sequence that is successfully transmitted, it passes the SN range The way is indicated, or indicated by bitmap.
  • Radio Bearer Radio Bearer
  • the third indication information may be carried in the interface control signaling sent by the first network node to the second network node, or in other words, the third indication information may be carried between the first network node and the second network node. In the interface control signaling between.
  • the third indication information can be carried in any message between the CU and the DU.
  • any F1AP message it can be a non-UE-related F1AP message or a UE-related F1AP message.
  • the specific form of the F1AP message is not specified. limited.
  • the third indication information can be carried in any of the following messages: F1 setup request (F1 SETUP REQUEST) message, DU configuration adjustment (such as GNB-DU CONFIGURATION UPDATE) message, CU configuration adjustment confirmation (such as GNB-CU CONFIGURATION UPDATE) ACKNOWLEDGE) message, UE context setup request (UE CONTEXT SETUP REQUEST) message, UE context modification response (UE CONTEXT MODIFICATION RESPONSE) message, or other F1AP messages, etc.
  • F1 setup request F1 SETUP REQUEST
  • DU configuration adjustment such as GNB-DU CONFIGURATION UPDATE
  • CU configuration adjustment confirmation such as GNB-CU CONFIGURATION UPDATE
  • UE context setup request UE CONTEXT SETUP REQUEST
  • UE context modification response UE CONTEXT MODIFICATION RESPONSE
  • the third indication information can be carried in any XnAP message between the first network node and the second network node. It can be a non-UE-related XnAP message or a UE-related XnAP message.
  • the specific form of the XnAP message is not specified. limited.
  • the third indication information may be carried in an SN node addition request (S-NODEADDITIONREQUEST) message or other XnAP messages.
  • this implementation can also be used by the first network node to send to the second network node the SN information used to indicate that the first network node sends the data packet to the second network node (such as End of successfully delivered PDCP in Table 11).
  • SN range is also the indication information of the number of packets within the SN range (such as the range size in Table 12).
  • the interface control signaling can be sent by the first network node to the second network node to indicate that for each radio bearer (Radio Bearer), the number of NR PDCP sequence number number bits report accounted for in Table 14 Number of sections. That is, when the second indication information is indicated by the bitmap, the interface message is used to indicate the number of bytes occupied by the indication information of the number of bits of the bitmap.
  • Radio Bearer Radio Bearer
  • the interface control signaling may be sent from the first network node to the second network node to indicate the number of bytes occupied by the Number of NR PDCP sequence number and bits report in Table 14. That is, when the second indication information is indicated by the bitmap, the interface message is used to indicate the number of bytes occupied by the indication information of the number of bits of the bitmap.
  • the interface control signaling can be sent by the first network node to the second network node to indicate the number of bytes occupied by the number of successful delivered PDCP SN range for each radio bearer (Radio Bearer) in Table 14. Number. That is, it indicates the number of bytes in the range of successfully transmitted SNs after the largest SN successfully transmitted.
  • Radio Bearer Radio Bearer
  • the interface control signaling may be sent from the first network node to the second network node to indicate the number of bytes occupied by the Number of successful delivered PDCP SN range in Table 14. That is, it indicates the number of bytes of the number of SN ranges successfully transmitted after the largest SN successfully transmitted in the data.
  • the first network node may send the End of successfully delivered PDCP SN range to the second network node, or may send the range size to the second network node.
  • the first network node may send fourth indication information to the second network node, and the fourth indication information may be used to indicate: the first network node sends the SN information of the data packet to the second network node (such as End of successful delivered PDCP SN range ), or, the first network node sends the number of packets within the SN range (range size) to the second network node.
  • the second network node may determine whether the information indicated by the second indication information includes the SN information of the data packet or the number of data packets within the SN range.
  • the fourth indication information may be implemented by any exemplary solution in this implementation manner.
  • the fourth indication information may use an m4-bit field to indicate whether the transmission is End of successfully delivered PDCP SN range or range size.
  • the fourth indication information may be sent by the first network node to the second network node through interface control signaling to indicate whether the transmission is End of successfully delivered PDCP SN range or range size. As shown in Table 15.
  • the interface control signaling may be sent from the second network node to the first network node to indicate whether to indicate the SN range or the bitmap after the SN with the largest sequence that is successfully transmitted.
  • Number of successful delivered PDCP SN range 0 or L Start of successfully delivered PDCP SN range 0 or 4 End of successfully delivered PDCP SN range (or range size) 0 or 4
  • interface control signaling can be sent by the second network node to the first network node to indicate that for each radio bearer (Radio Bearer), after the SN with the largest sequence that is successfully transmitted, it passes through the SN range The way is indicated, or indicated by bitmap.
  • Radio Bearer Radio Bearer
  • the third indication information may be carried in the interface control signaling sent by the second network node to the first network node, or in other words, the third indication information may be carried between the second network node and the first network node. In the interface control signaling between.
  • the solution provided by the present application reports the information of the SN transmitted after the SN with the largest sequence successfully transmitted by the first network node to the second network node, which can effectively indicate the data transmission situation.
  • the second network node Based on the data transmission situation, the second network node can more accurately determine the data that needs to be retransmitted. Thereby, the flow control mechanism can be optimized, the transmission of redundant invalid data can be reduced, and the resource utilization rate can be improved.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1010 and a processing unit 1020.
  • the communication device 1000 can implement the steps or processes performed by the first network node in the above method embodiments, for example, it can be a distributed unit or gNB, or be configured in a distributed unit or gNB. Chip or circuit in the.
  • the communication unit 1010 is configured to perform the transceiving-related operations on the first network node side in the above method embodiment
  • the processing unit 1020 is configured to perform the processing related operations on the first network node in the above method embodiment.
  • the communication unit 1010 is used for: sending data to the terminal device; the communication unit 1010 is also used for: sending the first indication information and the second indication information to the second network node, where the first indication information is used for Indication: the information of the largest sequence number SN successfully transmitted in the data, and the second indication information is used to indicate: the information of the SN that is transmitted after the largest sequence SN successfully transmitted in the data.
  • the processing unit 1020 is configured to: generate first indication information and second indication information.
  • the information of the SN transmitted after the largest SN successfully transmitted in the data includes one or more of the following: the first SN successfully transmitted after the largest SN successfully transmitted in the data SN information; or, the information of the last successfully transmitted SN after the largest SN successfully transmitted in the data; or, the information of all the successfully transmitted SNs after the largest SN successfully transmitted in the data; or ,
  • the information of all SNs that failed to be transmitted after the SN that was successfully transmitted in sequence or, the number of SNs that were successfully transmitted in the data after the SN that was successfully transmitted in sequence; or, in the data that was successfully transmitted
  • the second indication information indicates through a bitmap the SN information successfully transmitted and/or the SN information failed to be transmitted in the data after the SN with the largest sequence of successful transmission.
  • the second indication information further includes indication information for indicating the number of bits of the bitmap.
  • the communication unit 1010 is further configured to send third indication information to the second network node, where the third indication information is used to indicate whether the successfully transmitted SN is included in the data after the SN successfully transmitted in the largest sequence.
  • the first network node is a distributed unit and the second network node is a centralized unit; or, the first network node is a base station and the second network node is a base station.
  • the communication device 1000 may implement the steps or processes executed by the first network node in the method 500 corresponding to the embodiment of the present application, and the communication device 1000 may include the steps or processes executed by the first network node in the method 500.
  • Method unit In addition, each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding procedures of the method 500, respectively.
  • the communication unit 1010 in the communication device 1000 may also be an input/output interface.
  • the communication device 1000 can implement the steps or processes performed by the second network node in the above method embodiments.
  • it can be a centralized unit or gNB, or be configured in a centralized unit or Chip or circuit in gNB.
  • the communication unit 1010 is configured to perform the transceiving-related operations on the second network node side in the above method embodiment
  • the processing unit 1020 is configured to perform the processing related operations on the second network node in the above method embodiment.
  • the communication unit 1010 is configured to: send data to the first network node; the communication unit 1010 is further configured to: receive the first instruction information and the second instruction information sent by the first network node, where the first instruction The information is used to indicate: the information of the SN with the largest sequence number successfully transmitted in the data, and the second indication information is used to indicate: the information of the SN that is transmitted after the SN with the largest sequence successfully transmitted in the data.
  • the processing unit 1020 is configured to determine the information of the sequence number SN that is successfully transmitted in the data, and the information of the SN that is transmitted after the SN that is successfully transmitted in the sequence.
  • the information of the SN transmitted after the largest SN successfully transmitted in the data includes one or more of the following: the first SN successfully transmitted after the largest SN successfully transmitted in the data SN information; or, the information of the last successfully transmitted SN after the largest SN successfully transmitted in the data; or, the information of all the successfully transmitted SNs after the largest SN successfully transmitted in the data; or ,
  • the information of all SNs that failed to be transmitted after the SN that was successfully transmitted in sequence or, the number of SNs that were successfully transmitted in the data after the SN that was successfully transmitted in sequence; or, in the data that was successfully transmitted
  • the second indication information indicates through a bitmap the SN information successfully transmitted and/or the SN information failed to be transmitted in the data after the SN with the largest sequence of successful transmission.
  • the second indication information further includes indication information for indicating the number of bits of the bitmap.
  • the communication unit 1010 is further configured to send third indication information to the second network node, where the third indication information is used to indicate whether the successfully transmitted SN is included in the data after the SN successfully transmitted in the largest sequence.
  • the first network node is a distributed unit and the second network node is a centralized unit; or, the first network node is a base station and the second network node is a base station.
  • the communication device 1000 may implement the steps or processes executed by the second network node in the method 500 corresponding to the embodiment of the present application, and the communication device 1000 may include the steps or processes executed by the second network node in the method 500.
  • Method unit In addition, each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding procedures of the method 500, respectively.
  • the communication unit 1010 in the communication device 1000 may also be an input/output interface.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • FIG. 11 is a schematic structural diagram of an apparatus 1100 according to an embodiment of the present application.
  • the device can implement the units of each step executed by the first network node in the above embodiments.
  • the method executed by the first network node in method 500 may be executed.
  • the device 1100 includes:
  • the memory 1110 is used to store programs
  • Communication interface 1120 used to communicate with other devices
  • the processor 1130 is configured to execute a program in the memory 1110. When the program is executed, the processor 1130 is configured to send data to a terminal device through the communication interface 1120; and send first instruction information to a second network node And second indication information, where the first indication information is used to indicate: the information of the highest sequence number SN successfully transmitted in the data, and the second indication information is used to indicate: the largest SN successfully transmitted in the data SN information to be transmitted later.
  • FIG. 12 is a schematic structural diagram of an apparatus 1200 according to an embodiment of the present application.
  • the device can implement the units of each step executed by the second network node in the above embodiments.
  • the method executed by the second network node in method 500 may be executed.
  • the device 1200 includes:
  • the memory 1210 is used to store programs
  • the communication interface 1220 is used to communicate with other devices;
  • the processor 1230 is configured to execute a program in the memory 1210. When the program is executed, the processor 1230 is configured to send data to the first network node through the communication interface 1220; and receive the first network node sent by the first network node.
  • One indication information and second indication information where the first indication information is used to indicate: the information of the sequence number SN with the highest sequence number successfully transmitted in the data, and the second indication information is used to indicate: the sequence number in the data successfully transmitted SN information transmitted after the largest SN.
  • the aforementioned communication interface (1120, 1220) may be a receiver or a transmitter, or may also be a transceiver.
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in the method 500 Any one of the embodiments in the method.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in the method 500 Any one of the embodiments in the method.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种指示数据传输情况的方法和装置,以期可以有效地指示数据的传输情况,便于作出更加精确的流量控制,节省传输资源。该方法可以包括:第一网络节点向终端设备发送数据;第一网络节点向第二网络节点发送第一指示信息和第二指示信息,其中,第一指示信息用于指示:数据中成功传输的按序最大的序列号SN的信息,第二指示信息用于指示:数据中在成功传输的按序最大的SN之后传输的SN的信息。

Description

指示数据传输情况的方法和装置
本申请要求于2019年07月04日提交中国专利局、申请号为201910599270.1、申请名称为“指示数据传输情况的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种指示数据传输情况的方法和装置。
背景技术
随着下一代通信***研究的全面展开并逐渐深入,业界对第五代(5th generation,5G)***研究的具体内容达成了基本共识。5G将支持各种类型的网络部署和应用类型,例如包括:更高速率体验和更大带宽的接入能力、更低时延和高可靠的信息交互、以及更大规模且低成本的机器类通信(machine type communication,MTC)设备的接入和管理等。
由上可见,5G场景中将会支持更大规模的数量的设备接入网络,那么流量控制也变得尤为重要。一般地,第一网络节点(如分布式单元(Distributed Unit,DU))向终端设备发送数据后,会向第二网络节点(如集中式单元(Centralized Unit,CU))反馈数据的传输情况,第二网络节点可以根据数据包的传输情况确定需要重传的数据或者进一步地控制数据流,进而进行流量控制。
因此,第一网络节点上报的数据的传输情况对于第二网络节点作出精确的流量控制尤为重要。
发明内容
本申请提供一种指示数据传输情况的方法和装置,以期可以有效地指示数据的传输情况,便于作出更加精确的流量控制,节省传输资源。
第一方面,提供了一种通信方法,该方法可以包括:第一网络节点向终端设备发送数据;所述第一网络节点向第二网络节点发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
可选地,数据中成功传输的按序最大的序列号SN的信息(Highest Transmitted NR PDCP SN Ind),可以包括分组数据汇聚协议序列号(packet data convergence protocol sequence number,PDCP SN),也可以包括新空口用户面序列号(new radio user plane sequence number,NR-U SN)。
基于上述技术方案,第一网络节点向第二网络节点指示在传输成功的按序最大的序列号(sequence number,SN)之后传输的SN的信息,第二网络节点接收到该信息后可以获知在传输成功的按序最大的SN之后传输的SN的信息,从而可以较准确地确定传输失败 的数据包,也就是说,第二网络节点可以较准确地确定重传的数据包。一方面,第二网络节点可以在第一网络节点与终端设备的链路发生链路失败时,向其他网络节点较准确地发送需要重传的数据,从而减少了冗余数据的传输以及资源的浪费。另一方面,为了支持一些业务,如高可靠低时延的业务,第二网络节点往往向多个网络节点(如两个网络节点)发送下行重复的数据。第二网络节点基于第一网络节点发送的在传输成功的按序最大的序列号之后传输的SN的信息,可以较准确的确定已经被终端设备成功接收的数据,和未被终端设备成功接收的数据。从而第二网络节点可以较准确地向其他网络节点仅仅发送未被终端设备成功接收的数据包,从而在保障高可靠低时延业务性能的同时,减少了冗余数据的传输。
因此,通过使得第二网络节点获知在传输成功的按序最大的SN之后传输的SN的信息,从而可以获知较全面的数据的传输情况,可以进行更精确的流控机制,减少冗余数据的传输,有效的重传失败传输的数据,提高了传输效率。
可选地,第一网络节点向终端设备发送的数据,可以是初传的数据,也可以是重传的数据。例如,对于重传的数据,初传可以是第二网络节点通过其他网络节点向终端设备发送,重传通过第一网络节点发送。又如,对于重传的数据,初传可以是第二网络节点通过第一网络节点向终端设备发送,重传仍通过第一网络节点发送。下文实施例具体描述。
结合第一方面,在第一方面的某些实现方式中,所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
基于上述技术方案,数据中在成功传输的按序最大的SN之后传输的SN的信息,可以包括上述任意一项或多项信息。通过上述任意一项或多项信息,第二网络节点可以获知在成功传输的按序最大的SN之后,成功传输的SN的信息以及失败传输的SN的信息,从而可以更准确地确定需要重传的数据。
可选地,在数据中在成功传输的按序最大的SN之后传输的SN的信息包括上述多项信息的情况下,该多项信息可以是同一个SN范围内的信息。例如,当在数据中在成功传输的按序最大的SN之后传输的SN的信息包括:成功传输的按序最大的SN之后第一个成功传输的SN的信息,以及最后一个成功传输的SN的信息时,可以表示数据中在成功传输的按序最大的SN之后传输的一个SN范围内的,第一个成功传输的SN的信息和最后一个成功传输的SN的信息。该多项信息也可以是不同SN范围内的信息。例如,当在数据中在成功传输的按序最大的SN之后传输的SN的信息包括:第一个SN范围内成功传输的按序最大的SN之后第一个成功传输的SN的信息,以及同一个SN范围内最后一个成功传输的SN的信息;第二个SN范围内第一个SN范围内成功传输的最大的SN之后第一个成功传输的SN的信息,以及同一个SN范围内最后一个成功传输的SN的信息。 以此类推。
结合第一方面,在第一方面的某些实现方式中,所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
基于上述技术方案,第一网络节点可以通过比特位图(bitmap)的方式来指示数据中在成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息,从而不仅可以快速地确定数据的是成功传输,还是失败传输,而且可以节省信令开销。具体的指示方式参考下文实施例的描述。
结合第一方面,在第一方面的某些实现方式中,所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
基于上述技术方案,第一网络节点也可以向第二网络节点指示比特位图包括的比特数。比特位图包括的比特数,即表示该比特位图所指示的数据的数量。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一网络节点向所述第二网络节点发送第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
可选地,第三指示信息可以通过m1比特的字段来指示在传输成功的按序最大的SN之后是否包括传输成功的SN,其中,m1为大于1或等于1的整数。
可选地,第三指示信息指示在传输成功的按序最大的SN之后是否存在bitmap的指示。如通过m2比特的字段来指示在传输成功的按序最大的SN之后是否存在bitmap的指示,其中,m2为大于1或等于1的整数。
可选地,第三指示信息指示在传输成功的按序最大的SN之后是否存在SN范围的指示。如通过m3比特的字段来指示在传输成功的按序最大的SN之后是否存在SN范围的指示,其中,m3为大于1或等于1的整数。
可选地,第三指示信息指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。如通过m4比特的字段来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示,其中,m4为大于1或等于1的整数。又如,通过m2比特的字段和m3比特的字段存在与否,指示传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
基于上述技术方案,第一网络节点可以向第二网络节点指示数据中在成功传输的按序最大的SN之后是否包括成功传输的SN,从而第二网络节点可以快速地确定在成功传输的按序最大的SN之后是否包括成功传输的SN。进一步地,第二网络节点也可以确定指示在成功传输的按序最大的SN之后传输的SN的形式。具体的,下文实施例描述。
结合第一方面,在第一方面的某些实现方式中,所述第一网络节点为分布式单元,所述第二网络节点为集中式单元;或,所述第一网络节点为基站,所述第二网络节点为基站。
第二方面,提供了一种通信方法,该方法可以包括:第二网络节点向第一网络节点发送数据;所述第二网络节点接收所述第一网络节点发送的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
基于上述技术方案,第一网络节点向第二网络节点指示在传输成功的按序最大的序列号(sequence number,SN)之后传输的SN的信息,第二网络节点接收到该信息后可以获知在传输成功的按序最大的SN之后传输的SN的信息,从而可以较准确地确定传输失败的数据包,也就是说,第二网络节点可以较准确地确定重传的数据包,从而减少了冗余数据的传输以及资源的浪费。
因此,通过使得第二网络节点获知在传输成功的按序最大的SN之后传输的SN的信息,从而可以获知较全面的数据的传输情况,可以进行更精确的流控机制,减少冗余数据的传输,有效的重传失败传输的数据,提高了传输效率。
可选地,第一网络节点向终端设备发送的数据,可以是初传的数据,也可以是重传的数据。下文实施例具体描述。
结合第二方面,在第二方面的某些实现方式中,所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
基于上述技术方案,数据中在成功传输的按序最大的SN之后传输的SN的信息,可以包括上述任意一项或多项信息。通过上述任意一项或多项信息,第二网络节点可以获知在成功传输的按序最大的SN之后,成功传输的SN的信息以及失败传输的SN的信息,从而可以更准确地确定需要重传的数据。
可选地,在数据中在成功传输的按序最大的SN之后传输的SN的信息包括上述多项信息的情况下,该多项信息可以是同一个SN范围内的信息。例如,当数据中包括数据中在成功传输的按序最大的SN之后第一个成功传输的SN的信息,以及最后一个成功传输的SN的信息时,可以表示数据中在成功传输的按序最大的SN之后传输的一个SN范围内的,第一个成功传输的SN的信息和最后一个成功传输的SN的信息。
可选地,在数据中在成功传输的按序最大的SN之后传输的SN的信息包括上述多项信息的情况下,该多项信息也可以是不同SN范围内的信息。例如,数据中在成功传输的按序最大的SN之后传输的SN的信息可以包括:每个SN范围内成功传输的按序最大的SN之后第一个成功传输的SN的信息,以及该SN范围内最后一个成功传输的SN的信息。如数据中在成功传输的按序最大的SN之后传输的SN的信息可以包括:第一个SN范围内成功传输的按序最大的SN之后第一个成功传输的SN的信息,以及同一个SN范围内最后一个成功传输的SN的信息;第二个SN范围内第一个SN范围内成功传输的最大的SN之后第一个成功传输的SN的信息,以及同一个SN范围内最后一个成功传输的SN的信息,等等。
结合第二方面,在第二方面的某些实现方式中,所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN 信息。
基于上述技术方案,第一网络节点可以通过比特位图(bitmap)的方式来指示数据中在成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息,从而不仅可以快速地确定数据的是成功传输,还是失败传输,而且可以节省信令开销。具体的指示方式参考下文实施例的描述。
结合第二方面,在第二方面的某些实现方式中,所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
基于上述技术方案,第一网络节点也可以向第二网络节点指示比特位图包括的比特数。比特位图包括的比特数,即表示该比特位图所指示的数据的数量。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第一网络节点向所述第二网络节点发送第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
可选地,第三指示信息可以通过m1比特的字段来指示在传输成功的按序最大的SN之后是否包括传输成功的SN,其中,m1为大于1或等于1的整数。
可选地,第三指示信息指示在传输成功的按序最大的SN之后是否存在bitmap的指示。如通过m2比特的字段来指示在传输成功的按序最大的SN之后是否存在bitmap的指示,其中,m2为大于1或等于1的整数。
可选地,第三指示信息指示在传输成功的按序最大的SN之后是否存在SN范围的指示。如通过m3比特的字段来指示在传输成功的按序最大的SN之后是否存在SN范围的指示,其中,m3为大于1或等于1的整数。
可选地,第三指示信息指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。如通过m4比特的字段来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示,其中,m4为大于1或等于1的整数。又例如通过m2比特的字段和m3比特的字段存在与否,指示传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
基于上述技术方案,第一网络节点可以向第二网络节点指示数据中在成功传输的按序最大的SN之后是否包括成功传输的SN,从而第二网络节点可以快速地确定在成功传输的按序最大的SN之后是否包括成功传输的SN。进一步地,第二网络节点也可以确定指示在成功传输的按序最大的SN之后传输的SN的形式。具体的,下文实施例描述。
结合第二方面,在第二方面的某些实现方式中,所述第一网络节点为分布式单元,所述第二网络节点为集中式单元;或,所述第一网络节点为基站,所述第二网络节点为基站。
第三方面,提供了一种通信装置,所述装置为第一网络节点,具有实现上述第一方面或第二方面的方法功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种通信装置,所述装置为第二网络节点,具有实现上述第一方面或第二方面的方法功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供了一种通信装置,该装置为第一网络节点,该装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接 口耦合;所述通信接口用于:向终端设备发送数据;所述通信接口还用于:向第二网络节点发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
结合第五方面,在第五方面的某些实现方式中,所述处理器用于:生成所述第一指示信息和所述第二指示信息。
结合第五方面,在第五方面的某些实现方式中,所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
结合第五方面,在第五方面的某些实现方式中,所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
结合第五方面,在第五方面的某些实现方式中,所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
结合第五方面,在第五方面的某些实现方式中,所述通信接口还用于:向所述第二网络节点发送第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
结合第五方面,在第五方面的某些实现方式中,所述装置为分布式单元,所述第二网络节点为集中式单元;或,所述装置为基站,所述第二网络节点为基站。
可选地,在上述第五方面以及第五方面的任一可能的实现方式中,通信接口可以是接收器或者发送器,或者也可以是收发器。
第六方面,提供了一种通信装置,该装置为第二网络节点,该装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合;所述通信接口用于:向第一网络节点发送数据;所述通信接口还用于:接收所述第一网络节点发送的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
结合第六方面,在第六方面的某些实现方式中,所述处理器用于:确定所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,以及确定所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
结合第六方面,在第六方面的某些实现方式中,所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序 最大的SN之后最后一个成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
结合第六方面,在第六方面的某些实现方式中,所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
结合第六方面,在第六方面的某些实现方式中,所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
结合第六方面,在第六方面的某些实现方式中,所述通信接口还用于:接收所述第一网络节点发送的第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
结合第六方面,在第六方面的某些实现方式中,所述第一网络节点为分布式单元,所述装置为集中式单元;或,所述第一网络节点基站,所述装置为基站。
可选地,在上述第六方面以及第六方面的任一可能的实现方式中,通信接口可以是接收器或者发送器,或者也可以是收发器。
第七方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面或第二方面提供的方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面或第二方面,以及第一方面或第二方面的任一可能的实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面或第二方面提供的方法。
第十方面,提供了一种通信***,包括前述的第一网络节点和第二网络节点。
第十一方面,提供了一种通信***,包括前述的第一网络节点、第二网络节点、以及终端设备。
附图说明
图1和图2是适用于本申请实施例的应用场景的示意图;
图3中(1)和(2)是适用于本申请实施例的应用场景的又一示意图;
图4为网络节点反馈数据传输情况的一示意图;
图5是根据本申请实施例提出的方法的示意***互图;
图6中的(1)和(2)为适用于本申请一实施例的初传场景的示意图;
图7和图8为适用于本申请一实施例的比特位图的示意图;
图9为适用于本申请又一实施例的重传场景的示意图;
图10是本申请实施例的通信装置的示意性框图;
图11是本申请一实施例的通信装置的示意性结构图;
图12是本申请又一实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)***或新无线(new radio,NR)或者其他演
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在一种网络结构中,网络设备可以包括集中式单元(centralized unit,CU)节点、或分布式单元(distributed unit,DU)节点、或包括CU节点和DU节点的无线接入网络(Radio Access Network,RAN)设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
可选地,在本申请实施例中,第一网络节点可以为DU,第二网络节点可以为CU。
图1为适用于本申请实施例的一种应用场景的示意图。
如图1所示,核心网设备113,例如第五代核心网(the 5 th generation core network,5GC),既可以连接完整的接入网设备111,也可以连接包括CU101和DU102的接入网设备112。接入网设备例如可以为下一代基站节点(next generation Node Base station,gNB)。
CU101和DU102可软件化或虚拟化,需要灵活组合的无线接入网络功能将运行在CU101中,例如,业务数据适应协议(Service Data Adaptation Protocol,SDAP)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP),无线资源控制(Radio Resource Control,RRC)等高层功能;而与硬件强相关并且实时性要求较高的RAN功能将运行在DU102中,例如无线链路层控制协议(Radio Link Control,RLC)层、物理层(physical layer,PHY),媒体介入控制层(Media Access Control,MAC)等底层功能。
CU101和DU102之间通过通信接口相连。CU101与核心网设备之间也通过通信接口相连。在本申请实施例中,CU101和DU102之间的通信接口可以称为F1接口。CU101与核心网设备之间的接口可称为N2接口或NG接口。如图1所示,一个接入网设备112可以包括一个CU101、一个或多个DU102。CU101与DU102之间采用F1接口相连。一个DU102只能连接到一个CU101,一个CU101可以与一个或多个DU102相连。
例如,以接入网设备102为gNB为例,该gNB可以包括一个或多个gNB-DU,以及 一个gNB-CU。一个gNB-DU连接到一个gNB-CU,一个gNB-CU可以连接到多个gNB-DU。gNB-CU和它连接的gNB-DUs在其它gNB和5GC看来就是一个gNB。
图2为适用于本申请实施例的又一种应用场景的示意图。
如图2所示,CU包括集中式单元-用户面(Centralized Unit-user plane,CU-UP)201和集中式单元-控制面(Centralized Unit-control plane,CU-CP)202。其中CU-UP201和CU-CP202可以是在不同的物理设备上。CU-UP201和CU-CP202之间可以存在一个开放的接口,该接口可以称为E1接口。与此同时,CU-UP201和CU-CP202与DU均可以有各自的接口,例如,可以称CU-CP202与DU之间的接口为F1-C接口,CU-UP201与DU之间的接口为F1-U接口。
针对图2的架构,可以具有以下特性:一个接入网设备可以包括一个CU-CP202、一个或多个CU-UP202、多个DU。一个DU可以连接一个CU-CP202。一个CU-UP201只可以连接一个CU-CP202。一个DU在同一个CU-CP202的控制下可以连接到多个CU-UP201。一个CU-UP201在同一个CU-CP202的控制下可以连接到多个DU。
例如,以接入网设备为gNB为例,一个gNB-DU和gNB-CU-UP都只连接到一个gNB-CU-CP。在同一个gNB-CU-CP控制下,一个gNB-DU可以连接到多个gNB-CU-UP,一个gNB-CU-UP可以连接到多个gNB-DU。
图3为适用于本申请实施例的另一种应用场景的示意图。
图3中(1)示出了适用于本申请实施例的5G网络的一示意图。
如图3中(1),该通信***300可以包括至少两个接入网设备,如接入网设备311和接入网设备312。该通信***300还可以包括至少一个核心网设备,如核心网设备313。该通信***300还可以包括至少一个终端设备。该终端设备可以通过双连接(dual connectivity,DC)技术或者多连接技术与接入网设备311和接入网设备312建立无线链路,或者,该终端设备可以通过双连接技术或者多连接技术与接入网设备311和接入网设备312建立无线链路。终端设备可以通过接入网设备311和接入网设备312与核心网设备313之间建立通信连接,例如,接入网设备311和接入网设备312可以为终端设备提供与核心网(core network,CN)之间的连接。接入网设备311或接入网设备312,例如可以是无线网络控制器(radio network controller,RNC),或者可以是基站。无线网络控制器可以设置于基站之中,也可以作为单独的实体存在。核心网设备313可以包括但不限于以下任意一项或多项:用户面功能(user plane function,UPF)实体、接入和移动性管理功能(Access and Mobility Management function,AMF)、或会话管理功能(Session Management function,SMF)实体等。
此外,如图3中的(1)所示,接入网设备311例如可以为主基站,接入网设备312例如可以为辅基站。此情况下,接入网设备311可以为终端设备初始接入时的接入网设备,负责与终端设备之间的无线资源控制(radio resource control,RRC)通信,接入网设备312可以是RRC重配置时添加的,用于提供额外的无线资源。换句话说,在该两个接入网设备之中,可以有一个接入网设备,如接入网设备311,负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该接入网设备311可以称之为主节点(master node,MN),例如,主节点可以是MeNB或者MgNB,不限定于此;则另一个接入网设备,如接入网设备312,可以称之为辅节点(secondary node,SN),例如,辅 节点可以是SeNB或者SgNB,不限定于此。其中,主节点中的多个服务小区可以组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个服务小区(serving cell,SCell)。辅节点中的多个服务小区可以组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
在如图3中(1)所示的网络架构中,NG-U接口为接入网设备与核心网设备(如UPF实体)之间的接口,Xn-U接口为接入网设备与接入网设备之间的接口。
图3中(2)示出了适用于本申请实施例的4G核心网的一示意图。
如图3中(2),该通信***300可以包括至少两个接入网设备,如接入网设备314和接入网设备315。该通信***300还可以包括至少一个核心网设备,如核心网设备316。该通信***300还可以包括至少一个终端设备。该终端设备可以通过双连接(dual connectivity,DC)技术或者多连接技术与接入网设备314和接入网设备315建立无线链路,或者,该终端设备可以通过双连接技术或者多连接技术与接入网设备314和接入网设备315建立无线链路。终端设备可以通过接入网设备314和接入网设备315与核心网设备316之间建立通信连接,例如,接入网设备314和接入网设备315可以为终端设备提供与核心网之间的连接。接入网设备314或接入网设备315,例如可以是无线网络控制器,或者可以是基站。无线网络控制器可以设置于基站之中,也可以作为单独的实体存在。核心网设备316可以包括但不限于以下任意一项或多项:服务网关(serving gateway,S-GW)实体、移动性管理实体(mobility management entity,MME)、或分组数据网络网关(packet data network gateway,P-GW)等。
此外,如图3中的(2)所示,接入网设备314例如可以为主基站,接入网设备315例如可以为辅基站。此情况下,接入网设备314可以为终端设备初始接入时的接入网设备,负责与终端设备之间的无线资源控制(radio resource control,RRC)通信,接入网设备315可以是RRC重配置时添加的,用于提供额外的无线资源。换句话说,在该两个接入网设备之中,可以有一个接入网设备,如接入网设备314,负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该接入网设备315可以称之为主节点,例如,主节点可以是MeNB或者MgNB,不限定于此;则另一个接入网设备,如接入网设备316,可以称之为辅节点,例如,辅节点可以是SeNB或者SgNB,不限定于此。其中,主节点中的多个服务小区可以组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个服务小区(serving cell,SCell)。辅节点中的多个服务小区可以组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
在如图3中(2)所示的网络架构中,S1-U接口为接入网设备与核心网设备(如S-GW实体)之间的接口,X2-U接口为接入网设备与接入网设备之间的接口。
应理解,图3中的各个设备之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。
类似的,终端设备也可以同时与多个接入网设备存在通信连接并可收发数据,该多个接入网设备之中,可以有一个接入网设备负责与该终端设备交互无线资源控制消息,并负 责和核心网控制平面实体交互,那么,该接入网设备可以称之为MN,则其余的接入网设备可以称之为SN。
可选地,在本申请实施例中,第一网络节点可以为SN,第二网络节点可以为MN;或者,第一网络节点可以为MN,第二网络节点可以为SN。
示例性地,对于PDCP层位于MN的无线承载而言(a radio bearer for which PDCP is located in the MN),例如MN终止的无线承载(MN terminated bearer:in MR-DC,a radio bearer for which PDCP is located in the MN),第一网络节点可以为SN,第二网络节点可以为MN。
示例性地,对于PDCP层位于SN的无线承载而言(a radio bearer for which PDCP is located in the SN),例如SN终止的无线承载(SN terminated bearer:in MR-DC,a radio bearer for which PDCP is located in the SN),第一网络节点可以为MN,第二网络节点可以为SN。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
一般地,网络节点之间,例如CU和DU之间,或,MN和SN之间,可以通过传输数据传输情况,进行流量控制。
下面结合图4进行说明。
如图4所示,第一网络节点(如DU)向第二网络节点(拥有NR PDCP的节点,如CU)发送下行数据传输情况(DL data delivery status),从而第二网络节点可以控制每个数据无线承载(data radio bearer,DRB)的数据流,进而可以进行下行流量控制。
本申请实施例提出一种方案,可以有效地进行流量控制,减少冗余数据的传输。
下面将结合附图详细说明本申请提供的各个实施例。
图5是本申请实施例提供的一种方法500的示意***互图。方法500可以包括如下步骤。
510,第一网络节点向终端设备发送数据。
第一网络节点可以在以下任一场景下,向终端设备发送数据。
场景1:初传场景。
也就是说,该数据是第一网络节点向终端设备新传的数据。换句话说,第一网络节点向终端设备第一次发送该数据。
场景2:重传场景。
也就是说,该数据是第一网络节点向终端设备重传的数据。可以理解为,该数据在之前传输失败,第一网络节点向终端设备重传该数据。例如,之前其他网络节点向终端设备传输该数据传输失败;又如,之前第一网络节点向终端设备传输该数据传输失败。
下文详细介绍上述两种场景。
可选地,在步骤510中之前,方法500还可以包括:第二网络节点向第一网络节点发送该数据。第一网络节点接收该数据后,再向终端设备发送该数据。
第一网络节点向终端设备发送数据后,可以向第二网络节点反馈数据的传输情况。
520,第一网络节点向第二网络节点发送第一指示信息和第二指示信息,其中,第一指示信息用于指示:数据中成功传输的按序最大的序列号(sequence number,SN)的信息,第二指示信息用于指示:数据中在成功传输的按序最大的SN之后传输的SN的信息。
数据的传输情况一般包括两种:数据成功传输和数据失败传输。
数据成功传输,或者说,数据传输成功,其均用于表示,第一网络节点向终端设备发送数据,数据被终端设备成功接收。例如,第一网络节点可以通过接收到终端设备针对该数据反馈的确认(acknowledgement,ACK)消息,例如RLC确认消息或者HARQ确认消息,确定数据成功传输。该成功传输的数据可以为初传数据,也可以为重传数据。下文统一用数据传输成功表示。
应理解,在本申请实施例中,数据传输成功,可以表示数据初传成功,也可以表示数据重传成功。
数据失败传输,或者说,数据传输失败,其均用于表示,第一网络节点向终端设备发送数据,数据未被终端设备成功接收。例如,第一网络节点可以通过接收到终端设备针对该数据反馈的否定应答(negative acknowledgement,NACK)消息,如RLC应答或者HARQ应答,确定数据失败传输。又如,第一网络节点可以通过未接收到终端设备针对该数据的反馈消息,确定数据失败传输。数据失败传输,可能是第一网络节点发送数据失败;也可能是终端设备接收数据失败,如未正确解调等等,本申请实施例对数据失败传输的原因不做限定。下文统一用数据传输失败表示。
应理解,在本申请实施例中,数据传输失败,可以表示数据初传失败,也可以表示数据重传失败。
第一网络节点向终端设备发送数据后,根据数据的传输情况,向第二网络节点发送第一指示信息和第二指示信息。也可以理解为,第一网络节点向第二网络节点发送第一指示信息和第二指示信息,第二网络节点根据第一指示信息和第二指示信息可以获知数据的传输情况。第二网络节点获知数据的传输情况,即第二网络节点可以确定哪些数据传输成功,哪些数据传输失败,进而可以确定需要重传的数据的信息,从而进一步优化了流量控制机制,减少了冗余无效数据的传输。
该第一指示信息和第二指示信息可以携带于一个信令中,或者,也可以携带于两个信令中,对此本申请实施例不做限定。
其中,第一指示信息用于指示:数据中传输成功的按序最大的序列号SN的信息。例如,第一网络节点向第二网络节点指示最高传输成功按序的NR PDCP SN(highest successfully delivered NR PDCP Sequence Number)。
其中,第二指示信息用于指示:数据中在传输成功的按序最大的SN之后传输的SN的信息。第一网络节点向第二网络节点指示在传输成功的按序最大的SN之后的SN的信息,便于第二网络节点可以确定在传输成功的按序最大的SN之后传输成功的SN的信息,以及在传输成功的按序最大的SN之后传输失败的SN的信息,从而可以较为准确地获取数据的传输情况。
可选地,在传输成功的按序最大的SN之后传输的SN的信息,可以包括以下一项或多项:在传输成功的按序最大的SN之后第一个传输成功的SN的信息;或,在传输成功的按序最大的SN之后最后一个传输成功的SN的信息;或,在传输成功的按序最大的SN之后所有传输成功的SN的信息;或,在传输成功的按序最大的SN之后所有失败传输的SN的信息;或,在传输成功的按序最大的SN之后传输成功的SN的数量;或,在传输成功的按序最大的SN之后失败传输的SN的数量;或,在传输成功的按序最大的SN之后传输成功的SN的范围。
以第一网络节点向终端设备发送N个数据包为例,下面结合上述两种场景分别说明。其中,N为大于1或等于1的整数。
为便于描述,本申请实施例中,将传输成功的按序最大的序列号SN对应的数据包记为第一数据包,将传输成功的按序最大的SN之后第一个传输成功的SN对应的数据包记为第二数据包,将传输成功的按序最大的SN之后最后一个传输成功的SN对应的数据包记为第三数据包。
场景1:初传场景。
例如,以图6为例,假设第一网络节点向终端设备发送的数据包括:数据包196、数据包197、数据包198、数据包199、数据包200、数据包201、数据包202、数据包203、数据包204、数据包205、数据包206、数据包207。以图6中的(1)为例,数据包201传输失败,其余数据包传输成功。以图6中的(2)为例,数据包201和数据包204传输失败,其余数据包传输成功。
第一指示信息用于指示数据中传输成功的按序最大的序列号SN(Highest Transmitted NR PDCP SN Ind)的信息,可以理解,第一指示信息用于指示最高传输成功按序的PDCP SN。也就是说,第一指示信息用于指示第一数据包的SN。例如,以图6为例,第一指示信息用于指示数据包200的PDCP SN,即200。在图6所示的示例中,第一数据包表示数据包200。
第二指示信息用于指示数据中在传输成功的按序最大的SN之后传输的SN的信息,例如,在图6所示的示例中,第二指示信息可以用于指示数据包200之后传输成功的SN的信息,和/或,第二指示信息可以用于指示数据包200之后传输失败的SN的信息。
应理解,图6仅是示例性说明,本申请实施例并未限定于此,如在数据包196之前,还可以包括更多的传输成功的数据包,或者,数据包200之后还可以包括更多传输失败的数据包等。
下面结合在传输成功的按序最大的SN之后传输的SN的信息中可能包括的不同信息,分别说明。
应理解,下文各个方案中提到的SN可以为分组数据汇聚协议序列号(packet data convergence protocol sequence number,PDCP SN),也可以为新空口用户面序列号(new radio user plane sequence number,NR-U SN),或者其它SN,对此不作限定。为便于理解,场景1中主要以SN为PDCP SN为例进行示例性说明。
方案1:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后第一个传输成功的SN的信息。
也就是说,第一网络节点向第二网络节点指示第二数据包的SN的信息。
可选地,第二数据包可以为在传输成功的按序最大的SN之后,所有数据包中第一个成功传输的数据包。以图6为例,在传输成功的按序最大的SN之后第一个传输成功的数据包,即第二数据包,数据包202。例如,第一网络节点可以向第二网络节点指示数据包202的PDCP SN:202。又如,第一网络节点可以向第二网络节点指示数据包202的NR-U SN:202。
第一网络节点向第二网络节点指示:传输成功的按序最大的SN的信息(即第一数据包的信息)、以及在传输成功的按序最大的SN之后第一个传输成功的SN的信息(即第二数据包的信息),第二网络节点接收到该信息后可以确定传输失败的数据包,也就是说,第二网络节点可以确定重传的数据包。例如,如图6所示,第二网络节点接收到该信息后可以确定数据包201传输失败,即数据包201需要重传。
方案2:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后第一个传输成功的SN的信息、以及在传输成功的按序最大的SN之后传输成功的SN范围的数量。
也就是说,第一网络节点向第二网络节点指示:第二数据包的SN的信息和在传输成功的按序最大的SN之后传输成功的SN范围的数量。
一种可能的实现方式,第二指示信息可以通过字段指示在传输成功的按序最大的SN之后传输成功的SN范围的数量。示例性地,通过x比特的字段指示在传输成功的按序最大的SN之后传输成功的SN范围的数量,其中,x为大于1或等于1的整数。示例性地,通过固定比特的字段(例如8bit)指示在传输成功的按序最大的SN之后传输成功的SN范围的数量。如00000001表示SN范围为1,00000010表示SN范围为2。
在传输成功的按序最大的SN之后传输成功的SN范围(range)内,可以指示:一个或多个传输失败的数据包,以及,一个或多个传输成功的数据。或者,在传输成功的按序最大的SN之后传输成功的SN范围内,所有的数据包均传输成功。
下文,为简洁,将在传输成功的按序最大的SN之后传输成功的SN范围,简称为SN范围。
例如,以图6中的(1)为例,数据包201传输失败。SN范围可以表示:数据包201至数据包207,在该SN范围内包括一个传输失败的数据包(数据包201)。或者,SN范围可以表示:数据包202至数据包207,在该SN范围内所有的数据包均传输成功。不管以哪种方式表示SN范围,以图6中的(1)为例,SN范围的数量均为1。
又如,以图6中的(2)为例,数据包201和数据包204传输失败。SN范围可以指示:数据包201至数据包203、数据包204至数据包207,即有2个SN范围,且在每个SN范围内包括一个传输失败的数据包(数据包201、数据包204)。或者,SN范围可以指示:数据包202至数据包203、数据包205至数据包207,即有2个SN范围,且在每个SN范围内所有的数据包均传输成功。不管哪种方式表示SN范围,以图6中的(2)为例,SN范围的数量均为2。
应理解,上述仅是为理解SN范围做的示例性说明,本申请实施例并未限定于此。
还应理解,SN范围内可以仅包括传输成功的数据包;或者,SN范围内也可以既包括传输成功的数据包,又包括传输失败的数据。
还应理解,当SN范围内既包括传输成功的数据包,又包括传输失败的数据的情况下, 可以假设每个SN范围内的前P个数据包是传输失败的数据包,该P为大于1或等于1的整数,P可以是预先设定的数值。例如,可以假设每个SN范围内的第一个数据包是传输失败的数据包。
还应理解,SN范围的数量为大于0或等于0的整数。
示例性地,以图6中的(1)的情况为例。例如,第二指示信息可以通过1比特的字段指示SN范围的数量为1。又如,第二指示信息可以通过8比特的字段,取值为1指示SN范围的数量为1。
又一种可能的实现方式,第二指示信息可以通过比特位图(bitmap)的个数指示SN范围的数量。
比特位图可以用于指示在传输成功的按序最大的SN之后传输的SN的信息,比特位图的个数即表示SN范围的个数。例如,以图6中的(1)为例,可以用一个比特位图来指示在传输成功的按序最大的SN之后传输的SN的信息。也就是说,在该实现方式下,比特位图的列表个数等于SN范围的数量。对于如何指示比特位图的列表个数本申请实施例不做限定。
关于比特位图指示在传输成功的按序最大的SN之后传输的SN的信息的方案,下面结合方案4介绍。
在方案2中,第一网络节点向第二网络节点指示:第一数据包的信息、第二数据包的信息、以及SN范围的数量,第二网络节点接收到该信息后可以确定传输失败的数据包,也就是说,第二网络节点可以确定重传的数据包。
可选地,第二数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内第一个成功传输的数据包。
例如,以图6中的(1)为例,第二数据包为数据包202。如图6中的(1)所示,第二网络节点接收到该信息后可以确定数据包201传输失败,即数据包201需要重传。此外,第二网络节点根据第二数据包为数据包202,且SN范围的数量为1,那么第二网络节点可以确定第二数据包后面的数据包均传输成功。
又如,以图6中的(2)为例,第二数据包包括数据包202和数据包205。如图6中的(2)所示,第二网络节点接收到该信息后可以确定数据包201和数据包204传输失败,即数据包201和数据包204需要重传。此外,第二网络节点根据第二数据包包括数据包202和数据包204,且SN范围的数量为2,那么第二网络节点可以确定其余数据包均传输成功。
方案3:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后第一个传输成功的SN的信息、SN范围的数量、以及在传输成功的按序最大的SN之后传输成功的SN的数量。
也就是说,第一网络节点向第二网络节点指示:第二数据包的SN的信息、SN范围的数量、以及在传输成功的按序最大的SN之后传输成功的SN的数量。
可选地,第二数据包可以为在传输成功的按序最大的SN之后,所有数据包中第一个传输成功的数据包。例如,以图6(1)为例,第二数据包为数据包202。又如,以图6(2)为例,第二数据包为数据包202。
可选地,第二数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内第 一个传输成功的数据包。例如,以图6(1)为例,第二数据包为数据包202。又如,以图6(2)为例,第二数据包包括数据包202和数据包205。
可选地,在传输成功的按序最大的SN之后传输成功的SN的数量,可以为在传输成功的按序最大的SN之后按续成功传输的SN的数量,即每个SN范围内成功传输的SN的数量,可以包括一个或者多个。例如,以图6(1)为例,在传输成功的按序最大的SN之后传输成功的SN的数量为6。又如,以图6(2)为例,在传输成功的按序最大的SN之后传输成功的SN的数量有两个值,分别为2和3。
以图6中的(1)为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表1所示。
表1
SN范围的数量 1
第二数据包的PDCP SN 202
在传输成功的按序最大的SN之后传输成功的SN的数量 6
如表1所示,第一网络节点可以向第二网络节点指示SN范围的数量为1。第一网络节点也可以向第二网络节点指示在传输成功的按序最大的SN之后第一个传输成功的PDCP SN(Start of successfully transmitted PDCP Sequence Number range),即202。第一网络节点还可以向第二网络节点指示范围内数据包中传输成功的数据包的数量(Number of successful transmitted PDCP Sequence Number ranges reported)为6。
以图6中的(2)为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表2所示。如前所述,以图6中的(2)为例,包括两个SN范围,为区分,分别记为第一个SN范围和第二个SN范围。图6中的(2)中,第二数据包包括数据包202和数据包205,为区分,分别记为第一个SN范围内第二数据包和第二个SN范围内的第二数据包。
表2
SN范围的数量 2
第一个SN范围内的第二数据包的PDCP SN 202
在传输成功的按序最大的SN之后第一个SN范围内传输成功的SN的数量 2
第二个SN范围内的第二数据包的PDCP SN 205
在传输成功的按序最大的SN之后第二个SN范围内传输成功的SN的数量 3
应理解,在方案3中,在传输成功的按序最大的SN之后传输的SN的信息也可以包括:第二数据包的SN的信息和在传输成功的按序最大的SN之后传输成功的SN的数量。第二网络节点根据第二数据包的SN的信息和在传输成功的按序最大的SN之后传输成功的SN的数量,也可以确定数据的传输情况。
在方案3中,第一网络节点向第二网络节点指示:第一数据包的信息、第二数据包的PDCP SN、SN范围的数量、和在传输成功的按序最大的SN之后传输成功的SN的数量,第二网络节点接收到该信息后可以确定传输失败的数据包。
例如,如图6中的(1)所示,SN范围的数量为1。第二网络节点接收到该指示信息后可以确定数据包201传输失败,即数据包201需要重传,其余数据包均传输成功。
又如,如图6中的(2)所示,SN范围的数量为2。假设第二数据包包括传输成功的按序最大的SN之后,每个SN范围内第一个成功传输的数据包。那么对于第一个SN范围,传输成功的数据包的数量为2(即数据包202和数据包203),对于第二个SN范围,传输成功的数据包的数量为3(即数据包205、数据包206、以及数据包207)。第二网络节点接收到该指示信息后可以确定数据包201和数据包204传输失败,即数据包201和数据包204需要重传,其余数据包均传输成功。
方案4:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后所有传输成功的SN的信息。
方案4至少可以通过以下任意一种实现方式实现。
实现方式1,用一个y比特的位图(bitmap)来指示数据包是否传输成功,其中,y为大于1或等于1的整数。每个比特可以指示一个数据包,或者说,每个比特可以指示一个数据包传输成功或传输失败,如为1表示需要传输成功,为0表示传输失败。
在传输成功的按序最大的SN之后传输的SN的信息可以如下表3所示。
如表3所示,第一网络节点可以向第二网络节点指示bitmap包括的比特数,bitmap包括的比特数与该bitmap指示的数据包的数量相同。也可以理解为,第一网络节点可以向第二网络节点指示数据包的数量。
表3
bitmap包括的比特数
bitmap
bitmap
示例性地,y比特的位图可以以N个数据包中的第一个数据包为基准。
如图6所示,y比特的位图可以以数据包196为基准。
下面结合图6中的(1)和图7说明。
如图6中的(1)可知,传输成功的数据包包括:数据包196、数据包197、数据包198、数据包199、数据包200、数据包202、数据包203、数据包204、数据包205、数据包206、数据包207,传输失败的数据包包括:数据包201,那么可以以数据包196为基准,从数据包196开始指示,即可以用12比特的位图来指示传输的数据包。如图7所示,该图中12比特的指示为二进制数(111110111111),每个比特可以指示一个数据包,为1表示传输成功,为0表示传输成功。这样就表示传输失败的为“0”所对应的数据包201。
可选地,第一网络节点可以向第二网络节点指示bitmap包括的比特数,例如为12,那么相当于该bitmap用于指示12个数据包的传输情况。
示例性地,y比特的位图可以以第一数据包为基准。
如图6所示,y比特的位图可以以数据包200为基准。
下面结合图6中的(1)和图7说明。
如图6中的(1)可知,传输成功的数据包包括:数据包196、数据包197、数据包198、数据包199、数据包200、数据包202、数据包203、数据包204、数据包205、数据包206、数据包207,传输失败的数据包包括:数据包201,那么可以以数据包200为基准,从数据包200的下一个数据包开始指示,即可以用7比特的位图来指示传输的数据包。如图8所示,该图中7比特的指示为二进制数(0111111),每个比特可以指示一个数据包,为1表示传输成功,为0表示传输成功。这样就表示传输失败的为“0”所对应的数据包201。
可选地,第一网络节点可以向第二网络节点指示bitmap包括的比特数,例如为7,那么相当于该bitmap用于指示7个数据包的传输情况。
例如,可以通过一个字段来指示bitmap所占比特的个数(即bitmap包括的比特数)。如表3所示,假设bitmap占据2个字节的15个比特,则bitmap所占比特个数为15。
又如,可以通过一个字段来指示bitmap的所占字节的个数,根据该字段取值确定bitmap包括的比特数。
又如,可以用固定比特(如8bit)的字段指示bitmap包括的比特数。如00001000表示该bitmap为8比特,即该bitmap包括的比特数为8比特;又如00010001表示该位图为9比特,即该bitmap包括的比特数为9比特。
上述实现方式1仅是示例性说明,应理解,本申请实施例并未限定于此,任何可以通过比特位图来指示数据包是否传输成功的方式都落入本申请实施例的保护范围。
例如,y比特的位图以数据包200为基准时,也可以从数据包200的开始指示,即可以用8比特的位图来指示传输的数据包,如8比特的指示为二进制数(10111111),表示数据包200的下一个数据包,即数据包201传输失败,其余数据包传输成功。
又如,y比特的位图以数据包202为基准时,也可以从数据包202的开始指示,即可以用6比特的位图来指示传输的数据包,如6比特的指示为二进制数(111111),表示数据包202以及后面的数据包传输成功。此外,第二网络节点也可以确定其余数据包为传输失败的数据包。
实现方式2,在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后每个传输成功的SN。
以指示数据包的PDCP SN为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表4所示。
表4
Number of successful transmitted PDCP Sequence Number reported
Successfully transmitted PDCP Sequence Number 1
Successfully transmitted PDCP Sequence Number 2
……
如表4所示,第一网络节点可以向第二网络节点指示在传输成功的按序最大的SN之后传输成功的数据包的PDCP SN(Successfully transmitted PDCP Sequence Number),如表4中的Successfully transmitted PDCP Sequence Number 1、Successfully transmitted PDCP  Sequence Number 2、……。以图6中的(1)为例,第一网络节点可以向第二网络节点指示N2个数据包中传输成功的数据包包括:数据包202、数据包203、数据包204、数据包205、数据包206、数据包207。
可选地,如表4所示,第二网络节点还可以向第一网络节点指示在传输成功的按序最大的SN之后传输成功的数据包的数量(Number of successful transmitted PDCP Sequence Number reported)。
在方案4中,第一网络节点向第二网络节点指示:第一数据包的信息、以及在传输成功的按序最大的SN之后传输成功的数据包的信息,第二网络节点接收到该信息后可以确定传输失败的数据包。例如,如图6所示,第二网络节点接收到该指示信息后可以确定数据包201传输失败,即数据包201需要重传,其余数据包均传输成功。
方案5:在传输成功的按序最大的SN之后传输的SN的信息包括:第二数据包的信息和第三数据包的信息。
换句话说,第一网络节点向第二网络节点指示第二数据包的信息和第三数据包的信息。
可选地,第二数据包可以为在传输成功的按序最大的SN之后,所有数据包中第一个成功传输的数据包。或者,第二数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内第一个成功传输的数据包。
可选地,第三数据包可以为在传输成功的按序最大的SN之后,所有数据包中最后一个传输成功的数据包。例如,以图6(1)为例,第三数据包为数据包207。又如,以图6(2)为例,第三数据包为数据包207。
可选地,第三数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内最后一个传输成功的数据包。换句话说,第三数据包可以包括在传输成功的按序最大的SN之后、且在第二数据包之后,成功传输的按序最大SN的数据包。例如,以图6(1)为例,第三数据包为数据包207。又如,以图6(2)为例,第三数据包包括数据包203和数据包207。
方案5主要以第二数据包和第三数据包为一个SN范围内的数据包,为例进行示例性说明。也就是说,第二数据包包括在传输成功的按序最大的SN之后,每个SN范围内第一个成功传输的数据包;第三数据包包括在传输成功的按序最大的SN之后,每个SN范围内最后一个传输成功的数据包。
以指示数据包的PDCP SN为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表5所示。
表5
Number of successful transmitted PDCP Sequence Number ranges reported
Start of Successfully transmitted PDCP Sequence Number range
End of Successfully transmitted PDCP Sequence Number range
……
如表5所示,第一网络节点可以向第二网络节点指示第二数据包的PDCP SN,也就 是说,第一网络节点可以向第二网络节点指示在传输成功的按序最大的SN之后SN范围内第一个传输成功的数据包的PDCP SN(Start of successfully transmitted PDCP Sequence Number range)。第一网络节点还可以向第二网络节点指示第三数据包的PDCP SN,也就是说,第一网络节点可以向第二网络节点指示在传输成功的按序最大的SN之后最后一个传输成功的数据包的PDCP SN(End of successfully transmitted PDCP Sequence Number range)。
可选地,在方案5中,在传输成功的按序最大的SN之后传输的SN的信息还可以包括:SN范围的数量,即传输成功的按序最大的SN之后SN范围的数量(Number of successful transmitted PDCP Sequence Number ranges reported)。也就是说,在传输成功的按序最大的SN之后传输的SN的信息可以包括:第二数据包的信息、第三数据包的信息、以及SN范围的数量。
以图6中的(1)为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表6所示。
表6
SN范围的数量 1
第二数据包的PDCP SN 202
第三数据包的PDCP SN 207
以图6中的(2)为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表7所示。如前所述,以图6(2)为例,第三数据包包括数据包203和数据包207。为区分,分别记为第一个SN范围内的第三数据包和第二个SN范围内的第三数据包。
表7
SN范围的数量 2
第一个范围内的第二数据包的PDCP SN 202
第一个范围内的第三数据包的PDCP SN 203
第二个范围内的第二数据包的PDCP SN 205
第二个范围内的第三数据包的PDCP SN 207
可选地,如表5至表7所示,第一网络节点还可以向第二网络节点指示在传输成功的按序最大的SN之后传输成功的SN范围的数量(Number of successful transmitted PDCP Sequence Number ranges reported)。或者,第一网络节点还可以向第二网络节点上报所有的个数据包中传输成功的数据包的数量。
在方案5中,第一网络节点向第二网络节点指示:第一数据包的PDCP SN、第二数据包的PDCP SN和第三数据包的PDCP SN,第二网络节点接收到该信息后可以确定传输失败的数据包。
方案6:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后传输失败的数据包的信息。
方案6至少可以通过以下任意一种实现方式实现。
一种可能的实现方式,用一个y比特的位图来指示数据包是否传输成功,其中,y为大于1或等于1的整数。每个比特可以指示一个数据包,或者说,每个比特可以指示一个数据包传输成功或传输失败,如为1表示需要传输成功,为0表示传输失败。
该实现方式可以参考方案4中的实现方式1,此处不再赘述。
又一种可能的实现方式,指示在传输成功的按序最大的SN之后传输失败的数据包的PDCP SN。
以指示数据包的PDCP SN为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表8所示。
表8
Number of failed transmitted PDCP Sequence Number reported
Failed transmitted PDCP Sequence Number 1
Failed transmitted PDCP Sequence Number 2
……
如表8所示,第一网络节点可以向第二网络节点指示在传输成功的按序最大的SN之后传输失败的数据包的PDCP SN(Failed transmitted PDCP Sequence Number)。
可选地,如表8所示,第二网络节点还可以向第一网络节点指示在传输成功的按序最大的SN之后传输失败的数据包的数量(Number of failed transmitted PDCP Sequence Number reported),如表8中的Failed transmitted PDCP Sequence Number 1、Failed transmitted PDCP Sequence Number 2、……。或者,第一网络节点还可以向第二网络节点上报N个数据包中传输失败的数据包的数量(Number of failed transmitted PDCP Sequence Number reported)。
在方案6中,第一网络节点向第二网络节点指示:第一数据包的信息、以及在传输成功的按序最大的SN之后传输失败的数据包的信息,第二网络节点接收到该信息后可以确定传输失败的数据包。
例如,如图6中的(1)所示。第一数据包为数据包200、在传输成功的按序最大的SN之后传输失败的数据包包括数据包201,第二网络节点接收到该指示信息后可以确定数据包201传输失败,即数据包201需要重传,其余数据包均传输成功。
又如,如图6中的(2)所示。第一数据包为数据包200、在传输成功的按序最大的SN之后传输失败的数据包包括数据包201和204,第二网络节点接收到该指示信息后可以确定数据包201和数据包204传输失败,即数据包201数据包204需要重传,其余数据包均传输成功。
方案7:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后最后一个传输成功的SN的信息。
也就是说,第一网络节点向第二网络节点指示第三数据包的SN的信息。
可选地,第三数据包可以为在传输成功的按序最大的SN之后,所有数据包中最后一 个传输成功的数据包。或者,第三数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内最后一个传输成功的数据包。
例如,以图6中的(1)为例,第三数据包为数据包207,第一网络节点可以向第二网络节点指示:第三数据包的PDCP SN(即207)。第一网络节点还可以向第二网络节点指示:第一数据包的PDCP SN(即200)。第二网络节点可以根据第一数据包的信息和第三数据包的信息,确定数据包201传输失败。关于在传输成功的按序最大的SN之后的其余数据包,一种可能的实现方式,第二网络节点可以根据约定或者预设规则,确定第一数据包和第三数据包之间的数据包均传输失败;又一种可能的实现方式,第二网络节点可以根据约定或者预设规则,确定第二数据包后面的数据包均传输成功。
又如,以图6中的(2)为例,第三数据包包括数据包203和数据包207,第一网络节点可以向第二网络节点指示:第三数据包的PDCP SN(即203和207)。第一网络节点还可以向第二网络节点指示:第一数据包的PDCP SN(即200)。第二网络节点可以根据第一数据包的信息和第三数据包的信息,确定数据包201和数据包204传输失败。关于在传输成功的按序最大的SN之后的其余数据包,一种可能的实现方式,第二网络节点可以根据约定或者预设规则,确定第一数据包和第三数据包之间的数据包均传输失败;又一种可能的实现方式,第二网络节点可以根据约定或者预设规则,确定第二数据包后面的数据包均传输成功。
应理解,上述多种方案仅是示例性说明,本申请实施例并未限定于此。例如,传输成功的按序最大的SN之后传输的SN的信息,可以包括:第二数据包的信息和在传输成功的按序最大的SN之后传输失败的数据包的数量。又如,传输成功的按序最大的SN之后传输的SN的信息,可以包括:第三数据包的信息和在传输成功的按序最大的SN之后传输失败的数据包的数量。
还应理解,例如,上述多种方案可以单独使用,也可以结合使用。例如,方案1和方案7结合使用,也就是说,第二指示信息用于指示第二数据包的信息和第三数据包的信息,那么第二网络节点根据第二数据包的信息和第三数据包的信息,确定传输失败的数据包,或者说,确定需要重传的数据包等。
还应理解,在上述各个方案中,第二数据包可以为在传输成功的按序最大的SN之后,所有数据包中第一个成功传输的数据包。或者,第二数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内第一个成功传输的数据包。
还应理解,在上述各个方案中,第三数据包可以为在传输成功的按序最大的SN之后,所有数据包中最后一个传输成功的数据包。或者,第三数据包可以包括在传输成功的按序最大的SN之后,每个SN范围内最后一个传输成功的数据包。
还应理解,上述方案可以用于每个SN范围,即确定每个SN范围内SN的信息。或者,上述方案也可以用于多个SN范围,即确定多个SN范围内SN的信息。对此不做限定。
还应理解,在场景1下,上述多种方案中的SN信息均可替换为“PDCP SN”。
还应理解,上述所有方案均可以用于场景2。
在上述方案中,第一网络节点向第二网络节点指示在传输成功的按序最大的SN之后传输的SN的信息,第二网络节点接收到该信息后可以较准确地确定传输失败的数据包, 也就是说,第二网络节点可以较准确地确定重传的数据包,从而减少了冗余数据的传输。
一方面,第二网络节点可以在第一网络节点与终端设备的链路发生链路失败时,向其他网络节点较准确地发送需要重传的数据,从而减少了冗余数据的传输以及资源的浪费。另一方面,为了支持一些业务,如高可靠低时延的业务,第二网络节点往往向多个网络节点(如两个网络节点)发送下行重复的数据。第二网络节点基于第一网络节点发送的在传输成功的按序最大的序列号之后传输的SN的信息,可以较准确的确定已经被终端设备成功接收的数据,和未被终端设备成功接收的数据。从而第二网络节点可以较准确地向其他网络节点仅仅发送未被终端设备成功接收的数据包,从而在保障高可靠低时延业务性能的同时,减少了冗余数据的传输。
相反,如果第一网络节点向第二网络节点仅指示第一数据包的信息,那么第二网络节点接收到信息后,确定第一数据包后面的数据包均传输失败,从而重传第一数据包后面的所有数据包。例如,如图6所示,第二网络节点接收到该指示信息后可以确定数据包200之后的所有数据包传输失败,即第二网络节点确定需要重传数据包201、数据包202、数据包203、数据包204、数据包205、数据包206、以及数据包207。造成了不必要的数据包重传,浪费资源。
上文结合场景1介绍了多种方案,下面结合场景2介绍。
场景2:重传场景。
以图9为例,假设数据包102和数据包104为在不同于第一网络节点的另一网络节点上重传失败的数据包。可以理解为,另一网络节点向终端设备发送数据时,数据包102和数据包104传输失败,该另一网络节点向第二网络节点上报数据包102和数据包104传输失败。数据包95、数据包96、数据包97为在第一网络节点上重传失败的数据包。可以理解为,第一网络节点向终端设备发送数据时,数据包95、数据包96、以及数据包97传输失败,该第一网络节点向第二网络节点上报数据包95、数据包96、以及数据包97传输失败。或者,第二网络节点向第一网络节点发送数据时,数据包95、数据包96、以及数据包97传输失败或者丢失,该第一网络节点向第二网络节点上报数据包95、数据包96、以及数据包97传输失败或者丢失。从而,第二网络节点向第一网络节点重传数据包95、数据包96、以及数据包97。
在重传过程中,数据包102、数据包104、数据包95、数据包96、数据包97均在第二网络节点上重传。换句话说,由第一网络节点向终端设备重传传输失败的数据包。
数据包102、数据包104、数据包95、数据包96、数据包97关联的NR-U分别为15、16、17、18、19。第二网络节点向第一网络节点发送的数据包的顺序为:102、104、95、96、97,关联的NR-U分别为:15、16、17、18、19。第一网络节点向终端设备重传这些数据包。在重传过程中,第一网络节点向终端设备重传数据包的顺序为:数据包95、数据包96、数据包97、数据包102、数据包104。可选地,第一网络节点向终端设备重传数据包时,可以不调整数据包的顺序。
如图9所示,假设在重传过程中,数据包104传输失败,其余数据包传输成功。
第一指示信息用于指示数据中传输成功的按序最大的SN的信息,也就是说,第一指示信息用于指示第一数据包的SN的信息。例如,以图9为例,第一指示信息可以用于指示数据包102的PDCP SN,即102,或者,第一指示信息可以用于指示数据包102的NR-U  SN,即15。在图9所示的示例中,第一数据包表示数据包102。在一种示例中,数据中传输成功的按序最大的SN的信息,可以指数据中传输成功的按序最大的NR-U SN的信息。
第二指示信息用于指示数据中在传输成功的按序最大的SN之后传输的SN的信息,例如,可以是第二指示信息用于指示数据包102之后传输的SN的信息。在图9所示的示例中,第二数据包表示数据包95,第二数据包的SN信息,例如可以为第二数据包的PDCP SN,即95,也可以为第二数据包的NR-U,即17;也就是说,第一网络节点向第二网络节点指示的第二数据包的信息为数据包95的信息,如指示95或17。第三数据包为数据包97,第三数据包的SN信息,例如可以为第三数据包的PDCP SN,即97,也可以为第三数据包的NR-U,即19;也就是说,第一网络节点向第二网络节点指示的第三数据包的信息为数据包97的信息,如指示97或19。
应理解,图9仅是示例性说明,本申请实施例并未限定于此。
上述场景1中提到的方案1至方案7,均可用于场景2,此处为简洁不再赘述。
在场景2中,SN的信息除了可以表示PDCP SN,也可以表示NR-U SN。下文结合上述多种方案,简单描述SN的信息为NR-U SN的情况。
在场景2中,成功传输的数据包,即表示为重传成功的数据包,换句话说,在重传过程中重传成功的数据包。传输失败的数据包,即表示为重传失败的数据包,换句话说,在重传过程中重传失败的数据包。
方案1:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后第一个传输成功的SN的信息。
也就是说,第一网络节点可以向第二网络节点指示第二数据包的NR-U SN。
以图9为例,在传输成功的按序最大的SN之后第一个传输成功的数据包,即第二数据包,为数据包95。也就是说,第一网络节点可以向第二网络节点指示:数据包95的NR-U SN(即17)。
第一网络节点向第二网络节点指示:传输成功的按序最大的SN的信息(即第一数据包的信息)、以及在传输成功的按序最大的SN之后第一个传输成功的SN的信息(即第二数据包的NR-U SN),第二网络节点接收到该信息后可以确定传输失败的数据包,也就是说,第二网络节点可以确定重传的数据包。例如,如图9所示,第二网络节点接收到该信息后可以确定数据包104传输失败,即数据包104需要重传。此外,第二网络节点可以默认除数据包104外,其余数据包均传输成功。
方案2:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后第一个传输成功的SN的信息、以及在传输成功的按序最大的SN之后传输成功的SN范围的数量。
也就是说,第一网络节点向第二网络节点指示第二数据包的NR-U SN和在传输成功的按序最大的SN之后传输成功的SN范围的数量。
关于SN范围,参考场景1中的描述,此处不再赘述。
在方案2中,第一网络节点向第二网络节点指示:第一数据包的信息、第二数据包的NR-U SN、以及SN范围,第二网络节点接收到该信息后可以确定传输失败的数据包,也就是说,第二网络节点可以确定重传的数据包。
例如,如图9所示,第二网络节点接收到该信息后可以确定数据包104传输失败,即数据包104需要重传。此外,第二网络节点根据第二数据包为数据包95,且SN范围的数量为1,那么第二网络节点可以第二数据包后面的数据包(即数据包96和数据包97)均传输成功。
方案3:在传输成功的按序最大的SN之后传输的SN的信息包括:在传输成功的按序最大的SN之后第一个传输成功的SN的信息、SN范围的数量、以及在传输成功的按序最大的SN之后传输成功的SN的数量。
也就是说,第一网络节点向第二网络节点指示:第二数据包的NR-U SN、SN范围的数量、以及在传输成功的按序最大的SN之后传输成功的SN的数量。
以图9为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表9所示。
表9
Number of successful transmitted NR-U Sequence Number ranges reported 1
Start of successfully transmitted NR-U Sequence Number range 17
Number of successful transmitted NR-U Sequence Number ranges reported 3
如表9所示,第一网络节点可以向第二网络节点指示SN范围的数量,即传输成功的按序最大的SN之后SN范围的数量(Number of successful transmitted NR-U Sequence Number ranges reported),为1。第一网络节点可以向第二网络节点指示第二数据包的NR-U SN,即第一网络节点可以向第二网络节点指示在传输成功的按序最大的SN之后SN范围内第一个传输成功的数据包的NR-U SN(Start of successfully transmitted NR-U Sequence Number range),为17。第一网络节点还可以向第二网络节点指示SN范围内传输成功的数据包的数量(Number of successful transmitted NR-U Sequence Number ranges reported)为3。
在方案3中,第一网络节点向第二网络节点指示:第一数据包的信息、第二数据包的NR-U SN、SN范围的数量、和在传输成功的按序最大的SN之后传输成功的SN的数量,第二网络节点接收到该信息后可以确定传输失败的数据包。例如,如图9所示,第二网络节点接收到该指示信息后可以确定数据包104传输失败,即数据包104需要重传,其余数据包均传输成功。
方案4:在传输成功的按序最大的SN之后传输的SN的信息,包括:在传输成功的按序最大的SN之后所有传输成功的SN的信息。
方案4可以参考上述场景1中的方案4中的描述,只需将PDCP SN替换为NR-U SN即可。
方案5:在传输成功的按序最大的SN之后传输的SN的信息,包括:第二数据包的信息和第三数据包的信息。
方案5可以参考上述场景1中的方案5中的描述,只需将PDCP SN替换为NR-U SN即可。
方案6:在传输成功的按序最大的SN之后传输的SN的信息,包括:在传输成功的按序最大的SN之后传输失败的数据包的信息。
方案6可以参考上述场景1中的方案6中的描述,在另一种实施方式中,只需将PDCP  SN替换为NR-U SN即可。
方案7:在传输成功的按序最大的SN之后传输的SN的信息,包括:第三数据包的信息。
以图9为例,第三数据包为数据包97,第二网络节点可以向第一网络节点指示:第二数据包的NR-U SN(19)。方案7可以参考上述场景1中的方案7中的描述,只需将PDCP SN替换为NR-U SN即可。
可选地,在传输成功的按序最大的SN之后传输的SN的信息还可以包括:在传输成功的按序最大的SN之后传输成功的数据包的数量。也就是说,第一网络节点还可以向第二网络节点指示在传输成功的按序最大的SN之后传输成功的数据包的数量(即3)。
以图9为例,在传输成功的按序最大的SN之后传输的SN的信息可以如下表10所示。
表10
Number of successful transmitted NR-U Sequence Number ranges reported 1
End of successfully transmitted NR-U Sequence Number range 19
Number of successful transmitted NR-U Sequence Number ranges reported 3
如表10所示,第一网络节点可以向第二网络节点指示SN范围的数量,即传输成功的按序最大的SN之后SN范围的数量(Number of successful transmitted NR-U Sequence Number ranges reported),为1。第一网络节点可以向第二网络节点指示第三数据包的NR-U SN,即第一网络节点可以向第二网络节点指示在传输成功的按序最大的SN之后SN范围内最后一个传输成功的数据包的NR-U SN(End of successfully transmitted NR-U Sequence Number range),为19。第一网络节点可以向第二网络节点指示第三数据包的NR-U SN为19。第一网络节点还可以向第二网络节点指示SN范围内传输成功的数据包的数量(Number of successful transmitted NR-U Sequence Number ranges reported)为3。
应理解,上述示例性地介绍了场景2下的方案1至方案7,未详细描述的内容可参考场景1中的描述,此处不再赘述。
还应理解,方案1至方案7可以用于场景1,也可以用于场景2,本申请实施例并未限定于此,该多种方案还可以用于其他场景,如重复传输多次的场景下。
还应理解,上述场景1中提及的方案1至方案7应用于场景2时,成功传输的SN可以替换为重传成功的SN;失败传输的SN可以替换为重传失败的SN。其具体的描述方式不对本申请实施例的保护范围造成限定。
还应理解,在场景2中,SN信息既可以表示PDCP SN,也可以表示NR-U SN。也就是说,在场景2下,SN信息均可替换为“PDCP SN”,或者,SN信息均可替换为“NR-U SN”。
在上述方案中,第一网络节点向第二网络节点指示在传输成功的按序最大的SN之后传输的SN的信息,第二网络节点接收到该信息后可以较准确地确定传输失败的数据包,也就是说,第二网络节点可以较准确地确定重传的数据包。
相反,如果第一网络节点向第二网络节点仅指示第一数据包的信息,那么第二网络节点接收到信息后,确定第一数据包后面的数据包均传输失败,从而重传第一数据包后面的所有数据包。例如,如图9所示,第二网络节点接收到该指示信息后可以确定数据包102之后的所有数据包传输失败,即第二网络节点确定需要重传数据包104、数据包95、数据 包96、以及数据包97。造成了不必要的数据包重传,浪费资源。
应理解,在本申请实施例中,SN的信息可以是PDCP SN,也可以是NR-U SN,或者也可以是其它信息,任何属于SN信息的形式都落入本申请实施例的保护范围。
还应理解,上述场景1或场景2中,第一网络节点向第二网络节点发送第一指示信息和第二指示信息时,该第一指示信息和第二指示信息的形式有多种,本申请实施例对此不作限定。例如,以场景1为例,可以通过如表11和表12所示的形式表示。
表11
Figure PCTCN2020098132-appb-000001
表12
Figure PCTCN2020098132-appb-000002
Figure PCTCN2020098132-appb-000003
上述表11和表12可以是在现有协议的基础上进行的改进和调整。
其中,Number of successful delivered PDCP SN range(传输成功的SN范围的数量),即表示在传输成功的按序最大的SN之后SN范围的数量。Start of successfully delivered PDCP SN range(SN范围内第一个传输成功的PDCP SN),即表示在传输成功的按序最大的SN之后第一个传输成功的PDCP SN,如可以是每个SN范围内第一个传输成功的PDCP SN。End of successfully delivered PDCP SN range(SN范围内最后一个传输成功的PDCP SN),即表示在传输成功的按序最大的SN之后最后一个传输成功的PDCP SN,如可以是每个SN范围内最后一个传输成功的PDCP SN。
其中,表11和表12中的“保留不改变的部分”,表示对其他信息进行保留,其他信息如可以包括:数据无线承载所需缓存大小(Desired buffer size for the data radio bearer)和期望的数据速率(Desired Data Rate)等等,对此不作限定。
其中,range size可以表示SN范围内传输成功的数据包的数量,或者,也可以表示SN范围内传输失败的数据包的数量。
应理解,表11和表12仅是示例性说明,本申请实施例并未限定于此,与上述表11或表12相关的变形形式均落入本申请实施例的保护范围。例如,可以在表11或表12中添加,或者将Start of successfully delivered PDCP SN range替换为,上述场景1和场景2中的方案中提到的在传输成功的按序最大的SN之后传输的SN的信息,具体可参考场景1和场景2中的描述,此处不再赘述。
还应理解,上述结合表11和表12,以场景1为例进行了说明,应理解,在场景2(即重传场景)下,也类似,此处不再赘述。
还应理解,场景1和场景2也可能同时存在,示例性地,可以通过表13所述的形式指示。为区分,将场景1(即新传场景)下的第二指示信息记为新传的指示信息,将场景2(即重传场景)下的第二指示信息记为重传的指示信息。
表13
Figure PCTCN2020098132-appb-000004
其中,Number of successful delivered PDCP SN range(传输成功的SN范围的数量),即表示场景1下,在传输成功的按序最大的SN之后SN范围的数量。Start of successfully delivered PDCP SN range(SN范围内第一个传输成功的PDCP SN),即表示场景1下,在传输成功的按序最大的SN之后第一个传输成功的PDCP SN,如可以是每个SN范围内第一个传输成功的PDCP SN。End of successfully delivered PDCP SN range(SN范围内最后一个传输成功的PDCP SN),即表示场景1下,在传输成功的按序最大的SN之后最后一个传输成功的PDCP SN,如可以是每个SN范围内最后一个传输成功的PDCP SN。
其中,Number of successful retransmitted delivered PDCP SN range(重传成功的SN范围的数量),即表示场景2下,在重传成功的按序最大的SN之后SN范围的数量。Start of successfully retransmitted delivered PDCP SN range(SN范围内第一个重传成功的PDCP SN),即表示场景2下,在重传成功的按序最大的SN之后第一个重传成功的PDCP SN,如可以是每个SN范围内第一个重传成功的PDCP SN。End of successfully retransmitted delivered PDCP SN range(SN范围内最后一个重传成功的PDCP SN),即表示场景2下,在重传成功的按序最大的SN之后最后一个重传成功的PDCP SN,如可以是每个SN范围内最后一个重传成功的PDCP SN。
应理解,表13仅是示例性说明,本申请实施例并未限定于此。
可选地,在本申请中,第一网络节点为DU,第二网络节点为CU。或者,第一网络节点为基站,第二网络节点为基站。
也就是说,上述第一网络节点可替换为DU,第二网络节点可替换为CU。或者,上述第一网络节点和第二网络节点均替换为基站。
可选地,在本申请中,如上述任一场景下,第一网络节点还可以向第二网络节点发送第三指示信息,该第三指示信息用于指示:在传输成功的按序最大的SN之后是否包括传输成功的SN。该第三指示信息可用于场景1或者场景2,或者,该第三指示信息可以用于场景1和场景2同时存在的情形。
一种可能的实现方式,第三指示信息通过m1比特的字段来指示在传输成功的按序最大的SN之后是否包括传输成功的SN,其中,m1为大于1或等于1的整数。
例如,m1=1,即通过1比特的字段来指示在传输成功的按序最大的SN之后是否包括传输成功的SN。其中,0对应在传输成功的按序最大的SN之后包括传输成功的SN,1 对应在传输成功的按序最大的SN之后不包括传输成功的SN。可以理解,该1比特字段为“0”时,表示传输成功的按序最大的SN之后还有传输成功的数据;该1比特字段为“1”时,表示传输成功的按序最大的SN之后没有传输成功的数据,即均传输失败。或者,1对应在传输成功的按序最大的SN之后包括传输成功的SN,0对应在传输成功的按序最大的SN之后不包括传输成功的SN。应理解,具体如何指示,本申请实施例对此不作限定。
又一种可能的实现方式,第三指示信息指示在传输成功的按序最大的SN之后是否存在bitmap的指示。如通过m2比特的字段来指示在传输成功的按序最大的SN之后是否存在bitmap的指示,其中,m2为大于1或等于1的整数。
在指示在传输成功的按序最大的SN之后存在bitmap的指示的情况下,表示传输成功的按序最大的SN之后存在传输成功的数据,以及该数据的传输情况通过bitmap的方式指示。在指示在传输成功的按序最大的SN之后不存在bitmap的指示的情况下,没有通过bitmap的方式指示数据的传输情况。关于bitmap的指示方式,可以参考上文的描述,如方案4中提到的任意一种方式,此处不再赘述。
例如,m2=1,即通过1比特的字段来指示在传输成功的按序最大的SN之后是否存在bitmap的指示。其中,0对应在传输成功的按序最大的SN之后存在bitmap的指示,1对应在传输成功的按序最大的SN之后不存在bitmap的指示。可以理解,该1比特字段为“0”时,表示传输成功的按序最大的SN之后有传输成功的数据以及数据的传输情况通过bitmap的指示;该1比特字段为“1”时,表示传输成功的按序最大的SN之后不存在bitmap的指示。或者,1对应在传输成功的按序最大的SN之后存在bitmap的指示,0对应在传输成功的按序最大的SN之后不存在bitmap的指示。应理解,具体如何指示,本申请实施例对此不作限定。
又一种可能的实现方式,第三指示信息指示在传输成功的按序最大的SN之后是否存在SN范围的指示。如通过m3比特的字段来指示在传输成功的按序最大的SN之后是否存在SN范围的指示,其中,m3为大于1或等于1的整数。
在指示在传输成功的按序最大的SN之后存在SN范围的指示的情况下,表示传输成功的按序最大的SN之后存在传输成功的数据,以及该数据的传输情况通过SN范围的方式指示(如指示的是每个SN范围内的数据的SN的信息和/或SN范围数量)。在指示在传输成功的按序最大的SN之后不存在SN范围的指示的情况下,没有通过SN范围的形式指示数据的传输情况。关于SN范围,可以参考上文的描述,此处不再赘述。
例如,m3=1,即通过1比特的字段来指示在传输成功的按序最大的SN之后是否存在SN范围的指示。其中,0对应在传输成功的按序最大的SN之后存在SN范围的指示,1对应在传输成功的按序最大的SN之后不存在SN范围的指示。可以理解,该1比特字段为“0”时,表示传输成功的按序最大的SN之后有传输成功的数据以及数据的传输情况通过SN范围的方式指示;该1比特字段为“1”时,表示传输成功的按序最大的SN之后不存在SN范围的指示。或者,1对应在传输成功的按序最大的SN之后存在SN范围的指示,0对应在传输成功的按序最大的SN之后不存在SN范围的指示。应理解,具体如何指示,本申请实施例对此不作限定。
又一种可能的实现方式,第三指示信息指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。或者说,第三指示信息可以指示第二 指示信息的形式,即第三指示信息可以指示第二指示信息是通过SN范围的方式指示,还是通过bitmap的方式指示。
示例性地,可以通过m4比特的字段来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示,其中,m4为大于1或等于1的整数。
例如,m4=1,即通过1比特的字段来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。其中,0对应在传输成功的按序最大的SN之后通过SN范围的方式指示,1对应在传输成功的按序最大的SN之后通过bitmap的方式指示。或者,1对应在传输成功的按序最大的SN之后通过SN范围的指示,0对应在传输成功的按序最大的SN之后通过bitmap的方式指示。应理解,具体如何指示,本申请实施例对此不作限定。
又如,m4=2,即通过2比特的字段来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。其中,01对应在传输成功的按序最大的SN之后通过SN范围的方式指示,10对应在传输成功的按序最大的SN之后通过bitmap的方式指示。或者,10对应在传输成功的按序最大的SN之后通过SN范围的指示,01对应在传输成功的按序最大的SN之后通过bitmap的方式指示。应理解,具体如何指示,本申请实施例对此不作限定。可选地,00可以对应在传输成功的按序最大的SN之后既没有SN范围的方式指示,也没有bitmap的方式指示,换句话说,00对应在传输成功的按序最大的SN之后没有传输成功的数据。可选地,11可以对应在传输成功的按序最大的SN之后既包括SN范围的方式指示,也包括bitmap的方式指示,换句话说,11对应在传输成功的按序最大的SN之后包括传输成功的数据,其该数据通过SN范围的方式和bitmap的方式指示。
如可以通过如表14所示的形式指示。通过表14可以看出,第三指示信息指示在传输成功的按序最大的SN之后是通过bitmap的方式指示的还是SN范围的方式指示的。
其中,L为大于1或等于1的整数。可选地,还可以指示该L是一个字节还是三个字节或者其它数量的字节。
其中,第三指示信息,用于指示在传输成功的按序最大的SN之后是否包括传输成功的SN,即可以表示第二指示信息是否存在。
表14
Figure PCTCN2020098132-appb-000005
Figure PCTCN2020098132-appb-000006
应理解,上述表14仅是示例性说明,本申请实施例并未限定于此,与表14相关的变形形式均落入本申请实施例的保护范围。
示例性地,还可以通过m2比特的字段和m3比特的字段存在与否,指示传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
示例性地,可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
示例性地,可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示在对于每个无线承载(Radio Bearer),传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
换句话说,该第三指示信息可以承载于第一网络节点发送给第二网络节点的接口控制信令中,或者说,该第三指示信息可以携带于第一网络节点与第二网络节点之间的接口控制信令中。
例如,以CU、DU分割场景为例。该第三指示信息可携带在CU和DU之间的任一消息中,如任一F1AP消息中,可以为非UE相关的F1AP消息,也可以为UE相关的F1AP消息,F1AP消息的具体形式不作限定。例如,该第三指示信息可携带在以下任一消息中:F1建立请求(F1 SETUP REQUEST)消息、DU配置调整(如GNB-DU CONFIGURATION UPDATE)消息、CU配置调整确认(如GNB-CU CONFIGURATION UPDATE ACKNOWLEDGE)消息、UE上下文建立请求(UE CONTEXT SETUP REQUEST)消息、UE上下文修改响应(UE CONTEXT MODIFICATION RESPONSE)消息、或者其他F1AP消息等等。
又如,以双链接场景为例。该第三指示信息可携带在第一网络节点与第二网络节点之间的任一XnAP消息中,可以为非UE相关的XnAP消息,也可以为UE相关的XnAP消息,XnAP消息的具体形式不作限定。例如,该第三指示信息可携带在SN节点添加请求(S-NODE ADDITION REQUEST)消息或者其他XnAP消息中。
应理解,该实现方式也可以用于第一网络节点向第二网络节点发送用于指示:第一网络节点向第二网络节点发送数据包的SN信息(如表11中的End of successfully delivered PDCP SN range)还是发送SN范围内的数量包的数量(如表12中的range size)的指示信息。
示例性地,可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示在对于每个无线承载(Radio Bearer),表14中Number of NR PDCP sequence number bits report所占字节个数。即当第二指示信息通过比特位图指示时,通过接口消息,用于指示所述比 特位图的比特数的指示信息所占字节个数。
示例性地,可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示表14中Number of NR PDCP sequence number bits report所占字节个数。即当第二指示信息通过比特位图指示时,通过接口消息,用于指示所述比特位图的比特数的指示信息所占字节个数。
示例性地,可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示在对于每个无线承载(Radio Bearer),表14中Number of successful delivered PDCP SN range所占字节个数。即指示在成功传输的按序最大的SN之后成功传输的SN范围的数量所占字节个数。
示例性地,可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示表14中Number of successful delivered PDCP SN range所占字节个数。即指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量所占字节个数。
如表11和表12所示,第一网络节点可以向第二网络节点发送End of successfully delivered PDCP SN range,也可以向第二网络节点发送range size。第一网络节点可以向第二网络节点发送第四指示信息,该第四指示信息可以用于指示:第一网络节点向第二网络节点发送数据包的SN信息(如End of successfully delivered PDCP SN range),或者,第一网络节点向第二网络节点发送SN范围内的数量包的数量(range size)。第二网络节点接收到第四指示信息后,可以确定第二指示信息指示的信息包括数据包的SN信息,还是包括SN范围内的数据包的数量。
该第四指示信息可以通过该实现方式下的任一示例性方案实现。
例如,该第四指示信息可以通过m4比特的字段来指示发送的是End of successfully delivered PDCP SN range,还是range size。
又如,该第四指示信息可以通过接口控制信令,由第一网络节点发送给第二网络节点,来指示发送的是End of successfully delivered PDCP SN range,还是range size。如表15所示。
示例性地,可以通过接口控制信令,由第二网络节点发送给第一网络节点,来指示在传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
表15
Number of successful delivered PDCP SN range 0或L
Start of successfully delivered PDCP SN range 0或4
End of successfully delivered PDCP SN range(或者range size) 0或4
示例性地,可以通过接口控制信令,由第二网络节点发送给第一网络节点,来指示在对于每个无线承载(Radio Bearer),传输成功的按序最大的SN之后是通过SN范围的方式指示,还是通过bitmap的方式指示。
换句话说,该第三指示信息可以承载于第二网络节点发送给第一网络节点的接口控制信令中,或者说,该第三指示信息可以携带于第二网络节点与第一网络节点之间的接口控制信令中。
应理解,上述多种可能的实现方式仅是示例性说明,本申请实施例并未限定于此,任 何可以指示在传输成功的按序最大的SN之后是否包括成功传输的SN的方式都落入本申请实施例的保护范围。
基于上述描述,本申请提供的方案,通过第一网络节点向第二网络节点上报在传输成功的按序最大的SN之后传输的SN的信息,可以有效地指示数据的传输情况。基于该数据的传输情况,第二网络节点可以更准确地确定需要重传的数据。从而可以优化流量控制机制,减少冗余无效数据的传输,提高资源利用率。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该通信装置1000可以包括通信单元1010和处理单元1020。
在一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中第一网络节点执行的步骤或者流程,例如,可以为分布式单元或gNB,或者配置于分布式单元或gNB中的芯片或电路。通信单元1010用于执行上文方法实施例中第一网络节点侧的收发相关操作,处理单元1020用于执行上文方法实施例中第一网络节点的处理相关操作。
一种可能的实现方式,通信单元1010用于:向终端设备发送数据;通信单元1010还用于:向第二网络节点发送第一指示信息和第二指示信息,其中,第一指示信息用于指示:数据中成功传输的按序最大的序列号SN的信息,第二指示信息用于指示:数据中在成功传输的按序最大的SN之后传输的SN的信息。
可选地,处理单元1020用于:生成第一指示信息和第二指示信息。
可选地,数据中在成功传输的按序最大的SN之后传输的SN的信息,包括以下一项 或多项:数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;或,数据中在成功传输的按序最大的SN之后最后一个成功传输的SN的信息;或,数据中在成功传输的按序最大的SN之后所有成功传输的SN的信息;或,数据中在成功传输的按序最大的SN之后所有失败传输的SN的信息;或,数据中在成功传输的按序最大的SN之后成功传输的SN的数量;或,数据中在成功传输的按序最大的SN之后失败传输的SN的数量;或,数据中在成功传输的按序最大的SN之后成功传输的SN范围的数量。
可选地,第二指示信息通过比特位图指示数据中在成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
可选地,第二指示信息还包括用于指示比特位图的比特数的指示信息。
可选地,通信单元1010还用于:向第二网络节点发送第三指示信息,第三指示信息用于指示:数据中在成功传输的按序最大的SN之后是否包括成功传输的SN。
可选地,第一网络节点为分布式单元,第二网络节点为集中式单元;或,第一网络节点基站,第二网络节点为基站。
具体地,该通信装置1000可实现对应于根据本申请实施例的方法500中的第一网络节点执行的步骤或者流程,该通信装置1000可以包括用于执行方法500中的第一网络节点执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现方法500的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的通信单元1010也可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中第二网络节点执行的步骤或者流程,例如,可以为集中式单元或gNB,或者配置于集中式单元或gNB中的芯片或电路。通信单元1010用于执行上文方法实施例中第二网络节点侧的收发相关操作,处理单元1020用于执行上文方法实施例中第二网络节点的处理相关操作。
一种可能的实现方式,通信单元1010用于:向第一网络节点发送数据;通信单元1010还用于:接收第一网络节点发送的第一指示信息和第二指示信息,其中,第一指示信息用于指示:数据中成功传输的按序最大的序列号SN的信息,第二指示信息用于指示:数据中在成功传输的按序最大的SN之后传输的SN的信息。
可选地,处理单元1020用于:确定数据中成功传输的按序最大的序列号SN的信息,以及数据中在成功传输的按序最大的SN之后传输的SN的信息。
可选地,数据中在成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;或,数据中在成功传输的按序最大的SN之后最后一个成功传输的SN的信息;或,数据中在成功传输的按序最大的SN之后所有成功传输的SN的信息;或,数据中在成功传输的按序最大的SN之后所有失败传输的SN的信息;或,数据中在成功传输的按序最大的SN之后成功传输的SN的数量;或,数据中在成功传输的按序最大的SN之后失败传输的SN的数量;或,数据中在成功传输的按序最大的SN之后成功传输的SN范围的数量。
可选地,第二指示信息通过比特位图指示数据中在成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
可选地,第二指示信息还包括用于指示比特位图的比特数的指示信息。
可选地,通信单元1010还用于:向第二网络节点发送第三指示信息,第三指示信息用于指示:数据中在成功传输的按序最大的SN之后是否包括成功传输的SN。
可选地,第一网络节点为分布式单元,第二网络节点为集中式单元;或,第一网络节点基站,第二网络节点为基站。
具体地,该通信装置1000可实现对应于根据本申请实施例的方法500中的第二网络节点执行的步骤或者流程,该通信装置1000可以包括用于执行方法500中的第二网络节点执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现方法500的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的通信单元1010也可以为输入/输出接口。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
图11是本申请实施例的装置1100的结构示意图。该装置可以实现以上实施例中由第一网络节点所执行的各个步骤的单元。例如,可以执行方法500中由第一网络节点所执行的方法。该装置1100包括:
存储器1110,用于存储程序;
通信接口1120,用于和其他设备进行通信;
处理器1130,用于执行存储器1110中的程序,当所述程序被执行时,所述处理器1130用于通过所述通信接口1120向终端设备发送数据;向第二网络节点发送第一指示信息和第二指示信息,其中,第一指示信息用于指示:数据中成功传输的按序最大的序列号SN的信息,第二指示信息用于指示:数据中在成功传输的按序最大的SN之后传输的SN的信息。
图12是本申请实施例的装置1200的结构示意图。该装置可以实现以上实施例中由第二网络节点所执行的各个步骤的单元。例如,可以执行方法500中由第二网络节点所执行的方法。该装置1200包括:
存储器1210,用于存储程序;
通信接口1220,用于和其他设备进行通信;
处理器1230,用于执行存储器1210中的程序,当所述程序被执行时,所述处理器1230用于通过所述通信接口1220向第一网络节点发送数据;接收第一网络节点发送的第一指示信息和第二指示信息,其中,第一指示信息用于指示:数据中成功传输的按序最大的序列号SN的信息,第二指示信息用于指示:数据中在成功传输的按序最大的SN之后传输的SN的信息。
可选地,上述通信接口(1120,1220)可以是接收器或者发送器,或者也可以是收发器。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法500所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法500所示实施例中任意一个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另 一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一网络节点向终端设备发送数据;
    所述第一网络节点向第二网络节点发送第一指示信息和第二指示信息,其中,
    所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,
    所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:
    所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;
    所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向所述第二网络节点发送第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
  6. 一种通信方法,其特征在于,包括:
    第二网络节点向第一网络节点发送数据;
    所述第二网络节点接收所述第一网络节点发送的第一指示信息和第二指示信息,其中,
    所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,
    所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
  7. 根据权利要求6所述的方法,其特征在于,
    所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:
    所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;
    所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点接收所述第一网络节点发送的第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,
    所述第一网络节点为分布式单元,所述第二网络节点为集中式单元;或
    所述第一网络节点为基站,所述第二网络节点为基站。
  12. 一种通信装置,其特征在于,包括:收发器,
    所述收发器用于:向终端设备发送数据;
    所述收发器还用于:向第二网络节点发送第一指示信息和第二指示信息,其中,
    所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,
    所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括处理器,
    所述处理器用于:生成所述第一指示信息和所述第二指示信息。
  14. 根据权利要求12或13所述的装置,其特征在于,
    所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:
    所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;
    所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
  15. 根据权利要求12至14中任一项所述的装置,其特征在于,
    所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
  16. 根据权利要求15所述的装置,其特征在于,
    所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
  17. 根据权利要求12至16中任一项所述的装置,其特征在于,
    所述收发器还用于:向所述第二网络节点发送第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
  18. 根据权利要求12至17中任一项所述的装置,其特征在于,
    所述装置为分布式单元,所述第二网络节点为集中式单元;或
    所述装置为基站,所述第二网络节点为基站。
  19. 一种通信装置,其特征在于,包括:收发器,
    所述收发器用于:向第一网络节点发送数据;
    所述收发器还用于:接收所述第一网络节点发送的第一指示信息和第二指示信息,其中,
    所述第一指示信息用于指示:所述数据中成功传输的按序最大的序列号SN的信息,
    所述第二指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括处理器,
    所述处理器用于:确定所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,以及确定所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息。
  21. 根据权利要求19或20所述的装置,其特征在于,
    所述数据中在所述成功传输的按序最大的SN之后传输的SN的信息,包括以下一项或多项:
    所述数据中在所述成功传输的按序最大的SN之后第一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后最后一个成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有成功传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后所有失败传输的SN的信息;
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN的数量;
    所述数据中在所述成功传输的按序最大的SN之后失败传输的SN的数量;或,
    所述数据中在所述成功传输的按序最大的SN之后成功传输的SN范围的数量。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,
    所述第二指示信息通过比特位图指示所述数据中在所述成功传输的按序最大的SN之后成功传输的SN信息和/或失败传输的SN信息。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第二指示信息还包括用于指示所述比特位图的比特数的指示信息。
  24. 根据权利要求19至23中任一项所述的装置,其特征在于,
    所述收发器还用于:接收所述第一网络节点发送的第三指示信息,所述第三指示信息用于指示:所述数据中在所述成功传输的按序最大的SN之后是否包括成功传输的SN。
  25. 根据权利要求19至24中任一项所述的装置,其特征在于,
    所述第一网络节点为分布式单元,所述装置为集中式单元;或
    所述第一网络节点基站,所述装置为基站。
  26. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至11中任一项所述的方法。
  27. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至11中任一项所述的方法。
  28. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至11中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至11中任一项所述的方法。
  30. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2020/098132 2019-07-04 2020-06-24 指示数据传输情况的方法和装置 WO2021000783A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112022000028A BR112022000028A2 (pt) 2019-07-04 2020-06-24 Método de indicação de status de entrega de dados e aparelho
EP20835626.1A EP3996305A4 (en) 2019-07-04 2020-06-24 METHOD AND APPARATUS FOR INDICATING DATA TRANSMISSION SITUATIONS
US17/565,694 US11817957B2 (en) 2019-07-04 2021-12-30 Data delivery status indicating method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910599270.1 2019-07-04
CN201910599270.1A CN112187414B (zh) 2019-07-04 2019-07-04 指示数据传输情况的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/565,694 Continuation US11817957B2 (en) 2019-07-04 2021-12-30 Data delivery status indicating method and apparatus

Publications (1)

Publication Number Publication Date
WO2021000783A1 true WO2021000783A1 (zh) 2021-01-07

Family

ID=73915914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098132 WO2021000783A1 (zh) 2019-07-04 2020-06-24 指示数据传输情况的方法和装置

Country Status (5)

Country Link
US (1) US11817957B2 (zh)
EP (1) EP3996305A4 (zh)
CN (1) CN112187414B (zh)
BR (1) BR112022000028A2 (zh)
WO (1) WO2021000783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155977A1 (zh) * 2021-01-25 2022-07-28 华为技术有限公司 通信方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024904A1 (ja) * 2019-08-08 2021-02-11 日本電気株式会社 第1の基地局、第2の基地局、方法、プログラム、及び記録媒体
JP2024503709A (ja) * 2021-01-15 2024-01-26 ホアウェイ・テクノロジーズ・カンパニー・リミテッド データ伝送方法及び装置
EP4297306A4 (en) * 2021-03-15 2024-04-03 Huawei Technologies Co., Ltd. TRANSMISSION INDICATION METHOD AND DEVICE, AND SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259362A (zh) * 2016-12-29 2018-07-06 中兴通讯股份有限公司 流控方法、装置、cu及du
WO2018237001A1 (en) * 2017-06-20 2018-12-27 Intel IP Corporation DEVICES AND METHODS FOR TRIGGERING FLOW CONTROL AND INFORMATION RETURN
WO2019064202A1 (en) * 2017-09-27 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) METHOD FOR MANAGING DOWNLINK DATA DISTRIBUTION STATUS
CN109803315A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732236B2 (en) * 2008-12-05 2014-05-20 Social Communications Company Managing network communications between network nodes and stream transport protocol
EP2830352A1 (en) * 2013-07-24 2015-01-28 Panasonic Intellectual Property Corporation of America Efficient discard mechanism in small cell deployment
WO2016070919A1 (en) * 2014-11-06 2016-05-12 Nokia Solutions And Networks Oy Improving communication efficiency
WO2017151932A1 (en) * 2016-03-02 2017-09-08 Marvell Semiconductor, Inc. Multiple traffic class data aggregation in a wireless local area network
WO2017160197A1 (en) * 2016-03-17 2017-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Managing a sequence number range for radio link control entities in a radio access network during an on-going connection
CN108617029B (zh) * 2016-12-30 2023-05-12 夏普株式会社 无线承载配置方法、及相应的ue和基站
CN109803453B (zh) * 2017-11-17 2023-07-07 华为技术有限公司 一种通信方法,通信设备及其通信***
KR20210083298A (ko) * 2018-11-02 2021-07-06 지티이 코포레이션 데이터 송신 및 측정 기술들
US10849160B2 (en) * 2019-02-26 2020-11-24 Nokia Technologies Oy Reinstating poll retransmission timer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259362A (zh) * 2016-12-29 2018-07-06 中兴通讯股份有限公司 流控方法、装置、cu及du
WO2018237001A1 (en) * 2017-06-20 2018-12-27 Intel IP Corporation DEVICES AND METHODS FOR TRIGGERING FLOW CONTROL AND INFORMATION RETURN
WO2019064202A1 (en) * 2017-09-27 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) METHOD FOR MANAGING DOWNLINK DATA DISTRIBUTION STATUS
CN109803315A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; NR user plane protocol (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.425, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V15.2.0, 22 June 2018 (2018-06-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 21, XP051473517 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155977A1 (zh) * 2021-01-25 2022-07-28 华为技术有限公司 通信方法和装置

Also Published As

Publication number Publication date
EP3996305A1 (en) 2022-05-11
US20220123868A1 (en) 2022-04-21
US11817957B2 (en) 2023-11-14
CN112187414B (zh) 2022-05-24
BR112022000028A2 (pt) 2022-02-22
EP3996305A4 (en) 2022-08-24
CN112187414A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2021000783A1 (zh) 指示数据传输情况的方法和装置
EP3657713B1 (en) Communication method and device
TWI530144B (zh) 處理通訊運作的方法及其通訊裝置
WO2019137506A1 (zh) 一种信息传输方法和装置
WO2020244645A1 (zh) 一种通信方法及装置
US11778689B2 (en) Method and device for processing data
WO2019158056A1 (zh) 无线通信方法、网络设备、终端设备及可读存储介质
WO2019137501A1 (zh) 一种通信方法及装置
WO2014166053A1 (zh) 一种通讯方法和终端
JP2020511823A (ja) フィードバック情報伝送方法、端末装置及びネットワーク機器
TW202027478A (zh) 一種資料包處理方法、實體及儲存媒介
WO2020010511A1 (zh) 数据传输方法及基站
EP3920592B1 (en) Switching method, apparatus and system in wireless communication system
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
WO2019085920A1 (zh) 信息传输方法和通信设备
WO2020155124A1 (zh) 复制数据的传输方法、终端设备及接入网设备
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2018218996A1 (zh) 数据包传输方法及设备
WO2019228241A1 (zh) 信号处理的方法和装置
WO2021051284A1 (zh) 一种上行重传处理方法、电子设备及存储介质
EP3723409A1 (en) Wireless communication method and apparatus
CN114584263B (zh) 重发超限及双无条件下rlc确认模式增强方法及装置
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备
WO2023273754A1 (zh) 一种混合自动重传请求反馈的方法和装置
WO2017117800A1 (zh) 数据发送和接收装置、方法以及通信***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000028

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020835626

Country of ref document: EP

Effective date: 20220204

ENP Entry into the national phase

Ref document number: 112022000028

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220103