WO2020261676A1 - トナーバインダー - Google Patents

トナーバインダー Download PDF

Info

Publication number
WO2020261676A1
WO2020261676A1 PCT/JP2020/012610 JP2020012610W WO2020261676A1 WO 2020261676 A1 WO2020261676 A1 WO 2020261676A1 JP 2020012610 W JP2020012610 W JP 2020012610W WO 2020261676 A1 WO2020261676 A1 WO 2020261676A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin
parts
temperature
toner
Prior art date
Application number
PCT/JP2020/012610
Other languages
English (en)
French (fr)
Inventor
将 本夛
宙 千葉
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2020567183A priority Critical patent/JP7028995B2/ja
Publication of WO2020261676A1 publication Critical patent/WO2020261676A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles

Definitions

  • the present invention relates to a toner binder.
  • a latent image based on color image information is formed on a latent image carrier such as an electrophotographic photosensitive member, the latent image is developed with a toner of a corresponding color, and then the toner image is developed.
  • a latent image carrier such as an electrophotographic photosensitive member
  • the latent image is developed with a toner of a corresponding color
  • the toner image is developed.
  • the toner first needs to maintain a stable charge amount, and then needs to have good fixability on paper. Further, since the apparatus has a heating body in the fixing portion, the temperature rises in the apparatus, so that the toner is required not to be blocked in the apparatus.
  • hot offset resistance is required.
  • multicolor images full color
  • black and white images monochrome
  • the toner binder has a great influence on the toner characteristics as described above, and polystyrene resin, styrene-acrylic resin, polyester resin, epoxy resin, polyurethane resin, polyamide resin and the like are known, but recently, heat resistance Polyester resin has attracted particular attention because it is easy to balance storage stability and fixability.
  • a technique for lowering the glass transition point of polyester resin is generally used.
  • the glass transition point is set too low, the hot offset resistance is lowered, and powder agglutination (blocking) is likely to occur, so that the heat-resistant storage stability of the toner is lowered.
  • This glass transition point is a design point of a toner binder (also referred to as a binder resin), and it is difficult to obtain a toner that can be fixed at a lower temperature by a method of lowering the glass transition point.
  • Patent Document 3 As another method, it is known that by using an amorphous polyester resin and a long-chain alkyl (meth) acrylate-based crystalline resin in combination, the low-temperature fixability of the toner is improved due to the melting characteristics of the crystalline resin.
  • Patent Document 3 if the content of the crystalline resin is increased, the resin strength may decrease, and the crystalline resin is amorphous due to the compatibility between the crystalline resin and the amorphous polyester resin during melt kneading, and as a result, the toner of the toner As the glass transition point is lowered, problems arise in the same hot offset resistance and heat storage stability of the toner as described above.
  • Patent Document 4 a method of reproducing the crystallinity of the crystalline polyester resin by heat treatment after the melt-kneading step
  • Patent Document 5 A method of reproducing crystallinity using (Patent Document 5) has been proposed.
  • the low-temperature fixability and glossiness of the toner can be ensured by such a method, the hot offset resistance, the fluidity of the toner, and the pulverizability at the time of pulverization are lowered, and the durability is particularly insufficient.
  • Patent Document 6 a method of coating a core portion containing a crystalline polyester resin with a shell layer of an amorphous polyester resin obtained by a melt suspension method or an emulsion aggregation method has also been proposed (Patent Document 6). Since the crystalline resin is compatible with the binding resin of the core and the reprecipitation of the crystals is insufficient in a short time, the image intensity after fixing is still insufficient.
  • Patent Document 7 a toner binder in which a polyester resin containing an unsaturated carboxylic acid as a constituent is crosslinked with carbon-carbon double bonds has been proposed.
  • Patent Document 7 a toner binder in which a polyester resin containing an unsaturated carboxylic acid as a constituent is crosslinked with carbon-carbon double bonds.
  • a toner binder that polymerizes a long-chain alkyl acrylate to lower the melt viscosity and combines a polyester resin containing an unsaturated carboxylic acid as a constituent is proposed.
  • Patent Documents 8 and 9 the organic solvent generated when the unsaturated carboxylic acid is crosslinked remains, so that the toner binder has an odor, and the charge retention rate under high temperature and high humidity is insufficient.
  • Japanese Unexamined Patent Publication No. 2005-77930 Japanese Unexamined Patent Publication No. 2012-98719 JP-A-2007-193069 Japanese Unexamined Patent Publication No. 2005-308995 International Publication No. 2015/170705 Japanese Unexamined Patent Publication No. 2011-197193 JP-A-2017-003985 International Publication No. 2018/110593 International Publication No. 2019/073731
  • the present invention maintains heat-resistant storage property, charge retention rate (particularly charge retention rate under high temperature and high humidity), blocking property, image strength, pulverizability, odor and durability while maintaining low temperature fixability and hot offset resistance.
  • the purpose is to provide an excellent toner binder that satisfies all requirements.
  • the present invention is a toner binder containing a polyester resin (A) and a crystalline vinyl resin (B), in which the polyester resin (A1) is crosslinked with an epoxy compound (E). It is a toner binder containing a resin.
  • the present invention while maintaining low temperature fixability and hot offset resistance, heat storage stability, charge retention rate (particularly charge retention rate under high temperature and high humidity), blocking property, image strength, crushability, odor and durability It becomes possible to provide a toner binder used for an excellent toner.
  • the toner binder of the present invention is a toner binder containing a polyester resin (A) and a crystalline vinyl resin (B), and the polyester resin (A) is crosslinked with the polyester resin (A1) by an epoxy compound (E). Contains the resin.
  • the toner binder of the present invention will be described in sequence.
  • the toner binder of the present invention is a toner binder containing a polyester resin (A) and a crystalline vinyl resin (B), and the polyester resin (A) is a polyester resin (A1) made of an epoxy compound (E). Contains crosslinked resin.
  • “crystallinity” means that the DSC curve has a maximum and has a clear endothermic peak in the process of raising the temperature of the differential scanning calorimetry obtained by differential scanning calorimetry (also referred to as DSC measurement). To say.
  • amorphous means that the DSC curve does not have a clear endothermic peak.
  • the polyester resin (A) in the present invention contains a resin in which the polyester resin (A1) is crosslinked with the epoxy compound (E) as an essential component.
  • the polyester resin (A1) is a polyester resin obtained by reacting a polyol component (x) with a polycarboxylic acid component (y) as raw materials, and reacts with an epoxy compound (E) to form a crosslinked structure. If so, the composition of the resin is not particularly limited.
  • the polyester resin (A1) may be used alone or in combination of two or more.
  • the polyester resin (A1) is a resin obtained by polycondensing a polyol component (x) and a polycarboxylic acid component (y).
  • polyol component (x) of the polyester resin (A1) examples include a diol (x1) and a trivalent or higher-valent polyol (x2). These may be one kind alone or a combination of two or more kinds.
  • diol (x1) examples include alkylene glycols having 2 to 36 carbon atoms (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol, 3-methyl-1,3, 5-Pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol and 1,12 -Dodecanediol, etc.), alkylene ether glycols with 4 to 36 carbon atoms (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, etc.), alicyclic diols with 6 to 36 carbon atoms (1,4-Cyclohe
  • alkylene oxide adduct of bisphenols is obtained by adding an alkylene oxide (hereinafter, “alkylene oxide” may be abbreviated as AO) to bisphenols.
  • alkylene oxide may be abbreviated as AO
  • Examples of bisphenols include those represented by the following general formula (1).
  • HO-Ar-P-Ar-OH (1) [In the formula, P represents an alkylene group having 1 to 3 carbon atoms, -SO 2- , -O-, -S- or a direct bond, and Ar represents a halogen atom or an alkyl group having 1 to 30 carbon atoms. Represents a phenylene group which may be substituted with. ]
  • bisphenols include bisphenol A, bisphenol F, bisphenol B, bisphenol AD, bisphenol S, trichlorobisphenol A, tetrachlorobisphenol A, dibromobisphenol F, 2-methylbisphenol A, and 2,6-dimethylbisphenol.
  • a and 2,2'-diethylbisphenol F and the like can be mentioned, and two or more of these can be used in combination.
  • alkylene oxide added to the bisphenols examples include alkylene oxides having 2 to 30 carbon atoms, for example, ethylene oxide (hereinafter, “ethylene oxide” may be abbreviated as EO), 1,2- or 1,3. -Propylene oxide (“1,2-propylene oxide” may be abbreviated as PO below), 1,2-, 2,3-, 1,3- or iso-butylene oxide, tetrahydrofuran, and these. The combination of two or more of the above can be mentioned.
  • alkylene glycols having 2 to 36 carbon atoms and alkylene oxide adducts of aromatic diols are preferable from the viewpoint of low temperature fixability and heat storage stability, and alkylene glycols and bisphenols having 2 to 10 carbon atoms are preferable.
  • the alkylene oxide adduct of the same kind preferably 2 to 5 moles
  • the alkylene glycol adduct having 2 to 6 carbon atoms and the alkylene oxide adduct of bisphenol A preferably 2 to 5 moles.
  • an EO and / or PO adduct of bisphenol A is particularly preferable.
  • trivalent or higher-valent polyols examples include aliphatic polyhydric alcohols having trivalent or higher valences having 3 to 36 carbon atoms, saccharides and derivatives thereof, and AO adducts of aliphatic polyhydric alcohols (average number of moles added is It preferably contains 1 to 30), AO adducts of trisphenols (trisphenol PA, etc.) (average number of moles added is preferably 2 to 30), novolak resin (phenol novolac, cresol novolak, etc.), and has an average degree of polymerization. Is preferably 3 to 60) AO adduct (the average number of moles to be added is preferably 2 to 30) and the like.
  • Aliphatic polyhydric alcohols having trivalent or higher valences having 3 to 36 carbon atoms include alkane polyols and their intramolecular or intermolecular dehydrations, such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, and the like. Examples thereof include sorbitol, sorbitan, polyglycerin and dipentaerythritol. Examples of saccharides and derivatives thereof include sucrose and methyl glucoside.
  • an aliphatic polyhydric alcohol having a trivalent or higher valence having 3 to 36 carbon atoms and a novolak resin (novolac resin) It contains phenol novolac, cresol novolac, etc., and has an AO adduct having an average degree of polymerization of preferably 3 to 60) (preferably having an average added molar number of 2 to 30), and is a trivalent fat having 3 to 8 carbon atoms.
  • Group polyhydric alcohols are more preferred, and trimethylolpropane is particularly preferred.
  • the diol (x1) in the polyol component (x) of the polyester resin (A1) is preferably 80 to 100 mol%.
  • the molar ratio [(x1) / (x2)] of the diol (x1) and the trivalent or higher polyol (x2) is hot-resistant. From the viewpoint of offset property, 80/20 to 99/1 is preferable, and 85/15 to 98/2 is more preferable.
  • a monool component can be contained in addition to the above-mentioned polyol component (x), if necessary.
  • monools include linear or branched alkyl alcohols having 1 to 30 carbon atoms (methanol, ethanol, isopropanol, 1-decanol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, arachidyl alcohol, behenyl alcohol, lignoceryl alcohol and the like. ) Etc. can be mentioned.
  • linear or branched alkyl alcohols having 8 to 24 carbon atoms are preferable, linear alkyl alcohols having 8 to 24 carbon atoms are more preferable, and dodecyl alcohols and stearyl alcohols are preferable from the viewpoint of image strength and heat storage stability.
  • Arachidyl alcohol, behenyl alcohol and lignoceryl alcohol are more preferred.
  • polycarboxylic acid component (y) of the polyester resin (A1) examples include a dicarboxylic acid (y1) and a trivalent or higher valent polycarboxylic acid (y2). These may be one kind alone or a combination of two or more kinds.
  • dicarboxylic acid (y1) examples include aromatic dicarboxylic acids having 8 to 36 carbon atoms (phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.) and aliphatic dicarboxylic acids having 2 to 50 carbon atoms (oxalic acid, malonic acid, etc.).
  • the ester-forming derivative means a carboxylic acid anhydride, an alkyl (methyl, ethyl, butyl, stearyl, etc. having 1 to 24 carbon atoms, preferably one having 1 to 4 carbon atoms) ester and a partially alkyl ester. ..
  • dicarboxylic acids (y1) aromatic dicarboxylic acids having 8 to 36 carbon atoms and aliphatic dicarboxylic acids having 2 to 50 carbon atoms, from the viewpoint of achieving both low-temperature fixability, hot offset resistance and heat-resistant storage stability, Alkendicarboxylic acids having 4 to 36 carbon atoms are preferable, phthalic acid, terephthalic acid, isophthalic acid, adipic acid, succinic acid, maleic acid and fumaric acid are more preferable, and phthalic acid, terephthalic acid, isophthalic acid, adipic acid and fumaric acid. Is more preferable, and phthalic acid, adipic acid, and terephthalic acid are particularly preferable. Further, it may be an anhydride or a lower alkyl ester of these acids.
  • Examples of the trivalent or higher polycarboxylic acid (y2) include trivalent or higher aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid, pyromellitic acid, etc.) and aliphatic groups having 6 to 36 carbon atoms (alicyclic). Examples thereof include tricarboxylic acids (including formulas) (hexanetricarboxylic acids, decantricarboxylic acids, etc.) and ester-forming derivatives thereof.
  • aromatic polycarboxylic acids having 9 to 20 carbon atoms are preferable from the viewpoint of achieving both low-temperature fixability and hot offset resistance, and trimellitic acid and pyromerit. Acids are more preferred. Further, it may be an anhydride or a lower alkyl ester of these acids.
  • the dicarboxylic acid (y1) in the polycarboxylic acid component (y) of the polyester resin (A1) is preferably 80 to 100 mol%.
  • the molar ratio of the dicarboxylic acid (y1) and the trivalent or higher polycarboxylic acid (y2) [(y1) / (y2). )] is preferably 80/20 to 99/1, more preferably 85/15 to 98/2, from the viewpoint of hot offset resistance.
  • a monocarboxylic acid component can be contained in addition to the polycarboxylic acid component (y), if necessary.
  • the monocarboxylic acid include aromatic monocarboxylic acids having 7 to 37 carbon atoms (benzoic acid, toluic acid, 4-ethylbenzoic acid, 4-propyl benzoic acid, etc.) and aliphatics having 2 to 50 carbon atoms (aliphatic type).
  • Monocarboxylic acids including acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid and behenic acid, etc.
  • Etc. can be mentioned.
  • aromatic monocarboxylic acids having 7 to 37 carbon atoms are preferable, and benzoic acid is more preferable, from the viewpoint of image strength and heat storage stability.
  • the polyester resin (A1) in the present invention can be produced in the same manner as a known polyester resin production method.
  • the reaction temperature of the polyol component (x) and the polycarboxylic acid component (y) in an inert gas (nitrogen gas or the like) atmosphere is preferably 150 to 280 ° C, more preferably 160 to 250 ° C, still more preferable.
  • the reaction time is preferably 30 minutes or more, more preferably 2 to 40 hours, from the viewpoint of reliably performing the polycondensation reaction. It is also effective to reduce the pressure in order to improve the reaction rate at the end of the reaction.
  • esterification catalysts include tin-containing catalysts (eg dibutyltin oxide, etc.), antimony trioxides, titanium-containing catalysts [eg titanium alkoxide, potassium titanate oxalate, titanium terephthalate, titanium terephthalate alkoxide, JP-A-2006-243715.
  • tin-containing catalysts eg dibutyltin oxide, etc.
  • antimony trioxides titanium-containing catalysts [eg titanium alkoxide, potassium titanate oxalate, titanium terephthalate, titanium terephthalate alkoxide, JP-A-2006-243715.
  • titanium-containing catalysts eg titanium alkoxide, potassium titanate oxalate, titanium terephthalate, titanium terephthalate alkoxide, JP-A-2006-243715.
  • Intramolecular polycondensate, etc. ⁇ and catalysts described in JP-A-2007-11307 titanium tributoxyterephthalate, titanium triisopropoxyterephthalate, titanium diisopropoxyterephthalate, etc.), etc.]
  • zirconium-containing catalysts eg, zirconyl acetate, etc.
  • zinc acetate and the like e.g., zinc acetate and the like.
  • a titanium-containing catalyst is preferable.
  • a stabilizer may be added for the purpose of stably promoting the polymerization of polyester.
  • examples of the stabilizer include hydroquinone, methylhydroquinone, hindered phenol compounds and the like.
  • the weight ratio of the polyol component (x) and the polycarboxylic acid component (y) used in the polycondensation reaction is preferably 1/2 to 2/1 as the equivalent ratio ([OH] / [COOH]) of the hydroxyl group and the carboxy group. , More preferably 1 / 1.5 to 1.5 / 1, still more preferably 1 / 1.3 to 1.3 / 1.
  • the presence or absence of crystallinity of the polyester resin (A1) is not particularly limited, but it is preferably an amorphous polyester resin from the viewpoint of charge retention, image strength and durability.
  • the amorphous polyester resin is obtained by increasing the content of the branched monomer, for example, the monomer content such as the alkylene oxide adduct of bisphenols, as the polyol component (x) and the polycarboxylic acid component (y) to be used. be able to.
  • the polyester resin (A1) may be any of a linear polyester resin, a crosslinked polyester resin, or a mixture of the linear polyester resin and the crosslinked polyester resin, but from the viewpoint of hot offset resistance, image strength and durability.
  • the crosslinked polyester resin uses a trivalent or higher polyol (x2) and / or a trivalent or higher polycarboxylic acid (y2) as the polyol component (x) and polycarboxylic acid component (y) of the polyester resin (A1). By doing so, it can be manufactured.
  • the peak top molecular weight of the polyester resin (A1) (hereinafter, may be abbreviated as Mp) has low temperature fixability, glossiness, toner fluidity, heat storage stability, pulverizability, image strength after fixing, and bending resistance. From the viewpoint of property and document offset property, 2,000 to 200,000 is preferable, more preferably 2,500 to 100,000, still more preferably 3,000 to 60,000, and particularly preferably 5,000 to 30, It is 000.
  • the Mp of the polyester resin (A1) is measured by gel permeation chromatography (GPC) under the following conditions.
  • a calibration curve is prepared using a standard polystyrene sample by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the samples are separated by GPC, and the count number of the separated samples is measured at each holding time.
  • a chart of the molecular weight distribution of the sample is created from the logarithmic value of the calibration curve and the obtained count number.
  • the maximum peak value in the molecular weight distribution chart is the peak top molecular weight Mp. If there are a plurality of peaks in the molecular weight distribution chart, the maximum value among those peaks is defined as the peak top molecular weight (Mp).
  • Mp peak top molecular weight
  • the peak top molecular weight Mp, the number average molecular weight (hereinafter, may be abbreviated as Mn), and the weight average molecular weight (hereinafter, may be abbreviated as Mw) of the polyester resin (A1) are GPCs. It can be measured under the following conditions.
  • the glass transition temperature (Tg) of the polyester resin (A1) is preferably ⁇ 35 to 60 ° C., more preferably ⁇ 15 to 58 ° C., and even more preferably 15 to 15 ° C. from the viewpoint of low temperature fixability, heat storage stability, and image intensity. It is 58 ° C., particularly preferably 15 to 55 ° C., and most preferably 25 to 45 ° C. Tg is measured by a method (DSC method) specified in ASTM D3418-82 using a differential scanning calorimeter (DSC).
  • DSC method differential scanning calorimeter
  • the acid value of the polyester resin (A1) is preferably 5 to 50 mgKOH / g from the viewpoints of low temperature fixability, charge retention rate (particularly charge retention rate under high temperature and high humidity), blocking property, pulverizability and image strength. It is preferably 8 to 48 mgKOH / g, more preferably 10 to 48 mgKOH / g, particularly preferably 10 to 45 mgKOH / g, and most preferably 15 to 40 mgKOH / g.
  • the acid value can be measured by the method specified in JIS K0070.
  • the softening point (T1 / 2) measured by the flow tester of the polyester resin (A1) is preferably 50 to 130 ° C., more preferably 60 to 125 ° C., and further preferably 65 to 120 ° C.
  • the softening point (T1 / 2) is measured by the following method. Using a descent type flow tester ⁇ for example, CFT-500D manufactured by Shimadzu Corporation ⁇ , a load of 1.96 MPa was applied by a plunger while heating 1 g of the measurement sample at a temperature rising rate of 6 ° C./min.
  • the polyester resin (A1) does not contain a THF insoluble matter from the viewpoint of low temperature fixability.
  • the content of the THF-insoluble matter is preferably 1% by weight or less, more preferably 0.1 to 1.0% by weight.
  • the content (% by weight) of the THF-insoluble content of the polyester resin (A1) in the present invention was determined by the following method. 50 mL of THF is added to 0.5 g of the sample, and the mixture is stirred and refluxed for 3 hours. After cooling, the insoluble matter is filtered off with a glass filter, and the resin component on the glass filter is dried under reduced pressure at 80 ° C. for 3 hours. The weight of the dried resin on the glass filter is defined as the weight of THF insoluble, and the weight obtained by subtracting the weight of THF insoluble from the weight of the sample is defined as the weight of THF insoluble and THF soluble. Calculate the weight percent of the minute. For the crystalline vinyl resin (B) and the toner binder, which will be described later, the content of the THF insoluble matter can be determined by the same method as described above.
  • the epoxy compound (E) is not particularly limited as long as it has an epoxy group in the molecule, but from the viewpoint of hot offset resistance and heat storage stability, it is a polyfunctional compound having two or more epoxy groups in the molecule. Epoxy compounds are preferred. Examples of the polyfunctional epoxy compound include aromatic polyepoxy compounds, heterocyclic polyepoxy compounds, alicyclic polyepoxy compounds, and aliphatic polyepoxy compounds. The epoxy compound (E) may be used alone or in combination of two or more.
  • aromatic polyepoxy compound examples include a glycidyl ether compound of a polyhydric phenol, a glycidyl ester compound of an aromatic polyvalent carboxylic acid, a glycidyl aromatic polyamine, and other aromatic polyepoxy compounds.
  • polyhydric phenol glycidyl ether form examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, bisphenol B diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, halogenated bisphenol A diglycidyl ether, and tetrachloro.
  • Examples of the glycidyl ester of an aromatic polyvalent carboxylic acid include phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, and terephthalic acid diglycidyl ester.
  • Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N', N'-tetraglycidylxylylenediamine and N, N, N', N'-tetraglycidyldiphenylmethanediamine.
  • aromatic polyepoxy compounds include triglycidyl ether of p-aminophenol, tolylene diisocyanate, diglycidyl urethane compound obtained by the addition reaction of diphenylmethane diisocyanate and glycidol, and the above two reactants obtained by reacting polyol. Also includes a glycidyl group-containing polyurethane (pre) polymer and a diglycidyl ether compound of the AO adduct of bisphenol A.
  • pre glycidyl group-containing polyurethane
  • heterocyclic polyepoxy compound examples include trisglycidyl melamine.
  • Examples of the alicyclic polyepoxy compound include vinylcyclohexendioxide, limonendioxide, dicyclopentadiendioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxydicyclopentyl ether, and 3,4-epoxycyclohexyl.
  • the alicyclic polyepoxy compound also includes a nuclear hydrogenated product of the aromatic polyepoxy compound.
  • Examples of the aliphatic polyepoxy compound include a polyglycidyl ether form of an aliphatic polyhydric alcohol, a polyglycidyl ester form of an aliphatic polyvalent carboxylic acid, and a glycidyl aliphatic amine.
  • Polyglycidyl ethers of aliphatic polyhydric alcohols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol.
  • Diglycidyl ether polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether and the like. Be done.
  • polyglycidyl ester of the aliphatic polyvalent carboxylic acid examples include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate and diglycidyl pimerate.
  • the glycidyl aliphatic amine examples include N, N, N', N'-tetraglycidyl hexamethylenediamine and the like.
  • the aliphatic polyepoxy compound also includes a (co) polymer of diglycidyl ether and glycidyl (meth) acrylate.
  • aromatic polyepoxy compounds from the viewpoint of hot offset resistance and heat storage stability, aromatic polyepoxy compounds, alicyclic polyepoxy compounds, and aliphatic polyepoxy compounds are preferable, and more preferable.
  • aromatic polyepoxy compound more preferably a novolak type epoxy resin or a bisphenol A type epoxy resin.
  • the above-mentioned epoxy compound (E) may be used alone or in combination of two or more.
  • the epoxy compound (E) in the present invention preferably has an epoxy equivalent of 150 to 1000 (g / eq, the same applies hereinafter), more preferably 160 to 500, and even more preferably 170 to 300. If the epoxy equivalent of the epoxy compound (E) is less than 150, the charge retention rate may be insufficient, while if it is larger than 1000, the image intensity and durability may be insufficient.
  • the polyester resin (A) in the present invention is obtained by adding an epoxy compound (E) to the polyester resin (A1) obtained by the above-mentioned production method or the like and reacting the polyester resin (A1) with the epoxy compound (E).
  • a polyester resin (A) containing a crosslinked resin can be obtained.
  • the reaction is preferably carried out in an atmosphere of an inert gas (nitrogen gas or the like).
  • the reaction temperature is preferably 160 to 260 ° C, more preferably 170 to 250 ° C, and even more preferably 180 to 240 ° C.
  • the reaction time is preferably 3 minutes or longer, more preferably 30 minutes or longer, still more preferably 2 to 40 hours, from the viewpoint of ensuring the reaction.
  • a known epoxy reaction catalyst (tertiary amines, imidazoles, quaternary ammonium salts, etc.) can be added to the reaction between the polyester resin (A1) and the epoxy compound (E). Further, as the reactor, a normal batch reactor or a horizontal reactor (plus mill, kneader, extruder, etc.) can also be used.
  • the polyester resin (A) in the present invention it is also possible to react the polyester resin (A1) with the epoxy compound (E) in the presence of the crystalline vinyl resin (B) described later.
  • the polyester resin (A1) By cross-linking the polyester resin (A1) with the epoxy compound (E) in the presence of the crystalline vinyl resin (B), low temperature fixability, hot offset resistance, and charge retention rate (particularly charge retention rate under high temperature and high humidity). ), A toner binder having excellent blocking properties and durability can be obtained. Therefore, the present invention includes a toner binder obtained by reacting a polyester resin (A1) with an epoxy compound (E) in the presence of a crystalline vinyl resin (B), and a method for producing the same. The details of this manufacturing method will be described later.
  • the weight ratio of the epoxy compound (E) to the weight of the polyester resin (A1) is determined from the viewpoints of hot offset resistance, charge retention rate (particularly charge retention rate under high temperature and high humidity), blocking property, image strength and durability. It is preferably 1 to 42% by weight, preferably 1 to 40% by weight, more preferably 3 to 33% by weight, further preferably 5 to 31% by weight, and particularly preferably 7 to 30% by weight.
  • the polyester resin (A) contains a resin in which the polyester resin (A1) is crosslinked with the epoxy compound (E), but the polyester resin (A1) is an epoxy compound in a part of the polyester resin (A).
  • the resin crosslinked in (E) may be present, and a part of the unreacted uncrosslinked polyester resin (A1) may be contained.
  • the polyester resin (A) may contain any resin as long as the polyester resin (A1) is crosslinked with the epoxy compound (E), and may further contain the polyester resin (A1).
  • the toner binder of the present invention contains a crystalline vinyl resin (B).
  • the crystalline vinyl resin (B) is not particularly limited as long as it is a crystalline vinyl resin, but is preferably a polymer of a monomer composition containing the monomer (a), and the monomer (a). ) Is a (meth) acrylate having 21 to 40 carbon atoms having a chain hydrocarbon group. If the carbon number of the monomer (a) is less than 21, the heat-resistant storage stability may deteriorate, and if the carbon number is larger than 40, the low-temperature fixability may deteriorate.
  • a (meth) acrylate having a linear alkyl group (18 to 36 carbon atoms) [octadecyl (meth) acrylate, nonadecil (meth) acrylate, eicosyl (meth) acrylate, heneicosanyl (meth)) Acrylate, behenyl (meth) acrylate, lignoceryl (meth) acrylate, ceryl (meth) acrylate, montanyl (meth) acrylate, triacontyl (meth) acrylate, dotriaconta (meth) acrylate, etc.] and branched alkyl groups (18 to 36 carbon atoms).
  • (Meta) acrylate [2-decyltetradecyl (meth) acrylate, etc.] can be mentioned.
  • a (meth) acrylate having a linear alkyl group (18 to 36 carbon atoms) is preferable from the viewpoint of achieving both heat storage resistance, low temperature fixability, hot offset resistance, image strength and crushability of the toner.
  • a (meth) acrylate having a linear alkyl group (18 to 30 carbon atoms) is more preferable, and octadecyl (meth) acrylate (stearyl (meth) acrylate), eikosyl (meth) acrylate, and more preferably.
  • the monomer (a) may be used alone or in combination of two or more.
  • the crystalline vinyl resin (B) has a vinyl group in addition to the above-mentioned monomer (a) from the viewpoints of hot offset resistance, heat storage resistance, charge retention rate, image strength, crushability and durability of the toner. It may be a polymer of a monomer composition containing a monomer (b) having 6 or less carbon atoms.
  • a (meth) acrylic monomer having 6 or less carbon atoms [(meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl (meth) ) Acrylate and ethyl-2- (hydroxymethyl) acrylate, etc.], vinyl ester monomer with 6 or less carbon atoms [vinyl acetate, vinyl propionate, isopropenyl acetate, etc.], aliphatic hydrocarbon-based vinyl monomer with 6 or less carbon atoms [ Ethylene, propylene, butene, butadiene, isoprene and 1,5-hexadien, etc.], monomers having a nitrile group and having 6 or less carbon atoms [(meth) acrylonitrile, etc.] and the like can be mentioned.
  • (meth) acrylate methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, vinyl acetate, and (meth) acrylonitrile are preferred.
  • the monomer (b) may be used alone or in combination of two or more.
  • the crystalline vinyl resin (B) is a monomer composition containing a monomer (d) other than the above-mentioned monomer (a) and the monomer (b) from the viewpoint of heat storage resistance and hot offset resistance. It may be a polymer, and the monomer (d) includes a styrene-based monomer (d1) and a (meth) acrylic excluding the monomer (a) among the (meth) acrylic monomers having more than 6 carbon atoms.
  • a monomer (d4) having more than 6 carbon atoms and having a functional group of the seed and an ethylenically unsaturated bond is preferable.
  • the monomer (d) may be used alone or in combination of two or more.
  • styrene-based monomer (d1) examples include styrene and alkylstyrene having an alkyl group having 1 to 3 carbon atoms (for example, ⁇ -methylstyrene and p-methylstyrene).
  • Examples of the (meth) acrylic monomer (d2) include alkyl (meth) acrylates having an alkyl group having 4 to 17 carbon atoms [butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, etc.], Hydroxyalkyl (meth) acrylates with 4 to 17 carbon atoms in the alkyl group, aminoalkyl group-containing (meth) acrylates with 4 to 17 carbon atoms in the alkyl group [dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate Etc.], ester of unsaturated carboxylic acid having 8 to 20 carbon atoms and polyhydric alcohol [ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethyl propantri (Meta)
  • Examples of the vinyl ester monomer (d3) include aliphatic vinyl esters having 7 to 15 carbon atoms and aromatic vinyl esters having 9 to 15 carbon atoms (for example, methyl-4-vinylbenzoate).
  • a monomer having a urethane group (d41), a monomer having a urea group (d42), a monomer having an amide group (d43), and a monomer having an imide group (d44) A monomer having an allophanate group (d45), a monomer having a burette group (d46), and the like.
  • an alcohol having an ethylenically unsaturated bond having 2 to 22 carbon atoms (-2-hydroxyethyl methacrylate, vinyl alcohol, etc.) and an isocyanate having 1 to 30 carbon atoms are used.
  • examples thereof include a monomer reacted by a known method and a monomer obtained by reacting an alcohol having 1 to 26 carbon atoms with an isocyanate having an ethylenically unsaturated bond and having 2 to 30 carbon atoms by a known method. Be done.
  • the carbon number in the compound having an isocyanate group and the structure does not include the carbon number contained in isocyanate (NCO).
  • isocyanates having 1 to 30 carbon atoms include monoisocyanate compounds (benzenesulfonyl isocyanate, tosyl isocyanate, phenylisocyanate, p-chlorophenylisocyanate, butylisocyanate, hexylisocyanate, t-butylisocyanate, cyclohexylisocyanate, octylisocyanate, 2- Ethylhexyl isocyanate, dodecyl isocyanate, adamantyl isocyanate, 2,6-dimethylphenyl isocyanate, 3,5-dimethylphenyl isocyanate and 2,6-dipropylphenyl isocyanate, etc.), aliphatic diisocyanate compounds (trimethylene diisocyanate, tetramethylene diisocyanate, hexa) Methylene diisocyanate, pentamethylene diisocyanate,
  • Alcohols having 1 to 26 carbon atoms include methanol, ethanol, propanol, isopropyl alcohol, butanol, t-butyl alcohol, pentanol, heptanol, octanol, 2-ethylhexanol, nonanol, decanol, undecyl alcohol, lauryl alcohol and dodecyl.
  • Alcohol myristyl alcohol, pentadecyl alcohol, cetanol, heptadecanol, stearyl alcohol, isostearyl alcohol, ellaidyl alcohol, oleyl alcohol, linoleil alcohol, linolenyl alcohol, nonadecil alcohol, henei cosanol, behenyl alcohol, el Syl alcohol and the like can be mentioned.
  • isocyanate having 2 to 30 carbon atoms having an ethylenically unsaturated bond include 2-isocyanatoethyl (meth) acrylate and 2- [0- (1'-methylpropyrine amino) carboxyamino] ethyl (meth) acrylate.
  • Examples of the monomer having a urea group (d42) include amines having 3 to 22 carbon atoms [for example, primary amines (normal butylamine, t-butylamine, propylamine, isopropylamine, etc.) and secondary amines as monovalent amines. (Diethylamine, dinormal propylamine, dinormal butylamine, etc.), aniline, cyclohexylamine, etc.] and an isocyanate having an ethylenically unsaturated bond and having 2 to 30 carbon atoms are reacted by a known method. Can be mentioned.
  • an amine having 1 to 30 carbon atoms and a carboxylic acid having an ethylenically unsaturated bond having 3 to 30 carbon atoms (acrylic acid, methacrylic acid, etc.) are reacted by a known method. Examples thereof include the made monomer.
  • an carboxylic acid anhydride maleic anhydride, dialic anhydride, etc.
  • an carboxylic acid anhydride maleic anhydride, dialic anhydride, etc.
  • examples thereof include a monomer and a monomer obtained by reacting a primary amine having 1 to 30 carbon atoms with an anhydrous carboxylic acid having 4 to 10 carbon atoms having an ethylenically unsaturated bond by a known method.
  • Examples of the monomer having an allophanate group (d45) include a monomer obtained by reacting a monomer having a urethane group (d41) with an isocyanate having 1 to 30 carbon atoms by a known method.
  • Examples of the monomer having a burette group (d46) include a monomer obtained by reacting a monomer having a urea group (d42) with an isocyanate having 1 to 30 carbon atoms by a known method.
  • At least one functional group selected from the group consisting of a nitrile group, a urethane group, a urea group, an amide group, an imide group, an allophanate group and a burette group preferably a urethane group.
  • At least one functional group selected from the group consisting of a urea group, an amide group, an imide group, an allophanate group and a burette group can be introduced into the crystalline vinyl resin (B).
  • the method for introducing at least one functional group selected from the group consisting of a urethane group, a urea group, an amide group, an imide group, an allophanate group and a burette group into the crystalline vinyl resin (B) is described above.
  • the following methods can also be used.
  • the compound having an ethylenically unsaturated bond is selected as the monomer (a). ).
  • the other compound is reacted with the polymer of the compound having an ethylenically unsaturated bond and the monomer (a).
  • the "polymer of a compound having an ethylenically unsaturated bond and the monomer (a)” and the “other compound” are bonded to obtain a crystalline vinyl resin (B).
  • the "polymer of the compound having an ethylenically unsaturated bond and the monomer (a)" and the “other compound” are a urethane group, a urea group, an amide group, an imide group, and an allophanate group.
  • At least one functional group selected from the group consisting of a urethane group, a urea group, an amide group, an imide group, an allophanate group and a burette group is contained in the crystalline vinyl resin (B). Can be introduced in.
  • styrene styrene
  • butyl (meth) acrylate styrene
  • 2-ethylhexyl (meth) acrylate are preferable from the viewpoints of low-temperature fixability, heat-preservability, charge retention, grindability, and raw material price. It is a reaction product of 2-isocyanatoethyl (meth) acrylate and methanol and a reaction product of 2-isocyanatoethyl (meth) acrylate and dinormal butylamine, more preferably styrene or butyl (meth) acrylate, and further preferably. It is styrene.
  • the crystalline vinyl resin (B) may be a polymer of a monomer composition containing the above-mentioned monomer (a), monomer (b) and other monomers other than the monomer (d). Good.
  • the monomer other than the above-mentioned monomer (a), monomer (b) and monomer (d) include divinylbenzene and sodium alkylallyl sulfosuccinate.
  • the weight ratio of the monomer (a) in the monomer composition is preferably 30% by weight or more, more preferably 40% by weight or more, based on the total weight of the monomer composition. , More preferably 60% by weight. If the weight ratio of the monomer (a) is lower than 30% by weight, the low temperature fixability may deteriorate.
  • the upper limit of the weight ratio of the monomer (a) is preferably 99 weights based on the total weight of the monomer composition from the viewpoint of achieving both low temperature fixability, hot offset resistance and heat storage stability. % Or less, more preferably 95% by weight or less.
  • the weight ratio of the monomer (a) in the monomer composition is preferably 30 to 99% by weight, more preferably 40 to 99, based on the total weight of the monomer composition.
  • weight% more preferably 40-95% by weight, particularly preferably 60-95% by weight.
  • the monomer composition preferably contains the monomer (b), and more preferably contains the monomer (b) and the monomer (d).
  • the total weight ratio of the monomer (b) and the monomer (d) in the monomer composition may be 1 to 70% by weight based on the total weight of the monomer composition. It is preferably 1 to 60% by weight, more preferably 5 to 60% by weight, and particularly preferably 5 to 40% by weight.
  • the crystalline vinyl resin (B) is a method known for a monomer composition containing a monomer (a), a monomer (b) used as needed, and a monomer (d) (Japanese Patent Laid-Open No. 5). It can be produced by polymerizing according to the method described in -117330A. For example, it can be synthesized by a solution polymerization method in which the above-mentioned monomer is reacted with a radical reaction initiator (azobisisobutyronitrile or the like) in a solvent (toluene or the like). Moreover, you may use the known radical reaction initiator (c) as a radical reaction initiator.
  • the radical reaction initiator (c) is not particularly limited, and examples thereof include an inorganic peroxide (c1), an organic peroxide (c2), and an azo compound (c3). In addition, these radical reaction initiators can also be used in combination.
  • the inorganic peroxide (c1) is not particularly limited, and examples thereof include hydrogen peroxide, ammonium persulfate, potassium persulfate, and sodium persulfate.
  • the organic peroxide (c2) is not particularly limited, and is, for example, benzoyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t-butyl).
  • the azo compound (c3) is not particularly limited, and for example, 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 1,1'-azobis. (Cyclohexane-1-carbonitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile, 2,2'-azobis (2-methylbutyronitrile), azobisisobutyronitrile, etc. Can be mentioned.
  • organic peroxide (c2) is preferable because it has high initiator efficiency and does not produce toxic by-products such as cyanide.
  • the crystalline vinyl resin (B) satisfies the following relational expression (1) from the viewpoint of heat storage stability and charge retention rate.
  • Relational expression (1) 1.1 ⁇
  • SP (a) is a solubility parameter (hereinafter abbreviated as SP value) of the homopolymer of the monomer (a)
  • SP (x) is the monomer (a). It is the SP value of the polymer of all the monomers other than).
  • the SP value (cal / cm 3 ) 0.5 in the present invention is a value at 25 ° C. calculated by the method described in Polymer engineering and science Vol. 14, pages 151 to 154 by Robert F Fedors et al. Is. Further, from the viewpoint of heat-resistant storage stability when the toner is used, it is more preferable to satisfy 1.5 ⁇
  • the content of the THF insoluble component of the crystalline vinyl resin (B) is preferably 0 to 1.0% by weight, more preferably 0 to 0.5% by weight, from the viewpoint of low temperature fixability of the toner. Yes, more preferably 0 wt%.
  • the THF insoluble content can be measured by the method described above.
  • the acid value of the crystalline vinyl resin (B) is preferably 60 mgKOH / g or less, more preferably 40 mgKOH, from the viewpoint of the heat-resistant storage stability of the toner and the charge retention rate (particularly, the charge retention rate under high temperature and high humidity). It is less than / g, and more preferably 0 to 5 mgKOH / g.
  • the acid value of the crystalline vinyl resin (B) can be measured by the method specified in JIS K0070.
  • the number average molecular weight (Mn) of the THF-soluble component of the crystalline vinyl resin (B) is preferably 1,000 to 300,000 from the viewpoint of achieving both low-temperature fixability and heat-resistant storage stability of the toner.
  • the weight average molecular weight (Mw) of the THF-soluble component of the crystalline vinyl resin (B) is 1,000 to 300,000 from the viewpoint of achieving both low-temperature fixability of the toner, hot offset resistance and heat-resistant storage stability. Is preferable, 10,000 to 100,000 is more preferable, and 15,000 to 70,000 is even more preferable.
  • the Mn and Mw of the crystalline vinyl resin (B) can be measured by the method described above.
  • the toner binder of the present invention contains the polyester resin (A) and the crystalline vinyl resin (B) described above.
  • the weight ratio [(A1): (B)] of the polyester resin (A1) and the crystalline vinyl resin (B) is from the viewpoint of achieving both low temperature fixability, hot offset resistance and heat storage stability. Therefore, it is preferably 8:92 to 80:20, more preferably 10:90 to 70:30, further preferably 15:85 to 65:35, and particularly preferably 20:80 to 60:40. Is.
  • the method for producing the toner binder is not particularly limited as long as the polyester resin (A) and the crystalline vinyl resin (B) are uniformly mixed.
  • the polyester resin (A) and the crystalline vinyl resin (B) can be mixed by a known mixing method to produce a toner binder.
  • Known mixing methods include, for example, powder mixing, melt mixing, solvent mixing and the like.
  • the polyester resin (A) and the crystalline vinyl resin (B) may be mixed at the same time together with other necessary toner raw materials when producing the toner.
  • Examples of the mixing device for powder mixing include a Henschel mixer, a Nauter mixer, a Banbury mixer and the like.
  • a Henschel mixer is preferred.
  • Examples of the mixing device in the case of melt mixing include a batch type mixing device such as a reaction tank and a continuous mixing device.
  • a continuous mixing device is preferable for uniform mixing at an appropriate temperature in a short time.
  • Examples of the continuous mixing device include a static mixer, an extruder, a continuous sneaker, and a three-roll device.
  • a solvent mixing method a method of dissolving the polyester resin (A) and the crystalline vinyl resin (B) in a solvent (ethyl acetate, THF, acetone, etc.), homogenizing the solvent, and then removing the solvent and pulverizing the solvent, or polyester.
  • a solvent ethyl acetate, THF, acetone, etc.
  • examples thereof include a method in which the resin (A) and the crystalline vinyl resin (B) are dissolved in a solvent (ethyl acetate, THF, acetone, etc.), dispersed in water, and then granulated and desolved.
  • the polyester resin (A1) and the epoxy compound (E) are crosslinked after or while being mixed in the presence of the crystalline vinyl resin (B) to obtain the polyester resin.
  • a toner binder containing (A) and crystalline vinyl (B) can also be obtained.
  • a method for producing a toner binder containing the resin and the crystalline vinyl (B) is also included in the present invention.
  • a mixture of polyester resin (A1) and vinyl resin (B) is injected into a twin-screw extruder at a constant rate, and at the same time, epoxy compound (E) is also injected at a constant rate to a temperature of 100 to 200 ° C.
  • epoxy compound (E) is also injected at a constant rate to a temperature of 100 to 200 ° C.
  • the reaction raw materials such as polyester resin (A1) and vinyl resin (B) charged or injected into the twin-screw extruder are directly injected into the extruder as they are without cooling the reacted resins from the molten state.
  • the resin once produced may be cooled and crushed, and the resin may be supplied to a twin-screw extruder.
  • the method of melt-mixing is not limited to these specifically exemplified methods, and for example, an appropriate method such as a method of charging a raw material in a reaction vessel, heating it to a temperature at which it becomes a melted state, and mixing the raw materials is used. Of course you can do it.
  • the polyester resin (A1) and the crystalline vinyl resin (B) are preferably 8:92 to 80:20, more preferably 10:90 to, from the viewpoint of achieving both low-temperature fixability, hot offset resistance, and heat-resistant storage stability. It is 70:30, more preferably 15:85 to 65:35, and particularly preferably 20:80 to 60:40.
  • Such a toner binder can be obtained by setting the weight ratio [(A1): (B)] of the polyester resin (A1) and the crystalline vinyl resin (B) used in the production to the above range.
  • the toner binder of the present invention may contain a resin other than the polyester resin (A) and the vinyl resin (B), and a known additive (release agent, etc.).
  • the toner binder of the present invention preferably has at least one endothermic peak top temperature (Tm) in the range of 40 to 100 ° C. in the differential scanning calorimetry curve obtained by differential scanning calorimetry (also referred to as DSC measurement). It is more preferable to have at least one endothermic peak top temperature (Tm) in the range of 45 to 80 ° C.
  • the toner binder of the present invention preferably has an endothermic peak top temperature (Tm) of 40 to 100 ° C, more preferably 45 to 80 ° C. When the endothermic peak top temperature (Tm) is in the above range, the low temperature fixability and heat storage stability of the toner binder are well balanced.
  • the endothermic peak top temperature (Tm) is defined as 150 ° C after the first temperature rise of the toner binder from 20 ° C to 150 ° C under the condition of 10 ° C / min using a differential scanning calorimeter (DSC). This is the peak top temperature of the endothermic peak in the second heating process in which the temperature is cooled from 0 ° C. to 0 ° C. at 10 ° C./min and then raised from 0 ° C. to 150 ° C. at 10 ° C./min.
  • the endothermic peak top temperature (Tm) is preferably the endothermic peak top temperature derived from the crystalline vinyl resin (B).
  • the toner binder of the present invention preferably has an endothermic peak top temperature derived from the crystalline vinyl resin (B) of 40 to 100 ° C, more preferably 45 to 80 ° C.
  • Tm endothermic peak top temperature
  • the balance between the low temperature fixability and the heat storage property of the toner binder becomes better. This is because the crystalline vinyl resin (B) is rapidly melted at the endothermic peak top temperature (Tm) derived from the crystalline vinyl resin (B) to reduce the viscosity of the toner binder, and when the toner binder is converted into toner. This is to satisfy the required storage stability.
  • the endothermic peak top temperature (Tm) derived from the crystalline vinyl resin (B) is the first temperature of the toner binder from 20 ° C. to 150 ° C. at 10 ° C./min using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the temperature is cooled from 150 ° C. to 0 ° C. under the condition of 10 ° C./min, and then the temperature is raised from 0 ° C. to 150 ° C. under the condition of 10 ° C./min.
  • the heat absorption peak top temperature (Tm) derived from the crystalline vinyl resin (B) of the toner binder is adjusted by adjusting the carbon number of the monomer (a) constituting the crystalline vinyl resin (B), and the crystalline vinyl resin. It can be adjusted to the above-mentioned preferable range by adjusting the weight ratio of the monomer (a) constituting (B), satisfying the relational expression (1), and the like.
  • the endothermic peak top temperature (Tm) is increased by increasing the carbon number of the monomer (a), increasing the weight ratio of the monomer (a), and increasing the weight average molecular weight of the crystalline vinyl resin (B). Tends to rise.
  • the heat absorption peak top temperature (Tm) is lowered by increasing the difference in SP value between the polyester resin (A) and the crystalline vinyl resin (B). It becomes difficult.
  • the endothermic peak top temperature (Tm) is a value measured under the following conditions using a differential scanning calorimeter.
  • the differential scanning calorimetry for example, DSC Q20 manufactured by TA Instruments Co., Ltd. can be used. ⁇ Measurement conditions> (1) Raise from 20 ° C to 150 ° C at 10 ° C / min (2) Cool from 150 ° C to 0 ° C at 10 ° C / min (3) Raise from 0 ° C to 150 ° C at 10 ° C / min (4) Each endothermic peak of the differential scanning calorimetry measured in the process of (3) is analyzed.
  • the toner binder of the present invention has an inflection that indicates a glass transition temperature (Tg T ) in the temperature range of ⁇ 30 ° C. to 80 ° C. in the differential scanning calorimetry curve obtained by performing differential scanning calorimetry (DSC). It is preferable to have at least one point. Further, the inflection point indicating the glass transition temperature (Tg T ) is more preferably in the temperature range of 35 to 65 ° C. When the inflection point indicating the glass transition temperature (Tg T ) is in the temperature range of ⁇ 30 ° C. or higher, the heat-resistant storage stability is good, and when it is in the temperature range of 80 ° C. or lower, the fixability is good.
  • the glass transition temperature (Tg T ) can be determined by the method (DSC method) specified in ASTM D3418-82.
  • DSC method for the measurement of the glass transition temperature (Tg T ), for example, DSC Q20 manufactured by TA Instruments Co., Ltd. can be used.
  • the glass transition temperature (Tg T ) can be measured under the following conditions. ⁇ Measurement conditions> (1) Raise from 30 ° C to 20 ° C / min to 150 ° C (2) Hold at 150 ° C for 10 minutes (3) Cool to -35 ° C at 20 ° C / min (4) Hold at -35 ° C for 10 minutes (5) )
  • the differential scanning calorimetry measured in the steps of (6) and (5) is analyzed.
  • the toner binder of the present invention preferably contains a THF-insoluble component.
  • the content (% by weight) of the THF insoluble matter of the toner binder of the present invention is preferably 3 to 70% by weight, more preferably 3 to 70% by weight, from the viewpoint of achieving both glossiness, hot offset resistance and low temperature fixability. It is 5 to 60% by weight, more preferably 10 to 55% by weight, and particularly preferably 15 to 50% by weight.
  • the THF-soluble Mn of the toner binder of the present invention is preferably 500 to 24,000, more preferably 700 to 17,000, and even more preferably 700 to 17,000, from the viewpoint of achieving both heat storage stability and low temperature fixability of the toner. It is 900 to 12,000.
  • the THF-soluble Mw of the toner binder of the present invention is preferably 5,000 to 120,000, more preferably 7,000 to 100, from the viewpoint of achieving both hot offset resistance and low temperature fixability of the toner. It is 000, more preferably 9,000 to 90,000, and particularly preferably 10,000 to 80,000.
  • the molecular weight distribution Mw / Mn of the THF-soluble component of the toner binder of the present invention is preferably 2 to 30 from the viewpoint of achieving both hot offset resistance, heat storage resistance and low temperature fixability of the toner, and more preferably 2. It is 5 to 28, more preferably 3 to 26.
  • the acid value of the toner binder of the present invention is preferably 50 mgKOH / g or less, more preferably 0 to 30 mgKOH, from the viewpoint of the heat-resistant storage stability of the toner and the charge retention rate (particularly, the charge retention rate under high temperature and high humidity). / G, more preferably 1 to 20 mgKOH / g.
  • the acid value of the toner binder can be measured by the method specified in JIS K0070.
  • the content of the organic solvent in the toner binder of the present invention is preferably 50 to 2000 ppm based on the weight of the toner binder.
  • the content of the organic solvent in the toner binder is more preferably 100 to 1500 ppm, further preferably 150 to 1000 ppm, and particularly preferably 200 to 500 ppm.
  • Examples of the method for controlling the organic solvent content include (1) control of the amount of organic solvent used in producing the polyester resin (A), the crystalline vinyl resin (B) and the toner binder, and (2) the amount of the initiator. (Control of the decomposed product of the initiator), control by removing the solvent of the organic solvent used in (3), (1) and (2), and the decomposition residue of the initiator.
  • the method for removing the solvent from the organic solvent and the method for removing the decomposition residue of the initiator are not particularly limited, but a crushed toner binder is supplied to the twin-screw extruder and vented while being melted and conveyed. A method of depressurizing from the mouth can be mentioned.
  • the amount of the organic solvent in the toner binder can be controlled by adjusting the melting temperature, the shaft rotation speed, the degree of decompression, and the like.
  • the solvent can be removed by operating the toner binder under an arbitrary temperature under reduced pressure. The pressure may be reduced while stirring using a stirrer.
  • the amount of the organic solvent in the toner binder can be controlled by adjusting the temperature, the degree of reduced pressure, the stirring speed, and the like.
  • the temperature of the solvent removal is preferably 20 to 200 ° C, more preferably 30 to 170 ° C, and even more preferably 40 to 160 ° C.
  • the degree of pressure reduction when removing the solvent is preferably 0.01 to 100 kPa, more preferably 0.1 to 95 kPa, and even more preferably 1 to 90 kPa.
  • the solvent can be removed by the method of removing the solvent by the reduced pressure operation as it is after the reaction.
  • the amount of the organic solvent in the toner binder can be controlled by adjusting the same items as described above.
  • the amount of organic solvent in the toner binder can be reduced by placing the crushed toner binder in a dryer whose temperature and pressure (normal pressure or reduced pressure) are adjusted according to the type of organic solvent to be desolvated. Can be controlled.
  • the method of removing the solvent in a short time is preferable because the transesterification reaction between the polyester resin (A) and the crystalline vinyl resin (B) is unlikely to occur, and the hot offset resistance and low temperature fixability are good.
  • the content (ppm) of the organic solvent can be measured under the following conditions, for example, by gas chromatograph analysis or the like.
  • the content of the organic solvent in the toner binder according to Examples and Comparative Examples was measured under the following conditions.
  • the organic solvent contained in the toner binder is not particularly limited, and for example, ethanol, normal propyl alcohol, isopropyl alcohol, n-butanol, s-butanol, t-butanol, diacetone alcohol, 2-ethylhexanol, acetone, and methyl ethyl ketone.
  • a compound having 2 to 10 carbon atoms is preferable, a compound having 3 to 8 carbon atoms is more preferable, and acetone, isopropyl alcohol, and the like are more preferable. It is t-butanol.
  • the method of removing the solvent according to (3) described above is generally used, but the melt of the crosslinked polyester resin has low fluidity and it takes a long time to remove the solvent. Therefore, the physical properties of the resin were deteriorated due to cutting of the crosslinked structure and the like.
  • the polyester resin (A1) is crosslinked with the epoxy compound (E)
  • the thermal stability is lowered and odor is generated as compared with the case where the crosslink reaction is carried out using the conventional radical reaction initiator (c).
  • the toner contains the toner binder of the present invention. Toners containing the toner binder of the present invention are also included in the present invention.
  • the toner may contain one or more known additives selected from colorants, mold release agents, charge control agents, fluidizing agents, and the like, if necessary.
  • the colorant all of the dyes and pigments used as the colorant for toner can be used.
  • Carbon Black, Iron Black, Sudan Black SM First Yellow G, Benzidine Yellow, Pigment Yellow, India First Orange, Irgasin Red, Paranitroaniline Red, Toluidine Red, Carmine FB, Pigment Orange R, Lake Red 2G, Rhodamin
  • examples thereof include FB, Rhodamine B lake, Methyl Violet B lake, Phthalocyanine blue, Pigment blue, Brilliant green, Phthalocyanine green, Oil yellow GG, Kayaset YG, Orazole brown B and Oil pink OP.
  • the colorant may be any one of these alone or a mixture of two or more of them.
  • a magnetic powder (powder of a ferromagnetic metal such as iron, cobalt, nickel or a compound such as magnetite, hematite, ferrite) can be contained also as a colorant.
  • the content of the colorant is preferably 1 to 40 parts by weight, more preferably 3 to 10 parts by weight, based on 100 parts by weight of the toner binder of the present invention.
  • magnetic powder it is preferably 20 to 150 parts by weight, more preferably 40 to 120 parts by weight, based on 100 parts by weight of the toner binder.
  • the release agent preferably has a flow softening point (T1 / 2) of 50 to 170 ° C. by a flow tester, and is preferably low molecular weight polypropylene, low molecular weight polyethylene, low molecular weight polypropylene polyethylene copolymer, polyolefin wax, microcrystallin wax, etc.
  • Fatty hydrocarbon waxes such as paraffin wax and Fishertroph wax and their oxides, carnauba wax, montan wax, sazole wax and their deoxidizing wax, ester wax such as fatty acid ester wax, fatty acid amides, fatty acids , Higher alcohols, fatty acid metal salts and mixtures thereof.
  • the flow softening point (T1 / 2) of the release agent can be measured under the following conditions.
  • ⁇ Measurement method of flow softening point (T1 / 2)> Using a descent-type flow tester [for example, CFT-500D manufactured by Shimadzu Corporation], a load of 1.96 MPa was applied by a plunger while heating 1 g of the measurement sample at a heating rate of 6 ° C./min. Extrude from a nozzle with a diameter of 1 mm and a length of 1 mm, draw a graph of "plunger drop (flow value)" and "temperature”, and graph the temperature corresponding to 1/2 of the maximum value of the plunger drop. This value (the temperature at which half of the measurement sample flows out) is defined as the flow softening point (T1 / 2).
  • the polyolefin wax is a (co) copolymer obtained by [(co) polymerization of olefins (for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene and mixtures thereof).
  • olefins for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene and mixtures thereof.
  • oxides of olefin (co) copolymers with oxygen and / or ozone maleic anhydride modified olefin (co) polymers [eg maleic anhydride and derivatives thereof (maleic anhydride, Modified products (monomethyl maleate, monobutyl maleate, dimethyl maleate, etc.)], olefins and unsaturated carboxylic acids [(meth) acrylic acid, itaconic acid, maleic anhydride, etc.] and / or unsaturated carboxylic acid alkyl esters [(meth) ) Copolymers with alkyl acrylate (alkyl carbon number 1-18) ester and maleic anhydride (alkyl carbon number 1-18) ester, etc.] and sazole wax.
  • maleic anhydride modified olefin (co) polymers eg maleic anhydride and derivatives thereof (maleic anhydride, Modified products (monomethyl maleate, monobutyl maleate, dimethyl maleate,
  • Examples of higher alcohols include aliphatic alcohols having 30 to 50 carbon atoms, and examples thereof include triacontanol.
  • Examples of the fatty acid include fatty acids having 30 to 50 carbon atoms, and examples thereof include triacontane carboxylic acid.
  • Charge control agents include niglosin dyes, triphenylmethane dyes containing tertiary amines as side chains, quaternary ammonium salts, polyamine resins, imidazole derivatives, quaternary ammonium base-containing polymers, metal azo dyes, copper phthalocyanine dyes, etc.
  • Examples thereof include salicylic acid metal salts, boron complexes of benzylic acid, sulfonic acid group-containing polymers, fluorine-containing polymers, halogen-substituted aromatic ring-containing polymers and the like.
  • Examples of the fluidizing agent include colloidal silica, alumina powder, titanium oxide powder, calcium carbonate powder and the like.
  • the content of the toner binder in the toner is preferably 30 to 97% by weight, more preferably 40 to 95% by weight, still more preferably 45 to 92% by weight, based on the weight of the toner.
  • the content of the colorant is preferably 0.05 to 60% by weight, more preferably 0.1 to 55% by weight, still more preferably 0.5 to 50% by weight, based on the toner weight.
  • the content of the release agent is preferably 0 to 30% by weight, more preferably 0.5 to 20% by weight, still more preferably 1 to 10% by weight, based on the toner weight.
  • the content of the charge control agent is preferably 0 to 20% by weight, more preferably 0.1 to 10% by weight, still more preferably 0.5 to 7.5% by weight, based on the toner weight.
  • the content of the fluidizing agent is preferably 0 to 10% by weight, more preferably 0 to 5% by weight, still more preferably 0.1 to 4% by weight, based on the weight of the toner.
  • the total content of the additives is preferably 3 to 70% by weight, more preferably 4 to 58% by weight, still more preferably 5 to 50% by weight, based on the toner weight.
  • the toner may be obtained by any of known kneading and pulverizing methods, emulsification phase inversion methods, polymerization methods and the like.
  • a toner is obtained by a kneading and pulverizing method
  • the components constituting the toner excluding the fluidizing agent are dry-blended, melt-kneaded, then coarsely pulverized, and finally atomized using a jet mill pulverizer or the like.
  • fine particles having a volume average particle diameter (D50) of preferably 5 to 20 ⁇ m can be produced by mixing with a fluidizing agent.
  • the volume average particle size (D50) is measured using a Coulter counter ⁇ for example, trade name: Multisizer III [manufactured by Beckman Coulter Co., Ltd.] ⁇ .
  • the components constituting the toner excluding the fluidizing agent can be dissolved or dispersed in an organic solvent, then emulsified by adding water or the like, and then separated and classified for production. it can.
  • the volume average particle size of the toner is preferably 3 to 15 ⁇ m.
  • the toner is mixed with carrier particles such as ferrite whose surface is coated with iron powder, glass beads, nickel powder, ferrite, magnetite and resin (acrylic resin, silicone resin, etc.) to develop an electrically latent image.
  • carrier particles such as ferrite whose surface is coated with iron powder, glass beads, nickel powder, ferrite, magnetite and resin (acrylic resin, silicone resin, etc.)
  • the weight ratio of the toner to the carrier particles is preferably 1/99 to 99/1.
  • the carrier particles it can be rubbed with a member such as a charging blade to form an electrical latent image.
  • the toner does not have to contain carrier particles.
  • Toner is fixed to a support (paper, polyester film, etc.) by a copying machine, printer, etc. and used as a recording material.
  • a method of fixing to the support a known heat roll fixing method, flash fixing method, or the like can be applied.
  • the toner and the toner binder of the present invention are used for developing electrostatically charged images or magnetic latent images in electrophotographic methods, electrostatic recording methods, electrostatic printing methods, and the like. More specifically, it is used for developing an electrostatic charge image or a magnetic latent image particularly suitable for full color.
  • the glass transition temperature of the polyester resin and the toner binder was determined by the method (DSC method) specified in ASTM D3418-82.
  • DSC method As the apparatus, DSC Q20 manufactured by TA Instruments Co., Ltd. was used.
  • the reaction was carried out under a reduced pressure of 0.5 to 2.5 kPa for 5 hours, and after confirming that the acid value was less than 1 mgKOH / g, the temperature was lowered to 180 ° C. After adding 205 parts of adipic acid and reacting for 2 hours, the mixture was reacted under reduced pressure of 0.5 to 2.5 kPa for 3 hours to confirm an acid value of 48 mgKOH / g and then taken out to obtain a polyester resin (A1-1). ..
  • the reaction was carried out under a reduced pressure of 0.5 to 2.5 kPa for 5 hours, and after confirming that the acid value was less than 1 mgKOH / g, the temperature was lowered to 180 ° C. After adding 195 parts of adipic acid and reacting for 2 hours, the mixture was reacted under reduced pressure of 0.5 to 2.5 kPa for 3 hours to confirm an acid value of 28 mgKOH / g and then taken out to obtain a polyester resin (A1-2). ..
  • the reaction was carried out under a reduced pressure of 0.5 to 2.5 kPa for 5 hours, and after confirming that the acid value was less than 1 mgKOH / g, the temperature was lowered to 180 ° C.
  • the reaction was carried out under reduced pressure of 0.5 to 2.5 kPa for 3 hours, and after confirming an acid value of 19 mgKOH / g, the mixture was taken out to obtain a polyester resin (A1-3). ..
  • the reaction was carried out under a reduced pressure of 0.5 to 2.5 kPa for 5 hours, and after confirming that the acid value was less than 1 mgKOH / g, the temperature was lowered to 180 ° C.
  • the reaction was carried out under reduced pressure of 0.5 to 2.5 kPa for 3 hours, and after confirming an acid value of 10 mgKOH / g, the mixture was taken out to obtain a polyester resin (A1-4). ..
  • tert-butylcatechol was added as a polymerization inhibitor, 86 parts of fumaric acid was further added, and the mixture was reacted under reduced pressure of 0.5 to 2.5 kPa for 8 hours and then taken out to obtain a polyester resin (A1-5). ..
  • Table 1 shows the glass transition temperature, peak top molecular weight, and acid value of the polyester resins (A1-1) to (A1-5).
  • the dropping line was washed with 12 parts of xylene. Further, the temperature was maintained at the same temperature for 0.5 hours, and the reaction rate of the monomer (a) was confirmed. Since the reaction rate of the monomer (a) was less than 95%, 0.5 part of dit-butyl peroxide was further added to cause the reaction to a reaction rate of 95% or more. The solvent was removed at 165 ° C. for 5 hours under a reduced pressure of 0.5 to 2.5 kPa to obtain a crystalline vinyl resin (B-1).
  • the dropping line was washed with 12 parts of xylene. Further, the temperature was maintained at the same temperature for 0.5 hours, and the reaction rate of the monomer (a) was confirmed. Since the reaction rate of the monomer (a) was less than 95%, 0.1 part of dit-butyl peroxide was further added to cause the reaction to a reaction rate of 95% or more. The solvent was removed at 165 ° C. for 5 hours under a reduced pressure of 0.5 to 2.5 kPa to obtain a crystalline vinyl resin (B-3).
  • 112 parts of the mixed solution was added dropwise over 2 hours while controlling the temperature inside the autoclave to 78 ° C. for polymerization. After the dropping, the dropping line was washed with 25 parts of ethyl acetate. After maintaining the same temperature for 5 hours, the temperature inside the autoclave was raised to 92 ° C. over 1 hour. After keeping the temperature at the same temperature for 2 hours, the temperature was lowered to 60 ° C., and the reaction rate of the monomer (a) was confirmed.
  • the dropping line was washed with 25 parts of ethyl acetate. After maintaining the same temperature for 5 hours, the temperature inside the autoclave was raised to 92 ° C. over 1 hour. After keeping the temperature at the same temperature for 2 hours, the temperature was lowered to 60 ° C., and the reaction rate of the monomer (a) was confirmed. Since the reaction rate of the monomer (a) was less than 95%, the temperature was raised to 80 ° C., and 0.5 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 38 parts of ethyl acetate were mixed. The solution was added dropwise over 1 hour. After the dropping, the mixture was kept at 80 ° C. for 2 hours, and the reaction was carried out until the reaction rate was 95% or more. The solvent was removed at 120 ° C. for 6 hours under a reduced pressure of 0.5 to 2.5 kPa to obtain a crystalline vinyl resin (B-5).
  • reaction vessel was adjusted to 300 mmHg, and the reaction was carried out for another 3 hours while removing the generated water.
  • the reaction solution was cooled to room temperature, 30 parts of a 10 wt% sodium hydroxide aqueous solution was added, the mixture was stirred for 1 hour, and then allowed to stand to separate the organic phase and the aqueous phase.
  • the organic phase was sampled by liquid separation and centrifugation, 0.01 part of hydroquinone was added, and the solvent was removed under reduced pressure while blowing air to obtain a triacontyl acrylate.
  • ⁇ Manufacturing Example 12> [Manufacturing of crystalline vinyl resin (B-6)] After charging 138 parts of xylene into an autoclave and replacing it with nitrogen, the temperature was raised to 165 ° C. in a sealed state with stirring. The mixed solution of 600 parts of triacontyl acrylate, 75 parts of styrene, 75 parts of butyl acrylate, 1.5 parts of di-t-butyl peroxide, and 100 parts of xylene obtained in Production Example 11 was temperature-controlled to 60 ° C. and autoclaved. Polymerization was carried out by dropping over 3 hours while controlling the internal temperature to 165 ° C. After the dropping, the dropping line was washed with 12 parts of xylene.
  • the temperature was maintained at the same temperature for 0.5 hours, and the reaction rate of the monomer (a) was confirmed. Since the reaction rate of the monomer (a) was less than 95%, 0.5 part of dit-butyl peroxide was further added to cause the reaction to a reaction rate of 95% or more.
  • the solvent was removed at 165 ° C. for 5 hours under a reduced pressure of 0.5 to 2.5 kPa to obtain a crystalline vinyl resin (B-6).
  • the dropping line was washed with 7 parts of xylene. Further, the temperature was maintained at the same temperature for 0.5 hours, and the reaction rate of the monomer (a) was confirmed to be 95% or more. The solvent was removed at 170 ° C. for 5 hours under a reduced pressure of 0.5 to 2.5 kPa to obtain a crystalline vinyl resin (B-7).
  • Table 2 shows the endothermic peak top temperature (Tm B ), weight average molecular weight, and acid value of the obtained crystalline vinyl resins (B-1) to (B-8).
  • Table 2 shows the weight ratio (% by weight) of the monomer (a) in the monomer composition used for producing the crystalline vinyl resins (B-1) to (B-8).
  • Example 1 [Manufacturing of toner binder (C-1)] 50 parts of polyester resin (A1-1), 50 parts of crystalline vinyl resin (B-1), jER157S70 [bisphenol A novolac type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent 209] (epoxy compound (E) -1)) 8.9 parts and 0.1 part of imidazole [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., the same applies hereinafter], which is an epoxidation catalyst, are mixed, and a twin-screw kneader [Kurimoto Iron Works Co., Ltd., S5KRC kneader] was supplied at 80 kg / hour, and kneaded and extruded at 180 ° C.
  • jER157S70 bisphenol A novolac type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent 209
  • imidazole manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., the same applies hereinafter
  • Example 2 [Manufacturing of toner binder (C-2)] 40 parts of polyester resin (A1-2), 60 parts of crystalline vinyl resin (B-2), 10.2 parts of jER157S70 (epoxy compound (E-1)) and 0.1 part of imidazole which is an epoxy catalyst are mixed. , 80 kg / hour was supplied to a twin-screw kneader, and kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-2) containing a polyester resin in which the polyester resin (A1-2) was modified with an epoxy compound was obtained.
  • Example 3 [Manufacturing of toner binder (C-3)] 70 parts of polyester resin (A1-2), 30 parts of crystalline vinyl resin (B-3), EHPE3150 [2,2-bis (hydroxymethyl) -1-butanol 1,2-epoxy-4- (2-oxylanyl) ) Cyclohexane adduct, manufactured by Daicel Co., Ltd., epoxy equivalent 175] (epoxy compound (E-2)) 6.1 parts and 0.1 part of imidazole, which is an epoxidation catalyst, are mixed and a biaxial kneader. Was supplied at 80 kg / hour and kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-3) containing a polyester resin in which the polyester resin (A1-2) was modified with an epoxy compound was obtained.
  • Example 4 [Manufacturing of toner binder (C-4)] 50 parts of polyester resin (A1-3), 50 parts of crystalline vinyl resin (B-4), jER1001 [bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent 470] (epoxy compound (E-) 3)) 16.5 parts and 0.1 part of imidazole as an epoxidation catalyst were mixed, supplied to a twin-screw kneader at 80 kg / hour, kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm, and a cross-linking reaction was carried out. By cooling what was obtained by mixing, a toner binder (C-4) containing a polyester resin in which the polyester resin (A1-3) was modified with an epoxy compound was obtained.
  • Example 5 [Manufacturing of toner binder (C-5)] 60 parts of polyester resin (A1-4), 40 parts of crystalline vinyl resin (B-5), pentaerythritol polyglycidyl ether [manufactured by Nagase ChemteX Corporation, epoxy equivalent 229] (epoxy compound (E-4) )) 9.0 parts and 0.1 part of imidazole as an epoxidation catalyst were mixed, supplied to a twin-screw kneader at 80 kg / hour, kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-5) containing a polyester resin in which the polyester resin (A1-4) was modified with an epoxy compound was obtained.
  • Example 6 [Manufacturing of toner binder (C-6)] 20 parts of polyester resin (A1-1), 80 parts of crystalline vinyl resin (B-2), 5.8 parts of jER157S70 (epoxy compound (E-1)) and 0.1 part of imidazole which is an epoxy catalyst are mixed. , 80 kg / hour was supplied to a twin-screw kneader, and the mixture was kneaded and extruded at 160 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-6) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • Example 7 [Manufacturing of toner binder (C-7)] 70 parts of polyester resin (A1-4), 30 parts of crystalline vinyl resin (B-6), 2.2 parts of EHPE3150 (epoxy compound (E-2)) and 0.1 part of imidazole which is an epoxidation catalyst are mixed. , 80 kg / hour was supplied to a twin-screw kneader, and the mixture was kneaded and extruded at 160 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-7) containing a polyester resin in which the polyester resin (A1-4) was modified with an epoxy compound was obtained.
  • Example 8> [Manufacturing of toner binder (C-8)] 30 parts of polyester resin (A1-1), 70 parts of crystalline vinyl resin (B-1), jER828 [bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent 190] (epoxy compound (E-) 5)) 4.9 parts and 0.1 part of imidazole as an epoxidation catalyst were mixed and supplied to a twin-screw kneader at 80 kg / hour, and kneaded and extruded at 150 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-8) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • Example 9 [Manufacturing of toner binder (C-9)] 80 parts of polyester resin (A1-1), 20 parts of crystalline vinyl resin (B-1), 14.3 parts of jER157S70 (epoxy compound (E-1)) and 0.1 part of imidazole which is an epoxy catalyst are mixed. , 80 kg / hour was supplied to a twin-screw kneader, and kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-9) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • Example 10 [Manufacturing of toner binder (C-10)] 8 parts of polyester resin (A1-1), 92 parts of crystalline vinyl resin (B-1), 1.4 parts of jER157S70 (epoxy compound (E-1)) and 0.1 part of imidazole which is an epoxy catalyst are mixed. , 80 kg / hour was supplied to a twin-screw kneader, and kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-10) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • Example 11 [Manufacturing of toner binder (C-11)] 40 parts of polyester resin (A1-3), 60 parts of crystalline vinyl resin (B-7), EPPN-201 [phenol novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 193, the same applies hereinafter] (epoxy compound (E-6)) 9.0 parts and 0.1 part of 2-phenylimidazole [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., the same applies hereinafter] which is an epoxidation catalyst are mixed, and 80 kg / hour in a twin-screw kneader. The epoxy was kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-11) containing a polyester resin in which the polyester resin (A1-3) was modified with an epoxy compound was obtained.
  • EPPN-201 phenol novolac type epoxy resin,
  • Example 12 [Manufacturing of toner binder (C-12)] 60 parts of polyester resin (A1-1), 40 parts of crystalline vinyl resin (B-8), jER1004 [bisphenol A type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 900, the same applies hereinafter] (epoxy compound (E) -7)) 23.1 parts and 0.1 part of 2-ethyl-4-methylimidazole [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., the same applies hereinafter], which is an epoxidation catalyst, are mixed, and 80 kg in a biaxial kneader. The mixture was supplied at / hour and kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction. By cooling what was obtained by mixing, a toner binder (C-12) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • Example 13 [Manufacturing of toner binder (C-13)] 30 parts of polyester resin (A1-1), 70 parts of crystalline vinyl resin (B-1), jER1007FS [manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalent 1300] (epoxy compound (E-8)) 10.0 A part and 0.1 part of 2-phenylimidazole, which is an epoxidation catalyst, were mixed and supplied to a twin-screw kneader at 80 kg / hour, and kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm to carry out a crosslinking reaction. By cooling what was obtained by mixing, a toner binder (C-13) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • Example 14 [Manufacturing of toner binder (C-14)] 30 parts of polyester resin (A1-1), 70 parts of crystalline vinyl resin (B-2), 12.6 parts of jER1001 (epoxy compound (E-3)) and 2-ethyl-4-methylimidazole, which is an epoxidation catalyst. 0.1 parts were mixed, supplied to a twin-screw kneader at 80 kg / hour, kneaded and extruded at 180 ° C. for 5 minutes at 90 rpm, and a cross-linking reaction was carried out. By cooling what was obtained by mixing, a toner binder (C-14) containing a polyester resin in which the polyester resin (A1-1) was modified with an epoxy compound was obtained.
  • ⁇ Comparative Example 1> [Manufacturing of Toner Binder (C'-1)] 40 parts of polyester resin (A1-5) and 60 parts of crystalline vinyl resin (B-1) are mixed and supplied to a twin-screw kneader at 52 kg / hour, and at the same time, t-butylper as a radical reaction initiator (c). 1.0 part of oxyisopropyl monocarbonate is supplied at 0.52 kg / hour, kneaded and extruded at 160 ° C. for 7 minutes at 90 rpm to carry out a cross-linking reaction, and further reduced pressure at 50 kPa from the vent port to mix while removing the organic solvent. did. By cooling what was obtained by mixing, a toner binder (C'-1) containing a polyester resin in which the polyester resin (A1-5) was crosslinked by a carbon-carbon bond was obtained.
  • ⁇ Comparative Example 2> [Manufacturing of Toner Binder (C'-2)] 60 parts of polyester resin (A1-5) and 40 parts of crystalline vinyl resin (B-2) are mixed and supplied to a biaxial kneader at 80 kg / hour, and at the same time, t-butylper as a radical reaction initiator (c). 1.0 part of oxyisopropyl monocarbonate is supplied at 0.80 kg / hour, kneaded and extruded at 160 ° C. for 5 minutes at 90 rpm to carry out a cross-linking reaction, and further reduced pressure at 50 kPa from the vent port to mix while removing the organic solvent. did. By cooling what was obtained by mixing, a toner binder (C'-2) containing a polyester resin in which the polyester resin (A1-5) was crosslinked by a carbon-carbon bond was obtained.
  • ⁇ Comparative Example 3> [Manufacturing of Toner Binder (C'-3)] 40 parts of polyester resin (A1-5) and 60 parts of crystalline vinyl resin (B-1) are mixed and supplied to a biaxial kneader at 10 kg / hour, and at the same time, Duranate TPA-100 [isocyanurate structure] is used as a cross-linking agent. HDI-based polyisocyanate, manufactured by Asahi Kasei Chemicals Co., Ltd.] was supplied at 0.2 kg / hr and kneaded and extruded at 150 ° C. for 20 minutes at 90 rpm to carry out a crosslinking reaction. By cooling what was obtained by mixing, a toner binder (C'-3) containing a polyester resin in which the polyester resin (A1-5) was crosslinked by a urethane group was obtained.
  • ⁇ Comparative Example 4> [Manufacturing of Toner Binder (C'-4)] 40 parts of polyester resin (A1-5) and 60 parts of crystalline vinyl resin (B-1) are mixed and supplied to a twin-screw kneader at 10 kg / hour, and at the same time, 0.1 kg / hour of trimellitic anhydride as a cross-linking agent. It was supplied at hr, kneaded and extruded at 180 ° C. for 20 minutes at 90 rpm, and further reduced pressure at 50 kPa from the vent port for esterification to carry out a crosslinking reaction. By cooling what was obtained by mixing, a toner binder (C'-4) containing a polyester resin in which the polyester resin (A1-5) was crosslinked with an acid was obtained.
  • ⁇ Comparative Example 5> [Manufacturing of Toner Binder (C'-5)] 40 parts of polyester resin (A1-2) and 60 parts of crystalline vinyl resin (B-1) are mixed and supplied to a twin-screw kneader at 10 kg / hour, and at the same time, trimethylolpropane as a cross-linking agent is 0.1 kg / hr. The mixture was kneaded and extruded at 180 ° C. for 20 minutes at 90 rpm, and further reduced pressure at 50 kPa from the vent port for esterification to carry out a crosslinking reaction. By cooling what was obtained by mixing, a toner binder (C'-5) containing a polyester resin in which the polyester resin (A1-2) was crosslinked with alcohol was obtained.
  • Tables 3 to 4 show the endothermic peak top temperature (Tm c ), glass transition temperature (Tg c ), acid value and organic solvent content of the toner binders obtained in Examples and Comparative Examples. The content of the organic solvent was measured by the above method.
  • the “weight ratio of (E) based on (A1)” shown in Tables 3 to 4 is the weight ratio (100) of the epoxy compound (E) to the weight of the polyester resin (A1) used in the production of the toner binder. ⁇ Weight of epoxy compound (E) / weight of polyester resin (A1)) (%).
  • the volume average particle size (D50) was measured using a Coulter counter (product name: Multisizer III, manufactured by Beckman Coulter, Inc.). Then, 1 part of colloidal silica [Aerosil R972 manufactured by Nippon Aerosil Co., Ltd.] was mixed with 100 parts of the toner particles by a sample mill to obtain a toner.
  • Toners were produced using the toner binders obtained in each Example and Comparative Example with the number of parts of the raw materials blended shown in Tables 5 to 6.
  • Tables 5 to 6 the toners obtained by using the toner binders (C-1) to (C-14) of Examples 1 to 14 are shown in (T-1) to (T-14), and The toners obtained by using the toner binders (C'-1) to (C'-5) of Comparative Examples 1 to 5 are shown as (T'-1) to (T'-5), respectively.
  • toner performance evaluation below, the obtained toners (T-1) to (T-14) and (T'-1) to (T'-5) have low temperature fixability, hot offset resistance, heat storage resistance, and charge retention rate ( The evaluation methods of low temperature and low humidity conditions and high temperature and high humidity conditions), blocking property, image intensity, pulverizability, odor and durability will be described including judgment criteria.
  • the toner was uniformly placed on the paper surface so as to be 1.0 mg / cm 2 .
  • a printer with the heat fixing machine removed was used as a method of placing the powder on the paper surface.
  • This paper was passed through a soft roller in a fixing speed (peripheral speed of a heating roller) of 213 mm / sec and a temperature range of 90 to 200 ° C. in 5 ° C. increments.
  • MFT temperature at which the cold offset occurred
  • Toner is placed on the paper surface by the same method as described in the above low temperature fixability, and the paper is placed on a soft roller with a fixing speed (peripheral speed of the heating roller) of 213 mm / sec and a heating roller temperature in the range of 90 to 200 ° C. It was passed in 5 ° C increments. Next, the presence or absence of hot offset on the fixed image was visually observed, and the temperature at which the hot offset occurred was measured. Tables 5 to 6 show the hot offset generation temperatures as the evaluation results of the hot offset resistance. The higher the temperature at which hot offset occurs, the better the hot offset resistance. Under these evaluation conditions, it is preferably 180 ° C. or higher.
  • ⁇ Charging retention rate (low temperature and low humidity conditions and high temperature and high humidity conditions)> (1) 1 g of toner and 0.01 g of Aerosil R8200 (manufactured by Evonik Japan Co., Ltd.) were mixed with a shaker for 1 hour. 0.5 g of this mixture and 20 g of ferrite carrier (F-150 manufactured by Powder Tech Co., Ltd.) were placed in a 50 mL glass bottle, and the humidity was adjusted at 23 ° C. and 50% relative humidity for 8 hours (referred to as low temperature and low humidity conditions). ). Similarly, the humidity was adjusted at 50 ° C. and 95% relative humidity for 24 hours (referred to as high temperature and high humidity conditions).
  • Friction stir welding was performed at 50 rpm for 10 minutes and 60 minutes with a tubler shaker mixer, and the charge amount at each time was measured using a blow-off charge amount measuring device [manufactured by Kyocera Chemical Co., Ltd.]. Using the obtained value, "charge amount after 60 minutes of friction time / charge amount after 10 minutes of friction time" was calculated, and this was used as a charge stability index.
  • Tables 5 to 6 show the charge stability index as the evaluation result of the charge retention rate. The larger the main charge stability index, the better the charge retention rate. Under this evaluation condition, it is preferably 0.8 or more.
  • ⁇ Blocking property> 1 g of toner and 0.01 g of Aerosil R8200 (manufactured by Evonik Japan Co., Ltd.) were mixed with a shaker for 1 hour. 0.5 g of this mixture and 20 g of a ferrite carrier (F-150 manufactured by Powder Tech Co., Ltd.) were placed in a 50 mL glass bottle, and the humidity was adjusted at 50 ° C. and 95% relative humidity for 24 hours. (2) The degree of blocking was visually judged, and the blocking property was evaluated according to the following criteria. The results are shown in Tables 5-6.
  • the volume average particle diameter ( ⁇ m) is shown in Tables 5 to 6. The smaller the particle size, the better the pulverizability. Under these evaluation conditions, the volume average particle size is preferably 8.0 ⁇ m or less.
  • ⁇ Odor> 1.0 g of toner was placed in a glass test tube with a lid ( ⁇ 15 mm ⁇ 150 mm), sealed, and heated at 210 ° C. for 5 minutes. After that, the lid was removed, and 10 monitors confirmed the odor and evaluated according to the following criteria. The results are shown in Tables 5-6. [Criteria] ⁇ : 1 person answered that it does not smell or only 1 person smells ⁇ : 2 to 6 people answered that it smells ⁇ : 7 or more people answered that it smells
  • Comparative Examples 1 and 2 contain a polyester resin cross-linked by a carbon-carbon bond, but since the cross-linking reaction is carried out using the radical polymerization initiator (c), the content of the organic solvent is large and the blocking property is high. The odor was further exacerbated due to a decrease in the charge retention rate under high temperature and high humidity.
  • Comparative Example 3 contains a polyester resin crosslinked by a urethane bond, the pulverizability deteriorated due to the deterioration of the charging characteristics due to the urethane group and the high cohesive force of the urethane group.
  • Comparative Examples 4 and 5 contained a polyester resin crosslinked by an esterification reaction accompanying a condensation reaction of an acid and a hydroxyl group, but the ester crosslink was weaker than the epoxy crosslink, and the heat storage property and blocking property were inferior.
  • the toner binder of the present invention maintains low-temperature fixability and hot offset resistance, while maintaining heat-resistant storage stability, charge retention rate (particularly charge retention rate under high temperature and high humidity), blocking property, image strength, grindability, odor, and It has excellent durability and can be suitably used as a toner for static charge image development used for electrophotographic, electrostatic recording, electrostatic printing, and the like.
  • the toner binder of the present invention is also suitable for applications such as paint additives, adhesive additives, and electronic paper particles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

本発明の目的は、低温定着性及び耐ホットオフセット性を維持しつつ、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、画像強度、粉砕性、臭気及び耐久性のすべてを満足する優れたトナーバインダーを提供することである。 本発明は、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とを含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有するトナーバインダーに関する。

Description

トナーバインダー
 本発明は、トナーバインダーに関する。
 近年、電子写真システムの発展に伴い、複写機やレーザープリンター等の電子写真装置の需要は急速に増加しており、それらの性能に対するトナーへの要求も高度化している。
 従来、フルカラー電子写真用においては、電子写真感光体等の潜像坦持体に色画像情報に基づく潜像を形成し、該潜像を対応する色のトナーにより現像し、次いで該トナー像を転写材上に転写するといった画像形成工程を繰り返した後、転写材上のトナー像を加熱定着して多色画像を得る方法や装置が知られている。これらのプロセスを問題なく通過するためには、トナーはまず安定した帯電量を保持することが必要であり、次に紙への定着性が良好であることが必要とされる。また、装置は定着部に加熱体を有するため、装置内で温度が上昇することから、トナーは、装置内でブロッキングしないことが要求される。
 さらに、電子写真装置の小型化、高速化、高画質化の促進とともに、定着工程における消費エネルギーを低減するという省エネルギーの観点から、トナーの低温定着性の向上が強く求められている。
 また、最近では、表面凹凸の大きい再生紙や、表面が平滑なコート紙など多くの種類の紙が転写材として用いられる。これらの転写材の表面性状に対応するために、ソフトローラーやベルトローラーなどのニップ幅の広い定着器が好ましく用いられている。しかし、ニップ幅を広くすると、トナーと定着ローラーとの接触面積が増え、定着ローラーに溶融トナーが付着する、いわゆる高温オフセット現象が発生しやすくなるため、耐ホットオフセット性が要求されるのが前提である。
 上記に加えて、多色画像(フルカラー)は写真画像などの再現等から白黒画像(モノクロ)に比べてはるかに高い光沢が必要とされ、得られる画像のトナー層が平滑になるようにする必要がある。
 したがって、高い光沢を有しながら耐ホットオフセット性を維持しつつ、低温定着性を発現させる必要があり、広いワーキングレンジで高光沢なトナー画像が要求されるようになってきている。
 トナーバインダーは、上述のようなトナー特性に大きな影響を与えるものであり、ポリスチレン樹脂、スチレン-アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアミド樹脂等が知られているが、最近では、耐熱保存性と定着性のバランスを取りやすいことから、ポリエステル樹脂が特に注目されている。
 トナーの定着温度を低くする手段としては、ポリエステル樹脂のガラス転移点を低くする技術が一般的に使用されている。しかしながら、ガラス転移点を低くし過ぎると、耐ホットオフセット性が低下し、また粉体の凝集(ブロッキング)が起り易くなることからトナーの耐熱保存性が低下する。このガラス転移点は、トナーバインダー(結着樹脂ともいう。)の設計ポイントであり、ガラス転移点を下げる方法では、更に低温定着可能なトナーを得ることは難しい。
 ガラス転移点を低くする以外の方法については、低温定着性と耐ホットオフセット性のいずれにも優れた、結晶性ポリエステル樹脂を含有するトナー組成物が知られている(特許文献1及び2参照)。しかし、近年、耐熱保存性や、低温定着性と耐ホットオフセット性の両立(定着温度幅)の要望がますます高まっており、これらの要望に充分に応えられていない。
 その他の方法として非晶性ポリエステル樹脂と長鎖アルキル(メタ)アクリレート系の結晶性樹脂とを併用することで、結晶性樹脂の溶融特性から、トナーの低温定着性が向上することが知られている(特許文献3)。しかしながら、結晶性樹脂の含有量を増やすと樹脂強度が低下する場合があり、また溶融混練時に結晶性樹脂と非晶性ポリエステル樹脂の相溶化により結晶性樹脂が非晶化し、その結果、トナーのガラス転移点が低下することで前述と同様の耐ホットオフセット性やトナーの耐熱保存性に課題が生じる。
 これに対し、溶融混練工程後に加熱処理を行い結晶性ポリエステル樹脂の結晶性を再現させる方法(特許文献4)、結晶性ポリエステル樹脂に用いられる構成成分として長鎖モノアルコールまたは長鎖モノカルボン酸等を使用して結晶性を再現させる方法(特許文献5)が提案されている。
 かかる方法ではトナーの低温定着性及び光沢性は確保できるが、耐ホットオフセット性やトナーの流動性、粉砕する際の粉砕性が低下し、特に耐久性が不充分である。
 また、結晶性ポリエステル樹脂を含むコア部を溶融懸濁法や乳化凝集法を用いて得られた非晶性ポリエステル樹脂のシェル層で被覆する方法等も提案されているが(特許文献6)、結晶性樹脂がコアの結着樹脂と相溶化し、短時間では結晶の再析出が不充分なことから定着後の画像強度が未だ不充分である。
 一方、定着温度幅を拡大させる方法として、不飽和カルボン酸を構成成分とするポリエステル樹脂を炭素-炭素二重結合同士で架橋したトナーバインダーが提案されている(特許文献7)。しかしながら、この方法は高温でのオフセット現象は防止できても、定着下限温度が不充分であり、未だ高速化、省エネルギー化の要求には充分に応えられていない。
 また耐ホットオフセット性を維持しつつ定着下限温度を向上させる方法として、長鎖アルキルアクリレートを重合させて溶融粘度を下げ、かつ不飽和カルボン酸を構成成分とするポリエステル樹脂を組み合わせたトナーバインダーが提案されている(特許文献8及び9)。しかしこの方法では、不飽和カルボン酸を架橋させる際に発生する有機溶剤が残存することにより、トナーバインダーに臭いが付いてしまい、また、高温高湿下における帯電維持率が不充分である。
 以上、述べたように、低温定着性及び耐ホットオフセット性を維持しつつ、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、画像強度、臭気及び耐久性のすべてを満足する優れたトナーバインダーは、これまでなかった。
特開2005-77930号公報 特開2012-98719号公報 特開2007-193069公報 特開2005-308995号公報 国際公開第2015/170705号 特開2011-197193号公報 特開2017-003985号公報 国際公開第2018/110593号 国際公開第2019/073731号
 本発明は、低温定着性及び耐ホットオフセット性を維持しつつ、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、画像強度、粉砕性、臭気及び耐久性のすべてを満足する優れたトナーバインダーを提供することを目的とする。
 本発明者らは、これらの問題点を解決するべく鋭意検討した結果、本発明に到達した。
 すなわち本発明は、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とを含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有するトナーバインダーである。
 本発明により、低温定着性及び耐ホットオフセット性を維持しつつ、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、画像強度、粉砕性、臭気及び耐久性に優れたトナーに用いられるトナーバインダーを提供することが可能になる。
 本発明のトナーバインダーは、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とを含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有する。
 以下に、本発明のトナーバインダーを順次説明する。
 本発明のトナーバインダーは、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とを含有するするトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有する。
 なお、本発明において「結晶性」とは、示差走査熱量測定(DSC測定ともいう。)により得られる示差走査熱量曲線の昇温過程において、DSC曲線に極大があり、明確な吸熱ピークを有することをいう。一方、「非晶性」とは、上記DSC曲線において、明確な吸熱ピークを有しないことをいう。
 本発明におけるポリエステル樹脂(A)は、ポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を必須成分として含有する。ポリエステル樹脂(A1)は、ポリオール成分(x)とポリカルボン酸成分(y)とを原料として反応して得られるポリエステル樹脂であり、エポキシ化合物(E)と反応して架橋構造を形成するものであれば、樹脂の組成は特に限定されない。
 なお、ポリエステル樹脂(A1)は、1種単独であっても、2種以上の組み合わせであっても良い。
 ポリエステル樹脂(A1)は、ポリオール成分(x)とポリカルボン酸成分(y)とを重縮合して得られる樹脂である。
 ポリエステル樹脂(A1)のポリオール成分(x)としては、ジオール(x1)及び3価以上のポリオール(x2)が挙げられる。これらは、1種単独であっても、2種以上の組み合わせであっても良い。
 ジオール(x1)としては、炭素数2~36のアルキレングリコール(エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール及び1,12-ドデカンジオール等)、炭素数4~36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコール等)、炭素数6~36の脂環式ジオール(1,4-シクロヘキサンジメタノール及び水素添加ビスフェノールA等)、上記脂環式ジオールの(ポリ)アルキレンオキサイド付加物(好ましくは平均付加モル数1~30)、芳香族ジオール[単環2価フェノール(例えばハイドロキノン等)及びビスフェノール類等]及び上記芳香族ジオールのアルキレンオキサイド付加物(好ましくは平均付加モル数2~30)等が挙げられる。
 上記のビスフェノール類のアルキレンオキサイド付加物は、ビスフェノール類にアルキレンオキサイド(以下、「アルキレンオキサイド」をAOと略記することがある。)を付加して得られる。
 ビスフェノール類としては、下記一般式(1)で示されるもの等が挙げられる。
HO-Ar-P-Ar-OH          (1)
[式中、Pは炭素数1~3のアルキレン基、-SO-、-O-、-S-又は直接結合を表し、Arは、水素原子がハロゲン原子又は炭素数1~30のアルキル基で置換されていてもよいフェニレン基を表す。]
 ビスフェノール類の具体的としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールAD、ビスフェノールS、トリクロロビスフェノールA、テトラクロロビスフェノールA、ジブロモビスフェノールF、2-メチルビスフェノールA、2,6-ジメチルビスフェノールA及び2,2’-ジエチルビスフェノールF等が挙げられ、これらは2種以上を併用することもできる。
 ビスフェノール類に付加するアルキレンオキサイドとしては、炭素数が2~30のアルキレンオキサイド、例えば、エチレンオキサイド(以下、「エチレンオキサイド」をEOと略記することがある。)、1,2-又は1,3-プロピレンオキサイド(「1,2-プロピレンオキサイド」は、以下、POと略記することがある。)、1,2-、2,3-、1,3-又はiso-ブチレンオキサイド、テトラヒドロフラン、及びこれらの2種以上の併用等が挙げられる。
 これらのジオール(x1)のうち、低温定着性と耐熱保存性の観点から、炭素数2~36のアルキレングリコール、芳香族ジオールのアルキレンオキサイド付加物が好ましく、炭素数2~10のアルキレングリコール、ビスフェノール類のアルキレンオキサイド付加物(平均付加モル数は好ましくは2~5)がより好ましく、炭素数2~6のアルキレングリコール、ビスフェノールAのアルキレンオキサイド付加物(平均付加モル数は好ましくは2~5)がさらに好ましく、ビスフェノールAのEO及び/又はPO付加物(平均付加モル数は好ましくは2~3)が特に好ましい。
 3価以上のポリオール(x2)としては、炭素数3~36の3価以上の価数の脂肪族多価アルコール、糖類及びその誘導体、脂肪族多価アルコールのAO付加物(平均付加モル数は好ましくは1~30)、トリスフェノール類(トリスフェノールPA等)のAO付加物(平均付加モル数は好ましくは2~30)、ノボラック樹脂(フェノールノボラック及びクレゾールノボラック等が含まれ、平均重合度としては好ましくは3~60)のAO付加物(平均付加モル数は好ましくは2~30)等が挙げられる。
 炭素数3~36の3価以上の価数の脂肪族多価アルコールとしては、アルカンポリオール及びその分子内又は分子間脱水物が挙げられ、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、ポリグリセリン及びジペンタエリスリトール等が挙げられる。
 また、糖類及びその誘導体としては、例えばショ糖及びメチルグルコシド等が挙げられる。
 これらの3価以上のポリオール(x2)のうち、低温定着性と耐ホットオフセット性との両立の観点から、炭素数3~36の3価以上の価数の脂肪族多価アルコール、ノボラック樹脂(フェノールノボラック及びクレゾールノボラック等が含まれ、平均重合度としては好ましくは3~60)のAO付加物(平均付加モル数は好ましくは2~30)が好ましく、炭素数3~8の3価の脂肪族多価アルコールがさらに好ましく、トリメチロールプロパンが特に好ましい。
 ポリエステル樹脂(A1)のポリオール成分(x)中におけるジオール(x1)は、80~100モル%であることが好ましい。また、ジオール(x1)と3価以上のポリオール(x2)とを併用する場合、ジオール(x1)と3価以上のポリオール(x2)のモル比[(x1)/(x2)]は、耐ホットオフセット性の観点から、80/20~99/1が好ましく、85/15~98/2がより好ましい
 また、ポリエステル樹脂(A1)のアルコール成分として、必要により上記ポリオール成分(x)に加えて、モノオール成分を含有させることもできる。モノオールとしては、炭素数1~30の直鎖又は分岐アルキルアルコール(メタノール、エタノール、イソプロパノール、1-デカノール、ドデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、アラキジルアルコール、ベヘニルアルコール及びリグノセリルアルコール等)等が挙げられる。
 これらモノオールのうち、画像強度及び耐熱保存性の観点から、炭素数8~24の直鎖又は分岐アルキルアルコールが好ましく、炭素数8~24の直鎖アルキルアルコールがより好ましく、ドデシルアルコール、ステアリルアルコール、アラキジルアルコール、ベヘニルアルコール及びリグノセリルアルコールがさらに好ましい。
 ポリエステル樹脂(A1)のポリカルボン酸成分(y)としては、ジカルボン酸(y1)、3価以上のポリカルボン酸(y2)が挙げられる。これらは、1種単独であっても、2種以上の組み合わせであっても良い。
 ジカルボン酸(y1)としては、炭素数8~36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸及びナフタレンジカルボン酸等)、炭素数2~50の脂肪族ジカルボン酸(シュウ酸、マロン酸、コハク酸、アジピン酸、レパルギン酸及びセバシン酸等)、炭素数6~40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)等〕、炭素数4~36のアルケンジカルボン酸(ドデセニルコハク酸等のアルケニルコハク酸、マレイン酸、フマル酸、シトラコン酸及びメサコン酸等)及びこれらのエステル形成性誘導体等が挙げられる。ここで、エステル形成性誘導体とは、カルボン酸無水物、アルキル(炭素数1~24のメチル、エチル、ブチル、ステアリル等、好ましくは炭素数1~4のもの)エステル及び部分アルキルエステルを意味する。
 これらのジカルボン酸(y1)のうち、低温定着性、耐ホットオフセット性及び耐熱保存性の両立の観点から、炭素数8~36の芳香族ジカルボン酸、炭素数2~50の脂肪族ジカルボン酸、炭素数4~36のアルケンジカルボン酸が好ましく、フタル酸、テレフタル酸、イソフタル酸、アジピン酸、コハク酸、マレイン酸、フマル酸がより好ましく、フタル酸、テレフタル酸、イソフタル酸、アジピン酸、フマル酸がさらに好ましく、フタル酸、アジピン酸、テレフタル酸が特に好ましい。また、これらの酸の無水物や低級アルキルエステルであってもよい。
 3価以上のポリカルボン酸(y2)としては、炭素数9~20の3価以上の芳香族ポリカルボン酸(トリメリット酸及びピロメリット酸等)、炭素数6~36の脂肪族(脂環式を含む)トリカルボン酸(ヘキサントリカルボン酸及びデカントリカルボン酸等)及びこれらのエステル形成性誘導体等が挙げられる。
 これらの3価以上のポリカルボン酸(y2)のうち、低温定着性と耐ホットオフセット性との両立の観点から、炭素数9~20の芳香族ポリカルボン酸が好ましく、トリメリット酸、ピロメリット酸がより好ましい。また、これらの酸の無水物や低級アルキルエステルであってもよい。
 ポリエステル樹脂(A1)のポリカルボン酸成分(y)中におけるジカルボン酸(y1)は、80~100モル%であることが好ましい。また、ジカルボン酸(y1)と3価以上のポリカルボン酸(y2)とを併用する場合、ジカルボン酸(y1)と3価以上のポリカルボン酸(y2)のモル比[(y1)/(y2)]は、耐ホットオフセット性の観点から、80/20~99/1が好ましく、85/15~98/2がより好ましい
 また、ポリエステル樹脂(A1)のカルボン酸成分として、必要により上記ポリカルボン酸成分(y)に加えて、モノカルボン酸成分を含有させることもできる。モノカルボン酸としては、炭素数7~37の芳香族モノカルボン酸(安息香酸、トルイル酸、4-エチル安息香酸、4-プロピル安息香酸等)、炭素数2~50の脂肪族(脂環式を含む)モノカルボン酸(酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸及びベヘン酸等)等が挙げられる。
 これらモノカルボン酸のうち、画像強度及び耐熱保存性の観点から、炭素数7~37の芳香族モノカルボン酸が好ましく、安息香酸がより好ましい。
 本発明におけるポリエステル樹脂(A1)は、公知のポリエステル樹脂の製造法と同様にして製造することができる。例えば、ポリオール成分(x)とポリカルボン酸成分(y)とを、不活性ガス(窒素ガス等)雰囲気中で、反応温度が好ましくは150~280℃、より好ましくは160~250℃、さらに好ましくは170~235℃で重縮合反応させることにより行うことができる。また反応時間は、重縮合反応を確実に行う観点から、好ましくは30分以上、より好ましくは2~40時間である。反応末期の反応速度を向上させるために減圧することも有効である。
 このとき必要に応じてエステル化触媒を使用することができる。
 エステル化触媒の例には、スズ含有触媒(例えばジブチルスズオキシド等)、三酸化アンチモン、チタン含有触媒[例えばチタンアルコキシド、シュウ酸チタン酸カリウム、テレフタル酸チタン、テレフタル酸チタンアルコキシド、特開2006-243715号公報に記載の触媒{チタニウムジイソプロポキシビス(トリエタノールアミネート)、チタニウムジヒドロキシビス(トリエタノールアミネート)、チタニウムモノヒドロキシトリス(トリエタノールアミネート)、チタニルビス(トリエタノールアミネート)及びそれらの分子内重縮合物等}及び特開2007-11307号公報に記載の触媒(チタントリブトキシテレフタレート、チタントリイソプロポキシテレフタレート及びチタンジイソプロポキシジテレフタレート等)等]、ジルコニウム含有触媒(例えば酢酸ジルコニル等)及び酢酸亜鉛等が挙げられる。これらの中で好ましくはチタン含有触媒である。
 また、ポリエステルの重合を安定的に進める目的で、安定剤を添加してもよい。安定剤としては、ハイドロキノン、メチルハイドロキノン及びヒンダードフェノール化合物等が挙げられる。
 重縮合反応に用いるポリオール成分(x)とポリカルボン酸成分(y)の重量比率は、水酸基とカルボキシ基の当量比([OH]/[COOH])として、好ましくは1/2~2/1、より好ましくは1/1.5~1.5/1、さらに好ましくは1/1.3~1.3/1である。
 ポリエステル樹脂(A1)の結晶性の有無については特に制限はないが、帯電維持率、画像強度及び耐久性の観点より、非晶性ポリエステル樹脂であることが好ましい。非晶性ポリエステル樹脂は、使用するポリオール成分(x)及びポリカルボン酸成分(y)として、分岐型モノマーの含有量、例えば、ビスフェノール類のアルキレンオキサイド付加物等のモノマー含有量を増やすことで得ることができる。
 ポリエステル樹脂(A1)は、線状ポリエステル樹脂、架橋ポリエステル樹脂、又は線状ポリエステル樹脂と架橋ポリエステル樹脂との混合物のいずれであっても良いが、耐ホットオフセット性、画像強度及び耐久性の観点より、架橋ポリエステル樹脂、又は線状ポリエステル樹脂と架橋ポリエステル樹脂との混合物であることが好ましく、架橋ポリエステル樹脂であることがさらに好ましい。架橋ポリエステル樹脂は、前記ポリエステル樹脂(A1)のポリオール成分(x)及びポリカルボン酸成分(y)として、3価以上のポリオール(x2)及び/又は3価以上のポリカルボン酸(y2)を使用することで、製造することができる。
 ポリエステル樹脂(A1)のピークトップ分子量(以下、Mpと略称することがある。)は、低温定着性、光沢性、トナーの流動性、耐熱保存性、粉砕性、定着後の画像強度、耐折り曲げ性及びドキュメントオフセット性の観点から、2,000~200,000が好ましく、より好ましくは2,500~100,000、さらに好ましくは3,000~60,000、特に好ましくは5,000~30,000である。
 なお、ポリエステル樹脂(A1)のMpはゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定される。
 まず、ゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン試料を用いて検量線を作成する。
 次に、GPCにより試料を分離し、各保持時間における分離された試料のカウント数を測定する。
 次に、上記検量線の対数値と得られたカウント数とから試料の分子量分布のチャートを作成する。分子量分布のチャート中のピーク最大値がピークトップ分子量Mpである。
 なお、分子量分布のチャート中の、複数のピークがある場合は、それらのピークの中の最大値をピークトップ分子量(Mp)とする。なお、GPC測定の測定条件は、以下のとおりである。
 本発明において、ポリエステル樹脂(A1)のピークトップ分子量Mp、数平均分子量(以下、Mnと略称することがある。)、重量平均分子量(以下、Mwと略称することがある。)は、GPCを用いて以下の条件で測定することができる。
 装置(一例) : 東ソー(株)製 HLC-8120
 カラム(一例): TSK GEL GMH6 2本 [東ソー(株)製]
 測定温度   : 40℃
 試料溶液   : 0.25重量%のTHF溶液
 溶液注入量  : 100μL
 検出装置   : 屈折率検出器
 基準物質   : 東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(分子量 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
 分子量の測定は、0.25重量%になるように試料をテトラヒドロフラン(THF)に溶解し、不溶解分をグラスフィルターでろ別したものを試料溶液とする。
 なお、後述する結晶性ビニル樹脂(B)及びトナーバインダーについても、上記と同様の方法でMp、Mn、Mwを求めることができる。
 ポリエステル樹脂(A1)のガラス転移温度(Tg)は、低温定着性、耐熱保存性、画像強度の観点から、-35~60℃が好ましく、より好ましくは-15~58℃、さらに好ましくは15~58℃、特に好ましくは15~55℃、最も好ましくは25~45℃である。
 なお、Tgは、示差走査熱量計(DSC)を用いて、ASTM D3418-82に規定の方法(DSC法)で測定される。
 ポリエステル樹脂(A1)の酸価は、低温定着性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、粉砕性及び画像強度の観点から、5~50mgKOH/gが好ましく、より好ましくは8~48mgKOH/g、さらに好ましくは10~48mgKOH/g、特に好ましくは10~45mgKOH/g、最も好ましくは15~40mgKOH/gである。
 なお、酸価は、JIS K0070に規定の方法で測定することができる。
 ポリエステル樹脂(A1)のフローテスターで測定した軟化点(T1/2)は、50~130℃が好ましく、より好ましくは60~125℃、さらに好ましくは65~120℃である。
 なお、軟化点(T1/2)は以下の方法で測定される。
 降下式フローテスター{例えば、(株)島津製作所製、CFT-500D}を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)を軟化点〔T1/2〕とする。
 ポリエステル樹脂(A1)はTHF不溶解分を含まないことが低温定着性の観点から好ましい。なお、ポリエステル樹脂(A1)がTHF不溶解分を含む場合、THF不溶解分の含有量は1重量%以下であることが好ましく、0.1~1.0重量%であることがより好ましい。
 本発明におけるポリエステル樹脂(A1)のTHF不溶解分の含有量(重量%)は、以下の方法で求めたものである。
 試料0.5gに50mLのTHFを加え、3時間撹拌還流させる。冷却後、グラスフィルターにて不溶解分をろ別し、グラスフィルター上の樹脂分を80℃で3時間減圧乾燥する。グラスフィルター上の乾燥した樹脂分の重量をTHF不溶解分の重量とし、試料の重量からTHF不溶解分の重量を引いた重量をTHF可溶分の重量とし、THF不溶解分とTHF可溶分の重量%を算出する。
 なお、後述する結晶性ビニル樹脂(B)及びトナーバインダーについても、上記と同様の方法でTHF不溶解分の含有量を求めることができる。
 エポキシ化合物(E)としては、分子内にエポキシ基を有していれば特に限定されないが、耐ホットオフセット性及び耐熱保存安定性の観点から、分子内に2個以上のエポキシ基を有する多官能エポキシ化合物が好ましい。多官能エポキシ化合物としては、芳香族系ポリエポキシ化合物、複素環式系ポリエポキシ化合物、脂環式系ポリエポキシ化合物及び脂肪族系ポリエポキシ化合物等が挙げられる。エポキシ化合物(E)は1種単独で用いても、2種以上を併用してもよい。
 芳香族系ポリエポキシ化合物としては、多価フェノールのグリシジルエーテル体、芳香族多価カルボン酸のグリシジルエステル体、グリシジル芳香族ポリアミン及びその他の芳香族系ポリエポキシ化合物が挙げられる。
 多価フェノールのグリシジルエーテル体としては、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールBジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ハロゲン化ビスフェノールAジグリシジルエーテル、テトラクロロビスフェノールAジグリシジルエーテル、カテキンジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、ピロガロールトリグリシジルエーテル、1,5-ジヒドロキシナフタリンジグリシジルエーテル、ジヒドロキシビフェニルジグリシジルエーテル、オクタクロロ-4,4’-ジヒドロキシビフェニルジグリシジルエーテル、テトラメチルビフェニルジグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、テトラキス(4-ヒドロキシフェニル)エタンテトラグリシジルエーテル、p-グリシジルフェニルジメチルトリールビスフェノールAグリシジルエーテル、トリスメチル-t-ブチル-ブチルヒドロキシメタントリグリシジルエーテル、9,9’-ビス(4-ヒドキシフェニル)フロオレンジグリシジルエーテル、4,4’-オキシビス(1,4-フェニルエチル)テトラクレゾールグリシジルエーテル、4,4’-オキシビス(1,4-フェニルエチル)フェニルグリシジルエーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル、ノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リモネンフェノールノボラック型エポキシ樹脂等)、ビスフェノールA型エポキシ樹脂、多価フェノールとグリオキザール、グルタールアルデヒド又はホルムアルデヒドの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体、及びレゾルシンとアセトンの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体等が挙げられる。
 芳香族多価カルボン酸のグリシジルエステル体としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル及びテレフタル酸ジグリシジルエステル等が挙げられる。
 グリシジル芳香族ポリアミンとしては、N,N-ジグリシジルアニリン、N,N,N’,N’-テトラグリシジルキシリレンジアミン及びN,N,N’,N’-テトラグリシジルジフェニルメタンジアミン等が挙げられる。
 その他の芳香族系ポリエポキシ化合物としては、p-アミノフェノールのトリグリシジルエーテル、トリレンジイソシアネート又はジフェニルメタンジイソシアネートとグリシドールの付加反応によって得られるジグリシジルウレタン化合物、前記2反応物にポリオールも反応させて得られるグリシジル基含有ポリウレタン(プレ)ポリマー及びビスフェノールAのAO付加物のジグリシジルエーテル体も含む。
 複素環式系ポリエポキシ化合物としては、トリスグリシジルメラミンが挙げられる。
 脂環式系ポリエポキシ化合物としては、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、ジシクロペンタジエンジオキサイド、ビス(2,3-エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)ブチルアミン、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物及びダイマー酸ジグリシジルエステル等が挙げられる。脂環式系ポリエポキシ化合物としては、前記芳香族系ポリエポキシ化合物の核水添化物も含む。
 脂肪族系ポリエポキシ化合物としては、脂肪族多価アルコールのポリグリシジルエーテル体、脂肪族多価カルボン酸のポリグリシジルエステル体及びグリシジル脂肪族アミンが挙げられる。
 脂肪族多価アルコールのポリグリシジルエーテル体としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル及びポリグリセロールポリグリシジルエーテル等が挙げられる。
 脂肪族多価カルボン酸のポリグリシジルエステル体としては、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペート及びジグリシジルピメレート等が挙げられる。
 グリシジル脂肪族アミンとしては、N,N,N’,N’-テトラグリシジルヘキサメチレンジアミン等が挙げられる。
 また、脂肪族系ポリエポキシ化合物としては、ジグリシジルエーテル、グリシジル(メタ)アクリレートの(共)重合体も含む。
 これらの多官能エポキシ化合物のうち、耐ホットオフセット性及び耐熱保存安定性の観点から、好ましくは芳香族系ポリエポキシ化合物、脂環式系ポリエポキシ化合物、脂肪族系ポリエポキシ化合物であり、より好ましくは芳香族系ポリエポキシ化合物であり、さらに好ましくはノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂である。なお、上述のエポキシ化合物(E)は、1種のみ使用してもよく、複数種組み合わせて使用することもできる。
 本発明におけるエポキシ化合物(E)は、エポキシ当量が150~1000(g/eq、以下同じ)であることが好ましく、より好ましくは160~500であり、さらに好ましくは170~300である。エポキシ化合物(E)のエポキシ当量が150より小さいと帯電維持率が不充分となる場合があり、一方1000より大きいと画像強度及び耐久性が不充分となる場合がある。
 本発明におけるポリエステル樹脂(A)は、上述の製造方法等で得られたポリエステル樹脂(A1)にエポキシ化合物(E)を添加し、反応させることでポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有するポリエステル樹脂(A)を得ることができる。反応は不活性ガス(窒素ガス等)雰囲気中で行うことが好ましい。また、反応温度は好ましくは160~260℃、より好ましくは170~250℃、更に好ましくは180~240℃である。反応時間は、反応を確実に行う観点から、好ましくは3分以上、より好ましくは30分以上、さらに好ましくは2~40時間である。
 ポリエステル樹脂(A1)とエポキシ化合物(E)の反応には、公知のエポキシ反応触媒(3級アミン類、イミダゾール類、4級アンモニウム塩類など)を加えることもできる。また、反応器としては、通常のバッチ式反応器、横型反応器(プラスミル、ニーダー、押出機など)を用いることもできる。
 また、本発明におけるポリエステル樹脂(A)の好適な製造方法として、後述する結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)と反応させることも可能である。結晶性ビニル樹脂(B)の存在下でポリエステル樹脂(A1)をエポキシ化合物(E)で架橋させることで、低温定着性、耐ホットオフセット性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性及び耐久性に優れるトナーバインダーを得ることができる。従って、本発明には、結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)と反応させて得られるトナーバインダー及びその製造方法を含まれる。なお、本製造方法の詳細は後述する。
 ポリエステル樹脂(A1)の重量に対するエポキシ化合物(E)の重量比率は、耐ホットオフセット性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、画像強度及び耐久性の観点より、1~42重量%が好ましく、1~40重量%が好ましく、3~33重量%がより好ましく、5~31重量%がさらに好ましく、7~30重量%が特に好ましい。
 なお、本発明において、ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有するが、ポリエステル樹脂(A)の一部にポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂が存在していればよく、未反応の架橋されていないポリエステル樹脂(A1)を一部含有していてもよい。ポリエステル樹脂(A)は、ポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有するものであればよく、さらにポリエステル樹脂(A1)を含有していてもよい。
 本発明のトナーバインダーは、結晶性ビニル樹脂(B)を含有する。
 結晶性ビニル樹脂(B)は結晶性を有するビニル樹脂であれば特に制限は無いが、好ましくは単量体(a)を含む単量体組成物の重合体であり、前記単量体(a)は鎖状炭化水素基を有する炭素数21~40の(メタ)アクリレートである。単量体(a)の炭素数が21未満であると耐熱保存性が悪化する場合があり、炭素数が40より大きいと低温定着性が悪化する場合がある。
 単量体(a)としては、直鎖のアルキル基(炭素数18~36)を有する(メタ)アクリレート[オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ヘンエイコサニル(メタ)アクリレート、ベヘニル(メタ)アクリレート、リグノセリル(メタ)アクリレート、セリル(メタ)アクリレート、モンタニル(メタ)アクリレート、トリアコンチル(メタ)アクリレート及びドトリアコンタ(メタ)アクリレート等]及び分岐のアルキル基(炭素数18~36)を有する(メタ)アクリレート[2-デシルテトラデシル(メタ)アクリレート等]が挙げられる。
 これらの内、トナーの耐熱保存性、低温定着性、耐ホットオフセット性、画像強度及び粉砕性の両立の観点から、好ましくは直鎖のアルキル基(炭素数18~36)を有する(メタ)アクリレートであり、より好ましくは直鎖のアルキル基(炭素数18~30)を有する(メタ)アクリレートであり、さらに好ましいのはオクタデシル(メタ)アクリレート(ステアリル(メタ)アクリレート)、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート、リグノセリル(メタ)アクリレート、セリル(メタ)アクリレート及びトリアコンチル(メタ)アクリレートであり、特に好ましくはオクタデシルアクリレート、エイコシルアクリレート、ベヘニルアクリレート及びリグノセリルアクリレートである。
 なお、単量体(a)は、1種を単独で用いても、2種以上を併用してもよい。
 結晶性ビニル樹脂(B)は、トナーの耐ホットオフセット性、耐熱保存性、帯電維持率、画像強度、粉砕性及び耐久性の観点から、上記単量体(a)以外に、ビニル基を有する炭素数6以下の単量体(b)を含む単量体組成物の重合体であってもよい。
 単量体(b)としては炭素数6以下の(メタ)アクリル系モノマー[(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチル(メタ)アクリレート及びエチル-2-(ヒドロキシメチル)アクリレート等]、炭素数6以下のビニルエステルモノマー[酢酸ビニル、プロピオン酸ビニル及び酢酸イソプロペニル等]、炭素数6以下の脂肪族炭化水素系ビニルモノマー[エチレン、プロピレン、ブテン、ブタジエン、イソプレン及び1,5-ヘキサジエン等]、ニトリル基を有する炭素数6以下の単量体[(メタ)アクリロニトリル等]等が挙げられる。
 これらの内、好ましいのは、(メタ)アクリル酸、メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、酢酸ビニル、(メタ)アクリロニトリルである。
 なお、単量体(b)は、1種を単独で用いても、2種以上を併用してもよい。
 結晶性ビニル樹脂(B)は耐熱保存性、耐ホットオフセット性の観点から、上記単量体(a)及び単量体(b)以外の単量体(d)を含む単量体組成物の重合体であってもよく、単量体(d)としては、スチレン系モノマー(d1)、炭素数が6を超える(メタ)アクリル系モノマーのうち単量体(a)を除く(メタ)アクリル系モノマー(d2)、炭素数が6を超えるビニルエステルモノマー(d3)、並びに、ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選ばれる少なくとも1種の官能基とエチレン性不飽和結合とを有する炭素数が6を超える単量体(d4)等が好ましい。
 なお、単量体(d)は、1種を単独で用いても、2種以上を併用してもよい。
 スチレン系モノマー(d1)としては、スチレン、アルキル基の炭素数が1~3のアルキルスチレン(例えばα-メチルスチレン及びp-メチルスチレン等)などが挙げられる。
 (メタ)アクリル系モノマー(d2)としては、アルキル基の炭素数が4~17のアルキル(メタ)アクリレート[ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びラウリル(メタ)アクリレート等]、アルキル基の炭素数が4~17のヒドロキシアルキル(メタ)アクリレート、アルキル基の炭素数が4~17のアミノアルキル基含有(メタ)アクリレート[ジメチルアミノエチル(メタ)アクリレート及びジエチルアミノエチル(メタ)アクリレート等]、炭素数8~20の不飽和カルボン酸と多価アルコールとのエステル[エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート及びポリエチレングリコールジ(メタ)アクリレート等]等が挙げられる。
 ビニルエステルモノマー(d3)としては、炭素数7~15の脂肪族ビニルエステル及び炭素数9~15の芳香族ビニルエステル(例えばメチル-4-ビニルベンゾエート等)等が挙げられる。
 ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選ばれる少なくとも1種の官能基とエチレン性不飽和結合とを有する炭素数が6を超える単量体(d4)としては、ウレタン基を有する単量体(d41)、ウレア基を有する単量体(d42)、アミド基を有する単量体(d43)、イミド基を有する単量体(d44)、アロファネート基を有する単量体(d45)及びビューレット基を有する単量体(d46)等が挙げられる。
 ウレタン基を有する単量体(d41)としては、エチレン性不飽和結合を有する炭素数2~22のアルコール(メタクリル酸-2-ヒドロキシエチル、ビニルアルコール等)と炭素数1~30のイソシアネートとを公知の方法で反応させた単量体、並びに、炭素数1~26のアルコールとエチレン性不飽和結合を有する炭素数2~30のイソシアネートとを公知の方法で反応させた単量体等が挙げられる。なお、本明細書中、イソシアネート基を有する化合物及び構造における炭素数にはイソシアネート(NCO)に含まれる炭素数は含まない。
 炭素数1~30のイソシアネートとしては、モノイソシアネート化合物(ベンゼンスルフォニルイソシアネート、トシルイソシアネート、フェニルイソシアネート、p-クロロフェニルイソシアネート、ブチルイソシアネート、ヘキシルイソシアネート、t-ブチルイソシアネート、シクロヘキシルイソシアネート、オクチルイソシナエート、2-エチルヘキシルイソシアネート、ドデシルイソシアネート、アダマンチルイソシアネート、2,6-ジメチルフェニルイソシアネート、3,5-ジメチルフェニルイソシアネート及び2,6-ジプロピルフェニルイソシアネート等)、脂肪族ジイソシアネート化合物(トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート及び2,4,4-トリメチルヘキサメチレンジイソシアネート等)、脂環族ジイソシアネート化合物(1,3-シクロペンテンジイソシアネート、1,3-シクロへキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加キシリレンジイソシアネート,水素添加トリレンジイソシアネート及び水素添加テトラメチルキシリレンジイソシアネート等)及び芳香族ジイソシアネート化合物(フェニレンジイソシアネート、2,4-トリレンジイソソアネート、2,6-トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-トルイジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート及びキシリレンジイソシアネート等)等が挙げられる。
 炭素数1~26のアルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、t-ブチルアルコール、ペンタノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナノール、デカノール、ウンデシルアルコール、ラウリルアルコール、ドデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セタノール、ヘプタデカノール、ステアリルアルコール、イソステアリルアルコール、エライジルアルコール、オレイルアルコール、リノレイルアルコール、リノレニルアルコール、ノナデシルアルコール、ヘンエイコサノール、ベヘニルアルコール、エルシルアルコール等が挙げられる。
 エチレン性不飽和結合を有する炭素数2~30のイソシアネートとしては、2-イソシアナトエチル(メタ)アクリレート、(メタ)アクリル酸2-[0-(1’-メチルプロピリデンアミノ)カルボキシアミノ]エチル、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート及び1,1-(ビス(メタ)アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。
 ウレア基を有する単量体(d42)としては、炭素数3~22のアミン[一価のものとして例えば、1級アミン(ノルマルブチルアミン、t-ブチルアミン、プロピルアミン及びイソプロピルアミン等)、2級アミン(ジエチルアミン、ジノルマルプロピルアミン及びジノルマルブチルアミン等)、アニリン及びシクロヘキシルアミン等]と、エチレン性不飽和結合を有する炭素数2~30のイソシアネートとを公知の方法で反応させた単量体等が挙げられる。
 アミド基を有する単量体(d43)としては、炭素数1~30のアミンとエチレン性不飽和結合を有する炭素数3~30のカルボン酸(アクリル酸及びメタクリル酸等)を公知の方法で反応させた単量体等が挙げられる。
 イミド基を有する単量体(d44)としては、アンモニアとエチレン性不飽和結合を有する炭素数4~10の無水カルボン酸(無水マレイン酸及びジアクリル酸無水物等)を公知の方法で反応させた単量体、及び炭素数1~30の1級アミンとエチレン性不飽和結合を有する炭素数4~10の無水カルボン酸を公知の方法で反応させた単量体等が挙げられる。
 アロファネート基を有する単量体(d45)としては、ウレタン基を有する単量体(d41)と炭素数1~30のイソシアネートを公知の方法で反応させた単量体等が挙げられる。
 ビューレット基を有する単量体(d46)としては、ウレア基を有する単量体(d42)と炭素数1~30のイソシアネートを公知の方法で反応させた単量体等が挙げられる。
 単量体(d4)を用いることで、ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基、好ましくはウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基を結晶性ビニル樹脂(B)中に導入することができる。
 なお、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基を結晶性ビニル樹脂(B)中に導入する方法としては、上記単量体(d41)~(d46)を用いる方法のほかに、以下の方法を用いることもできる。
 まず、単量体(d41)~(d46)を得るための2つの化合物(エチレン性不飽和結合を有する化合物及び他方の化合物)のうち、エチレン性不飽和結合を有する化合物を単量体(a)と反応させる。続いて、上記エチレン性不飽和結合を有する化合物と単量体(a)との重合体に対して他方の化合物を反応させる。以上の手順によって、「エチレン性不飽和結合を有する化合物と単量体(a)との重合体」と「他方の化合物」とが結合して結晶性ビニル樹脂(B)が得られる。この反応の際に、「エチレン性不飽和結合を有する化合物と単量体(a)との重合体」と「他方の化合物」とが、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基又はビューレット基により結合されるため、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基を結晶性ビニル樹脂(B)中に導入することができる。
 これらの単量体(d)の内、低温定着性、耐熱保存性、帯電維持率、粉砕性及び原料価格の観点から好ましいのはスチレン、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-イソシアナトエチル(メタ)アクリレートとメタノールの反応物及び2-イソシアナトエチル(メタ)アクリレートとジノルマルブチルアミンの反応物であり、より好ましくはスチレン、ブチル(メタ)アクリレートであり、さらに好ましくはスチレンである。
 結晶性ビニル樹脂(B)は上記単量体(a)、単量体(b)及び単量体(d)以外のその他の単量体を含む単量体組成物の重合体であってもよい。上記単量体(a)、単量体(b)及び単量体(d)以外のその他の単量体として、例えばジビニルベンゼン及びアルキルアリルスルホコハク酸ナトリウム塩等が挙げられる。
 上記単量体組成物中の単量体(a)の重量割合は、上記単量体組成物の合計重量を基準として、好ましくは30重量%以上であり、より好ましくは40重量%以上であり、更に好ましくは60重量%である。単量体(a)の重量割合が30重量%より低いと低温定着性が悪化する場合がある。一方、単量体(a)の重量割合の上限については低温定着性、耐ホットオフセット性及び耐熱保存性の両立の観点より、上記単量体組成物の合計重量を基準として、好ましくは99重量%以下、より好ましくは95重量%以下である。一態様において、上記単量体組成物中の単量体(a)の重量割合は、上記単量体組成物の合計重量を基準として、好ましくは30~99重量%、より好ましくは40~99重量%、さらに好ましくは40~95重量%、特に好ましくは60~95重量%である。
 上記単量体組成物中には、耐熱保存性の観点から、単量体(b)を含むことが好ましく、より好ましくは単量体(b)と単量体(d)を含む。上記単量体組成物中の単量体(b)と単量体(d)の合計の重量割合は、上記単量体組成物の合計重量を基準として、1~70重量%であることが好ましく、1~60重量%であることがより好ましく、5~60重量%であることがさらに好ましく、5~40重量%であることが特に好ましい。
 結晶性ビニル樹脂(B)は、単量体(a)、必要に応じて用いる単量体(b)及び単量体(d)を含有する単量体組成物を公知の方法(特開平5-117330号公報等に記載の方法)で重合することで製造できる。例えば、上記単量体を溶媒(トルエン等)中でラジカル反応開始剤(アゾビスイソブチロニトリル等)とともに反応させる溶液重合法により合成することができる。
 また、ラジカル反応開始剤は公知のラジカル反応開始剤(c)を用いてもよい。ラジカル反応開始剤(c)としては、特に制限されず、無機過酸化物(c1)、有機過酸化物(c2)及びアゾ化合物(c3)等が挙げられる。また、これらのラジカル反応開始剤を併用することもできる。
 無機過酸化物(c1)としては、特に限定されないが、例えば過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等が挙げられる。
 有機過酸化物(c2)としては、特に制限されないが、例えば、ベンゾイルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)へキサン、ジ-t-へキシルパーオキシド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシへキシン-3、アセチルパーオキシド、イソブチリルパーオキシド、オクタニノルパーオキシド、デカノリルパーオキシド、ラウロイルパーオキシド、3,3,5-トリメチルヘキサノイルパーオキシド、m-トルイルパーオキシド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート及びt-ブチルパーオキシアセテート等が挙げられる。
 アゾ化合物(c3)としては、特に制限されないが、例えば、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)及びアゾビスイソブチロニトリル等が挙げられる。
 これらの中でも開始剤効率が高く、シアン化合物などの有毒な副生成物を生成しないことから、有機過酸化物(c2)が好ましい。
 結晶性ビニル樹脂(B)は、下記関係式(1)を満たすことが耐熱保存性及び帯電維持率の観点から好ましい。
 関係式(1):1.1≦|SP(x)-SP(a)|≦8.0
 なお、関係式(1)において、SP(a)は、単量体(a)の単独重合体の溶解度パラメータ(以降、SP値と略記)であり、SP(x)は、単量体(a)以外の全ての単量体の重合体のSP値である。
 なお、本発明におけるSP値(cal/cm0.5は、Robert F Fedorsらの著によるPolymer engineering and science 第14巻、151~154ページに記載されている方法で計算した25℃における値である。
 また、トナーにした際の耐熱保存性の観点からは、1.5≦|SP(x)-SP(a)|≦6.0を満たすことがより好ましい。
 結晶性ビニル樹脂(B)のTHF不溶解分の含有量は、トナーの低温定着性の観点より、0~1.0重量%であることが好ましく、より好ましくは0~0.5重量%であり、さらに好ましくは0重量%である。
 なお、THF不溶解分は前述した方法で測定できる。
 結晶性ビニル樹脂(B)の酸価は、トナーの耐熱保存性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、60mgKOH/g以下であることが好ましく、より好ましくは40mgKOH/g以下であり、さらに好ましくは0~5mgKOH/gである。
 結晶性ビニル樹脂(B)の酸価は、JIS K0070に規定の方法で測定することができる。
 結晶性ビニル樹脂(B)のTHF可溶分の数平均分子量(Mn)は、トナーの低温定着性と耐熱保存性の両立の観点から、1,000~300,000が好ましい。
 結晶性ビニル樹脂(B)のTHF可溶分の重量平均分子量(Mw)は、トナーの低温定着性と、耐ホットオフセット性及び耐熱保存性との両立の観点から、1,000~300,000が好ましく、10,000~100,000がより好ましく、15,000~70,000がさらに好ましい。
 なお、結晶性ビニル樹脂(B)のMnおよびMwは前述した方法で測定できる。
 本発明のトナーバインダーは、上述したポリエステル樹脂(A)及び結晶性ビニル樹脂(B)を含有する。
 本発明のトナーバインダーにおいて、ポリエステル樹脂(A1)と結晶性ビニル樹脂(B)の重量比[(A1):(B)]は、低温定着性、耐ホットオフセット性及び耐熱保存性の両立の観点から、8:92~80:20であることが好ましく、10:90~70:30であることがより好ましく、15:85~65:35がさらに好ましく、特に好ましくは20:80~60:40である。
 トナーバインダーの製造方法としては、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)が均一に混合していれば特に混合方法は限定されない。一態様において、例えば、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)を公知の混合方法で混合してトナーバインダーを製造することができる。公知の混合方法としては、例えば粉体混合、溶融混合及び溶剤混合等が挙げられる。また、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)の混合は、トナーを製造するときに他の必要なトナー原料と共に同時に混合してもよい。
 粉体混合する場合の混合装置としては、ヘンシェルミキサー、ナウターミキサー及びバンバリーミキサー等が挙げられる。好ましくはヘンシェルミキサーである。
 溶融混合する場合の混合装置としては、反応槽等のバッチ式混合装置及び連続式混合装置が挙げられる。適正な温度で短時間で均一に混合するためには、連続式混合装置が好ましい。連続式混合装置としては、スタティックミキサー、エクストルーダー、コンティニアスニーダー及び3本ロール等が挙げられる。
 溶剤混合の方法としては、ポリエステル樹脂(A)及び結晶性ビニル樹脂(B)を溶剤(酢酸エチル、THF及びアセトン等)に溶解し、均一化させた後、脱溶剤及び粉砕する方法や、ポリエステル樹脂(A)及び結晶性ビニル樹脂(B)を溶剤(酢酸エチル、THF及びアセトン等)に溶解し、水中に分散させた後、造粒及び脱溶剤する方法等が挙げられる。
 また、本発明のさらに好適なトナーバインダーの製造方法としては、結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)とエポキシ化合物(E)を混合後又は混合しながら架橋させ、ポリエステル樹脂(A)と結晶性ビニル(B)を含有するトナーバインダーを得ることもできる。結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)とエポキシ化合物(E)とを反応させる工程を含む、ポリエステル樹脂(A1)がエポキシ化合物(E)で架橋されたポリエステル樹脂(A)と結晶性ビニル(B)とを含有するトナーバインダーの製造方法も本発明に包含される。
 具体的には、ポリエステル樹脂(A1)とビニル樹脂(B)との混合物を二軸押出機に一定速度で注入し、同時にエポキシ化合物(E)も一定速度で注入し、100~200℃の温度で混練搬送しながら反応を行わせるなどの方法がある。このとき、二軸押出機に投入又は注入される反応原料であるポリエステル樹脂(A1)、ビニル樹脂(B)等は、それぞれ反応した樹脂を溶融状態から冷却することなくそのまま直接押出機に注入するようにしてもよいし、また一旦製造した樹脂を冷却、粉砕したものを二軸押出機に供給することにより行ってもよい。
 また、溶融混合する方法がこれら具体的に例示された方法に限られるわけではなく、例えば反応容器中に原料を仕込み、溶融状態となる温度に加熱し、混合するような方法など適宜の方法で行うことができることはもちろんである。
 また、前記結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)と反応させて得られるトナーバインダーにおいて、前記ポリエステル樹脂(A1)と結晶性ビニル樹脂(B)の重量比[(A1):(B)]は、低温定着性、耐ホットオフセット性及び耐熱保存性の両立の観点から、好ましくは8:92~80:20であり、より好ましくは10:90~70:30であり、15:85~65:35がさらに好ましく、特に好ましくは20:80~60:40である。このようなトナーバインダーは、その製造に使用するポリエステル樹脂(A1)と結晶性ビニル樹脂(B)の重量比[(A1):(B)]を上記の範囲とすることによって得ることができる。
 なお、本発明のトナーバインダーには、ポリエステル樹脂(A)及びビニル樹脂(B)以外の樹脂並びに公知の添加剤(離型剤等)を含んでもよい。
 本発明のトナーバインダーは、示差走査熱量測定(DSC測定ともいう)により得られる示差走査熱量曲線において、吸熱ピークトップ温度(Tm)を40~100℃の範囲に少なくとも1個有することが好ましく、上記吸熱ピークトップ温度(Tm)を45~80℃の範囲に少なくとも1個有することがより好ましい。一態様において、本発明のトナーバインダーは、吸熱ピークトップ温度(Tm)が40~100℃であることが好ましく、45~80℃であることがより好ましい。上記吸熱ピークトップ温度(Tm)が上記範囲にあると、トナーバインダーの低温定着性及び耐熱保存性のバランスがよい。但し、吸熱ピークトップ温度(Tm)とは、示差走査熱量計(DSC)を用いてトナーバインダーを20℃から150℃まで10℃/分の条件で第1回目の昇温をした後、150℃から0℃まで10℃/分の条件で冷却し、続いて0℃から150℃まで10℃/分の条件で昇温する第2回目の昇温過程における吸熱ピークのピークトップ温度である。
 本発明においては、上記吸熱ピークトップ温度(Tm)は、結晶性ビニル樹脂(B)に由来する吸熱ピークトップ温度であることが好ましい。一態様において、本発明のトナーバインダーは、結晶性ビニル樹脂(B)に由来する吸熱ピークトップ温度が、40~100℃であることが好ましく、45~80℃であることがより好ましい。結晶性ビニル樹脂(B)に由来する吸熱ピークトップ温度(Tm)が上記範囲にあると、トナーバインダーの低温定着性及び耐熱保存性のバランスがより良好になる。これは結晶性ビニル樹脂(B)に由来する吸熱ピークトップ温度(Tm)で結晶性ビニル樹脂(B)が急激に溶融してトナーバインダーを低粘度化するためであり、またトナー化した際に必要な保管安定性を満足するためである。
 但し、結晶性ビニル樹脂(B)に由来する吸熱ピークトップ温度(Tm)とは、示差走査熱量計(DSC)を用いてトナーバインダーを20℃から150℃まで10℃/分の条件で第1回目の昇温をした後、150℃から0℃まで10℃/分の条件で冷却し、続いて0℃から150℃まで10℃/分の条件で昇温する第2回目の昇温過程における結晶性ビニル樹脂(B)由来の吸熱ピークのピークトップ温度である。
 トナーバインダーの結晶性ビニル樹脂(B)に由来する吸熱ピークトップ温度(Tm)は、結晶性ビニル樹脂(B)を構成する単量体(a)の炭素数を調整すること、結晶性ビニル樹脂(B)を構成する単量体(a)の重量比率を調整すること、関係式(1)を満たすこと、などにより上記の好ましい範囲に調整することができる。一般的には単量体(a)の炭素数を増やす、単量体(a)の重量比率を増やす、結晶性ビニル樹脂(B)の重量平均分子量を増やすことにより吸熱ピークトップ温度(Tm)が上がる傾向にある。また、結晶性ビニル樹脂(B)の含有量が少ない場合は、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とのSP値の差を大きくすることで吸熱ピークトップ温度(Tm)が下がりにくくなる。
 吸熱ピークトップ温度(Tm)は、示差走査熱量計を用いて、下記条件で測定される値である。示差走査熱量計としては、例えば、TA Instruments(株)製、DSC Q20等を用いることができる。
<測定条件>
(1)10℃/分で20℃から150℃まで昇温
(2)10℃/分で150℃から0℃まで冷却
(3)10℃/分で0℃から150℃まで昇温
(4)(3)の過程にて測定される示差走査熱量曲線の各吸熱ピークを解析する。
 本発明のトナーバインダーは、示差走査熱量測定(DSC)を行った際に得られた示差走査熱量曲線において、-30℃~80℃の温度範囲に、ガラス転移温度(Tg)を示す変曲点を少なくとも1個有することが好ましい。また、ガラス転移温度(Tg)を示す変曲点は、35~65℃の温度範囲にあることがより好ましい。ガラス転移温度(Tg)を示す変曲点が、-30℃以上の温度範囲にある場合、耐熱保存性が良好になり、80℃以下の温度範囲にある場合、定着性が良好になる。
 なお、ガラス転移温度(Tg)は、ASTM D3418-82に規定の方法(DSC法)により決定することができる。ガラス転移温度(Tg)の測定には、例えば、TA Instruments(株)製、DSC Q20等を用いることができる。ガラス転移温度(Tg)は、下記の条件で測定することができる。
<測定条件>
(1)30℃から20℃/分で150℃まで昇温
(2)150℃で10分間保持
(3)20℃/分で-35℃まで冷却
(4)-35℃で10分間保持
(5)20℃/分で150℃まで昇温
(6)(5)の過程にて測定される示差走査熱量曲線を解析する。
 本発明のトナーバインダーは、THF不溶解分を含むのが好ましい。
 本発明のトナーバインダーのTHF不溶解分の含有量(重量%)は、光沢性、耐ホットオフセット性及び低温定着性の両立の観点から、3~70重量%であることが好ましく、より好ましくは5~60重量%であり、さらに好ましくは、10~55重量%であり、特に好ましくは、15~50重量%である。
 本発明のトナーバインダーのTHF可溶分のMnは、トナーの耐熱保存性と低温定着性との両立の観点から、500~24,000が好ましく、より好ましくは700~17,000、さらに好ましくは900~12,000である。
 本発明のトナーバインダーのTHF可溶分のMwは、トナーの耐ホットオフセット性と低温定着性との両立の観点から、5,000~120,000が好ましく、より好ましくは7,000~100,000、さらに好ましくは9,000~90,000であり、特に好ましくは10,000~80,000である。
 本発明のトナーバインダーのTHF可溶分の分子量分布Mw/Mnは、トナーの耐ホットオフセット性と耐熱保存性と低温定着性との両立の観点から、2~30が好ましく、より好ましくは2.5~28、さらに好ましくは3~26である。
 本発明のトナーバインダーの酸価は、トナーの耐熱保存性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、50mgKOH/g以下であることが好ましく、より好ましくは0~30mgKOH/gであり、さらに好ましくは1~20mgKOH/gである。
 トナーバインダーの酸価は、JIS K0070に規定の方法で測定することができる。
 本発明のトナーバインダー中の有機溶剤の含有量は、トナーバインダーの重量に基づいて50~2000ppmであることが好ましい。有機溶剤含有量が2000ppm以下であると耐熱保存性、帯電維持率、ブロッキング性及び臭気が良好となり、50ppm以上であると低温定着性及び光沢性が良好になる。トナーバインダー中の有機溶剤の含有量は、より好ましくは100~1500ppmであり、さらに好ましくは150~1000ppmであり、特に好ましくは200~500ppmである。
 有機溶剤含有量を制御する方法としては、例えば、ポリエステル樹脂(A)、結晶性ビニル樹脂(B)及びトナーバインダーを製造する際の(1)有機溶剤使用量の制御、(2)開始剤量を制御(開始剤分解物の制御)、(3)(1)及び(2)で使用した有機溶剤、及び開始剤分解残渣の脱溶剤による制御等が挙げられる。
 (3)において、有機溶剤を脱溶剤する方法及び開始剤分解残渣を脱溶剤する方法としては、特に限定しないが、トナーバインダーを粉砕したものを二軸押出機に供給し、溶融搬送しながらベント口から減圧を行う方法が挙げられる。このとき、溶融温度や軸回転数、減圧度などを調整することで、トナーバインダー中の有機溶剤量を制御できる。また、トナーバインダーを任意の温度下で減圧操作することでも脱溶剤できる。なお、撹拌機を用いて撹拌しながら減圧してもよい。このとき、温度や減圧度、撹拌速度などを調整することで、トナーバインダー中の有機溶剤量を制御できる。脱溶剤の温度について好ましくは20~200℃、より好ましくは30~170℃、さらに好ましくは40~160℃である。脱溶剤する際の減圧度について好ましくは0.01~100kPa、より好ましくは0.1~95kPa、さらに好ましくは1~90kPaである。
 一方、二軸押出機にて原料を反応させながら、同時にベント口から減圧を行うこともできる。また、反応容器中に原料を仕込んで反応させた場合、反応後にそのまま減圧操作にて脱溶剤する方法でも脱溶剤を行うことができる。このとき、上記と同様の項目を調整することで、トナーバインダー中の有機溶剤量を制御できる。
 あるいは、トナーバインダーを粉砕したものを脱溶剤の対象となる有機溶剤の種類に応じて温度及び圧力(常圧ないし減圧)が調整された乾燥機に入れることで、トナーバインダー中の有機溶剤量を制御できる。
 また、短時間で脱溶剤する方法が、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)のエステル交換反応が起こりにくく、耐ホットオフセット性と低温定着性が良好なため好ましい。
 なお、有機溶剤の含有量(ppm)は、例えばガスクロマトグラフ分析等により下記条件で測定することができる。
 実施例及び比較例に係るトナーバインダー中の有機溶剤の含有量は、以下の条件で測定した。
[ガスクロマトグラフ分析測定条件]
ガスクロマトグラフ :Agilent 6890N
質量分析装置    :Agilent 5973 inert
カラム       :ZB-WAX(液相:(14%-シアノプロピル-フェニル)メチルポリシロキサン) 0.25mm×30m df=1.0μm
カラム温度     :70℃→300℃(10℃/分)
インジェクション温度:200℃
スプリット比    :50:1
注入量       :1μL
ヘリウム流量    :1mL/分
検出器       :MSD
 トナーバインダーが含有する有機溶剤としては、特に制限されないが、例えば、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、n-ブタノール、s-ブタノール、t-ブタノール、ジアセトンアルコール、2-エチルヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn-ブチルケトン、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、エチレングリコール、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキサン、1,3-オキソラン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、1,2-ジクロロエタン、1,2-ジクロロエチレン、1,1,2,2-テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、ヘキサン、ペンタン、ベンゼン、へプタン、トルエン、キシレン、クレゾール、クロロベンゼン、スチレン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-ペンチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、メチルシクロヘキサノール、メチルシクロヘキサノン、ジクロロメタン、オルトジクロロベンゼン、ジメチルスルホキシド、無水酢酸、酢酸、ヘキサメチルフォスフォリックトリアミド、トリエチルアミン、ピリジン、アセトフェノン、t-ヘキシルアルコール、t-アミルアルコール及びt-ブトキシベンゼンなどが挙げられる。
 これらのうち、耐熱保存性及び臭気の観点から、好ましくは炭素数が2~10である化合物であり、より好ましくは炭素数が3~8である化合物であり、さらに好ましくはアセトン、イソプロピルアルコール及びt-ブタノールである。
 有機溶剤含有量を制御する方法としては、従来は上述の(3)による脱溶剤する方法が一般的であるが、架橋ポリエステル樹脂の溶融物は流動性が低く、脱溶剤に長時間を要することから、架橋構造の切断などにより樹脂物性の低下が生じていた。本発明ではポリエステル樹脂(A1)をエポキシ化合物(E)で架橋させているため、従来のラジカル反応開始剤(c)を用いて架橋反応させる場合と比較して、熱安定性の低下及び臭気発生の原因となるラジカル反応開始剤(c)の分解により発生する有機溶剤等を抑制でき、さらに樹脂物性低下を生じる架橋反応後の脱溶剤も不必要なことから、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性及び臭気が良好なトナーを得ることができる。
 本発明のトナーバインダーは、トナーへ適用することが有用である。トナーは、本発明のトナーバインダーを含有する。本発明のトナーバインダーを含有するトナーも、本発明に包含される。
 トナーは、本発明のトナーバインダー以外に、必要により、着色剤、離型剤、荷電制御剤及び流動化剤等から選ばれる1種以上の公知の添加剤を含有してもよい。
 着色剤としては、トナー用着色剤として使用されている染料及び顔料等のすべてを使用することができる。例えば、カーボンブラック、鉄黒、スーダンブラックSM、ファーストイエローG、ベンジジンイエロー、ピグメントイエロー、インドファーストオレンジ、イルガシンレッド、パラニトロアニリンレッド、トルイジンレッド、カーミンFB、ピグメントオレンジR、レーキレッド2G、ローダミンFB、ローダミンBレーキ、メチルバイオレットBレーキ、フタロシアニンブルー、ピグメントブルー、ブリリアントグリーン、フタロシアニングリーン、オイルイエローGG、カヤセットYG、オラゾールブラウンB及びオイルピンクOP等が挙げられる。着色剤は、これらのいずれか単独であってもよく、2種以上が混合されたものであってもよい。また、必要により磁性粉(鉄、コバルト、ニッケル等の強磁性金属の粉末若しくはマグネタイト、ヘマタイト、フェライト等の化合物)を着色剤としての機能を兼ねて含有させることができる。
 着色剤の含有量は、本発明のトナーバインダー100重量部に対して、好ましくは1~40重量部、より好ましくは3~10重量部である。なお、磁性粉を用いる場合は、トナーバインダー100重量部に対して、好ましくは20~150重量部、より好ましくは40~120重量部である。
 離型剤としては、フローテスターによるフロー軟化点(T1/2)が50~170℃のものが好ましく、低分子量ポリプロピレン、低分子量ポリエチレン、低分子量ポリプロピレンポリエチレン共重合体、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス等の脂肪族炭化水素系ワックス及びそれらの酸化物、カルナバワックス、モンタンワックス、サゾールワックス及びそれらの脱酸ワックス、脂肪酸エステルワックス等のエステルワックス、脂肪酸アミド類、脂肪酸類、高級アルコール類、脂肪酸金属塩及びこれらの混合物等が挙げられる。
 離型剤のフロー軟化点(T1/2)は以下の条件で測定できる。
<フロー軟化点(T1/2)の測定方法>
 降下式フローテスター[たとえば、(株)島津製作所製、CFT-500D]を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)をフロー軟化点(T1/2)とする。
 ポリオレフィンワックスとしては、オレフィン(例えばエチレン、プロピレン、1-ブテン、イソブチレン、1-ヘキセン、1-ドデセン、1-オクタデセン及びこれらの混合物等)の(共)重合体[(共)重合により得られるもの及び熱減成型ポリオレフィンを含む]、オレフィンの(共)重合体の酸素及び/又はオゾンによる酸化物、オレフィンの(共)重合体のマレイン酸変性物[例えばマレイン酸及びその誘導体(無水マレイン酸、マレイン酸モノメチル、マレイン酸モノブチル及びマレイン酸ジメチル等)変性物]、オレフィンと不飽和カルボン酸[(メタ)アクリル酸、イタコン酸及び無水マレイン酸等]及び/又は不飽和カルボン酸アルキルエステル[(メタ)アクリル酸アルキル(アルキルの炭素数1~18)エステル及びマレイン酸アルキル(アルキルの炭素数1~18)エステル等]等との共重合体及びサゾールワックス等が挙げられる。
 高級アルコールとしては、炭素数30~50の脂肪族アルコールなどであり、例えばトリアコンタノールが挙げられる。脂肪酸としては、炭素数30~50の脂肪酸などであり、例えばトリアコンタンカルボン酸が挙げられる。
 荷電制御剤としては、ニグロシン染料、3級アミンを側鎖として含有するトリフェニルメタン染料、4級アンモニウム塩、ポリアミン樹脂、イミダゾール誘導体、4級アンモニウム塩基含有ポリマー、含金属アゾ染料、銅フタロシアニン染料、サリチル酸金属塩、ベンジル酸のホウ素錯体、スルホン酸基含有ポリマー、含フッ素ポリマー及びハロゲン置換芳香環含有ポリマー等が挙げられる。
 流動化剤としては、コロイダルシリカ、アルミナ粉末、酸化チタン粉末及び炭酸カルシウム粉末等が挙げられる。
 トナー中のトナーバインダーの含有量はトナー重量に基づき、好ましくは30~97重量%、より好ましくは40~95重量%、さらに好ましくは45~92重量%である。
 着色剤の含有量はトナー重量に基づき、好ましくは0.05~60重量%、より好ましくは0.1~55重量%、さらに好ましくは0.5~50重量%である。
 離型剤の含有量はトナー重量に基づき、好ましくは0~30重量%、より好ましくは0.5~20重量%、さらに好ましくは1~10重量%である。
 荷電制御剤の含有量はトナー重量に基づき、好ましくは0~20重量%、より好ましくは0.1~10重量%、さらに好ましくは0.5~7.5重量%である。
 流動化剤の含有量はトナー重量に基づき、好ましくは0~10重量%、より好ましくは0~5重量%、さらに好ましくは0.1~4重量%である。
 また、添加剤の含有量の合計量はトナー重量に基づき、好ましくは3~70重量%、より好ましくは4~58重量%、さらに好ましくは5~50重量%である。
 トナーの組成比を上記の範囲とすることで、耐ホットオフセット性、画像強度、耐熱保存性、流動性、帯電安定性、耐折り曲げ性及びドキュメントオフセット性が良好なトナーを容易に得ることができる。
 トナーは、公知の混練粉砕法、乳化転相法及び重合法等のいずれの方法により得られたものであってもよい。
 例えば、混練粉砕法によりトナーを得る場合、流動化剤を除くトナーを構成する成分を乾式ブレンドした後、溶融混練し、その後粗粉砕し、最終的にジェットミル粉砕機等を用いて微粒化して、さらに分級することにより、体積平均粒径(D50)が好ましくは5~20μmの微粒とした後、流動化剤を混合して製造することができる。
 なお、体積平均粒径(D50)はコールターカウンター{例えば、商品名:マルチサイザーIII[ベックマン・コールター(株)製]}を用いて測定される。
 また、乳化転相法によりトナーを得る場合、流動化剤を除くトナーを構成する成分を有機溶剤に溶解又は分散後、水を添加する等によりエマルジョン化し、次いで分離、分級して製造することができる。トナーの体積平均粒径は、3~15μmが好ましい。
 トナーは、必要に応じて鉄粉、ガラスビーズ、ニッケル粉、フェライト、マグネタイト及び樹脂(アクリル樹脂、シリコーン樹脂等)により表面をコーティングしたフェライト等のキャリア粒子と混合されて電気的潜像の現像剤として用いられる。キャリア粒子を用いる場合、トナーとキャリア粒子との重量比は、1/99~99/1が好ましい。また、キャリア粒子の代わりに帯電ブレード等の部材と摩擦し、電気的潜像を形成することもできる。
 なお、トナーは、キャリア粒子を含まなくてもよい。
 トナーは、複写機、プリンター等により支持体(紙、ポリエステルフィルム等)に定着して記録材料とされる。支持体に定着する方法としては、公知の熱ロール定着方法及びフラッシュ定着方法等が適用できる。
 トナー及び本発明のトナーバインダーは電子写真法、静電記録法や静電印刷法等において、静電荷像又は磁気潜像の現像に用いられる。さらに詳しくは、特にフルカラー用に好適な静電荷像又は磁気潜像の現像に用いられる。
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、「部」は重量部を示す。
<吸熱ピークトップ温度(Tm)>
 樹脂及びトナーバインダーの吸熱ピークトップ温度(Tm)は、示差走査熱量計を用いて、前記の条件で測定した。示差走査熱量計には、TA Instruments(株)製、DSC Q20を用いた。
<ガラス転移温度>
 ポリエステル樹脂及びトナーバインダーのガラス転移温度は、ASTM D3418-82に規定の方法(DSC法)により求めた。装置は、TA Instruments(株)製、DSC Q20を用いた。
<酸価>
JIS K0070に規定の方法で測定した。
<分子量>
 ピークトップ分子量Mp、数平均分子量(Mn)、重量平均分子量(Mw)は、前記の条件でGPCを用いて測定した。装置は、東ソー(株)製 HLC-8120を、カラムはTSK GEL GMH6[東ソー(株)製]を2本使用した。
<製造例1>  [ポリエステル樹脂(A1-1)の製造]
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物721部、テレフタル酸101部、無水トリメリット酸53部、縮合触媒としてチタニウムジイソプロポキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5~2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満を確認した後、180℃まで降温した。アジピン酸205部を入れ2時間反応させた後、0.5~2.5kPaの減圧下に3時間反応させ、酸価48mgKOH/gを確認した後取り出し、ポリエステル樹脂(A1-1)を得た。
<製造例2>  [ポリエステル樹脂(A1-2)の製造]
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・EO2モル付加物695部、テレフタル酸182部、トリメチロールプロパン12部、縮合触媒としてチタニウムジイソプロポキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5~2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満を確認した後、180℃まで降温した。アジピン酸195部を入れ2時間反応させた後、0.5~2.5kPaの減圧下に3時間反応させ、酸価28mgKOH/gを確認した後取り出し、ポリエステル樹脂(A1-2)を得た。
<製造例3>  [ポリエステル樹脂(A1-3)の製造]
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物371部、ビスフェノールA・PO3モル付加物171部、ビスフェノールA・EO2モル付加物195部、テレフタル酸146部、無水トリメリット酸33部、縮合触媒としてチタニウムジイソプロポキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5~2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満を確認した後、180℃まで降温した。アジピン酸157部を入れ2時間反応させた後、0.5~2.5kPaの減圧下に3時間反応させ、酸価19mgKOH/gを確認した後取り出し、ポリエステル樹脂(A1-3)を得た。
<製造例4>  [ポリエステル樹脂(A1-4)の製造]
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物766部、テレフタル酸214部、無水トリメリット酸14部、縮合触媒としてチタニウムジイソプロポキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5~2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満を確認した後、180℃まで降温した。イソフタル酸66部を入れ2時間反応させた後、0.5~2.5kPaの減圧下に3時間反応させ、酸価10mgKOH/gを確認した後取り出し、ポリエステル樹脂(A1-4)を得た。
<製造例5>  [ポリエステル樹脂(A1-5)の製造]
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・EO2モル付加物741部、テレフタル酸118部、アジピン酸120部、トリメチロールプロパン13部、縮合触媒としてチタニウムジイソプロポキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5~2.5kPaの減圧下に5時間反応させた後、180℃まで降温した。重合禁止剤としてtert-ブチルカテコール1部を入れ、さらにフマル酸を86部入れ、0.5~2.5kPaの減圧下に8時間反応させた後取り出し、ポリエステル樹脂(A1-5)を得た。
 表1に、ポリエステル樹脂(A1-1)~(A1-5)のガラス転移温度、ピークトップ分子量及び酸価を記載した。
Figure JPOXMLDOC01-appb-T000001
 製造例6~10及び12~14では、単量体(a)としてベヘニルアクリレート、ステアリルアクリレート又はトリアコンチルアクリレートを用いた。
<製造例6>  [結晶性ビニル樹脂(B-1)の製造]
 オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。ベヘニルアクリレート[日油(株)製、以下同様]450部、スチレン[出光興産(株)製、以下同様]150部、アクリロニトリル[ナカライテスク(株)製、以下同様]150部、ジ-t-ブチルパーオキシド[パーブチルD、日油(株)製、以下同様]1.0部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ-t-ブチルパーオキシドを0.5部投入し、反応率が95%以上まで反応させた。165℃で5時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-1)を得た。
<製造例7>  [結晶性ビニル樹脂(B-2)の製造]
 オートクレーブにベヘニルアクリレート335部、酢酸エチル[三協化学(株)製、以下同様]363部を仕込み、窒素で置換した後、撹拌下密閉状態で78℃まで昇温した。アクリロニトリル50部、スチレン79部、アクリル酸メチル[三菱ケミカル(株)製、以下同様]15部、メタクリル酸[三菱ケミカル(株)製、以下同様]21部、2,2’-アゾビス(2-メチルブチロニトリル)[富士フイルム和光純薬(株)製、以下同様]12部、酢酸エチル112部の混合溶液を、オートクレーブ内温度を78℃にコントロールしながら、2時間かけて滴下し重合を行った。滴下後、滴下ラインを酢酸エチル25部で洗浄した。同温度で5時間保った後、1時間かけてオートクレーブ内温度を92℃まで昇温した。更に同温度で2時間保った後60℃まで降温し、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、80℃まで昇温し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)[富士フイルム和光純薬(株)製、以下同様]2部と酢酸エチル38部の混合溶液を1時間かけて滴下した。滴下後80℃で2時間保持し、反応率が95%以上まで反応させた。120℃で6時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-2)を得た。
<製造例8>  [結晶性ビニル樹脂(B-3)の製造]
 オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。ステアリルアクリレート[日油(株)製、以下同様]525部、スチレン150部、アクリロニトリル75部、ジ-t-ブチルパーオキシド0.2部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ-t-ブチルパーオキシドを0.1部投入し、反応率が95%以上まで反応させた。165℃で5時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-3)を得た。
<製造例9>  [結晶性ビニル樹脂(B-4)の製造]
 オートクレーブにベヘニルアクリレート200部、酢酸エチル363部を仕込み、窒素で置換した後、撹拌下密閉状態で78℃まで昇温した。スチレン67部、アクリル酸メチル35部、メタクリロニトリル[旭化成(株)製、以下同様]150部、メタクリル酸48部、2,2’-アゾビス(2-メチルブチロニトリル)8部、酢酸エチル112部の混合溶液を、オートクレーブ内温度を78℃にコントロールしながら、2時間かけて滴下し重合を行った。滴下後、滴下ラインを酢酸エチル25部で洗浄した。同温度で5時間保った後、1時間かけてオートクレーブ内温度を92℃まで昇温した。更に同温度で2時間保った後60℃まで降温し、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、80℃まで昇温し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)2部と酢酸エチル38部の混合溶液を1時間かけて滴下した。滴下後80℃で2時間保持し、反応率が95%以上まで反応させた。120℃で6時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-4)を得た。
<製造例10>  [結晶性ビニル樹脂(B-5)の製造]
 オートクレーブにベヘニルアクリレート250部、酢酸エチル363部を仕込み、窒素で置換した後、撹拌下密閉状態で78℃まで昇温した。スチレン100部、アクリル酸メチル50部、メタクリロニトリル70部、アクリル酸[三菱ケミカル(株)製、以下同様]30部、2,2’-アゾビス(2-メチルブチロニトリル)2部、酢酸エチル112部の混合溶液を、オートクレーブ内温度を78℃にコントロールしながら、2時間かけて滴下し重合を行った。滴下後、滴下ラインを酢酸エチル25部で洗浄した。同温度で5時間保った後、1時間かけてオートクレーブ内温度を92℃まで昇温した。更に同温度で2時間保った後60℃まで降温し、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、80℃まで昇温し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5部と酢酸エチル38部の混合溶液を1時間かけて滴下した。滴下後80℃で2時間保持し、反応率が95%以上まで反応させた。120℃で6時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-5)を得た。
<製造例11>  [トリアコンチルアクリレートの合成]
 撹拌装置、加熱冷却装置、温度計、空気導入管、減圧装置、減水装置を備えた反応容器に、1-トリアコンタノール50部、トルエン50部、アクリル酸12部、ハイドロキノン0.05部を投入し、撹拌して均一化した。その後、パラトルエンスルホン酸2部を加え、30分撹拌した後、空気を30mL/分の流量で吹き込みながら100℃で生成する水を除去しながら5時間反応させた。その後、反応容器内の圧力を300mmHgに調整し、生成する水を除去しながらさらに3時間反応させた。反応溶液を室温まで冷却後、10重量%水酸化ナトリウム水溶液30部を加えて1時間撹拌したのち静置して有機相と水相を分離させた。有機相を分液及び遠心分離操作で採取し、ハイドロキノン0.01部を投入し、空気を吹き込みながら減圧で溶媒を除去し、トリアコンチルアクリレートを得た。
<製造例12>  [結晶性ビニル樹脂(B-6)の製造]
 オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。製造例11で得たトリアコンチルアクリレート600部、スチレン75部、ブチルアクリレート75部、ジ-t-ブチルパーオキシド1.5部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ-t-ブチルパーオキシドを0.5部投入し、反応率が95%以上まで反応させた。165℃で5時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-6)を得た。
<製造例13>  [結晶性ビニル樹脂(B-7)の製造]
 オートクレーブにベヘニルアクリレート260部、キシレン140部を仕込み、窒素で置換した。撹拌下解放状態で140℃まで昇温後、撹拌下密閉状態で170℃まで昇温し、170℃で2時間温調した。スチレン234部、アクリル酸メチル130部、アクリル酸26部、ジ-t-ブチルパーオキシド2.6部、及びキシレン203部の混合溶液を、オートクレーブ内温度を170℃にコントロールしながら、1.5時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン7部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認したところ95%以上であった。170℃で5時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-7)を得た。
<製造例14>  [結晶性ビニル樹脂(B-8)の製造]
 オートクレーブにベヘニルアクリレート325部、キシレン140部を仕込み、窒素で置換した。撹拌下解放状態で140℃まで昇温後、撹拌下密閉状態で170℃まで昇温し、170℃で2時間温調した。スチレン130部、アクリロニトリル65部、メタクリル酸メチル[三菱ガス化学(株)製、以下同様]130部、ジ-t-ブチルパーオキシド1.3部、及びキシレン203部の混合溶液を、オートクレーブ内温度を170℃にコントロールしながら、1.5時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン7部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認したところ95%以上であった。170℃で5時間0.5~2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B-8)を得た。
 表2に、得られた結晶性ビニル樹脂(B-1)~(B-8)の吸熱ピークトップ温度(Tm)、重量平均分子量及び酸価を記載した。結晶性ビニル樹脂(B-1)~(B-8)の製造に使用した単量体組成物中の単量体(a)の重量割合(重量%)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例1>  [トナーバインダー(C-1)の製造]
 ポリエステル樹脂(A1-1)50部、結晶性ビニル樹脂(B-1)50部、jER157S70[ビスフェノールAノボラック型エポキシ樹脂、三菱ケミカル(株)製、以下同様、エポキシ当量209](エポキシ化合物(E-1))8.9部及びエポキシ化触媒であるイミダゾール[富士フイルム和光純薬(株)製、以下同様]0.1部を混合し、二軸混練機[(株)栗本鐵工所、S5KRCニーダー]に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性(架橋)されたポリエステル樹脂を含有したトナーバインダー(C-1)を得た。
<実施例2>  [トナーバインダー(C-2)の製造]
 ポリエステル樹脂(A1-2)40部、結晶性ビニル樹脂(B-2)60部、jER157S70(エポキシ化合物(E-1))10.2部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-2)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-2)を得た。
<実施例3>  [トナーバインダー(C-3)の製造]
 ポリエステル樹脂(A1-2)70部、結晶性ビニル樹脂(B-3)30部、EHPE3150[2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、(株)ダイセル製、以下同様、エポキシ当量175](エポキシ化合物(E-2))6.1部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-2)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-3)を得た。
<実施例4>  [トナーバインダー(C-4)の製造]
 ポリエステル樹脂(A1-3)50部、結晶性ビニル樹脂(B-4)50部、jER1001[ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製、以下同様、エポキシ当量470](エポキシ化合物(E-3))16.5部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-3)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-4)を得た。
<実施例5>  [トナーバインダー(C-5)の製造]
 ポリエステル樹脂(A1-4)60部、結晶性ビニル樹脂(B-5)40部、ペンタエリスリトールポリグリシジルエーテル[ナガセケムテックス(株)製、以下同様、エポキシ当量229](エポキシ化合物(E-4))9.0部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-4)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-5)を得た。
<実施例6>  [トナーバインダー(C-6)の製造]
 ポリエステル樹脂(A1-1)20部、結晶性ビニル樹脂(B-2)80部、jER157S70(エポキシ化合物(E-1))5.8部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、160℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-6)を得た。
<実施例7>  [トナーバインダー(C-7)の製造]
 ポリエステル樹脂(A1-4)70部、結晶性ビニル樹脂(B-6)30部、EHPE3150(エポキシ化合物(E-2))2.2部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、160℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-4)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-7)を得た。
<実施例8>  [トナーバインダー(C-8)の製造]
 ポリエステル樹脂(A1-1)30部、結晶性ビニル樹脂(B-1)70部、jER828[ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製、以下同様、エポキシ当量190](エポキシ化合物(E-5))4.9部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、150℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-8)を得た。
<実施例9>  [トナーバインダー(C-9)の製造]
 ポリエステル樹脂(A1-1)80部、結晶性ビニル樹脂(B-1)20部、jER157S70(エポキシ化合物(E-1))14.3部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-9)を得た。
<実施例10>  [トナーバインダー(C-10)の製造]
 ポリエステル樹脂(A1-1)8部、結晶性ビニル樹脂(B-1)92部、jER157S70(エポキシ化合物(E-1))1.4部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-10)を得た。
<実施例11>  [トナーバインダー(C-11)の製造]
 ポリエステル樹脂(A1-3)40部、結晶性ビニル樹脂(B-7)60部、EPPN-201[フェノールノボラック型エポキシ樹脂、日本化薬(株)製、エポキシ当量193、以下同様](エポキシ化合物(E-6))9.0部及びエポキシ化触媒である2-フェニルイミダゾール[富士フイルム和光純薬(株)製、以下同様]0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-3)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-11)を得た。
<実施例12>  [トナーバインダー(C-12)の製造]
 ポリエステル樹脂(A1-1)60部、結晶性ビニル樹脂(B-8)40部、jER1004[ビスフェノールA型エポキシ樹脂、日本化薬(株)製、エポキシ当量900、以下同様](エポキシ化合物(E-7))23.1部及びエポキシ化触媒である2-エチル-4-メチルイミダゾール[富士フイルム和光純薬(株)製、以下同様]0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-12)を得た。
<実施例13>  [トナーバインダー(C-13)の製造]
 ポリエステル樹脂(A1-1)30部、結晶性ビニル樹脂(B-1)70部、jER1007FS[三菱ケミカル(株)製、以下同様、エポキシ当量1300](エポキシ化合物(E-8))10.0部及びエポキシ化触媒である2-フェニルイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-13)を得た。
<実施例14>  [トナーバインダー(C-14)の製造]
 ポリエステル樹脂(A1-1)30部、結晶性ビニル樹脂(B-2)70部、jER1001(エポキシ化合物(E-3))12.6部及びエポキシ化触媒である2-エチル-4-メチルイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃で5分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-1)がエポキシ化合物により変性されたポリエステル樹脂を含有したトナーバインダー(C-14)を得た。
<比較例1>  [トナーバインダー(C’-1)の製造]
 ポリエステル樹脂(A1-5)40部及び結晶性ビニル樹脂(B-1)60部を混合し、二軸混練機に52kg/時で供給し、同時にラジカル反応開始剤(c)としてt-ブチルパーオキシイソプロピルモノカーボネート1.0部を0.52kg/時で供給して160℃で7分間90rpmで混練押出して架橋反応を行い、さらにベント口から50kPaで減圧して有機溶剤の除去を行いながら混合した。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-5)が炭素-炭素結合により架橋されたポリエステル樹脂を含有したトナーバインダー(C’-1)を得た。
<比較例2>  [トナーバインダー(C’-2)の製造]
 ポリエステル樹脂(A1-5)60部及び結晶性ビニル樹脂(B-2)40部を混合し、二軸混練機に80kg/時で供給し、同時にラジカル反応開始剤(c)としてt-ブチルパーオキシイソプロピルモノカーボネート1.0部を0.80kg/時で供給して160℃で5分間90rpmで混練押出して架橋反応を行い、さらにベント口から50kPaで減圧して有機溶剤の除去を行いながら混合した。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-5)が炭素-炭素結合により架橋されたポリエステル樹脂を含有したトナーバインダー(C’-2)を得た。
<比較例3>  [トナーバインダー(C’-3)の製造]
 ポリエステル樹脂(A1-5)40部及び結晶性ビニル樹脂(B-1)60部を混合し、二軸混練機に10kg/時で供給し、同時に架橋剤としてデュラネートTPA-100[イソシアヌレート構造を有するHDI系ポリイソシアネート、旭化成ケミカルズ(株)製]を0.2kg/hrで供給して150℃で20分間90rpmで混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-5)がウレタン基により架橋されたポリエステル樹脂を含有したトナーバインダー(C’-3)を得た。
<比較例4>  [トナーバインダー(C’-4)の製造]
 ポリエステル樹脂(A1-5)40部及び結晶性ビニル樹脂(B-1)60部を混合し、二軸混練機に10kg/時で供給し、同時に架橋剤として無水トリメリット酸を0.1kg/hrで供給して180℃で20分間90rpmで混練押出し、さらにベント口から50kPaで減圧してエステル化をして架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-5)が酸により架橋されたポリエステル樹脂を含有したトナーバインダー(C’-4)を得た。
<比較例5>  [トナーバインダー(C’-5)の製造]
 ポリエステル樹脂(A1-2)40部及び結晶性ビニル樹脂(B-1)60部を混合し、二軸混練機に10kg/時で供給し、同時に架橋剤としてトリメチロールプロパンを0.1kg/hrで供給して180℃で20分間90rpmで混練押出し、さらにベント口から50kPaで減圧してエステル化をして架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1-2)がアルコールにより架橋されたポリエステル樹脂を含有したトナーバインダー(C’-5)を得た。
 表3~4に実施例及び比較例で得られたトナーバインダーの吸熱ピークトップ温度(Tm)、ガラス転移温度(Tg)、酸価及び有機溶剤の含有量を記載した。有機溶剤の含有量は、前記の方法で測定した。表3~4に記載される「(A1)を基準とした(E)の重量割合」は、トナーバインダーの製造に使用したポリエステル樹脂(A1)の重量に対するエポキシ化合物(E)の重量割合(100×エポキシ化合物(E)の重量/ポリエステル樹脂(A1)の重量)(%)である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<トナーの製造>
 トナーバインダー[各実施例及び比較例で得られたトナーバインダー]88部に対して、顔料のカーボンブラック[三菱ケミカル(株)製、MA-100]7部、離型剤のカルナバワックス3部、荷電制御剤[保土谷化学工業(株)製、T-77]1部を加え下記の方法でトナー化した。
 まず、ヘンシェルミキサー[日本コークス工業(株)製、FM10B]を用いて予備混合した後、二軸混練機[(株)池貝製、PCM-30]で混練した。ついで超音速ジェット粉砕機ラボジェット[(株)栗本鐵工所製、KJ-25]を用いて微粉砕した後、エルボージェット分級機[(株)マツボー製、EJ-L-3(LABO)型]で分級し、体積平均粒径D50が7μmのトナー粒子を得た。体積平均粒径(D50)はコールターカウンター(製品名:マルチサイザーIII、ベックマン・コールター(株)製)を用いて測定した。
 ついで、トナー粒子100部に流動化剤としてコロイダルシリカ[日本アエロジル(株)製、アエロジルR972]1部をサンプルミルにて混合して、トナーを得た。
 表5~6に記載した原料の配合部数で、各実施例及び比較例で得られたトナーバインダーを使用してトナーを製造した。なお、表5~6には、実施例1~14のトナーバインダー(C-1)~(C-14)を使用して得られたトナーを(T-1)~(T~14)、及び比較例1~5のトナーバインダー(C’-1)~(C’-5)を使用して得られたトナーを(T’-1)~(T’-5)とそれぞれ示す。
[トナーの性能評価]
 以下に、得られたトナー(T-1)~(T-14)及び(T’-1)~(T’-5)の低温定着性、耐ホットオフセット性、耐熱保存性、帯電維持率(低温低湿条件及び高温高湿条件)、ブロッキング性、画像強度、粉砕性、臭気及び耐久性の評価方法を、判定基準を含めて説明する。
<低温定着性>
 トナーを紙面上に1.0mg/cmとなるよう均一に載せた。このとき粉体を紙面に載せる方法は、熱定着機を外したプリンターを用いた。この紙をソフトローラーに定着速度(加熱ローラーの周速)213mm/秒、加熱ローラーの温度90~200℃の範囲を5℃刻みで通した。次に定着画像へのコールドオフセットの有無を目視し、コールドオフセットの発生温度(MFT)を測定した。低温定着性の評価結果として、MFTを表5~6に示した。
 コールドオフセットの発生温度が低いほど、低温定着性に優れることを意味し、この評価条件では、MFTは一般には125℃以下であることが好ましい。
<耐ホットオフセット性>
 上記低温定着性に記載した方法と同じ方法で、トナーを紙面上に載せ、この紙をソフトローラーに定着速度(加熱ローラーの周速)213mm/秒、加熱ローラーの温度90~200℃の範囲を5℃刻みで通した。次に定着画像へのホットオフセットの有無を目視し、ホットオフセットの発生温度を測定した。耐ホットオフセット性の評価結果として、ホットオフセットの発生温度を表5~6に示した。
 ホットオフセットの発生温度が高いほど、耐ホットオフセット性に優れることを意味する。この評価条件では、180℃以上であることが好ましい。
<耐熱保存性>
 トナー1gとアエロジルR8200(エボニックジャパン(株)製)0.01gをシェイカーで1時間混合した。混合物を密閉容器に入れ、温度40℃、湿度80%の雰囲気で48時間静置し、パウダーテスターで凝集性を測定し、耐熱保存性を評価した。
 下記方法により求められる凝集度試験の数値(凝集度)が低いほど、耐熱保存性に優れることを意味する。耐熱保存性の評価結果として、凝集度(%)を表5~6に示した。この評価条件では、凝集度が5%以下であることが好ましい。
装置:POWDER TESTER model PT-X(ホソカワミクロン(株)製)
篩の目開き:355μm、250μm、150μm
振動幅:1mm
振動時間:30秒
操作方法:パウダーテスターの振動台に、篩を上段355μm、中段250μm、下段150μmの順でセットし、上段の篩にトナーを1g乗せ、1mmの振動幅で30秒間振動させて、各篩上に残存したトナーの重量を測定。
凝集度:測定に使用したトナー重量と篩後の残存トナー重量から算出。
凝集度(%)=(U/N+M/N×3/5+L/N×1/5)×100
U:上段の重量、M:中段の重量、L:下段の重量、N:サンプルの重量(1g)
<帯電維持率(低温低湿条件及び高温高湿条件)>
(1)トナー1gとアエロジルR8200(エボニックジャパン(株)製)0.01gをシェイカーで1時間混合した。本混合物0.5gとフェライトキャリア(パウダーテック(株)製、F-150)20gとを50mLのガラス瓶に入れ、これを23℃、相対湿度50%で8時間調湿した(低温低湿条件と呼ぶ)。また同様に50℃、相対湿度95%で24時間調湿した(高温高湿条件と呼ぶ)。
(2)ターブラーシェーカーミキサーにて50rpmで10分間及び60分間摩擦撹拌し、それぞれの時間での帯電量をブローオフ帯電量測定装置[京セラケミカル(株)製]を用いて測定した。
 得られた値を用いて「摩擦時間60分後の帯電量/摩擦時間10分後の帯電量」を計算し、これを帯電安定性指数とした。帯電維持率の評価結果として、帯電安定性指数を表5~6に示す。
 本帯電安定性指数が大きいほど帯電維持率に優れることを意味する。この評価条件では0.8以上であると好ましい。
<ブロッキング性>
(1)トナー1gとアエロジルR8200(エボニックジャパン(株)製)0.01gをシェイカーで1時間混合した。本混合物0.5gとフェライトキャリア(パウダーテック(株)製、F-150)20gとを50mLのガラス瓶に入れ、これを50℃、相対湿度95%で24時間調湿した。
(2)ブロッキングの程度を目視で判断し、下記判定基準でブロッキング性を評価した。表5~6に結果を示す。
 [判定基準]
 ○:ブロッキングが全く発生しておらず、ブロッキング性に優れる。
 △:一部にブロッキングが発生しているが、ブロッキング性に優れる。
 ×:全体にブロッキングが発生しており、ブロッキング性が大きく劣る。
<画像強度>
 上記の低温定着性の評価で定着した画像のうち最低定着温度の画像を、JIS K5600-5-4(1999)に準じて、斜め45度に固定した鉛筆の真上から10gの荷重が加わる様にして手かき法によりかけ引っ掻き硬度試験を行い、傷のつかない鉛筆硬度から画像強度を評価した。画像強度の評価結果として、傷がつかない鉛筆硬度を表5~6に示す。
 鉛筆硬度が高いほど画像強度に優れることを意味する。一般にはHB以上であることが好ましい。
<粉砕性>
 トナーの製造において、二軸混練機で混練して得た混合物を冷却後に8.6メッシュパス~30メッシュオンの大きさに粉砕分級したものを粉砕性評価用粒子として用い、この粉砕性評価用粒子を超音速ジェット粉砕機ラボジェットにより下記の条件で微粉砕した。
 粉砕圧:0.64MPa
 粉砕時間:15分
 セパレ-ター周波数:150Hz
 アジャスターリング:15mm
 ルーバーの大きさ:中
 粉砕性評価用粒子の微粉砕物を分級せずに、体積平均粒径(μm)をコールターカウンター[商品名:マルチサイザーIII(コールター社製)]により測定し、粉砕性を評価した。粉砕性の評価結果として、体積平均粒径(μm)を表5~6に示す。
 粒子径が小さいほど、粉砕性に優れることを意味する。この評価条件では、体積平均粒径が8.0μm以下であることが好ましい。
<臭気>
 トナーを蓋付ガラス製試験管(φ15mm×150mm)に1.0g入れ、密閉し、210℃にて5分間加熱した。その後、蓋を取り、10人のモニターが臭気を確認し、以下の判定基準で評価した。表5~6に結果を示す。
[判定基準]
 ○:1人も臭わないか1人だけ臭うと回答
 △:2~6人が臭うと回答
 ×:7人以上が臭うと回答
<耐久性>
 トナーを二成分現像剤として、市販モノクロ複写機[シャープ(株)製、AR5030]を用いて連続コピーを行い、以下の基準で耐久性を評価した。表5~6に結果を示す。
[判定基準]
 ◎:1万枚コピー後も画質に変化なく、カブリの発生もない。
 ○:1万枚コピー後でカブリが発生している。
 △:6千枚コピー後でカブリが発生している。
 ×:2千枚コピー後でカブリが発生している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5~6の評価結果から明らかなように、各実施例で製造したトナーバインダーを使用したトナー(T-1)~(T-14)はいずれもすべての性能評価において優れた結果が得られた。一方、各比較例で製造したトナーバインダーを使用したトナー(T’-1)~(T’-5)は、いくつかの性能項目が不良であった。具体的には、比較例1及び2は炭素-炭素結合により架橋されたポリエステル樹脂を含有するが、ラジカル重合開始剤(c)を用いて架橋反応させるため有機溶剤の含有量が多く、ブロッキング性の低下、高温高湿下での帯電維持率の低下が生じ、さらに臭気が悪化した。比較例3はウレタン結合で架橋されたポリエステル樹脂を含有するため、ウレタン基による帯電特性の悪化と、ウレタン基の凝集力の高さにより粉砕性が悪化した。比較例4及び5は酸と水酸基の縮合反応に伴うエステル化反応により架橋されたポリエステル樹脂を含有するが、エポキシ架橋に比べてエステル架橋は弱く、耐熱保存性やブロッキング性が劣った。
 本発明のトナーバインダーは、低温定着性及び耐ホットオフセット性を維持しつつ、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性、画像強度、粉砕性、臭気及び耐久性に優れ、電子写真、静電記録や静電印刷等に用いる、静電荷像現像用トナーとして好適に使用できる。
 本発明のトナーバインダーは、さらに、塗料用添加剤、接着剤用添加剤、電子ペーパー用粒子などの用途にも好適である。

Claims (8)

  1.  ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とを含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)で架橋された樹脂を含有するトナーバインダー。
  2.  結晶性ビニル樹脂(B)が単量体(a)を含む単量体組成物の重合体であり、前記単量体(a)は鎖状炭化水素基を有する炭素数21~40の(メタ)アクリレートであり、前記単量体組成物中の単量体(a)の重量割合が、前記単量体組成物の合計重量を基準として30重量%以上である請求項1に記載のトナーバインダー。
  3.  吸熱ピークトップ温度(Tm)[但し、吸熱ピークトップ温度(Tm)とは、示差走査熱量計(DSC)を用いてトナーバインダーを20℃から150℃まで10℃/分の条件で第1回目の昇温をした後、150℃から0℃まで10℃/分の条件で冷却し、続いて0℃から150℃まで10℃/分の条件で昇温する第2回目の昇温過程における吸熱ピークのピークトップ温度である。]が40~100℃である請求項1又は2に記載のトナーバインダー。
  4.  エポキシ化合物(E)がエポキシ当量150~1000の多官能エポキシ化合物である請求項1~3のいずれかに記載のトナーバインダー。
  5.  ポリエステル樹脂(A1)の重量に対するエポキシ化合物(E)の重量比率が、1~40重量%である請求項1~4のいずれかに記載のトナーバインダー。
  6.  結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)と反応させて得られるトナーバインダーであって、前記ポリエステル樹脂(A1)と結晶性ビニル樹脂(B)の重量比[(A1):(B)]が10:90~70:30である請求項1~5のいずれかに記載のトナーバインダー。
  7.  ポリエステル樹脂(A1)の酸価が5~50mgKOH/gであり、結晶性ビニル樹脂(B)の酸価が60mgKOH/g以下である請求項1~6のいずれかに記載のトナーバインダー。
  8.  ポリエステル樹脂(A1)のガラス転移温度が-35~60℃である請求項1~7のいずれかに記載のトナーバインダー。

     
PCT/JP2020/012610 2019-06-27 2020-03-23 トナーバインダー WO2020261676A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020567183A JP7028995B2 (ja) 2019-06-27 2020-03-23 トナーバインダー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119263 2019-06-27
JP2019-119263 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020261676A1 true WO2020261676A1 (ja) 2020-12-30

Family

ID=74060556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012610 WO2020261676A1 (ja) 2019-06-27 2020-03-23 トナーバインダー

Country Status (2)

Country Link
JP (1) JP7028995B2 (ja)
WO (1) WO2020261676A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007431A1 (fr) * 1995-08-11 1997-02-27 Nippon Shokubai Co., Ltd. Resine de liaison pour toners et toners pour developpement de charges electrostatiques prepares a partir ces resines
JP2020076954A (ja) * 2018-10-26 2020-05-21 三洋化成工業株式会社 トナーバインダーの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007431A1 (fr) * 1995-08-11 1997-02-27 Nippon Shokubai Co., Ltd. Resine de liaison pour toners et toners pour developpement de charges electrostatiques prepares a partir ces resines
JP2020076954A (ja) * 2018-10-26 2020-05-21 三洋化成工業株式会社 トナーバインダーの製造方法

Also Published As

Publication number Publication date
JP7028995B2 (ja) 2022-03-02
JPWO2020261676A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6735416B2 (ja) トナーバインダー及びトナー
JP6948359B2 (ja) トナーバインダー
US11774872B2 (en) Toner binder
JP2017003985A (ja) トナーバインダーおよびトナー
JP6829276B2 (ja) トナーバインダー
EP3382455B1 (en) Toner binder and toner
JP6983844B2 (ja) トナーバインダーの製造方法
JP2017032980A (ja) トナーバインダー及びトナー
JP6328712B2 (ja) トナーバインダーおよびトナー
JP7028995B2 (ja) トナーバインダー
JP7295695B2 (ja) トナーバインダー
US11156932B2 (en) Toner binder and toner
JP7463218B2 (ja) トナーバインダー
JP7463210B2 (ja) トナーバインダー
JP2021140153A (ja) トナーバインダーの製造方法
JP2020052153A (ja) トナーバインダー及びトナー
JP6713492B2 (ja) トナーバインダー及びトナー
JP2019219655A (ja) トナーバインダー
JP2019219656A (ja) トナーバインダー

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020567183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831156

Country of ref document: EP

Kind code of ref document: A1