WO2021000665A1 - 提高植物维c的调节液、肥料和土壤调理剂及制备和应用 - Google Patents

提高植物维c的调节液、肥料和土壤调理剂及制备和应用 Download PDF

Info

Publication number
WO2021000665A1
WO2021000665A1 PCT/CN2020/092068 CN2020092068W WO2021000665A1 WO 2021000665 A1 WO2021000665 A1 WO 2021000665A1 CN 2020092068 W CN2020092068 W CN 2020092068W WO 2021000665 A1 WO2021000665 A1 WO 2021000665A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilizer
soil
solution
content
soil conditioner
Prior art date
Application number
PCT/CN2020/092068
Other languages
English (en)
French (fr)
Inventor
徐慧
杨伟超
孙浩
高明夫
孔双
阮锡城
刘阳
Original Assignee
中国科学院沈阳应用生态研究所
沈阳颐康环境生物科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910588061.7A external-priority patent/CN112142510A/zh
Application filed by 中国科学院沈阳应用生态研究所, 沈阳颐康环境生物科技开发有限公司 filed Critical 中国科学院沈阳应用生态研究所
Priority to US17/597,330 priority Critical patent/US20220315504A1/en
Publication of WO2021000665A1 publication Critical patent/WO2021000665A1/zh
Priority to AU2021104231A priority patent/AU2021104231A4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B1/00Superphosphates, i.e. fertilisers produced by reacting rock or bone phosphates with sulfuric or phosphoric acid in such amounts and concentrations as to yield solid products directly
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/006Waste from chemical processing of material, e.g. diestillation, roasting, cooking
    • C05F5/008Waste from biochemical processing of material, e.g. fermentation, breweries
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • C05G5/23Solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/32Prepolymers; Macromolecular compounds of natural origin, e.g. cellulosic materials
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2101/00Agricultural use

Definitions

  • the invention relates to the technical field of fertilizer and soil conditioner production, in particular to a conditioning liquid, fertilizer and soil conditioner for increasing the content of plant vitamin C, and a preparation method and application thereof.
  • the present invention also relates to a resource utilization technology of waste liquid from the industrial production of vitamin C.
  • Vc vitamin C
  • a bulk waste-the mother liquor of waste colognic acid is discharged. It is estimated that 0.45 tons of waste colognic acid mother liquor is discharged for every 1 ton of Vc produced, and the annual discharge in my country is about 70 to 80,000 tons.
  • the waste colonic acid mother liquor is the remaining residue after the fermentation mash in the Vc production process is separated by ultrafiltration, ion exchange, three-effect evaporation, concentration, and colonic acid crystallization.
  • the main components in the mother liquor of waste gulonic acid include 2-keto-L-gulonic acid (15-35%), formic acid (about 1-2%), oxalic acid (about 2-3%), and sorbose (1-2%) , Protein and nucleic acid (3 ⁇ 5%), etc., the organic matter content is as high as 40 ⁇ 60%.
  • the mother liquor of waste gulonic acid is brown-black and viscous, with a specific gravity of 1.25 to 1.40, a COD value of 0.5 to 1 ⁇ 10 6 mg/L, and a pH of ⁇ 0.5.
  • the waste colognic acid mother liquor is difficult to enter the sewage treatment system for anaerobic and aerobic treatment due to its high COD; it was once used to make oxalic acid, which caused more serious environmental pollution.
  • the main component in the mother liquor of waste colonic acid is 2-keto-L-gulonic acid, and its content is as high as 15-35%.
  • 2-keto-L-gulonic acid is the precursor material for the synthesis of Vc in the industrial production of Vc. It is finally converted into Vc after a multi-step chemical catalytic reaction, but it cannot spontaneously form Vc at room temperature and in the absence of catalytic reagents. .
  • Plants are one of the main forms of life. Common trees, shrubs, vines, grasses, ferns, green algae, and lichens are all plants. Taxonomically speaking, plants can be divided into seed plants, bryophytes, ferns and gymnosperms.
  • Vc is ubiquitous in plants. Vc in plants plays a very important role in plant growth and metabolism, especially in plant resistance to environmental stress. The increase of Vc content in plants can improve the quality and economic value of plants (such as crops, medicinal plants, floral plants, etc.), and is an important evaluation index of plant product quality. However, there is no effective, simple, and inexpensive technology and method for greatly increasing the Vc content of plants and their products.
  • the purpose of the present invention is to provide a regulating solution, fertilizer and soil conditioner for increasing the vitamin C content of plants, using waste gulonic acid mother liquor or/and 2-keto-L-gulonic acid as main raw materials, and preparation methods and applications thereof.
  • a conditioning liquid, fertilizer and soil conditioner for increasing the content of vitamin C in plants The pH value of the mother liquor of waste gulonic acid or/and 2-keto-L-gulonic acid solution is adjusted by alkaline solution, which is the adjusting liquid. Among them, adjusting the pH of the adjusting solution to 3.0 to 9.0 is the fertilizer adjusting solution; adjusting the pH of the adjusting solution to 2.0 to 10.0 is the soil conditioning agent adjusting solution.
  • the present invention divides the conditioning fluid into two categories, namely: fertilizer conditioning fluid and soil conditioning agent conditioning fluid.
  • the alkaline solution is a solution with a concentration of 10-50 wt% prepared by an alkaline reagent and water.
  • the alkaline reagent is one or a mixture of sodium hydroxide, potassium hydroxide, and liquid ammonia (but not limited to the above alkaline reagent).
  • the 2-keto-L-gulonic acid used in the above preparation of fertilizers and soil conditioners is chemically synthesized or biosynthesized (biosynthesis can be 2-keto-L-gulonic acid obtained by microbial fermentation in the process of vitamin C production using sorbose as a substrate. Keto-L-gulonic acid) obtained.
  • Said waste gulonic acid mother liquor or/and 2-keto-L-gulonic acid solution wherein the 2-keto-L-gulonic acid solution is chemical synthesis or biosynthesis (biosynthesis can be used in the production process of vitamin C L-sorbose as a substrate is obtained by microbial fermentation and conversion to obtain 2-keto-L-gulonic acid);
  • the waste gulonic acid mother liquor is a vitamin C biological fermentation broth separated by ultrafiltration, ion exchange, three-effect evaporation, and concentration
  • the remaining residual liquid after the process of gulonic acid crystallization but not limited to the above residual liquid.
  • the 2-keto-L-gulonic acid-containing solution can be the remaining residue in the process of producing gulonic acid crystals (through ultrafiltration separation, ion exchange, concentration and gulonic acid crystallization processes) from the fermentation broth of vitamin C, that is, waste
  • the gulonic acid mother liquor can also be a 2-keto-L-gulonic acid solution prepared directly with 2-keto-L-gulonic acid.
  • the waste colonic acid mother liquor comes from the vitamin C production process, and is the remaining residue after the vitamin C biological fermentation broth is separated by ultrafiltration, ion exchange, three-effect evaporation, concentration, and colonic acid crystallization.
  • the main components in the mother liquor of gulonic acid are 2-keto-L-gulonic acid (15-35%), protein and nucleic acid (3-5%).
  • the organic matter content of gulonic acid mother liquor is 40-60%, which contains small molecular organic acids, proteins, nucleic acids, etc.
  • the mother liquor of gulonic acid is brown-black and viscous, with a specific gravity of 1.20 ⁇ 1.40, a COD value of 1 ⁇ 10 6 mg/L, and a pH of ⁇ 0.5.
  • the pH value of the fertilizer adjusting liquid is adjusted to 5.5-7.5; the pH value of the soil conditioner adjusting liquid is adjusted to 3.5-8.5.
  • a preparation method of a conditioning solution, fertilizer and soil conditioner for increasing the content of plant vitamin C The pH value of the mother liquor of waste gulonic acid or/and 2-keto-L-gulonic acid solution is adjusted by alkaline solution, which is the adjusting solution .
  • alkaline solution which is the adjusting solution .
  • adjusting the pH of the adjusting solution to 3.0 to 9.0 is the fertilizer adjusting solution; adjusting the pH of the adjusting solution to 2.0 to 10.0 is the soil conditioning agent adjusting solution.
  • the gulonic acid mother liquor or/and 2-keto-L-gulonic acid react with alkaline reagents to adjust the pH value of the system; then the reaction system is placed in a stirred, jacketed water bath reactor In, the reaction time is 10 to 120 minutes at 0-60°C to obtain the conditioning solution;
  • the application of the soil conditioning liquid in preparing a soil conditioner further, the application of the soil conditioning agent in adjusting the soil environment and increasing the vitamin C content and yield of plants.
  • the pH value of the fertilizer prepared with the fertilizer adjusting solution is adjusted to 5.5-7.5; the pH value of the soil conditioner prepared with the soil conditioning agent adjusting solution is adjusted to 2.0 to 10.0.
  • the fertilizer conditioning solution can be applied alone or mixed with one or more of chemical fertilizers, organic fertilizers, biological fertilizers, fertilizer raw materials, and fertilizer auxiliary materials.
  • fertilizer adjusting liquid When the fertilizer adjusting liquid is applied alone or mixed with one or more of chemical fertilizers, organic fertilizers, biological fertilizers, chemical fertilizer raw materials, and fertilizer auxiliary materials, it can be applied as base fertilizer, top dressing, water-soluble fertilizer or foliar fertilizer.
  • the fertilizer adjusting liquid and the base fertilizer are mixed at a ratio of 1:0.1-50 (mass ratio); the adjusting liquid and top-dressing fertilizer are mixed at a ratio of 1:0.1-50 (mass ratio); or the adjusting liquid and foliar fertilizer are mixed at a ratio of 1:0.1-50 (Mass ratio) Spray after mixing or spray separately.
  • the fertilizer conditioning liquid is mixed with chemical fertilizers and (biological) organic fertilizers in proportion, and the mixing ratio is 1:0-50:0-50 (mass ratio) as compound fertilizer.
  • the fertilizer conditioning liquid is mixed with fertilizer raw materials and fertilizer auxiliary materials in proportion, and the mixing ratio is 1:0-50:0-50 (mass ratio) as a compound fertilizer.
  • Plants are one of the main forms of life. Common trees, shrubs, vines, grasses, ferns, green algae, and lichens are all plants. Taxonomically speaking, plants can be divided into seed plants, bryophytes, ferns and gymnosperms.
  • the plants refer to the plants that are cultivated in agriculture/forestry and are wild in nature, including food crops (rice, corn, beans, potatoes, barley, broad beans, wheat, etc.), oil crops (oil seeds, vines, etc.) Green, mustard, peanut, flax, hemp, sunflower, etc.), vegetable crops (radish, cabbage, celery, leeks, garlic, onions, carrots, cabbage, lotus, Jerusalem artichoke, concanavali, coriander, lettuce, yellow flower, pepper, etc.) Cucumbers, tomatoes, coriander, etc.), fruits (pears, green plums, apples, peaches, apricots, walnuts, plums, cherries, strawberries, sand fruit, red dates), forage crops (corn, green manure, milk vetch, etc.), medicinal crops (Ginseng, angelica, honeysuckle, mint, mugwort, ginkgo, etc.), ornamental plants (rose, rose, etc.), etc.
  • food crops rice, corn, beans, potatoes, barley, broad beans
  • the finished chemical fertilizers, organic fertilizers and biological fertilizers include commercially available organic fertilizers and inorganic fertilizers.
  • Organic fertilizer includes farmyard manure, commercial organic fertilizer, bio-organic fertilizer, organic-inorganic compound fertilizer, various amino acid, protein, humic acid fertilizer, etc.
  • Inorganic fertilizers include nitrogen fertilizer (urea, ammonium bicarbonate, ammonium chloride, ammonium sulfate, ammonium nitrate, etc.), phosphate fertilizer (superphosphate, calcium magnesium phosphate, heavy calcium, etc.), potash fertilizer (potassium chloride, potassium sulfate, etc.), compound fertilizer (Monoammonium phosphate, diammonium phosphate, potassium dihydrogen phosphate, potassium nitrate, various nitrogen, phosphorus and potassium ternary or binary compound fertilizers, water-soluble fertilizers, etc.), medium element fertilizers (potassium magnesium sulfate, potassium magnesium chloride) And trace element fertilizers.
  • nitrogen fertilizer urea, ammonium bicarbonate, ammonium chloride, ammonium sulfate, ammonium nitrate, etc.
  • phosphate fertilizer superphosphate, calcium magnesium phosphate, heavy calcium, etc.
  • potash fertilizer potassium chloride, potassium s
  • the said inorganic fertilizer raw materials include large, medium and trace element fertilizer raw materials.
  • the large, medium and trace element fertilizer raw materials are mainly urea, ammonium chloride, ammonium nitrate, ammonium bicarbonate, calcium magnesium phosphate, superphosphate, ammonium phosphate, diammonium phosphate, phosphoric acid, potassium chloride, potassium nitrate, Phosphogypsum, ammonium sulfate, general calcium, heavy calcium, magnesium sulfate, boric acid, borax, sodium decaborate, manganous sulfate monohydrate, manganese monoxide, manganous chloride tetrahydrate, manganous carbonate, manganese dioxide, sulfurous acid Iron, zinc sulfate, zinc chloride, zinc carbonate, zinc phosphate, ammonium molybdate tetrahydrate, ammonium molybdate dihydrate, molybdenum trioxide, copper sulfate pentahydrate, copper carbonate,
  • the auxiliary materials are one or more composites of amino acids, fertilizer synergists, biological agents, humic acid, and organic raw materials (such as grass charcoal soil, livestock and poultry manure, cassava residue, edible fungus waste residue, cassava Residue, filter mud from sugar factory, etc.).
  • the soil conditioner adjusting solution is mixed with plant fibers in a ratio of 1:0 to 0.8 (mass ratio), and the mixed material is dried at a low temperature of 30 to 60° C. to obtain the soil conditioner.
  • the plant fiber is one or more of crop straw, rice husk, bran, sawdust, and bagasse, which is crushed to 20-100 mesh, and is ready for use.
  • the soil conditioner can be applied alone or mixed with one or more of other soil conditioners, chemical fertilizers, organic fertilizers, biological fertilizer products, and soil conditioner raw materials as a composite conditioner.
  • the soil conditioner is a liquid or solid preparation.
  • the soil conditioner can be applied alone or mixed with one or more of the products or raw materials of other soil conditioners, chemical fertilizers, (biological) organic fertilizers, and applied as a compound conditioner.
  • the plants/crops refer to various agricultural/non-agricultural plants, including food crops (rice, corn, beans, potatoes, highland barley, broad beans, wheat, etc.), oil crops (oilseeds, vines, mustard, etc.) Peanuts, flax, hemp, sunflower, etc.), vegetable crops (radish, cabbage, celery, leeks, garlic, onions, carrots, squash, lotus, Jerusalem artichoke, concanavali, coriander, lettuce, yellow flower, pepper, cucumber, tomato, coriander Etc.), fruits (pears, green plums, apples, peaches, apricots, walnuts, plums, cherries, strawberries, sand fruit, red dates), forage crops (corn, green manure, milk vetch, etc.), medicinal crops (ginseng, angelica, etc.) Honeysuckle, mint, mugwort, ginkgo, etc.), ornamental plants (rose, rose, etc.), etc.
  • food crops rice, corn, beans, potatoes, highland barley, broad beans
  • the soil conditioner can be applied to various obstacle soils, including desertified soil, saline-alkali soil, acid soil, structural obstacle soil and the like.
  • the finished chemical fertilizers, organic fertilizers and biological fertilizers include commercially available organic fertilizers and inorganic fertilizers.
  • Organic fertilizer includes farmyard manure, commercial organic fertilizer, bio-organic fertilizer, organic-inorganic compound fertilizer, various amino acids, protein, humic acid fertilizers, etc.
  • Inorganic fertilizers include nitrogen fertilizer (urea, ammonium bicarbonate, ammonium chloride, ammonium sulfate, ammonium nitrate, etc.), phosphate fertilizer (superphosphate, calcium magnesium phosphate, heavy calcium, etc.), potash fertilizer (potassium chloride, potassium sulfate, etc.), compound fertilizer (Monoammonium phosphate, diammonium phosphate, potassium dihydrogen phosphate, potassium nitrate, various nitrogen, phosphorus and potassium ternary or binary compound fertilizers, water-soluble fertilizers, etc.), medium element fertilizers (potassium magnesium sulfate, potassium magnesium chloride) And trace element fertilizers.
  • nitrogen fertilizer urea, ammonium bicarbonate, ammonium chloride, ammonium sulfate, ammonium nitrate, etc.
  • phosphate fertilizer superphosphate, calcium magnesium phosphate, heavy calcium, etc.
  • potash fertilizer potassium chloride, potassium s
  • the finished soil conditioner includes commercially available mineral source soil conditioners, organic source soil conditioners, chemical source soil conditioners, agricultural and forest water retention agents, and composite soil conditioner products.
  • the said inorganic fertilizer raw materials include large, medium and trace element fertilizer raw materials.
  • the large, medium and trace element fertilizer raw materials are mainly urea, ammonium chloride, ammonium nitrate, ammonium bicarbonate, calcium magnesium phosphate, superphosphate, monoammonium phosphate, diammonium phosphate, phosphoric acid, potassium chloride, potassium nitrate, Phosphogypsum, ammonium sulfate, general calcium, heavy calcium, magnesium sulfate, boric acid, borax, sodium decaborate, manganous sulfate monohydrate, manganese monoxide, manganous chloride tetrahydrate, manganous carbonate, manganese dioxide, sulfurous acid Iron, zinc sulfate, zinc chloride, zinc carbonate, zinc phosphate, ammonium molybdate tetrahydrate, ammonium molybdate dihydrate, molybdenum trioxide, copper sulfate pentahydrate, copper carbonate
  • the organic fertilizer raw materials are one or more composites of amino acids, fertilizer synergists, biological agents, humic acids, and organic raw materials (such as grass charcoal soil, livestock and poultry manure, cassava residue, edible fungus waste residue) , Cassava residue, filter mud from sugar factory, etc.).
  • Said soil conditioner raw materials include: mineral source soil conditioner raw materials, such as limestone, dolomite, bentonite, peat, peat cyanite, vermiculite, diatomite, saponite, sepiolite, etc. rich in calcium and magnesium , Silicon, phosphorus, potassium and other element minerals.
  • Organic source soil conditioner raw materials such as crop stalks, microbial inoculants, microbial fermentation products, fermentation industry waste residues, food waste, etc.
  • Chemical source soil conditioner raw materials include citric acid, polymaleic acid, lauryl alcohol ammonium ethoxy sulfate and other chemical reagents.
  • the raw materials of agricultural and forestry water-retaining agents include synthetic polymerization type, starch graft polymerization type, cellulose graft polymerization type and other water-absorbing resin polymers.
  • the conditioning liquid obtained by the present invention, and the fertilizer and soil conditioner prepared by using it as a raw material can significantly increase the Vc content of plants, and have this effect in all plants that have been tested.
  • the conditioning solution is rich in a precursor material for plant synthesis of Vc, namely 2-keto-L-gulonic acid.
  • 2-keto-L-gulonic acid is absorbed by plants, and directly (or after being modified by enzymes in plants) participates in and promotes the synthesis of Vc in plants; at the same time, 2-keto-L-gulonic acid is An intermediate product of Vc metabolism in plants, it reduces the decomposition of Vc through feedback inhibition.
  • this technology not only increases the synthesis of vitamin C but also reduces the decomposition of vitamin C by providing 2-keto-L-gulonic acid to plants, thereby greatly increasing the Vc content of plants. Therefore, this technology can provide humans with Vc-rich plant products.
  • the gulonic acid mother liquor used in the present invention is rich in a variety of short-chain organic acids, with an organic content of 40-60%, which can directly provide rich organic nutrients for the growth of plants (including crops, etc.), thereby increasing plant biomass (or Crop yield).
  • the gulonic acid mother liquor used in the present invention is rich in a variety of short-chain organic acids, and the organic matter content reaches 40-60%. While improving the pH of the soil, it not only increases the soil organic matter content, but also provides abundant soil microbial growth. Utilizable carbon source nutrients increase the number and vitality of soil microorganisms, reduce the incidence of soil-borne diseases, provide abundant and effective nutrients for plant (crops) growth, and promote plant (crops) growth, thereby improving At the same time of soil quality, it can improve the yield and quality of agricultural products, achieving the dual effects of soil conditioning and improving the quality and yield of agricultural products.
  • the present invention uses waste gulonic acid mother liquor as the main raw material, which can be used as a nutrient regulating solution during crop growth after processing; it can also be formulated with finished chemical fertilizers or organic fertilizers to make compound fertilizers; or with inorganic fertilizer raw materials, Fertilizers and auxiliary materials are mixed in appropriate proportions to make compound fertilizers to form a multi-material and multi-formulation fertilizer based on the adjustment solution of waste colonic acid mother liquor to meet the nutrient needs of different regions and different crops.
  • the fertilizer conditioning liquid/fertilizer obtained in the present invention can be applied alone, or mixed with other chemical fertilizers and biological fertilizers in proportion to be used as a compound fertilizer.
  • the obtained fertilizer conditioning liquid/fertilizer can be used as base fertilizer and topdressing fertilizer, and can be used as a water-soluble fertilizer for flushing the soil, or as a foliar fertilizer for spraying plant leaves.
  • the soil conditioner obtained in the present invention can be directly applied as a soil conditioner; it can also be formulated with finished soil conditioners, chemical fertilizers or organic fertilizers to form a compound conditioner; or with soil conditioner raw materials, inorganic fertilizer raw materials, fertilizers Excipients, etc. are mixed in appropriate proportions to make a compound conditioner (compound fertilizer) to form a multi-material and multi-formulation compound conditioner based on the gulonic acid mother liquor adjustment solution to meet the needs of different regions, different soil types, and different crops to improve soil And the double demand to increase the vitamin C content of crops.
  • a compound conditioner compound fertilizer
  • the present invention uses waste gulonic acid mother liquor as fertilizer raw materials, which not only solves the problem of resource utilization of waste mother liquor, but also provides high-quality organic raw materials for the production of fertilizers and soil conditioners, thereby turning waste into treasure.
  • the adjusting solution of the present invention uses waste gulonic acid mother liquor as a raw material. After the waste gulonic acid mother liquor and the alkaline solution undergo acid-base reaction, a fertilizer adjusting solution with a pH of 3.0 to 9.0 (for the preparation of fertilizer) or a pH of 2.0 to 10.0 is obtained Soil conditioner conditioning liquid (used to prepare soil conditioner).
  • Soil conditioner conditioning liquid used to prepare soil conditioner.
  • the fertilizer conditioning fluid and the soil conditioning agent conditioning fluid are collectively referred to as conditioning fluid.
  • the fertilizer regulating liquid can be applied alone, or the regulating liquid can be mixed with chemical fertilizers and biological fertilizers in proportion to be used as a compound fertilizer, or the regulating liquid can be mixed with chemical fertilizer raw materials and fertilizer auxiliary materials in an appropriate proportion to make a compound fertilizer and used .
  • the soil conditioner adjusting solution and the plant fiber powder are mixed in a ratio of 1:0 to 0.8 (mass ratio), dried at low temperature, and crushed to obtain the soil conditioner.
  • the soil conditioner can be applied alone, or mixed with other soil conditioners, chemical fertilizers, biological fertilizer products or raw materials in a certain proportion to become a compound conditioner and applied.
  • the above-mentioned fertilizer conditioning solution can be applied alone or mixed with other chemical fertilizers, organic fertilizers, biological fertilizers or raw materials in a certain proportion as a compound fertilizer. It can be used as a base fertilizer, a topdressing fertilizer, or a water-soluble fertilizer. Flushing the soil can also be used as a foliar fertilizer to spray the leaves.
  • the soil conditioner conditioning solution can be directly used as a soil conditioner alone, or it can be mixed with other soil conditioners, chemical fertilizers, organic fertilizers, and biological fertilizer products or raw materials in a certain proportion to become a compound conditioner for application to improve obstacles Soil nutrients, improve soil pH and soil permeability, adjust soil microbial community structure, etc.
  • the invention provides a raw material rich in 2-keto-L-gulonic acid and rich organic acids for the production of fertilizers and soil conditioners, which can significantly increase the vitamin C content and quality of plants, and at the same time solve the problem of vitamin C industrial production The problem of recycling waste colognic acid mother liquor.
  • Vc biological fermentation broth is separated by ultrafiltration, ion exchange, three-effect evaporation, concentration and gulonic acid crystallization, and the remaining residue (ie, waste gulonic acid mother liquor) is used as a raw material.
  • Vc biological fermentation broth is separated by ultrafiltration, ion exchange, three-effect evaporation, concentration and gulonic acid crystallization, and the remaining residue (ie, waste gulonic acid mother liquor) is used as a raw material.
  • Vc biological fermentation broth is separated by ultrafiltration, ion exchange, three-effect evaporation, concentration and gulonic acid crystallization, and the remaining residue (ie, waste gulonic acid mother liquor) is used as a raw material.
  • the inorganic fertilizer is 3400g of urea, 900g of dihydrogen ammonium phosphate, and 1780g of potassium chloride.
  • the compound fertilizer obtained above is tested, the ratio of NP 2 O 5 -K 2 O is 15-5-10, the total nutrient content is ⁇ 30%, and the organic matter content is ⁇ 30%; it meets the national standard of organic-inorganic compound fertilizer (GB18877 -2009).
  • the compound fertilizer is prepared by mixing the conditioning solution obtained after the treatment in the above embodiment 2 and the organic fertilizer:
  • the organic fertilizer is a commercially available organic fertilizer, using high-quality organic raw materials such as biogas residue, smoke sludge, starch residue, sesame cake, mushroom residue, livestock and poultry manure, bone meal, etc.
  • the main component organic matter ⁇ 45%, N+P 2 O 5 +K 2 O ⁇ 12%, pH 6.0-8.0, moisture content ⁇ 30%.
  • the compound fertilizer obtained above is tested, the ratio of NP 2 O 5 -K 2 O is 5-3-3, the total nutrient content is ⁇ 10%, and the organic matter content is ⁇ 45%; it meets the national standard of organic fertilizer (NY525-2009).
  • the compound fertilizer is prepared by mixing the conditioning solution treated in the above embodiment 3 and the water-soluble fertilizer:
  • the water-soluble fertilizer is a commercially available product, and the ratio of NP 2 O 5 -K 2 O is 20-20-20.
  • the compound fertilizer obtained above is tested, the ratio of NP 2 O 5 -K 2 O is 18-18-18, the total nutrient content is ⁇ 50%, the organic matter content is ⁇ 5%, and the water content is ⁇ 12%.
  • the compound fertilizer is prepared by mixing the conditioning liquid obtained after the treatment in the above embodiment 5, the inorganic fertilizer raw materials and the fertilizer auxiliary materials:
  • the raw materials of the inorganic fertilizer are 21Kg of urea, 16Kg of ammonium dihydrogen phosphate, 21Kg of potassium nitrate, 5Kg of magnesium sulfate, 6Kg of general calcium, 0.2Kg of manganese chloride tetrahydrate, 0.2Kg of ferrous sulfate, 0.2Kg of zinc sulfate, and molybdic acid dihydrate.
  • the compound fertilizer obtained above was tested, the ratio of NP 2 O 5 -K 2 O was 11-11-11, the total nutrient content was ⁇ 30%, and the organic matter content was ⁇ 5%.
  • the vitamin C biological fermentation broth is separated by ultrafiltration, ion exchange, concentration and gulonic acid crystallization, and the remaining liquid is the mother liquor of gulonic acid as the raw material.
  • the specific gravity of the mother liquor is 1.35, and the content of 2-keto-L-gulonic acid is 23. %.
  • the content of 2-keto-L-gulonic acid is 75%, and 2-keto-L-gulonic acid is an industrial product.
  • the waste gulonic acid mother liquor or/and the 2-keto-L-gulonic acid solution can be directly used as a conditioning liquid. After the two are mixed according to 1:0.5 (volume ratio), the soil conditioner product 6 (liquid type) is obtained.
  • the compound conditioner is prepared by mixing the above-mentioned soil conditioner product with soil conditioner raw materials, inorganic fertilizer raw materials, commercially available soil conditioners, inorganic fertilizers, and organic fertilizer products.
  • the compound conditioner is prepared by mixing the above-mentioned soil conditioner product with soil conditioner raw materials, inorganic fertilizer raw materials, commercially available soil conditioners, inorganic fertilizers, and organic fertilizer products.
  • the composite conditioner product 1 is obtained by crushing and passing through a 20-mesh sieve.
  • the soil conditioner product 3 is mixed with the commercially available organic source soil conditioner product in a ratio of 1:10 (mass ratio), then crushed and passed through a 50-mesh sieve to obtain the composite conditioner product 2.
  • the soil conditioner product 4 is mixed with the commercially available mineral source soil conditioner product at a ratio of 1:30 (mass ratio), then crushed and passed through a 50-mesh sieve to obtain the composite conditioner product 3.
  • the soil conditioner product 2 is mixed with the commercially available soil water-retaining agent product in a ratio of 1:50 (mass ratio) and then passed through a 20-mesh sieve to obtain a composite conditioner product 4.
  • Soil conditioner product 3 and commercially available organic fertilizers using high-quality organic raw materials such as biogas residue, tobacco sludge, starch residue, sesame cake, mushroom residue, livestock and poultry manure, bone meal, etc., main components: organic matter ⁇ 45%, N+P 2 O 5 +K 2 O ⁇ 12%, pH 6.0-8.0, moisture content ⁇ 30%.
  • organic matter ⁇ 45%, N+P 2 O 5 +K 2 O ⁇ 12%, pH 6.0-8.0, moisture content ⁇ 30%.
  • the soil conditioner product 2 is mixed with inorganic fertilizer raw materials, the two are mixed in a ratio of 1:5 (mass ratio), and the composite conditioner product 7 is obtained after fully mixing.
  • the inorganic fertilizer raw materials are a mixture of the following raw materials and passed through a 20-mesh sieve: 42Kg of urea, 32Kg of dihydrogen phosphate, 21Kg of potassium nitrate, 5Kg of magnesium sulfate, 6Kg of general calcium, 0.2Kg of manganous chloride tetrahydrate, and ferrous sulfate 0.2Kg, zinc sulfate 0.2Kg.
  • the soil conditioner product 1 is mixed with the soil conditioner raw materials, the two are mixed in a ratio of 1:9 (mass ratio), and the composite conditioner product 8 is obtained after fully mixing.
  • the soil conditioner raw material is a mixture of the following raw materials and passed through a 50-mesh sieve: bentonite, 10Kg, desulfurized gypsum 10Kg, and polyacrylamide 5Kg.
  • the soil conditioner product 3 is mixed with organic and inorganic fertilizer raw materials, the two are mixed in a ratio of 1:20 (mass ratio), and the composite conditioner product 9 is obtained after thorough mixing.
  • the organic and inorganic fertilizer raw materials are a mixture of the following materials and passed through a 20-mesh sieve: 0.5 Kg of humic acid, 5 Kg of decomposed cow manure, 5 Kg of urea, and 2.5 Kg of potassium dihydrogen phosphate.
  • Treatment group Potted plants with fertilizer conditioning liquid product 1; (2) Potted plants treated with tap water (control group). Sprinkle 20 Chinese cabbage seeds of the same size evenly into the soil in each pot. When the Chinese cabbage germinates and the bud length is 2cm, thin the seedlings of the Chinese cabbage in each pot to 10 plants.
  • each pot of the treatment group was irrigated with 75ml of fertilizer conditioning solution product diluent (diluted 250 times of fertilizer conditioning solution product 1), and irrigated twice a week for a total of 10 times.
  • the control group was given tap water Instead, other conditions are the same.
  • the pakchoi in each pot was harvested, washed, dried and weighed. The above-ground part was evenly crushed to determine the vitamin C content of pakchoi. Vc content was determined by the 2,6-dichlorophenol indophenol titration method. The results showed that the treatment group significantly increased the yield of Chinese cabbage (9.74g per pot significantly increased to 12.48g), an increase of up to 28.13%. Vitamin C content has been increased by 55.6% (from 85.6mg/Kg to 133.2mg/Kg), the difference is extremely significant. This indicates that the quality of pakchoi has been significantly improved under the action of the mother liquor of waste colognic acid.
  • each pot of treatment group 1 was poured with a 300-fold dilution of the conditioning solution product 2, each time 200ml of the dilution was poured, twice a week, a total of 10 times; 2-keto-L-gulonic acid solution treatment
  • Each pot of the group was poured with a 300-fold diluted gulonic acid solution (2-keto-L-gulonic acid content 30wt%), 200ml of the diluted solution was poured each time, twice a week, a total of 10 times; Use tap water instead, other conditions are the same.
  • the cucumbers produced in each pot were harvested, washed, dried and weighed. The cucumber was sampled and crushed to determine the vitamin C content. The content of vitamin C was determined by the 2,6-dichlorophenol indophenol titration method.
  • treatment group 1 significantly increased the yield of cucumber by 10.5%, and the vitamin C content was significantly increased by 20.1%; while the cucumber vitamin C content of treatment group 1 was higher than that of treatment group 2. There was no significant difference in C content, indicating that 2-keto-L-gulonic acid can significantly promote the increase of cucumber vitamin C content.
  • Treatment group 1 Potted plants treated with fertilizer conditioning liquid product 3
  • control group Potted plants treated with tap water
  • control group 2 Potted plants treated with 2-keto-L-gulonic acid solution
  • Treatment group 2 Apple trees choose 4-year-old fruit trees, each with 5 fruit trees.
  • each fruit tree in treatment group 1 is irrigated with a 400-fold dilution of the treated waste gulonic acid mother liquor, and 50 liters of the diluted solution are irrigated each time, once a month, for a total of 5 times;
  • 2- In the keto-L-gulonic acid solution treatment group each fruit tree in the keto-L-gulonic acid solution treatment group was poured with a 400-fold diluted gulonic acid solution (2-keto-L-gulonic acid content 25wt%), and 50 liters of the diluted solution were poured each time, every month This was done once for 5 times; the control group was replaced with tap water, and other conditions were the same.
  • the apples of each treatment group were harvested, weighed, and the vitamin C content was determined. The content of vitamin C was determined by the 2,6-dichlorophenol indophenol titration method.
  • Test method A total of 2 treatments are set up, with 3 replicates for each treatment. Each plot covers an area of 4 square meters and grows 80 tomatoes.
  • Treatment 1 is conventional fertilization, pure inorganic fertilizer, basal fertilizer is applied per mu of urea 20Kg, calcium magnesium phosphate fertilizer 30Kg, potassium chloride 15Kg, of which 60% nitrogen fertilizer is applied as base and 40% is used as topdressing.
  • Treatment 2 is based on conventional fertilization in Treatment 1, and the fertilizer conditioning liquid product 5 of Example 5 diluted 400 times is applied every 10 days after the tomato seedlings are transplanted. The vitamin C content of the fruit was determined after the fruit was ripe.
  • Test method A total of 2 treatments were set up, each with 10 4-year-old apple trees.
  • Treatment 1 is conventional fertilization for fruit trees, with 80Kg of urea, 30Kg of calcium-magnesium phosphate fertilizer and 60Kg of potassium sulphate per mu, of which 50% nitrogen fertilizer is used as base fertilizer, 40% is used as top dressing, potassium fertilizer is used as 50% base and 50% top dressing.
  • Treatment 2 is based on the conventional fertilization of treatment 1, spraying the leaves with the fertilizer conditioning liquid product 5 of Example 5 diluted 600 times every 10 days during the apple full fruit period. As a control, treatment 1 sprayed the leaves with the same amount of tap water. The vitamin C content of the fruit was determined after the fruit was ripe.
  • Test method A total of 2 treatments were set up, and the sown area of Chrysanthemum chrysanthemum in each treatment was 3m ⁇ 3m.
  • Treatment 1 was a control group
  • treatment 2 was a compound fertilizer (compound fertilizer in Example 9) group based on waste gulonic acid mother liquor.
  • the fertilizer composition and ratio of the two groups are exactly the same, and the application method is 200 times diluted in water and then applied. After the harvest of Chrysanthemum chrysanthemum, the vitamin C content of its stems was determined.
  • Test method A total of 2 treatments were set up, and the rice planting area of each treatment was 3m ⁇ 3m, with 5 replicates.
  • Treatment 1 was a control group
  • treatment 2 was a conditioning solution group based on waste gulonic acid mother liquor
  • the conditioning solution used was fertilizer conditioning solution product 2 in Example 2.
  • the application composition and ratio, application time and method of the organic and inorganic fertilizers of the two treatment groups are exactly the same.
  • Treatment 2 During the rice growth period, it was applied after being diluted 200 times in water every 20 days, with 10L per mu. After the rice was harvested, the vitamin C content in the threshed rice was determined.
  • the test soil was clay soil saline-alkaline soil (pH 9.2, alkalinity 30%, salt content 0.6%), and the size of the plastic pot for the pot experiment was 15cm high ⁇ 20cm.
  • each treatment was watered twice a week for a total of 20 waterings. Other water and fertilizer conditions are the same.
  • the pakchoi in each pot was harvested, washed, dried and weighed. The above-ground part was evenly crushed to determine the vitamin C content of pakchoi. The content of vitamin C was determined by the 2,6-dichlorophenol indophenol titration method.
  • the soil conditioner product reduced the pH value of the soil (from 9.2 in the control group to 8.9 in the treatment group), reduced the alkalinity of the soil to 16.0% (a decrease of 46.7%), and reduced the salt content to 0.3% (a decrease of 50%). %), increase the number of soil bacteria by 35.8%, significantly increase the yield of pakchoi (in the control group 9.20g (fresh weight) per pot significantly increased to 13.44g (fresh weight), an increase of up to 46.1%), significantly increased the content of vitamin C ( From 437.0mg/Kg (fresh weight) to 634.0mg/Kg (fresh weight), an increase of 45.1%).
  • the above results show that under the action of the soil conditioner containing gulonic acid mother liquor, the soil salinity decreases, the number of soil microorganisms increases, and the yield and quality of pakchoi are significantly improved.
  • the test soil was acidified and compacted soil in vegetable greenhouses, with a soil pH of 5.3 and poor soil permeability.
  • the size of the plastic pot for pot experiment is 20cm high ⁇ 30cm.
  • Two treatments were set up: (1) potted plants (treatment group) of soil conditioner product 4 in the above-mentioned embodiment, 100g of soil conditioner was added to each pot, and 2.4Kg of vegetable greenhouse acidified soil, mixed; (2) potted plants in the control group ( Control group), add 2.5Kg of degraded soil in vegetable greenhouse to each pot. 5 pots for each treatment. Evenly sprinkle 4 cucumber seeds of the same size into the soil in each pot. When the cucumber seedlings are 2cm high after the cucumber germinates, thin the cucumber seedlings in each pot to 2 plants.
  • the test soil was green pepper continuous cropping farmland soil, and the size of the plastic pot for pot experiment was 15cm high ⁇ 20cm.
  • Set up 2 groups of treatments (1) Apply the potted plant of the soil conditioner product 2 in the example (treatment group), add 100g of soil conditioner to each pot, 1.4Kg of continuous farmland soil, and mix; (2) Potted plant in the control group (control group) ), 1.5Kg of continuous cropping soil added to each pot. 5 pots for each treatment. Plant 3 green pepper seedlings per pot. During the growth of green pepper, the water and fertilizer management of each treatment is completely consistent.
  • the green peppers produced in each pot were harvested, washed, dried and weighed. Green peppers were sampled and crushed to determine the vitamin C content. The vitamin C content was determined by HPLC method.
  • Test method The test soil is saline-alkaline soil (pH 9.40, alkalinity 35%, salt content 0.6%). A total of 2 treatment groups were set up, with 3 replicates in each treatment group. Each plot covers an area of 4 square meters and grows 60 tomatoes.
  • Treatment 1 is conventional fertilization, and the fertilizer is inorganic fertilizer.
  • the base fertilizer is 20Kg of urea, 30Kg of calcium-magnesium phosphate fertilizer and 15Kg of potassium chloride per mu, of which 60% of nitrogen fertilizer is applied as base and 40% is used as topdressing.
  • Treatment 2 is to apply the soil conditioner product 1 of the example before transplanting tomato seedlings on the basis of conventional fertilization in treatment 1, and the application rate per mu is 200Kg. Except for the different application of soil conditioners, the other water and fertilizer management measures are the same in the two treatments.
  • soil conditioner soil conditioner product 1
  • the soil pH was reduced to 9.22
  • the alkalinity of the soil was reduced to 21% (a decrease of 40.0%)
  • the salt content was reduced to 0.2% (a decrease of 66.6%).
  • Improve the pH of saline soil increase the content of soil organic matter (organic matter 1.4%, increase of 9.5%) and available phosphorus (13.7 percent increase).
  • the soil conditioner (soil conditioner product 1) significantly promoted the growth of tomatoes, increasing tomato yield by 8.0%, and the average vitamin C content of tomato fruits increased from 197mg/Kg (fresh weight) to 273mg/Kg (fresh weight) , An increase of 38.6%, a statistically significant difference.
  • Test method The test soil was acidified soil in vegetable greenhouses, with low organic matter content, serious soil compaction and acidification (pH 4.9), and low crop yield. There are 2 treatment groups, and the sown area of Chrysanthemum chrysanthemum in each treatment group is 3m ⁇ 3m. Treatment 1 was the control group, and treatment 2 was the soil conditioner treatment group, with 3 replicates in each treatment group. Before sowing Chrysanthemum chrysanthemum, the treatment group applied the soil conditioner product 4 of Example 1 at 300 Kg per mu. In addition, the water and fertilizer management of the two groups is the same.
  • the treatment group had strong roots and vigorous seedlings, and the yield per unit area increased by 11.0% compared with the control group.
  • the average vitamin C content in the stems of the treatment group was 244mg/Kg (fresh weight), which was 43.5 higher than the control group (170mg/Kg (fresh weight)) %, the statistical difference is extremely significant, indicating that the conditioning of the soil has promoted the increase in crop yield and improved quality.
  • Test method The soil for growing grapes is nutrient-poor soil with low organic matter content (0.8%). There are 2 treatments, each with 10 4-year-old vines. Treatment 1 is conventional fertilization for grape vines, with 60Kg of urea, 25Kg of calcium magnesium phosphate fertilizer and 35Kg of potassium sulfate per mu. Treatment 2 is based on the conventional fertilization of treatment 1, respectively applying 1 Kg of the soil compound product 5 in the above-mentioned embodiment in the flowering and fruiting stages of each tree at a distance of 15-20 cm from the root of each tree. In each treatment, except for the different application of conditioners, the management of other water, fertilizer, and medicine is the same. The vitamin C content of the fruit was determined after the fruit was ripe.
  • the vitamin C content in grapes increased by 11.5% on average (the average vitamin C content in the grape berries of Treatment 1 was 18.2 mg/Kg, and the average content of vitamin C in the grape berries of Treatment 2 was 20.3 mg/Kg), which was statistically very different Significantly.
  • Test method The apple field soil is desertified soil with low organic matter content (0.3%). There are 2 treatments, each of which treats 10 4-year-old apple trees.
  • Treatment 1 is conventional fertilization for fruit trees, with 80Kg of urea, 30Kg of calcium-magnesium phosphate fertilizer, and 60Kg of potassium sulphate per mu, of which 60% nitrogen fertilizer is used as base fertilizer, 40% is used as top dressing, potassium fertilizer is used as 50% base and 50% top dressing.
  • Treatment 2 is based on the conventional fertilization of treatment 1, respectively applying 2Kg of soil compound product 9 in the above embodiment at a distance of 45-50 cm from the roots of each fruit tree during the flowering and fruiting stages of the apple.
  • the management of other water, fertilizer, and medicine is the same.
  • the vitamin C content of the fruit was determined after the fruit was ripe.
  • the apple leaves of the compound conditioner treatment group were dark green, the fruit tasted crisp and sweet, the average fruit weight increased by 6.4% (treatment 1 was 215.0g, treatment 2 was 228.8g), and the vitamin C content in apples increased by 18.0% on average (treatment 1
  • the average vitamin C content of apples was 38.0 mg/Kg, and the average vitamin C content of treatment 2 apples was 44.8 mg/Kg), the difference was statistically significant.
  • Test method The test site is the northeast aquic brown rice paddy field. A total of 2 treatment groups were set up, and the rice planting area of each treatment was 3m ⁇ 3m, with 5 replicates.
  • Treatment 1 was a control group
  • treatment 2 was a treatment group applied with a conditioner
  • the conditioner used was the soil conditioner product 1 in the example.
  • the application composition and ratio, application time and method of the organic and inorganic fertilizers of the two treatment groups are exactly the same.
  • Treatment 2 During the rice growth period, the soil conditioner product 1 was diluted with 200 times water to dissolve and dilute the soil conditioner product 1 every 25 days and then applied together with irrigation water at a rate of 20 kg/mu each time. Treatment 1 replaced soil conditioner product 1 with the same amount of water, and the dilution and application conditions were the same as treatment 2. After the rice is harvested, the soil and crop related indexes of different treatments are measured.
  • the rice of treatment 2 is well-growing, resistant to lodging, and no rice blast disease occurs.
  • the rice yield is increased by 7.4%.
  • the average vitamin C content in hulled rice is increased from 6.34mg/Kg to 7.37mg/Kg, an increase of 16.3%. The statistical difference is extremely significant.
  • Test method A total of 2 treatments were set up, each with 10 5-year-old ginkgo trees.
  • Treatment 1 was conventional fertilization for ginkgo trees, with 80Kg of urea, 20Kg of calcium-magnesium phosphate fertilizer, and 50Kg of potassium sulfate per mu, of which 60% nitrogen fertilizer was used as base fertilizer, 40% was used as topdressing, potassium fertilizer was 40% used as base and 60% topdressing.
  • Treatment 2 is based on the conventional fertilization of treatment 1, spraying the foliage with the fertilizer conditioning solution product 5 of Example 5 diluted 600 times every 10 days during the full-fruit period of Ginkgo biloba, and spraying 3 times in succession.
  • Treatment 1 sprayed the leaves with the same amount of tap water. Five days after the third spraying, ginkgo leaves were taken to determine the vitamin C content.
  • the adjustment solution produced from waste gulonic acid mother liquor was used as a fertilization experiment to grow roses.
  • Test method A pot experiment was used, with one rose tree planted in each pot. There are 2 treatments, 5 pots for each treatment. Treatment 1 is conventional fertilization, 15g compound fertilizer is applied per pot. Treatment 2 is based on the conventional fertilization of Treatment 1, one month before the flowering period, the fertilizer conditioning solution product 3 of Example 3 diluted 600 times is poured every 10 days for 3 consecutive times. As a control, treatment 1 was watered with an equal amount of tap water. In addition, the other water and fertilizer conditions of the two treatments were the same. Ten days after the third watering, the rose leaves were taken to determine the vitamin C content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Fertilizers (AREA)

Abstract

提高植物维生素C含量的调节液、肥料和土壤调理剂及其制备方法和应用,属于维生素C工业生产废液的资源化利用技术。经碱性溶液调节废古龙酸母液或/和2-酮基-L-古龙酸溶液的pH值,即为调节液;其中,调节液pH值调节至3.0~9.0即为肥料调节液;调节液pH值调节至2.0~10.0即为土壤调理剂调节液。所述调节液及以其为原料所制备的肥料和土壤调理剂,可以显著地提高植物的Vc含量,且在已试验过的所有植物中均有该效果。

Description

提高植物维C的调节液、肥料和土壤调理剂及制备和应用 技术领域
本发明涉及肥料和土壤调理剂生产技术领域,具体是提高植物维生素C含量的调节液、肥料和土壤调理剂及其制备方法和应用。同时,本发明也涉及一种维生素C工业生产废液的资源化利用技术。
背景技术
中国是维生素C(Vc)生产大国,年产Vc约16~18万吨。Vc生产过程中排放一种大宗废弃物—废古龙酸母液。据估算,每生产1吨Vc约排放0.45吨废古龙酸母液,我国年排放量约7~8万吨。该废古龙酸母液是Vc生产过程中的发酵醪液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等工序后的剩余残液。废古龙酸母液中主要成分包括2-酮基-L-古龙酸(15~35%)、甲酸(约1~2%)、草酸(约2~3%)、山梨糖(1~2%)、蛋白质和核酸(3~5%)等,其有机质含量高达40~60%。废古龙酸母液呈棕黑色、粘稠状,比重1.25~1.40,COD值达0.5~1×10 6mg/L,pH≤0.5。该废古龙酸母液因COD极高,难以进入污水处理***进行厌氧和好氧处理;曾用于制作草酸,则带来更加严重的环境污染。目前尚无废古龙酸母液资源化利用的有效途径,是当前制约Vc生产企业可持续、绿色化发展的卡脖子问题。同时,废古龙酸母液中主要成分为2-酮基-L-古龙酸,其含量高达15~35%。2-酮基-L-古龙酸是Vc工业化生产中合成Vc的前体物质,它经多步化学催化反应后最终被转化为Vc,但其在室温和无催化试剂存在下并不能自发形成Vc。
植物是生命的主要形态之一,常见的树木、灌木、藤类、青草、蕨类及绿藻、地衣等都是植物。从分类学上讲,植物可分为种子植物、苔藓植物、蕨类植物和裸子植物等。
Vc在植物体内普遍存在,植物体内的Vc对植物的生长代谢,特别是在植物抵抗环境胁迫方面具有十分重要的作用。植物体内Vc含量的增加,可以提高植物(如农作物、药用植物、花卉植物等)的品质及其经济价值,是植物产品品质的一个重要评价指标。但是,此前尚无大幅度提高植物及其产品Vc含量的有效、简易、廉价的技术和方法。
发明内容
本发明的目的在于提供一种以废古龙酸母液或/和2-酮基-L-古龙酸为主要原料的提高植物维生素C含量的调节液、肥料和土壤调理剂及其制备方法和应用。
为实现上述目的,本发明采用的技术方案为:
一种提高植物维生素C含量的调节液、肥料和土壤调理剂,经碱 性溶液调节废古龙酸母液或/和2-酮基-L-古龙酸溶液的pH值,即为调节液。其中,调节液pH值调节至3.0~9.0即为肥料调节液;调节液pH值调节至2.0~10.0即为土壤调理剂调节液。
由此可见,本发明根据用途,把所述调节液划分为两类,即:肥料调节液和土壤调理剂调节液。
所述碱性溶液为碱性试剂与水配成的10~50wt%浓度的溶液。其中,碱性试剂为氢氧化钠、氢氧化钾、液氨中的一种或几种混合(但不仅限于上述碱性试剂)。
以上所述制备肥料和土壤调理剂所用的2-酮基-L-古龙酸为化学合成或生物合成(生物合成可为维生素C生产过程中以山梨糖为底物经微生物发酵转化得到的2-酮基-L-古龙酸)所得。
所述的废古龙酸母液或/和2-酮基-L-古龙酸溶液,其中的2-酮基-L-古龙酸溶液为化学合成或生物合成(生物合成可为维生素C生产过程中以L-山梨糖为底物经微生物发酵转化得到2-酮基-L-古龙酸)所得;所述的废古龙酸母液是维生素C生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等工序后的剩余残液(但不仅限于上述残液)。
所述含2-酮基-L-古龙酸的溶液可为维生素C发酵液生产古龙酸结晶(经超滤分离、离子交换、浓缩和古龙酸结晶等工序)过程中的剩余残液,即废弃古龙酸母液,也可为直接以2-酮基-L-古龙酸配置的2-酮基-L-古龙酸溶液。
所述的废弃古龙酸母液来自维生素C生产工艺,是维生素C生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液。古龙酸母液中主要成分为2-酮基-L-古龙酸(15~35%)、蛋白质和核酸(3~5%)等。古龙酸母液的有机质含量为40~60%,其中含有小分子有机酸、蛋白质、核酸等。古龙酸母液呈棕黑色、粘稠状,比重1.20~1.40,COD值达1×10 6mg/L,pH≤0.5。
优选地,所述肥料调节液的pH值调节至5.5~7.5;所述土壤调理剂调节液的pH值调节至3.5~8.5。
一种提高植物维生素C含量的调节液、肥料和土壤调理剂的制备方法,经碱性溶液调节废古龙酸母液或/和2-酮基-L-古龙酸溶液的pH值,即为调节液。其中,调节液pH值调节至3.0~9.0即为肥料调节液;调节液pH值调节至2.0~10.0即为土壤调理剂调节液。
优选地,所述古龙酸母液或/和2-酮基-L-古龙酸与碱性试剂发生酸碱反应,调节体系pH值;而后将反应体系置于带搅拌、带夹套水浴的反应器中,在0~60℃下反应时间为10~120分钟,得调节液;
一种提高植物维生素C含量的调节液、肥料和土壤调理剂的应用,所述肥料调节液在提高植物维生素C含量和作物产量中的应用;
所述土壤调节液在制备土壤调理剂中的应用;进一步,所述土壤调理剂在调节土壤环境并提高植物维生素C含量和产量中的应用。
以所述肥料调节液制备的肥料的pH值调节至5.5~7.5;以所述土壤调理剂调节液制备的土壤调理剂的pH值调节至2.0~10.0。
所述肥料调节液可单独施用,或与化学肥料、有机肥料、生物肥料、肥料原料、肥料辅料中的一种或几种混合施用。
所述肥料调节液单独施用或肥料调节液与化学肥料、有机肥料、生物肥料、化学肥料原料、肥料辅料中的一种或几种混合时可作为基肥、追肥、水溶肥或叶面肥施用。
所述肥料调节液与基肥按1:0.1~50(质量比)混施;调节液与追肥按1:0.1~50(质量比)混施;或调节液与叶面肥按1:0.1~50(质量比)混合后喷施或单独喷施。
所述肥料调节液与化学肥料、(生物)有机肥料按比例混合,混合比例为1:0~50:0~50(质量比)作为复混肥。
所述肥料调节液与化肥原料、肥料辅料按比例混合,混合比例为1:0~50:0~50(质量比)作为复混肥。
植物是生命的主要形态之一,常见的树木、灌木、藤类、青草、蕨类及绿藻、地衣等都是植物。从分类学上讲,植物可分为种子植物、苔藓植物、蕨类植物和裸子植物等。
所述植物(包括农作物)指农/林业上等栽培及自然界中野生的植物,包括粮食作物(水稻、玉米、豆类、薯类、青稞、蚕豆、小麦等)﹑油料作物(油籽、蔓青、大芥、花生、胡麻、***、向日葵等)、蔬菜作物(萝卜、白菜、芹菜、韭菜、蒜、葱、胡萝卜、菜瓜、莲花菜、菊芋、刀豆、芫荽、莴笋、黄花、辣椒、黄瓜、西红柿、香菜等)、果类(梨、青梅、苹果、桃、杏、核桃、李子、樱桃、草莓、沙果、红枣)、饲料作物(玉米、绿肥、紫云英等)、药材作物(人参、当归、金银花、薄荷、艾蒿、银杏等)、观赏性植物(月季、玫瑰等)等。
所述的成品化学肥料、有机肥料和生物肥料,包含市售的有机肥和无机肥。有机肥有农家肥、商品有机肥、生物有机肥、有机无机复混肥、各种氨基酸、蛋白质、腐殖酸肥料等。无机肥有氮肥(尿素、碳铵、氯化铵、硫酸铵、硝酸铵等)、磷肥(过磷酸钙、钙镁磷肥、重钙等)、钾肥(氯化钾、硫酸钾等)、复合肥(磷酸一铵、磷酸二铵、磷酸二氢钾、硝酸钾、各类氮磷钾三元或二元复合肥、水溶性肥料等)、中量元素肥料(硫酸钾镁、氯化钾镁)和微量元素肥料等。
所述的无机化肥原料,包含大、中、微量元素化肥原料。所述的大、中、微量元素化肥原料主要为尿素、氯化铵、硝酸铵、碳铵、钙镁磷肥、过磷酸钙、磷酸以铵、磷酸二铵、磷酸、氯化钾、硝酸钾、磷石膏、硫铵、普钙、重钙、硫酸镁、硼酸、硼砂、十硼酸钠、一水 硫酸亚锰、一氧化锰、四水氯化亚锰、碳酸亚锰、二氧化锰、硫酸亚铁、硫酸锌、氯化锌、碳酸锌、磷酸锌、四水钼酸铵、二水钼酸铵、三氧化钼、五水硫酸铜、碳酸铜、氯化铜、氧化铜、氧化亚铜。
所述的辅料为氨基酸、肥料增效剂、生物菌剂、腐殖酸、有机原料中的一种或一种以上的综合物(如草炭土、畜禽粪便、木薯渣、食用菌废渣、木薯渣、糖厂滤泥等)。
所述土壤调理剂调节液与植物纤维按1:0~0.8(质量比)混合,混匀后物料于30~60℃低温烘干,即得到土壤调理剂。
所述植物纤维为农作物秸秆、稻壳、麸皮、锯末、甘蔗渣中的一种或多种粉碎至20~100目,待用。
所述土壤调理剂可单独施用,或与其它土壤调理剂、化学肥料、有机肥料、生物肥料产品、土壤调理剂原料中的一种或几种混合作为复合调理剂施用。
所述土壤调理剂为液体或固体制剂。
所述土壤调理剂可单独施用,或与其它土壤调理剂、化学肥料、(生物)有机肥料的产品或原料中的一种或几种混合作为复合调理剂施用。
所述植物/农作物指农业栽培/非农业的各种植物,包括粮食作物(水稻、玉米、豆类、薯类、青稞、蚕豆、小麦等)﹑油料作物(油籽、蔓青、大芥、花生、胡麻、***、向日葵等)、蔬菜作物(萝卜、白菜、芹菜、韭菜、蒜、葱、胡萝卜、菜瓜、莲花菜、菊芋、刀豆、芫荽、莴笋、黄花、辣椒、黄瓜、西红柿、香菜等)、果类(梨、青梅、苹果、桃、杏、核桃、李子、樱桃、草莓、沙果、红枣)、饲料作物(玉米、绿肥、紫云英等)、药材作物(人参、当归、金银花、薄荷、艾蒿、银杏等)、观赏性植物(月季、玫瑰等)等。
所述土壤调理剂可以应用于各种障碍土壤,包括沙化土壤、盐碱土壤、酸性土壤、结构障碍性土壤等。
所述的成品化学肥料、有机肥料和生物肥料,包含市售的有机肥和无机肥。有机肥有农家肥、商品有机肥、生物有机肥、有机-无机复混肥、各种氨基酸、蛋白质、腐殖酸肥料等。无机肥有氮肥(尿素、碳铵、氯化铵、硫酸铵、硝酸铵等)、磷肥(过磷酸钙、钙镁磷肥、重钙等)、钾肥(氯化钾、硫酸钾等)、复合肥(磷酸一铵、磷酸二铵、磷酸二氢钾、硝酸钾、各类氮磷钾三元或二元复合肥、水溶性肥料等)、中量元素肥料(硫酸钾镁、氯化钾镁)和微量元素肥料等。
所述成品土壤调理剂,包括市售的矿物源土壤调理剂、有机源土壤调理剂、化学源土壤调理剂、农林保水剂和复合土壤调理剂产品。
所述的无机化肥原料,包含大、中、微量元素化肥原料。所述的大、中、微量元素化肥原料主要为尿素、氯化铵、硝酸铵、碳铵、钙 镁磷肥、过磷酸钙、磷酸一铵、磷酸二铵、磷酸、氯化钾、硝酸钾、磷石膏、硫铵、普钙、重钙、硫酸镁、硼酸、硼砂、十硼酸钠、一水硫酸亚锰、一氧化锰、四水氯化亚锰、碳酸亚锰、二氧化锰、硫酸亚铁、硫酸锌、氯化锌、碳酸锌、磷酸锌、四水钼酸铵、二水钼酸铵、三氧化钼、五水硫酸铜、碳酸铜、氯化铜、氧化铜、氧化亚铜。
所述的有机肥原料为氨基酸、肥料增效剂、生物菌剂、腐殖酸、有机原料中的一种或一种以上的综合物(如草炭土、畜禽粪便、木薯渣、食用菌废渣、木薯渣、糖厂滤泥等)。
所述的土壤调理剂原料包括:矿物源土壤调理剂原料,如石灰石、白云岩、膨润土、泥炭、泥炭蓝铁矿、蛭石、硅藻土、皂石、海泡石等富含钙、镁、硅、磷、钾等元素的矿物。有机源土壤调理剂原料,如农作物秸秆、微生物菌剂、微生物发酵产物、发酵工业废渣废液、餐厨垃圾等。化学源土壤调理剂原料包括柠檬酸、聚马来酸、月桂醇乙氧基硫酸铵等化学试剂。农林保水剂原料包括合成聚合型、淀粉接枝聚合型、纤维素接枝聚合型等吸水性树脂聚合物。
本发明具有如下优点:
1.本发明所获得的调节液及以其为原料所制备的肥料和土壤调理剂,可以显著地提高植物的Vc含量,且在已试验过的所有植物中均有该效果。该调节液中富含一种植物合成Vc的前体物质,即2-酮基-L-古龙酸。2-酮基-L-古龙酸被植物吸收,直接(或被植物体内的酶改构后)作为前体物质参与并促进植物Vc的合成;同时,2-酮基-L-古龙酸又是植物体内Vc代谢过程的一个中间产物,它通过反馈抑制作用减少了Vc的分解。因此,本技术通过为植物提供2-酮基-L-古龙酸,既增加维生素C合成、又减少维生素C分解,从而大幅度提高植物体Vc含量。因而,该技术可为人类提供富含Vc的植物产品。
2.本发明所用的古龙酸母液中富含多种短链有机酸,有机质含量达40~60%,可以直接为植物(包括农作物等)生长提供丰富的有机质养分,从而提高植物生物量(或农作物产量)。
3.本发明所用的古龙酸母液富含多种短链有机酸,有机质含量达40~60%,在改善土壤酸碱度的同时,不仅增加了土壤有机质含量,更为土壤微生物生长提供了丰富的可利用性碳源养分,提高了土壤微生物数量和活力,减少了土传病害的发生率,为植物(农作物)生长提供了丰富的、可有效吸收的养分,促进植物(农作物)生长,从而在提高土壤质量的同时,提高农产品产量和品质,达到土壤调理和农产品提质增产的双重效果。
4.具有灵活多样的复配组合和使用方式:
(1)本发明以废古龙酸母液为主要原料,将其处理后可在作物生长过程中作为营养调节液施用;亦可与成品化肥或有机肥配制成复 混肥;或与无机化肥原料、肥料辅料等按适当比例混合制成复混肥,形成基于废古龙酸母液调节液的多原料、多配方肥料,以满足不同地区、不同农作物的养分需求。
(2)本发明所获肥料调节液/肥料可单独施用,也可以与其它化学肥料、生物肥料按比例混合作为复混肥予以应用。所获肥料调节液/肥料既可以作为基肥、又可以作为追肥施用,既可以作为水溶肥进行冲施土壤,又可以作为叶面肥喷施植物叶面。
(3)本发明所获的土壤调理剂,可直接施用作为土壤调理剂;亦可与成品土壤调理剂、化肥或有机肥配制成复合调理剂;或与土壤调理剂原料、无机化肥原料、肥料辅料等按适当的比例混合制成复合调理剂(复混肥),形成基于古龙酸母液调节液的多原料、多配方的复合调理剂,以满足不同地区、不同土壤类型、不同农作物对改良土壤和提高农作物维生素C含量的双重需求。
5.本发明以废弃古龙酸母液作为肥料原料,既解决了废母液资源化利用的难题,又为肥料和土壤调理剂的生产提供了优质的有机质原料,实现变废为宝。
具体实施方式
以下结合实例对本发明的具体实施方式做进一步说明,应当指出的是,此处所描述的具体实施方式只是为了说明和解释本发明,并不局限于本发明。
本发明所述调节液以废古龙酸母液作为原料,废古龙酸母液与碱性溶液发生酸碱反应后得到pH为3.0~9.0的肥料调节液(用于制备肥料)或pH为2.0~10.0的土壤调理剂调节液(用于制备土壤调理剂)。这里肥料调节液和土壤调理剂调节液统称为调节液。
该肥料调节液可单独施用,或调节液与化学肥料、生物肥料按比例混合后作为复混肥应用,或调节液与化学肥料原料、肥料辅料中按适当比例混合后制成复混肥并应用。
该土壤调理剂调节液与植物纤维粉料按1:0~0.8(质量比)的比例混合并经低温烘干、粉碎后得到土壤调理剂。该土壤调理剂可单独施用,或与其它土壤调理剂、化学肥料、生物肥料的产品或原料按一定比例混合成为复合调理剂并予以应用。
上述该肥料调节液可单独施用或与其它化学肥料、有机肥料、生物肥料的产品或原料按一定比例混合作为复混肥予以应用,既可以作为基肥、又可以作为追肥施用,既可以作为水溶肥冲施土壤,又可以作为叶面肥喷施叶面。该土壤调理剂调节液既可以直接作为土壤调理剂单独施用,又可与其它土壤调理剂、化学肥料、有机肥料、生物肥料的产品或原料按一定比例混合成为复合调理剂予以应用,以提高障碍土壤养分、改善土壤酸碱度和土壤透气性、调理土壤微生物群落结 构等。本发明为肥料和土壤调理剂生产提供了一种富含2-酮基-L-古龙酸和丰富有机酸的原料,可以显著提高植物的维生素C含量和品质,同时又解决了维生素C工业生产所排放废古龙酸母液的资源化处理问题。
1.肥料调节液及制备肥料的实施例:
实施例1
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即:废古龙酸母液)作为原料;
向含50L废古龙酸母液(母液比重1.32,古龙酸含量25wt%)的100L塑料桶中缓慢加入30wt%氢氧化钠溶液15L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为3.0,即为肥料调节液产品1。
实施例2
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料。
向含50L废古龙酸母液(母液比重1.25,古龙酸含量18wt%)的100L塑料桶中缓慢加入48wt%氢氧化钾溶液17L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为4.0,即为肥料调节液产品2。
实施例3
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料。
向含50L废古龙酸母液(母液比重1.38,古龙酸含量32wt%)的100L塑料桶中缓慢加入25wt%氨水溶液18L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为6.0,即为肥料调节液产品3。
实施例4
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料。
向含50L废古龙酸母液(母液比重1.32,古龙酸含量25wt%)的100L塑料桶中缓慢加入40wt%氢氧化钾溶液27L,再继续向塑料桶中缓慢加入10wt%氨水溶液8L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为8.8,即为肥料调节液产品4。
实施例5
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料;
向含50L废古龙酸母液(母液比重1.40,古龙酸含量35wt%) 的100L塑料桶中缓慢加入40wt%氢氧化钾溶液27L,再继续向塑料桶中缓慢加入10wt%氨水溶液5L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为7.0,即为肥料调节液产品5;
2.利用上述实施例所得调节液与无机肥料原料混合制备得复混肥:
实施例6
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料;
向含50L废古龙酸母液(母液比重1.32,古龙酸含量25wt%)的100L塑料桶中缓慢加入30wt%氢氧化钠溶液15L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为3.0,即为肥料调节液。
将10L肥料调节液与无机肥料混合,两者按1:0.46(质量比)的比例混合,充分混匀后于50℃烘箱烘干至含水量降至10%,得到固体肥料产品A,即得到有机-无机复混肥料。
所述无机肥料为尿素3400g,磷酸二氢氨900g,氯化钾1780g。
对上述获得复混肥进行检测,N-P 2O 5-K 2O的比例为15-5-10,总养分≥30%,有机质含量≥30%;其符合有机-无机复混肥料国家标准(GB18877-2009)。
实施例7
将利用上述实施例2处理后所得调节液与有机肥料混合制备得复混肥:
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料;
向含50L废古龙酸母液(母液比重1.25,古龙酸含量18wt%)的100L塑料桶中缓慢加入48wt%氢氧化钾溶液17L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为4.0,即为肥料调节液产品2;
将肥料调节液与有机肥料混合,两者按1:5(质量比)的比例混合,充分混匀后于60℃烘箱烘干至含水量降至25%,得到固体有机肥料产品,即得到复混肥料。
所述有机肥料为市售有机肥料,采用沼渣、烟泥、淀粉渣、芝麻饼、菇渣、畜禽粪便、骨粉等优质有机原料,主要成分:有机质≥45%,N+P 2O 5+K 2O≥12%、pH 6.0-8.0、水份≤30%。
对上述获得复混肥进行检测,N-P 2O 5-K 2O的比例为5-3-3,总养分≥10%,有机质含量≥45%;其符合有机肥料国家标准(NY525-2009)。
实施例8
将上述实施例3处理后的调节液与水溶肥混合制备得复混肥:
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料;
向含50L废古龙酸母液(母液比重1.38,古龙酸含量32wt%)的100L塑料桶中缓慢加入25wt%氨水溶液18L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为6.0,即为肥料调节液。
将肥料调节液与水溶肥混合,两者按1:4(质量比)的比例混合,充分混匀后于55℃烘箱烘干至含水量降至10%,得到固体肥料产品,即得到有机-无机复混肥料。
所述水溶肥为市售产品,N-P 2O 5-K 2O比例为20-20-20。
对上述获得复混肥进行检测,N-P 2O 5-K 2O的比例为18-18-18,总养分≥50%,有机质含量≥5%,含水量≤12%。
实施例9
将利用上述实施例5处理后所得调节液与无机肥料原料、肥料辅料混合制备得复混肥:
将Vc生物发酵液经超滤分离、离子交换、三效蒸发、浓缩和古龙酸结晶等各步工序后的剩余残液(即废古龙酸母液)作为原料;
向含50L废古龙酸母液(母液比重1.40,古龙酸含量35wt%)的100L塑料桶中缓慢加入40%氢氧化钾溶液27L,再继续向塑料桶中缓慢加入10wt%氨水溶液5L,加入过程中充分搅拌以防止局部过热,反应过程中保证溶液温度不高于60℃,调节反应体系pH为7.0,即为肥料调节液产品5;
将10L肥料调节液与无机肥料原料、肥料辅料混合,三者按1:5:0.5(质量比)混合,充分混匀后得到液体有机肥料产品,即得到复混肥料。
所述无机肥料原料为尿素21Kg,磷酸二氢氨16Kg,硝酸钾21Kg,硫酸镁5Kg,普钙6Kg四水氯化亚锰0.2Kg、硫酸亚铁0.2Kg、硫酸锌0.2Kg、二水钼酸铵0.2Kg、五水硫酸铜0.2Kg。
对上述获得复混肥进行检测,N-P 2O 5-K 2O的比例为11-11-11,总养分≥30%,有机质含量≥5%。
2.土壤调理剂调节液及制备土壤调理剂的实施例:
实施例10
将维生素C生物发酵液经超滤分离、离子交换、浓缩和古龙酸结晶等各步工序后的剩余液即古龙酸母液作为原料;
向含50L古龙酸母液(母液比重1.34,古龙酸含量28wt%)的100L塑料桶中缓慢加入40%wt氢氧化钾溶液19L,加入过程中充分搅拌以防止局部过热,反应过程中保持反应液温度不高于60℃,反应时间为20分钟,调节后所得调节液pH为3.0。进一步取80Kg调节 液与50Kg50目稻壳粉充分混拌10分钟,混拌后的物料在烘箱中60℃烘干4小时,物料含水量20%,最后经粉碎机粉碎、过20目筛后即得到土壤调理剂产品1。
实施例11
将维生素C生物发酵液经超滤分离、离子交换、浓缩和古龙酸结晶等各步工序后的剩余液即古龙酸母液作为原料;
向含50L古龙酸母液(母液比重1.32,古龙酸含量22wt%)的100L塑料桶中缓慢加入25wt%氨水20L,加入过程中充分搅拌以防止局部过热,反应过程中确保溶液温度不高于60℃,反应时间为30分钟,调节后所得调节液pH为5.9。进一步取80Kg调节液与20Kg100目秸秆粉充分混拌20分钟,混拌后的物料在烘箱中50℃烘干8小时,物料含水量17%,最后经粉碎机粉碎、过20目筛后即得到土壤调理剂产品2。
实施例12
将维生素C生物发酵液经超滤分离、离子交换、浓缩和古龙酸结晶等各步工序后的剩余液即古龙酸母液作为原料;
向含50L古龙酸母液(母液比重1.40,古龙酸含量33wt%)的100L塑料桶中缓慢加入25wt%氨水10L,再缓慢加入氢氧化钙9.5Kg,加入过程中充分搅拌以防止局部过热,反应过程中确保溶液温度不高于60℃,反应时间为60分钟,调节后所得调节液pH为7.0。进一步取80Kg调节液与30Kg100目甘蔗渣粉充分混拌20分钟,混拌后的物料在烘箱中55℃烘干6小时,物料含水量16%,最后经粉碎机粉碎、过20目筛后即得到土壤调理剂产品3。
实施例13
将维生素C生物发酵液经超滤分离、离子交换、浓缩和古龙酸结晶等各步工序后的剩余液即古龙酸母液作为原料;
向含50L古龙酸母液(母液比重1.25,古龙酸含量18wt%)的100L塑料桶中缓慢加入固体氢氧化钾12Kg,再缓慢加入氢氧化钙4.6Kg,加入过程中充分搅拌以防止局部过热,反应过程中保持溶液温度不高于60℃,反应时间为60分钟,调节后所得调节液pH为8.8。进一步取70Kg调节液与60Kg 20目麦麸粉充分混拌20分钟,混拌后的物料在烘箱中50℃烘干5小时,物料含水量14%,最后经粉碎机粉碎、过20目筛后即得到土壤调理剂产品4。
实施例14
将维生素C生物发酵液经超滤分离、离子交换、浓缩和古龙酸结晶等各步工序后的剩余液即古龙酸母液作为原料;
向含50L古龙酸母液(母液比重1.30,古龙酸含量24wt%)的100L塑料桶中缓慢加入25wt%氨水5L,加入过程中充分搅拌以防止 局部过热,反应过程中确保溶液温度不高于60℃,反应时间为10分钟,调节后所得调节液pH为2.0。进一步取60Kg调节液与5Kg 200目稻壳粉充分混拌20分钟,该调节液经灌装后即为土壤调理剂产品5(液体型)。
实施例15
将维生素C生物发酵液经超滤分离、离子交换、浓缩和古龙酸结晶等各步工序后的剩余液即古龙酸母液作为原料,母液比重1.35,2-酮基-L-古龙酸含量为23%。2-酮基-L-古龙酸溶液,2-酮基-L-古龙酸含量为75%,其中2-酮基-L-古龙酸为工业产品。该废古龙酸母液或/和2-酮基-L-古龙酸溶液可直接作为调节液。两者按1:0.5(体积比)混合后即为土壤调理剂产品6(液体型)。
实施例16
购买市售的2-酮基-L-古龙酸产品(2-酮基-L-古龙酸含量≥95%),取该产品1000g溶解于4000g自来水中。在该溶液中加入25%氨水1.6L,加入过程中充分搅拌以防止局部过热,反应过程确保溶液温度不高于60℃,反应时间为10分钟,调节后所得调节液pH为6.2。将5Kg调节液与4Kg花生壳粉混拌后于55℃烘干10小时,物料含水量为19%。最后经粉碎后过50目筛,即得到土壤调理剂产品7。
3.利用上述土壤调理剂产品与土壤调理剂原料、无机肥料原料、市售土壤调理剂、无机肥料、有机肥料产品混合制备得复合调理剂。
实施例17
利用上述土壤调理剂产品与土壤调理剂原料、无机肥料原料、市售土壤调理剂、无机肥料、有机肥料产品混合制备得复合调理剂。
土壤调理剂产品1与市售化学源土壤调理剂产品按1:1(质量比)比例混合后,经粉碎、过20目筛得到复合调理剂产品1。
土壤调理剂产品3与市售有机源土壤调理剂产品按1:10(质量比)比例混合后经粉碎、过50目筛得到复合调理剂产品2。
土壤调理剂产品4与市售矿物源土壤调理剂产品按1:30(质量比)比例混合后经粉碎、过50目筛得到复合调理剂产品3。
土壤调理剂产品2与市售土壤保水剂产品按1:50(质量比)比例混合后过20目筛,得到复合调理剂产品4。
土壤调理剂产品3与市售有机肥料(采用沼渣、烟泥、淀粉渣、芝麻饼、菇渣、畜禽粪便、骨粉等优质有机原料,主要成分:有机质≥45%,N+P 2O 5+K 2O≥12%、pH 6.0-8.0、水份≤30%。)按1:2(质量比)的比例混合,充分混匀后经粉碎、过20目筛得到复合调理剂产品5。
土壤调理剂产品3与市售无机氮肥(尿素)、磷肥(过磷酸钙)、 钾肥(氯化钾)、复合肥(磷酸一铵)、中量元素肥料(氯化钾镁),按照1:20:10:10:5:5(质量比)的比例混合,充分混匀后经粉碎、过20目筛后得到复合调理剂产品6。
土壤调理剂产品2与无机肥料原料混合,二者按1:5(质量比)的比例混合,充分混匀后得到复合调理剂产品7。所述无机肥料原料为下述原料的混合物且过20目筛:尿素42Kg,磷酸二氢氨32Kg,硝酸钾21Kg,硫酸镁5Kg,普钙6Kg,四水氯化亚锰0.2Kg、硫酸亚铁0.2Kg、硫酸锌0.2Kg。
土壤调理剂产品1与土壤调理剂原料混合,二者按1:9(质量比)的比例混合,充分混匀后得到复合调理剂产品8。所述土壤调理剂原料为下述原料的混合物且过50目筛:膨润土,10Kg,脱硫石膏10Kg,聚丙烯酰胺5Kg。
土壤调理剂产品3与有机、无机肥料原料混合,二者按1:20(质量比)的比例混合,充分混匀后得到复合调理剂产品9。所述有机、无机肥料原料为下述物质的混合物且过20目筛:腐殖酸0.5Kg,腐熟牛粪5Kg,尿素5Kg,磷酸二氢钾2.5Kg。
应用例1
利用上述实施例1中的肥料调节液产品1做提高小白菜维生素C含量的试验:
将1.5kg的土壤放置于塑料盆(15cm高×20cm)。设置了2组处理:⑴施用肥料调节液产品1的盆栽(处理组);⑵自来水处理的盆栽(对照组)。每盆土壤均匀撒入大小一致的20粒小白菜种子,当小白菜发芽后至芽长2cm时,将每盆土壤的小白菜间苗至10棵。在小白菜培养期间处理组的每盆施浇75ml肥料调节液产品稀释液(稀释250倍的肥料调节液产品1),一周进行两次施浇,共施浇10次,对照组则用自来水来代替,其它条件一致。经过70d的盆栽实验,对每盆中的小白菜分别进行收获,清洗,晾干并称重。地上部分经粉碎均匀后测定小白菜维生素C含量。Vc含量测定采用2,6-二氯酚靛酚滴定法。结果显示,处理组显著增加了小白菜的产量(每盆9.74g显著增加到12.48g),增幅高达28.13%。维生素C含量被提高了55.6%(从85.6mg/Kg提高到了133.2mg/Kg),差异极显著。这表明在废古龙酸母液的作用下小白菜的品质得到显著提升。
应用例2
利用上述实施例2的肥料调节液产品2开展废古龙酸母液提高黄瓜维生素C含量的试验:
将1.5kg的土壤放置于塑料盆(15cm高×20cm)。设置了3组处理:(1)调节液产品2处理的黄瓜盆栽(处理组1);(2)自来水处理的黄瓜盆栽(对照组);(3)2-酮基-L-古龙酸溶液处理的黄瓜盆 栽(处理组2)。每盆中均匀撒入大小一致的4粒黄瓜种子,当黄瓜发芽后至芽长2cm时,将每盆土壤的黄瓜间苗至2棵。培养期间,处理组1的每盆施浇稀释300倍的调节液产品2,每次施浇200ml稀释液,一周进行两次,共施浇10次;2-酮基-L-古龙酸溶液处理组的每盆施浇稀释300倍的古龙酸溶液(2-酮基-L-古龙酸含量30wt%),每次施浇200ml稀释液,一周进行两次,共施浇10次;对照组则用自来水来代替,其它条件一致。经过60d的盆栽实验,对每盆中所产黄瓜分别进行收获,清洗,晾干并称重。黄瓜经取样并粉碎均匀后测定其中维生素C含量。维生素C含量测定采用2,6-二氯酚靛酚滴定法。
结果显示,与对照组相比,处理组1显著增加了黄瓜的产量,增幅达10.5%,维生素C含量被显著提高了20.1%;而处理组1的黄瓜维生素C含量与处理组2的黄瓜维生素C含量无显著差异,表明2-酮基-L-古龙酸能显著促进黄瓜维生素C含量提升。
应用例3
利用上述实施例3所得肥料调节液产品3,开展提高苹果维生素C含量的试验:
设置3组处理:(1)肥料调节液产品3处理的盆栽(处理组1);(2)自来水处理的盆栽(对照组);(3)2-酮基-L-古龙酸溶液处理的盆栽(处理组2)。苹果树选择4年生果树,每个处理5棵果树。当果树开花后,处理组1的每棵果树施浇稀释400倍的处理后的废古龙酸母液,每次施浇50升稀释液,每个月进行1次,共施浇5次;2-酮基-L-古龙酸溶液处理组的每棵果树施浇稀释400倍的古龙酸溶液(2-酮基-L-古龙酸含量25wt%),每次施浇50升稀释液,每个月进行1次,共施浇5次;对照组则用自来水代替,其它条件一致。经过5个月的大田实验,对各处理组的苹果进行采收,称重,测定维生素C含量。维生素C含量测定采用2,6-二氯酚靛酚滴定法。
结果显示,与对照组相比,处理组1增加了苹果的单果重量,平均增重16g,维生素C含量被显著提高了10.1%;而处理组1和处理组2的苹果维生素C含量无显著差异,表明2-酮基-L-古龙酸能显著促进苹果维生素C含量提升。
应用例4
以废古龙酸母液生产的调节液施用番茄试验。
试验方法:共设2个处理,每个处理3个重复。每个小区面积为4平方米,种植番茄80株。处理1为常规施肥,纯无机化肥,基肥亩施尿素20Kg、钙镁磷肥30Kg、氯化钾15Kg,其中氮肥60%基施,40%作追肥。处理2为在处理1常规施肥的基础上,在番茄苗移植后每隔10天冲施稀释400倍的实施例5的肥料调节液产品5。待果实 成熟后测定果实维生素C含量。
结果表明,调节液(实施例5的调节液产品5)促进了番茄的生长,提高了番茄中维生素C含量12%。
应用例5
以废古龙酸母液生产的调节液作为叶面肥喷施苹果试验。
试验方法:共设2个处理,每个处理10棵4年生苹果树。处理1为果树常规施肥,亩施尿素80Kg、钙镁磷肥30Kg、硫酸钾60Kg,其中氮肥50%基施,40%作追肥,钾肥50%基施,50%追肥。处理2为在处理1常规施肥的基础上,在苹果盛果期每隔10天用稀释600倍的实施例5的肥料调节液产品5喷施叶面。作为对照,处理1用等量的自来水喷施叶面。待果实成熟后测定果实维生素C含量。
结果表明,调节液(实施例5的肥料调节液产品5)喷施后的叶面光滑、颜色深绿,提高苹果中维生素C含量10%。
应用例6
以废古龙酸母液生产的调节液与无机肥料原料混合后作为复混肥施用茼蒿试验。
试验方法:共设2个处理,每个处理的茼蒿播种面积为3m×3m。处理1为对照组,处理2为基于废古龙酸母液的复混肥(实施例9中的复混肥料)组。两组的化肥成分和比例完全一样,施用方式是200倍水溶稀释后施用。待茼蒿收获后测定其茎杆维生素C含量。
结果表明,处理2的茼蒿生长快,茎杆中维生素C含量平均提高18%。
应用例7
以废古龙酸母液生产的调节液直接施用水稻试验。
试验方法:共设2个处理,每个处理的水稻种植面积为3m×3m,5个重复。处理1为对照组,处理2为基于废古龙酸母液的调节液组,所用调节液为实施例2中的肥料调节液产品2。两处理组的有机和无机化肥的施用成分和比例、施用时间及方式完全一样。处理2在水稻生长期,每隔20天以200倍水溶稀释后施用,亩施10L。待水稻收获后测定其脱粒大米中维生素C含量。
结果表明,处理2施用后的水稻长势好,抗倒伏,维生素C含量平均提高11%。
应用例8
利用上述实施例中的土壤调理剂产品1于盐碱土种植小白菜并提高小白菜产量和维生素C含量的试验:
供试土壤为粘壤性盐碱土(pH9.2,碱化度30%,含盐量0.6%),盆栽试验用塑料盆尺寸为15cm高×20cm。设置2组处理:⑴施用土壤调理剂产品1的盆栽(处理组),调理剂的施用量是150Kg,与1.35Kg 盐碱土充分混拌后装盆;⑵不施用土壤调理剂的盆栽(对照组)。每个处理各5盆。每盆土壤均匀撒入大小一致的25粒小白菜种子,当小白菜发芽后至芽长2cm时,将每盆土壤的小白菜间苗至10棵。在小白菜培养期间,各处理每周浇2次水,共浇水20次。其它水肥条件均一致。经过70d的盆栽实验,对每盆中的小白菜分别进行收获,清洗,晾干并称重。地上部分经粉碎均匀后测定小白菜维生素C含量。维生素C含量测定采用2,6-二氯酚靛酚滴定法。
结果显示,土壤调理剂产品降低了土壤pH值(从对照组的9.2降到处理组的8.9),降低土壤碱化度至16.0%(降幅46.7%),降低含盐量至0.3%(降幅50%),增加土壤细菌数量35.8%,显著增加小白菜的产量(对照组每盆9.20g(鲜重)显著增加到13.44g(鲜重),增幅高达46.1%),显著提高了维生素C含量(从437.0mg/Kg(鲜重)提高到了634.0mg/Kg(鲜重),提高了45.1%)。上述结果表明,在含古龙酸母液的土壤调理剂的作用下,土壤盐碱度降低、土壤微生物数量增加,小白菜的产量和品质均得到显著提升。
应用例9
利用上述实施例中土壤调理剂产品4于蔬菜大棚酸化、板结土壤种植黄瓜并提高黄瓜维生素C含量的试验:
供试土壤为蔬菜大棚酸化和板结土壤,土壤pH为5.3,土壤透气性差。盆栽试验用塑料盆尺寸为20cm高×30cm。设置2组处理:(1)施加上述实施例中土壤调理剂产品4的盆栽(处理组),每盆加入土壤调理剂100g,蔬菜大棚酸化土壤2.4Kg,混匀;(2)对照组盆栽(对照组),每盆加蔬菜大棚退化土壤2.5Kg。每个处理各5盆。每盆土壤均匀撒入大小一致的4粒黄瓜种子,当黄瓜发芽后至秧苗高2cm时,将每盆中的黄瓜秧苗间苗至2棵。培养期间,各处理的水肥条件一致。经过60d的盆栽实验,对每盆中所产黄瓜分别进行收获、清洗、晾干并称重。黄瓜经取样并粉碎后测定其中维生素C含量。维生素C含量测定采用2,6-二氯酚靛酚滴定法。
结果显示,与对照组相比,处理组土壤pH提高至5.6,显著减少土壤交换性酸(从5.7c mol/Kg降至4.8c mol/Kg),有效改善土壤酸度。降低土壤容重8.9%(对照组为1.218g/cm 3,处理组为1.109g/cm 3),增加土壤孔隙度7.3%(对照组孔隙度49.3%,处理组孔隙度52.9%),增加土壤大团聚体占比10.6%(对照组土壤大团聚体占比61.1%,处理组大团聚体占比67.6%),黄瓜产量获得显著增加,增幅达14.3%,黄瓜果实维生素C含量平均值则由54mg/Kg(鲜重)增加至66mg/Kg(鲜重),显著提高了22.2%,在统计学上差异极显著。
应用例10
利用上述实施例土壤调理剂产品2于连作农田土壤种植青椒并提高青椒维生素C含量的试验:
供试土壤为青椒连作农田土壤,盆栽试验用塑料盆尺寸为15cm高×20cm。设置2组处理:(1)施加实施例中土壤调理剂产品2的盆栽(处理组),每盆加入土壤调理剂100g,农田连作土壤1.4Kg,混匀;(2)对照组盆栽(对照组),每盆加农田连作土壤1.5Kg。每个处理各5盆。每盆栽种3株青椒苗。在青椒生长过程中各处理水肥管理完全一致。
经过80d的盆栽实验,对每盆中所产青椒分别进行收获、清洗、晾干并称重。青椒经取样并粉碎后测定其中维生素C含量。维生素C含量测定采用HPLC法。
结果显示,与对照组相比,处理组未发现明显的连作病害,显著增加了青椒的产量,增幅达19.2%,青椒果实的维生素C含量平均值从685mg/Kg(鲜重)提高到了1023mg/Kg(鲜重),显著提高了49.3%,在统计学上差异极显著。
应用例11
利用实施例中的土壤调理剂产品1做盐碱土种植番茄的试验:
试验方法:供试土壤为盐碱土(pH9.40,碱化度35%,含盐量0.6%)。共设2个处理组,每个处理组3个重复。每个小区面积为4平方米,种植番茄60株。处理1为常规施肥,肥料为无机化肥,基肥亩施尿素20Kg、钙镁磷肥30Kg、氯化钾15Kg,其中氮肥60%基施,40%作追肥。处理2为在处理1常规施肥的基础上,在番茄苗移植前施用实施例的土壤调理剂产品1,亩施量为200Kg。两个处理除施用土壤调理剂不同外,其它水肥管理措施均一致。
结果表明,土壤调理剂(土壤调理剂产品1)施用后,降低土壤pH至9.22,降低土壤碱化度至21%(降幅40.0%),降低含盐量至0.2%(降幅66.6%),明显改善了盐碱土壤酸碱度,增加土壤有机质(有机质1.4%,增幅9.5%)、有效磷(增幅13.7%)的含量。另外,土壤调理剂(土壤调理剂产品1)显著促进了番茄的生长,增加番茄产量8.0%,番茄果实的维生素C含量平均值从197mg/Kg(鲜重)提高到了273mg/Kg(鲜重),提高了38.6%,在统计学上差异极显著。
应用例12
利用实施例中的土壤调理剂产品4做蔬菜大棚酸化土壤种植茼蒿的试验:
试验方法:供试土壤为蔬菜大棚酸化土壤,有机质含量低,土壤板结、酸化严重(pH 4.9),作物产量低。共设2个处理组,每个处理组的茼蒿播种面积为3m×3m。处理1为对照组,处理2为土壤调理剂处理组,每个处理组3个重复。在播种茼蒿前,处理组按亩施 300Kg施用实施例1中土壤调理剂产品4。除此之外,两组的水肥管理一致。
结果表明,土壤调理剂产品4的施用,提高了土壤的pH(从4.9提高至5.5),显著减少土壤交换性酸(从6.2c mol/Kg降至5.5c mol/Kg),有效改善土壤酸度。降低土壤容重9.7%(对照组为1.207g/cm 3,处理组为1.090g/cm 3),增加土壤孔隙度6.1%(对照组孔隙度50.3%,处理组孔隙度52.7%),增加土壤大团聚体占比12.8%(对照组土壤大团聚体占比66.3%,处理组大团聚体占比74.8%),表明防治土壤板结效果明显。处理组茼蒿根壮苗旺,单位面积产量较对照组增产11.0%,处理组茎杆中维生素C含量平均为244mg/Kg(鲜重),较对照组(170mg/Kg(鲜重))提高43.5%,在统计学上差异极显著,说明调理后土壤促进了作物增产,提升了品质。
应用例13
利用实施例中的土壤复合调理剂产品5做养分贫瘠土壤种植葡萄的试验:
试验方法:葡萄种植土壤为养分贫瘠土壤,有机质含量低(0.8%)。共设2个处理,每个处理10棵4年生葡萄树。处理1为葡萄树常规施肥,亩施尿素60Kg、钙镁磷肥25Kg、硫酸钾35Kg。处理2为在处理1常规施肥的基础上,分别在葡萄开花期和盛果期,每株树距根部15~20厘米穴施1Kg上述实施例中的土壤复合调理剂产品5。每个处理除调理剂施用不同外,其它的水、肥、药的管理均一致。待果实成熟后测定果实维生素C含量。
结果表明,复合调理剂(土壤复合调理剂产品5)施用后,增加了葡萄树根际土壤有机质含量(较常规施肥增加7.5%),增加根际土壤中细菌数量34.0%,有效磷增加9.3%,碱解氮增加8.2%,表明复合调理剂的施用有效增加了土壤养分。调理剂处理组的葡萄树叶颜色深绿,果实口感甜,葡萄平均增产8.0%。葡萄中维生素C含量平均提高了11.5%(处理1葡萄果实中维生素C的平均含量为18.2mg/Kg,处理2葡萄果实中维生素C的平均含量为20.3mg/Kg),在统计学上差异极显著。
应用例14
利用实施例中的土壤复合调理剂产品9做沙化土壤种植苹果的试验:
试验方法:苹果地土壤为沙化土壤,有机质含量低(0.3%)。共设2个处理,每个处理10棵4年生苹果树。处理1为果树常规施肥,亩施尿素80Kg、钙镁磷肥30Kg、硫酸钾60Kg,其中氮肥60%基施,40%作追肥,钾肥50%基施,50%追肥。处理2为在处理1常规施肥的基础上,分别在苹果开花期和盛果期,每株果树在距根部45-50厘米处条施2Kg上述实施例中的土壤复合调理剂产品9。每个处理除调理 剂施用不同外,其它的水、肥、药的管理均一致。待果实成熟后测定果实维生素C含量。
结果表明,复合调理剂(土壤复合调理剂产品9)施用后,增加了树冠下土壤有机质含量(较常规施肥增加18.9%),土壤容重降低12.8%(处理1为1.420g/cm 3,处理2为1.238g/cm 3),水稳性团粒含量增加25.8%(处理1为36.3%,处理2为45.7%),明显改善了沙化土壤的养分和土壤物理结构。复合调理剂处理组的苹果树叶颜色深绿,果实口感脆甜,平均单果重增加6.4%(处理1为215.0g,处理2为228.8g),苹果中维生素C含量平均提高了18.0%(处理1苹果的维生素C平均含量为38.0mg/Kg,处理2苹果的维生素C平均含量为44.8mg/Kg),在统计学上差异极显著。
应用例15
利用实施例中的土壤调理剂产品1做水稻种植试验:
试验方法:试验地为东北潮棕壤水稻田。共设2个处理组,每个处理的水稻种植面积为3m×3m,5个重复。处理1为对照组,处理2为施用调理剂的处理组,所用调理剂为实施例中的土壤调理剂产品1。两处理组的有机和无机化肥的施用成分和比例、施用时间及方式完全一样。处理2在水稻生长期,每隔25天以200倍水溶解稀释土壤调理剂产品1后与灌溉水一起施用,每次施用量为20Kg/亩。处理1以等量的水代替土壤调理剂产品1,稀释和施用条件与处理2一样。待水稻收获后测定不同处理的土壤和作物相关指标。
结果表明,处理2的土壤中有效硅含量为405mg/Kg,较处理1(对照组)的土壤有效硅含量(330mg/Kg)增加22.7%。处理2的水稻长势好,抗倒伏,无稻瘟病害发生,稻米产量提高了7.4%,脱壳大米中维生素C含量平均值从6.34mg/Kg提高到7.37mg/Kg,提高了16.3%,在统计学上差异极显著。
应用例16
以废古龙酸母液生产的调节液作为叶面肥喷施银杏树试验。
试验方法:共设2个处理,每个处理10棵5年生银杏树。处理1为银杏树常规施肥,亩施尿素80Kg、钙镁磷肥20Kg、硫酸钾50Kg,其中氮肥60%基施,40%作追肥,钾肥40%基施,60%追肥。处理2为在处理1常规施肥的基础上,在银杏盛果期每隔10天用稀释600倍的实施例5的肥料调节液产品5喷施叶面,连续喷施3次。作为对照,处理1用等量的自来水喷施叶面。第3次喷施后5天,取银杏叶测定其中维生素C含量。
结果表明,调节液(实施例5的肥料调节液产品5)喷施后的银杏叶颜色深绿,维生素C含量达到109mg/100g,较对照(81mg/100g)提高34.6%。
应用例17
以废古龙酸母液生产的调节液作为冲施肥种植玫瑰花试验。
试验方法:采用盆栽试验,每盆种植1棵玫瑰树。共设2个处理,每个处理5盆。处理1为常规施肥,每盆施复合肥15g。处理2为在处理1常规施肥的基础上,在进入开花期前1个月,每隔10天用稀释600倍的实施例3的肥料调节液产品3浇施,连续浇施3次。作为对照,处理1用等量的自来水浇施。除此之外,两个处理的其他水肥条件均一致。第3次浇施后10天,取玫瑰花叶片测定其中维生素C含量。
结果表明,调节液(实施例3的肥料调节液产品3)喷施后的玫瑰花叶的颜色深,叶片厚。花瓣维生素C含量达到15.2mg/100g,较对照(11.9mg/100g)提高27.7%。
以上所述的仅是本发明的优选实施方案,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变化和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种提高植物维生素C含量的调节液、肥料和土壤调理剂,其特征在于:经碱性溶液调节废古龙酸母液或/和2-酮基-L-古龙酸溶液的pH值,即为调节液;其中,调节液pH值调节至3.0~9.0即为肥料调节液;调节液pH值调节至2.0~10.0即为土壤调理剂调节液;废古龙酸母液或/和2-酮基-L-古龙酸溶液可直接作为调节液。
  2. 按权利要求1所述的提高植物维生素C含量的调节液、肥料和土壤调理剂,其特征在于:所述碱性溶液为碱性试剂与水配成的10~50wt%浓度的溶液。其中,碱性试剂为氢氧化钠、氢氧化钾、液氨中的一种或几种混合。
  3. 按权利要求1所述的提高植物维生素C含量的调节液、肥料和土壤调理剂,其特征在于:所述2-酮基-L-古龙酸为化学合成或生物合成所得。
  4. 按权利要求1所述的提高植物维生素C含量的调节液、肥料和土壤调理剂,其特征在于:所述肥料调节液的pH值的调节范围是5.5~7.5;所述土壤调理剂调节液的pH值的调节至范围是3.5~8.5。
  5. 一种权利要求1所述提高植物维生素C含量的调节液、肥料和土壤调理剂的制备方法,其特征在于:经碱性溶液调节废古龙酸母液或/和2-酮基-L-古龙酸溶液的pH值,即为调节液。其中,调节液pH值调节至3.0~9.0即为肥料调节液;调节液pH值调节至2.0~10.0即为土壤调理剂调节液。
  6. 一种权利要求1所述的提高植物维生素C含量的调节液、肥料和土壤调理剂的应用,其特征在于:所述肥料调节液在提高植物维生素C含量和作物产量中的应用;以及所述土壤调理剂调节液在制备土壤调理剂中的应用。
  7. 按权利要求6所述的应用,其特征在于:所述肥料调节液可作为肥料单独施用,或与化学肥料、有机肥料、生物肥料、肥料原料、肥料辅料中的一种或几种混合施用。
  8. 按权利要求6所述的提高植物维生素C含量的调节液的应用,其特征在于:所述土壤调理剂在调节土壤环境并提高植物维生素C含量和产量中的应用。
  9. 按权利要求8所述的应用,其特征在于:所述土壤调理剂调节液与植物纤维按1:0~0.8(质量比)混合,得到土壤调理剂。
  10. 按权利要求9所述的应用,其特征在于:所述土壤调理剂可单独施用,或与其它土壤调理剂、化学肥料、有机肥料、生物肥料产品、土壤调理剂原料中的一种或几种混合作为复合调理剂施用。
PCT/CN2020/092068 2019-07-02 2020-05-25 提高植物维c的调节液、肥料和土壤调理剂及制备和应用 WO2021000665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/597,330 US20220315504A1 (en) 2019-07-02 2020-05-25 Regulating solution, fertilizer and soil conditioner for increasing vitamin c content of plants as well as preparation and application thereof
AU2021104231A AU2021104231A4 (en) 2019-07-02 2021-07-16 Regulating solution, fertilizer and soil conditioner for increasing vitamin c content of plants as well as preparation and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910588061.7A CN112142510A (zh) 2019-06-28 2019-07-02 一种提高农作物维生素c含量的调节液及其制备方法和应用
CN201910588061.7 2019-07-02
CN201911218824.5A CN112898982A (zh) 2019-12-03 2019-12-03 一种土壤调理剂及其制备方法和应用
CN201911218824.5 2019-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021104231A Division AU2021104231A4 (en) 2019-07-02 2021-07-16 Regulating solution, fertilizer and soil conditioner for increasing vitamin c content of plants as well as preparation and application thereof

Publications (1)

Publication Number Publication Date
WO2021000665A1 true WO2021000665A1 (zh) 2021-01-07

Family

ID=74100866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092068 WO2021000665A1 (zh) 2019-07-02 2020-05-25 提高植物维c的调节液、肥料和土壤调理剂及制备和应用

Country Status (3)

Country Link
US (1) US20220315504A1 (zh)
CN (1) CN112898982A (zh)
WO (1) WO2021000665A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113331004A (zh) * 2021-06-09 2021-09-03 安徽朴茂农业科技有限公司 一种增效剂盆栽实验方法
CN114561216A (zh) * 2022-03-11 2022-05-31 云南省化工研究院有限公司 一种利用中药材废料制备含生物碱土壤调理剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962814A (zh) * 2006-12-06 2007-05-16 中国科学院沈阳应用生态研究所 利用古龙酸母液生产的抗生土壤改良剂及其制备方法
CN103254019A (zh) * 2013-05-16 2013-08-21 辽宁普天科技有限公司 一种利用超滤蛋白渣生产土壤调理剂的方法
CN104710232A (zh) * 2013-12-16 2015-06-17 中国科学院沈阳应用生态研究所 一种以北虫草废弃培养基和维生素c发酵废弃物古龙酸母液生产有机肥及其制备方法
CN108184609A (zh) * 2017-12-20 2018-06-22 崔伟 一种梨树种植用营养土
CN109265215A (zh) * 2017-07-17 2019-01-25 何立肖 一种vc生产中古龙酸母液的处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962814A (zh) * 2006-12-06 2007-05-16 中国科学院沈阳应用生态研究所 利用古龙酸母液生产的抗生土壤改良剂及其制备方法
CN103254019A (zh) * 2013-05-16 2013-08-21 辽宁普天科技有限公司 一种利用超滤蛋白渣生产土壤调理剂的方法
CN104710232A (zh) * 2013-12-16 2015-06-17 中国科学院沈阳应用生态研究所 一种以北虫草废弃培养基和维生素c发酵废弃物古龙酸母液生产有机肥及其制备方法
CN109265215A (zh) * 2017-07-17 2019-01-25 何立肖 一种vc生产中古龙酸母液的处理方法
CN108184609A (zh) * 2017-12-20 2018-06-22 崔伟 一种梨树种植用营养土

Also Published As

Publication number Publication date
US20220315504A1 (en) 2022-10-06
CN112898982A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN103980052B (zh) 一种果树专用肥料及其制备方法
CN105254452A (zh) 一种用于果树的肥料及其制作方法
CN111574283A (zh) 一种微生物肥料及其制备方法
CN104892085A (zh) 一种柑桔专用生物有机肥及其制备方法
CN104355818A (zh) 西红柿无土栽培基质
CN106631396A (zh) 一种长秸秆类作物用的玉米秆酵素肥
WO2021000665A1 (zh) 提高植物维c的调节液、肥料和土壤调理剂及制备和应用
CN106831043A (zh) 一种西红柿无土栽培基质
CN108424272A (zh) 一种长效多功能复合微生物肥及其生产工艺
CN103044154A (zh) 一种腐植酸长效复混肥及其制备方法
CN104844376A (zh) 一种适合辣椒生长的有机复合肥料
CN1233597C (zh) 一种稀土腐植酸全价复合肥、其制备方法和应用
CN108424192A (zh) 一种南瓜酵素菌肥及其制备方法
CN102329166A (zh) 一种活化土壤、可免耕的水溶性复合肥料及其制备方法
CN111109029A (zh) 一种高钙水稻种植方法
CN101935246A (zh) 用于无土栽培的有机缓释肥及其加工方法
CN103951490A (zh) 一种棉花用有机无机生物复合肥
RU2268868C2 (ru) Жидкое комплексное удобрение и способ его получения
CN110818493A (zh) 一种利用硫脲废渣及单氰胺废渣制备的生物有机肥
CN106171746A (zh) 一种盐碱地种植和移植泡桐的方法
AU2021104231A4 (en) Regulating solution, fertilizer and soil conditioner for increasing vitamin c content of plants as well as preparation and application thereof
CN112142510A (zh) 一种提高农作物维生素c含量的调节液及其制备方法和应用
CN107739222A (zh) 一种草莓有机无土栽培复合基质
CN113004088A (zh) 一种抗重茬肥料及其制备方法
CN101747111A (zh) 绿色有机肥料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834404

Country of ref document: EP

Kind code of ref document: A1